WorldWideScience

Sample records for magnetic detectors

  1. The CMS detector magnet

    CERN Document Server

    Hervé, A

    2000-01-01

    CMS (Compact Muon Solenoid) is a general-purpose detector designed to run in mid-2005 at the highest luminosity at the LHC at CERN. Its distinctive features include a 6 m free bore diameter, 12.5 m long, 4 T superconducting solenoid enclosed inside a 10,000 tonne return yoke. The magnet will be assembled and tested on the surface by the end of 2003 before being transferred by heavy lifting means to a 90 m deep underground experimental area. The design and construction of the magnet is a `common project' of the CMS Collaboration. It is organized by a CERN based group with strong technical and contractual participation by CEA Saclay, ETH Zurich, Fermilab Batavia IL, INFN Geneva, ITEP Moscow, University of Wisconsin and CERN. The return yoke, 21 m long and 14 m in diameter, is equivalent to 1.5 m of saturated iron interleaved with four muon stations. The yoke and the vacuum tank are being manufactured. The indirectly-cooled, pure- aluminium-stabilized coil is made up from five modules internally wound with four ...

  2. The Phenix Detector magnet subsystem

    International Nuclear Information System (INIS)

    Yamamoto, R.M.; Bowers, J.M.; Harvey, A.R.

    1995-01-01

    The PHENIX [Photon Electron New Heavy Ion Experiment] Detector is one of two large detectors presently under construction for RHIC (Relativistic Heavy Ion Collider) located at Brookhaven National Laboratory. Its primary goal is to detect a new phase of matter; the quark-gluon plasma. In order to achieve this objective, the PHENIX Detector utilizes a complex magnet subsystem which is comprised of two large magnets identified as the Central Magnet (CM) and the Muon Magnet (MM). Muon Identifier steel is also included as part of this package. The entire magnet subsystem stands over 10 meters tall and weighs in excess of 1900 tons (see Fig. 1). Magnet size alone provided many technical challenges throughout the design and fabrication of the project. In addition, interaction with foreign collaborators provided the authors with new areas to address and problems to solve. Russian collaborators would fabricate a large fraction of the steel required and Japanese collaborators would supply the first coil. This paper will describe the overall design of the PHENIX magnet subsystem and discuss its present fabrication status

  3. The Phenix Detector magnet subsystem

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, R.M.; Bowers, J.M.; Harvey, A.R. [Lawrence Livermore National Lab., CA (United States)] [and others

    1995-05-19

    The PHENIX [Photon Electron New Heavy Ion Experiment] Detector is one of two large detectors presently under construction for RHIC (Relativistic Heavy Ion Collider) located at Brookhaven National Laboratory. Its primary goal is to detect a new phase of matter; the quark-gluon plasma. In order to achieve this objective, the PHENIX Detector utilizes a complex magnet subsystem which is comprised of two large magnets identified as the Central Magnet (CM) and the Muon Magnet (MM). Muon Identifier steel is also included as part of this package. The entire magnet subsystem stands over 10 meters tall and weighs in excess of 1900 tons (see Fig. 1). Magnet size alone provided many technical challenges throughout the design and fabrication of the project. In addition, interaction with foreign collaborators provided the authors with new areas to address and problems to solve. Russian collaborators would fabricate a large fraction of the steel required and Japanese collaborators would supply the first coil. This paper will describe the overall design of the PHENIX magnet subsystem and discuss its present fabrication status.

  4. The STAR detector magnet subsystem

    International Nuclear Information System (INIS)

    Brown, R.L.; Etkin, A.; Foley, K.J.

    1997-01-01

    The RHIC (Relativistic Heavy Ion Collider) Accelerator currently under construction at Brookhaven National Laboratory will have large detectors at two of its six intersection regions. One of these detectors, known as STAR (Solenoidal Tracker At RHIC), weighs 1100 tons and is being built around a large solenoid magnet. The magnet is 7.32 in in diameter, 7.25 m long and utilizes three different sizes of room temperature aluminum coils. The magnet will operate with a field set from 0.25 T to 0.5 T and have a field uniformity of better than 1000 ppm over a portion of its interior region. This paper describes the magnet design, fabrication and assembly requirements and presents the current construction status

  5. Detector for magnetic monopoles at OPAL

    International Nuclear Information System (INIS)

    Pinfold, J.L.; Kinoshita, K.; Lorazo, B.; Regimbald, M.

    1991-01-01

    We describe two indepent methods, employed in the OPAL experiment at LEP, for detection of magnetic monopoles and other highly ionizing particles. The first employs passive track-recording plastic detectors incorporated into the apparatus. The second utilizes thed dE/dX measurement capability of the OPAL JET chamber in association with a dedicated trigger. In addition, energetic particles carrying magnetic charge can be identified by the trajectory in the OPAL magnetic field. (orig.)

  6. Mark II magnetic detector for SPEAR

    International Nuclear Information System (INIS)

    Larsen, R.R.

    1975-01-01

    The Mark II Detector, presently in the design stage, is a SLAC/LBL detector project to replace the Mark I now in operation at SPEAR. While similar in concept to the Mark I it will have improved momentum resolution, shower detection, solid angle coverage for both triggering and tracking and a magnet design providing easier access to those particles transmitted through the aluminum coil

  7. A magnetically coupled quench detector for superconducting magnets

    International Nuclear Information System (INIS)

    Jaskierny, W.; Kristalinski, A.; Visser, A.T.

    1993-12-01

    This note describes a low voltage signal detector that is useful for detecting quenches or excessive lead voltages at superconducting magnets. It can also be used for other applications where it is needed to detect low level signals present on high voltage installations. The application of isolated operational amplifiers is often not practical for high voltage applications because of their limited input voltage rating, common mode rejection and sensitivity. The described detector can withstand 7.5 kV input to ground voltage. It has a typical common mode rejection of -150 dB at 60 Hz and an input sensitivity better than 1 mV. The magnetically coupled quench detector assembly is very sensitive to extremely small (order of 1 μAmp) current changes in the sense windings. The detector assembly can therefore also be referred to as a micro current detector

  8. A 77 K MOS magnetic field detector

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R S; Torres, A. [Instituto Nacional de Astrofisica Optica y Electronica, Puebla (Mexico); Garcia, P.J. [Universidad Veracruzana, Veracruz (Mexico); Gutierrez, E.A. [Motorola, Puebla (Mexico)

    2001-12-01

    An integrated MOS (metal-oxide-semiconductor)-compatible magnetic field detector (split-drain MAGFET) for operation at liquid-nitrogen temperature LNT (77 K) is presented. The measured relative magnetic sensibility (S{sub a}) is approximately 14%/T (double the value ever reported) using a non-optimized MAGFET structure (W/L) = (100 mm/125 mm). The cryo-magnetic structure was tested without a built-in preamplifier. It presents a power consumption of the order of mW. [Spanish] A traves de este articulo se presenta un detector de campo magnetico (split-drain MAGFET), basado en el transistor de efecto de campo MOS (metal-oxido-semiconductor), y totalmente compatible con procesos de fabricacion de circuitos integrados CMOS. La operacion optima de este detector es a temperaturas criogenicas. Aqui se presentan los resultados experimentales de la caracterizacion de una estructura no optimizada con dimensiones (W / L) = (100 mm/125 mm) a la temperatura del nitrogeno liquido (77 K). La sensibilidad relativa medida es de cerca del 14 % T, casi el doble del valor maximo antes reportado en la literatura. El dispositivo se midio sin un pre-amplificador integrado, mostrando un consumo de potencia del orden de microwatts.

  9. Quantum electrodynamics with the spear magnetic detector

    International Nuclear Information System (INIS)

    Zipse, J.E.

    1975-09-01

    One makes a study of quantum electrodynamic processes which are present at the SPEAR colliding beam magnetic detector. We begin by describing the experiment performed by the SLAC-LBL collaboration and the results concerning the strong interaction. Then the interactions e + e - → e + e - and e + e - → μ + μ - are considered along with their third-order radiative corrections. These events, previously used to determine new limits for cutoff parameters in QED breakdown models, are further studied to show that the full distribution in coplanarity angle fits the theoretical prediction well. The major focus is on the fourth order two-photon process, e + e - → e + e - A + A - , which only recently has been realized to be significant in such experiments. Cross sections are derived and calculated exactly for this process and the results compared to a Weizacker-Williams equivalent photon calculation. The two-photon data are then isolated and fit to the calculation. A special experiment was done where the small-angle scattered electron or positron is ''tagged'' along with particles in the main detector. Cross sections and coplanarity distributions are measured and compared to calculation. Through these studies, one feels confident that one understand the nature of the two-photon process in the detector. One further explores the hadronic physics of the two-photon process, e + e - → e + e - hadrons, measuring pion cross sections, searching for resonances, and discussing future experiments

  10. Search for magnetic monopoles with Frejus detector

    International Nuclear Information System (INIS)

    Benadjal, Y.

    1989-10-01

    Magnetic monopoles are predicted by every Grand Unification Theory. Their experimental search constitutes, together with proton decay, the only direct test of these theories. The Frejus experiment, using a large calorimetric detector, has looked for cosmic ray monopoles in the speed (v/c) range from 0.0001 to 0.1. No candidate was recorded. The flux limits obtained represent an original contribution at the low end of the speed range. After a first chapter covering various theoretical aspects of the monopole problem, we describe, in the following chapter, the main methods which can be applied to try to detect monopoles, and we review a certain number of experiments. The third chapter describes the Frejus magnetic monopole experiment. The detection method and the Geiger tube efficiency for slow monopoles are examined. Particular attention is given to the trigger system for slow monopoles. It was possible to add a specially designed electronic system to the detector making the monopole search possible. This system is described here. Four million events were recorded. The final chapter is devoted to their analysis. It includes, in particular, the description of the method which made it possible to reduce this mass of data to roughly 1000 events which were then scanned one by one in order to identify possible candidates. Our results in terms of flux limits are compared with those obtained by the better competing experiments [fr

  11. Performance of silicon drift detectors in a magnetic field

    International Nuclear Information System (INIS)

    Castoldi, A.; Gatti, E.; Manzari, V.; Rehak, P.

    1997-01-01

    A study of the properties of silicon drift detectors in a magnetic field was carried out. A silicon drift detector with 41 anodes, providing unambiguous x and y position information, was used for measurements. Studies were done in three principal orientations of the detector relative to the direction of the magnetic field. The magnetic field was varied between 0 and 0.7 T and the drift field between 300 and 600 V/cm. Basic agreement with the theory of electron transport in semiconductors in a magnetic field was found. The transport properties of electrons in a magnetic field can be described by a mobility matrix. The components of the matrix depend on the electron mobility, Hall mobility and on the vector of the magnetic field. The precision of measurement was better than 0.2% for most of the parameters. For the electric field of a silicon drift detector, there is a first-order effect of the magnetic field only in one out of three principal directions. In this direction, the plane of the detector is perpendicular to the magnetic field and electrons drift at an angle α relative to the direction of the drift field. In two other principal directions, which are more important for tracking of the particles with drift detectors, there are no first-order magnetic effects. (orig.)

  12. Superconducting magnet technology for particle accelerators and detectors seminar

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    This lecture is an introduction to superconducting magnets for particle accelerators and detectors, the aim being to explain the vocabulary and describe the basic technology of modern superconducting magnets, and to explore the limits of the technology. It will include the following: - Why we need superconducting magnets - Properties of superconductors, critical field, critical temperature - Why accelerators need fine filaments and cables; conductor manufacture - Temperature rise and temperature margin: the quench process, training - Quench protection schemes. Protection in the case of the LHC. - Magnets for detectors - The challenges of state-of-the-art magnets for High Energy Physics

  13. High Frequency Amplitude Detector for GMI Magnetic Sensors

    Directory of Open Access Journals (Sweden)

    Aktham Asfour

    2014-12-01

    Full Text Available A new concept of a high-frequency amplitude detector and demodulator for Giant-Magneto-Impedance (GMI sensors is presented. This concept combines a half wave rectifier, with outstanding capabilities and high speed, and a feedback approach that ensures the amplitude detection with easily adjustable gain. The developed detector is capable of measuring high-frequency and very low amplitude signals without the use of diode-based active rectifiers or analog multipliers. The performances of this detector are addressed throughout the paper. The full circuitry of the design is given, together with a comprehensive theoretical study of the concept and experimental validation. The detector has been used for the amplitude measurement of both single frequency and pulsed signals and for the demodulation of amplitude-modulated signals. It has also been successfully integrated in a GMI sensor prototype. Magnetic field and electrical current measurements in open- and closed-loop of this sensor have also been conducted.

  14. The CLAS12 Torus Detector Magnet at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Luongo, Cesar [Jefferson Lab; Ballard, Joshua [Jefferson Lab; Biallas, George [Jefferson Lab; Elouadrhiri, Latifa [Jefferson Lab; Fair, Ruben [Jefferson Lab; Ghoshal, Probir [Jefferson Lab; Kashy, Dave [Jefferson Lab; Legg, Robert [Jefferson Lab; Pastor, Orlando [Jefferson Lab; Rajput-Ghoshal, Renuka [Jefferson Lab; Rode, Claus [Jefferson Lab; Wiseman, Mark [Jefferson Lab; Young, Glenn [Jefferson Lab; Elementi, Luciano [Fermilab; Krave, Steven [Fermilab; Makarov, Alexander [Fermilab; Nobrega, Fred [Fermilab; Velev, George [Fermilab

    2015-12-17

    The CLAS12 Torus is a toroidal superconducting magnet, which is part of the detector for the 12-GeV accelerator upgrade at Jefferson Laboratory (JLab). The coils were wound/fabricated by Fermilab, with JLab responsible for all other parts of the project scope, including design, integration, cryostating the individual coils, installation, cryogenics, I&C, etc. This paper provides an overview of the CLAS12 Torus magnet features and serves as a status report of its installation in the experimental hall. Completion and commissioning of the magnet is expected in 2016.

  15. Study of the performance of Micromegas detectors in magnetic field

    Science.gov (United States)

    Dimitrios, Sampsonidis

    2018-02-01

    Resistive Micromegas (MICRO MEsh GAseous Structure) detectors have been chosen by the ATLAS collaboration at LHC for the high luminosity upgrade, due to their capability to maintain full efficiency and high spatial resolution at high occupancy, for tracking muons in the forward region of the detector. The Inner Muon Station, in the high-rapidity region, the so called New Small Wheel (NSW), will be composed of micromegas detectors that will have to maintain good performance in the presence of magnetic field of up to about 0.3 T. The response of micromegas detectors is affected by the magnetic field, where the deflection of the drift electrons is described by the Lorentz angle, resulting in a bias in the reconstructed track position. Several test-beam campaigns have been performed to test the behaviour of small size resistive micromegas prototypes (10×10 cm2) in magnetic fields up to 1 T, using high momentum muon and hadron beams at CERN. These studies are performed in order to validate the capability of the chambers to provide unbiased tracks in the NSW conditions. Measurements of the Lorentz angle and drift velocity as a function of the magnetic field are presented and both are compared to expectations based on Garfield-Magboltz simulations. Several methods to correct the position bias are applied, based on the chamber configuration or on the knowledge of the local value of the magnetic field. The results of these studies are presented together with an overall discussion of the Micromegas tracking capability in magnetic field.

  16. Study of the performance of Micromegas detectors in magnetic field

    Directory of Open Access Journals (Sweden)

    Dimitrios Sampsonidis

    2018-01-01

    Full Text Available Resistive Micromegas (MICRO MEsh GAseous Structure detectors have been chosen by the ATLAS collaboration at LHC for the high luminosity upgrade, due to their capability to maintain full efficiency and high spatial resolution at high occupancy, for tracking muons in the forward region of the detector. The Inner Muon Station, in the high-rapidity region, the so called New Small Wheel (NSW, will be composed of micromegas detectors that will have to maintain good performance in the presence of magnetic field of up to about 0.3 T. The response of micromegas detectors is affected by the magnetic field, where the deflection of the drift electrons is described by the Lorentz angle, resulting in a bias in the reconstructed track position. Several test-beam campaigns have been performed to test the behaviour of small size resistive micromegas prototypes (10×10 cm2 in magnetic fields up to 1 T, using high momentum muon and hadron beams at CERN. These studies are performed in order to validate the capability of the chambers to provide unbiased tracks in the NSW conditions. Measurements of the Lorentz angle and drift velocity as a function of the magnetic field are presented and both are compared to expectations based on Garfield-Magboltz simulations. Several methods to correct the position bias are applied, based on the chamber configuration or on the knowledge of the local value of the magnetic field. The results of these studies are presented together with an overall discussion of the Micromegas tracking capability in magnetic field.

  17. Study of the performance of Micromegas detectors in magnetic field

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00222923; The ATLAS collaboration

    2015-01-01

    Resistive Micromegas (MICRO MEsh GAseous Structure) detectors have been chosen by the ATLAS collaboration at LHC for the high luminosity upgrade, due to their capability to maintain full efficiency and high spatial resolution at high occupancy, for tracking muons in the forward region of the detector. The Inner Muon Station, in the high-rapidity region, the so called New Small Wheel (NSW), will be composed of micromegas detectors that will have to maintain good performance in the presence of magnetic field of up to about 0.3 T. The response of micromegas detectors is affected by the magnetic field, where the deflection of the drift electrons is described by the Lorentz angle, resulting in a bias in the reconstructed track position. Several test-beam campaigns have been performed to test the behaviour of small size resistive micromegas prototypes ($10 \\times 10 \\text{cm}^2$) in magnetic fields up to 1 T, using high momentum muon and hadron beams at CERN. These studies are performed in order to validate the cap...

  18. A search for magnetic monopoles with the Soudan 2 detector

    International Nuclear Information System (INIS)

    Allison, W.W.M.; Barr, G.D.; Brooks, C.B.; Cobb, J.H.; Kirby-Gallagher, L.M.; Giles, R.H.; Giller, G.L.; Perkins, D.H.; Shield, P.D.; Thomson, M.A.; West, N.; Alner, G.J.; Cockerill, D.J.A.; Edwards, V.W.; Garcia-Garcia, C.; Litchfield, P.J.; Pearce, G.F.; Woods, C.A.; Ambats, I.; Ayres, D.S.; Balka, L.; Barrett, W.L.; Dawson, J.; Fields, T.; Goodman, M.C.; Heilig, S.J.; Hill, N.; Jankowski, D.J.; Lopez, F.; May, E.N.; Price, L.E.; Schlereth, J.; Thron, J.L.; Border, P.; Courant, H.; Dahlin, B.; Demuth, D.; Gray, R.; Heppelmann, S.; Johns, K.; Joyce, T.; Kasahara, S.; Longley, N.; Lowe, M.; Marshak, M.L.; Miller, W.H.; Minor, C.; Peterson, E.A.; Roback, D.; Rosen, D.; Ruddick, K.; Schmid, D.; Shupe, M.; Villaume, G.; Weems, L.; Werkema, S.J.

    1991-08-01

    A search for GUT magnetic monopoles has been conducted using the Soudan 2 nucleon decay detector. This detector is a fine-grained tracking calorimeter. Monopole candidates were selected on the basis of significantly higher ionization than throughgoing cosmic ray muons. Preliminary results, using data taken over approximately one year with no monopoles observed, correspond to a flux limit of 2.4 10 -14 cm -2 sr -1 s -1 over a velocity range of 10 -3 < β < 0.95. 8 refs

  19. A large magnetic detector for the neutrino factory

    International Nuclear Information System (INIS)

    Cervera, A.; Dydak, F.; Gomez Cadenas, J.J.

    2000-01-01

    The physics opportunities of the neutrino factory have been the subject of a number of recent studies. It was shown that sensitive measurements of the angle θ 13 , of MSW effects, and of the sign of the atmospheric mass difference Δm 23 2 are possible, and even CP violation in the neutrino mixing matrix may be within reach. The focus of interest is the oscillation ν e →ν μ , which leads in the well-defined neutrino beam of the neutrino factory to 'wrong-sign' muon events. In this paper, we show that a large magnetic detector will be capable of detecting with high efficiency and small backgrounds such wrong-sign muon events. We present a conceptual design of the apparatus and its performance. Various backgrounds are analysed and we demonstrate that they can be sufficiently suppressed by appropriate cuts. We illustrate the performance of the large magnetic detector by its sensitivity to the angle θ 13

  20. Technical Note: Response measurement for select radiation detectors in magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, M., E-mail: michaelreynolds@ualberta.net [Department of Oncology, Medical Physics Division, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Fallone, B. G. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Departments of Oncology and Physics, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada); Rathee, S. [Department of Medical Physics, Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada and Department of Oncology, Medical Physics Division,University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2 (Canada)

    2015-06-15

    Purpose: Dose response to applied magnetic fields for ion chambers and solid state detectors has been investigated previously for the anticipated use in linear accelerator–magnetic resonance devices. In this investigation, the authors present the measured response of selected radiation detectors when the magnetic field is applied in the same direction as the radiation beam, i.e., a longitudinal magnetic field, to verify previous simulation only data. Methods: The dose response of a PR06C ion chamber, PTW60003 diamond detector, and IBA PFD diode detector is measured in a longitudinal magnetic field. The detectors are irradiated with buildup caps and their long axes either parallel or perpendicular to the incident photon beam. In each case, the magnetic field dose response is reported as the ratio of detector signals with to that without an applied longitudinal magnetic field. The magnetic field dose response for each unique orientation as a function of magnetic field strength was then compared to the previous simulation only studies. Results: The measured dose response of each detector in longitudinal magnetic fields shows no discernable response up to near 0.21 T. This result was expected and matches the previously published simulation only results, showing no appreciable dose response with magnetic field. Conclusions: Low field longitudinal magnetic fields have been shown to have little or no effect on the dose response of the detectors investigated and further lend credibility to previous simulation only studies.

  1. Superconducting Cable Development for Future High Energy Physics Detector Magnets

    Science.gov (United States)

    Horvath, I. L.

    1995-11-01

    Under the leadership of the Swiss Federal Institute of Technology (ETHZ) an international ad hoc collaboration for superconducting cables developed an aluminium stabilised superconducting cable for future detector magnets. With the financial support of the Swiss government, this R&D work was carried out for the European Organisation for Nuclear Research (CERN). In this report the manufacturing process is described and results of the quality control measurements are summarised. These tests showed that the industrial manufacturing of an aluminium stabilised superconducting cable is feasible.

  2. Large, real time detectors for solar neutrinos and magnetic monopoles

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.

    1990-01-01

    We discuss the present status of superheated superconducting granules (SSG) development for the real time detection of magnetic monopoles of any speed and of low energy solar neutrinos down to the pp region (indium project). Basic properties of SSG and progress made in the recent years are briefly reviewed. Possible ways for further improvement are discussed. The performances reached in ultrasonic grain production at ∼ 100 μm size, as well as in conventional read-out electronics, look particularly promising for a large scale monopole experiment. Alternative approaches are briefly dealt with: induction loops for magnetic monopoles; scintillators, semiconductors or superconducting tunnel junctions for a solar neutrino detector based on an indium target

  3. Study of the performance of Micromegas detectors in magnetic field

    CERN Document Server

    Sampsonidis, Dimos; The ATLAS collaboration

    2016-01-01

    Resistive Micromegas (Micro MEsh Gaseous Structure) detectors have been chosen by the ATLAS collaboration at LHC for the high luminosity upgrade due to their capability to maintain full efficiency and high spatial resolution at high rates. Operation in the Inner Muon Station of the high-rapidity region, the so called New Small Wheel (NSW) requires also these performances to be maintened in magnetic fields up to about 0.3 T. The response of Micromegas chambers is affected by the magnetic field where the deflection of the drift electrons is described by the Lorentz angle, resulting in a bias in the reconstructed position. Several test-beam campaigns have been performed to test the behaviour of small size resistive micromegas prototypes (10x10cm2) in magnetic fields up to 1 T using high momentum muon and hadron beams at CERN. These studies are performed in order to validate the capability to operate these chambers to get unbiased tracks in the NSW conditions. Measurements of the Lorentz angle and drift velocity ...

  4. New Electron Cloud Detectors for the PS Main Magnets

    CERN Document Server

    Yin Vallgren, Ch; Gilardoni, S; Taborelli, M; Neupert, H; Ferreira Somoza, J

    2014-01-01

    Electron cloud (EC) has already been observed during normal operation of the PS, therefore it is necessary to study its in fluence on any beam instability for the future LHC Injector Upgrade (LIU). Two new electron cloud detectors have been discussed, developed and installed during the Long Shutdown (LS1) in one of the PS main magnets. The first measurement method is based on current measurement by using a shielded button-type pick-up. Due to the geometry and space limitation in the PS magnet, the button-type pick-up made of a 96%Al2O3 block coated with a thin layer of solvent-based Ag painting, placed 30 degrees to the bottom part of the vacuum chamber was installed in the horizontal direction where the only opening of the magnet coil is. The other newly developed measurement method is based on detection of photons emitted by the electrons from the electron cloud impinging on the vacuum chamber walls. The emitted photons are reected to a quartz window. A MCP-PMT (Micro-Channel Plate Photomultiplier Tube) wit...

  5. GEM detector performance with innovative micro-TPC readout in high magnetic field

    Directory of Open Access Journals (Sweden)

    Garzia I.

    2018-01-01

    Full Text Available Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD, allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs. Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  6. GEM detector performance with innovative micro-TPC readout in high magnetic field

    Science.gov (United States)

    Garzia, I.; Alexeev, M.; Amoroso, A.; Baldini Ferroli, R.; Bertani, M.; Bettoni, D.; Bianchi, F.; Calcaterra, A.; Canale, N.; Capodiferro, M.; Cassariti, V.; Cerioni, S.; Chai, J. Y.; Chiozzi, S.; Cibinetto, G.; Cossio, F.; Cotta Ramusino, A.; De Mori, F.; Destefanis, M.; Dong, J.; Evangelisti, F.; Evangelisti, F.; Farinelli, R.; Fava, L.; Felici, G.; Fioravanti, E.; Gatta, M.; Greco, M.; Lavezzi, L.; Leng, C. Y.; Li, H.; Maggiora, M.; Malaguti, R.; Marcello, S.; Melchiorri, M.; Mezzadri, G.; Mignone, M.; Morello, G.; Pacetti, S.; Patteri, P.; Pellegrino, J.; Pelosi, A.; Rivetti, A.; Rolo, M. D.; Savrié, M.; Scodeggio, M.; Soldani, E.; Sosio, S.; Spataro, S.; Tskhadadze, E.; Verma, S.; Wheadon, R.; Yan, L.

    2018-01-01

    Gas detector development is one of the pillars of the research in fundamental physics. Since several years, a new concept of detectors, called Micro Pattern Gas Detector (MPGD), allowed to overcome several problems related to other types of commonly used detectors, like drift chamber and micro strips detectors, reducing the rate of discharges and providing better radiation tolerance. Among the most used MPGDs are the Gas Electron Multipliers (GEMs). Invented by Sauli in 1997, nowadays GEMs have become an important reality for particle detectors in high energy physics. Commonly deployed as fast timing detectors and triggers, their fast response, high rate capability and high radiation hardness make them also suitable as tracking detectors. The readout scheme is one of the most important features in tracking technology. Analog readout based on the calculation of the center of gravity technique allows to overcome the limit imposed by digital pads, whose spatial resolution is limited by the pitch dimensions. However, the presence of high external magnetic fields can distort the electronic cloud and affect the performance. The development of the micro-TPC reconstruction method brings GEM detectors into a new prospective, improving significantly the spatial resolutionin presence of high magnetic fields. This innovative technique allows to reconstruct the 3-dimensional particle position, as Time Projection Chamber, but within a drift gap of a few millimeters. In these report, the charge centroid and micro-TPC methods are described in details. We discuss the results of several test beams performed with planar chambers in magnetic field. These results are one of the first developments of micro-TPC technique for GEM detectors, which allows to reach unprecedented performance in a high magnetic field of 1 T.

  7. Technologies pioneered by LHC. Superconducting magnet and radiation-tolerant tracking detector

    International Nuclear Information System (INIS)

    Yamamoto, Akira; Unno, Yoshinobu

    2007-01-01

    In the LHC project of proton-proton collisions exploring the energy frontier, superconducting magnets and radiation-tolerant tracking detector play fundamental roles as key technologies. The superconducting magnets contribute to bending and focusing particle beam by using high magnetic field created with the NbTi superconductor cooled to the superfluid temperature of He (1.9 K). In order to overcome the unprecedented radiation damage and to capture the particles emerging with high energy and high density, the large area and highly radiation-tolerant silicon semiconductor tracking detector has been developed for the LHC experiment. (author)

  8. Magnetic Field Requirements for a Detector at the Linear Collider Using a TPC as Main Tracking Device

    CERN Document Server

    Klempt, W

    2010-01-01

    This note describes the requirements to the magnetic field which occur in an ILD like detector at ILC or CLIC. In particular we describe requirements introduced by choosing a TPC as main tracking detector.

  9. A new X-ray detector for magnetic circular dichroism experiments

    CERN Document Server

    Bateman, J E; Dudzik, E; Laan, G V D; Lipp, J D; Smith, A D; Stephenson, R

    2001-01-01

    X-ray magnetic circular dichroism (XMCD) studies of magnetic 3d transition metal samples require the recording of high quality absorption scans in high magnetic fields using circularly polarised soft X-rays of energies in the range 0.5-1 keV. A Gas Microstrip Detector is described which permits the option of using the X-ray fluorescence signal instead of the usual electron yield signal.

  10. Performance of HPGe detectors in high magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Lorente, A.S.; Achenbach, P.; Agnello, M.; Majling, Lubomír

    2007-01-01

    Roč. 573, č. 3 (2007), s. 410-417 ISSN 0168-9002 R&D Projects: GA ČR GA202/05/2142 Institutional research plan: CEZ:AV0Z10480505 Keywords : hypernuclear gamma-spectroscopy * HPGe detectors Subject RIV: BE - Theoretical Physics Impact factor: 1.114, year: 2007

  11. Neutrino hierarchy from CP-blind observables with high density magnetized detectors

    International Nuclear Information System (INIS)

    Donini, A.; Fernandez-Martinez, E.; Rigolin, S.; Migliozzi, P.; Scotto Lavina, L.; Selvi, M.; Tabarelli de Fatis, T.; Terranova, F.

    2008-01-01

    High density magnetized detectors are well suited to exploit the outstanding purity and intensities of novel neutrino sources like neutrino factories and beta beams. They can also provide independent measurements of leptonic mixing parameters through the observation of atmospheric muon-neutrinos. In this paper, we discuss the combination of these observables from a multi-kT iron detector and a high energy beta beam; in particular, we demonstrate that even with moderate detector granularities the neutrino mass hierarchy can be determined for θ 13 values greater than 4 . (orig.)

  12. CAS CERN Accelerator School. Measurement and alignment of accelerator and detector magnets. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1998-01-01

    These proceedings present the lectures given at the eleventh specialised course organised by the CERN Accelerator School (CAS), the topic this time being 'Measurement and Alignment of Accelerator and Detector Magnets'. A similar course was already presented at Montreux, Switzerland in 1992 and its proceedings published as CERN 92-05. However recent progress in the field, especially in the use of superconducting magnets, has been so rapid that a revised course had become imperative. The lectures start with basic magnet theory and the motivation for magnet measurements followed by a review of superconducting magnets and their field dynamics. After a review of measurement methods, the details of search and harmonic coils, magnetic resonance techniques and Hall generators are given followed by methods to minimise errors in mechanical equipment, series production and detector magnet measurements. Turning to magnet metrology and alignment, first data quality control is explained followed by the setting of reference targets, and the alignment methods for accelerators and experiments including alignment by feedback. Finally seminars are presented on the biological effects of magnetic fields and on superconducting magnet fabrication and quality control. (orig.)

  13. Searching for magnetic monopoles using large area ionization detectors

    International Nuclear Information System (INIS)

    Shepko, M.J.; Webb, R.C.

    1984-01-01

    Predictions of current Grand Unified Theories (GUT's) require the existence of massive (10 16 GeV/c 2 ) magnetic monopoles at some level. Stringent limits on the flux of these particles may be obtained from various cosmological and astrophysical arguments. Theoretical predictions limiting monopole abundance based on survival of the galactic magnetic field place an upper bound of xi approx. = 10 -15 cm -2 sr -1 s -1 on the allowed monopole flux. Similarly, magnetic monopoles are expected to be accelerated along galactic field lines to velocities on the order of β approx. = 10 -4

  14. The research and development of inclination angle magnetic fluid detector with a movable sensing element based on permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Lagutkina, D.Yu., E-mail: Lagutkina_D@mail.ru; Saikin, M.S., E-mail: saikinms@mail.ru

    2017-06-01

    The article presents an account on some new designs, which have been developed for the magnetic fluid sensor with a movable sensor based on permanent magnets with the support of Ivanovo State Power Engineering University. The research carried out is aimed at elucidating the influence of the detector sensing element on its operating performance. - Highlights: • In order to conduct a careful research of IAMFD designs operating performance the algorithm was applied to look into the SE suspension force dependencies on its spatial position. • According to this algorithm, the value of the sensitive element suspension force is obtained with use of the MF attraction force of the to the permanent magnet.

  15. Iron-free detector magnet options for the future circular collider

    CERN Document Server

    AUTHOR|(CDS)2092466; Dudarev, Alexey; Pais Da Silva, Helder Filipe; Rolando, Gabriella; Cure, Benoit; Gaddi, Andrea; Klyukhin, Slava; Gerwig, Hubert; Wagner, Udo; Ten Kate, Herman

    2016-01-01

    In this paper, several iron-free solenoid-based designs of a detector magnet for the future circular collider for hadron-hadron collisions (FCC-hh) are presented. The detector magnet designs for FCC-hh aim to provide bending power for particles over a wide pseudorapidity range (0 ≤ jηj ≤ 4). To achieve this goal, the main solenoidal detector magnet is combined with a forward magnet system, such as the previously presented force-and-torque-neutral dipole. Here, a solenoid-based alternative, the so-called balanced forward solenoid, is presented which comprises a larger inner solenoid for providing bending power to particles at jηj ≥ 2.5, in combination with a smaller balancing coil for ensuring that the net force and torque on each individual coil is minimized. The balanced forward solenoid is compared to the force-and-torqueneutral dipole and advantages and disadvantages are discussed. In addition, several conceptual solenoidbased detector magnet designs are shown, and quantitatively compared. The main...

  16. Baby MIND: a magnetized segmented neutrino detector for the WAGASCI experiment

    International Nuclear Information System (INIS)

    Antonova, M.; Fedotov, S.; Izmaylov, A.; Khabibullin, M.; Khotyantsev, A.; Kleymenova, A.; Asfandiyarov, R.; Blondel, A.; Cadoux, F.; Favre, Y.; Karadzhov, Y.; Bayes, R.; Hallsjö, S-P.; Benoit, P.; Dudarev, A.; Bogomilov, M.; Bross, A.; Cervera, A.; Chikuma, N.; Ekelöf, T.

    2017-01-01

    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.

  17. Baby MIND: a magnetized segmented neutrino detector for the WAGASCI experiment

    Science.gov (United States)

    Antonova, M.; Asfandiyarov, R.; Bayes, R.; Benoit, P.; Blondel, A.; Bogomilov, M.; Bross, A.; Cadoux, F.; Cervera, A.; Chikuma, N.; Dudarev, A.; Ekelöf, T.; Favre, Y.; Fedotov, S.; Hallsjö, S.-P.; Izmaylov, A.; Karadzhov, Y.; Khabibullin, M.; Khotyantsev, A.; Kleymenova, A.; Koga, T.; Kostin, A.; Kudenko, Y.; Likhacheva, V.; Martinez, B.; Matev, R.; Medvedeva, M.; Mefodiev, A.; Minamino, A.; Mineev, O.; Nessi, M.; Nicola, L.; Noah, E.; Ovsiannikova, T.; Pais Da Silva, H.; Parsa, S.; Rayner, M.; Rolando, G.; Shaykhiev, A.; Simion, P.; Soler, F. J. P.; Suvorov, S.; Tsenov, R.; Ten Kate, H.; Vankova-Kirilova, G.; Yershov, N.

    2017-07-01

    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.

  18. Baby MIND: A Magnetized Segmented Neutrino Detector for the WAGASCI Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Antonova, M.; et al.

    2017-07-19

    T2K (Tokai-to-Kamioka) is a long-baseline neutrino experiment in Japan designed to study various parameters of neutrino oscillations. A near detector complex (ND280) is located 280 m downstream of the production target and measures neutrino beam parameters before any oscillations occur. ND280's measurements are used to predict the number and spectra of neutrinos in the Super-Kamiokande detector at the distance of 295 km. The difference in the target material between the far (water) and near (scintillator, hydrocarbon) detectors leads to the main non-cancelling systematic uncertainty for the oscillation analysis. In order to reduce this uncertainty a new WAter-Grid-And-SCintillator detector (WAGASCI) has been developed. A magnetized iron neutrino detector (Baby MIND) will be used to measure momentum and charge identification of the outgoing muons from charged current interactions. The Baby MIND modules are composed of magnetized iron plates and long plastic scintillator bars read out at the both ends with wavelength shifting fibers and silicon photomultipliers. The front-end electronics board has been developed to perform the readout and digitization of the signals from the scintillator bars. Detector elements were tested with cosmic rays and in the PS beam at CERN. The obtained results are presented in this paper.

  19. Dosimetry in clinical static magnetic fields using plastic scintillation detectors

    DEFF Research Database (Denmark)

    Stefanowicz, S.; Latzel, H.; Lindvold, Lars René

    2013-01-01

    . In conclusion, we found some deviations up to 7% of the supposed signal. Although the scintillators are of much denser material, we measured the same behavior in signal as in (Meijsing et al., 2009) for a Farmer ionization chamber or as in (Raaijmakers et al., 2007) for films described which indicates radiation......-vivo dosimetry in radiation treatments and diagnostics and could be, being all-optical, promising candidates for this application. To study the basic feasibility of using PSDs with organic scintillators in magnetic fields, we measured the response of these dosimeters in presence of magnetic fields up to 1 T...

  20. Magnetic Microcalorimeter (MMC) Gamma Detectors with Ultra-High Energy Resolution

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2018-01-19

    The goal of this LCP is to develop ultra-high resolution gamma detectors based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material, and implement several geometry and design changes to improve the signal-to-noise ratio. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers, and by developing a cryogenic Compton veto to reduce the spectral background. Since best MMC performance requires detector operation at ~10 mK, we will purchase a dilution refrigerator with a base temperature <10 mK and adapt it for MMC operation. The detector performance will be tested with radioactive sources of interest to the safeguards community.

  1. Computation of the magnetic field of a spectrometer in detectors region

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Yuldasheva, M.B.; Yudin, I.P.; Yuldashev, O.I.

    1995-01-01

    Computed results of the 3D magnetic field of a spectrometer intended for investigation of hadron production of charmed particles and the indication of the narrow resonances in neutron-nucleus interactions are presented. The methods used in computations: finite element method and finite element method with suggested new infinite elements are described. For accuracy control the computations were carried out on a sequence of three-dimensional meshes. Special attention is devoted to behaviour of the magnetic field in the basic detector (proportional chambers) region. The performed results can be used for the field behaviour estimate of similar spectrometer magnets. (orig.)

  2. Computation of the Magnetic Field of a Spectrometer in Detectors Region

    International Nuclear Information System (INIS)

    Zhidkov, E.P.; Yuldasheva, M.B.; Yudin, I.P.; Yuldashev, O.I.

    1994-01-01

    Computed results of the 3D magnetic field of a spectrometer intended for investigation of hadron production of charmed particles and the indication of the narrow resonances in neutron-nucleus interaction are presented. The methods, used in computations - finite element method and finite element method with suggested new infinite elements are described. For accuracy control the computations were carried out on a sequence of three-dimensional meshes. Special attention is devoted to the behaviour of the magnetic field in the basic detectors (proportional chambers) region. The performed results can be used for the field behaviour estimate of similar spectrometer magnets. 12 refs., 16 figs

  3. Magnetic monopole search with the MoEDAL test trapping detector

    Directory of Open Access Journals (Sweden)

    Katre Akshay

    2016-01-01

    Full Text Available IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.

  4. Magnetic monopole search with the MoEDAL test trapping detector

    Science.gov (United States)

    Katre, Akshay

    2016-11-01

    IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC) collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.

  5. A Search for Fast Moving Magnetic Monopoles with the MACRO Detector

    Science.gov (United States)

    Liu, Rongzhi

    1995-01-01

    From Dirac monopole theory to modern GUT's (Grand Unified Theories), magnetic monopoles have attracted much attention from physicists. While Dirac had demonstrated the consistency of magnetic monopoles with quantum eletrodynamics, 't Hooft and Polyakov demonstrated the necessity of monopoles in GUT's. Furthermore, the GUT's supply more clues about magnetic monopoles, including their exceptionally heavy masses ~ 10^{16 } GeV. Both current theories and previous monopole experiments have suggested that the flux of magnetic monopoles is likely to be very small, so it is necessary to have a large area detector to search for them. This thesis presents a search for fast moving magnetic monopoles with the MACRO detector. The MACRO detector is a large underground detector located at Gran Sasso, Italy. Its primary goal is to search for magnetic monopoles at a flux level beyond the Parker bound. It is underground at 3,000 meters water equivalent depth, with a nominal acceptance of 10,000 m^2 sr. It employs liquid scintillator counters, streamer tubes and track-etch detectors which can supply both independent and cross checks for fast monopole candidate events. This search is mainly based on the liquid scintillator counters with primary event selection and energy reconstruction from the ERP system. The 6.2 mus trigger time is based on the time of flight of a fast moving monopole diagonally through one supermodule with a velocity ~ 10^{-2}c. The search uses the "six-month-run" data which were taken from December of 1992 to July of 1993 with the operation of the lower part of the detector. With energy reconstruction ability up to 8 GeV with 22% error, we apply a double-face high energy requirement to reject most muon events from the data sample. We then apply the WFD, streamer tube and strip information to reject non-monopole events. The live time for this analysis is 5,300 hours, with acceptance of 4050 m^2 sr. With no fast monopole candidate event found, we establish an upper

  6. Conceptual design of a superconducting solenoid for a magnetic SSC [Superconducting Super Collider] detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, D.; Wands, R.H.

    1988-07-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) has begun at Fermilab. The magnet will provide a magnetic field of 2 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictibility of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Although the magnet is considerably larger than existing solenoids of this type and although many issues of manufacturability, transportability and cost have not been completely addressed, our conceptual design has convinced us that this magnet is a reasonable extrapolation of present technology. 2 figs., 2 tabs

  7. Study of the performance of HPGe detectors operating in very high magnetic fields

    International Nuclear Information System (INIS)

    Agnello, M.; Botta, E.; Bressani, T.; Bruschi, M.; Bufalino, S.; De Napoli, M.; Feliciello, A.; Fontana, A.; Giacobbe, B.; Lavezzi, L.; Raciti, G.; Rapisarda, E.; Rotondi, A.; Sbarra, C.; Sfienti, C.; Zoccoli, A.

    2009-01-01

    A new generation of high-resolution hypernuclear γ-spectroscopy experiments using high-purity germanium (HPGe) detectors is presently designed for the FINUDA spectrometer at DAΦNE, the Frascati Φ-factory, and for PANDA, the p-p-bar hadron spectrometer at the future FAIR facility. In both spectrometers the HPGe detectors have to be operated in strong magnetic fields. In this paper we report on a series of measurements performed on a HPGe detector inserted in a magnetic field of intensity up to 2.5 T, the highest ever reached for operations with a HPGe, and with different orientations of the detector's axis with respect to field direction. A significant worsening of the energy resolution was found, but with a moderate loss of the efficiency. The most relevant features of the peak shapes, described by bi-Gaussian functions, are parametrized in terms of field intensity and energy: this allows to correct the spectra measured in magnetic field and to recover the energy resolution almost completely.

  8. Prospects of functional Magnetic Resonance Imaging as lie detector

    Directory of Open Access Journals (Sweden)

    Elena eRusconi

    2013-09-01

    Full Text Available Following the demise of the polygraph, supporters of assisted scientific lie detection tools have enthusiastically appropriated neuroimaging technologies as the savior of scientifically verifiable lie detection in the courtroom (Gerard, 2008: 5; however, such enthusiasm may prove premature. For in nearly every article published by independent researchers in peer reviewed journals, the respective authors acknowledge that fMRI research, processes, and technology are insufficiently developed and understood for gatekeepers to even consider introducing these neuroimaging measures into criminal courts as they stand today for the purpose of determining the veracity of statements made. Regardless of how favorable their analyses of fMRI or its future potential, they all acknowledge the presence of issues yet to be resolved. Even assuming a future where these issues are resolved and an appropriate fMRI lie-detection process is developed, its integration into criminal trials is not assured for the very success of such a future system may necessitate its exclusion from courtrooms on the basis of existing legal and ethical prohibitions. In this piece, aimed for a multidisciplinary readership, we seek to highlight and bring together the multitude of hurdles which would need to be successfully overcome before fMRI can (if ever be a viable applied lie detection system. We argue that the current status of fMRI studies on lie detection meets neither basic legal nor scientific standards. We identify four general classes of hurdles (scientific, legal and ethical, operational, and social and provide an overview on the stages and operations involved in fMRI studies, as well as the difficulties of translating these laboratory protocols into a practical criminal justice environment. It is our overall conclusion that fMRI is unlikely to constitute a viable lie detector for criminal courts.

  9. Application of the magnetic fluid as a detector for changing the magnetic field

    Science.gov (United States)

    Zyatkov, D.; Yurchenko, A.; Yurchenko, V.; Balashov, V.

    2018-05-01

    In article the possibility of use of magnetic fluid as a sensitive element for fixing of change of induction of magnetic field in space is considered. Importance of solvable tasks is connected with search of the perspective magnetic substances susceptible to weak magnetic field. The results of a study of the capacitive method for fixing the change in the magnetic field on the basis of a ferromagnetic liquid are presented. The formation of chain structures in the ferrofluid from magnetic particles under the influence of the applied magnetic field leads to a change in the capacitance of the plate condenser. This task has important practical value for development of a magnetosensitive sensor of change of magnetic field.

  10. A gamma- and X-ray detector for cryogenic, high magnetic field applications

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.L., E-mail: roblcoop@indiana.edu [Indiana University, Bloomington, IN 47408 (United States); Alarcon, R. [Arizona State University, Tempe, AZ 85287 (United States); Bales, M.J. [University of Michigan, Ann Arbor, MI 48109 (United States); Bass, C.D. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Beise, E.J. [University of Maryland, College Park, MD 20742 (United States); Breuer, H., E-mail: breuer@enp.umd.edu [University of Maryland, College Park, MD 20742 (United States); Byrne, J. [University of Sussex, Brighton, BN1 9QH (United Kingdom); Chupp, T.E. [University of Michigan, Ann Arbor, MI 48109 (United States); Coakley, K.J. [National Institute of Standards and Technology, Boulder, CO 80305 (United States); Dewey, M.S.; Fu, C. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Gentile, T.R., E-mail: thomas.gentile@nist.gov [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Mumm, H.P.; Nico, J.S. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); O' Neill, B. [Arizona State University, Tempe, AZ 85287 (United States); Pulliam, K. [Tulane University, New Orleans, LA 70118 (United States); Thompson, A.K. [National Institute of Standards and Technology, Stop 8461, NIST, Gaithersburg, MD 20899 (United States); Wietfeldt, F.E. [Tulane University, New Orleans, LA 70118 (United States)

    2012-11-01

    As part of an experiment to measure the spectrum of photons emitted in beta-decay of the free neutron, we developed and operated a detector consisting of 12 bismuth germanate (BGO) crystals coupled to avalanche photodiodes (APDs). The detector was operated near liquid nitrogen temperature in the bore of a superconducting magnet and registered photons with energies from 5 keV to 1000 keV. To enlarge the detection range, we also directly detected soft X-rays with energies between 0.2 keV and 20 keV with three large area APDs. The construction and operation of the detector are presented, as well as information on operation of APDs at cryogenic temperatures.

  11. Simulation of backgrounds in detectors and energy deposition in superconducting magnets at μ+μ- colliders

    International Nuclear Information System (INIS)

    Mokhov, N.V.; Striganov, S.I.

    1996-01-01

    A calculational approach is described to study beam induced radiation effects in detector and storage ring components at high-energy high-luminosity μ + μ - colliders. The details of the corresponding physics process simulations used in the MARS code are given. Contributions of electromagnetic showers, synchrotron radiation, hadrons and daughter muons to the background rates in a generic detector for a 2 x 2 TeV μ + μ - collider are investigated. Four configurations of the inner triplet and a detector are examined for two sources: muon decays and beam halo interactions in the lattice elements. The beam induced power density in superconducting magnets is calculated and ways to reduce it are proposed

  12. Fabrication of Gamma Detectors Based on Magnetic Ag:Er Microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boyd, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Cantor, Robin [STAR Cryoelectronics, Santa Fe, NM (United States)

    2015-11-25

    This report discusses the photolithographic fabrication of ultra-high resolution gamma-ray detectors based on magnetic microcalorimeters (MMCs). The MMC uses a novel Er-doped silver sensor (Ag:Er) that is expected to have higher sensitivity than the Er-doped gold (Au:Er) sensors currently in use. The MMC also integrates the first-stage SQUID preamplifier on the same chip as the MMC gamma detector to increase its signal-to-noise ratio. In addition, the MMC uses a passive Ta-Nb heat switch to replace one of the common long-term failure points in earlier detectors. This report discusses the fabrication process we have developed to implement the proposed improvements.

  13. Fabrication of Gamma Detectors Based on Magnetic Ag:Er Microcalorimeters

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boyd, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Cantor, Robin [STAR Cryoelectronics, Santa Fe, NM (United States)

    2016-05-06

    This report discusses the photolithographic fabrication of ultra-high resolution gamma-ray detectors based on magnetic microcalorimeters (MMCs). The MMC uses a novel Er-doped silver sensor (Ag:Er) that is expected to have higher sensitivity than the Er-doped gold (Au:Er) sensors currently in use. The MMC also integrates the first-stage SQUID preamplifier on the same chip as the MMC gamma detector to increase its signal-to-noise ratio. In addition, the MMC uses a passive Ta-Nb heat switch to replace one of the common long-term failure points in earlier detectors. This report discusses the fabrication process we have developed to implement the proposed improvements.

  14. Fabrication of Gamma Detectors Based on Magnetic Ag:Er Microcalorimeters

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Boyd, Stephen; Cantor, Robin

    2016-01-01

    This report discusses the photolithographic fabrication of ultra-high resolution gamma-ray detectors based on magnetic microcalorimeters (MMCs). The MMC uses a novel Er-doped silver sensor (Ag:Er) that is expected to have higher sensitivity than the Er-doped gold (Au:Er) sensors currently in use. The MMC also integrates the first-stage SQUID preamplifier on the same chip as the MMC gamma detector to increase its signal-to-noise ratio. In addition, the MMC uses a passive Ta-Nb heat switch to replace one of the common long-term failure points in earlier detectors. This report discusses the fabrication process we have developed to implement the proposed improvements.

  15. Fabrication of Gamma Detectors Based on Magnetic Ag:Er Microcalorimeters

    International Nuclear Information System (INIS)

    Friedrich, Stephan; Boyd, Stephen; Cantor, Robin

    2015-01-01

    This report discusses the photolithographic fabrication of ultra-high resolution gamma-ray detectors based on magnetic microcalorimeters (MMCs). The MMC uses a novel Er-doped silver sensor (Ag:Er) that is expected to have higher sensitivity than the Er-doped gold (Au:Er) sensors currently in use. The MMC also integrates the first-stage SQUID preamplifier on the same chip as the MMC gamma detector to increase its signal-to-noise ratio. In addition, the MMC uses a passive Ta-Nb heat switch to replace one of the common long-term failure points in earlier detectors. This report discusses the fabrication process we have developed to implement the proposed improvements.

  16. Search for relativistic magnetic monopoles with the AMANDA-II detector

    International Nuclear Information System (INIS)

    Wissing, Henrike

    2009-01-01

    Cherenkov emissions of magnetically charged particles passing through a transparent medium will exceed those of electrically charged particles by several orders of magnitude. The Antarctic Muon And Neutrino Detector Array (AMANDA), a neutrino telescope utilizing the glacial ice at the geographic South Pole as Cherenkov medium, is capable of efficiently detecting relativistic magnetic monopoles that may pass through its sensitive volume. This thesis presents the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with AMANDA during the 2000. No such signal is observed in the data, and the analysis allows to place upper limits on the flux of relativistic magnetic monopoles. The limit obtained for monopoles reaching the detector from below the horizon, i.e., those monopoles that are capable of crossing the Earth, is the most stringent experimental constraint on the flux of magnetic monopoles to date: Dependent on the monopole speed, the flux limit (at 90% confidence level) varies between 3.8 x 10 -17 cm -2 s -1 sr -1 (for monopoles moving at the vacuum speed of light) and 8.8 x 10 -16 cm -2 s -1 sr -1 (for monopoles moving at a speed just above the Cherenkov threshold). The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, owing to the much larger background from down-going atmospheric muons. This looser limit is valid for a larger class of magnetic monopoles, since the monopole's capability to pass through the Earth is not a requirement. (orig.)

  17. A Distance Detector with a Strip Magnetic MOSFET and Readout Circuit.

    Science.gov (United States)

    Sung, Guo-Ming; Lin, Wen-Sheng; Wang, Hsing-Kuang

    2017-01-10

    This paper presents a distance detector composed of two separated metal-oxide semiconductor field-effect transistors (MOSFETs), a differential polysilicon cross-shaped Hall plate (CSHP), and a readout circuit. The distance detector was fabricated using 0.18 μm 1P6M Complementary Metal-Oxide Semiconductor (CMOS) technology to sense the magnetic induction perpendicular to the chip surface. The differential polysilicon CSHP enabled the magnetic device to not only increase the magnetosensitivity but also eliminate the offset voltage generated because of device mismatch and Lorentz force. Two MOSFETs generated two drain currents with a quadratic function of the differential Hall voltages at CSHP. A readout circuit-composed of a current-to-voltage converter, a low-pass filter, and a difference amplifier-was designed to amplify the current difference between two drains of MOSFETs. Measurements revealed that the electrostatic discharge (ESD) could be eliminated from the distance sensor by grounding it to earth; however, the sensor could be desensitized by ESD in the absence of grounding. The magnetic influence can be ignored if the magnetic body (human) stays far from the magnetic sensor, and the measuring system is grounded to earth by using the ESD wrist strap (Strap E-GND). Both 'no grounding' and 'grounding to power supply' conditions were unsuitable for measuring the induced Hall voltage.

  18. Lead-glass wall addition to the SPEAR Mark 1 magnetic detector

    International Nuclear Information System (INIS)

    Feller, J.M.; Barbaro-Galtieri, A.; Dorfan, J.M.; Ely, R.; Feldman, G.J.; Fong, A.; Gobbi, B.; Hanson, G.; Heile, F.B.; Jaros, J.A.; Kwan, B.P.; Lecomte, P.; Litke, A.M.; Luke, D.; Madaras, R.J.; Martin, J.B.

    1978-01-01

    A ''Lead-Glass Wall,'' consisting of 318 lead-glass Cherenkov shower counters and three wire spark chambers, has been added to one octant of the SPEAR Mark I Magnetic Detector. The wall covers a solid angle of approximately 6% of 4π steradians and has been used to identify and measure the energies of electrons and photons produced in electron-positron collisions. The design, calibration, gain-monitoring, and performance of the system are described. 3 refs

  19. Charge collection measurements with p-type Magnetic Czochralski silicon single pad detectors

    International Nuclear Information System (INIS)

    Tosi, C.; Bruzzi, M.; Macchiolo, A.; Scaringella, M.; Petterson, M.K.; Sadrozinski, H.F.-W.; Betancourt, C.; Manna, N.; Creanza, D.; Boscardin, M.; Piemonte, C.; Zorzi, N.; Borrello, L.; Messineo, A.

    2007-01-01

    The charge collected from beta source particles in single pad detectors produced on p-type Magnetic Czochralski (MCz) silicon wafers has been measured before and after irradiation with 26 MeV protons. After a 1 MeV neutron equivalent fluence of 1x10 15 cm -2 the collected charge is reduced to 77% at bias voltages below 900 V. This result is compared with previous results from charge collection measurements

  20. Design and construction of a uniform magnetic field generator for a 32 channel cosmic ray detector

    Science.gov (United States)

    Herrera-Guzman, K. N.; Gutierrez-Sanchez, R. A.; Felix, J.; Arceo, L. J.; Araujo, C.

    2017-10-01

    The trajectory of a particle can be measured if some points of its track are known. This is applied to any kind of particle, including cosmic rays. We have designed and built a device for this purpose. We present the design, construction and characterization of a uniform magnetic field generator system in a finite volume. An array of Cerenkov detectors will be placed inside of it for determining the cosmic rays charge and to reconstruct their trajectories.

  1. Magnetic field influences on the lateral dose response functions of photon-beam detectors: MC study of wall-less water-filled detectors with various densities.

    Science.gov (United States)

    Looe, Hui Khee; Delfs, Björn; Poppinga, Daniela; Harder, Dietrich; Poppe, Björn

    2017-06-21

    The distortion of detector reading profiles across photon beams in the presence of magnetic fields is a developing subject of clinical photon-beam dosimetry. The underlying modification by the Lorentz force of a detector's lateral dose response function-the convolution kernel transforming the true cross-beam dose profile in water into the detector reading profile-is here studied for the first time. The three basic convolution kernels, the photon fluence response function, the dose deposition kernel, and the lateral dose response function, of wall-less cylindrical detectors filled with water of low, normal and enhanced density are shown by Monte Carlo simulation to be distorted in the prevailing direction of the Lorentz force. The asymmetric shape changes of these convolution kernels in a water medium and in magnetic fields of up to 1.5 T are confined to the lower millimetre range, and they depend on the photon beam quality, the magnetic flux density and the detector's density. The impact of this distortion on detector reading profiles is demonstrated using a narrow photon beam profile. For clinical applications it appears as favourable that the magnetic flux density dependent distortion of the lateral dose response function, as far as secondary electron transport is concerned, vanishes in the case of water-equivalent detectors of normal water density. By means of secondary electron history backtracing, the spatial distribution of the photon interactions giving rise either directly to secondary electrons or to scattered photons further downstream producing secondary electrons which contribute to the detector's signal, and their lateral shift due to the Lorentz force is elucidated. Electron history backtracing also serves to illustrate the correct treatment of the influences of the Lorentz force in the EGSnrc Monte Carlo code applied in this study.

  2. GEANT4 simulation diagram showing the architecture of the ATLAS test line: the detectors are positioned to receive the beam from the SPS. A muon particle which enters the magnet and crosses all detectors is shown (blue line).

    CERN Multimedia

    2004-01-01

    GEANT4 simulation diagram showing the architecture of the ATLAS test line: the detectors are positioned to receive the beam from the SPS. A muon particle which enters the magnet and crosses all detectors is shown (blue line).

  3. Shimming with permanent magnets for the x-ray detector in a hybrid x-ray∕MR system

    Science.gov (United States)

    Wen, Zhifei; Fahrig, Rebecca; Williams, Scott T.; Pelc, Norbert J.

    2008-01-01

    In this x-ray∕MR hybrid system an x-ray flat panel detector is placed under the patient cradle, close to the MR volume of interest (VOI), where the magnetic field strength is ∼0.5 T. Immersed in this strong field, several electronic components inside the detector become magnetized and create an additional magnetic field that is superimposed on the original field of the MR scanner. Even after linear shimming, the field homogeneity of the MR scanner remains disrupted by the detector. The authors characterize the field due to the detector with the field of two magnetic dipoles and further show that two sets of permanent magnets (NdFeB) can withstand the main magnetic field and compensate for the nonlinear components of the additional field. The ideal number of magnets and their locations are calculated based on a field map measured with the detector in place. Experimental results demonstrate great promise for this technique, which may be useful in many settings where devices with magnetic components need to be placed inside or close to an MR scanner. PMID:18841840

  4. Novel Electro-Optical Coupling Technique for Magnetic Resonance-Compatible Positron Emission Tomography Detectors

    Directory of Open Access Journals (Sweden)

    Peter D. Olcott

    2009-03-01

    Full Text Available A new magnetic resonance imaging (MRI-compatible positron emission tomography (PET detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  5. Novel electro-optical coupling technique for magnetic resonance-compatible positron emission tomography detectors.

    Science.gov (United States)

    Olcott, Peter D; Peng, Hao; Levin, Craig S

    2009-01-01

    A new magnetic resonance imaging (MRI)-compatible positron emission tomography (PET) detector design is being developed that uses electro-optical coupling to bring the amplitude and arrival time information of high-speed PET detector scintillation pulses out of an MRI system. The electro-optical coupling technology consists of a magnetically insensitive photodetector output signal connected to a nonmagnetic vertical cavity surface emitting laser (VCSEL) diode that is coupled to a multimode optical fiber. This scheme essentially acts as an optical wire with no influence on the MRI system. To test the feasibility of this approach, a lutetium-yttrium oxyorthosilicate crystal coupled to a single pixel of a solid-state photomultiplier array was placed in coincidence with a lutetium oxyorthosilicate crystal coupled to a fast photomultiplier tube with both the new nonmagnetic VCSEL coupling and the standard coaxial cable signal transmission scheme. No significant change was observed in 511 keV photopeak energy resolution and coincidence time resolution. This electro-optical coupling technology enables an MRI-compatible PET block detector to have a reduced electromagnetic footprint compared with the signal transmission schemes deployed in the current MRI/PET designs.

  6. Motions of CMS Detector structures due to the magnetic field forces as observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    CERN Document Server

    Calderón, Alicia; González-Sánchez, F J; Martínez-Rivero, C; Matorras, Francisco; Rodrigo, Teresa; Martínez, P; Scodellaro, Luca; Sobrón, M; Vila, Ivan; Virto, A L; Alberdi, Javier; Arce, Pedro; Barcala, Jose Miguel; Calvo, Enrique; Ferrando, Antonio; Josa-Mutuberria, I; Molinero, Antonio; Navarrete, Jose Javier; Oller, Juan Carlos; Yuste, Ceferino

    2008-01-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  7. Motions of CMS detector structures due to the magnetic field forces as observed by the Link alignment system during the test of the 4 T magnet solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Martinez, P.; Scodellaro, L.; Vila, I.; Virto, A.L. [Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander (Spain); Sobron, M. [Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander (Spain)], E-mail: sobron@ifca.unican.es; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain)] (and others)

    2009-07-21

    This document describes results obtained from the Link alignment system data recorded during the Compact Muon Solenoid (CMS) Magnet Test. A brief description of the system is followed by a discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  8. Motions of CMS detector structures due to the magnetic field forces as observed by the Link alignment system during the test of the 4 T magnet solenoid

    International Nuclear Information System (INIS)

    Garcia-Moral, L.A.; Gomez, G.; Gonzalez-Sanchez, F.J.; Martinez-Rivero, C.; Matorras, F.; Rodrigo, T.; Martinez, P.; Scodellaro, L.; Vila, I.; Virto, A.L.; Sobron, M.; Alberdi, J.; Arce, P.; Barcala, J.M.; Calvo, E.; Ferrando, A.; Josa, M.I.; Molinero, A.; Navarrete, J.; Oller, J.C.

    2009-01-01

    This document describes results obtained from the Link alignment system data recorded during the Compact Muon Solenoid (CMS) Magnet Test. A brief description of the system is followed by a discussion of the detected relative displacements (from micrometres to centimetres) between detector elements and rotations of detector structures (from microradians to milliradians). Observed displacements are studied as functions of the magnetic field intensity. In addition, the reconstructed positions of active element sensors are compared to their positions as measured by photogrammetry and the reconstructed motions due to the magnetic field strength are described.

  9. Spectral characterization of plastic scintillation detector response as a function of magnetic field strength

    Science.gov (United States)

    Simiele, E.; Kapsch, R.-P.; Ankerhold, U.; Culberson, W.; DeWerd, L.

    2018-04-01

    The purpose of this work was to characterize intensity and spectral response changes in a plastic scintillation detector (PSD) as a function of magnetic field strength. Spectra measurements as a function of magnetic field strength were performed using an optical spectrometer. The response of both a PSD and PMMA fiber were investigated to isolate the changes in response from the scintillator and the noise signal as a function of magnetic field strength. All irradiations were performed in water at a photon beam energy of 6 MV. Magnetic field strengths of (0, ±0.35, ±0.70, ±1.05, and  ±1.40) T were investigated. Four noise subtraction techniques were investigated to evaluate the impact on the resulting noise-subtracted scintillator response with magnetic field strength. The noise subtraction methods included direct spectral subtraction, the spectral method, and variants thereof. The PMMA fiber exhibited changes in response of up to 50% with magnetic field strength due to the directional light emission from \\breve{C} erenkov radiation. The PSD showed increases in response of up to 10% when not corrected for the noise signal, which agrees with previous investigations of scintillator response in magnetic fields. Decreases in the \\breve{C} erenkov light ratio with negative field strength were observed with a maximum change at  ‑1.40 T of 3.2% compared to 0 T. The change in the noise-subtracted PSD response as a function of magnetic field strength varied with the noise subtraction technique used. Even after noise subtraction, the PSD exhibited changes in response of up to 5.5% over the four noise subtraction methods investigated.

  10. Behaviour of Belle II ARICH Hybrid Avalanche Photo-Detector in magnetic field

    Science.gov (United States)

    Kindo, H.; Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kobayashi, T.; Konno, T.; Korpar, S.; Kriz˘an, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.

    2017-12-01

    The proximity-focusing Aerogel Ring-Imaging Cherenkov detector (ARICH) has been designed to separate kaons from pions in the forward end-cap of the Belle II spectrometer. The detector will be placed in 1.5 T magnetic field and must have immunity to it. In ARICH R&D, we solve the problem with new equipment called Hybrid Avalanche Photo-Detector (HAPD) which developed by Hamamatsu Photonics. Recently the production of about 500 HAPDs was completed. We test HAPDs in magnetic field in KEK. We found some HAPDs have significant amount of dead time, which reaches up to 30% in the worst case. The dead time is caused by very large (more than 10,000 times larger than a single photon signal) and frequent (∼5 Hz) signals, which make electronics paralysed. The huge signals are observed in about 30% of HAPDs. To identify the origin and understand the mechanism, we perform some extra test of HAPDs. We find a strange dependence of the huge signals to the APD bias voltage. If we reduce the bias voltage applied to one of the 4 APDs by 10 V, the frequency of the huge signals is much reduced. On the other hand, if we reduce the voltage of all the 4 HAPDs, huge signals do not decrease, or even increase in some case. We also find the huge signals seems to be related to the vacuum inside HAPD. We present about the observation of the huge signals of HAPDs in the magnetic field, and our strategy to manage it.

  11. Measurements of lifetimes and magnetic moments in A∼90 nuclei with EUROBALL Cluster detectors

    International Nuclear Information System (INIS)

    Jungclaus, A.; Fischer, V.; Kast, D.

    1998-01-01

    Mass A∼90 nuclei with several valence nucleons outside the doubly-magic 100 Sn core are an ideal testing ground for the validity of the spherical shell model. Electromagnetic decay properties as well as magnetic dipole moments of excited states are the key quantities revealing the structure of the wave functions and the mechanisms responsible for strong dipole sequences. The present article discusses by means of two examples the advantages of employing the most recent developments both concerning detector technology and experimental methods

  12. The quench detector on magnetic modulator for the UNK quench protection system

    International Nuclear Information System (INIS)

    Bolotin, I.M.; Enbaev, A.V.; Erokhin, A.N.; Gridasov, V.I.; Priyma, M.V.; Sychev, V.A.; Vasiliev, L.M.

    1992-01-01

    When designing and constructing superconducting high energy accelerators, the development of the Quench Detection System (QDS) for superconducting (SC) magnets becomes an important and critical problem. At present there is experience in developing such systems for the Tevatron (FNAL, USA) and HERA (Hamburg, Germany). The machines for more than 3 TeV-the UNK (Russia) and SSC (USA), which are presently under construction, have very large circumferences, 21 and 87 km, respectively. The QDS's, similar to those of the Tevatron, require a larger part of the active components of the electronic equipment be placed in the machine tunnel close to the magnets, and protected from irradiation or additional surface buildings will have to be constructed. In either case the cost of such a QDS increases. In addition the former ones reliability decreases and maintenance becomes more difficult. For such machines, a QDS in which the quench signal, in each superconducting magnet (SCM) or groups of SCM'S, is extracted with the help of a bridge circuit (BC) appears to be more suitable. The half coils of SCM's are connected as two arms of the bridge and the resistors placed in the vacuum vessels of the magnet cryostats are connected to the other two. The off-balance signal of each BC is enhanced with the help of magnetic amplifiers. This note describes the experimental prototype of a bridge-type Quench Detector (QD) based on a magnetic amplifier Magnetic Modulator (MM) type, allowing one not only to detect a quench in a SCM, but also making feasible a wider system capability, namely: to record the signals from all SC elements during a quench for further analysis of its causes; to check the presence of short circuits of the ring electromagnet bus relative to the cryostats and to localize their position

  13. Spin transfer driven resonant expulsion of a magnetic vortex core for efficient rf detector

    Directory of Open Access Journals (Sweden)

    S. Menshawy

    2017-05-01

    Full Text Available Spin transfer magnetization dynamics have led to considerable advances in Spintronics, including opportunities for new nanoscale radiofrequency devices. Among the new functionalities is the radiofrequency (rf detection using the spin diode rectification effect in spin torque nano-oscillators (STNOs. In this study, we focus on a new phenomenon, the resonant expulsion of a magnetic vortex in STNOs. This effect is observed when the excitation vortex radius, due to spin torques associated to rf currents, becomes larger than the actual radius of the STNO. This vortex expulsion is leading to a sharp variation of the voltage at the resonant frequency. Here we show that the detected frequency can be tuned by different parameters; furthermore, a simultaneous detection of different rf signals can be achieved by real time measurements with several STNOs having different diameters. This result constitutes a first proof-of-principle towards the development of a new kind of nanoscale rf threshold detector.

  14. Superconducting Magnet with the Minimum Steel Yoke for the Hadron Future Circular Collider Detector

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Dudarev, A.; Gaddi, A.; Gerwig, H.; Mentink, M.; Da Silva, H. Pais; Rolando, G.; ten Kate, H. H. J.; Berriaud, C.P.

    2016-01-01

    The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T in combination with two superconducting dipole and two conventional toroid magnets is proposed for a FCC-hh experimental setup. The coil of 23.468 m long has seven 3.35 m long modules included into one cryostat. The steel yoke with a mass of 22.6 kt consists of two barrel layers of 0.5 m radial thickness, and the 0.7 m thick nose disk and four 0.6 m thick end-cap disks each side. The maximum outer diameter of the yoke is 17.7 m; the length is 62.6 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity about \\pm 2.7. The superconducting dipole magnets allow measuring the charged particle momenta in the pseudora...

  15. A silicon strip detector used as a high rate focal plane sensor for electrons in a magnetic spectrometer

    CERN Document Server

    Miyoshi, T; Fujii, Y; Hashimoto, O; Hungerford, E V; Sato, Y; Sarsour, M; Takahashi, T; Tang, L; Ukai, M; Yamaguchi, H

    2003-01-01

    A silicon strip detector was developed as a focal plane sensor for a 300 MeV electron spectrometer and operated in a high rate environment. The detector with 500 mu m pitch provided good position resolution for electrons crossing the focal plane of the magnetic spectrometer system which was mounted in Hall C of the Thomas Jefferson National Accelerator Facility. The design of the silicon strip detector and the performance under high counting rate (<=2.0x10 sup 8 s sup - sup 1 for approx 1000 SSD channels) and high dose are discussed.

  16. The magnetic field for the ZEUS central detector - analysis and correction of the field measurement

    International Nuclear Information System (INIS)

    Mengel, S.

    1992-06-01

    The magnetic field in the central tracking region of the ZEUS-detector - a facility to investigate highly energetic electron-proton-collisions at the HERA-collider at DESY Hamburg - is generated by a superconducting coil and reaches 18 kG (1.8 T). Some of the tracking devices particularly the drift chambers in the proton forward and rear direction (FTD1-3 and RTD) are not fully contained within the coil and therefore situated in a highly inhomogeneous magnetic field: The radial component B r is up to 6.6 kG, maximum gradients are found to be 300 G/cm for δB r /δr. Evaluating the space drifttime relation necessitates a detailed knowledge of the magnetic field. To reach this goal we analysed the field measurements and corrected them for systematic errors. The corrected data were compared with the field calculations (TOSCA-maps). Measurements and calculations are confirmed by studying consistency with Maxwell's equations. The accuracy reached is better than 100 G throughout the forward and central drift chambers (FTD1-3, CTD) and better than 150 G in the RTD. (orig.) [de

  17. Studies of a hybrid avalanche photo-detector in magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Šantelj, L., E-mail: luka.santelj@kek.jp [High Energy Accelerator Research Organization (KEK) (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK) (Japan); Sokendai University (Japan); Hataya, K. [Tokyo Metropolitan University (Japan); Iori, S. [Toho University (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University (Japan); Kataura, R. [Niigata University (Japan); Kawai, H. [Chiba University (Japan); Kindo, H. [Sokendai University (Japan); Korpar, S. [University of Maribor (Slovenia); Jožef Stefan Institute, Ljubljana (Slovenia); Križan, P. [Jožef Stefan Institute, Ljubljana (Slovenia); University of Ljubljana (Slovenia); Mrvar, M. [Jožef Stefan Institute, Ljubljana (Slovenia); Nath, K. [Indian Institute of Technology Guwahati (India); Nishida, S. [High Energy Accelerator Research Organization (KEK) (Japan); Sokendai University (Japan); Ogawa, S. [Niigata University (Japan); Pestotnik, R.; Stanovnik, A.; Seljak, A. [Jožef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo University of Science, Tokyo (Japan); Tabata, M. [Chiba University (Japan); and others

    2017-02-11

    For the Belle II spectrometer a proximity focusing RICH counter with an aerogel radiator (ARICH) will be employed as a PID system in the forward endcap region of the spectrometer. The main challenge was the development of a reliable multichannel sensor for single photons that operates in the high magnetic field of the spectrometer (1.5 T) and withstands the radiation levels expected at the experiment. A 144-channel Hybrid Avalanche Photo-Detector (HAPD) was developed with Hamamatsu Photonics K.K. and the mass production of ∼480 HAPDs was completed recently. While our first tests of HAPD performance in the magnetic field (before mass production) showed no issues, we lately observed a presence of very large signal pulses (∼5000× single photon signal), generated internally within about 20% of HAPDs, while operating in the magnetic field. The rate of these pulses varies from sample to sample. These pulses impact the HAPD performance in two ways: they introduce periods of dead time and, in some cases, damage to the front-end electronics was observed. Here we present conditions under which such large pulses are generated, their properties and impact on HAPD performance, and discuss possible mechanism of their origin.

  18. An investigation of the performance of a coaxial HPGe detector operating in a magnetic resonance imaging field

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, L.J., E-mail: ljh@ns.ph.liv.ac.u [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Boston, A.J.; Boston, H.C.; Cole, P.; Cresswell, J.R.; Filmer, F.; Jones, M.; Judson, D.S.; Nolan, P.J.; Oxley, D.C.; Sampson, J.A.; Scraggs, D.P.; Slee, M.J. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Bimson, W.E.; Kemp, G.J. [MARIARC, University of Liverpool, Liverpool L69 3GE (United Kingdom); Groves, J.; Headspith, J.; Lazarus, I.; Simpson, J. [STFC Daresbury Laboratory, Daresbury, Warrington WA4 4AD (United Kingdom); Cooper, R.J. [Joint Institute for Heavy Ion Research, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6371 (United States)

    2011-05-11

    Nuclear medical imaging modalities such as positron emission tomography and single photon emission computed tomography are used to probe physiological functions of the body by detecting gamma rays emitted from biologically targeted radiopharmaceuticals. A system which is capable of simultaneous data acquisition for nuclear medical imaging and magnetic resonance imaging is highly sought after by the medical imaging community. Such a device could provide a more complete medical insight into the functions of the body within a well-defined structural context. However, acquiring simultaneous nuclear/MRI sequences are technically challenging due to the conventional photomultiplier tube readout employed by most existing scintillator detector systems. A promising solution is a nuclear imaging device composed of semiconductor detectors that can be operated with a standard MRI scanner. However, the influence of placing a semiconductor detector such as high purity germanium (HPGe) within or close to the bore of an MRI scanner, where high magnetic fields are present, is not well understood. In this paper, the performance of a HPGe detector operating in a high strength static (B{sub S}) MRI field along with fast switching gradient fields and radiofrequency from the MRI system has been assessed. The influence of the B{sub S} field on the energy resolution of the detector has been investigated for various positions and orientations of the detector within the magnetic field. The results have then been interpreted in terms of the influence of the B{sub S} field on the charge collection properties. MRI images have been acquired with the detector situated at the entrance of the MRI bore to investigate the effects of simultaneous data acquisition on detector performance and MRI imaging.

  19. Strangeness, charm and beauty production at the split field magnet detector

    International Nuclear Information System (INIS)

    Geist, W.M.

    1982-01-01

    The Split Field Magnet detector is used to investigate heavy flavour production at the ISR by various techniques: (a) Decays of neutral strange particles are reconstructed in full phase space yielding detailed information on K 0 sub(s) and Λ production. (b) A trigger telescope with electron identification was added to the standard set-up at a polar angle of 90 0 to measure the prompt electron flux due to semileptonic decays of charmed and beauty hadrons. (c) Events with a triggering electron were also fully reconstructed to search for associated production of open charm and-open beauty. (d) A different study of charmed particle production is based on data taken with a K - trigger at forward angles

  20. Components of the CMS magnet system at the detector's assembly site.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    Photos 01, 05: Outer cylinder of the CMS vacuum tank. The vacuum tank consists of inner and outer stainless-steel cylinders and houses the superconducting coil. As can be seen, the cylinder is attached to the innermost ring of the barrel yoke. Photos 02, 04: CMS end-cap yoke. The magnetic flux generated by the superconducting coil in the CMS detector is returned via an iron yoke comprising three end-cap discs at each end (end-cap yoke) and five concentric cylinders (barrel yoke).Photo 03: Inner cylinder of the CMS vacuum tank. The vacuum tank consists of inner and outer stainless-steel cylinders and houses the superconducting coil. The inner cylinder contains all the barrel sub-detectors, which it supports via a system of horizontal rails. The cylinder is pictured here in the vertical position on a yellow platform mounted on the ferris-wheel support structure. This will allow it to be pivoted and inserted into the outer cylinder already attached to the innermost ring of the barrel yoke.

  1. Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors

    International Nuclear Information System (INIS)

    Kowalska-Leszczynska, Izabela; Bulik, Tomasz; Bizouard, Marie-Anne; Robinet, Florent; Christensen, Nelson; Rohde, Maximilian; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz

    2017-01-01

    It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10 −18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network. (paper)

  2. TH-CD-BRA-12: Impact of a Magnetic Field On the Response From a Plastic Scintillation Detector

    Energy Technology Data Exchange (ETDEWEB)

    Therriault-Proulx, F; Wen, Z; Ibbott, G; Beddar, S [UT MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: To study the effect of a strong magnetic field on the scintillation and the stem effect from a plastic scintillation detector (PSD) and evaluate its accuracy to measure dose. Methods: A plastic scintillation detector and a bare plastic fiber were placed inside a magnet of adjustable field strength (B=0−1.5T) and irradiated by a 6-MV photon beam (Elekta Versa HD LINAC). The PSD was built in-house using a scintillating fiber (BCF-60, 3-mm long × 1-mm diameter) coupled to an optical fiber similar to the bare fiber (PMMA, 12-m long, 1-mm diameter). Light output spectra were acquired with a spectrometer. Intensity and shape of the output spectra were compared as a function of the magnetic field strength. The bare fiber was used to study the behavior of the stem effect (composed of Cerenkov and fluorescence). The spectrometry setup allowed to perform a previously demonstrated hyperspectral stem-effect removal and calculated dose was studied as a function of the magnetic field strength. Results: Signal intensities were shown to increase with the magnetic field strength by up to 19% and 79% at 1.5T in comparison to the irradiation without a magnetic field, for respectively the PSD and the bare fiber. The light produced by Cerenkov effect in the optical fiber was shown to be the major component affected by the magnetic field. Effect of the magnetic field on the electrons trajectory may explain this behavior. Finally, accounting for the stem effect using the hyperspectral approach led to accuracy in dose measurement within 2.6%. Interestingly, variations in accuracy were negligible for values over 0.3T. Conclusion: Dependence of PSDs to magnetic field is mainly due to the Cerenkov light. When accounting for it, PSDs become a candidate of choice for both quality assurance and in vivo dosimetry of therapy under strong magnetic fields (e.g. for MRI-Linacs).

  3. Direct coupling of a liquid chromatograph to a continuous flow hydrogen nuclear magnetic resonance detector for analysis of petroleum and synthetic fuels

    International Nuclear Information System (INIS)

    Haw, J.F.; Glass, T.E.; Hausler, D.W.; Motell, E.; Dorn, H.C.

    1980-01-01

    Initial results obtained for a flow 1 H nuclear magnetic resonance (NMR) detector directly coupled to a liquid chromatography unit are described. Results achieved for a model mixture and several jet fuel samples are discussed. Chromatographic separation of alkanes, alkylbenzenes, and substituted naphthalenes present in the jet fuel samples are easily identified with the 1 H NMR detector. Results with our present flow 1 H NMR insert indicate that 5-Hz linewidths are readily obtainable for typical chromatographic flow rates. The limitations and advantages of this liquid chromatography detector are compared with more commonly employed detectors (e.g., refractive index detectors). 11 figures

  4. Search for Dirac Magnetic Monopoles in $e^{+}e^{-}$ Collisions with the OPAL Detector at LEP2

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, K.W.; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, R.M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Cozzi, M.; Csilling, A.; Cuffiani, M.; Dado, S.; Dallavalle, G.M.; De Roeck, A.; De Wolf, E.A.; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, J.W.; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, M.; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay Jr., A.; Krieger, P.; von Krogh, J.; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, P.; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, N.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, D.E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, M.; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, D.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2008-01-01

    This letter describes a direct search for pair produced magnetic monopoles in e+e- collisions. The analysis is based on 62.7 pb^-1 of data collected with the OPAL detector at an average centre-of-mass energy of sqrt(s)= 206.3GeV. The monopole signal was assumed to be characterized by two back-to-back particles with an anomalously high ionization energy loss de/dx in the tracking chambers. No evidence for production of monopoles was observed. Upper limits were obtained on the magnetic monopole pair-production cross-section (sigma) in the mass range 45 GeV/c^2magnetic monopole mass. The cross-section limit is derived at the 95% confidence level and is valid for spin-1/2 magnetic monopoles.

  5. A method for unique identification of relativistic /greater than 0.5/ magnetic monopoles with a fast film Cerenkov detector

    Science.gov (United States)

    Pinsky, L. S.; Hagstrom, R.

    1975-01-01

    A magnetic monopole traversing a dielectric medium at a velocity greater than the phase velocity of light in that medium, will give rise to Cerenkov radiation with the electric field tangent to the cone generated by the photon wave propagation vector, and the magnetic field normal to that surface. This is the opposite polarization to that encountered with an electric charge. It is proposed that either by inserting a linearly polarizing layer between the radiator and the photographic emulsion, or by selecting a linearly polarizing material as the radiator, one could directly observe the field polarization by examining the photographic image and thus uniquely identify a magnetic monopole. The ability of the detector is further enhanced by the index of refraction dependence of the Cerenkov output from a magnetic monopole.

  6. Tests of prototype magnets and study on a MCP based proton detector for the neutron lifetime experiment PENeLOPE

    International Nuclear Information System (INIS)

    Materne, Stefan

    2013-01-01

    The precision experiment PENeLOPE will store ultra-cold neutrons in a magnetic trap and determine the neutron lifetime via the time-resolved counting of the decay-protons. The thesis reports on training and performance tests of prototypes of the superconducting coils. Additionally, a magnetic field mapper for PENeLOPE was characterized. In the second part of the thesis, microchannel plates (MCPs) were studied with alpha particles and protons as a possible candidate for the decay particle detector in PENeLOPE.

  7. Determining the hierarchy of neutrino masses with high density magnetized detectors at the Beta Beams

    International Nuclear Information System (INIS)

    Donini, A.; Fernandez-Martinez, E.; Rigolin, S.; Migliozzi, P.; Lavina, L. Scotto; Selvi, M.; De Fatis, T. Tabarelli; Terranova, F.

    2008-01-01

    Multi-kton iron detectors can be simultaneously exploited as far detectors for high energy Beta Beams and to determine the atmospheric ν μ flux in the multi-GeV range. These measurements can be combined in a highly non trivial manner to improve the sensitivity to the hierarchy of neutrino masses. Considering a Super-SPS based Beta Beam and a 40 kton far detector located ∼700 km from the source (CERN to Gran Sasso distance), we demonstrate that even with moderate detector granularities the sign of Δm 13 2 can be determined for θ 13 values greater than 4 deg.

  8. Search for a flux of cosmic-ray magnetic monopoles with an eight-channel superconducting detector

    International Nuclear Information System (INIS)

    Huber, M.E.; Cabrera, B.; Taber, M.A.; Gardner, R.D.

    1991-01-01

    A superconducting detector for cosmic-ray magnetic monopoles originally designed with a cross section of 1.5 m 2 (averaged over 4π solid angle) for double-coincident events was active from 5 May 1987 to 5 August 1988. The detector consists of eight independent inductive gradiometers located on the surface of an octagonal prism. The conductor is niobium-titanium foil and the current sensors are rf SQUID's. The signal-to-noise ratio for a single Dirac charge is greater than 50 in a 0.05-Hz bandwidth, and low-noise data was obtained over 547 days of continuous cryogenic operation. Of this time, we obtained ∼50% live time. Open circuits in portions of two gradiometers and occasional coupling of disturbances in adjacent gradiometers reduce the active sensing area to 1.1 m 2 . A closed-cycle helium liquefier eliminates helium transfers and increases the stability of the data. Anticoincidence instrumentation includes strain gauges, a flux-gate magnetometer, an ultrasonic motion detector, and a wideband rms rf voltmeter. The exposure to date represents a limit on the flux of cosmic-ray magnetic monopoles of 7.2x10 -13 cm -2 s -1 sr -1 at a 90% confidence level, eliminating most of the phase space for monopole plasma oscillation theories

  9. Improved detection limits for electrospray ionization on a magnetic sector mass spectrometer by using an array detector.

    Science.gov (United States)

    Cody, R B; Tamura, J; Finch, J W; Musselman, B D

    1994-03-01

    Array detection was compared with point detection for solutions of hen egg-white lysozyme, equine myoglobin, and ubiquitin analyzed by electrospray ionization with a magnetic sector mass spectrometer. The detection limits for samples analyzed by using the array detector system were at least 10 times lower than could be achieved by using a point detector on the same mass spectrometer. The minimum detectable quantity of protein corresponded to a signal-to-background ratio of approximately 2∶1 for a 500 amol/μL solution of hen egg-white lysozyme. However, the ultimate practical sample concentrations appeared to be in the 10-100 fmol/μL range for the analysis of dilute solutions of relatively pure proteins or simple mixtures.

  10. Motions of CMS Detector Structures as Observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferramdp, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martin-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.

    2008-07-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micro metres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed displacements are studied as functions of the magnetic fi eld intensity. In addition, a comparison of the reconstructed position of active element sensors with respect to their position as measured by photogrammetry is made and the reconstructed motions due to the magnetic field strength are described. (Author) 19 refs.

  11. Motions of CMS Detector Structures as Observed by the Link Alignment System during the Test of the 4 Tesla Magnet Solenoid

    International Nuclear Information System (INIS)

    Alberdi, J.; Arce, P.; Barcala, J. M.; Calvo, E.; Ferrando, A.; Josa, M. I.; Molinero, A.; Navarrete, J.; Oller, J. C.; Yuste, C.; Calderon, A.; Gomez, G.; Gonzalez-Sanchez, F. J.; Martin-Rivero, C.; Matorras, F.; Rodrigo, T.; Ruiz-Arbol, P.; Scodellaro, L.; Sobron, M.; Vila, I.; Virto, A. L.

    2008-01-01

    This document describes results obtained from the Link Alignment System data recorded during the CMS Magnet Test. A brief description of the system is followed by the discussion of the detected relative displacements (from micro metres to centimetres) between detector elements and rotation of detector structures (from microradiants to milliradiants). Observed displacements are studied as functions of the magnetic fi eld intensity. In addition, a comparison of the reconstructed position of active element sensors with respect to their position as measured by photogrammetry is made and the reconstructed motions due to the magnetic field strength are described. (Author) 19 refs

  12. LHCb: Magnetic Distortion Measurement System of the LHCb RICH2 Detector

    CERN Multimedia

    Storaci, B

    2007-01-01

    The LHCb experiment at the CERN LHC collider is optimized for the study of CP violation and rare B-decays. Two Ring Imaging Cherenkov detectors provide particle identification in the momentum range 1-100 GeV/c

  13. Giant particle detector magnet goes underground at CERN's Large Hadron Collider accelerator

    CERN Multimedia

    2007-01-01

    "Scientists of the US CMS collaboration joined colleagues around the world in announcing that the heaviest piece of the Compact Muon Solenoid particle detector has begun the momentous journey into its experimental cavern 100 meters underground." (1 page)

  14. A proposal for laminated pie mechanical construction of a toroidal magnet for the far detector for the MINOS experiment

    International Nuclear Information System (INIS)

    Fields, T.; Guarino, V.; Petereit, E.; Schoessow, P.; Thompson, K.

    1996-01-01

    This proposal describes an alternative to the reference design for the construction of the toroidal magnet for the detector for the MINOS experiment. This design proposes to construct the steel planes from several steel sheets and laminate them into the required thickness of four centimeters. The 8 meter planes are constructed by cutting all of the steel plates to the same size, which is pie a pie shaped segment of either 30 or 22.5 degrees each. All of the plates in the construction are identical, which is conducive to rapid production and lower cost. The advantages of the proposed laminated construction over the reference design are listed in this paper

  15. Spin correlation and entanglement detection in Cooper pair splitters by current measurements using magnetic detectors

    Science.gov (United States)

    Busz, Piotr; Tomaszewski, Damian; Martinek, Jan

    2017-08-01

    We analyze a model of a double quantum dot Cooper pair splitter coupled to two ferromagnetic detectors and demonstrate the possibility of determination of spin correlation by current measurements. We use perturbation theory, taking account of the exchange interaction with the detectors, which leads to complex spin dynamics in the dots. This affects the measured spin and restricts the use of ferromagnetic detectors to the nonlinear current-voltage characteristic regime at the current plateau, where the relevant spin projection is conserved, in contrast to the linear current-voltage characteristic regime, in which the spin information is distorted. Moreover, we show that for separable states the spin correlation can only be determined in a limited parameter regime, much more restricted than in the case of entangled states. We propose an entanglement test based on the Bell inequality.

  16. Resolution, efficiency and stability of HPGe detector operating in a magnetic field at various gamma-ray energies

    International Nuclear Information System (INIS)

    Szymanska, K.; Achenbach, P.; Agnello, M.; Botta, E.; Bracco, A.; Bressani, T.; Camera, F.; Cederwall, B.; Feliciello, A.; Ferro, F.; Gerl, J.; Iazzi, F.; Kavatsyuk, M.; Kojouharov, I.; Pochodzalla, J.; Raciti, G.; Saito, T.R.; Sanchez Lorente, A.; Tegner, P.-E.; Wieland, O.

    2008-01-01

    The use of High Purity Germanium detectors (HPGe) has been planned in some future experiments of hadronic physics. The crystals will be located close to large spectrometers where the magnetic fringing field will not be negligible and their performances might change. Moreover high precision is required in these experiments. The contribution of magnetic field presence and long term measurements is unique. In this paper the results of systematic measurements of the resolution, stability and efficiency of a crystal operating inside a magnetic field of 0.8 T, using radioactive sources in the energy range from 0.08 to 1.33 MeV, are reported. The measurements have been repeated during several months in order to test if any permanent damage occurred. The resolution at 1.117 and 1.332 MeV gamma-rays from a 60 Co source has been measured at different magnetic fields in the range of 0-0.8 T and the results are compared with the previous data

  17. Search for magnetic monopoles in $\\sqrt{s}$ = 7 TeV pp collisions with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guindon, Stefan; Gul, Umar; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollefrath, Michael; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lane, Jenna; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    This Letter presents a search for magnetic monopoles with the ATLAS detector at the CERN Large Hadron Collider using an integrated luminosity of 2.0 fb$^{-1}$ of pp collisions recorded at a center-of-mass energy of $\\sqrt{s}$ = 7 TeV. No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of 2 fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV. No assumption about the production mechanism is made for this result, which is valid in the fiducial region given by pseudorapidity |$\\eta$| < 1.37 and transverse kinetic energy 600-700 < $E^{kin} sin\\theta$ < 1400 GeV. The minimum value of 700 GeV is for monopoles of mass 200 GeV, whereas the minimum value of 600 GeV is applicable for higher mass monopoles. Assuming the kinematic distributions from Drell-Yan pair production of spin-1/2 Dirac magnetic monopoles, the upper limit on the cross section at 95% confidence level varies from...

  18. Detector tests in a high magnetic field and muon spectrometer triggering studies on a small prototype for an LHC experiment

    CERN Document Server

    Ambrosi, G; Basile, M; Battiston, R; Bergsma, F; Castro, H; Cifarelli, Luisa; Cindolo, F; Contin, A; De Pasquale, S; Gálvez, J; Gentile, S; Giusti, P; Laurent, G; Levi, G; Lin, Q; Maccarrone, G D; Mattern, D; Nania, R; Rivera, F; Schioppa, M; Sharma, A; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    The "Large Area Devices" group of the LAA project is working on R&D for muon detection at a future super-collider. New detectors are under development and the design of a muon spectrometer for an LHC experiment is under study. Our present choice is for a compact, high field, air-core toroidal muon spectrometer. Good momentum resolution is achievable in this compact solution, with at least one plane of detection elements inside the high field region. A new detector, the Blade Chamber, making use of blades instead of wires, has been developed for the forward and backward regions of the spectrometer, where polar coordinate readings are desirable.The assembling of a CERN high energy beam line, equipped with high resolution drift chambers and a strong field magnet could give us the opportunity to test our chambers in a high magnetic field and to study the muon trigger capabilities of a spectrometer, like the one proposed, on a small prototype.

  19. Search for relativistic magnetic monopoles with five years of the ANTARES detector data

    NARCIS (Netherlands)

    Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Ardid, M.; Aubert, J.-J.; Avgitas, T.; Baret, B.; Barrios-Martí, J.; Basa, S.; Bertin, V.; Biagi, S.; Bormuth, R.; Bourret, S.; Bouwhuis, M.C.; Bruijn, R.; Brunner, J.; Busto, J.; Capone, A.; Caramete, L.; Carr, J.; Celli, S.; Chiarusi, T.; Circella, M.; Coelho, J.A.; Coleiro, A.; Coniglione, R.; Costantini, H.; Coyle, P.; Creusot, A.; Deschamps, A.; De Bonis, G.; Distefano, C.; Di Palma, I.; Domi, A.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; El Bojaddaini, I.; Elsässer, D.; Enzenhöfer, A.; Felis, I.; Fusco, L.A.; Galatà, S.; Gay, P.; Giordano, V.; Glotin, H.; Grégoire, T.; Gracia-Ruiz, R.; Graf, K.; Hallmann, S.; van Haren, H.; Heijboer, A.J.; Hello, Y.; Hernandez-Rey, J.J.; Hößl, J.; Hofestädt, J.; Hugon, C.; Illuminati, G.; James, C.W.; de Jong, M.; Jongen, M.; Kadler, M.; Kalekin, O.; Katz, U.; Kießling, D.; Kouchner, A.; Kreter, M.; Kreykenbohm, I.; Kulikovskiy, V.; Lachaud, C.; Lahmann, R.; Lefevre, D.; Leonora, E.; Lotze, M.; Loucatos, S.; Marcelin, M.; Margiotta, A.; Marinelli, A.; Martinez-Mora, J.A.; Mele, R.; Melis, K.; Michael, T.; Migliozzi, P.; Moussa, A.; Navas, S.; Nezri, E.; Organokov, M.; Pavalas, G.E.; Pellegrino, C.; Perrina, C.; Piattelli, P.; Popa, V.; Pradier, T.; Quinn, L.; Racca, C.; Riccobene, G.; Sánchez-Losa, A.; Saldaña, M.; Salvadori, I.; Samtleben, D.F.E.; Sanguineti, M.; Sapienza, P.; Schüssler, F.; Sieger, C.; Spurio, M.; Stolarczyk, Th.; Taiuti, M.; Tayalati, Y.; Trovato, A.; Turpin, D.; Tönnis, C.; Vallage, B.; Van Elewyck, V.; Versari, F.; Vivolo, D.; Vizzoca, A.; Wilms, J.; Zornoza, J.D.; Zúñiga, J.

    2017-01-01

    A search for magnetic monopoles using five years of data recorded with the ANTARES neutrino telescope from January 2008 to December 2012 with a total live time of 1121 days is presented. The analysis is carried out in the range β > 0.6 of magnetic monopole velocities using a strategy based on

  20. Fault diagnosis of active magnetic bearings based on Gaussian GLRT detector

    DEFF Research Database (Denmark)

    Nagel, Leon; Galeazzi, Roberto; Voigt, Andreas Jauernik

    2016-01-01

    generalized likelihood ratio test is proposed for detecting faults striking the electromagnet. The detector is capable of detecting and isolating the occurrence of faults in e.g. the windings of bearing by tracking changes in the mean value of a Gaussian distribution. The statistical distribution...

  1. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  2. Search for magnetic monopoles in √s=7 TeV pp collisions with the ATLAS detector

    International Nuclear Information System (INIS)

    Aad, G.; Ahles, F.; Barber, T.; Bernhard, R.; Bitenc, U.; Boehler, M.; Bruneliere, R.; Christov, A.; Consorti, V.; Fehling-Kaschek, M.; Flechl, M.; Glatzer, J.; Hartert, J.; Herten, G.; Horner, S.; Jakobs, K.; Janus, M.; Kollefrath, M.; Kononov, A.I.; Kuehn, S.; Lai, S.; Landgraf, U.; Lohwasser, K.; Ludwig, I.; Ludwig, J.; Lumb, D.; Mahboubi, K.; Mohr, W.; Nilsen, H.; Parzefall, U.; Rammensee, M.; Rave, T.C.; Rurikova, Z.; Schmidt, E.; Schumacher, M.; Siegert, F.; Stoerig, K.; Sundermann, J.E.; Temming, K.K.; Thoma, S.; Tsiskaridze, V.; Venturi, M.; Vivarelli, I.; Radziewski, H. von; Vu Anh, T.; Warsinsky, M.; Weiser, C.; Werner, M.; Wiik-Fuchs, L.A.M.; Winkelmann, S.; Xie, S.; Zimmermann, S.; Abreu, H.; Bachacou, H.; Bauer, F.; Besson, N.; Blanchard, J.B.; Bolnet, N.M.; Boonekamp, M.; Chevalier, L.; Ernwein, J.; Etienvre, A.I.; Formica, A.; Gauthier, L.; Giraud, P.F.; Guyot, C.; Hassani, S.; Kozanecki, W.; Lancon, E.; Laporte, J.F.; Legendre, M.; Maiani, C.; Mal, P.; Manjarres Ramos, J.A.; Mansoulie, B.; Meyer, J.P.; Mijovic, L.; Morange, N.; Nguyen Thi Hong, V.; Nicolaidou, R.; Ouraou, A.; Resende, B.; Royon, C.R.; Schune, Ph.; Schwindling, J.; Simard, O.; Vranjes, N.; Xiao, M.; Abdel Khalek, S.; Andari, N.; Arnault, C.; Auge, E.; Barrillon, P.; Benoit, M.; Binet, S.; Bourdaios, C.; De La Taille, C.; De Vivie De Regie, J.B.; Duflot, L.; Escalier, M.; Fayard, L.; Fournier, D.; Grivaz, J.F.; Henrot-Versille, S.; Hrivnac, J.; Iconomidou-Fayard, L.; Idarraga, J.; Kado, M.; Lorenzo Martinez, N.; Lounis, A; Makovec, N.; Matricon, P.; Niedercorn, F.; Poggioli, L.; Puzo, P.; Renaud, A.; Rousseau, D.; Rybkin, G.; Sauvan, J.B.; Schaarschmidt, J.; Schaffer, A.C.; Serin, L.; Simion, S.; Tanaka, R.; Teinturier, M.; Veillet, J.J.; Wicek, F; Zerwas, D.; Zhang, Z.; Abajyan, T.; Arutinov, D.; Backhaus, M.; Barbero, M.; Bechtle, P.; Brock, I.; Cristinziani, M.; Davey, W.; Desch, K.; Dingfelder, J.; Gaycken, G.; Geich-Gimbel, Ch.; Gonella, L.; Haefner, P.; Havranek, M.; Hellmich, D.; Hillert, S.; Huegging, F.; Ince, T.; Karagounis, M.; Khoriauli, G.; Koevesarki, P.; Kostyukhin, V.V.; Kraus, J.K.; Kroseberg, J.; Kruger, H.; Lapoire, C.; Lehmacher, M.; Leyko, A.M.; Limbach, C.; Loddenkoetter, T.; Mazur, M.; Moser, N.; Mueller, K.; Nanava, G.; Nattermann, T.; Nuncio-Quiroz, A.E.; Psoroulas, S.; Schaepe, S.; Schmieden, K.; Schmitz, M.; Schultens, M.J.; Schwindt, T.; Stillings, J.A.; Therhaag, J.; Tsung, J.W.; Uchida, K.; Uhlenbrock, M.; Vogel, A.; Toerne, E. von; Wang, T.; Wermes, N.; Wienemann, P.; Zendler, C.; Zimmermann, R.; Zimmermann, S.; Abbott, B.; Gutierrez, P.; Jana, D.K.; Marzin, A.; Meera-Lebbai, R.; Norberg, S.; Saleem, M.; Severini, H.; Skubic, P.; Snow, J.; Strauss, M.

    2012-01-01

    This Letter presents a search for magnetic monopoles with the ATLAS detector at the CERN Large Hadron Collider using an integrated luminosity of 2.0 fb -1 of pp collisions recorded at a center-of-mass energy of √s=7 TeV. No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of 1.6 /ε fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV, where is the monopole reconstruction efficiency. The efficiency is high and uniform in the fiducial region given by pseudorapidity |η| ≤ 1.37 and transverse kinetic energy 600-700≤E kin sinθ≤1400 GeV. The minimum value of 700 GeV is for monopoles of mass 200 GeV, whereas the minimum value of 600 GeV is applicable for higher mass monopoles. Therefore, the upper limit on the production cross section at 95% confidence level is 2 fb in this fiducial region. Assuming the kinematic distributions from Drell-Yan pair production of spin-1/2 Dirac magnetic monopoles, the efficiency is in the range 1%-10%, leading to an upper limit on the cross section at 95% confidence level that varies from 145 fb to 16 fb for monopoles with mass between 200 GeV and 1200 GeV. This limit is weaker than the fiducial limit because most of these monopoles lie outside the fiducial region. (authors)

  3. Search for magnetic monopoles in sqrt[s]=7  TeV pp collisions with the ATLAS detector.

    Science.gov (United States)

    Aad, G; Abajyan, T; Abbott, B; Abdallah, J; Abdel Khalek, S; Abdelalim, A A; Abdinov, O; Aben, R; Abi, B; Abolins, M; AbouZeid, O S; Abramowicz, H; Abreu, H; Acerbi, E; Acharya, B S; Adamczyk, L; Adams, D L; Addy, T N; Adelman, J; Adomeit, S; Adragna, P; Adye, T; Aefsky, S; Aguilar-Saavedra, J A; Agustoni, M; Aharrouche, M; Ahlen, S P; Ahles, F; Ahmad, A; Ahsan, M; Aielli, G; Akdogan, T; Åkesson, T P A; Akimoto, G; Akimov, A V; Alam, M S; Alam, M A; Albert, J; Albrand, S; Aleksa, M; Aleksandrov, I N; Alessandria, F; Alexa, C; Alexander, G; Alexandre, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Allbrooke, B M M; Allport, P P; Allwood-Spiers, S E; Almond, J; Aloisio, A; Alon, R; Alonso, A; Alonso, F; Alvarez Gonzalez, B; Alviggi, M G; Amako, K; Amelung, C; Ammosov, V V; Amorim, A; Amram, N; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anderson, K J; Andreazza, A; Andrei, V; Anduaga, X S; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A; Anjos, N; Annovi, A; Antonaki, A; Antonelli, M; Antonov, A; Antos, J; Anulli, F; Aoki, M; Aoun, S; Aperio Bella, L; Apolle, R; Arabidze, G; Aracena, I; Arai, Y; Arce, A T H; Arfaoui, S; Arguin, J-F; Arik, E; Arik, M; Armbruster, A J; Arnaez, O; Arnal, V; Arnault, C; Artamonov, A; Artoni, G; Arutinov, D; Asai, S; Asfandiyarov, R; Ask, S; Åsman, B; Asquith, L; Assamagan, K; Astbury, A; Atkinson, M; Aubert, B; Auge, E; Augsten, K; Aurousseau, M; Avolio, G; Avramidou, R; Axen, D; Azuelos, G; Azuma, Y; Baak, M A; Baccaglioni, G; Bacci, C; Bach, A M; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Badescu, E; Bagnaia, P; Bahinipati, S; Bai, Y; Bailey, D C; Bain, T; Baines, J T; Baker, O K; Baker, M D; Baker, S; Banas, E; Banerjee, P; Banerjee, Sw; Banfi, D; Bangert, A; Bansal, V; Bansil, H S; Barak, L; Baranov, S P; Barbaro Galtieri, A; Barber, T; Barberio, E L; Barberis, D; Barbero, M; Bardin, D Y; Barillari, T; Barisonzi, M; Barklow, T; Barlow, N; Barnett, B M; Barnett, R M; Baroncelli, A; Barone, G; Barr, A J; Barreiro, F; Barreiro Guimarães da Costa, J; Barrillon, P; Bartoldus, R; Barton, A E; Bartsch, V; Bates, R L; Batkova, L; Batley, J R; Battaglia, A; Battistin, M; Bauer, F; Bawa, H S; Beale, S; Beau, T; Beauchemin, P H; Beccherle, R; Bechtle, P; Beck, H P; Becker, A K; Becker, S; Beckingham, M; Becks, K H; Beddall, A J; Beddall, A; Bedikian, S; Bednyakov, V A; Bee, C P; Beemster, L J; Begel, M; Behar Harpaz, S; Beimforde, M; Belanger-Champagne, C; Bell, P J; Bell, W H; Bella, G; Bellagamba, L; Bellina, F; Bellomo, M; Belloni, A; Beloborodova, O; Belotskiy, K; Beltramello, O; Benary, O; Benchekroun, D; Bendtz, K; Benekos, N; Benhammou, Y; Benhar Noccioli, E; Benitez Garcia, J A; Benjamin, D P; Benoit, M; Bensinger, J R; Benslama, K; Bentvelsen, S; Berge, D; Bergeaas Kuutmann, E; Berger, N; Berghaus, F; Berglund, E; Beringer, J; Bernat, P; Bernhard, R; Bernius, C; Berry, T; Bertella, C; Bertin, A; Bertolucci, F; Besana, M I; Besjes, G J; Besson, N; Bethke, S; Bhimji, W; Bianchi, R M; Bianco, M; Biebel, O; Bieniek, S P; Bierwagen, K; Biesiada, J; Biglietti, M; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biscarat, C; Bitenc, U; Black, K M; Blair, R E; Blanchard, J-B; Blanchot, G; Blazek, T; Blocker, C; Blocki, J; Blondel, A; Blum, W; Blumenschein, U; Bobbink, G J; Bobrovnikov, V B; Bocchetta, S S; Bocci, A; Boddy, C R; Boehler, M; Boek, J; Boelaert, N; Bogaerts, J A; Bogdanchikov, A; Bogouch, A; Bohm, C; Bohm, J; Boisvert, V; Bold, T; Boldea, V; Bolnet, N M; Bomben, M; Bona, M; Boonekamp, M; Booth, C N; Bordoni, S; Borer, C; Borisov, A; Borissov, G; Borjanovic, I; Borri, M; Borroni, S; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Boterenbrood, H; Bouchami, J; Boudreau, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Bousson, N; Boveia, A; Boyd, J; Boyko, I R; Bozovic-Jelisavcic, I; Bracinik, J; Branchini, P; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Brazzale, S F; Brelier, B; Bremer, J; Brendlinger, K; Brenner, R; Bressler, S; Britton, D; Brochu, F M; Brock, I; Brock, R; Broggi, F; Bromberg, C; Bronner, J; Brooijmans, G; Brooks, T; Brooks, W K; Brown, G; Brown, H; Bruckman de Renstrom, P A; Bruncko, D; Bruneliere, R; Brunet, S; Bruni, A; Bruni, G; Bruschi, M; Buanes, T; Buat, Q; Bucci, F; Buchanan, J; Buchholz, P; Buckingham, R M; Buckley, A G; Buda, S I; Budagov, I A; Budick, B; Büscher, V; Bugge, L; Bulekov, O; Bundock, A C; Bunse, M; Buran, T; Burckhart, H; Burdin, S; Burgess, T; Burke, S; Busato, E; Bussey, P; Buszello, C P; Butler, B; Butler, J M; Buttar, C M; Butterworth, J M; Buttinger, W; Byszewski, M; Cabrera Urbán, S; Caforio, D; Cakir, O; Calafiura, P; Calderini, G; Calfayan, P; Calkins, R; Caloba, L P; Caloi, R; Calvet, D; Calvet, S; Camacho Toro, R; Camarri, P; Cameron, D; Caminada, L M; Campana, S; Campanelli, M; Canale, V; Canelli, F; Canepa, A; Cantero, J; Cantrill, R; Capasso, L; Capeans Garrido, M D M; Caprini, I; Caprini, M; Capriotti, D; Capua, M; Caputo, R; Cardarelli, R; Carli, T; Carlino, G; Carminati, L; Caron, B; Caron, S; Carquin, E; Carrillo Montoya, G D; Carter, A A; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Cascella, M; Caso, C; Castaneda Hernandez, A M; Castaneda-Miranda, E; Castillo Gimenez, V; Castro, N F; Cataldi, G; Catastini, P; Catinaccio, A; Catmore, J R; Cattai, A; Cattani, G; Caughron, S; Cavaliere, V; Cavalleri, P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cetin, S A; Chafaq, A; Chakraborty, D; Chalupkova, I; Chan, K; Chapleau, B; Chapman, J D; Chapman, J W; Chareyre, E; Charlton, D G; Chavda, V; Chavez Barajas, C A; Cheatham, S; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, S; Chen, X; Chen, Y; Cheplakov, A; Cherkaoui El Moursli, R; Chernyatin, V; Cheu, E; Cheung, S L; Chevalier, L; Chiefari, G; Chikovani, L; Childers, J T; Chilingarov, A; Chiodini, G; Chisholm, A S; Chislett, R T; Chitan, A; Chizhov, M V; Choudalakis, G; Chouridou, S; Christidi, I A; Christov, A; Chromek-Burckhart, D; Chu, M L; Chudoba, J; Ciapetti, G; Ciftci, A K; Ciftci, R; Cinca, D; Cindro, V; Ciocca, C; Ciocio, A; Cirilli, M; Cirkovic, P; Citterio, M; Ciubancan, M; Clark, A; Clark, P J; Clarke, R N; Cleland, W; Clemens, J C; Clement, B; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Cogan, J G; Coggeshall, J; Cogneras, E; Colas, J; Cole, S; Colijn, A P; Collins, N J; Collins-Tooth, C; Collot, J; Colombo, T; Colon, G; Conde Muiño, P; Coniavitis, E; Conidi, M C; Consonni, S M; Consorti, V; Constantinescu, S; Conta, C; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Copic, K; Cornelissen, T; Corradi, M; Corriveau, F; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Costin, T; Côté, D; Courneyea, L; Cowan, G; Cowden, C; Cox, B E; Cranmer, K; Crescioli, F; Cristinziani, M; Crosetti, G; Crépé-Renaudin, S; Cuciuc, C-M; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M; Curtis, C J; Cuthbert, C; Cwetanski, P; Czirr, H; Czodrowski, P; Czyczula, Z; D'Auria, S; D'Onofrio, M; D'Orazio, A; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dafinca, A; Dai, T; Dallapiccola, C; Dam, M; Dameri, M; Damiani, D S; Danielsson, H O; Dao, V; Darbo, G; Darlea, G L; Dassoulas, J A; Davey, W; Davidek, T; Davidson, N; Davidson, R; Davies, E; Davies, M; Davignon, O; Davison, A R; Davygora, Y; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Castro, S; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Taille, C; De la Torre, H; De Lorenzi, F; de Mora, L; De Nooij, L; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dearnaley, W J; Debbe, R; Debenedetti, C; Dechenaux, B; Dedovich, D V; Degenhardt, J; Del Papa, C; Del Peso, J; Del Prete, T; Delemontex, T; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Della Pietra, M; della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; Demers, S; Demichev, M; Demirkoz, B; Deng, J; Denisov, S P; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Devetak, E; Deviveiros, P O; Dewhurst, A; DeWilde, B; Dhaliwal, S; Dhullipudi, R; Di Ciaccio, A; Di Ciaccio, L; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M A; Diehl, E B; Dietrich, J; Dietzsch, T A; Diglio, S; Dindar Yagci, K; Dingfelder, J; Dinut, F; Dionisi, C; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; do Vale, M A B; Do Valle Wemans, A; Doan, T K O; Dobbs, M; Dobinson, R; Dobos, D; Dobson, E; Dodd, J; Doglioni, C; Doherty, T; Doi, Y; Dolejsi, J; Dolenc, I; Dolezal, Z; Dolgoshein, B A; Dohmae, T; Donadelli, M; Donini, J; Dopke, J; Doria, A; Dos Anjos, A; Dotti, A; Dova, M T; Doxiadis, A D; Doyle, A T; Dris, M; Dubbert, J; Dube, S; Duchovni, E; Duckeck, G; Dudarev, A; Dudziak, F; Dührssen, M; Duerdoth, I P; Duflot, L; Dufour, M-A; Duguid, L; Dunford, M; Duran Yildiz, H; Duxfield, R; Dwuznik, M; Dydak, F; Düren, M; Ebke, J; Eckweiler, S; Edmonds, K; Edson, W; Edwards, C A; Edwards, N C; Ehrenfeld, W; Eifert, T; Eigen, G; Einsweiler, K; Eisenhandler, E; Ekelof, T; El Kacimi, M; Ellert, M; Elles, S; Ellinghaus, F; Ellis, K; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Engelmann, R; Engl, A; Epp, B; Erdmann, J; Ereditato, A; Eriksson, D; Ernst, J; Ernst, M; Ernwein, J; Errede, D; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Espinal Curull, X; Esposito, B; Etienne, F; Etienvre, A I; Etzion, E; Evangelakou, D; Evans, H; Fabbri, L; Fabre, C; Fakhrutdinov, R M; Falciano, S; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farley, J; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassnacht, P; Fassouliotis, D; Fatholahzadeh, B; Favareto, A; Fayard, L; Fazio, S; Febbraro, R; Federic, P; Fedin, O L; Fedorko, W; Fehling-Kaschek, M; Feligioni, L; Fellmann, D; Feng, C; Feng, E J; Fenyuk, A B; Ferencei, J; Fernando, W; Ferrag, S; Ferrando, J; Ferrara, V; Ferrari, A; Ferrari, P; Ferrari, R; Ferreira de Lima, D E; Ferrer, A; Ferrere, D; Ferretti, C; Ferretto Parodi, A; Fiascaris, M; Fiedler, F; Filipčič, A; Filthaut, F; Fincke-Keeler, M; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, G; Fisher, M J; Flechl, M; Fleck, I; Fleckner, J; Fleischmann, P; Fleischmann, S; Flick, T; Floderus, A; Flores Castillo, L R; Flowerdew, M J; Fonseca Martin, T; Formica, A; Forti, A; Fortin, D; Fournier, D; Fox, H; Francavilla, P; Franchini, M; Franchino, S; Francis, D; Frank, T; Franz, S; Fraternali, M; Fratina, S; French, S T; Friedrich, C; Friedrich, F; Froeschl, R; Froidevaux, D; Frost, J A; Fukunaga, C; Fullana Torregrosa, E; Fulsom, B G; Fuster, J; Gabaldon, C; Gabizon, O; Gadfort, T; Gadomski, S; Gagliardi, G; Gagnon, P; Galea, C; Gallas, E J; Gallo, V; Gallop, B J; Gallus, P; Gan, K K; Gao, Y S; Gaponenko, A; Garberson, F; Garcia-Sciveres, M; García, C; García Navarro, J E; Gardner, R W; Garelli, N; Garitaonandia, H; Garonne, V; Gatti, C; Gaudio, G; Gaur, B; Gauthier, L; Gauzzi, P; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Ge, P; Gecse, Z; Gee, C N P; Geerts, D A A; Geich-Gimbel, Ch; Gellerstedt, K; Gemme, C; Gemmell, A; Genest, M H; Gentile, S; George, M; George, S; Gerlach, P; Gershon, A; Geweniger, C; Ghazlane, H; Ghodbane, N; Giacobbe, B; Giagu, S; Giakoumopoulou, V; Giangiobbe, V; Gianotti, F; Gibbard, B; Gibson, A; Gibson, S M; Gillberg, D; Gillman, A R; Gingrich, D M; Ginzburg, J; Giokaris, N; Giordani, M P; Giordano, R; Giorgi, F M; Giovannini, P; Giraud, P F; Giugni, D; Giunta, M; Giusti, P; Gjelsten, B K; Gladilin, L K; Glasman, C; Glatzer, J; Glazov, A; Glitza, K W; Glonti, G L; Goddard, J R; Godfrey, J; Godlewski, J; Goebel, M; Göpfert, T; Goeringer, C; Gössling, C; Goldfarb, S; Golling, T; Gomes, A; Gomez Fajardo, L S; Gonçalo, R; Goncalves Pinto Firmino Da Costa, J; Gonella, L; Gonzalez, S; González de la Hoz, S; Gonzalez Parra, G; Gonzalez Silva, M L; Gonzalez-Sevilla, S; Goodson, J J; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorfine, G; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Gosdzik, B; Goshaw, A T; Gosselink, M; Gostkin, M I; Gough Eschrich, I; Gouighri, M; Goujdami, D; Goulette, M P; Goussiou, A G; Goy, C; Gozpinar, S; Grabowska-Bold, I; Grafström, P; Grahn, K-J; Grancagnolo, F; Grancagnolo, S; Grassi, V; Gratchev, V; Grau, N; Gray, H M; Gray, J A; Graziani, E; Grebenyuk, O G; Greenshaw, T; Greenwood, Z D; Gregersen, K; Gregor, I M; Grenier, P; Griffiths, J; Grigalashvili, N; Grillo, A A; Grinstein, S; Grishkevich, Y V; Grivaz, J-F; Gross, E; Grosse-Knetter, J; Groth-Jensen, J; Grybel, K; Guest, D; Guicheney, C; Guindon, S; Gul, U; Guler, H; Gunther, J; Guo, B; Guo, J; Gutierrez, P; Guttman, N; Gutzwiller, O; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haas, S; Haber, C; Hadavand, H K; Hadley, D R; Haefner, P; Hahn, F; Haider, S; Hajduk, Z; Hakobyan, H; Hall, D; Haller, J; Hamacher, K; Hamal, P; Hamer, M; Hamilton, A; Hamilton, S; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Handel, C; Hanke, P; Hansen, J R; Hansen, J B; Hansen, J D; Hansen, P H; Hansson, P; Hara, K; Hare, G A; Harenberg, T; Harkusha, S; Harper, D; Harrington, R D; Harris, O M; Hartert, J; Hartjes, F; Haruyama, T; Harvey, A; Hasegawa, S; Hasegawa, Y; Hassani, S; Haug, S; Hauschild, M; Hauser, R; Havranek, M; Hawkes, C M; Hawkings, R J; Hawkins, A D; Hawkins, D; Hayakawa, T; Hayashi, T; Hayden, D; Hays, C P; Hayward, H S; Haywood, S J; He, M; Head, S J; Hedberg, V; Heelan, L; Heim, S; Heinemann, B; Heisterkamp, S; Helary, L; Heller, C; Heller, M; Hellman, S; Hellmich, D; Helsens, C; Henderson, R C W; Henke, M; Henrichs, A; Henriques Correia, A M; Henrot-Versille, S; Hensel, C; Henß, T; Hernandez, C M; Hernández Jiménez, Y; Herrberg, R; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Higón-Rodriguez, E; Hill, J C; Hiller, K H; Hillert, S; Hillier, S J; Hinchliffe, I; Hines, E; Hirose, M; Hirsch, F; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoffman, J; Hoffmann, D; Hohlfeld, M; Holder, M; Holmgren, S O; Holy, T; Holzbauer, J L; Hong, T M; Hooft van Huysduynen, L; Horn, C; Horner, S; Hostachy, J-Y; Hou, S; Hoummada, A; Howard, J; Howarth, J; Hristova, I; Hrivnac, J; Hryn'ova, T; Hsu, P J; Hsu, S-C; Hubacek, Z; Hubaut, F; Huegging, F; Huettmann, A; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hurwitz, M; Husemann, U; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibbotson, M; Ibragimov, I; Iconomidou-Fayard, L; Idarraga, J; Iengo, P; Igonkina, O; Ikegami, Y; Ikeno, M; Iliadis, D; Ilic, N; Ince, T; Inigo-Golfin, J; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Irles Quiles, A; Isaksson, C; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ivashin, A V; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jackson, B; Jackson, J N; Jackson, P; Jaekel, M R; Jain, V; Jakobs, K; Jakobsen, S; Jakoubek, T; Jakubek, J; Jana, D K; Jansen, E; Jansen, H; Jantsch, A; Janus, M; Jarlskog, G; Jeanty, L; Jen-La Plante, I; Jennens, D; Jenni, P; Jež, P; Jézéquel, S; Jha, M K; Ji, H; Ji, W; Jia, J; Jiang, Y; Jimenez Belenguer, M; Jin, S; Jinnouchi, O; Joergensen, M D; Joffe, D; Johansen, M; Johansson, K E; Johansson, P; Johnert, S; Johns, K A; Jon-And, K; Jones, G; Jones, R W L; Jones, T J; Joram, C; Jorge, P M; Joshi, K D; Jovicevic, J; Jovin, T; Ju, X; Jung, C A; Jungst, R M; Juranek, V; Jussel, P; Juste Rozas, A; Kabana, S; Kaci, M; Kaczmarska, A; Kadlecik, P; Kado, M; Kagan, H; Kagan, M; Kajomovitz, E; Kalinin, S; Kalinovskaya, L V; Kama, S; Kanaya, N; Kaneda, M; Kaneti, S; Kanno, T; Kantserov, V A; Kanzaki, J; Kaplan, B; Kapliy, A; Kaplon, J; Kar, D; Karagounis, M; Karakostas, K; Karnevskiy, M; Kartvelishvili, V; Karyukhin, A N; Kashif, L; Kasieczka, G; Kass, R D; Kastanas, A; Kataoka, M; Kataoka, Y; Katsoufis, E; Katzy, J; Kaushik, V; Kawagoe, K; Kawamoto, T; Kawamura, G; Kayl, M S; Kazama, S; Kazanin, V A; Kazarinov, M Y; Keeler, R; Kehoe, R; Keil, M; Kekelidze, G D; Keller, J S; Kenyon, M; Kepka, O; Kerschen, N; Kerševan, B P; Kersten, S; Kessoku, K; Keung, J; Khalil-Zada, F; Khandanyan, H; Khanov, A; Kharchenko, D; Khodinov, A; Khomich, A; Khoo, T J; Khoriauli, G; Khoroshilov, A; Khovanskiy, V; Khramov, E; Khubua, J; Kim, H; Kim, S H; Kimura, N; Kind, O; King, B T; King, M; King, R S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kitamura, T; Kittelmann, T; Kladiva, E; Klein, M; Klein, U; Kleinknecht, K; Klemetti, M; Klier, A; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klinkby, E B; Klioutchnikova, T; Klok, P F; Klous, S; Kluge, E-E; Kluge, T; Kluit, P; Kluth, S; Knecht, N S; Kneringer, E; Knoops, E B F G; Knue, A; Ko, B R; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Köneke, K; König, A C; Koenig, S; Köpke, L; Koetsveld, F; Koevesarki, P; Koffas, T; Koffeman, E; Kogan, L A; Kohlmann, S; Kohn, F; Kohout, Z; Kohriki, T; Koi, T; Kolachev, G M; Kolanoski, H; Kolesnikov, V; Koletsou, I; Koll, J; Kollefrath, M; Komar, A A; Komori, Y; Kondo, T; Kono, T; Kononov, A I; Konoplich, R; Konstantinidis, N; Koperny, S; Korcyl, K; Kordas, K; Korn, A; Korol, A; Korolkov, I; Korolkova, E V; Korotkov, V A; Kortner, O; Kortner, S; Kostyukhin, V V; Kotov, S; Kotov, V M; Kotwal, A; Kourkoumelis, C; Kouskoura, V; Koutsman, A; Kowalewski, R; Kowalski, T Z; Kozanecki, W; Kozhin, A S; Kral, V; Kramarenko, V A; Kramberger, G; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kreiss, S; Krejci, F; Kretzschmar, J; Krieger, N; Krieger, P; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Kruker, T; Krumnack, N; Krumshteyn, Z V; Kubota, T; Kuday, S; Kuehn, S; Kugel, A; Kuhl, T; Kuhn, D; Kukhtin, V; Kulchitsky, Y; Kuleshov, S; Kummer, C; Kuna, M; Kunkle, J; Kupco, A; Kurashige, H; Kurata, M; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwee, R; La Rosa, A; La Rotonda, L; Labarga, L; Labbe, J; Lablak, S; Lacasta, C; Lacava, F; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Laisne, E; Lamanna, M; Lambourne, L; Lampen, C L; Lampl, W; Lancon, E; Landgraf, U; Landon, M P J; Lane, J L; Lang, V S; Lange, C; Lankford, A J; Lanni, F; Lantzsch, K; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Larner, A; Lassnig, M; Laurelli, P; Lavorini, V; Lavrijsen, W; Laycock, P; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; LeCompte, T; Ledroit-Guillon, F; Lee, H; Lee, J S H; Lee, S C; Lee, L; Lefebvre, M; Legendre, M; Legger, F; Leggett, C; Lehmacher, M; Lehmann Miotto, G; Lei, X; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Lendermann, V; Leney, K J C; Lenz, T; Lenzen, G; Lenzi, B; Leonhardt, K; Leontsinis, S; Lepold, F; Leroy, C; Lessard, J-R; Lester, C G; Lester, C M; Levêque, J; Levin, D; Levinson, L J; Lewis, A; Lewis, G H; Leyko, A M; Leyton, M; Li, B; Li, H; Li, S; Li, X; Liang, Z; Liao, H; Liberti, B; Lichard, P; Lichtnecker, M; Lie, K; Liebig, W; Limbach, C; Limosani, A; Limper, M; Lin, S C; Linde, F; Linnemann, J T; Lipeles, E; Lipniacka, A; Liss, T M; Lissauer, D; Lister, A; Litke, A M; Liu, C; Liu, D; Liu, H; Liu, J B; Liu, L; Liu, M; Liu, Y; Livan, M; Livermore, S S A; Lleres, A; Llorente Merino, J; Lloyd, S L; Lobodzinska, E; Loch, P; Lockman, W S; Loddenkoetter, T; Loebinger, F K; Loginov, A; Loh, C W; Lohse, T; Lohwasser, K; Lokajicek, M; Lombardo, V P; Long, R E; Lopes, L; Lopez Mateos, D; Lorenz, J; Lorenzo Martinez, N; Losada, M; Loscutoff, P; Lo Sterzo, F; Losty, M J; Lou, X; Lounis, A; Loureiro, K F; Love, J; Love, P A; Lowe, A J; Lu, F; Lubatti, H J; Luci, C; Lucotte, A; Ludwig, A; Ludwig, D; Ludwig, I; Ludwig, J; Luehring, F; Luijckx, G; Lukas, W; Lumb, D; Luminari, L; Lund, E; Lund-Jensen, B; Lundberg, B; Lundberg, J; Lundberg, O; Lundquist, J; Lungwitz, M; Lynn, D; Lytken, E; Ma, H; Ma, L L; Maccarrone, G; Macchiolo, A; Maček, B; Machado Miguens, J; Mackeprang, R; Madaras, R J; Maddocks, H J; Mader, W F; Maenner, R; Maeno, T; Mättig, P; Mättig, S; Magnoni, L; Magradze, E; Mahboubi, K; Mahmoud, S; Mahout, G; Maiani, C; Maidantchik, C; Maio, A; Majewski, S; Makida, Y; Makovec, N; Mal, P; Malaescu, B; Malecki, Pa; Malecki, P; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyshev, V; Malyukov, S; Mameghani, R; Mamuzic, J; Manabe, A; Mandelli, L; Mandić, I; Mandrysch, R; Maneira, J; Mangeard, P S; Manhaes de Andrade Filho, L; Manjarres Ramos, J A; Mann, A; Manning, P M; Manousakis-Katsikakis, A; Mansoulie, B; Mapelli, A; Mapelli, L; March, L; Marchand, J F; Marchese, F; Marchiori, G; Marcisovsky, M; Marino, C P; Marroquim, F; Marshall, Z; Martens, F K; Marti, L F; Marti-Garcia, S; Martin, B; Martin, B; Martin, J P; Martin, T A; Martin, V J; Martin dit Latour, B; Martin-Haugh, S; Martinez, M; Martinez Outschoorn, V; Martyniuk, A C; Marx, M; Marzano, F; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massaro, G; Massol, N; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Matricon, P; Matsunaga, H; Matsushita, T; Mattravers, C; Maurer, J; Maxfield, S J; Mayne, A; Mazini, R; Mazur, M; Mazzaferro, L; Mazzanti, M; Mc Kee, S P; McCarn, A; McCarthy, R L; McCarthy, T G; McCubbin, N A; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; Mclaughlan, T; McMahon, S J; McPherson, R A; Meade, A; Mechnich, J; Mechtel, M; Medinnis, M; Meera-Lebbai, R; Meguro, T; Mehdiyev, R; Mehlhase, S; Mehta, A; Meier, K; Meirose, B; Melachrinos, C; Mellado Garcia, B R; Meloni, F; Mendoza Navas, L; Meng, Z; Mengarelli, A; Menke, S; Meoni, E; Mercurio, K M; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Merritt, H; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Meyer, J; Meyer, T C; Miao, J; Michal, S; Micu, L; Middleton, R P; Migas, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Miller, D W; Miller, R J; Mills, W J; Mills, C; Milov, A; Milstead, D A; Milstein, D; Minaenko, A A; Miñano Moya, M; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mirabelli, G; Mitrevski, J; Mitsou, V A; Mitsui, S; Miyagawa, P S; Mjörnmark, J U; Moa, T; Moeller, V; Mönig, K; Möser, N; Mohapatra, S; Mohr, W; Moles-Valls, R; Monk, J; Monnier, E; Montejo Berlingen, J; Monticelli, F; Monzani, S; Moore, R W; Moorhead, G F; Mora Herrera, C; Moraes, A; Morange, N; Morel, J; Morello, G; Moreno, D; Moreno Llácer, M; Morettini, P; Morgenstern, M; Morii, M; Morley, A K; Mornacchi, G; Morris, J D; Morvaj, L; Moser, H G; Mosidze, M; Moss, J; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Mueller, F; Mueller, J; Mueller, K; Müller, T A; Mueller, T; Muenstermann, D; Munwes, Y; Murray, W J; Mussche, I; Musto, E; Myagkov, A G; Myska, M; Nadal, J; Nagai, K; Nagai, R; Nagano, K; Nagarkar, A; Nagasaka, Y; Nagel, M; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Nanava, G; Napier, A; Narayan, R; Nash, M; Nattermann, T; Naumann, T; Navarro, G; Neal, H A; Nechaeva, P Yu; Neep, T J; Negri, A; Negri, G; Negrini, M; Nektarijevic, S; Nelson, A; Nelson, T K; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neusiedl, A; Neves, R M; Nevski, P; Newman, P R; Nguyen Thi Hong, V; Nickerson, R B; Nicolaidou, R; Nicquevert, B; Niedercorn, F; Nielsen, J; Nikiforou, N; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolics, K; Nikolopoulos, K; Nilsen, H; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Norberg, S; Nordberg, M; Norton, P R; Novakova, J; Nozaki, M; Nozka, L; Nugent, I M; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T; Nurse, E; O'Brien, B J; O'Neale, S W; O'Neil, D C; O'Shea, V; Oakes, L B; Oakham, F G; Oberlack, H; Ocariz, J; Ochi, A; Oda, S; Odaka, S; Odier, J; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohshima, T; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Olchevski, A G; Olivares Pino, S A; Oliveira, M; Oliveira Damazio, D; Oliver Garcia, E; Olivito, D; Olszewski, A; Olszowska, J; Onofre, A; Onyisi, P U E; Oram, C J; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orlov, I; Oropeza Barrera, C; Orr, R S; Osculati, B; Ospanov, R; Osuna, C; Otero y Garzon, G; Ottersbach, J P; Ouchrif, M; Ouellette, E A; Ould-Saada, F; Ouraou, A; Ouyang, Q; Ovcharova, A; Owen, M; Owen, S; Ozcan, V E; Ozturk, N; Pacheco Pages, A; Padilla Aranda, C; Pagan Griso, S; Paganis, E; Pahl, C; Paige, F; Pais, P; Pajchel, K; Palacino, G; Paleari, C P; Palestini, S; Pallin, D; Palma, A; Palmer, J D; Pan, Y B; Panagiotopoulou, E; Pani, P; Panikashvili, N; Panitkin, S; Pantea, D; Papadelis, A; Papadopoulou, Th D; Paramonov, A; Paredes Hernandez, D; Park, W; Parker, M A; Parodi, F; Parsons, J A; Parzefall, U; Pashapour, S; Pasqualucci, E; Passaggio, S; Passeri, A; Pastore, F; Pastore, Fr; Pásztor, G; Pataraia, S; Patel, N; Pater, J R; Patricelli, S; Pauly, T; Pecsy, M; Pedraza Lopez, S; Pedraza Morales, M I; Peleganchuk, S V; Pelikan, D; Peng, H; Penning, B; Penson, A; Penwell, J; Perantoni, M; Perez, K; Perez Cavalcanti, T; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L; Pernegger, H; Perrino, R; Perrodo, P; Peshekhonov, V D; Peters, K; Petersen, B A; Petersen, J; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petrolo, E; Petrucci, F; Petschull, D; Petteni, M; Pezoa, R; Phan, A; Phillips, P W; Piacquadio, G; Picazio, A; Piccaro, E; Piccinini, M; Piec, S M; Piegaia, R; Pignotti, D T; Pilcher, J E; Pilkington, A D; Pina, J; Pinamonti, M; Pinder, A; Pinfold, J L; Pinto, B; Pizio, C; Plamondon, M; Pleier, M-A; Plotnikova, E; Poblaguev, A; Poddar, S; Podlyski, F; Poggioli, L; Pohl, M; Polesello, G; Policicchio, A; Polini, A; Poll, J; Polychronakos, V; Pomeroy, D; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Portell Bueso, X; Pospelov, G E; Pospisil, S; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Prabhu, R; Pralavorio, P; Pranko, A; Prasad, S; Pravahan, R; Prell, S; Pretzl, K; Price, D; Price, J; Price, L E; Prieur, D; Primavera, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Prudent, X; Przybycien, M; Przysiezniak, H; Psoroulas, S; Ptacek, E; Pueschel, E; Purdham, J; Purohit, M; Puzo, P; Pylypchenko, Y; Qian, J; Quadt, A; Quarrie, D R; Quayle, W B; Quinonez, F; Raas, M; Radescu, V; Radloff, P; Rador, T; Ragusa, F; Rahal, G; Rahimi, A M; Rahm, D; Rajagopalan, S; Rammensee, M; Rammes, M; Randle-Conde, A S; Randrianarivony, K; Rauscher, F; Rave, T C; Raymond, M; Read, A L; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Reinherz-Aronis, E; Reinsch, A; Reisinger, I; Rembser, C; Ren, Z L; Renaud, A; Rescigno, M; Resconi, S; Resende, B; Reznicek, P; Rezvani, R; Richter, R; Richter-Was, E; Ridel, M; Rijpstra, M; Rijssenbeek, M; Rimoldi, A; Rinaldi, L; Rios, R R; Riu, I; Rivoltella, G; Rizatdinova, F; Rizvi, E; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Rocha de Lima, J G; Roda, C; Roda Dos Santos, D; Roe, A; Roe, S; Røhne, O; Rolli, S; Romaniouk, A; Romano, M; Romeo, G; Romero Adam, E; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, A; Rose, M; Rosenbaum, G A; Rosenberg, E I; Rosendahl, P L; Rosenthal, O; Rosselet, L; Rossetti, V; Rossi, E; Rossi, L P; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rubinskiy, I; Ruckert, B; Ruckstuhl, N; Rud, V I; Rudolph, C; Rudolph, G; Rühr, F; Ruiz-Martinez, A; Rumyantsev, L; Rurikova, Z; Rusakovich, N A; Rutherfoord, J P; Ruwiedel, C; Ruzicka, P; Ryabov, Y F; Rybar, M; Rybkin, G; Ryder, N C; Saavedra, A F; Sadeh, I; Sadrozinski, H F-W; Sadykov, R; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saleem, M; Salek, D; Salihagic, D; Salnikov, A; Salt, J; Salvachua Ferrando, B M; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sampsonidis, D; Samset, B H; Sanchez, A; Sanchez Martinez, V; Sandaker, H; Sander, H G; Sanders, M P; Sandhoff, M; Sandoval, T; Sandoval, C; Sandstroem, R; Sankey, D P C; Sansoni, A; Santamarina Rios, C; Santoni, C; Santonico, R; Santos, H; Saraiva, J G; Sarangi, T; Sarkisyan-Grinbaum, E; Sarri, F; Sartisohn, G; Sasaki, O; Sasaki, Y; Sasao, N; Satsounkevitch, I; Sauvage, G; Sauvan, E; Sauvan, J B; Savard, P; Savinov, V; Savu, D O; Sawyer, L; Saxon, D H; Saxon, J; Sbarra, C; Sbrizzi, A; Scannicchio, D A; Scarcella, M; Schaarschmidt, J; Schacht, P; Schaefer, D; Schäfer, U; Schaepe, S; Schaetzel, S; Schaffer, A C; Schaile, D; Schamberger, R D; Schamov, A G; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Scherzer, M I; Schiavi, C; Schieck, J; Schioppa, M; Schlenker, S; Schmidt, E; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, M; Schneider, B; Schnoor, U; Schoening, A; Schorlemmer, A L S; Schott, M; Schouten, D; Schovancova, J; Schram, M; Schroeder, C; Schroer, N; Schultens, M J; Schultes, J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwanenberger, C; Schwartzman, A; Schwemling, Ph; Schwienhorst, R; Schwierz, R; Schwindling, J; Schwindt, T; Schwoerer, M; Sciolla, G; Scott, W G; Searcy, J; Sedov, G; Sedykh, E; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekula, S J; Selbach, K E; Seliverstov, D M; Sellden, B; Sellers, G; Seman, M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Seuster, R; Severini, H; Sfyrla, A; Shabalina, E; Shamim, M; Shan, L Y; Shank, J T; Shao, Q T; Shapiro, M; Shatalov, P B; Shaw, K; Sherman, D; Sherwood, P; Shibata, A; Shimizu, S; Shimojima, M; Shin, T; Shiyakova, M; Shmeleva, A; Shochet, M J; Short, D; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sidoti, A; Siegert, F; Sijacki, Dj; Silbert, O; Silva, J; Silver, Y; Silverstein, D; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simoniello, R; Simonyan, M; Sinervo, P; Sinev, N B; Sipica, V; Siragusa, G; Sircar, A; Sisakyan, A N; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinnari, L A; Skottowe, H P; Skovpen, K; Skubic, P; Slater, M; Slavicek, T; Sliwa, K; Smakhtin, V; Smart, B H; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, B C; Smith, D; Smith, K M; Smizanska, M; Smolek, K; Snesarev, A A; Snow, S W; Snow, J; Snyder, S; Sobie, R; Sodomka, J; Soffer, A; Solans, C A; Solar, M; Solc, J; Soldatov, E Yu; Soldevila, U; Solfaroli Camillocci, E; Solodkov, A A; Solovyanov, O V; Solovyev, V; Soni, N; Sopko, V; Sopko, B; Sosebee, M; Soualah, R; Soukharev, A; Spagnolo, S; Spanò, F; Spighi, R; Spigo, G; Spiwoks, R; Spousta, M; Spreitzer, T; Spurlock, B; St Denis, R D; Stahlman, J; Stamen, R; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stapnes, S; Starchenko, E A; Stark, J; Staroba, P; Starovoitov, P; Staszewski, R; Staude, A; Stavina, P; Steele, G; Steinbach, P; Steinberg, P; Stekl, I; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stern, S; Stewart, G A; Stillings, J A; Stockton, M C; Stoerig, K; Stoicea, G; Stonjek, S; Strachota, P; Stradling, A R; Straessner, A; Strandberg, J; Strandberg, S; Strandlie, A; Strang, M; Strauss, E; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Strong, J A; Stroynowski, R; Strube, J; Stugu, B; Stumer, I; Stupak, J; Sturm, P; Styles, N A; Soh, D A; Su, D; Subramania, Hs; Succurro, A; Sugaya, Y; Suhr, C; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, Y; Suzuki, Y; Svatos, M; Swedish, S; Sykora, I; Sykora, T; Sánchez, J; Ta, D; Tackmann, K; Taffard, A; Tafirout, R; Taiblum, N; Takahashi, Y; Takai, H; Takashima, R; Takeda, H; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A; Tamsett, M C; Tanaka, J; Tanaka, R; Tanaka, S; Tanaka, S; Tanasijczuk, A J; Tani, K; Tannoury, N; Tapprogge, S; Tardif, D; Tarem, S; Tarrade, F; Tartarelli, G F; Tas, P; Tasevsky, M; Tassi, E; Tatarkhanov, M; Tayalati, Y; Taylor, C; Taylor, F E; Taylor, G N; Taylor, W; Teinturier, M; Teixeira Dias Castanheira, M; Teixeira-Dias, P; Temming, K K; Ten Kate, H; Teng, P K; Terada, S; Terashi, K; Terron, J; Testa, M; Teuscher, R J; Therhaag, J; Theveneaux-Pelzer, T; Thoma, S; Thomas, J P; Thompson, E N; Thompson, P D; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Thong, W M; Thun, R P; Tian, F; Tibbetts, M J; Tic, T; Tikhomirov, V O; Tikhonov, Y A; Timoshenko, S; Tipton, P; Tisserant, S; Todorov, T; Todorova-Nova, S; Toggerson, B; Tojo, J; Tokár, S; Tokushuku, K; Tollefson, K; Tomoto, M; Tompkins, L; Toms, K; Tonoyan, A; Topfel, C; Topilin, N D; Torchiani, I; Torrence, E; Torres, H; Torró Pastor, E; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tremblet, L; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Triplett, N; Trischuk, W; Trocmé, B; Troncon, C; Trottier-McDonald, M; Trzebinski, M; Trzupek, A; Tsarouchas, C; Tseng, J C-L; Tsiakiris, M; Tsiareshka, P V; Tsionou, D; Tsipolitis, G; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsukerman, I I; Tsulaia, V; Tsung, J-W; Tsuno, S; Tsybychev, D; Tua, A; Tudorache, A; Tudorache, V; Tuggle, J M; Turala, M; Turecek, D; Turk Cakir, I; Turlay, E; Turra, R; Tuts, P M; Tykhonov, A; Tylmad, M; Tyndel, M; Tzanakos, G; Uchida, K; Ueda, I; Ueno, R; Ugland, M; Uhlenbrock, M; Uhrmacher, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Unno, Y; Urbaniec, D; Usai, G; Uslenghi, M; Vacavant, L; Vacek, V; Vachon, B; Vahsen, S; Valenta, J; Valentinetti, S; Valero, A; Valkar, S; Valladolid Gallego, E; Vallecorsa, S; Valls Ferrer, J A; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; Van Der Leeuw, R; van der Poel, E; van der Ster, D; van Eldik, N; van Gemmeren, P; van Vulpen, I; Vanadia, M; Vandelli, W; Vaniachine, A; Vankov, P; Vannucci, F; Vari, R; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vassilakopoulos, V I; Vazeille, F; Vazquez Schroeder, T; Vegni, G; Veillet, J J; Veloso, F; Veness, R; Veneziano, S; Ventura, A; Ventura, D; Venturi, M; Venturi, N; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Vichou, I; Vickey, T; Vickey Boeriu, O E; Viehhauser, G H A; Viel, S; Villa, M; Villaplana Perez, M; Vilucchi, E; Vincter, M G; Vinek, E; Vinogradov, V B; Virchaux, M; Virzi, J; Vitells, O; Viti, M; Vivarelli, I; Vives Vaque, F; Vlachos, S; Vladoiu, D; Vlasak, M; Vogel, A; Vokac, P; Volpi, G; Volpi, M; Volpini, G; von der Schmitt, H; von Radziewski, H; von Toerne, E; Vorobel, V; Vorwerk, V; Vos, M; Voss, R; Voss, T T; Vossebeld, J H; Vranjes, N; Vranjes Milosavljevic, M; Vrba, V; Vreeswijk, M; Vu Anh, T; Vuillermet, R; Vukotic, I; Wagner, W; Wagner, P; Wahlen, H; Wahrmund, S; Wakabayashi, J; Walch, S; Walder, J; Walker, R; Walkowiak, W; Wall, R; Waller, P; Walsh, B; Wang, C; Wang, H; Wang, H; Wang, J; Wang, J; Wang, R; Wang, S M; Wang, T; Warburton, A; Ward, C P; Warsinsky, M; Washbrook, A; Wasicki, C; Watanabe, I; Watkins, P M; Watson, A T; Watson, I J; Watson, M F; Watts, G; Watts, S; Waugh, A T; Waugh, B M; Weber, M S; Weber, P; Weidberg, A R; Weigell, P; Weingarten, J; Weiser, C; Wellenstein, H; Wells, P S; Wenaus, T; Wendland, D; Weng, Z; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, P; Werth, M; Wessels, M; Wetter, J; Weydert, C; Whalen, K; Wheeler-Ellis, S J; White, A; White, M J; White, S; Whitehead, S R; Whiteson, D; Whittington, D; Wicek, F; Wicke, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wijeratne, P A; Wildauer, A; Wildt, M A; Wilhelm, I; Wilkens, H G; Will, J Z; Williams, E; Williams, H H; Willis, W; Willocq, S; Wilson, J A; Wilson, M G; Wilson, A; Wingerter-Seez, I; Winkelmann, S; Winklmeier, F; Wittgen, M; Wollstadt, S J; Wolter, M W; Wolters, H; Wong, W C; Wooden, G; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wraight, K; Wright, M; Wrona, B; Wu, S L; Wu, X; Wu, Y; Wulf, E; Wynne, B M; Xella, S; Xiao, M; Xie, S; Xu, C; Xu, D; Yabsley, B; Yacoob, S; Yamada, M; Yamaguchi, H; Yamamoto, A; Yamamoto, K; Yamamoto, S; Yamamura, T; Yamanaka, T; Yamaoka, J; Yamazaki, T; Yamazaki, Y; Yan, Z; Yang, H; Yang, U K; Yang, Y; Yang, Z; Yanush, S; Yao, L; Yao, Y; Yasu, Y; Ybeles Smit, G V; Ye, J; Ye, S; Yilmaz, M; Yoosoofmiya, R; Yorita, K; Yoshida, R; Young, C; Young, C J; Youssef, S; Yu, D; Yu, J; Yu, J; Yuan, L; Yurkewicz, A; Zabinski, B; Zaidan, R; Zaitsev, A M; Zajacova, Z; Zanello, L; Zaytsev, A; Zeitnitz, C; Zeman, M; Zemla, A; Zendler, C; Zenin, O; Ženiš, T; Zinonos, Z; Zenz, S; Zerwas, D; Zevi della Porta, G; Zhan, Z; Zhang, D; Zhang, H; Zhang, J; Zhang, X; Zhang, Z; Zhao, L; Zhao, T; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, N; Zhou, Y; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhuravlov, V; Zieminska, D; Zimin, N I; Zimmermann, R; Zimmermann, S; Zimmermann, S; Ziolkowski, M; Zitoun, R; Živković, L; Zmouchko, V V; Zobernig, G; Zoccoli, A; zur Nedden, M; Zutshi, V; Zwalinski, L

    2012-12-28

    This Letter presents a search for magnetic monopoles with the ATLAS detector at the CERN Large Hadron Collider using an integrated luminosity of 2.0  fb(-1) of pp collisions recorded at a center-of-mass energy of sqrt[s]=7  TeV. No event is found in the signal region, leading to an upper limit on the production cross section at 95% confidence level of 1.6/ϵ  fb for Dirac magnetic monopoles with the minimum unit magnetic charge and with mass between 200 GeV and 1500 GeV, where ϵ is the monopole reconstruction efficiency. The efficiency ϵ is high and uniform in the fiducial region given by pseudorapidity |η|<1.37 and transverse kinetic energy 600-700magnetic monopoles, the efficiency is in the range 1%-10%, leading to an upper limit on the cross section at 95% confidence level that varies from 145 fb to 16 fb for monopoles with mass between 200 GeV and 1200 GeV. This limit is weaker than the fiducial limit because most of these monopoles lie outside the fiducial region.

  4. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area ∼18 m2, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb−1. No magnetic charge exceeding 0.5gD (where gD is ...

  5. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    CERN Document Server

    Acharya, B.

    2016-08-10

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area $\\sim$18 m$^2$, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb$^{-1}$. No magnetic charge exceeding $0.5g_{\\rm...

  6. On-line data acquisition and reduction at the magnetic detector PLUTO

    International Nuclear Information System (INIS)

    Franke, G.; Schmitz, R.

    1976-12-01

    We present a method for reducing cosmic ray background in a set of cylindrical proportional wire chambers. Data taking and reduction is done by a PDP 11/45 computer. The method is applied in e + e - storage ring experiments with the superconductive solenoid magnet PLUTO. A reduction of about 50% of the incoming events is achieved. (orig.) [de

  7. Study of Muon Triggers and Momentum Reconstruction in a Strong Magnetic Field for a Muon Detector at LHC

    CERN Multimedia

    2002-01-01

    % RD-5 \\\\ \\\\ A small fraction of a muon detector for possible use in an LHC experiment is installed in the SPS H2 beam. It consists of a 3T superconducting solenoid enclosing a 10$\\lambda$ deep calorimeter made of stainless steel plates interleaved with Honeycomb strip chambers. Behind this magnet are located 3 muon stations for triggering and momentum measurement. These stations, consisting of UA1 muon chambers backed up with Resistive Plate Chambers (RPC), are inserted in a 1.5~T absorber magnet of 20$\\lambda$ total thickness, station 2 being located after 10$\\lambda$. \\\\ \\\\During the data taking period (1991-1994) 10$^{7}$ muon and hadron events were recorded. Beams of negative muons and pions and of positive muons and hadrons $ (\\pi^+, K ^+ $ and protons) were used with a momentum ranging from 10~to~300~GeV/c. \\\\ \\\\The RD-5 program has covered several topics related to muon detection at LHC: \\\\ \\\\\\begin{description} \\item[(i)]~~study of the behaviour of muons from hadron punchthrough and decays, and also ...

  8. ZZ di-boson measurements with the ATLAS detector at the LHC and study of the toroidal magnetic field sensors

    International Nuclear Information System (INIS)

    Protopapadaki, Eftychia-Sofia

    2014-01-01

    Elementary particles and their interactions are described by the Standard Model. Even successful, there are still some unanswered questions which need to be addressed. In this work, the ZZ Standard Model process was studied in the leptonic decay channel. The data used were collected by the ATLAS detector during 2012 and correspond to an integrated luminosity of 20 fb -1 . The center of mass energy was 8 TeV. All the analysis elements, such as the signal selection and efficiencies, the background estimation, the measurement uncertainties and the statistical method employed for the cross section extraction, are discussed in this document. The total ZZ on-shell cross section is measured to be 6.98±0.41(stat.)±0.36(syst.)±0.20(lumi) pb. A measurement of the on-shell 'fiducial' cross section, defined in a volume close to the reconstructed one, was also performed for each decay channel. Both total and fiducial measurements are in agreement, within uncertainties, with the SM predictions. The neutral boson-self interactions are forbidden in the SM. Therefore, if triple gauge boson couplings are observed, they will indirectly point to the existence of new physics. Observables sensitive to the presence of anomalous triple gauge couplings, along with the optimal binning were investigated. The traverse momentum of the most energetic boson was among the most sensitive observables, and it was thus used in order to extract 95% CL limits on the anomalous coupling parameters. All observed limits are found to be compatible with the SM expectations. In the framework of this thesis a performance study was conducted. In order to increase particles mass measurement precision, the accurate knowledge of the toroidal magnetic field inside the detector is essential. The sensors used for the production of the ATLAS toroidal magnetic field map were studied, and it was found that more than 97% of these sensors are reliable. The existing magnetic field map was probed, and even

  9. A combined analysis technique for the search for fast magnetic monopoles with the MACRO detector

    CERN Document Server

    Ambrosio, M; Auriemma, G; Bakari, D; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bernardini, P; Bilokon, H; Bloise, C; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Cecchini, S; Cei, F; Chiarella, V; Choudhary, B C; Coutu, S; De Cataldo, G; Dekhissi, H; De Marzo, C; De Mitri, I; Derkaoui, J E; De Vincenzi, M; Di Credico, A; Erriquez, O; Favuzzi, C; Forti, C; Fusco, P; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Heinz, R; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Manzoor, S; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Mufson, S L; Musser, J; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Reynoldson, J; Ronga, F; Rrhioua, A; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Vakili, M; Walter, C W; Webb, R

    2002-01-01

    We describe a search method for fast moving ( beta = v/c > 5 * 10/sup -3/) magnetic monopoles using simultaneously the scintillator, streamer tube and track-etch subdetectors of the MACRO apparatus. The first two subdetectors are used primarily for the identification of candidates while the track-etch one is used as the final tool for their rejection or confirmation. Using this technique, a first sample of more than two years of data has been analyzed without any evidence of a magnetic monopole. We set a 90% CL upper limit to the local monopole flux of 1.5 * 10/sup -15/ cm/sup -2/s/sup -1/sr/sup -1/ in the velocity range 5 * 10/sup -3/

  10. A concept for a magnetic field detector underpinned by the nonlinear dynamics of coupled multiferroic devices

    Science.gov (United States)

    Beninato, A.; Emery, T.; Baglio, S.; Andò, B.; Bulsara, A. R.; Jenkins, C.; Palkar, V.

    2013-12-01

    Multiferroic (MF) composites, in which magnetic and ferroelectric orders coexist, represent a very attractive class of materials with promising applications in areas, such as spintronics, memories, and sensors. One of the most important multiferroics is the perovskite phase of bismuth ferrite, which exhibits weak magnetoelectric properties at room temperature; its properties can be enhanced by doping with other elements such as dysprosium. A recent paper has demonstrated that a thin film of Bi0.7Dy0.3FeO3 shows good magnetoelectric coupling. In separate work it has been shown that a carefully crafted ring connection of N (N odd and N ≥ 3) ferroelectric capacitors yields, past a critical point, nonlinear oscillations that can be exploited for electric (E) field sensing. These two results represent the starting point of our work. In this paper the (electrical) hysteresis, experimentally measured in the MF material Bi0.7Dy0.3FeO3, is characterized with the applied magnetic field (B) taken as a control parameter. This yields a "blueprint" for a magnetic (B) field sensor: a ring-oscillator coupling of N = 3 Sawyer-Tower circuits each underpinned by a mutliferroic element. In this configuration, the changes induced in the ferroelectric behavior by the external or "target" B-field are quantified, thus providing a pathway for very low power and high sensitivity B-field sensing.

  11. Effect of the wire geometry and an externally applied magnetic field on the detection efficiency of superconducting nanowire single-photon detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lusche, Robert; Semenov, Alexey; Huebers, Heinz-Willhelm [DLR, Institut fuer Planetenforschung, Berlin (Germany); Ilin, Konstantin; Siegel, Michael [Karlsruher Institut fuer Technologie (Germany); Korneeva, Yuliya; Trifonov, Andrey; Korneev, Alexander; Goltsman, Gregory [Moscow State Pedagogical University (Russian Federation)

    2013-07-01

    The interest in single-photon detectors in the near-infrared wavelength regime for applications, e.g. in quantum cryptography has immensely increased in the last years. Superconducting nanowire single-photon detectors (SNSPD) already show quite reasonable detection efficiencies in the NIR which can even be further improved. Novel theoretical approaches including vortex-assisted photon counting state that the detection efficiency in the long wavelength region can be enhanced by the detector geometry and an applied magnetic field. We present spectral measurements in the wavelength range from 350-2500 nm of the detection efficiency of meander-type TaN and NbN SNSPD with varying nanowire line width from 80 to 250 nm. Due to the used experimental setup we can accurately normalize the measured spectra and are able to extract the intrinsic detection efficiency (IDE) of our detectors. The results clearly indicate an improvement of the IDE depending on the wire width according to the theoretic models. Furthermore we experimentally found that the smallest detectable photon-flux can be increased by applying a small magnetic field to the detectors.

  12. Detector applications

    International Nuclear Information System (INIS)

    Pehl, R.H.

    1977-10-01

    Semiconductor detectors are now applied to a very wide range of problems. The combination of relatively low cost, excellent energy resolution, and simultaneous broad energy-spectrum analysis is uniquely suited to many applications in both basic and applied physics. Alternative techniques, such as magnetic spectrometers for charged-particle spectroscopy, while offering better energy resolution, are bulky, expensive, and usually far more difficult to use. Furthermore, they do not directly provide the broad energy-spectrum measurements easily accomplished using semiconductor detectors. Scintillation detectors, which are approximately equivalent to semiconductor detectors in convenience and cost, exhibit 10 to 100 times worse energy resolution. However, their high efficiency and large potential size recommend their use in some measurements

  13. Measurement X radiation > 30 KeV in the Brazilian magnetic anomaly with omnidirectional detectors

    International Nuclear Information System (INIS)

    Pinto Junior, O.; Gonzalez-Alarcon, W.D.; Gonzalez, A.L.C. de; Martin, I.M.; Dutra, S.L.G.; Pinto, I.R.C.A.; Pereira, A.E.C.; Senador, R.

    1982-07-01

    Atmospheric X-Rays measurements, with energies > 30 KeV, were performed at Sao Jose dos Campos-Brazil (23 0 S, 46 0 W Geographic) on April 14 and December 19, 1981, using omnidirectional NaI (Tl) scintillation counters on board stratospheric balloons. The main purpose of these measurements is to study the dynamics of precipitating electrons at the Brazilian Magnetic Anomaly. Studies on similar measurements during the previous decade seemed to show the existence of approximately 100 KeV precipitating electrons, possibly related to a coulomb scattering with the atmosophere. The studies on the recent measurements try not only to confirm such indications, but also to show further features of the dynamics of precipitating electrons, mainly during magnetically active time intervals. During such intervals, more energetic electrons (up to approximately 1000 KeV) also seem to precipitate, probably due to resonant wave-particle interactions at the low latitude inner magnetosphere. The collected data during the recent measurements seem to indicate the existence of such interactions. (Author) [pt

  14. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    Science.gov (United States)

    Acharya, B.; Alexandre, J.; Bendtz, K.; Benes, P.; Bernabéu, J.; Campbell, M.; Cecchini, S.; Chwastowski, J.; Chatterjee, A.; de Montigny, M.; Derendarz, D.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Frank, M.; Frekers, D.; Garcia, C.; Giacomelli, G.; Hasegan, D.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; King, M. G. L.; Kinoshita, K.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Milstead, D.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Păvălas, G. E.; Pinfold, J. L.; Platkevič, M.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Staszewski, R.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Trzebinski, M.; Tuszynski, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.

    2016-08-01

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nucleartrack detectors with surface area ~18m2, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb-1. No magnetic charge exceeding 0:5 g D (where g D is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤ m ≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1 g D ≤ | g| ≤ 6 g D, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1 g D ≤ | g| ≤ 4 g D. Under the assumption of Drell-Yan cross sections, mass limits are derived for | g| = 2 g D and | g| = 3 g D for the first time at the LHC, surpassing the results from previous collider experiments.

  15. CMS Detector Posters

    CERN Multimedia

    2016-01-01

    CMS Detector posters (produced in 2000): CMS installation CMS collaboration From the Big Bang to Stars LHC Magnetic Field Magnet System Trackering System Tracker Electronics Calorimetry Eletromagnetic Calorimeter Hadronic Calorimeter Muon System Muon Detectors Trigger and data aquisition (DAQ) ECAL posters (produced in 2010, FR & EN): CMS ECAL CMS ECAL-Supermodule cooling and mechatronics CMS ECAL-Supermodule assembly

  16. Use of a new ion-detector in the study of the jet plasma injected into a pulsed magnetic mirror configuration (deca I)

    International Nuclear Information System (INIS)

    Renaud, C.

    1963-01-01

    The study of a high sensitivity ion detector coupled to an electrostatic analyser has permitted a large investigation of the plasma jet injected into a pulsed magnetic mirror configuration. In this detector the positive ions are accelerated through a potential of 30 kV; they strike a metallic target, on which they produce secondary electrons; these, in turn, are accelerated onto a plastic scintillator. The light pulses are detected with a photomultiplier. The gain of this device is about 10 7 . If we make an admission of air into the vacuum system and again we make vacuum, the gain is not modified, since no special activated surfaces are situated in the detector. (author) [fr

  17. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  18. A compact magnetic detector for μ+-μ/sup /minus// asymmetry measurements and longitudinal polarization utilization at PEP

    International Nuclear Information System (INIS)

    Camerini, U.; Cline, D.B.; Learned, J.G.; Resvanis, L.K.; Wanderer, P.J.

    1975-01-01

    A compact-spherically symmetric detector designed to observe single and dimuon final states is described. The detector is sufficiently compact to fit into the interaction region for which longitudinally and transversely polarized beams will be available. The usefulness of the detector to successfully search for asymmetry resulting from weak-electromagnetic interference and from higher order electromagnetic processes is studied with Monte Carlo simulated experimental data. 6 figs., 4 tabs

  19. A silicon microstrip detector in a magnetic spectrometer for high-resolution electron scattering experiments at the S-DALINAC

    International Nuclear Information System (INIS)

    Lenhardt, A.W.; Bonnes, U.; Burda, O.; Neumann-Cosel, P. von; Platz, M.; Richter, A.; Watzlawik, S.

    2006-01-01

    A silicon microstrip detector was developed as focal plane detector of the 169.7 deg. magic angle double-focussing spectrometer at the superconducting Darmstadt electron linear accelerator (S-DALINAC). It allows experiments with minimum ionizing electrons at data rates up to 100 kHz, utilizing the maximum resolution of the spectrometer achievable in dispersion-matching mode

  20. Search for magnetic monopoles with the MoEDAL prototype trapping detector in 8 TeV proton-proton collisions at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Acharya, B. [Theoretical Particle Physics & Cosmology Group, Physics Dept., King’s College London (United Kingdom); International Centre for Theoretical Physics, Trieste (Italy); Alexandre, J. [Theoretical Particle Physics & Cosmology Group, Physics Dept., King’s College London (United Kingdom); Bendtz, K. [Physics Department, Stockholm University, Stockholm (Sweden); Benes, P. [IEAP, Czech Technical University in Prague (Czech Republic); Collaboration: The MoEDAL collaboration; and others

    2016-08-10

    The MoEDAL experiment is designed to search for magnetic monopoles and other highly-ionising particles produced in high-energy collisions at the LHC. The largely passive MoEDAL detector, deployed at Interaction Point 8 on the LHC ring, relies on two dedicated direct detection techniques. The first technique is based on stacks of nuclear-track detectors with surface area ∼18 m{sup 2}, sensitive to particle ionisation exceeding a high threshold. These detectors are analysed offline by optical scanning microscopes. The second technique is based on the trapping of charged particles in an array of roughly 800 kg of aluminium samples. These samples are monitored offline for the presence of trapped magnetic charge at a remote superconducting magnetometer facility. We present here the results of a search for magnetic monopoles using a 160 kg prototype MoEDAL trapping detector exposed to 8 TeV proton-proton collisions at the LHC, for an integrated luminosity of 0.75 fb{sup −1}. No magnetic charge exceeding 0.5g{sub D} (where g{sub D} is the Dirac magnetic charge) is measured in any of the exposed samples, allowing limits to be placed on monopole production in the mass range 100 GeV≤m≤ 3500 GeV. Model-independent cross-section limits are presented in fiducial regions of monopole energy and direction for 1g{sub D}≤|g|≤6g{sub D}, and model-dependent cross-section limits are obtained for Drell-Yan pair production of spin-1/2 and spin-0 monopoles for 1g{sub D}≤|g|≤4g{sub D}. Under the assumption of Drell-Yan cross sections, mass limits are derived for |g|=2g{sub D} and |g|=3g{sub D} for the first time at the LHC, surpassing the results from previous collider experiments.

  1. Muon-Neutrino Electron Elastic Scattering and a Search for the Muon-Neutrino Magnetic Moment in the NOvA Near Detector

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Biao [Southern Methodist U.

    2017-01-01

    We use the NOvA near detector and the NuMI beam at Fermilab to study the neutrino- electron elastic scattering and the muon neutrino magnetic process beyond the Standard Model physics. The particle identications of neutrino on electron elastic scattering are trained by using the multi-layer neural networks. This thesis provides a general discussion of this technique and shows a good agreement between data and MC for the neutrino-electron elastic weak scattering. So that beneting from the precise cross-section of this channel, we are able to tune the neutrino beam ux simulation in the future. Giving the exposure of 3:62 1020 POT in the NOvA near detector, we report 1:58 10

  2. The CMS detector before closure

    CERN Multimedia

    Patrice Loiez

    2006-01-01

    The CMS detector before testing using muon cosmic rays that are produced as high-energy particles from space crash into the Earth's atmosphere generating a cascade of energetic particles. After closing CMS, the magnets, calorimeters, trackers and muon chambers were tested on a small section of the detector as part of the magnet test and cosmic challenge. This test checked the alignment and functionality of the detector systems, as well as the magnets.

  3. Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC

    Science.gov (United States)

    Acharya, B.; Alexandre, J.; Baines, S.; Benes, P.; Bergmann, B.; Bernabéu, J.; Branzas, H.; Campbell, M.; Caramete, L.; Cecchini, S.; de Montigny, M.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Flores, J.; Frank, M.; Frekers, D.; Garcia, C.; Hirt, A. M.; Janecek, J.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; Kinoshita, K.; Korzenev, A.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Mamuzic, J.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Pǎvǎlaş, G. E.; Pinfold, J. L.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Ruiz de Austri, R.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Shaa, A.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Tuszyński, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.; Zgura, I. S.; MoEDAL Collaboration

    2017-02-01

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV p p collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  4. Search for Magnetic Monopoles with the MoEDAL Forward Trapping Detector in 13 TeV Proton-Proton Collisions at the LHC.

    Science.gov (United States)

    Acharya, B; Alexandre, J; Baines, S; Benes, P; Bergmann, B; Bernabéu, J; Branzas, H; Campbell, M; Caramete, L; Cecchini, S; de Montigny, M; De Roeck, A; Ellis, J R; Fairbairn, M; Felea, D; Flores, J; Frank, M; Frekers, D; Garcia, C; Hirt, A M; Janecek, J; Kalliokoski, M; Katre, A; Kim, D-W; Kinoshita, K; Korzenev, A; Lacarrère, D H; Lee, S C; Leroy, C; Lionti, A; Mamuzic, J; Margiotta, A; Mauri, N; Mavromatos, N E; Mermod, P; Mitsou, V A; Orava, R; Parker, B; Pasqualini, L; Patrizii, L; Păvălaş, G E; Pinfold, J L; Popa, V; Pozzato, M; Pospisil, S; Rajantie, A; Ruiz de Austri, R; Sahnoun, Z; Sakellariadou, M; Sarkar, S; Semenoff, G; Shaa, A; Sirri, G; Sliwa, K; Soluk, R; Spurio, M; Srivastava, Y N; Suk, M; Swain, J; Tenti, M; Togo, V; Tuszyński, J A; Vento, V; Vives, O; Vykydal, Z; Whyntie, T; Widom, A; Willems, G; Yoon, J H; Zgura, I S

    2017-02-10

    MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  5. Search for magnetic monopoles with the MoEDAL forward trapping detector in 13 TeV proton-proton collisions at the LHC

    CERN Document Server

    Acharya, B.; Baines, S.; Benes, P.; Bergmann, B.; Bernabéu, J.; Branzas, H.; Campbell, M.; Caramete, L.; Cecchini, S.; de Montigny, M.; De Roeck, A.; Ellis, J.R.; Fairbairn, M.; Felea, D.; Flores, J.; Frank, M.; Frekers, D.; Garcia, C.; Hirt, A.M.; Janecek, J.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; Kinoshita, K.; Korzenev, A.; Lacarrère, D.H.; Lee, S.C.; Leroy, C.; Lionti, A.; Mamuzic, J.; Margiotta, A.; Mauri, N.; Mavromatos, N.E.; Mermod, P.; Mitsou, V.A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Păvălaş, G.E.; Pinfold, J.L.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Ruiz de Austri, R.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Shaa, A.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y.N.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Tuszyński, J.A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J.H.; Zgura, I.S.

    2017-02-10

    MoEDAL is designed to identify new physics in the form of long-lived highly-ionising particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8~TeV data during LHC run-1. A total of 222~kg of MoEDAL trapping detector samples were exposed in the forward region and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.

  6. 'Fixed-axis' magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field?

    Science.gov (United States)

    Phillips, John B; Borland, S Chris; Freake, Michael J; Brassart, Jacques; Kirschvink, Joseph L

    2002-12-01

    suggestion that homing newts use the light-dependent magnetic compass to align a magnetite-based 'map detector' when obtaining the precise measurements necessary to derive map information from the magnetic field. However, aligning the putative map detector does not explain the fixed-axis response of newts tested under long-wavelength light. Preliminary evidence suggests that, in the absence of reliable directional information from the magnetic compass (caused by the 90 degrees rotation of the response of the magnetic compass under long-wavelength light), newts may resort to a systematic sampling strategy to identify alignment(s) of the map detector that yields reliable magnetic field measurements.

  7. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  8. Biological detector and method

    Science.gov (United States)

    Sillerud, Laurel; Alam, Todd M; McDowell, Andrew F

    2013-02-26

    A biological detector includes a conduit for receiving a fluid containing one or more magnetic nanoparticle-labeled, biological objects to be detected and one or more permanent magnets or electromagnet for establishing a low magnetic field in which the conduit is disposed. A microcoil is disposed proximate the conduit for energization at a frequency that permits detection by NMR spectroscopy of whether the one or more magnetically-labeled biological objects is/are present in the fluid.

  9. Radiation detectors

    International Nuclear Information System (INIS)

    2013-01-01

    This sixth chapter presents the operational principles of the radiation detectors; detection using photographic emulsions; thermoluminescent detectors; gas detectors; scintillation detectors; liquid scintillation detectors; detectors using semiconductor materials; calibration of detectors; Bragg-Gray theory; measurement chain and uncertainties associated to measurements

  10. A cosmic ray muon going through CMS with the magnet at full field. The line shows the path of the muon reconstructed from information recorded in the various detectors.

    CERN Multimedia

    Ianna, Osborne

    2007-01-01

    The event display of the event 3981 from the MTCC run 2605. The data has been taken with a magnetic field of 3.8 T. A detailed model of the magnetic field corresponding to 4T is shown as a color gradient from 4T in the center (red) to 0 T outside of the detector (blue). The cosmic muon has been detected by all four detectors participating in the run: the drift tubes, the HCAL, the tracker and the ECAL subdetectors and it has been reconstructed online. The event display shows the reconstructed 4D segments in the drift tubes (magenta), the reconstructed hits in HCAL (blue), the locally reconstructed track in the tracker (green), the uncalibrated rec hits in ECAL (light green). A muon track was reconstructed in the drift tubes and extrapolated back into the detector taking the magnetic field into account (green).

  11. Large superconducting detector magnets with ultra thin coils for use in high energy accelerators and storage rings

    International Nuclear Information System (INIS)

    Green, M.A.

    1977-08-01

    The development of a new class of large superconducting solenoid magnets is described. High energy physics on colliding beam machines sometimes require the use of thin coil solenoid magnets. The development of these magnets has proceeded with the substitution of light materials for heavy materials and by increasing the current density in the coils. The Lawrence Berkeley Laboratory has developed a radical approach to the problem by having the coil operate at very high current densities. This approach and its implications are described in detail

  12. Analysis of the Variation of Energetic Electron Flux with Respect to Longitude and Distance Normal to the Magnetic Equatorial Plane for Galileo Energetic Particle Detector Data

    Science.gov (United States)

    Swimm, R.; Garrett, H. B.; Jun, I.; Evans, R. W.

    2004-12-01

    In this study we examine ten-minute omni-directional averages of energetic electron data measured by the Galileo spacecraft Energetic Particle Detector (EPD). Count rates from electron channels B1, DC2, and DC3 are evaluated using a power law model to yield estimates of the differential electron fluxes from 1 MeV to 11 MeV at distances from the planet Jupiter from 8 to 28 Jupiter radii. Whereas the orbit of the Galileo spacecraft remained close to the rotational equatorial plane of Jupiter, the approximately 11 degree tilt of the magnetic axis of Jupiter relative to its rotational axis allowed the EPD instrument to sample high energy electrons at limited distances normal to the magnetic equatorial plane. We present a Fourier analysis of the semi-diurnal variation of electron radiation with longitude. We also develop a model of the electron flux with respect to distance normal to the magnetic equatorial plane as a function of the distance from Jupiter.

  13. LHCb: Characterisation and magnetic field properties of Multianode Photomultiplier tubes for the use in LHCb Upgrade RICH detectors

    CERN Multimedia

    Eisenhardt, S; Morris, A; Needham, M; Neill, J

    2013-01-01

    A key feature of the LHCb upgrade, scheduled for 2019, is to remove the first level trigger and its data reduction from 40MHz to 1MHz, which is implemented in the on-detector readout electronics. The consequence for the LHCb Ring Imaging Cherenkov (RICH) detectors is that the Hybrid Photon Detectors need to be replaced as the readout chip is embedded in the tubes. Baseline for replacement are Multianode Photomultiplier tubes (MaPMT) and new readout electronics. Here we report about characterisation studies of the model Hamamatsu R11265 in the effort to qualify them for use in the LHCb RICH upgrade. Comparisons to the known model R7600 are also made. Two types of readout electronics are used. Most measurements to characterise the properties of the MaPMTs are taken with a VME based reference readout, using a x100 linear amplification and the CAEN V792 12-bit charge integrating digitiser. This allows to derive the signal properties from fits to the single photon spectra. In addition a prototype readout using the...

  14. The Upgraded D0 detector

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, D.L.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahmed, S.N.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; Anastasoaie, M.; Andeen, T.; Anderson, J.T.; Anderson, S.; /Buenos Aires U. /Rio de Janeiro, CBPF /Sao Paulo, IFT /Alberta U.

    2005-07-01

    The D0 experiment enjoyed a very successful data-collection run at the Fermilab Tevatron collider between 1992 and 1996. Since then, the detector has been upgraded to take advantage of improvements to the Tevatron and to enhance its physics capabilities. We describe the new elements of the detector, including the silicon microstrip tracker, central fiber tracker, solenoidal magnet, preshower detectors, forward muon detector, and forward proton detector. The uranium/liquid-argon calorimeters and central muon detector, remaining from Run I, are discussed briefly. We also present the associated electronics, triggering, and data acquisition systems, along with the design and implementation of software specific to D0.

  15. The Aerogel Čerenkov detector for the SHMS magnetic spectrometer in Hall C at Jefferson Lab

    Science.gov (United States)

    Horn, T.; Mkrtchyan, H.; Ali, S.; Asaturyan, A.; Carmignotto, M.; Dittmann, A.; Dutta, D.; Ent, R.; Hlavin, N.; Illieva, Y.; Mkrtchyan, A.; Nadel-Turonski, P.; Pegg, I.; Ramos, A.; Reinhold, J.; Sapkota, I.; Tadevosyan, V.; Zhamkochyan, S.; Wood, S. A.

    2017-01-01

    Hadronic reactions producing strange quarks such as the exclusive p (e , e ‧K+) Λ and p (e , e ‧K+)Σ0 reactions, or the semi-inclusive p (e , e ‧K+) X reaction, play an important role in studies of hadron structure and the dynamics that bind the most basic elements of nuclear physics. The small-angle capability of the new Super High Momentum Spectrometer (SHMS) in Hall C, coupled with its high momentum reach - up to the anticipated 11-GeV beam energy in Hall C - and coincidence capability with the well-understood High Momentum Spectrometer (HMS), will allow for probes of such hadron structure involving strangeness down to the smallest distance scales to date. To cleanly select the kaons, a threshold aerogel Cerenkov detector has been constructed for the SHMS. The detector consists of an aerogel tray followed by a diffusion box. Four trays for aerogel of nominal refractive indices of n=1.030, 1.020, 1.015 and 1.011 were constructed. The tray combination will allow for identification of kaons from 1 GeV/c up to 7.2 GeV/c, reaching ∼10-2 proton and 10-3 pion rejection, with kaon detection efficiency better than 95%. The diffusion box of the detector is equipped with 14 five-inch diameter photomultiplier tubes. Its interior walls are covered with Gore diffusive reflector, which is superior to the commonly used Millipore paper and improved the detector performance by 35%. The inner surface of the two aerogel trays with higher refractive index is covered with Millipore paper, however, those two trays with lower aerogel refractive index are again covered with Gore diffusive reflector for higher performance. The measured mean number of photoelectrons in saturation is ∼12 for n=1.030, ∼8 for n=1.020, ∼10 for n=1.015, and ∼5.5 for n=1.011. The design details, the results of component characterization, and initial performance tests and optimization of the detector are presented.

  16. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  17. Magnets and magnetic materials

    International Nuclear Information System (INIS)

    Meuris, Ch.; Rifflet, J.M.

    2007-01-01

    The Large Hadron Collider (LHC), the world's largest highest-energy particle collider that the CERN plans to commission in 2008, gets a double boost from superconducting magnet technology. Superconducting magnets are first used to guide the particles scheduled for collision through the accelerator, and then to observe the events triggered by the collision inside giant detectors in a known magnetic field. Despite the installation's massive dimensions, all this is done with minimal expenditure of energy. (author)

  18. Ionization detector

    International Nuclear Information System (INIS)

    Steele, D.S.

    1987-01-01

    An ionization detector having an array of detectors has, for example, grounding pads positioned in the spaces between some detectors (data detectors) and other detectors (reference detectors). The grounding pads are kept at zero electric potential, i.e. grounded. The grounding serves to drain away electrons and thereby prevent an unwanted accumulation of charge in the spaces, and cause the electric field lines to be more perpendicular to the detectors in regions near the grounding pads. Alternatively, no empty space is provided there being additional, grounded, detectors provided between the data and reference detectors. (author)

  19. The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet.

    CERN Multimedia

    2006-01-01

    A 3-D event display of a cosmic muon event, showing the path of a muon travelling through three layers of the barrel muon spectrometer. Three of the eight coils of the barrel toroid magnet can be seen in the top half of the drawing.

  20. Silicon detectors

    International Nuclear Information System (INIS)

    Klanner, R.

    1984-08-01

    The status and recent progress of silicon detectors for high energy physics is reviewed. Emphasis is put on detectors with high spatial resolution and the use of silicon detectors in calorimeters. (orig.)

  1. Proposal for the renegotiation of a contract for the supply of eight coil casings for the barrel toroid magnet of the ATLAS detector

    CERN Document Server

    2001-01-01

    This document concerns the renegotiation of a contract for the supply of eight coil casings for the Barrel Toroid Magnet of the ATLAS detector. The proposal for the award of a contract with ABB ENERTECH (CH) was presented to Finance Committee for information in September 1998 (CERN/FC/4089). In view of the developments outlined in this document, the Finance Committee is invited to agree to the renegotiation of a contract with ALSTOM SWITZERLAND (CH), for the supply of eight coil casings for the ATLAS Barrel Toroid Magnet for a total Ex-works price of 12 580 000 Swiss francs, subject to revision after 31 July 2001, with an option for an extra coil casing for an additional Ex-works price of 1 525 000 Swiss francs, subject to revision after 31 July 2001, bringing the total amount for the supply to 14 105 000 Swiss francs, subject to revision after 31 July 2001. The total amount of the contract, including transport to the integration site, will not exceed 14 490 000 Swiss francs, subject to revision after 31 July...

  2. The international linear collider. Technical design report. Vol. 4. Detectors

    International Nuclear Information System (INIS)

    Behnke, Ties; Brau, James E.; Burrows, Philip; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi

    2013-01-01

    The following topics are dealt with: The Si Vertex detectors, the main tracker, calorimetry, muon detectors, the superconducting spectrometer magnet, the detector electronics and data acquisition, simulation and reconstruction, benchmarking, costs. (HSI)

  3. The international linear collider. Technical design report. Vol. 4. Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Behnke, Ties; Brau, James E.; Burrows, Philip; Fuster, Juan; Peskin, Michael; Stanitzki, Marcel; Sugimoto, Yasuhiro; Yamada, Sakue; Yamamoto, Hitoshi [eds.

    2013-10-01

    The following topics are dealt with: The Si Vertex detectors, the main tracker, calorimetry, muon detectors, the superconducting spectrometer magnet, the detector electronics and data acquisition, simulation and reconstruction, benchmarking, costs. (HSI)

  4. Undepleted silicon detectors

    International Nuclear Information System (INIS)

    Rancoita, P.G.; Seidman, A.

    1985-01-01

    Large-size silicon detectors employing relatively low resistivity material can be used in electromagnetic calorimetry. They can operate in strong magnetic fields, under geometric constraints and with microstrip detectors a high resolution can be achieved. Low noise large capacitance oriented electronics was developed to enable good signal-to-noise ratio for single relativistic particles traversing large area detectors. In undepleted silicon detectors, the charge migration from the field-free region has been investigated by comparing the expected peak position (from the depleted layer only) of the energy-loss of relativistic electrons with the measured one. Furthermore, the undepleted detectors have been employed in a prototype of Si/W electromagnetic colorimeter. The sensitive layer was found to be systematically larger than the depleted one

  5. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  6. Transmutation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Viererbl, L., E-mail: vie@ujv.c [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Lahodova, Z. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Klupak, V. [Nuclear Research Institute Rez plc (Czech Republic); Sus, F. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic); Kucera, J. [Research Centre Rez Ltd. (Czech Republic); Nuclear Physics Institute, Academy of Sciences of the Czech Republic (Czech Republic); Kus, P.; Marek, M. [Research Centre Rez Ltd. (Czech Republic); Nuclear Research Institute Rez plc (Czech Republic)

    2011-03-11

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  7. Transmutation detectors

    International Nuclear Information System (INIS)

    Viererbl, L.; Lahodova, Z.; Klupak, V.; Sus, F.; Kucera, J.; Kus, P.; Marek, M.

    2011-01-01

    We have designed a new type of detectors, called transmutation detectors, which can be used primarily for neutron fluence measurement. The transmutation detector method differs from the commonly used activation detector method in evaluation of detector response after irradiation. Instead of radionuclide activity measurement using radiometric methods, the concentration of stable non-gaseous nuclides generated by transmutation in the detector is measured using analytical methods like mass spectrometry. Prospective elements and nuclear reactions for transmutation detectors are listed and initial experimental results are given. The transmutation detector method could be used primarily for long-term measurement of neutron fluence in fission nuclear reactors, but in principle it could be used for any type of radiation that can cause transmutation of nuclides in detectors. This method could also be used for measurement in accelerators or fusion reactors.

  8. Baby-MIND neutrino detector

    Science.gov (United States)

    Mefodiev, A. V.; Kudenko, Yu. G.; Mineev, O. V.; Khotjantsev, A. N.

    2017-11-01

    The main objective of the Baby-MIND detector (Magnetized Iron Neutrino Detector) is the study of muon charge identification efficiency for muon momenta from 0.3 to 5 GeV/ c. This paper presents the results of measurement of the Baby-MIND parameters.

  9. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  10. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  11. The feasibility of low-mass conductors for toroidal superconducting magnets for SSC [Superconducting Super Collider] detectors

    International Nuclear Information System (INIS)

    Luton, J.N.

    1990-01-01

    An earlier study by Luton and Bonanos concluded that the design and fabrication of superconducting toroidal bending magnets would require a major effort but would be feasible. This study is an extension to examine the feasibility of low-mass conductors for such use. It included a literature search, consultations, with conductor manufacturers, and design calculations, but no experimental work. An unoptimized sample design that used a residual resistivity ratio for aluminum of 1360 and a current density of 3.5 kA/cm 2 over the uninsulated conductor for a 4.5-T toroid with 1 GJ of stored energy obtained a hot-spot temperature of 120 K with a maximum dump voltage of 3.6 kV and 24% of the initial current inductively transferred into the shorted aluminum structure. The stability margin was 200 mJ/cm 3 of cable space. Limiting the quench pressure to 360 atm to give conservative stresses in the sheath and assuming that the whole flow path quenched immediately resulted in helium taps that could be a kilometer apart if the flow friction factor were the same as that experienced in the Westinghouse (W) Large Coil Task (LCT) coil. This indicates that the 520-m conductor length of each of the 72 individual coil segments of a toroid would be a single flow path. If some practical uncertainties can be favorably resolved by producing and testing sample conductors, the use of a conductor with clad-aluminum stabilizer and extruded aluminum-alloy sheath should be feasible and economical. 9 refs., 3 figs

  12. The HERMES recoil detector

    International Nuclear Information System (INIS)

    Airapetian, A.; Belostotski, S.

    2013-02-01

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  13. The HERMES recoil detector

    Energy Technology Data Exchange (ETDEWEB)

    Airapetian, A. [Giessen Univ. (Germany). Physikalisches Inst.; Michigan Univ., Ann Arbor, MI (United States). Randall Laboratory of Physics; Aschenauer, E.C. [DESY, Zeuthen (Germany); Belostotski, S. [B.P. Konstantinov Petersburg Nuclear Physics Insitute, Gatchina (Russian Federation)] [and others; Collaboration: HERMES Recoil Detector Group

    2013-02-15

    For the final running period of HERA, a recoil detector was installed at the HERMES experiment to improve measurements of hard exclusive processes in charged-lepton nucleon scattering. Here, deeply virtual Compton scattering is of particular interest as this process provides constraints on generalised parton distributions that give access to the total angular momenta of quarks within the nucleon. The HERMES recoil detector was designed to improve the selection of exclusive events by a direct measurement of the four-momentum of the recoiling particle. It consisted of three components: two layers of double-sided silicon strip sensors inside the HERA beam vacuum, a two-barrel scintillating fibre tracker, and a photon detector. All sub-detectors were located inside a solenoidal magnetic field with an integrated field strength of 1Tm. The recoil detector was installed in late 2005. After the commissioning of all components was finished in September 2006, it operated stably until the end of data taking at HERA end of June 2007. The present paper gives a brief overview of the physics processes of interest and the general detector design. The recoil detector components, their calibration, the momentum reconstruction of charged particles, and the event selection are described in detail. The paper closes with a summary of the performance of the detection system.

  14. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  15. Detector trends

    International Nuclear Information System (INIS)

    Charpak, G.

    1986-01-01

    The author describes briefly the development of detectors for high energy physics experiments. Especially considered are semiconductor microstrip detectors, drift tubes, holographic bubble chambers, scintillating fiber optics, and calorimeters. (HSI).

  16. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  17. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  18. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  19. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  20. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  1. Processing of n{sup +}/p{sup −}/p{sup +} strip detectors with atomic layer deposition (ALD) grown Al{sub 2}O{sub 3} field insulator on magnetic Czochralski silicon (MCz-si) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Härkönen, J., E-mail: jaakko.harkonen@helsinki.fi [Helsinki Institute of Physics (Finland); Tuovinen, E. [Helsinki Institute of Physics (Finland); VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Luukka, P.; Gädda, A.; Mäenpää, T.; Tuominen, E.; Arsenovich, T. [Helsinki Institute of Physics (Finland); Junkes, A. [Institute for Experimental Physics, University of Hamburg (Germany); Wu, X. [VTT Technical Research Centre of Finland, Microsystems and Nanoelectronics (Finland); Picosun Oy, Tietotie 3, FI-02150 Espoo Finland (Finland); Li, Z. [School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2016-08-21

    Detectors manufactured on p-type silicon material are known to have significant advantages in very harsh radiation environment over n-type detectors, traditionally used in High Energy Physics experiments for particle tracking. In p-type (n{sup +} segmentation on p substrate) position-sensitive strip detectors, however, the fixed oxide charge in the silicon dioxide is positive and, thus, causes electron accumulation at the Si/SiO{sub 2} interface. As a result, unless appropriate interstrip isolation is applied, the n-type strips are short-circuited. Widely adopted methods to terminate surface electron accumulation are segmented p-stop or p-spray field implantations. A different approach to overcome the near-surface electron accumulation at the interface of silicon dioxide and p-type silicon is to deposit a thin film field insulator with negative oxide charge. We have processed silicon strip detectors on p-type Magnetic Czochralski silicon (MCz-Si) substrates with aluminum oxide (Al{sub 2}O{sub 3}) thin film insulator, grown with Atomic Layer Deposition (ALD) method. The electrical characterization by current–voltage and capacitance−voltage measurement shows reliable performance of the aluminum oxide. The final proof of concept was obtained at the test beam with 200 GeV/c muons. For the non-irradiated detector the charge collection efficiency (CCE) was nearly 100% with a signal-to-noise ratio (S/N) of about 40, whereas for the 2×10{sup 15} n{sub eq}/cm{sup 2} proton irradiated detector the CCE was 35%, when the sensor was biased at 500 V. These results are comparable with the results from p-type detectors with the p-spray and p-stop interstrip isolation techniques. In addition, interestingly, when the aluminum oxide was irradiated with Co-60 gamma-rays, an accumulation of negative fixed oxide charge in the oxide was observed.

  2. MUON DETECTORS: ALIGNMENT

    CERN Multimedia

    G.Gomez

    Since September, the muon alignment system shifted from a mode of hardware installation and commissioning to operation and data taking. All three optical subsystems (Barrel, Endcap and Link alignment) have recorded data before, during and after CRAFT, at different magnetic fields and during ramps of the magnet. This first data taking experience has several interesting goals: •    study detector deformations and movements under the influence of the huge magnetic forces; •    study the stability of detector structures and of the alignment system over long periods, •    study geometry reproducibility at equal fields (specially at 0T and 3.8T); •    reconstruct B=0T geometry and compare to nominal/survey geometries; •    reconstruct B=3.8T geometry and provide DT and CSC alignment records for CMSSW. However, the main goal is to recons...

  3. The ATLAS Inner Detector commissioning and calibration

    NARCIS (Netherlands)

    Aad, G.; et al., [Unknown; Bentvelsen, S.; Colijn, A.P.; de Jong, P.; Doxiadis, A.; Garitaonandia, H.; Gosselink, M.; Kayl, M.S.; Koffeman, E.; Lee, H.; Mechnich, J.; Mussche, I.; Ottersbach, J.P.; Rijpstra, M.; Ruckstuhl, N.; Tsiakiris, M.; van der Kraaij, E.; van der Poel, E.; van Kesteren, Z.; van Vulpen, I.; Vermeulen, J.C.; Vreeswijk, M.

    2010-01-01

    The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data-taking with single LHC beams and cosmic rays. The initial detector operation,

  4. Superconducting magnets advanced in particle physics

    International Nuclear Information System (INIS)

    Yamamoto, Akira

    2000-01-01

    Superconducting magnet technology for particle detectors has been advanced to provide large-scale magnetic fields in particle physics experiments. The technology has been progressed to meet physics goals and the detector requirement of having maximum magnetic field with minimum material and space. This paper includes an overview of the advances of particle detector magnets and discusses key technologies

  5. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  6. ATLAS muon detector

    CERN Multimedia

    Muon detectors from the outer layer of the ATLAS experiment at the Large Hadron Collider. Over a million individual detectors combine to make up the outer layer of ATLAS. All of this is exclusively to track the muons, the only detectable particles to make it out so far from the collision point. How the muon’s path curves in the magnetic field depends on how fast it is travelling. A fast muon curves only a very little, a slower one curves a lot. Together with the calorimeters, the muon detectors play an essential role in deciding which collisions to store and which to ignore. Certain signals from muons are a sure sign of exciting discoveries. To make sure the data from these collisions is not lost, some of the muon detectors react very quickly and trigger the electronics to record. The other detectors take a little longer, but are much more precise. Their job is to measure exactly where the muons have passed, calculating the curvature of their tracks in the magnetic field to the nearest five hundredths of a ...

  7. The DELPHI Detector (DEtector with Lepton Photon and Hadron Identification)

    CERN Multimedia

    Crawley, B; Munich, K; Mckay, R; Matorras, F; Joram, C; Malychev, V; Behrmann, A; Van dam, P; Drees, J K; Stocchi, A; Adam, W; Booth, P; Bilenki, M; Rosenberg, E I; Morton, G; Rames, J; Hahn, S; Cosme, G; Ventura, L; Marco, J; Tortosa martinez, P; Monge silvestri, R; Moreno, S; Phillips, H; Alekseev, G; Boudinov, E; Martinez rivero, C; Gitarskiy, L; Davenport, M; De clercq, C; Firestone, A; Myagkov, A; Belous, K; Haider, S; Hamilton, K M; Lamsa, J; Rahmani, M H; Malek, A; Hughes, G J; Peralta, L; Carroll, L; Fuster verdu, J A; Cossutti, F; Gorn, L; Yi, J I; Bertrand, D; Myatt, G; Richard, F; Shapkin, M; Hahn, F; Ferrer soria, A; Reinhardt, R; Renton, P; Sekulin, R; Timmermans, J; Baillon, P

    2002-01-01

    % DELPHI The DELPHI Detector (Detector with Lepton Photon and Hadron Identification) \\\\ \\\\DELPHI is a general purpose detector for physics at LEP on and above the Z$^0$, offering three-dimensional information on curvature and energy deposition with fine spatial granularity as well as identification of leptons and hadrons over most of the solid angle. A superconducting coil provides a 1.2~T solenoidal field of high uniformity. Tracking relies on the silicon vertex detector, the inner detector, the Time Projection Chamber (TPC), the outer detector and forward drift chambers. Electromagnetic showers are measured in the barrel with high granularity by the High Density Projection Chamber (HPC) and in the endcaps by $ 1 ^0 $~x~$ 1 ^0 $ projective towers composed of lead glass as active material and phototriode read-out. Hadron identification is provided mainly by liquid and gas Ring Imaging Counters (RICH). The instrumented magnet yoke serves for hadron calorimetry and as filter for muons, which are identified in t...

  8. Detectors for rare events

    International Nuclear Information System (INIS)

    Charpak, G.

    1984-01-01

    This chapter discusses the possibility of combining the advantages of photographic data retrieval with the flexibility of operation of conventional gaseous or liquid detectors operated with electronic data retrieval. Possible applications of the proposed detectors to such problems as nucleon decay, neutrinoelectron interaction, and the search for magnetic monopoles are examined. Topics considered include the photography of ionization patterns, the photography of ionization tracks with the multistep avalanche chambers, and exploiting the stimulated scintillation light. Two processes which give rise to the emission of light when ionizing electrons interact in gases under the influence of an electric field are described

  9. High P/sub T/ detectors for the SSC

    International Nuclear Information System (INIS)

    Trilling, G.H.

    1987-11-01

    Summarized in this report is some of the work done at the recent Workshop on Experiments, Detectors, and Experimental Areas for the Supercollider held at Berkeley. The major goal was to develop an understanding of what complement of detectors would provide the capability for a well-balanced physics program at the SSC. Unlike earlier studies which had emphasized individual components such as tracking, calorimetry, etc., the intention was to focus on complete detectors. The particular detectors discussed in this paper are: the large solenoid detectors, the compact solenoid detectors, the non-magnetic detectors, the dipole detectors and muon detectors. 10 refs., 6 figs., 2 tabs

  10. arXiv Search for magnetic monopoles with the MoEDAL forward trapping detector in 2.11 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC

    CERN Document Server

    Acharya, B.; The MoEDAL collaboration; Baines, S.; Benes, P.; Bergmann, B.; Bernabéu, J.; Bevan, A.; Branzas, H.; Campbell, M.; Caramete, L.; Cecchini, S.; de Montigny, M.; De Roeck, A.; Ellis, J.R.; Fairbairn, M.; Felea, D.; Frank, M.; Frekers, D.; Garcia, C.; Hays, J.; Hirt, A.M.; Janecek, J.; Kim, D.-W; Kinoshita, K.; Korzenev, A.; Lacarrère, D.H.; Lee, S.C.; Leroy, C.; Levi, G.; Lionti, A.; Mamuzic, J.; Margiotta, A.; Mauri, N.; Mavromatos, N.E.; Mermod, P.; Mitsou, V.A.; Orava, R.; Ostrovskiy, I.; Parker, B.; Patrizii, L.; Păvălaş, G.E.; Pinfold, J.L.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Ruiz de Austri, R.; Sahnoun, Z.; Sakellariadou, M.; Santra, A.; Sarkar, S.; Semenoff, G.; Shaa, A.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y.N.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Tuszyński, J.A.; Vento, V.; Vives, O.; Vykydal, Z.; Widom, A.; Willems, G.; Yoon, J.H.; Zgura, I.S.

    2018-07-10

    We update our previous search for trapped magnetic monopoles in LHC Run 2 using nearly six times more integrated luminosity and including additional models for the interpretation of the data. The MoEDAL forward trapping detector, comprising 222~kg of aluminium samples, was exposed to 2.11~fb$^{-1}$ of 13 TeV proton-proton collisions near the LHCb interaction point and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to the Dirac charge or above are excluded in all samples. The results are interpreted in Drell-Yan production models for monopoles with spins 0, 1/2 and 1: in addition to standard point-like couplings, we also consider couplings with momentum-dependent form factors. The search provides the best current laboratory constraints for monopoles with magnetic charges ranging from two to five times the Dirac charge.

  11. The charge collection in silicon strip detectors

    International Nuclear Information System (INIS)

    Boehringer, T.; Hubbeling, L.; Weilhammer, P.; Kemmer, J.; Koetz, U.; Riebesell, M.; Belau, E.; Klanner, R.; Lutz, G.; Neugebauer, E.; Seebrunner, H.J.; Wylie, A.

    1983-02-01

    The charge collection in silicon detectors has been studied, by measuring the response to high-energy particles of a 20μm pitch strip detector as a function of applied voltage and magnetic field. The results are well described by a simple model. The model is used to predict the spatial resolution of silicon strip detectors and to propose a detector with optimized spatial resolution. (orig.)

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  13. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  14. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  15. Particlc detectors. Foundations and applications; Teilchendetektoren. Grundlagen und Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Kolanoski, Hermann; Wermes, Norbert

    2016-08-01

    The following topics are dealt with: Interaction of particles with matter, motion of charge carriers in electric and magnetic fields, signal generation by moving charges, non-electronic detectors, gas-filled detectors, semiconductor detectors, track reconstruction and momentum measurement, photodetectors, Cherenkov detectors, transition-radiation detectors, scintillation detectors, particle identification, calorimeters, detection of cosmic particles, signal processing and noise, trigger and data acquisition systems. (HSI)

  16. Effect of the wire width and magnetic field on the detection efficiency of superconducting nanowire single-photon detectors; Einfluss von Geometrie und magnetischem Feld auf die Effizienz supraleitender Nanodraht-Einzelphotonendetektoren

    Energy Technology Data Exchange (ETDEWEB)

    Lusche, Robert

    2015-06-24

    The aim of this thesis is to a gain deeper understanding of the single photon detection process in superconducting nanowire single-photon detectors (SNSPDs). A detailed knowledge of the physical principles and mechanisms which the detection process is based on helps to improve specific detector parameters and hence the suitability of such detectors for various applications. Several theoretical models of the detection process have been compared to the results of measurements of photon and dark count rates in meander-type TaN- and NbN-SNSPDs with different wire-widths in a broad range of wavelengths, transport currents and magnetic fields. In the first part of the thesis, measurements of the photon and dark count rates of TaN- and NbN-SNSPDs with varying wire width are described. For each meander spectra of the intrinsic detection efficiency (IDE) were derived. The IDE represents the probability that the SNSPD generates a measurable voltage pulse upon absorption of a photon. The recorded IDE spectra have shown a characteristic cut-off wavelength up to which photons were detected with a probability of 100 per cent. Furthermore it was found that the cut-off wavelengths increases linearly with the increase in the inverse wire width. This observation is best explained by the refined hot spot model. The second part of the thesis describes the influence of magnetic field on the photon and dark count rates of NbN-SNSPDs. In order to apply magnetic fields to the meanders a continuous-flow inset for mobile 4He storage dewars was constructed. It was shown for the first time, that the photon count rate exhibits a magnetic field dependence. Furthermore it could be shown that the measured dependence of the photon and dark count rate on the magnetic field is in good agreement with the theoretical model of vortex-assisted photon detection in narrow superconducting lines. Hence, within this thesis it could be confirmed that magnetic vortices are involved in the single photon

  17. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  18. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  19. The BABAR Detector

    Energy Technology Data Exchange (ETDEWEB)

    Luth, Vera G

    2001-05-18

    BABAR, the detector for the SLAC PEP-II asymmetric e{sup +}e{sup -} B Factory operating at the {Upsilon}(4S) resonance, was designed to allow comprehensive studies of CP-violation in B-meson decays. Charged particle tracks are measured in a multi-layer silicon vertex tracker surrounded by a cylindrical wire drift chamber. Electromagentic showers from electrons and photons are detected in an array of CsI crystals located just inside the solenoidal coil of a superconducting magnet. Muons and neutral hadrons are identified by arrays of resistive plate chambers inserted into gaps in the steel flux return of the magnet. Charged hadrons are identified by dE/dx measurements in the tracking detectors and in a ring-imaging Cherenkov detector surrounding the drift chamber. The trigger, data acquisition and data-monitoring systems, VME- and network-based, are controlled by custom-designed online software. Details of the layout and performance of the detector components and their associated electronics and software are presented.

  20. First ALICE detectors installed!

    CERN Multimedia

    2006-01-01

    Detectors to track down penetrating muon particles are the first to be placed in their final position in the ALICE cavern. The Alice muon spectrometer: in the foreground the trigger chamber is positioned in front of the muon wall, with the dipole magnet in the background. After the impressive transport of its dipole magnet, ALICE has begun to fill the spectrometer with detectors. In mid-July, the ALICE muon spectrometer team achieved important milestones with the installation of the trigger and the tracking chambers of the muon spectrometer. They are the first detectors to be installed in their final position in the cavern. All of the eight half planes of the RPCs (resistive plate chambers) have been installed in their final position behind the muon filter. The role of the trigger detector is to select events containing a muon pair coming, for instance, from the decay of J/ or Y resonances. The selection is made on the transverse momentum of the two individual muons. The internal parts of the RPCs, made o...

  1. A detector for high-energy neutrino interactions

    International Nuclear Information System (INIS)

    Holder, M.; Knobloch, J.; Lacourt, A.; Laverriere, G.; May, J.; Paar, H.; Palazzi, P.; Ranjard, F.; Schilly, P.; Schlatter, D.; Steinberger, J.; Suter, H.; Wahl, H.; Williams, E.G.H.; Eisele, F.; Geweniger, G.; Kleinknecht, K.; Pollmann, O.; Spahn, G.; Willutzki, H.J.; Navarria, F.L.

    1978-01-01

    The authors describe the design, construction and performance of a large mass detector used at CERN to study high-energy neutrino interactions in iron. This detector combines magnetic spectrometry and hadron calorimetry techniques. (Auth.)

  2. Report of the general purpose detector group

    International Nuclear Information System (INIS)

    Barbaro-Galtieri, A.; Bartel, W.; Bulos, F.; Cool, R.; Hanson, G.; Koetz, U.; Kottahaus, R.; Loken, S.; Luke, D.; Rothenberg, A.

    1975-01-01

    A general purpose detector for PEP is described. The main components of this detector are a l meter radius, 15 kilogauss superconducting solenoidal magnet with drift chambers to detect and measure the momentum of charged particles, a liquid argon neutral detector and hadron calorimeter, and a system of Cherenkov and time-of-flight counters for identification of charged hadrons. A major consideration in the design of this detector was that it be flexible: the magnet coil and drift chambers form a core around which various apparatus for specialized detection can be placed

  3. Cryogenic detectors

    International Nuclear Information System (INIS)

    Zehnder, A.

    1987-01-01

    Presently the development of new large scale detector systems, used in very high energy physics experiments, is very active. In the low energy range, the introduction of charge coupled devices allows improved spacial and energy resolution. In the keV region, high resolution can only be achieved via the well established diffraction spectrometers with the well-known disadvantage of a small throughput. There exist no efficient detectors for non-ionizing radiation such as coherent nuclear scattering of weakly interacting particles. The development of high resolution solid state detectors in the keV-region with the possibility of nuclear recoil detection is therefore highly desired. Such detectors applied in astro and particle physics would thus allow one to obtain new information not achievable otherwise. Three types of cryogenic detectors exist: Calorimeters/Bolometers. This type is sensitive to the produced excess phonons and measures the deposited energy by detecting the heat pulses. Excess charge carriers should be used to produce phonons. Tunneling junctions. This type is sensitive to excess charge produced by the Cooper pair breakup. Excess phonons should be used to break up Cooper pairs. Superheated superconducting granules (SSG). An SSG detector consists of granules, the metastability of which is disturbed by radiation. The Meissner effect then causes a change in the field distribution of the applied external field, which can be detected. The present paper discusses the basic principle of calorimetric and tunneling junction detectors and some of their applications. 26 refs., 7 figs., 1 tab

  4. Detectors - Electronics

    International Nuclear Information System (INIS)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J.

    1998-01-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X → e - converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the 3 He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  5. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  6. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  7. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  8. The D0 detector upgrade

    International Nuclear Information System (INIS)

    Bross, A.D.

    1995-02-01

    The Fermilab collider program is undergoing a major upgrade of both the accelerator complex and the two detectors. Operation of the Tevatron at luminosities upwards of ten time that currently provided will occur in early 1999 after the commissioning of the new Fermilab Main Injector. The D0 upgrade program has been established to deliver a detector that will meet the challenges of this environment. A new magnetic tracker consisting of a superconducting solenoid, a silicon vertex detector, a scintillating fiber central tracker, and a central preshower detector will replace the current central tracking and transition radiation chambers. We present the design and performance capabilities of these new systems and describe results from physics simulations that demonstrate the physics reach of the upgraded detector

  9. The PHOBOS detector at RHIC

    Science.gov (United States)

    Back, B. B.; Baker, M. D.; Barton, D. S.; Basilev, S.; Baum, R.; Betts, R. R.; Białas, A.; Bindel, R.; Bogucki, W.; Budzanowski, A.; Busza, W.; Carroll, A.; Ceglia, M.; Chang, Y.-H.; Chen, A. E.; Coghen, T.; Connor, C.; Czyż, W.; Dabrowski, B.; Decowski, M. P.; Despet, M.; Fita, P.; Fitch, J.; Friedl, M.; Gałuszka, K.; Ganz, R.; Garcia, E.; George, N.; Godlewski, J.; Gomes, C.; Griesmayer, E.; Gulbrandsen, K.; Gushue, S.; Halik, J.; Halliwell, C.; Haridas, P.; Hayes, A.; Heintzelman, G. A.; Henderson, C.; Hollis, R.; Hołyński, R.; Hofman, D.; Holzman, B.; Johnson, E.; Kane, J.; Katzy, J.; Kita, W.; Kotuła, J.; Kraner, H.; Kucewicz, W.; Kulinich, P.; Law, C.; Lemler, M.; Ligocki, J.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Neal, M.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Patel, M.; Pernegger, H.; Plesko, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Ross, D.; Rosenberg, L.; Ryan, J.; Sanzgiri, A.; Sarin, P.; Sawicki, P.; Scaduto, J.; Shea, J.; Sinacore, J.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Straczek, A.; Stodulski, M.; Strek, M.; Stopa, Z.; Sukhanov, A.; Surowiecka, K.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.; Zalewski, K.; Żychowski, P.; Phobos Collaboration

    2003-03-01

    This manuscript contains a detailed description of the PHOBOS experiment as it is configured for the Year 2001 running period. It is capable of detecting charged particles over the full solid angle using a multiplicity detector and measuring identified charged particles near mid-rapidity in two spectrometer arms with opposite magnetic fields. Both of these components utilize silicon pad detectors for charged particle detection. The minimization of material between the collision vertex and the first layers of silicon detectors allows for the detection of charged particles with very low transverse momenta, which is a unique feature of the PHOBOS experiment. Additional detectors include a time-of-flight wall which extends the particle identification range for one spectrometer arm, as well as sets of scintillator paddle and Cherenkov detector arrays for event triggering and centrality selection.

  10. Hydrogen detector

    International Nuclear Information System (INIS)

    Kumagaya, Hiromichi; Yoshida, Kazuo; Sanada, Kazuo; Chigira, Sadao.

    1994-01-01

    The present invention concerns a hydrogen detector for detecting water-sodium reaction. The hydrogen detector comprises a sensor portion having coiled optical fibers and detects hydrogen on the basis of the increase of light transmission loss upon hydrogen absorption. In the hydrogen detector, optical fibers are wound around and welded to the outer circumference of a quartz rod, as well as the thickness of the clad layer of the optical fiber is reduced by etching. With such procedures, size of the hydrogen detecting sensor portion can be decreased easily. Further, since it can be used at high temperature, diffusion rate is improved to shorten the detection time. (N.H.)

  11. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  12. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.; Howes, J.H.; Smout, D.W.S.

    1979-01-01

    A smoke detector is described which provides a smoke sensing detector and an indicating device and in which a radioactive substance is used in conjunction with two ionisation chambers. The system includes an outer electrode, a collector electrode and an inner electrode which is made of or supports the radioactive substance which, in this case, is 241 Am. The invention takes advantage of the fact that smoke particles can be allowed to enter freely the inner ionisation chamber. (U.K.)

  13. Radiation detector

    International Nuclear Information System (INIS)

    Gillies, W.

    1980-01-01

    The radiation detector for measuring e.g. a neutron flux consists of a central emitter, an insulating shell arranged around it, and a tube-shaped collector enclosing both. The emitter itself is composed of a great number of stranded, spiral wires of small diameter giving a defined flexibility to the detector. For emitter material Pt, Rh, V, Co, Ce, Os or Ta may be used. (DG) [de

  14. Split detector

    International Nuclear Information System (INIS)

    Cederstrand, C.N.; Chism, H.R.

    1982-01-01

    A gas analyzer is disclosed which provides a dual channel capability for the simultaneous determination of the presence and concentration of two gases in a stream of sample gas and which has a single infrared source, a single sample cell, two infrared bandpass filters, and two infrared detectors. A separator between the filters and detectors prevents interchange of radiation between the filters. The separator is positioned by fitting it in a slot

  15. Radiation Response of Forward Biased Float Zone and Magnetic Czochralski Silicon Detectors of Different Geometry for 1-MeV Neutron Equivalent Fluence Monitoring

    CERN Document Server

    Mekki, J; Dusseau, Laurent; Roche, Nicolas Jean-Henri; Saigne, Frederic; Mekki, Julien; Glaser, Maurice

    2010-01-01

    Aiming at evaluating new options for radiation monitoring sensors in LHC/SLHC experiments, the radiation responses of FZ and MCz custom made silicon detectors of different geometry have been studied up to about 4 x 10(14) n(eq)/cm(2). The radiation response of the devices under investigation is discussed in terms of material type, thickness and active area influence.

  16. Shaped detector

    International Nuclear Information System (INIS)

    Carlson, R.W.

    1981-01-01

    A radiation detector or detector array which has a non-constant spatial response, is disclosed individually and in combination with a tomographic scanner. The detector has a first dimension which is oriented parallel to the plane of the scan circle in the scanner. Along the first dimension, the detector is most responsive to radiation received along a centered segment of the dimension and less responsive to radiation received along edge segments. This non-constant spatial response can be achieved in a detector comprised of a scintillation crystal and a photoelectric transducer. The scintillation crystal in one embodiment is composed of three crystals arranged in layers, with the center crystal having the greatest light conversion efficiency. In another embodiment, the crystal is covered with a reflective substance around the center segment and a less reflective substance around the remainder. In another embodiment, an optical coupling which transmits light from adjacent the center segment with the greatest intensity couples the scintillation crystal and the photoelectric transducer. In yet another embodiment, the photoelectric transducer comprises three photodiodes, one receiving light produced adjacent the central segment and the other two receiving light produced adjacent the edge segments. The outputs of the three photodiodes are combined with a differential amplifier

  17. Considerations for a general flexible detector

    International Nuclear Information System (INIS)

    Bulos, F.

    1975-01-01

    Starting from a set of desirable features, a general shape of the detector is chosen. To decide on the size and magnitude of the solenoidal magnetic field 4 cases are compared. A good compromise is chosen and illustrated

  18. Development of the ZEUS central tracking detector

    Science.gov (United States)

    Brooks, C. B.; Bullock, F. W.; Cashmore, R. J.; Devenish, R. C.; Foster, B.; Fraser, T. J.; Gibson, M. D.; Gilmore, R. S.; Gingrich, D.; Harnew, N.; Hart, J. C.; Heath, G. P.; Hiddleston, J.; Holmes, A. R.; Jamdagni, A. K.; Jones, T. W.; Llewellyn, T. J.; Long, K. R.; Lush, G. J.; Malos, J.; Martin, N. C.; McArthur, I.; McCubbin, N. A.; McQuillan, D.; Miller, D. B.; Mobayyen, M. M.; Morgado, C.; Nash, J.; Nixon, G.; Parham, A. G.; Payne, B. T.; Roberts, J. H. C.; Salmon, G.; Saxon, D. H.; Sephton, A. J.; Shaw, D.; Shaw, T. B.; Shield, P. D.; Shulman, J.; Silvester, I.; Smith, S.; Strachan, D. E.; Tapper, R. J.; Tkaczyk, S. M.; Toudup, L. W.; Wallis, E. W.; Wastie, R.; Wells, J.; White, D. J.; Wilson, F. F.; Yeo, K. L.; ZEUS-UK Collaboration

    1989-11-01

    The design concept and development of the ZEUS central tracking detector is described. This is a cylindrical drift chamber designed for track reconstruction, electron identification and event triggering in a high-crossing-rate, high-magnetic-field environment.

  19. Development of the ZEUS central tracking detector

    International Nuclear Information System (INIS)

    Brooks, C.B.; Cashmore, R.J.; Gingrich, D.; Harnew, N.; Heath, G.P.; Holmes, A.R.; Martin, N.C.; McArthur, I.; Nash, J.; Salmon, G.; Shield, P.D.; Silvester, I.; Smith, S.; Wastie, R.; Wells, J.; Jamdagni, A.K.; McQuillan, D.; Miller, D.B.; Mobayyen, M.M.; Shulman, J.; Toudup, L.W.

    1989-01-01

    The design concept and development of the ZEUS central tracking detector is described. This is a cylindrical drift chamber designed for track reconstruction, electron identification and event triggering in a high-crossing-rate, high-magnetic-field environment. (orig.)

  20. Design of a lepton detector for ISABELLE

    International Nuclear Information System (INIS)

    Burnstein, R.; Carithers, W.C.; Duong-van, M.

    1975-01-01

    The theoretical background is given for a proposed experiment to detect W mesons using their leptonic decay mode. A lepton detector was designed for use at the planned ISABELLE proton--proton colliding beam storage rings. The general configuration of the detector is shown, and an electron identification module, an electron-hadron calorimeter, methods of muon identification, and an optional central detector (magnetic solenoid spectrometer) are discussed

  1. THE 15 LAYER SILICON DRIFT DETECTOR TRACKER IN EXPERIMENT 896

    International Nuclear Information System (INIS)

    Pandey, S.U.

    1998-01-01

    Large linear silicon drift detectors have been developed and are in production for use in several experiments. Recently 15 detectors were used as a tracking device in BNL-AGS heavy ion experiment (E896). The detectors were successfully operated in a 6.2 T magnetic field. The behavior of the detectors, such as drift uniformity, resolution, and charge collection efficiency are presented. The effect of the environment on the detector performance is discussed. Some results from the experimental run are presented. The detectors performed well in an experimental environment. This is the first tracking application of these detectors

  2. BES detector

    International Nuclear Information System (INIS)

    Bai, J.Z.; Bian, Q.; Chen, G.M.; Chen, L.J.; Chen, S.N.; Chen, Y.Q.; Chen, Z.Q.; Chi, Y.K.; Cui, H.C.; Cui, X.Z.; Deng, S.S.; Deng, Y.W.; Ding, H.L.; Dong, B.Z.; Dong, X.S.; Du, X.; Du, Z.Z.; Feng, C.; Feng, Z.; Fu, Z.S.; Gao, C.S.; Gao, M.L.; Gao, S.Q.; Gao, W.X.; Gao, Y.N.; Gu, S.D.; Gu, W.X.; Guan, Y.Z.; Guo, H.F.; Guo, Y.N.; Guo, Y.Y.; Han, S.W.; Han, Y.; Hao, W.; He, J.; He, K.R.; He, M.J.; Hou, X.J.; Hu, G.Y.; Hu, J.S.; Hu, J.W.; Huang, D.Q.; Huang, Y.Z.; Jia, Q.P.; Jiang, C.H.; Ju, Q.; Lai, Y.F.; Lang, P.F.; Li, D.S.; Li, F.; Li, H.; Li Jia; Li, J.T.; Li Jin; Li, L.L.; Li, P.Q.; Li, Q.M.; Li, R.B.; Li, S.Q.; Li, W.; Li, W.G.; Li, Z.X.; Liang, G.N.; Lin, F.C.; Lin, S.Z.; Lin, W.; Liu, Q.; Liu, R.G.; Liu, W.; Liu, X.; Liu, Z.A.; Liu, Z.Y.; Lu, C.G.; Lu, W.D.; Lu, Z.Y.; Lu, J.G.; Ma, D.H.; Ma, E.C.; Ma, J.M.; Mao, H.S.; Mao, Z.P.; Meng, X.C.; Ni, H.L.; Nie, J.; Nie, Z.D.; Niu, W.P.; Pan, L.J.; Qi, N.D.; Qian, J.J.; Qu, Y.H.; Que, Y.K.; Rong, G.; Ruan, T.Z.; Shao, Y.Y.; Shen, B.W.; Shen, D.L.; Shen, J.; Sheng, H.Y.; Sheng, J.P.; Shi, H.Z.; Song, X.F.; Sun, H.S.; Tang, F.K.; Tang, S.Q.; Tian, W.H.; Wang, F.; Wang, G.Y.; Wang, J.G.; Wang, J.Y.; Wang, L.S.; Wang, L.Z.; Wang, M.; Wang, P.; Wang, P.L.; Wang, S.M.; Wang, S.Q.; Wang, T.J.; Wang, X.W.; Wang, Y.Y.; Wang, Z.H.; Wang, Z.J.; Wei, C.L.; Wei, Z.Z.; Wu, J.W.; Wu, S.H.; Wu, S.Q.; Wu, W.M.; Wu, X.D.; Wu, Z.D.; Xi, D.M.; Xia, X.M.; Xiao, J.; Xie, P.P.; Xie, X.X.; Xu, J.G.; Xu, R.S.; Xu, Z.Q.; Xuan, B.C.; Xue, S.T.; Yan, J.; Yan, S.P.; Yan, W.G.; Yang, C.Z.; Yang, C.M.; Yang, C.Y.; Yang, X.F.; Yang, X.R.; Ye, M.H.; Yu, C.H.; Yu, C.S.; Yu, Z.Q.; Zhang, B.Y.; Zhang, C.D.; Zhang, C.C.; Zhang, C.Y.; Zhang, D.H.; Zhang, G.; Zhang, H.Y.; Zhang, H.L.; Zhang, J.W.; Zhang, L.S.; Zhang, S.Q.; Zhang, Y.P.; Zhang, Y.; Zhang, Y.M.; Zhao, D.X.; Zhao, J.W.; Zhao, M.; Zhao, P.D.; Zhao, P.P.; Zhao, W.R.; Zhao, Z.G.; Zhao, Z.Q.; Zheng, J.P.; Zheng, L.S.; Zheng, M.; Zheng, W.S.; Zheng, Z.P.; Zhong, G.P.; Zhou, G.P.; Zhou, H.S.; Zhou, J.; Zhou Li; Zhou Lin; Zhou, M.; Zhou, Y.S.; Zhou, Y.H.; Zhu, G.S.; Zhu, Q.M.; Zhu, S.G.; Zhu, Y.C.; Zhu, Y.S.; Zhuang, B.A.

    1994-01-01

    The Beijing Spectrometer (BES) is a general purpose solenoidal detector at the Beijing Electron Positron Collider (BEPC). It is designed to study exclusive final states in e + e - annihilations at the center of mass energy from 3.0 to 5.6 GeV. This requires large solid angle coverage combined with good charged particle momentum resolution, good particle identification and high photon detection efficiency at low energies. In this paper we describe the construction and the performance of BES detector. (orig.)

  3. Vertex detectors

    International Nuclear Information System (INIS)

    Lueth, V.

    1992-07-01

    The purpose of a vertex detector is to measure position and angles of charged particle tracks to sufficient precision so as to be able to separate tracks originating from decay vertices from those produced at the interaction vertex. Such measurements are interesting because they permit the detection of weakly decaying particles with lifetimes down to 10 -13 s, among them the τ lepton and charm and beauty hadrons. These two lectures are intended to introduce the reader to the different techniques for the detection of secondary vertices that have been developed over the past decades. The first lecture includes a brief introduction to the methods used to detect secondary vertices and to estimate particle lifetimes. It describes the traditional technologies, based on photographic recording in emulsions and on film of bubble chambers, and introduces fast electronic registration of signals derived from scintillating fibers, drift chambers and gaseous micro-strip chambers. The second lecture is devoted to solid state detectors. It begins with a brief introduction into semiconductor devices, and then describes the application of large arrays of strip and pixel diodes for charged particle tracking. These lectures can only serve as an introduction the topic of vertex detectors. Time and space do not allow for an in-depth coverage of many of the interesting aspects of vertex detector design and operation

  4. Smoke detectors

    International Nuclear Information System (INIS)

    Macdonald, E.

    1976-01-01

    A smoke detector is described consisting of a ventilated ionisation chamber having a number of electrodes and containing a radioactive source in the form of a foil supported on the surface of the electrodes. This electrode consists of a plastic material treated with graphite to render it electrically conductive. (U.K.)

  5. Semiconductor Detectors

    International Nuclear Information System (INIS)

    Cortina, E.

    2007-01-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  6. Capillary detectors

    International Nuclear Information System (INIS)

    Konijn, J.; Winter, K.; Vilain, P.; Wilquet, G.; Fabre, J.P.; Kozarenko, E.; Kreslo, I.; Goldberg, J.; Hoepfner, K.; Bay, A.; Currat, C.; Koppenburg, P.; Frekers, D.; Wolff, T.; Buontempo, S.; Ereditato, A.; Frenkel, A.; Liberti, B.; Martellotti, G.; Penso, G.; Ekimov, A.; Golovkin, S.; Govorun, V.; Medvedkov, A.; Vasil'chenko, V.

    1998-01-01

    The option for a microvertex detector using glass capillary arrays filled with liquid scintillator is presented. The status of capillary layers development and possible read-out techniques for high rate environment are reported. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. CAST with its micromegas detector installed.

    CERN Multimedia

    Maximilien Brice

    2002-01-01

    The CERN Axion Solar Telescope (CAST) uses a prototype LHC dipole magnet to search for very weakly interacting neutral particles called axions, which should originate in the core of the Sun. The magnet converts the solar axions to photons which are then detected by an X-ray detector based on Micromegas technology. CAST's Micromegas detector has now been installed. Photos 01 02: General view of the CAST experiment with the Micromegas detector in place. Photo 03: Close-up of the micromegas set-up.

  8. LCDD: A complete detector description package

    Energy Technology Data Exchange (ETDEWEB)

    Graf, Norman, E-mail: Norman.Graf@slac.stanford.edu; McCormick, Jeremy, E-mail: Jeremy.McCormick@slac.stanford.edu

    2015-07-21

    LCDD has been developed to provide a complete detector description package for physics detector simulations using Geant4. All aspects of the experimental setup, such as the physical geometry, magnetic fields, and sensitive detector readouts, as well as control of the physics simulations, such as physics processes, interaction models and kinematic limits, are defined at runtime. Users are therefore able to concentrate on the design of the detector system without having to master the intricacies of C++ programming or being proficient in setting up their own Geant4 application. We describe both the XML-based file format and the processors which communicate this information to the underlying Geant4 simulation toolkit.

  9. Neutron detector

    Science.gov (United States)

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  10. Ionization detector

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, E E

    1976-02-27

    This invention concerns a fire detection system making use of a beta source. The ionisation detector includes a first and second chamber respectively comprising a first and second electrode, preferably a plate, with a common electrode separating the first and second chamber. Communication is provided between these chambers through a set of orifices and each chamber also has a set of orifices for communication with the ambient atmosphere. One or both chambers can comprise a particle source, preferably beta. The detector also has an adjustable electrode housed in one of the chambers to regulate the voltage between the fixed electrode of this chamber and the common electrode located between the chambers. The electrodes of the structure are connected to a detection circuit that spots a change in the ionisation current when a fire alarm condition arises. The detection circuit of a new type includes a relaxation oscillator with a programmable unijunction transistor and a light emitting diode.

  11. PAMELA Space Mission: The Transition Radiation Detector

    Science.gov (United States)

    Ambriola, M.; Bellotti, R.; Cafagna, F.; Circella, M.; De Marzo, C.; Giglietto, N.; Marangelli, B.; Mirizzi, N.; Romita, M.; Spinelli, P.

    2003-07-01

    PAMELA telescope is a satellite-b orne magnetic spectrometer built to fulfill the primary scientific objectives of detecting antiparticles (antiprotons and positrons) in the cosmic rays, and to measure spectra of particles in cosmic rays. The PAMELA telescope is currently under integration and is composed of: a silicon tracker housed in a permanent magnet, a time of flight and an anticoincidence system both made of plastic scintillators, a silicon imaging calorimeter, a neutron detector and a Transition Radiation Detector (TRD). The TRD detector is composed of 9 sensitive layers of straw tubes working in proportional mode for a total of 1024 channels. Each layer is interleaved with a radiator plane made of carbon fibers. The TRD detector characteristics will be described along with its performance studied exposing the detector to particle beams of electrons, pions, muons and protons of different momenta at both CERN-PS and CERN-SPS facilities.

  12. MUST detector

    International Nuclear Information System (INIS)

    Blumenfeld, Y.; Auger, F.; Sauvestre, J.E.

    1999-01-01

    The IPN-Orsay, in collaboration with the SPhN-Saclay and the DPTA Bruyeres, has built an array of 8 telescopes based on Si-strip technology for the study of direct reactions induced by radioactive beams. The detectors are described, along with the compact high density VXI electronics and the stand-alone data acquisition system developed in the laboratory. One telescope was tested using an 40 Ar beam and the measured performances are discussed. (authors)

  13. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Ohata, Shuichi; Takeuchi, Yoji

    1968-10-30

    Herein disclosed is an ionization chamber the airtightness of which can be readily tested. The ionization chamber is characterized in that a small amount of helium gas is filled in the chamber in combination with other ionization gases such as argon gas, xenon gas and the like. Helium leakage from the chamber is measured by a known helium gas sensor in a vacuum vessel. Hence the long term drift of the radiation detector sensitivity may be determined.

  14. UA1 prototype detector

    CERN Multimedia

    1980-01-01

    Prototype of UA1 central detector inside a plexi tube. The UA1 experiment ran at CERN's Super Proton Synchrotron and made the Nobel Prize winning discovery of W and Z particles in 1983. The UA1 central detector was crucial to understanding the complex topology of proton-antiproton events. It played a most important role in identifying a handful of Ws and Zs among billions of collisions. The detector was essentially a wire chamber - a 6-chamber cylindrical assembly 5.8 m long and 2.3 m in diameter, the largest imaging drift chamber of its day. It recorded the tracks of charged particles curving in a 0.7 Tesla magnetic field, measuring their momentum, the sign of their electric charge and their rate of energy loss (dE/dx). Atoms in the argon-ethane gas mixture filling the chambers were ionised by the passage of charged particles. The electrons which were released drifted along an electric field shaped by field wires and were collected on sense wires. The geometrical arrangement of the 17000 field wires and 6...

  15. ATLAS detector records its first curved muon

    CERN Multimedia

    2007-01-01

    The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet. This was an important test of the chambers in their final configurations, and marked the first triggering and measurement of curved cosmic ray muons in ATLAS.

  16. Photon detector for MEGA

    International Nuclear Information System (INIS)

    Gagliardi, C.A.; Tribble, R.E.

    1991-01-01

    During the past year, we have continued work on the photon detector for the MEGA experiment at Los Alamos, a search for the rare decay μ → eγ to a sensitivity of a few parts in 10 13 . The MEGA photon detector is designed to observe the 52.38 MeV photon produced in a μ → eγ decay with an energy resolution of 1.25 MeV, a position resolution of 2 x 5 mm 2 , a directional resolution of 10 degrees, a time resolution of 500 ps, and an efficiency of 7%. It will consists of four independent concentric cylindrical pair spectrometers mounted within a 1.5 T magnetic field produced by a superconducting solenoid magnet. Each pair spectrometer includes two thin Pb foils to convert photons into e + e - pairs, and thereby, determine both their locations and their vector momenta. The inner drift chamber layer includes a delay line cathode to determine the z coordinates needed for track reconstruction. An MWPC located between two Pb layers identifies the conversion layer so that energy loss corrections may be applied, while plastic scintillators provide timing information. Our, group together with a group from the University of Houston, is responsible for the design and construction of the photon detector, as well as developing the computer codes necessary for Monte Carlo simulations and data analysis. During the past year, our efforts have focused primarily on two tasks, delay line cathode read-out and software development. This report describes our recent work on delay lines and data analysis along with a discussion of the new plans for multiplexing in the photon arm

  17. Characterization of Czochralski silicon detectors

    OpenAIRE

    Luukka, Panja-Riina

    2006-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmented detectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It is shown that the radiation hardness (RH) of the protons of these detectors is higher than that of devices made of traditional materials such as Float Zone (FZ) silicon or Diffusion Oxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 × 1017 cm−3). The MCZ devices therefore present an interesting ...

  18. The PANDA detector at FAIR

    International Nuclear Information System (INIS)

    Bersani, Andrea

    2012-01-01

    The PANDA detector will be installed at FAIR to enterprise a long-term, wide-spectrum physics program in the strong interaction framework. The detector will be installed at the HESR accumulation ring, which will provide an anti-proton beam of unprecedented luminosity and momentum definition. The beam will interact with an internal target. The detector has been designed to allow a 4π coverage around the interaction region. Due to the relatively high energy of the beam, up to 15 GeV, PANDA will feature two magnetic spectrometers: the target spectrometer (TS), with a superconducting solenoid and covering the interaction region, and a forward spectrometer (FS), with a normal-conducting dipole and covering the small angles region. Since the physics program is wide and the requirements on the various subsystems are different, the detector has been designed to be as flexible as possible. The complete detector will be described in detail, both from the viewpoint of the proposed techniques and from the viewpoint of the expected performances. An overview of the status of various components of the detector will be presented, too.

  19. The PANDA detector at FAIR

    Science.gov (United States)

    Bersani, Andrea

    2012-10-01

    The PANDA detector will be installed at FAIR to enterprise a long-term, wide-spectrum physics program in the strong interaction framework. The detector will be installed at the HESR accumulation ring, which will provide an anti-proton beam of unprecedented luminosity and momentum definition. The beam will interact with an internal target. The detector has been designed to allow a 4π coverage around the interaction region. Due to the relatively high energy of the beam, up to 15 GeV, PANDA will feature two magnetic spectrometers: the target spectrometer (TS), with a superconducting solenoid and covering the interaction region, and a forward spectrometer (FS), with a normal-conducting dipole and covering the small angles region. Since the physics program is wide and the requirements on the various subsystems are different, the detector has been designed to be as flexible as possible. The complete detector will be described in detail, both from the viewpoint of the proposed techniques and from the viewpoint of the expected performances. An overview of the status of various components of the detector will be presented, too.

  20. The status of the ATLAS inner detector

    CERN Document Server

    Moser, H G

    2004-01-01

    The ATLAS inner detector uses three subdetectors for tracking of charged particles from r = 5 cm to r = 107 cm inside a solenoid magnet of 2 T. The innermost detector is a high resolution silicon pixel detector. It provides precise 3D tracking information close to the interaction point allowing secondary vertex reconstruction and hence b identification. It is followed by the SCT, a large area tracking device based on silicon strip detectors. The TRT, based on straw tubes, provides continuous tracking and improves electron identification due to its ability to detect transition radiation. These detectors are presently under construction. This report presents a brief report on the design, construction status and expected performance of the inner detector.

  1. Quantitative Characterization of Phosphor Detector for Fusion Plasmas

    International Nuclear Information System (INIS)

    Baciero, A.; Zurro, B.; McCarthy, K. J.

    2004-01-01

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  2. LHCb experiment magnets

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The leading members of the LHCb magnet project, from left to right: Pierre-Ange Giudici, who organized and supervised the industrial production of the coils; Marcello Losasso, who performed the 3D calculations to optimise the magnetic field; Olivier Jamet, responsible for the 3D design; Jean Renaud, in charge of the magnet assembly, and Wilfried Flegel, project leader. The LHCb detector will investigate matter-antimatter differences in B mesons at the LHC. The coils of the detector's huge dipole magnet are seen here in April 2004.

  3. Smoke detectors

    International Nuclear Information System (INIS)

    Fung, C.K.

    1981-01-01

    This describes a smoke detector comprising a self-luminous light source and a photosensitive device which is so arranged that the light source is changed by the presence of smoke in a detecting region. A gaseous tritium light source is used. This consists of a borosilicate glass bulb with an internal phosphor coating, filled with tritium gas. The tritium emits low energy beta particles which cause the phosphor to glow. This is a reliable light source which needs no external power source. The photosensitive device may be a phototransistor and may drive a warning device through a directly coupled transistor amplifier. (U.K.)

  4. Quantitative Characterization of Phosphor Detector for Fusion Plasmas; Caracterizacion Cuantitativa de Detectores Luminiscentes para Plasmas de Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Baciero, A; Zurro, B; McCarthy, K J

    2004-07-01

    Experiments made to characterize phosphor screens with application as broadband radiation detectors, are described. Several radiation sources, covering the spectral range between the ultraviolet and X ray, were used. In addition, details are given of three original phosphor-screen-based detectors that were designed for use as broadband detectors in magnetically confined fusion devices. The first measurements obtained with these detectors in plasmas created in the TJ-II stellarator device are presented together with the analysis performed. (Author)

  5. Search for magnetic monopoles and stable particles with high electric charges in 8 TeV $pp$ collisions with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Mora, Jennifer; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Noordeh, Emil; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-03-18

    A search for highly ionizing particles produced in proton-proton collisions at 8 TeV center-of-mass energy is performed by the ATLAS collaboration at the CERN Large Hadron Collider. The dataset used corresponds to an integrated luminosity of 7.0 fb$^{-1}$. A customized trigger significantly increases the sensitivity, permitting a search for such particles with charges and energies beyond what was previously accessible. No event is found in the signal region, leading to production cross-section upper limits in the mass range 200--2500 GeV for magnetic monopoles with magnetic charge in the range $0.5g_{D}<|g|<2.0g_{D}$, where $g_{D}$ is the Dirac charge, and for stable particles with electric charge in the range $10<|z|<60$. Model-dependent limits are presented in given pair-production scenarios, and model-independent limits are presented in fiducial regions of particle energy and pseudorapidity.

  6. Radiation detector

    International Nuclear Information System (INIS)

    Conrad, B.; Finkenzeller, J.; Kiiehn, G.; Lichtenberg, W.

    1984-01-01

    In an exemplary embodiment, a flat radiation beam is detected having a common electrode disposed parallel to the beam plane at one side and a common support with a series of individual conductors providing electrodes opposite successive portions of the common electrode and lying in a plane also parallel to the beam plane. The beam may be fan-shaped and the individual electrodes may be aligned with respective ray paths separated by uniform angular increments in the beam plane. The individual conductors and the connection thereof to the exterior of the detector housing may be formed on an insulator which can be folded into a T-shape for leading the supply conductors for alternate individual conductors toward terminals at opposite sides of the chamber

  7. Particle detectors

    CERN Document Server

    Hilke, Hans Jürgen; Joram, Christian; CERN. Geneva

    1991-01-01

    Lecture 5: Detector characteristics: ALEPH Experiment cut through the devices and events - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operartion and a few ideas on the future performance. Lecture 4-pt. b Following the Scintillators. Lecture 4-pt. a : Scintillators - Used for: -Timing (TOF, Trigger) - Energy Measurement (Calorimeters) - Tracking (Fibres) Basic scintillation processes- Inorganic Scintillators - Organic Scintil - Discuss the principles of the main techniques applied to particle detection ( including front-end electronics), the construction and performance of some of the devices presently in operation and a fiew ideas on future developpement session 3 - part. b Following Calorimeters lecture 3-pt. a Calorimeters - determine energy E by total absorption of charged or neutral particles - fraction of E is transformed into measurable quantities - try to acheive sig...

  8. Smoke detectors

    International Nuclear Information System (INIS)

    Bryant, J.

    1979-01-01

    An ionization smoke detector consisting of two electrodes defining an ionization chamber permitting entry of smoke, a radioactive source to ionize gas in the chamber and a potential difference applied across the first and second electrodes to cause an ion current to flow is described. The current is affected by entry of smoke. An auxiliary electrode is positioned in the ionization chamber between the first and second electrodes, and it is arranged to maintain or create a potential difference between the first electrode and the auxiliary electrode. The auxiliary electrode may be used for testing or for adjustment of sensitivity. A collector electrode divides the chamber into two regions with the auxiliary electrode in the outer sensing region. (U.K.)

  9. Ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1980-01-01

    A safe and reliable apparatus for detecting products of combustion and aerosols in the atmosphere was developed which uses a beta source. It is easy to adjust for optimum performance. The ionization detector comprises a double chamber; one of the chambers is the basic sensing chamber. The sensing chamber is ported to both the secondary chambers to account for slow ambient changes in the atmosphere outside of the chamber. The voltages from the ionization chamber are adjusted with electrodes in each chamber. The ionization chamber contains baffles to direct the air to be sensed as well as an electrostatic screen. A unique electronic circuit provides an inexpensive and reliable means for detecting the signal change which occurs in the ionization chamber. The decision level of the alarm circuit can be adjusted to allow for any desired sensitivity. (D.N.)

  10. Characterization of Czochralski Silicon Detectors

    OpenAIRE

    Luukka, Panja-Riina; Haerkoenen, Jaakko

    2012-01-01

    This thesis describes the characterization of irradiated and non-irradiated segmenteddetectors made of high-resistivity (>1 kΩcm) magnetic Czochralski (MCZ) silicon. It isshown that the radiation hardness (RH) of the protons of these detectors is higher thanthat of devices made of traditional materials such as Float Zone (FZ) silicon or DiffusionOxygenated Float Zone (DOFZ) silicon due to the presence of intrinsic oxygen (> 5 x1017 cm-3). The MCZ devices therefore present an interesting alter...

  11. Silicon radiation detectors

    International Nuclear Information System (INIS)

    Lutz, G.

    1995-01-01

    An introduction to and an overview of function principles and properties of semiconductor radiation detectors is attempted. The paper is addressed to people interested in detector development but not already experts in the field of semiconductor detectors. (orig.)

  12. Progress on CMS detector lowering

    CERN Multimedia

    2006-01-01

    It was an amazing engineering challenge - the lowering of the first hugeendcap disc (YE+3) of the CMS detector slowly and carefully 100 metres underground. The spectacular descent took place on 30 November and was documented by a film crew from Reuters news group. The uniquely shaped slice is 16 m high, about 50 cm thick, and weighs 400 tonnes. It is one of 15 sections that make up the complete CMS detector. The solid steel structure of the disc forms part of the magnet return yoke and is equipped on both sides with muon chambers. A special gantry crane lowered the element, with just 20 cm of leeway between the edges of the detector and the walls of the shaft! On 12 December, a further section of the detector (YE+2) containing the cathode strip chamber made the 10-hour journey underground. This piece is 16 m high and weighs 880 tonnes. There are now four sections of the detector in the experimental cavern, with a further 11 to follow. The endcap disc YE+3 (seen in the foreground) begins its journey down the ...

  13. ''Invisible'' axion detectors

    International Nuclear Information System (INIS)

    Sikivie, P.

    1985-01-01

    A brief review is given of various ideas which have been put forth to detect ''invisible'' axions, i.e., axions with f/sub a/ between 3 x 10 7 GeV and 2 x 10 12 GeV. These experiments would attempt to detect the axions which constitute the halo of our galaxy or axions which are emitted by our sun; or they would attempt to detect the force mediated by virtual axions. Various relevant axion parameters are given as f/sub a/. Among the experiments described are: galactic axion detector using a cavity; ''spin coupled'' axion detection; axion to photon conversion in an inhomogeneous static magnetic field; and macroscopic forces mediated by axions. 27 refs

  14. Neutron detectors for the ESS diffractometers

    Czech Academy of Sciences Publication Activity Database

    Stefanescu, I.; Christensen, M.; Fenske, J.; Hall-Wilton, R.; Henry, P. F.; Kirstein, O.; Muller, M.; Nowak, G.; Pooley, D.; Raspino, D.; Rhodes, N.; Šaroun, Jan; Schefer, J.; Schooneveld, E.; Sykora, J.; Schweika, W.

    2017-01-01

    Roč. 12, JAN (2017), č. článku P01019. ISSN 1748-0221 R&D Projects: GA MŠk LM2015048 Institutional support: RVO:61389005 Keywords : instrumentation for neutron sources * neutron diffraction detectors * neutron detectors (cold, thermal, fast neutrons) Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.220, year: 2016

  15. ACORDE a cosmic ray detector for ALICE

    International Nuclear Information System (INIS)

    Fernandez, A.; Gamez, E.; Herrera, G.; Lopez, R.; Leon-Monzon, I.; Martinez, M.I.; Pagliarone, C.; Paic, G.; Roman, S.; Tejeda, G.; Vargas, M.A.; Vergara, S.; Villasenor, L.; Zepeda, A.

    2007-01-01

    ACORDE is one of the ALICE detectors, presently under construction at CERN. It consists of an array of plastic scintillator counters placed on the three upper faces of the ALICE magnet. It will act as a cosmic ray trigger, and, together with other ALICE sub-detectors, will provide precise information on cosmic rays with primary energies around 10 15 -10 17 eV. Here we describe the design of ACORDE along with the present status and integration into ALICE

  16. MUON DETECTORS: RPC

    CERN Multimedia

    G. Iaselli.

    Substantial progress has been made on the RPC system resulting in a high standard of operation. Impressive improvements have been made in the online software and DCS PVSS protocols that ensure robustness of the configuration phase and reliability of the detector monitoring tasks. In parallel, an important upgrade of CCU ring connectivity was pursued to avoid noise pick-up and consequent  data transmission errors during operation with magnetic field. While the barrel part is already well synchronized thanks to the long cosmics runs, some refinements are still required on the forward part. The "beam splashes" have been useful to cross check  the existing delay constants, but further efforts will be made as soon as a substantial sample of beam-halo events is available. Progress has been made on early detector performance studies. The RPC DQM tool is being extensively used and minor bugs have been found. More plots have been added and more people have been tr...

  17. Calibration of detector efficiency of neutron detector

    International Nuclear Information System (INIS)

    Guo Hongsheng; He Xijun; Xu Rongkun; Peng Taiping

    2001-01-01

    BF 3 neutron detector has been set up. Detector efficiency is calibrated by associated particle technique. It is about 3.17 x 10 -4 (1 +- 18%). Neutron yield of neutron generator per pulse (10 7 /pulse) is measured by using the detector

  18. The LHCb magnet

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The LHCb magnet consists of two huge 27 tonne coils mounted inside a 1450 tonne iron yoke. As charged particles pass through the magnet's field their trajectories will be bent according to their momentum, allowing their momentum to be measured as they pass through the detector walls. LHCb will study bottom quarks, which will be produced close to the two colliding proton beams.

  19. Detector development and experiments at COSY

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1988-05-01

    These proceedings contain the manuscripts of the lectures presented at the named workshop. These concern a review about the COSY project, ideal detectors for hadron physics at COSY, possible experiments at COSY, magnetic spectrometers, a modification of BIG KARL, consideration on COSY experiments in the early stage, a detector for exclusive 2-meson production experiments, the excitation of baryons and physics with complex projectiles, a status report about the Indiana cooler ring, special scintillators, multiwire chambers, position-sensitive semiconductor detectors, detectors for neutral particles, a small large-acceptance photon detector, a status report of the two-arm photon spectrometer TAPS, studies on the parity violation in the pp scattering, the measurement of excitation functions for the study of dibaryon states, and results from the neutron workshop held in February 1988 at the KFA Juelich. (HSI)

  20. Position detector

    International Nuclear Information System (INIS)

    Hayakawa, Toshifumi.

    1985-01-01

    Purpose: To enable to detect the position of an moving object in a control rod position detector, stably in a digital manner at a high accuracy and free from the undesired effects of circumstantial conditions such as the reactor temperature. Constitution: Coils connected in parallel with each other are disposed along the passage of a moving object and variable resistors and relays are connected in series with each of the coils respectively. Light emitting diodes is connected in series with the contacts of the respective relays. The resistance value of the variable resistors are adjusted depending on the changes in the circumstantial conditions and temperature distribution upon carrying out the positional detection. When the object is inserted into a coils, the relevant relay is deenergized, by which the relay contacts are closed to light up the diode. In the same manner, as the object is successively inserted into the coils, the diodes are lighted-up successively thereby enabling highly accurate and stable positional detection in a digital manner, free from the undesired effects of the circumstantial conditions. (Horiuchi, T.)

  1. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  2. Detectors for particle radiation. 2. rev. ed.

    International Nuclear Information System (INIS)

    Kleinknecht, K.

    1987-01-01

    This book is a description of the set-up and mode of action of detectors for charged particles and gamma radiation for students of physics, as well as for experimental physicists and engineers in research and industry: Ionization chamber, proportional counter, semiconductor counter; proportional chamber, drift chamber, bubble chamber, spark chamber, photomultiplier, laser ionization, silicion strip detector; Cherenkov counter, transition radiation detector; electron-photon-cascade counter, hadron calorimeter; magnetic spectrometer; applications in nuclear medicine, geophysics, space travel, atom physics, nuclear physics, and high-energy physics. With 149 figs., 20 tabs [de

  3. SUPERCOLLIDER: A GEM of a detector

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Now being prepared as a major experimental facility for the 87- kilometre Superconducting Supercollider (SSC) being built in Ellis County, Texas, is the GEM detector project. GEM thus becomes the companion to the Solenoidal Detector Collaboration (SDC), the first major SSC detector to emerge (March 1992, page 13). This is in keeping with the SSC Laboratory's aim of two major detectors with overlapping and complementary strengths. GEM is designed to observe all SSC signatures, with emphasis on precise measurement of electrons, photons and muons. Hence the name GEM - ''Gammas, Electrons and Muons.'' Design goals are clean signatures for leptons, jets, and missing transverse energy, maximum sensitivity to narrow resonances, and low backgrounds. Also important is maintaining significant capability at high luminosity (10 34 cm -2 s -1 ). GEM has some distinctive features. A key concept is the exterior magnet, surrounding all detector elements. Inside the magnet are a muon tracking system, a precision calorimeter, and a compact central tracker. This allows the muon momentum to be measured the air of the radiation shielded area outside the thick calorimeter, giving both high precision and robustness at high luminosity. A large magnet gives a large lever arm (at least 4 m) for precise muon momentum measurement. Placing the magnet outside also minimizes the material between tracker and calorimeters, so that the calorimeters are limited only by their inherent resolutions

  4. Detector simulation needs for detector designers

    International Nuclear Information System (INIS)

    Hanson, G.G.

    1987-11-01

    Computer simulation of the components of SSC detectors and of the complete detectors will be very important for the designs of the detectors. The ratio of events from interesting physics to events from background processes is very low, so detailed understanding of detector response to the backgrounds is needed. Any large detector for the SSC will be very complex and expensive and every effort must be made to design detectors which will have excellent performance and will not have to undergo major rebuilding. Some areas in which computer simulation is particularly needed are pattern recognition in tracking detectors and development of shower simulation code which can be trusted as an aid in the design and optimization of calorimeters, including their electron identification performance. Existing codes require too much computer time to be practical and need to be compared with test beam data at energies of several hundred GeV. Computer simulation of the processing of the data, including electronics response to the signals from the detector components, processing of the data by microprocessors on the detector, the trigger, and data acquisition will be required. In this report we discuss the detector simulation needs for detector designers

  5. Gravitational-wave detector realized by a superconductor

    International Nuclear Information System (INIS)

    Ishidoshiro, K.; Ando, M.; Takamori, A.; Okada, K.; Tsubono, K.

    2010-01-01

    In this article, we present a new gravitational-wave detector based on superconducting magnetic levitation and results of its prototype test. Our detector is composed of the suspended test mass that is rotated by gravitational waves. Gravitational wave signals are readout by monitoring its angular motion. Superconducting magnetic levitation is used for the suspension of the test mass, since it has many advantages, such as zero mechanical loss and resonant frequency around its suspension axis in an ideal situation. For the study of actual performance of such gravitational-wave detector, a prototype detector has been developed. Using the prototype detector, the actual loss factor and resonant frequency are measured as 1.2 x 10 -8 Nms/rad and 5 mHz respectively. A detector noise is also evaluated. The current noise level is determined by the magnetic coupling with external magnetic field and mechanical coupling between translation and angular motion. The prototype detector has already one of the lowest noise levels for gravitational waves at 0.1 Hz among current gravitational-wave detectors. We have succeeded at the demonstration of the advantages of our torsion gravitational-wave detector.

  6. MUON DETECTORS: DT

    CERN Multimedia

    M. Dallavalle

    In the past months, the DT electronics has run in a stable and reliable way, demonstrated again through the CRAFT exercise. Operation when the CMS magnetic field was on has been satisfactory. The detector safety control and monitoring is improving constantly as the DT group accumulates running experience. The DT DAQ and DCS systems proved very stable during the intensive CRAFT period. The few issues that were identified by the DCS and on-line monitoring did not prevent the run to continue, so that the record of the DT in the data taking efficiency was very good. The long running period was also used to continue the transition from a system run by experts to one run by shifters, which was in the large part successful. Improvements, mostly in consolidation of error reporting, were identified and will be addressed in the coming shut-down. During the CRAFT data taking, DT triggered about 300 million cosmics with the magnet at 3.8T and the silicon strip tracker in the readout. Although a dedicated configuratio...

  7. The GRANDE detector

    International Nuclear Information System (INIS)

    Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)

  8. Spiral silicon drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Gatti, E.; Longoni, A.; Sampietro, M.; Holl, P.; Lutz, G.; Kemmer, J.; Prechtel, U.; Ziemann, T.

    1988-01-01

    An advanced large area silicon photodiode (and x-ray detector), called Spiral Drift Detector, was designed, produced and tested. The Spiral Detector belongs to the family of silicon drift detectors and is an improvement of the well known Cylindrical Drift Detector. In both detectors, signal electrons created in silicon by fast charged particles or photons are drifting toward a practically point-like collection anode. The capacitance of the anode is therefore kept at the minimum (0.1pF). The concentric rings of the cylindrical detector are replaced by a continuous spiral in the new detector. The spiral geometry detector design leads to a decrease of the detector leakage current. In the spiral detector all electrons generated at the silicon-silicon oxide interface are collected on a guard sink rather than contributing to the detector leakage current. The decrease of the leakage current reduces the parallel noise of the detector. This decrease of the leakage current and the very small capacities of the detector anode with a capacitively matched preamplifier may improve the energy resolution of Spiral Drift Detectors operating at room temperature down to about 50 electrons rms. This resolution is in the range attainable at present only by cooled semiconductor detectors. 5 refs., 10 figs

  9. Search for Magnetic Monopoles

    CERN Multimedia

    2002-01-01

    This experiment is proposed to investigate the possible production of magnetic monopoles at the ISR. Very different values are in principle possible for the magnetic charge of such objects, and the present experiment intends to cover a range of magnetic charges from g, to 12 g, where g is the classical minimum charge of the Dirac theory, .ce g = 1/2e The detector consists of three double layers of solid track detector, which are only sensitive to highly ionizing particles, such as monopoles should be. The detector is placed directly in the vacuum chamber, to avoid the large energy losses that a monopole would suffer in a solid wall. A solenoidal magnet is placed between the intersection region and the detector and around the detector itself, in order to accelerate monopoles to an energy such that they are able to traverse the successive sensitive layers of the detector. The thickness of the sensitive layers is chosen to avoid confusion with possible background arising from highly ionizing ions. The experiment...

  10. Solid state detector design

    International Nuclear Information System (INIS)

    Gunarwan Prayitno; Ahmad Rifai

    2010-01-01

    Much has been charged particle detector radiation detector made by the industry, especially those engaged in the development of detection equipment and components. The development and further research will be made solid state detector with silicon material. To be able to detect charged particles (radiation), required the processing of silicon material into the detector material. The method used to make silicon detector material is a lithium evaporations. Having formed an intrinsic region contactor installation process, and with testing. (author)

  11. Avalanche photodiodes for ISABELLE detectors

    International Nuclear Information System (INIS)

    Strand, R.C.

    1979-01-01

    At ISABELLE some requirements for detecting bursts of photons are not met by standard photomultiplier tubes. The characteristics of immunity to magnetic fields, small size (few mm), low power consumption (approx. 100 mW), insensitivity to optical overloads, and wide dynamic range (approx. 60 dB) are achieved with difficulty, if at all, with PMTs. These are characteristics of the solid state avalanche photodiode (APD), the preferred detector for light-wave communications. Successful field tests with APD detectors stimulated the design of standard optical-fiber communication systems to replace wire carriers by the early 1980's. In other characteristics, i.e., counting rate, pulse-height resolution, effective quantum efficiency, detection efficiency, and reliability, bare APDs are equivalent to standard PMTs. APDs with currently available amplifiers cannot resolve single photoelectrons but they could provide reasonable detection efficiencies and pulse-height resolution for packets of approx. > 100 photons. Commercially available APDs can cost up to 100 times as much as PMTs per active area, but they are potentially much cheaper. Six topics are discussed: (1) detectors for light-wave communication and detectors for particles, (2) avalanche photodiodes, (3) commercially available APDs, (4) dynamic response of PMTs and bare APDs, (5) photon counting with cold APDs, and (6) conclusions and recommendations

  12. Compound Semiconductor Radiation Detector

    International Nuclear Information System (INIS)

    Kim, Y. K.; Park, S. H.; Lee, W. G.; Ha, J. H.

    2005-01-01

    In 1945, Van Heerden measured α, β and γ radiations with the cooled AgCl crystal. It was the first radiation measurement using the compound semiconductor detector. Since then the compound semiconductor has been extensively studied as radiation detector. Generally the radiation detector can be divided into the gas detector, the scintillator and the semiconductor detector. The semiconductor detector has good points comparing to other radiation detectors. Since the density of the semiconductor detector is higher than that of the gas detector, the semiconductor detector can be made with the compact size to measure the high energy radiation. In the scintillator, the radiation is measured with the two-step process. That is, the radiation is converted into the photons, which are changed into electrons by a photo-detector, inside the scintillator. However in the semiconductor radiation detector, the radiation is measured only with the one-step process. The electron-hole pairs are generated from the radiation interaction inside the semiconductor detector, and these electrons and charged ions are directly collected to get the signal. The energy resolution of the semiconductor detector is generally better than that of the scintillator. At present, the commonly used semiconductors as the radiation detector are Si and Ge. However, these semiconductor detectors have weak points. That is, one needs thick material to measure the high energy radiation because of the relatively low atomic number of the composite material. In Ge case, the dark current of the detector is large at room temperature because of the small band-gap energy. Recently the compound semiconductor detectors have been extensively studied to overcome these problems. In this paper, we will briefly summarize the recent research topics about the compound semiconductor detector. We will introduce the research activities of our group, too

  13. [Controlled evaluation of a high-resolution three-dimensional magnetic detector system (3D-MAGMA) as a proof of concept - examination of healthy volunteers before and after application of Metoclopramide (MCP)].

    Science.gov (United States)

    Jacob, V Y P; Stallmach, A; Felber, J

    2016-06-01

    Changes in gastric and small bowel motility are a common clinical problem. Currently diagnostic options are limited because each method harbors certain disadvantages. It has been shown that the high-resolution three-dimensional magnetic detector system 3D-MAGMA is capable of reliably measuring gastric and small intestine motor activity. This system allows precise localization of a small magnetic marker and determination of its three-dimensional orientation inside a human body. The aim of the current study was to determine if 3D-MAGMA is reliably able to detect changes in gastric and small bowel motility under controlled conditions. MCP was used as a well known prokinetic agent to shorten the gastric and small bowel passage. 8 healthy volunteers (fasting) underwent motility testing of the stomach and small bowel by 3D-MAGMA with and without administration of MCP (10 mg orally). Among other data the time the capsule needed to pass through the stomach and the duodenum and the time the capsule needed to pass through the first 50 cm of the jejunum were recorded. The retention time of the capsule in the stomach under physiological conditions was 49.1 minutes (median; min. 18 min; max. 88.8 min). The median time the capsule needed to pass through the duodenum was 13.8 minutes (median; min. 1.7 min; max. 24.8 min). The time the capsule needed to pass through the first 50 cm of the jejunum under physiological conditions was 33.0 minutes (median; min. 20.2 min; max. 67.2 min). The retention time of the capsule in the stomach decreased significantly after administration of MCP to 20.9 minutes (median; min. 1.7 min; max. 62.8 min; p = 0.008). The time the capsule needed to pass through the duodenum was also reduced to 7.1 minutes (median; min. 3.1 min; max. 18.3 min; p = 0.055). The time the capsule needed to pass through the first 50 cm of the jejunum was also reduced to 21.7 minutes (median; min. 10.7 min; max. 31.2 min; p = 0.069). 3D-MAGMA is able

  14. New technologies for UV detectors

    Science.gov (United States)

    Joseph, C. L.

    1993-01-01

    Several technologies are currently being developed, leading to substantial improvements in the performance of UV detectors or significant reductions in power or weight. Four technologies discussed are (1) thin-film coatings to enhance the UV sensitivity of CCD's, (2) highly innovative magnet assemblies that dramatically reduce weight and result in virtually no external flux, (3) new techniques for curving microchannel plates (MCP's) so that single plates can be used to prevent ion feedback and present highly localized charge clouds to an anode structure, and (4) high-performance alternatives to glass-based MCP's. In item (2), for example, very robust magnets are made out of rare earth materials such as samarium cobalt, and cladding magnets are employed to prevent flux from escaping from the detector into the external environment. These new ultralight magnet assemblies are able to create strong, exceptionally uniform magnetic fields for image intensification and focusing of photoelectrons. The principle advantage of such detectors is the quantum efficiencies of 70-80 percent obtained throughout ultraviolet wavelengths (900-2000 A), the highest of any device. Despite the improvements achieved under item (3), high-performance alternatives to conventional glass-based MCP's potentially offer three distinct new advantages that include (1) a 30-100-fold improvement in dynamic range resulting in correspondingly higher signal-to-noise ratios, (2) the use of pure dielectric and semiconductor materials that will not outgas contaminants that eventually destroy photocathodes, and (3) channels that have constant spacing providing long-ranged order since the plates are made using photolithography techniques from the semiconductor industry. The manufacturers of these advanced-technology MCP's, however, are a couple of years away from actually producing a functioning image intensifier. In contrast to the use of CCD's for optical, ground based observations, there is no single

  15. Atmospheric Neutrinos in the MINOS Far Detector

    Energy Technology Data Exchange (ETDEWEB)

    Howcroft, Caius Leo Frederick [Univ. of Cambridge (United Kingdom)

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for vμ and $\\bar{v}$μ are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  16. Large Aperture Electrostatic Dust Detector

    International Nuclear Information System (INIS)

    Skinner, C.H.; Hensley, R.; Roquemore, A.L.

    2007-01-01

    Diagnosis and management of dust inventories generated in next-step magnetic fusion devices is necessary for their safe operation. A novel electrostatic dust detector, based on a fine grid of interlocking circuit traces biased to 30 or 50 v has been developed for the detection of dust particles on remote surfaces in air and vacuum environments. Impinging dust particles create a temporary short circuit and the resulting current pulse is recorded by counting electronics. Up to 90% of the particles are ejected from the grid or vaporized suggesting the device may be useful for controlling dust inventories. We report measurements of the sensitivity of a large area (5x5 cm) detector to microgram quantities of dust particles and review its applications to contemporary tokamaks and ITER.

  17. Monopole track characteristics in plastic detectors

    Science.gov (United States)

    Ahlen, S. P.

    1975-01-01

    Total and restricted energy loss rates were calculated for magnetic monopoles of charge g = 137 e in Lexan polycarbonate. Range-energy curves are also presented. The restricted energy loss model is used to estimate the appearance of a monopole track in plastic detectors. These results should be useful for the design and analysis of monopole experiments.

  18. Protein diffraction experiments with Atlas CCD detector

    Czech Academy of Sciences Publication Activity Database

    Dohnálek, Jan; Kovaľ, Tomáš; Dušek, Michal

    2008-01-01

    Roč. 64, Suppl. - abstracts (2008), C192 ISSN 0108-7673. [Congress of the International Union of Crystallography (IUCr) /21./. 23.08.2008-31.08.2008, Osaka] Institutional research plan: CEZ:AV0Z10100521 Keywords : x-ray data collection * CCD detectors * protein crystallography applications Subject RIV: BM - Solid Matter Physics ; Magnetism

  19. Installation of the ALICE dipole magnet

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The large dipole magnet is installed on the ALICE detector at CERN. This magnet, which is cooled by demineralised water, will bend the path of muons that leave the huge rectangular solenoid (in the background). These muons are heavy electrons that interact less with matter, allowing them to traverse the main section of the detector.

  20. Design and Implementation of the ATLAS Detector Control System

    CERN Document Server

    Boterenbrood, H; Cook, J; Filimonov, V; Hallgren, B I; Heubers, W P J; Khomoutnikov, V; Ryabov, Yu; Varela, F

    2004-01-01

    The overall dimensions of the ATLAS experiment and its harsh environment, due to radiation and magnetic field, represent new challenges for the implementation of the Detector Control System. It supervises all hardware of the ATLAS detector, monitors the infrastructure of the experiment, and provides information exchange with the LHC accelerator. The system must allow for the operation of the different ATLAS sub-detectors in stand-alone mode, as required for calibration and debugging, as well as the coherent and integrated operation of all sub-detectors for physics data taking. For this reason, the Detector Control System is logically arranged to map the hierarchical organization of the ATLAS detector. Special requirements are placed onto the ATLAS Detector Control System because of the large number of distributed I/O channels and of the inaccessibility of the equipment during operation. Standardization is a crucial issue for the design and implementation of the control system because of the large variety of e...

  1. He Puff System For Dust Detector Upgrade

    International Nuclear Information System (INIS)

    Rais, B.; Skinner, C.H.; Roquemore, A.L.

    2010-01-01

    Local detection of surface dust is needed for the safe operation of next-step magnetic fusion devices such as ITER. An electrostatic dust detector, based on a 5 cm x 5 cm grid of interlocking circuit traces biased to 50 V, has been developed to detect dust on remote surfaces and was successfully tested for the first time on the National Spherical Torus Experiment (NSTX). We report on a helium puff system that clears residual dust from this detector and any incident debris or fibers that might cause a permanent short circuit. The entire surface of the detector was cleared of carbon particles by two consecutive helium puffs delivered by three nozzles of 0.45 mm inside diameter. The optimal configuration was found to be with the nozzles at an angle of 30o with respect to the surface of the detector and a helium backing pressure of 6 bar.

  2. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I; Martinez laso, L

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  3. Super magnets for interaction regions

    International Nuclear Information System (INIS)

    Biallas, G.; Fowler, W.; Diebold, R.

    1977-01-01

    The feasibility of using superconducting magnets in the beam interaction regions of particle accelerators is discussed. These higher field magnets can be shorter, leaving more room for detectors, but also must have a large aperture and magnetic shielding. The ''kissing geometry'' was investigated, and design and scaling considerations are given. A rough estimate of the cost of such superconducting magnets is given as an aid to the selection of interaction geometry

  4. Mica fission detectors

    International Nuclear Information System (INIS)

    Wong, C.; Anderson, J.D.; Hansen, L.; Lehn, A.V.; Williamson, M.A.

    1977-01-01

    The present development status of the mica fission detectors is summarized. It is concluded that the techniques have been refined and developed to a state such that the mica fission counters are a reliable and reproducible detector for fission events

  5. Barrier Infrared Detector (BIRD)

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in MWIR detector design, has resulted in a high operating temperature (HOT) barrier infrared detector (BIRD) that is capable of spectral...

  6. Simulating detectors dead time

    International Nuclear Information System (INIS)

    Rustom, Ibrahim Farog Ibrahim

    2015-06-01

    Nuclear detectors are used in all aspects of nuclear measurements. All nuclear detectors are characterized by their dead time i.e. the time needed by a detector to recover from a previous incident. A detector dead time influences measurements taken by a detector and specially when measuring high decay rate (>) where is the detector dead time. Two models are usually used to correct for the dead time effect: the paralayzable and the non-paralayzable models. In the current work we use Monte Carlo simulation techniques to simulate radioactivity and the effect of dead time and the count rate of a detector with a dead time =5x10 - 5s assuming the non-paralayzable model. The simulation indicates that assuming a non -paralayzable model could be used to correct for decay rate measured by a detector. The reliability of the non-paralayzable model to correct the measured decay rate could be gauged using the Monte Carlo simulation. (Author)

  7. Forward tracking detectors

    Indian Academy of Sciences (India)

    Abstract. Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  8. HIBP primary beam detector

    International Nuclear Information System (INIS)

    Schmidt, T.W.

    1979-01-01

    A position measuring detector was fabricated for the Heavy Ion Beam Probe. The 11 cm by 50 cm detector was a combination of 15 detector wires in one direction and 63 copper bars - .635 cm by 10 cm to measure along an orthogonal axis by means of a current divider circuit. High transmission tungsten meshes provide entrance windows and suppress secondary electrons. The detector dimensions were chosen to resolve the beam position to within one beam diameter

  9. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  10. WORKSHOP: Scintillating fibre detectors

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Scintillating fibre detector development and technology for the proposed US Superconducting Supercollider, SSC, was the subject of a recent workshop at Fermilab, with participation from the high energy physics community and from industry. Sessions covered the current status of fibre technology and fibre detectors, new detector applications, fluorescent materials and scintillation compositions, radiation damage effects, amplification and imaging structures, and scintillation fibre fabrication techniques

  11. Shielded regenerative neutron detector

    International Nuclear Information System (INIS)

    Terhune, J.H.; Neissel, J.P.

    1978-01-01

    An ion chamber type neutron detector is disclosed which has a greatly extended lifespan. The detector includes a fission chamber containing a mixture of active and breeding material and a neutron shielding material. The breeding and shielding materials are selected to have similar or substantially matching neutron capture cross-sections so that their individual effects on increased detector life are mutually enhanced

  12. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  13. Self powered neutron detectors

    International Nuclear Information System (INIS)

    Gopalan, C.S.; Ramachandra Rao, M.N.; Ingale, A.D.

    1976-01-01

    Two types of self powered neutron detectors used for in-core flux measurements are described. The characteristics of the various detectors, with emitters Rh, V, Co, Py are presented. Details about the fabrication of these detectors are given. (A.K.)

  14. The JADE muon detector

    International Nuclear Information System (INIS)

    Allison, J.; Armitage, J.C.M.; Baines, J.T.M.; Ball, A.H.; Bamford, G.; Barlow, R.J.; Bowdery, C.K.; Chrin, J.T.M.; Duerdoth, I.P.; Glendinning, I.; Greenshaw, T.; Hassard, J.F.; Hill, P.; King, B.T.; Loebinger, F.K.; Macbeth, A.A.; McCann, H.; Mercer, D.; Mills, H.E.; Murphy, P.G.; Prosper, H.B.; Rowe, P.; Stephens, K.

    1985-01-01

    The JADE muon detector consists of 618 planar drift chambers interspersed between layers of hadron absorber. This paper gives a detailed description of the construction and operation of the detector as a whole and discusses the properties of the drift chambers. The muon detector has been operating successfully at PETRA for five years. (orig.)

  15. Economical stabilized scintillation detector

    International Nuclear Information System (INIS)

    Anshakov, O.M.; Chudakov, V.A.; Gurinovich, V.I.

    1983-01-01

    An economical scintillation detector with the stabilization system of an integral type is described. Power consumed by the photomultiplier high-voltage power source is 40 mW, energy resolution is not worse than 9%. The given detector is used in a reference detector of a digital radioisotope densimeter for light media which is successfully operating for several years

  16. Gas filled detectors

    International Nuclear Information System (INIS)

    Stephan, C.

    1993-01-01

    The main types of gas filled nuclear detectors: ionization chambers, proportional counters, parallel-plate avalanche counters (PPAC) and microstrip detectors are described. New devices are shown. A description of the processes involved in such detectors is also given. (K.A.) 123 refs.; 25 figs.; 3 tabs

  17. HP Ge planar detectors

    International Nuclear Information System (INIS)

    Gornov, M.G.; Gurov, Yu.B.; Soldatov, A.M.; Osipenko, B.P.; Yurkowski, J.; Podkopaev, O.I.

    1989-01-01

    Parameters of planar detectors manufactured of HP Ge are presented. The possibilities to use multilayer spectrometers on the base of such semiconductor detectors for nuclear physics experiments are discussed. It is shown that the obtained detectors including high square ones have spectrometrical characteristics close to limiting possible values. 9 refs.; 3 figs.; 1 tab

  18. Technical design of a detector to be operated at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics on the Soleoidal Detector Collaboration: Summary and overview of the detector; physics and detector requirements; central tracking system; superconducting magnet; calorimetry; muon system; electronics; online computing; offline computing; safety; experimental facilities; installation; test and calibration beam plan; and cost and schedule summary

  19. Technical design of a detector to be operated at the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report discusses the following topics on the Soleoidal Detector Collaboration: Summary and overview of the detector; physics and detector requirements; central tracking system; superconducting magnet; calorimetry; muon system; electronics; online computing; offline computing; safety; experimental facilities; installation; test and calibration beam plan; and cost and schedule summary.

  20. MUON DETECTORS: RPC

    CERN Document Server

    G. Iaselli

    The RPC group has invested a large effort in the study of trigger spikes observed during CRAFT data taking. The chambers are susceptible to noise generated by the flickering of fluorescent and projector lamps in the cavern (with magnetic field on). Soon after the end of CRAFT, it was possible to reproduce the phenomena using a waveform generator and to study possible modifications to be implemented in the grounding schema. Hardware actions have been already taken in order to reduce the detector sensitivity: star washers on the chamber front panels and additional shielding have been added where possible. During the shutdown maintenance activity many different problems were tackled on the barrel part. A few faulty high voltage connector/cable problems were fixed; now only two RPC chambers are left with single-gap mode operation. One chamber in YB+2 was replaced due to gas leakage. All the front-end electronic boards were replaced in 3 chambers (stations MB2 and MB3 in YB-2), that had been damaged after the coo...

  1. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1997-01-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  2. The ATLAS Pixel Detector

    CERN Document Server

    Huegging, Fabian

    2006-06-26

    The contruction of the ATLAS Pixel Detector which is the innermost layer of the ATLAS tracking system is prgressing well. Because the pixel detector will contribute significantly to the ATLAS track and vertex reconstruction. The detector consists of identical sensor-chip-hybrid modules, arranged in three barrels in the centre and three disks on either side for the forward region. The position of the detector near the interaction point requires excellent radiation hardness, mechanical and thermal robustness, good long-term stability for all parts, combined with a low material budget. The final detector layout, new results from production modules and the status of assembly are presented.

  3. Radiation detectors laboratory

    International Nuclear Information System (INIS)

    Ramirez J, F.J.

    1996-01-01

    The National Institute for Nuclear Research has established a Radiation detector laboratory that has the possibility of providing to the consultants on the handling and applications of the nuclear radiation detectors. It has special equipment to repair the radiation detectors used in spectroscopy as the hyper pure Germanium for gamma radiation and the Lithium-silica for X-rays. There are different facilities in the laboratory that can become useful for other institutions that use radiation detectors. This laboratory was created to satisfy consultant services, training and repairing of the radiation detectors both in national and regional levels for Latin America. The laboratory has the following sections: Nuclear Electronic Instrumentation; where there are all kind of instruments for the measurement and characterization of detectors like multichannel analyzers of pulse height, personal computers, amplifiers and nuclear pulse preamplifiers, nuclear pulses generator, aleatories, computer programs for radiation spectra analysis, etc. High vacuum; there is a vacuum escape measurer, two high vacuum pumps to restore the vacuum of detectors, so the corresponding measurers and the necessary tools. Detectors cleaning; there is an anaerobic chamber for the detectors handling at inert atmosphere, a smoke extraction bell for cleaning with the detector solvents. Cryogenic; there are vessels and tools for handling liquid nitrogen which is used for cooling the detectors when they required it. (Author)

  4. First detector installed inside the ALICE solenoid...

    CERN Multimedia

    2006-01-01

    ALICE's emblematic red magnet welcomed its first detector on 23 September, when the array of seven Cherenkov detectors, named HMPID, was successfully installed. ALICE team members standing in front of the completed HMPID detector.The red magnet, viewed from its front opening. The HMPID unit, seen from the back (top right corner of photo) is placed on a frame and lifted onto a platform during the installation. After the installation of the ACORDE scintillator array and the muon trigger and tracking chambers, the ALICE collaboration fitted the first detector inside the solenoid. The HMPID, for High Momentum Particle Identification, was installed at the 2 o'clock position in the central and most external region of the space frame, just below the solenoid yoke. It will be used to extend the hadron identification capability of the ALICE experiment up to 5 GeV/c, thus complementing the reach of the other particle identification systems (ITS, TPC and TOF). The HMPID is a Ring Imaging Cherenkov (RICH) detector in a...

  5. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  6. The CPLEAR detector at CERN

    CERN Document Server

    Adler, R; Alhalel, T; Angelopoulos, Angelos; Apostolakis, Alcibiades J; Aslanides, Elie; Backenstoss, Gerhard; Bal, F; Bard, J P; Barraca, D; Bee, C P; Behnke, O; Benelli, A; Bennet, J; Bertin, V; Blanc, F; Bloch, P; Bonnet, M; Bula, C; Calzas, A; Carlson, P J; Carroll, M; Carvalho, J; Cawley, E; Charalambous, S; Chardalas, M; Chardin, G; Charra, P; Chertok, M B; Cody, A; Da Silva, J; Damianoglou, D; Daniel, R; Danielsson, M; Dechelette, Paul; Dedieu, M; Dedoussis, S; Dejardin, M; Derré, J; Dijksman, A; Dinkespiler, B; Dodgson, M; Dröge, M; Duclos, J; Dudragne, J; Durand, D; Ealet, A; Eckart, B; Eleftheriadis, C; Engster, Claude; Evangelou, I; Faravel, L; Fassnacht, P; Faure, J L; Felder, C; Ferreira-Marques, R; Fetscher, W; Fidecaro, Maria; Filipcic, A; Francis, D; Fry, J; Fuglesang, C; Gabathuler, Erwin; Gally, Y; Gamet, R; Garreta, D; Geiss, D; Geralis, R; Gerber, H J; Go, A; Gumplinger, P; Guyon, D; Guyot, C; Harrison, P; Harrison, P F; Haselden, A; Hayman, P J; Hazen, E S; Henry-Coüannier, F; Heyes, W G; Hollander, R W; Hubert, E; Jacobs, C; Jansson, K; Johner, H U; Jon-And, K; Karkour, N; Kérek, A; Kesseler, G; Kettle, P R; King, D; Klados, T; Kochowski, Claude; Kokkas, P; Kontek, K; Kreuger, R; Lawry, T; Lecouturier, T; Le Gac, R; Leimgruber, F; Linget, D; Liolios, A; Löfstedt, B; Louis, F; Machado, E; Maley, P; Mall, U; Mandic, I; Manthos, N; Marel, Gérard; Marin, C P; Martin, H; Michau, J C; Mikuz, M; Miller, J; Montanet, François; Nakada, Tatsuya; Nanni, F; Onofre, A; Pagels, B; Papadopoulos, I M; Pavlopoulos, P; Pelucchi, F; Petit, P; Philippoussis, K; Pinto da Cunha, J; Policarpo, Armando; Polivka, G; Postma, H; Rheme, C; Rickenbach, R; Roberts, B L; Rozaki, E; Ruf, T; Sacks, L; Sakelliou, L; Sanders, P; Santoni, C; Sarigiannis, K; Schäfer, M; Schaller, L A; Schietinger, T; Schopper, A; Schune, P; Soares, A; Steinacher, M; Tatsis, S; Tauscher, Ludwig; Thibault, C; Touchard, F; Touramanis, C; Triantis, F A; Tröster, D A; Tsamouranis, I; Tschopp, H; Tsilimigras, Panayiotis; Van Beveren, E; van Eijk, C W E; Van Koningsfeld, V; Vanuxem, J P; Varner, G S; Verweij, H; Vlachos, S; Warner, D; Watson, E; Weber, P; Wendler, H; Wigger, O; Witzig, C; Wolter, M; Yéche, C; Zavrtanik, D; Zimmerman, D

    1996-01-01

    The CPLEAR collaboration has constructed a detector at CERN for an extensive programme of CP-, T- and CPT-symmetry studies using ${\\rm K}^0$ and $\\bar{\\rm K}^0$ produced by the annihilation of $\\bar{\\rm p}$'s in a hydrogen gas target. The ${\\rm K}^0$ and $\\bar{\\rm K}^0$ are identified by their companion products of the annihilation ${\\rm K}^{\\pm} \\pi^{\\mp}$ which are tracked with multiwire proportional chambers, drift chambers and streamer tubes. Particle identification is carried out with a liquid Cherenkov detector for fast separation of pions and kaons and with scintillators which allow the measurement of time of flight and energy loss. Photons are measured with a lead/gas sampling electromagnetic calorimeter. The required antiproton annihilation modes are selected by fast online processors using the tracking chamber and particle identification information. All the detectors are mounted in a 0.44 T uniform field of an axial solenoid of diameter 2 m and length 3.6 m to form a magnetic spectrometer capable o...

  7. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  8. Large Superconducting Magnet Systems

    Energy Technology Data Exchange (ETDEWEB)

    Védrine, P [Saclay (France)

    2014-07-01

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  9. Advanced Alignment of the ATLAS Inner Detector

    CERN Document Server

    Stahlman, JM; The ATLAS collaboration

    2012-01-01

    The primary goal of the ATLAS Inner Detector (ID) is to measure the trajectories of charged particles in the high particle density environment of the Large Hadron Collider (LHC) collisions. This is achieved using a combination of different technologies, including silicon pixels, silicon microstrips, and gaseous drift-tubes, all immersed in a 2 Tesla magnetic field. With over one million alignable degrees of freedom, it is crucial that an accurate model of the detector positions be produced using an automated and robust algorithm in order to achieve good tracking performance. This has been accomplished using a variety of alignment techniques resulting in near optimal hit and momentum resolutions.

  10. Nuclear radiation detectors

    International Nuclear Information System (INIS)

    Kapoor, S.S.; Ramamurthy, V.S.

    1986-01-01

    The present monograph is intended to treat the commonly used detectors in the field of nuclear physics covering important developments of the recent years. After a general introduction, a brief account of interaction of radiation with matter relevant to the processes in radiation detection is given in Chapter II. In addition to the ionization chamber, proportional counters and Geiger Mueller counters, several gas-filled detectors of advanced design such as those recently developed for heavy ion physics and other types of studies have been covered in Chapter III. Semiconductor detectors are dealt with in Chapter IV. The scintillation detectors which function by sensing the photons emitted by the luminescence process during the interaction of the impinging radiation with the scintillation detector medium are described in Chapter V. The topic of neutron detectors is covered in Chapter VI, as in this case the emphasis is more on the method of neutron detection rather than on detector type. Electronic instrumentation related to signal pulse processing dealt with in Chapter VII. The track etch detectors based on the visualization of the track of the impinging charge particle have also been briefly covered in the last chapter. The scope of this monograph is confined to detectors commonly used in low and medium energy nuclear physics research and applications of nuclear techniques. The monograph is intended for post-graduate students and those beginning to work with the radiation detectors. (author)

  11. ATLAS Fact Sheet : To raise awareness of the ATLAS detector and collaboration on the LHC

    CERN Multimedia

    ATLAS Outreach

    2010-01-01

    Facts on the Detector, Calorimeters, Muon System, Inner Detector, Pixel Detector, Semiconductor Tracker, Transition Radiation Tracker,, Surface hall, Cavern, Detector, Magnet system, Solenoid, Toroid, Event rates, Physics processes, Supersymmetric particles, Comparing LHC with Cosmic rays, Heavy ion collisions, Trigger and Data Acquisition TDAQ, Computing, the LHC and the ATLAS collaboration. This fact sheet also contains images of ATLAS and the collaboration as well as a short list of videos on ATLAS available for viewing.

  12. Detectors for Particle Radiation

    Science.gov (United States)

    Kleinknecht, Konrad

    1999-01-01

    This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.

  13. Silicon Telescope Detectors

    CERN Document Server

    Gurov, Yu B; Sandukovsky, V G; Yurkovski, J

    2005-01-01

    The results of research and development of special silicon detectors with a large active area ($> 8 cm^{2}$) for multilayer telescope spectrometers (fulfilled in the Laboratory of Nuclear Problems, JINR) are reviewed. The detector parameters are listed. The production of totally depleted surface barrier detectors (identifiers) operating under bias voltage two to three times higher than depletion voltage is described. The possibility of fabrication of lithium drifted counters with a very thin entrance window on the diffusion side of the detector (about 10--20 $\\mu$m) is shown. The detector fabrication technique has allowed minimizing detector dead regions without degradation of their spectroscopic characteristics and reliability during long time operation in charge particle beams.

  14. Physics of scintillation detectors

    International Nuclear Information System (INIS)

    Novotny, R.

    1991-01-01

    The general concept of a radiation detector is based on three fundamental principles: sensitivity of the device to the radiation of interest which requires a large cross-section in the detector material, detector response function to the physical properties of the radiation. As an example, a scintillation detector for charged particles should allow to identify the charge of the particle, its kinetic energy and the time of impact combined with optimum resolutions. Optimum conversion of the detector response (like luminescence of a scintillator) into electronical signals for further processing. The following article will concentrate on the various aspects of the first two listed principles as far as they appear to be relevant for photon and charged particle detection using organic and inorganic scintillation detectors. (orig.)

  15. History of infrared detectors

    Science.gov (United States)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  16. The atlas detector

    International Nuclear Information System (INIS)

    Perrodo, P.

    2001-01-01

    The ATLAS detector, one of the two multi-purpose detectors at the Large Hadron Collider at CERN, is currently being built in order to meet the first proton-proton collisions in time. A description of the detector components will be given, corresponding to the most up to date design and status of construction, completed with test beam results and performances of the first serial modules. (author)

  17. Cherenkov water detector NEVOD

    Science.gov (United States)

    Petrukhin, A. A.

    2015-05-01

    A unique multipurpose Cherenkov water detector, the NEVOD facility, uses quasispherical measuring modules to explore all the basic components of cosmic rays on Earth's surface, including neutrinos. Currently, the experimental complex includes the Cherenkov water detector, a calibration telescope system, and a coordinate detector. This paper traces the basic development stages of NEVOD, examines research directions, presents the results obtained, including the search for the solution to the 'muon puzzle', and discusses possible future development prospects.

  18. Noble Gas Detectors

    CERN Document Server

    Aprile, Elena; Bolozdynya, Alexander I; Doke, Tadayoshi

    2006-01-01

    This book discusses the physical properties of noble fluids, operational principles of detectors based on these media, and the best technical solutions to the design of these detectors. Essential attention is given to detector technology: purification methods and monitoring of purity, information readout methods, electronics, detection of hard ultra-violet light emission, selection of materials, cryogenics etc.The book is mostly addressed to physicists and graduate students involved in the preparation of fundamental next generation experiments, nuclear engineers developing instrumentation

  19. Study on Silicon detectors

    International Nuclear Information System (INIS)

    Gervino, G.; Boero, M.; Manfredotti, C.; Icardi, M.; Gabutti, A.; Bagnolatti, E.; Monticone, E.

    1990-01-01

    Prototypes of Silicon microstrip detectors and Silicon large area detectors (3x2 cm 2 ), realized directly by our group, either by ion implantation or by diffusion are presented. The physical detector characteristics and their performances determined by exposing them to different radioactive sources and the results of extensive tests on passivation, where new technological ways have been investigated, are discussed. The calculation of the different terms contributing to the total dark current is reported

  20. The solenoidal detector collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems (STS) will be fundamental components of the tracking systems for both planned major SSC experiments. The STS is physically a small part of the central tracking system and the calorimeter of the detector being proposed by the Solenoidal Detector Collaboration (SDC). Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. The STS will consist of silicon microstrip detectors and possibly silicon pixel detectors. The other two components are an outer barrel tracker, which will consist of straw tubes or scintillating fibers; and an outer intermediate angle tracker, which will consist of gas microstrips. The components are designed to work as an integrated system. Each componenet has specific strengths, but is individually incapable of providing the overall performance required by the physics goals of the SSC. The large particle fluxes, the short times between beam crossing, the high channel count, and the required very high position measurement accuracy pose challenging problems that must be solved. Furthermore, to avoid degrading the measurements, the solutions must be achieved using only a minimal amount of material. An additional constraint is that only low-Z materials are allowed. If that were not difficlut enough, the solutions must also be affordable

  1. LHCb Detector Performance

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cogoni, Violetta; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Crocombe, Andrew; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graverini, Elena; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Penso, Gianni; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polyakov, Ivan; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skillicorn, Ian; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2015-03-05

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.

  2. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS (A Toroidal LHC Apparatus). The ALFA system is composed by four stations installed in the LHC tunnel 240 m away from the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronics for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  3. ALFA Detector Control System

    CERN Document Server

    Oleiro Seabra, Luis Filipe; The ATLAS collaboration

    2015-01-01

    ALFA (Absolute Luminosity For ATLAS) is one of the sub-detectors of ATLAS/LHC. The ALFA system is composed by two stations installed in the LHC tunnel 240 m away from each side of the ATLAS interaction point. Each station has a vacuum and ventilation system, movement control and all the required electronic for signal processing. The Detector Control System (DCS) provides control and monitoring of several components and ensures the safe operation of the detector contributing to good Data Quality. This paper describes the ALFA DCS system including a detector overview, operation aspects and hardware control through a SCADA system, WinCC OA.

  4. The LHC detector challenge

    CERN Document Server

    Virdee, Tejinder S

    2004-01-01

    The Large Hadron Collider (LHC) from CERN, scheduled to come online in 2007, is a multi-TeV proton-proton collider with vast detectors. Two of the more significant detectors for LHC are ATLAS and CMS. Currently, both detectors are more than 65% complete in terms of financial commitment, and the experiments are being assembled at an increasing pace. ATLAS is being built directly in its underground cavern, whereas CMS is being assembled above ground. When completed, both detectors will aid researchers in determining what lies at the high-energy frontier, in particular the mechanism by which particles attain mass. (Edited abstract).

  5. SSC detector solenoid

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, E.D.; Wands, R.H.

    1989-01-01

    A detector utilizing a superconducting solenoid is being discussed for the Superconducting Super Collider (SSC). A useful field volume of 8 m diameter x 16 m length at 1.5-2 T (--1 GJ at 2T) is required. It has been decided that all of the particle physics calorimetry will be inside the bore of the solenoid and that there is no need for the coil and cryostat to be ''thin'' in radiation lengths. An iron yoke will reduce the excitation required and will provide muon identification and a redundant momentum measurement of the muons. The authors have developed a conceptual design to meet these requirements. The magnet will use a copper-stabilized Nb-Ti conductor sized for a cryostable pool boiling heat flux --0.025 W/cm/sup 2/. A thermosiphon from a storage vessel above the cryostat will be used to prevent bubble stagnation in the liquid helium bath. The operating current, current density, coil subdivision and dump resistor have been chosen to guarantee that the coil will be undamaged should a quench occur. The axial electromagnetic force will be reacted by metallic support links; the stainless steel coil case will support the radial force. The 5000 metric tons of calorimetry will be supported from the iron yoke through a trussed cylindrical shell structure separate from the cryostat. The coil and case, radiation shield and stainless vacuum vessel would be fabricated and cryogenically tested as two 8-m sections. These would be lowered into the underground experimental hall and installed into the iron flux return yoke to provide the required 16-m length

  6. Use of a new ion-detector in the study of the jet plasma injected into a pulsed magnetic mirror configuration (deca I); Utilisation d'un nouveau detecteur d'ions dans l'etude du jet de plasma injecte dans deca I

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, C [Association Euratom-CEA Cadarache, Groupe de Recherches sur la Fusion Controlee, 13 - Saint-Paul-lez-Durance (France). Centre d' Etudes Nucleaires

    1963-07-01

    The study of a high sensitivity ion detector coupled to an electrostatic analyser has permitted a large investigation of the plasma jet injected into a pulsed magnetic mirror configuration. In this detector the positive ions are accelerated through a potential of 30 kV; they strike a metallic target, on which they produce secondary electrons; these, in turn, are accelerated onto a plastic scintillator. The light pulses are detected with a photomultiplier. The gain of this device is about 10{sup 7}. If we make an admission of air into the vacuum system and again we make vacuum, the gain is not modified, since no special activated surfaces are situated in the detector. (author) [French] L'etude d'un detecteur d'ions de grande sensibilite, allie a un analyseur electrostatique a permis une investigation approfondie du jet de plasma injecte dans le dispositif d'Etude de Compression Adiabatique. Dans ce detecteur, les ions positifs sont acceleres par une difference de potentiel voisine de 30 kV, ils bombardent une cible metallique et creent des electrons secondaires qui sont a leur tour acceleres vers un scintillateur plastique. Les impulsions lumineuses sont alors detectees par un photomultiplicateur. Le gain obtenu pour l'ensemble du detecteur est voisin de 10{sup 7}. Le detecteur ne possedant pas de surfaces specialement activees, les remises a l'air n'entrainent pas de variation de gain. (auteur)

  7. Preparation of bubble damage detectors

    International Nuclear Information System (INIS)

    Tu Caiqing; Guo Shilun; Wang Yulan; Hao Xiuhong; Chen Changmao; Su Jingling

    1997-01-01

    Bubble damage detectors have been prepared by using polyacrylamide as detector solid and freon as detector liquid. Tests show that the prepared detectors are sensitive to fast neutrons and have proportionality between bubble number and neutron fluence within a certain range of neutron fluence. Therefore, it can be used as a fast neutron detector and a dosimeter

  8. Collider and Detector Protection at Beam Accidents

    Science.gov (United States)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  9. Collider and Detector Protection at Beam Accidents

    International Nuclear Information System (INIS)

    Rakhno, I.L.; Mokhov, N.V.; Drozhdin, A.I.

    2003-01-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section

  10. Collider and detector protection at beam accidents

    International Nuclear Information System (INIS)

    Rakhno, I.L.; Mokhov, N.V.; Drozhdin, A.I.

    2003-01-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occurred at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section

  11. Monopole-track characteristics in plastic detectors

    Science.gov (United States)

    Ahlen, S. P.

    1976-01-01

    Total and restricted energy loss rates are calculated for magnetic monopoles of charge g = 137 e in Lexan polycarbonate. Range-energy curves are also presented. The restricted-energy-loss model is used to estimate the appearance of a monopole track in plastic detectors. The results are applied to the event observed by Price et al. and identified by them as a monopole. It is found that the observed etch rate is consistent with what one would expect for a slow magnetic monopole. These results should also be of use to other investigators for both the design and analysis of monopole experiments.

  12. The Forward Muon Detector of L3

    CERN Document Server

    Adam, A; Alarcon, J; Alberdi, J; Alexandrov, V S; Aloisio, A; Alviggi, M G; Anderhub, H; Ariza, M; Azemoon, T; Aziz, T; Bakker, F; Banerjee, S; Banicz, K; Barcala, J M; Becker, U; Berdugo, J; Berges, P; Betev, B L; Biland, A; Bobbink, Gerjan J; Böck, R K; Böhm, A; Borisov, V S; Bosseler, K; Bouvier, P; Brambilla, Elena; Burger, J D; Burgos, C; Buskens, J; Carlier, J C; Carlino, G; Causaus, J; Cavallo, N; Cerjak, I; Cerrada-Canales, M; Chang, Y H; Chen, H S; Chendvankar, S R; Chvatchkine, V B; Daniel, M; De Asmundis, R; Decreuse, G; Deiters, K; Djambazov, L; Duraffourg, P; Erné, F C; Esser, H; Ezekiev, S; Faber, G; Fabre, M; Fernández, G; Freudenreich, Klaus; Fritschi, M; García-Abia, P; González, A; Gurtu, A; Gutay, L J; Haller, C; Herold, W D; Herrmann, J M; Hervé, A; Hofer, H; Höfer, M; Hofer, T; Homma, J; Horisberger, Urs; Horváth, I L; Ingenito, P; Innocente, Vincenzo; Ioudine, I; Jaspers, M; de Jong, P; Kästli, W; Kaspar, H; Kitov, V; König, A C; Koutsenko, V F; Lanzano, S; Lapoint, C; Lebedev, A; Lecomte, P; Lista, L; Lübelsmeyer, K; Lustermann, W; Ma, J M; Milesi, M; Molinero, A; Montero, A; Moore, R; Nahn, S; Navarrete, J J; Okle, M; Orlinov, I; Ostojic, R; Pandoulas, D; Paolucci, P; Parascandolo, P; Passeggio, G; Patricelli, S; Peach, D; Piccolo, D; Pigni, L; Postema, H; Puras, C; Ren, D; Rewiersma, P A M; Rietmeyer, A; Riles, K; Risco, J; Robohm, A; Rodin, J; Röser, U; Romero, L; Van Rossum, W; Rykaczewski, H; Sarakinos, M E; Sassowsky, M; Shchegelskii, V; Scholz, N; Schultze, K; Schuylenburg, H; Sciacca, C; Seiler, P G; Siedenburg, T; Siedling, R; Smith, B; Soulimov, V; Sadhakar, K; Syben, O; Tonutti, M; Udovcic, A; Ulbricht, J; Veillet, L; Vergain, M; Viertel, Gert M; Von Gunten, H P; Vorobyov, A A; Vrankovic, V; De Waard, A; Waldmeier-Wicki, S; Wallraff, W; Walter, H C; Wang, J C; Wei, Z L; Wetter, R; Willmott, C; Wittgenstein, F; Wu, R J; Yang, K S; Zhou, L; Zhou, Y; Zuang, H L

    1996-01-01

    The Forward-Backward muon detector of the L3 experiment is presented. Intended to be used for LEP 200 physics, it consists of 96 self-calibrating drift chambers of a new design enclosing the magnet pole pieces of the L3 solenoid. The pole pieces are toroidally magnetized to form two independent analyzing spectrometers. A novel trigger is provided by resistive plate counters attached to the drift chambers. Details about the design, construction and performance of the whole system are given together with results obtained during the 1995 running at LEP.

  13. The GEM Detector projective alignment simulation system

    International Nuclear Information System (INIS)

    Wuest, C.R.; Belser, F.C.; Holdener, F.R.; Roeben, M.D.; Paradiso, J.A.; Mitselmakher, G.; Ostapchuk, A.; Pier-Amory, J.

    1993-01-01

    Precision position knowledge (< 25 microns RMS) of the GEM Detector muon system at the Superconducting Super Collider Laboratory (SSCL) is an important physics requirement necessary to minimize sagitta error in detecting and tracking high energy muons that are deflected by the magnetic field within the GEM Detector. To validate the concept of the sagitta correction function determined by projective alignment of the muon detectors (Cathode Strip Chambers or CSCs), the basis of the proposed GEM alignment scheme, a facility, called the ''Alignment Test Stand'' (ATS), is being constructed. This system simulates the environment that the CSCs and chamber alignment systems are expected to experience in the GEM Detector, albeit without the 0.8 T magnetic field and radiation environment. The ATS experimental program will allow systematic study and characterization of the projective alignment approach, as well as general mechanical engineering of muon chamber mounting concepts, positioning systems and study of the mechanical behavior of the proposed 6 layer CSCs. The ATS will consist of a stable local coordinate system in which mock-ups of muon chambers (i.e., non-working mechanical analogs, representing the three superlayers of a selected barrel and endcap alignment tower) are implemented, together with a sufficient number of alignment monitors to overdetermine the sagitta correction function, providing a self-consistency check. This paper describes the approach to be used for the alignment of the GEM muon system, the design of the ATS, and the experiments to be conducted using the ATS

  14. Detection of atmospheric muons with ALICE detectors

    International Nuclear Information System (INIS)

    Alessandro, B.; Cortes Maldonado, I.; Cuautle, E.; Fernandez Tellez, A.; Gomez Jimenez, R.; Gonzalez Santos, H.; Herrera Corral, G.; Leon, I.; Martinez, M.I.; Munoz Mata, J.L.; Podesta, P.; Ramirez Reyes, A.; Rodriguez Cahuantzi, M.; Sitta, M.; Subieta, M.; Tejeda Munoz, G.; Vargas, A.; Vergara, S.

    2010-01-01

    The calibration, alignment and commissioning of most of the ALICE (A Large Ion Collider Experiment at the CERN LHC) detectors have required a large amount of cosmic events during 2008. In particular two types of cosmic triggers have been implemented to record the atmospheric muons passing through ALICE. The first trigger, called ACORDE trigger, is performed by 60 scintillators located on the top of three sides of the large L3 magnet surrounding the central detectors, and selects atmospheric muons. The Silicon Pixel Detector (SPD) installed on the first two layers of the Inner Tracking System (ITS) gives the second trigger, called SPD trigger. This trigger selects mainly events with a single atmospheric muon crossing the SPD. Some particular events, in which the atmospheric muon interacts with the iron of the L3 magnet and creates a shower of particles crossing the SPD, are also selected. In this work the reconstruction of events with these two triggers will be presented. In particular, the performance of the ACORDE detector will be discussed by the analysis of multi-muon events. Some physical distributions are also shown.

  15. ALICE Photon Multiplicity Detector

    CERN Multimedia

    Nayak, T

    2013-01-01

    Photon Multiplicity Detector (PMD) measures the multiplicity and spatial distribution of photons in the forward region of ALICE on a event-by-event basis. PMD is a pre-shower detector having fine granularity and full azimuthal coverage in the pseudo-rapidity region 2.3 < η < 3.9.

  16. New detector concepts

    International Nuclear Information System (INIS)

    Kemmer, J.; Lutz, G.

    1986-07-01

    On the basis of the semiconductor drift chamber many new detectors are proposed, which enable the determination of energy, energy loss, position and penetration depth of radiation. A novel integrated transistor-detector configuration allows non destructive repeated readout and amplification of the signal. The concept may be used for the construction of one or two-dimensional PIXEL arrays. (orig.)

  17. Stanford's big new detector

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    A detector constructed for the Standford Linear Collider is described. It consists of a central drift chamber in the field of a surrounding superconducting solenoid. Furthermore included are a Cherenkov ring imaging detector for particle identification and a liquid argon calorimeter. (HSI).

  18. Pixel detector readout chip

    CERN Multimedia

    1991-01-01

    Close-up of a pixel detector readout chip. The photograph shows an aera of 1 mm x 2 mm containing 12 separate readout channels. The entire chip contains 1000 readout channels (around 80 000 transistors) covering a sensitive area of 8 mm x 5 mm. The chip has been mounted on a silicon detector to detect high energy particles.

  19. Drift chamber detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez Laso, L.

    1989-01-01

    A review of High Energy Physics detectors based on drift chambers is presented. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysied, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author)

  20. Drift Chambers detectors

    International Nuclear Information System (INIS)

    Duran, I.; Martinez laso, L.

    1989-01-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs

  1. Solid state track detectors

    International Nuclear Information System (INIS)

    Reuther, H.

    1976-11-01

    This paper gives a survey of the present state of the development and the application of solid state track detectors. The fundamentals of the physical and chemical processes of the track formation and development are explained, the different detector materials and their registration characteristics are mentioned, the possibilities of the experimental practice and the most variable applications are discussed. (author)

  2. LHCb detector performance

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinol, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreassen, R.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Belogurov, S.; Onderwater, C. J. G.; Pellegrino, A.; Wilschut, H. W.

    2015-01-01

    The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are

  3. The LDC detector concept

    Indian Academy of Sciences (India)

    Abstract. In preparation of the experimental program at the international linear collider (ILC), the large detector concept (LDC) is being developed. The main points of the LDC are a large volume gaseous tracking system, combined with high precision vertex detector and an extremely granular calorimeter. The main design ...

  4. Detector Systems at CLIC

    CERN Document Server

    Simon, Frank

    2011-01-01

    The Compact Linear Collider CLIC is designed to deliver e+e- collisions at a center of mass energy of up to 3 TeV. The detector systems at this collider have to provide highly efficient tracking and excellent jet energy resolution and hermeticity for multi-TeV final states with multiple jets and leptons. In addition, the detector systems have to be capable of distinguishing physics events from large beam-induced background at a crossing frequency of 2 GHz. Like for the detector concepts at the ILC, CLIC detectors are based on event reconstruction using particle flow algorithms. The two detector concepts for the ILC, ILD and SID, were adapted for CLIC using calorimeters with dense absorbers limiting leakage through increased compactness, as well as modified forward and vertex detector geometries and precise time stamping to cope with increased background levels. The overall detector concepts for CLIC are presented, with particular emphasis on the main detector and engineering challenges, such as: the ultra-thi...

  5. Future particle detector systems

    International Nuclear Information System (INIS)

    Clark, Allan G.

    2000-01-01

    Starting with a short summary of the major new experimental physics programs, we attempt to motivate the reasons why existing general-purpose detectors at Hadron Colliders are what they are, why they are being upgraded, and why new facilities are being constructed. The CDF and ATLAS detectors are used to illustrate these motivations. Selected physics results from the CDF experiment provide evidence for limitations on the detector performance, and new physics opportunities motivate both machine and detector upgrades. This is discussed with emphasis on the improved physics reach of the CDF experiment at the Fermilab Tevatron (√(s)=2 TeV). From 2005, the Large Hadron Collider (LHC) at CERN will become operational at a collision energy of √(s)=14 TeV, seven times larger than at the Tevatron Collider. To exploit the physics capability of the LHC, several large detectors are being constructed. The detectors are significantly more complex than those at the Tevatron Collider because of physics and operational constraints. The detector design and technology of the aspects of the large general-purpose detector ATLAS is described

  6. Developments on RICH detectors

    International Nuclear Information System (INIS)

    Besson, P.; Bourgeois, P.

    1996-01-01

    The RICH (ring imaging Cherenkov) detector which is dedicated to Cherenkov radiation detection is described. An improvement made by replacing photo sensible vapor with solid photocathode is studied. A RICH detector prototype with a CsI photocathode has been built in Saclay and used with Saturne. The first results are presented. (A.C.)

  7. ALICE Silicon Strip Detector

    CERN Multimedia

    Nooren, G

    2013-01-01

    The Silicon Strip Detector (SSD) constitutes the two outermost layers of the Inner Tracking System (ITS) of the ALICE Experiment. The SSD plays a crucial role in the tracking of the particles produced in the collisions connecting the tracks from the external detectors (Time Projection Chamber) to the ITS. The SSD also contributes to the particle identification through the measurement of their energy loss.

  8. Design and construction of the SAPHIR detector

    International Nuclear Information System (INIS)

    Schwille, W.J.; Bockhorst, M.; Burbach, G.; Burgwinkel, R.; Empt, J.; Guse, B.; Haas, K.M.; Hannappel, J.; Heinloth, K.; Hey, T.; Honscheid, K.; Jahnen, T.; Jakob, H.P.; Joepen, N.; Juengst, H.; Kirch, U.; Klein, F.J.; Kostrewa, D.; Lindemann, L.; Link, J.; Manns, J.; Menze, D.; Merkel, H.; Merkel, R.; Neuerburg, W.; Paul, E.; Ploetzke, R.; Schenk, U.; Schmidt, S.; Scholmann, J.; Schuetz, P.; Schultz-Coulon, H.C.; Schweitzer, M.; Tran, M.Q.; Vogl, W.; Wedemeyer, R.; Wehnes, F.; Wisskirchen, J.; Wolf, A.

    1994-01-01

    The design, construction, and performance of the large solid angle magnetic spectrometer SAPHIR is described. It was built for the investigation of photon-induced reactions on nucleous and light nuclei with mulit-particle final states up to photon energies of 3.1 GeV. The detector is equipped with a tagged photon beam facility and is operated at the stretcher ring ELSA in Bonn. (orig.)

  9. Design and construction of the SAPHIR detector

    Energy Technology Data Exchange (ETDEWEB)

    Schwille, W.J. (Bonn Univ. (Germany). Physikalisches Inst.); Bockhorst, M. (Bonn Univ. (Germany). Physikalisches Inst.); Burbach, G. (Bonn Univ. (Germany). Physikalisches Inst.); Burgwinkel, R. (Bonn Univ. (Germany). Physikalisches Inst.); Empt, J. (Bonn Univ. (Germany). Physikalisches Inst.); Guse, B. (Bonn Univ. (Germany). Physikalisches Inst.); Haas, K.M. (Bonn Univ. (Germany). Physikalisches Inst.); Hannappel, J. (Bonn Univ. (Germany). Physikalisches Inst.); Heinloth, K. (Bonn Univ. (Germany). Physikalisches Inst.); Hey, T. (Bonn Univ. (Germany). Physikalisches Inst.); Honscheid, K. (Bonn Univ. (Germany). Physikalisches Inst.); Jahnen, T. (Bonn Univ. (Germany). Physikalisches Inst.); Jakob, H.P. (Bonn Univ. (Germany). Physikalisches Inst.); Joepen, N. (Bonn Univ. (Germany). Physikalisches Inst.); Juengst, H. (Bonn Univ. (Germany). Physikalisches Inst.); Kirch, U. (Bonn Univ. (Germany). Physikalisches Inst.); Klein, F.J. (Bonn Univ. (Germany). Physikalisches Inst.)

    1994-05-15

    The design, construction, and performance of the large solid angle magnetic spectrometer SAPHIR is described. It was built for the investigation of photon-induced reactions on nucleous and light nuclei with mulit-particle final states up to photon energies of 3.1 GeV. The detector is equipped with a tagged photon beam facility and is operated at the stretcher ring ELSA in Bonn. (orig.)

  10. The GDH-Detector

    CERN Document Server

    Helbing, K; Fausten, M; Menze, D; Michel, T; Nagel, A; Ryckbosch, D; Speckner, T; Vyver, R V D; Zeitler, G

    2002-01-01

    For the GDH-Experiment at ELSA, the helicity dependent total photoabsorption cross-section is to be determined. These measurements will be performed with the newly developed GDH-Detector which is presented here. The concept of the GDH-Detector is to detect at least one reaction product from all possible hadronic processes with almost complete acceptance concerning solid angle and efficiency. This is realized by an arrangement of scintillators and lead. The overall acceptance for hadronic processes is better than 99%. The electromagnetic background is suppressed by about five orders of magnitude by means of a threshold Cherenkov detector. In dedicated tests, it has been demonstrated that all individual components of the GDH-Detector fulfill the design goals. Measurements of unpolarized total photoabsorption cross-sections were performed to ensure that the complete GDH-Detector is operational.

  11. Introduction to detectors

    CERN Document Server

    Walenta, Albert H

    1995-01-01

    Concepts for momentum measurements,particle identification and energy measurements (calorimeters) as well for imaging applications in medecine, biology and industry (non destructive testing) will be put into relation to the specific detection princip In particular the resolution for position, time, energy and intensity measurement and the efficiency will be discussed. Signal extraction,electronic signal processing and principles of information capture will close the logic circle to the input : the radiation properties.The lecture will provide some sources for data tables and small demonstration computer programs f The basic detector physics as interaction of radiation with matter, information transport via free charges,photons and phonons and the signal formation will be presented in some depth with emphasis on the influence on specific parameters for detector The lecture will cover the most popular detector principles, gas detectors (ion chambers,MPWC's and MSGC's), semiconductor detectors scintillators and ...

  12. ATLAS ITk Pixel detector

    CERN Document Server

    Gemme, Claudia; The ATLAS collaboration

    2016-01-01

    The high luminosity upgrade of the LHC (HL-LHC) in 2026 will provide new challenge to the ATLAS tracker. The current inner detector will be replaced with a whole silicon tracker which will consist of a five barrel layer Pixel detector surrounded by a four barrel layer Strip detector. The expected high radiation level are requiring the development of upgraded silicon sensors as well as new a front-end chip. The dense tracking environment will require finer granularity detectors. The data rates will require new technologies for high bandwidth data transmission and handling. The current status of the HL-LHC ATLA Pixel detector developments as well as the various layout options will be reviewed.

  13. Advanced far infrared detectors

    International Nuclear Information System (INIS)

    Haller, E.E.

    1993-05-01

    Recent advances in photoconductive and bolometric semiconductor detectors for wavelength 1 mm > λ > 50 μm are reviewed. Progress in detector performance in this photon energy range has been stimulated by new and stringent requirements for ground based, high altitude and space-borne telescopes for astronomical and astrophysical observations. The paper consists of chapters dealing with the various types of detectors: Be and Ga doped Ge photoconductors, stressed Ge:Ga devices and neutron transmutation doped Ge thermistors. Advances in the understanding of basic detector physics and the introduction of modern semiconductor device technology have led to predictable and reliable fabrication techniques. Integration of detectors into functional arrays has become feasible and is vigorously pursued by groups worldwide

  14. Charged corpuscular beam detector

    Energy Technology Data Exchange (ETDEWEB)

    Hikawa, H; Nishikawa, Y

    1970-09-29

    The present invention relates to a charged particle beam detector which prevents transient phenomena disturbing the path and focusing of a charged particle beam travelling through a mounted axle. The present invention provides a charged particle beam detector capable of decreasing its reaction to the charge in energy of the charged particle beam even if the relative angle between the mounted axle and the scanner is unstable. The detector is characterized by mounting electrically conductive metal pieces of high melting point onto the face of a stepped, heat-resistant electric insulating material such that the pieces partially overlap each other and individually provide electric signals, whereby the detector is no longer affected by the beam. The thickness of the metal piece is selected so that an eddy current is not induced therein by an incident beam, thus the incident beam is not affected. The detector is capable of detecting a misaligned beam since the metal pieces partially overlap each other.

  15. The Solenoidal Detector Collaboration silicon detector system

    International Nuclear Information System (INIS)

    Ziock, H.J.; Gamble, M.T.; Miller, W.O.; Palounek, A.P.T.; Thompson, T.C.

    1992-01-01

    Silicon tracking systems will be fundamental components of the tracking systems for both planned major SSC experiments. Despite its seemingly small size, it occupies a volume of more than 5 meters in length and 1 meter in diameter and is an order of magnitude larger than any silicon detector system previously built. This report discusses its design and operation

  16. CDF [Collider Detector at Fermilab] detector simulation

    International Nuclear Information System (INIS)

    Freeman, J.

    1987-12-01

    The Collider Detector at Fermilab (CDF) uses several different simulation programs, each tuned for specific applications. The programs rely heavily on the extensive test beam data that CDF has accumulated. Sophisticated shower parameterizations are used, yielding enormous gains in speed over full cascade programs. 3 refs., 5 figs

  17. Flat detectors and their clinical applications

    International Nuclear Information System (INIS)

    Spahn, Martin

    2005-01-01

    Diagnostic and interventional flat detector X-ray systems are penetrating the market in all application segments. First introduced in radiography and mammography, they have conquered cardiac and general angiography and are getting increasing attention in fluoroscopy. Two flat detector technologies prevail. The dominating method is based on an indirect X-ray conversion process, using cesium iodide scintillators. It offers considerable advantages in radiography, angiography and fluoroscopy. The other method employs a direct converter such as selenium which is particularly suitable for mammography. Both flat detector technologies are based on amorphous silicon active pixel matrices. Flat detectors facilitate the clinical workflow in radiographic rooms, foster improved image quality and provide the potential to reduce dose. This added value is based on their large dynamic range, their high sensitivity to X-rays and the instant availability of the image. Advanced image processing is instrumental in these improvements and expand the range of conventional diagnostic methods. In angiography and fluoroscopy the transition from image intensifiers to flat detectors is facilitated by ample advantages they offer, such as distortion-free images, excellent coarse contrast, large dynamic range and high X-ray sensitivity. These characteristics and their compatibility with strong magnetic fields are the basis for improved diagnostic methods and innovative interventional applications. (orig.)

  18. The MACRO detector at Gran Sasso

    International Nuclear Information System (INIS)

    Ambrosio, M.; Antolini, R.; Assiro, R.; Auriemma, G.; Bakari, D.; Baldini, A.; Barbarino, G.C.; Barbarito, E.; Barish, B.C.; Battistoni, G.; Becherini, Y.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bottazzi, E.; Bower, C.; Brigida, M.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Candela, A.; Carboni, M.; Cecchini, S.; Cei, F.; Ceres, A.; Chiarella, V.; Choudhary, B.C.; Coutu, S.; Cozzi, M.; Creti, P.; De Cataldo, G.; Esposti, L.D.L. Degli; Dekhissi, H.; Marzo, C. De; Mitri, I. De; Derkaoui, J.; Vincenzi, M. De; Credico, A. Di; Ferdinando, D. Di; Diotallevi, R.; Erriquez, O.; Favuzzi, C.; Forti, C.; Fusco, P.; Gebhard, M.; Giacomelli, G.; Giacomelli, R.; Giannini, G.; Giglietto, N.; Giorgini, M.; Giuliani, R.; Goretti, M.; Grassi, M.; Grau, H.; Gray, L.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Hanson, J.; Hanson, K.; Hawthorne, A.; Heinz, R.; Hong, J.T.; Iarocci, E.; Katsavounidis, E.; Katsavounidis, I.; Kearns, E.; Kim, H.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Leone, A.; Levin, D.S.; Lipari, P.; Liu, G.; Liu, R.; Longley, N.P.; Longo, M.J.; Loparco, F.; Maaroufi, F.; Mancarella, G.; Mandrioli, G.; Manzoor, S.; Marrelli, V.; Margiotta, A.; Marini, A.; Martello, D.; Marzari-Chiesa, A.; Mazziotta, M.N.; Michael, D.G.; Mikheyev, S.; Miller, L.; Monacelli, P.; Mongelli, M.; Montaruli, T.; Monteno, M.; Mossbarger, L.; Mufson, S.; Musser, J.; Nicolo, D.; Nolty, R.; Okada, C.; Orsini, M.; Orth, C.; Osteria, G.; Ouchrif, M.; Palamara, O.; Parlati, S.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Pellizzoni, G.; Perchiazzi, M.; Perrone, L.; Petrakis, J.; Petrera, S.; Pignatano, N.; Pinto, C.; Pistilli, P.; Popa, V.; Raino, A.; Reynoldson, J.; Ronga, F.; Rrhioua, A.; Sacchetti, A.; Saggese, P.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra, P.; Sioli, M.; Sirri, G.; Sitta, M.; Sondergaard, S.; Spinelli, P.; Spinetti, M.; Spurio, M.; Stalio, S.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Togo, V.; Vakili, M.; Valieri, C.; Walter, C.W.; Webb, R.; Zaccheo, N.

    2002-01-01

    MACRO was an experiment that ran in the Laboratori Nazionali del Gran Sasso from 1988 to 2000. Its principal goal was to observe magnetic monopoles or set significantly lower experimental flux limits than had been previously available in the velocity range from about β=10 -4 to unity. In addition it made a variety of other observations. Examples are: setting flux limits on other so far unobserved particles such as nuclei and lightly ionizing particles, searching for WIMP annihilations in the Earth and the Sun and for neutrino bursts from stellar collapses in or near our Galaxy, and making measurements relevant to high energy muon and neutrino astronomy and of the flux of up-going muons as a function of nadir angle showing evidence for neutrino oscillations. The apparatus consisted of three principal types of detectors: liquid scintillator counters, limited streamer tubes, and nuclear track etch detectors. In addition, over part of its area it contained a transition radiation detector. The general design philosophy emphasized redundancy and complementarity. This paper describes the technical aspects of the complete MACRO detector, its operational performance, and the techniques used to calibrate it and verify its proper operation. It supplements a previously published paper which described the first portion of the detector that was built and operated

  19. New detectors for powders diagrams

    International Nuclear Information System (INIS)

    Convert, P.

    1975-01-01

    During the last few years, all the classical neutron diffractometers for powders have used one or maybe a few counters. So, it takes a long time to obtain a diagram which causes many disadvantages: 1) very long experiments: one or two days (or flux on the sample about 10 6 n/cm 2 /a); 2) necessity of big samples: many cm 3 ; 3) necessity of having the whole diagram before changing anything in the experiment: magnetic field, temperature, quality of the sample; 4) necessity of having collimators of a few times ten minutes to obtain correct statistics in the diagram. Because of these disadvantages, several attempts have been made to speed up the experimental procedure such as using more counters, the detection of neutrons on a resistive wire, etc. In Grenoble, new position-sensitive detectors have been constructed using a digital technique

  20. First runs with the ORPHEUS dark matter detector

    CERN Document Server

    Czapek, G; Hauser, M; Janos, S; Loaiza, P; Moser, U; Pretzl, K; Brandt, B V D; Konter, J A; Mango, S; Ebert, T; Kainer, K U; Knoop, K M

    2002-01-01

    The ORPHEUS dark matter experiment is completed at our shallow depth laboratory in Bern (70 m.w.e.). The detector relies on measuring the magnetic flux variation produced by weakly interacting massive particles (WIMPs) as they heat 30 mu m diameter superheated superconducting tin granules (SSG) and induce superconducting-to-normal phase transitions. In an initial phase, 0.45 kg of tin granules in a segmented detector volume have been used. Preliminary results of the experiment will be reported.

  1. Conceptual design of a 2 tesla superconducting solenoid for the Fermilab D{O} detector upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Brzezniak, J.; Fast, R.W.; Krempetz, K.

    1994-05-01

    This paper presents a conceptual design of a superconducting solenoid to be part of a proposed upgrade for the D0 detector. This detector was completed in 1992, and has been taking data since then. The Fermilab Tevatron had scheduled a series of luminosity enhancements prior to the startup of this detector. In response to this accelerator upgrade, efforts have been underway to design upgrades for D0 to take advantage of the new luminosity, and improvements in detector technology. This magnet is conceived as part of the new central tracking system for D0, providing a radiation-hard high-precision magnetic tracking system with excellent electron identification.

  2. Fast track-finding trigger processor for the SLAC/LBL Mark II Detector

    International Nuclear Information System (INIS)

    Brafman, H.; Breidenbach, M.; Hettel, R.; Himel, T.; Horelick, D.

    1977-10-01

    The SLAC/LBL Mark II Magnetic Detector consists of various particle detectors arranged in cylindrical symmetry located in and around an axial magnetic field. A versatile, programmable secondary trigger processor was designed and built to find curved tracks in the detector. The system operates at a 10 MHz clock rate with a total processing time of 34 μsec and is used to ''trigger'' the data processing computer, thereby rejecting background and greatly improving the data acquisition aspects of the detector-computer combination

  3. Arc detector system for extraction switches in LHC CERN

    CERN Document Server

    Dahlerup-Petersen, K; Kuper, E; Ovchar, V; Zverev, S

    2006-01-01

    The opening switches, which will be used in case of quenches or other failures in CERN’s future LHC collider to extract the large amounts of energy stored in the magnetic field of the superconducting chains of main dipoles (8 chains with 1350 MJ each) and main quadrupoles (16 chains with about 24 MJ each) consist of an array of series/parallel connected, electro-mechanical D.C. breakers, specifically designed for this particular application. During the opening process the magnet excitation current is transferred from the cluster of breakers to extraction resistors for rapid de-excitation of the magnet chain. An arc detector has been developed in order to facilitate the determination of the need for maintenance interventions on the switches. The paper describes the arc detector and highlight results from operation of the detector with a LHC pilot extraction...

  4. Cryogenic Semiconductor Detectors: Simulation of Signal Formation & Irradiation Beam Test

    CERN Document Server

    AUTHOR|(CDS)2091318; Stamoulis, G; Vavougios, D

    The Beam Loss Monitoring system of the Large Hadron Collider is responsible for the pro- tection of the machine from damage and for the prevention of a magnet quench. Near the interaction points of the LHC, in the triplet magnets area, the BLMs are sensitive to the collision debris, limiting their ability to distinguish beam loss signal from signal caused due to the collision products. Placing silicon & diamond detectors inside the cold mass of the mag- nets, in liquid helium temperatures, would provide significant improvement to the precision of the measurement of the energy deposition in the superconducting coil of the magnet. To further study the signal formation and the shape of the transient current pulses of the aforementioned detectors in cryogenic temperatures, a simulation application has been developed. The application provides a fast way of determining the electric field components inside the detectors bulk and then introduces an initial charge distribution based on the properties of the radiat...

  5. ATLAS Detector Interface Group

    CERN Multimedia

    Mapelli, L

    Originally organised as a sub-system in the DAQ/EF-1 Prototype Project, the Detector Interface Group (DIG) was an information exchange channel between the Detector systems and the Data Acquisition to provide critical detector information for prototype design and detector integration. After the reorganisation of the Trigger/DAQ Project and of Technical Coordination, the necessity to provide an adequate context for integration of detectors with the Trigger and DAQ lead to organisation of the DIG as one of the activities of Technical Coordination. Such an organisation emphasises the ATLAS wide coordination of the Trigger and DAQ exploitation aspects, which go beyond the domain of the Trigger/DAQ project itself. As part of Technical Coordination, the DIG provides the natural environment for the common work of Trigger/DAQ and detector experts. A DIG forum for a wide discussion of all the detector and Trigger/DAQ integration issues. A more restricted DIG group for the practical organisation and implementation o...

  6. Smile detectors correlation

    Science.gov (United States)

    Yuksel, Kivanc; Chang, Xin; Skarbek, Władysław

    2017-08-01

    The novel smile recognition algorithm is presented based on extraction of 68 facial salient points (fp68) using the ensemble of regression trees. The smile detector exploits the Support Vector Machine linear model. It is trained with few hundreds exemplar images by SVM algorithm working in 136 dimensional space. It is shown by the strict statistical data analysis that such geometric detector strongly depends on the geometry of mouth opening area, measured by triangulation of outer lip contour. To this goal two Bayesian detectors were developed and compared with SVM detector. The first uses the mouth area in 2D image, while the second refers to the mouth area in 3D animated face model. The 3D modeling is based on Candide-3 model and it is performed in real time along with three smile detectors and statistics estimators. The mouth area/Bayesian detectors exhibit high correlation with fp68/SVM detector in a range [0:8; 1:0], depending mainly on light conditions and individual features with advantage of 3D technique, especially in hard light conditions.

  7. Detectors for Tomorrow's Instruments

    Science.gov (United States)

    Moseley, Harvey

    2009-01-01

    Cryogenically cooled superconducting detectors have become essential tools for a wide range of measurement applications, ranging from quantum limited heterodyne detection in the millimeter range to direct searches for dark matter with superconducting phonon detectors operating at 20 mK. Superconducting detectors have several fundamental and practical advantages which have resulted in their rapid adoption by experimenters. Their excellent performance arises in part from reductions in noise resulting from their low operating temperatures, but unique superconducting properties provide a wide range of mechanisms for detection. For example, the steep dependence of resistance with temperature on the superconductor/normal transition provides a sensitive thermometer for calorimetric and bolometric applications. Parametric changes in the properties of superconducting resonators provides a mechanism for high sensitivity detection of submillimeter photons. From a practical point of view, the use of superconducting detectors has grown rapidly because many of these devices couple well to SQUID amplifiers, which are easily integrated with the detectors. These SQUID-based amplifiers and multiplexers have matured with the detectors; they are convenient to use, and have excellent noise performance. The first generation of fully integrated large scale superconducting detection systems are now being deployed. I will discuss the prospects for a new generation of instruments designed to take full advantage of the revolution in detector technology.

  8. A New Virtual Point Detector Concept for a HPGe detector

    International Nuclear Information System (INIS)

    Byun, Jong In; Yun, Ju Yong

    2009-01-01

    For last several decades, the radiation measurement and radioactivity analysis techniques using gamma detectors have been well established. Especially , the study about the detection efficiency has been done as an important part of gamma spectrometry. The detection efficiency depends strongly on source-to-detector distance. The detection efficiency with source-to-detector distance can be expressed by a complex function of geometry and physical characteristics of gamma detectors. In order to simplify the relation, a virtual point detector concept was introduced by Notea. Recently, further studies concerning the virtual point detector have been performed. In previous other works the virtual point detector has been considered as a fictitious point existing behind the detector end cap. However the virtual point detector position for the front and side of voluminous detectors might be different due to different effective central axis of them. In order to more accurately define the relation, therefore, we should consider the virtual point detector for the front as well as side and off-center of the detector. The aim of this study is to accurately define the relation between the detection efficiency and source-to-detector distance with the virtual point detector. This paper demonstrates the method to situate the virtual point detectors for a HPGe detector. The new virtual point detector concept was introduced for three area of the detector and its characteristics also were demonstrated by using Monte Carlo Simulation method. We found that the detector has three virtual point detectors except for its rear area. This shows that we should consider the virtual point detectors for each area when applying the concept to radiation measurement. This concept can be applied to the accurate geometric simplification for the detector and radioactive sources.

  9. Detectors - Electronics; Detecteurs - Electronique

    Energy Technology Data Exchange (ETDEWEB)

    Bregeault, J.; Gabriel, J.L.; Hierle, G.; Lebotlan, P.; Leconte, A.; Lelandais, J.; Mosrin, P.; Munsch, P.; Saur, H.; Tillier, J. [Lab. de Physique Corpusculaire, Caen Univ., 14 (France)

    1998-04-01

    The reports presents the main results obtained in the fields of radiation detectors and associated electronics. In the domain of X-ray gas detectors for the keV range efforts were undertaken to rise the detector efficiency. Multiple gap parallel plate chambers of different types as well as different types of X {yields} e{sup -} converters were tested to improve the efficiency (values of 2.4% at 60 KeV were reached). In the field of scintillators a study of new crystals has been carried out (among which Lutetium orthosilicate). CdTe diode strips for obtaining X-ray imaging were studied. The complete study of a linear array of 8 CdTe pixels has been performed and certified. The results are encouraging and point to this method as a satisfying solution. Also, a large dimension programmable chamber was used to study the influence of temperature on the inorganic scintillators in an interval from -40 deg. C to +150 deg. C. Temperature effects on other detectors and electronic circuits were also investigated. In the report mentioned is also the work carried out for the realization of the DEMON neutron multidetector. For neutron halo experiments different large area Si detectors associated with solid and gas position detectors were realized. In the frame of a contract with COGEMA a systematic study of Li doped glasses was undertaken aiming at replacing with a neutron probe the {sup 3}He counters presently utilized in pollution monitoring. An industrial prototype has been realised. Other studies were related to integrated analog chains, materials for Cherenkov detectors, scintillation probes for experiments on fundamental processes, gas position sensitive detectors, etc. In the field of associated electronics there are mentioned the works related to the multidetector INDRA, data acquisition, software gamma spectrometry, automatic gas pressure regulation in detectors, etc

  10. Layered semiconductor neutron detectors

    Science.gov (United States)

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  11. Lithium germanium detectors reactivation

    International Nuclear Information System (INIS)

    Nicolai, J.A.; Marti, G.V.; Riso, J.M.; Gimenez, C.R.

    1981-01-01

    A convenient method to regenerate the characteristics of damaged Ge(li) detectors, that has been applied in the authors' laboratory, is described. The procedure consists in warming-up the crystal in its cryostat to temperatures between 10 deg C and 30 deg C above room temperature, in order to clean its surface. Subsequent cooling down to liquid nitrogen temperature, followed by one or more clean-up drifting processes, are applied to the crystals. This paper summarizes the results obtained with several detectors; this method was applied successfully to 15 detectors more. (author) [es

  12. The AGILE anticoincidence detector

    International Nuclear Information System (INIS)

    Perotti, F.; Fiorini, M.; Incorvaia, S.; Mattaini, E.; Sant'Ambrogio, E.

    2006-01-01

    AGILE is a γ-ray astrophysics space mission which will operate, starting from 2006, in the 30 MeV-50 GeV energy range with imaging capability also in the 15-45 keV energy band. In order to achieve the required detection sensitivity, all AGILE detectors are surrounded by an anticoincidence detector aimed at charged particle background rejection with an inefficiency as low as 10 -4 . In this work, the design and the structure of this anticoincidence detector are presented, as well as its performances in terms of charged particles detection inefficiency as derived from extensive calibrations performed at CERN PS

  13. Liquid ionizing radiaion detector

    International Nuclear Information System (INIS)

    deGaston, A.N.

    1979-01-01

    A normally nonconducting liquid such as liquid hydrocarbon is encased between a pair of electrodes in an enclosure so that when the liquid is subjected to ionizing radiation, the ion pairs so created measurably increase the conductivity of the fluid. The reduced impedance between the electrodes is detectable with a sensitive ohm-meter and indicates the amount of ionizing radiation. The enclosure, the electrodes and the fluid can be constructed of materials that make the response of the detector suitable for calibrating a large range of radiation energy levels. The detector is especially useful in medical applications where tissue equivalent X ray detectors are desired

  14. Ionization detectors, ch. 3

    International Nuclear Information System (INIS)

    Sevcik, J.

    1976-01-01

    Most measuring devices used in gas chromatography consist of detectors that measure the ionization current. The process is based on the collision of a moving high-energy particle with a target particle that is ionised while an electron is freed. The discussion of the conditions of the collision reaction, the properties of the colliding particles, and the intensity of the applied field point to a unified classification of ionisation detectors. Radioactive sources suitable for use in these detectors are surveyed. The slow-down mechanism, recombination and background current effect are discussed

  15. The Clover detector

    Energy Technology Data Exchange (ETDEWEB)

    Beck, F A; Byrski, Th; Durien, D; Duchene, G; France, G de; Kharraja, B; Wei, L [Strasbourg-1 Univ., 67 (France). Centre de Recherches Nucleaires; Butler, P; Jones, G; Jones, P [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.; Hannachi, F [Daresbury Lab. (United Kingdom)

    1992-08-01

    The EUROGAM Phase I device is almost running for experiments and new technical developments are in progress for its second phase. For example, a composite Ge detector should enable: a very large photopeak efficiency with good energy and timing resolutions; and, the covering, with Ge, of a large portion of 4{pi}-Str. The Clover detector, proposed by the CRN, Strasbourg, is one of this new generation of Ge detectors. It is currently developed in France by the EUROGAM collaboration. The design, the technical characteristics of the counter and the first results of the prototype tests are discussed in this contribution. (author). 1 ref., 2 tabs., 2 refs.

  16. Fuel rod leak detector

    International Nuclear Information System (INIS)

    Womack, R.E.

    1978-01-01

    A typical embodiment of the invention detects leaking fuel rods by means of a radiation detector that measures the concentration of xenon-133 ( 133 Xe) within each individual rod. A collimated detector that provides signals related to the energy of incident radiation is aligned with one of the ends of a fuel rod. A statistically significant sample of the gamma radiation (γ-rays) that characterize 133 Xe is accumulated through the detector. The data so accumulated indicates the presence of a concentration of 133 Xe appropriate to a sound fuel rod, or a significantly different concentration that reflects a leaking fuel rod

  17. The HOTWAXS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E.; Derbyshire, G.E. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Diakun, G. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Duxbury, D.M. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)], E-mail: d.m.duxbury@rl.ac.uk; Fairclough, J.P.A. [Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF (United Kingdom); Harvey, I.; Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Lipp, J.D.; Marsh, A.S.; Salisbury, J. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Sankar, G. [Royal Institution of GB, 21 Albemarle Street, London W1S 4BS (United Kingdom); Spill, E.J.; Stephenson, R. [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom); Terrill, N.J. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire OX11 0DE (United Kingdom)

    2007-10-11

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source.

  18. The HOTWAXS detector

    International Nuclear Information System (INIS)

    Bateman, J.E.; Derbyshire, G.E.; Diakun, G.; Duxbury, D.M.; Fairclough, J.P.A.; Harvey, I.; Helsby, W.I.; Lipp, J.D.; Marsh, A.S.; Salisbury, J.; Sankar, G.; Spill, E.J.; Stephenson, R.; Terrill, N.J.

    2007-01-01

    The development and testing of the HOTWAXS position-sensitive X-ray detector for Synchrotron Radiation Sources is described. Funded from a facility development grant, the aim of the project was to produce a high counting rate, parallax-free photon counting detector to be used in the combined studies of X-ray absorption fine structure and X-ray diffraction (XAFS/XRD), and also in the technique of small angle and wide angle X-ray scattering (SAXS/WAXS). The detector system is described together with results of experiments carried out at the Daresbury Laboratory Synchrotron Radiation Source

  19. Semiconductor ionizino. radiation detectors

    International Nuclear Information System (INIS)

    1982-01-01

    Spectrometric semiconductor detectors of ionizing radiation with the electron-hole junction, based on silicon and germanium are presented. The following parameters are given for the individual types of germanium detectors: energy range of detected radiation, energy resolution given as full width at half maximum (FWHM) and full width at one tenth of maximum (FWTM) for 57 Co and 60 Co, detection sensitivity, optimal voltage, and electric capacitance at optimal voltage. For silicon detectors the value of FWHM for 239 Pu is given, the sensitive area and the depth of the sensitive area. (E.S.)

  20. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  1. Experimental investigation of energy resolution in a semiconductor detector (surface barrier and Si (Li) detector) in the detection of protons

    International Nuclear Information System (INIS)

    Nordborg, C.

    1974-05-01

    The action of electronic effects on the energy resolution of the detector is investigated. The results are applicable not only to protons but also to heavier charged particles. It should be possible to reach a resolution of about 6 to 7 keV for 10 MeV protons with electronic detectors. Magnetic spectrometers could achieve a resolution of 2 to 3 keV. It is convenient to use Peltier elements for cooling semiconductor spectrometers. (Auth.)

  2. Particle identification for a future EIC detector

    Science.gov (United States)

    Ilieva, Y.; Allison, L.; Barber, C.; Cao, T.; Del Dotto, A.; Gleason, C.; He, X.; Kalicy, G.; McKisson, J.; Nadel-Turonski, P.; Park, K.; Rapoport, J.; Schwarz, C.; Schwiening, J.; Wong, C. P.; Zhao, Zh.; Zorn, C.

    2018-03-01

    In its latest Long Range Plan for Nuclear Science Research in the U.S., the Nuclear Science Advisory Committee to the Department of Energy recommended that in regards to new nuclear-physics facilities, the construction of an Electron Ion Collider (EIC) be of the highest priority after the completion of the Facility for Rare Isotope Beams. In order to carry out key aspects of the scientific program of the EIC, the EIC central detector must be capable of hadron particle identification (PID) over a broad momentum range of up to 50 GeV/c. The goal of the EIC-PID consortium is to develop an integrated program for PID at EIC, which employs several different technologies for imaging Cherenkov detectors. Here we discuss the conceptual designs and the expected PID performance of two of these detectors, as well as the newest results of gain evaluation studies of photon sensors that are good candidates to read out these detectors. Development of a gas-aerogel dual-radiator Ring Imaging Cherenkov (dRICH) detector with outward focusing mirrors is being pursued for the hadron endcap. Simulations demonstrate that the dRICH can provide a continuous >= 3σ π /K/p separation from 2.5 GeV/c to 50 GeV/c. A modular aerogel Ring Imaging Cherenkov (mRICH) detector with a Fresnel lens as a focusing element is being pursued for the electron endcap. The design provides for hadron identification over a momentum range of 3 GeV/c-10 GeV/c. The working principle of the mRICH design has been proven in a beam test with a first prototype. The location of the sensor readout planes of the Cherenkov detectors in the magnetic field of the central-detector solenoid, which is expected to be within 1.5 T-3 T, makes is necessary to evaluate the limit of the acceptable performance of commercially available photosensors, such as microchannel-plate photomultipliers (MCP PMTs). Here we present the results of gain evaluation of multi-anode MCP PMTs with a pore size of 10 μm. Overall, our preliminary results

  3. Design and performance of a cesium iodide detector

    Energy Technology Data Exchange (ETDEWEB)

    Adams, T.; Bishop, J.M.; Cady, R. [Notre Dame Univ., IN (United States)] [and others

    1996-01-11

    The design, construction, and performance of a 198-element CsI detector built for Brookhaven experiment E852 is described. Design considerations for the array included such factors as rate, magnetic field, sensitivity and acceptance. Signals were obtained with a photodiode/preamplifier combination using PIN photodiodes. Data were taken over the course of two runs during the summers of 1993 and 1994. A calibration procedure using halo muons is described. The gain, energy resolution, and position resolution of the detector are discussed. Finally, the ability of the detector to be used as a low energy photon veto is illustrated using the data. (orig.).

  4. THGEM based photon detector for Cherenkov imaging applications

    CERN Document Server

    Alexeev, M; Bradamante, F; Bressan, A; Chiosso, M; Ciliberti, P; Croci, G; Colantoni, M L; Dalla Torre, S; Duarte Pinto, S; Denisov, O; Diaz, V; Ferrero, A; Finger, M; Finger, M Jr; Fischer, H; Giacomini, G; Giorgi, M; Gobbo, B; Heinsius, F H; Herrmann, F; Jahodova, V; Königsmann, K; Lauser, L; Levorato, S; Maggiora, A; Martin, A; Menon, G; Nerling, F; Panzieri, D; Pesaro, G; Polak, J; Rocco, E; Ropelewski, L; Sauli, F; Sbrizzai, G; Schiavon, P; Schill, C; Schopferer, S; Slunecka, M; Sozzi, F; Steiger, L; Sulc, M; Takekawa, S; Tessarotto, F; Wollny, H

    2010-01-01

    We are developing a single photon detector for Cherenkov imaging counters. This detector is based on the use of THGEM electron multipliers in a multilayer design. The major goals of our project are ion feedback suppression down to a few per cent, large gain, fast response, insensitivity to magnetic fields, and a large detector size. We report about the project status and perspectives. In particular, we present a systematic study of the THGEM response as a function of geometrical parameters, production techniques and the gas mixture composition. The first figures obtained from measuring the response of a CsI coated THGEM to single photons are presented.

  5. Detectors and flux instrumentation for future neutrino facilities

    CERN Document Server

    Abe, T.; Andreopoulos, C.; Ankowski, A.; Badertscher, A.; Battistoni, G.; Blondel, A.; Bouchez, J.; Bross, A.; Bueno, A.; Camilleri, L.; Campagne, Jean-Eric; Cazes, A.; Cervera-Villanueva, A.; De Lellis, G.; Di Capua, F.; Ellis, Malcolm; Ereditato, A.; Esposito, L.S.; Fukushima, C.; Gschwendtner, E.; Gomez-Cadenas, J.J.; Iwasaki, M.; Kaneyuki, K.; Karadzhov, Y.; Kashikhin, V.; Kawai, Y.; Komatsu, M.; Kozlovskaya, E.; Kudenko, Y.; Kusaka, A.; Kyushima, H.; Longhin, A.; Marchionni, A.; Marotta, A.; McGrew, C.; Menary, S.; Meregaglia, A.; Mezzeto, M.; Migliozzi, P.; Mondal, N.K.; Montanari, C.; Nakadaira, T.; Nakamura, M.; Nakumo, H.; Nakayama, H.; Nelson, J.; Nowak, J.; Ogawa, S.; Peltoniemi, J.; Pla-Dalmau, A.; Ragazzi, S.; Rubbia, A.; Sanchez, F.; Sarkamo, J.; Sato, O.; Selvi, M.; Shibuya, H.; Shozawa, M.; Sobczyk, J.; Soler, F.J.P.; Strolin, Paolo Emilio; Suyama, M.; Tanak, M.; Terranova, F.; Tsenov, R.; Uchida, Y.; Weber, A.; Zlobin, A.

    2009-01-01

    This report summarises the conclusions from the detector group of the International Scoping Study of a future Neutrino Factory and Super-Beam neutrino facility. The baseline detector options for each possible neutrino beam are defined as follows: 1. A very massive (Megaton) water Cherenkov detector is the baseline option for a sub-GeV Beta Beam and Super Beam facility. 2. There are a number of possibilities for either a Beta Beam or Super Beam (SB) medium energy facility between 1-5 GeV. These include a totally active scintillating detector (TASD), a liquid argon TPC or a water Cherenkov detector. 3. A 100 kton magnetized iron neutrino detector (MIND) is the baseline to detect the wrong sign muon final states (golden channel) at a high energy (20-50 GeV) neutrino factory from muon decay. A 10 kton hybrid neutrino magnetic emulsion cloud chamber detector for wrong sign tau detection (silver channel) is a possible complement to MIND, if one needs to resolve degeneracies that appear in the $\\delta$-$\\theta_{13}$...

  6. Training detector as simulator of alpha detector

    International Nuclear Information System (INIS)

    Tirosh, D.; Duvniz, E.; Assido, H.; Barak, D.; Paran, J.

    1997-01-01

    Alpha contamination is a common phenomena in radiation research laboratories and other sites. Training staff to properly detect and control alpha contamination, present special problems. In order to train health physics personnel, while using alpha sources, both the trainers and the trainees are inevitably exposed to alpha contamination. This fact of course, comes in conflict with safety principles. In order to overcome these difficulties, a training detector was developed, built and successfully tested. (authors)

  7. The Physical Connection and Magnetic Coupling of the MICE Cooling Channel Magnets and the Magnet Forces for Various MICE Operating Modes

    International Nuclear Information System (INIS)

    Yang, Stephanie Q.; Baynham, D.E.; Fabricatore, Pasquale; Farinon, Stefania; Green, Michael A.; Ivanyushenkov, Yury; Lau, Wing W.; Maldavi, S.M.; Virostek, Steve P.; Witte, Holger

    2006-01-01

    A key issue in the construction of the MICE cooling channel is the magnetic forces between various elements in the cooling channel and the detector magnets. This report describes how the MICE cooling channel magnets are hooked to together so that the longitudinal magnetic forces within the cooling channel can be effectively connected to the base of the experiment. This report presents a magnetic force and stress analysis for the MICE cooling channel magnets, even when longitudinal magnetic forces as large as 700 kN (70 tons) are applied to the vacuum vessel of various magnets within the MICE channel. This report also shows that the detector magnets can be effectively separated from the central MICE cooling channel magnets without damage to either type of magnet component

  8. Multi electrode semiconductors detectors

    CERN Document Server

    Amendolia, S R; Bertolucci, Ennio; Bosisio, L; Bradaschia, C; Budinich, M; Fidecaro, F; Foà, L; Focardi, E; Giazotto, A; Giorgi, M A; Marrocchesi, P S; Menzione, A; Ristori, L; Rolandi, Luigi; Scribano, A; Stefanini, A; Vincelli, M L

    1981-01-01

    Detectors with very high space resolution have been built in this laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (3 refs).

  9. Multi electrode semiconductor detectors

    International Nuclear Information System (INIS)

    Amendolia, S.R.; Batignani, G.; Bertolucci, E.; Bosisio, L.; Budinich, M.; Bradaschia, C.; Fidecaro, F.; Foa, L.; Focardi, E.; Giazotto, A.; Giorgi, M.A.; Marrocchesi, P.S.; Menzione, A.; Ristori, L.; Rolandi, L.; Scribano, A.; Stefanini, A.; Vincelli, M.L.

    1981-01-01

    Detectors with very high space resolution have been built in the laboratory and tested at CERN in order to investigate their possible use in high energy physics experiments. These detectors consist of thin layers of silicon crystals acting as ionization chambers. Thin electrodes, structured in strips or in more fancy shapes are applied to their surfaces by metal coating. The space resolution which could be reached is of the order of a few microns. An interesting feature of these solid state detectors is that they can work under very high or low external pressure or at very low temperature. The use of these detectors would strongly reduce the dimensions and the cost of high energy experiments. (Auth.)

  10. Inverter ratio failure detector

    Science.gov (United States)

    Wagner, A. P.; Ebersole, T. J.; Andrews, R. E. (Inventor)

    1974-01-01

    A failure detector which detects the failure of a dc to ac inverter is disclosed. The inverter under failureless conditions is characterized by a known linear relationship of its input and output voltages and by a known linear relationship of its input and output currents. The detector includes circuitry which is responsive to the detector's input and output voltages and which provides a failure-indicating signal only when the monitored output voltage is less by a selected factor, than the expected output voltage for the monitored input voltage, based on the known voltages' relationship. Similarly, the detector includes circuitry which is responsive to the input and output currents and provides a failure-indicating signal only when the input current exceeds by a selected factor the expected input current for the monitored output current based on the known currents' relationship.

  11. Sensitive detectors in HPLC

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    Detection of sample components in HPLC is difficult for many reasons; the key difficulty is the mobile phase which usually has properties similar to the solute. A variety of detectors have been developed for use in HPLC based on one of the above approaches; however, the search is still continuing for an ideal or universal detector. A universal detector should have the following characteristics: (1) responds to all solutes or has predictable specificity; (2) high detectability and the same predictable response; (3) fast response; (4) wide range of linearity; (5) unaffected by changes in temperature and mobile-phase flow; (6) responds independently of the mobile phase; (7) makes no contribution to extracolumn band broadening; (8) reliable and convenient to use; (9) nondestructive to the solute; (10) provides qualitative information on the detected peak. Unfortunately, no available HPLC detector possesses all these properties. 145 refs

  12. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  13. The HERMES recoil photon-detector and nuclear p{sub t}-Broadening at HERMES

    Energy Technology Data Exchange (ETDEWEB)

    Haarlem, Y. van

    2007-09-15

    The first part of this work consists of hardware research and development done in order to construct and test a photon-detector as one of the three detectors of the HERMES recoil detector. The HERMES recoil detector consists of a target cell, a silicon-detector, a scintillating fiber tracker, and a photon-detector. All are inside a super-conducting magnet. The silicon detector uses energy deposition to determine the momentum of the particle because in its energy range the energy deposition is an unambiguous function of the momentum of the particle. The scintillating fiber tracker is located outside the beam-vacuum and is surrounded by the photon-detector. It consists of two barrels with layers of scintillating fibers. It detects particles by converting their energy deposition into light. It measures two space points of a charged particle and from the bending of the assigned track (in the magnetic field provided by the super-conducting magnet) a momentum measurement can be derived. The photon-detector is located between the scintillating fiber tracker and the magnet. It consists (from the inside out) of three layers of tungsten showering material followed by scintillating strips. The second part of this work is an analysis performed concerning the transverse momentum broadening of hadrons produced in deep-inelastic scattering on a nuclear target compared to a D target. (orig.)

  14. A Study of the Operation of Especially Designed Photosensitive Gaseous Detectors at Cryogenic Temperatures

    CERN Document Server

    Periale, L; Lund-Jensen, B; Pavlopoulos, P; Peskov, Vladimir; Picchi, P; Pietropaolo, F

    2006-01-01

    In some experiments and applications there is need for large-area photosensitive detectors to operate at cryogenic temperatures. Nowadays, vacuum PMs are usually used for this purpose. We have developed special designs of planar photosensitive gaseous detectors able to operate at cryogenic temperatures. Such detectors are much cheaper PMs and are almost insensitive to magnetic fields. Results of systematic measurements of their quantum efficiencies, the maximum achievable gains and long-term stabilities will be presented. The successful operation of these detectors open realistic possibilities in replacing PMs by photosensitive gaseous detectors in some applications dealing with cryogenic liquids; for example in experiments using noble liquid TPCs or noble liquid scintillating calorimeters.

  15. The ZEUS central tracking detector. Der zentrale Spuren-Detektor von ZEUS

    Energy Technology Data Exchange (ETDEWEB)

    Saxon, D H

    1989-12-01

    The Central Tracking Detector (CTD) of ZEUS covers a wide angular range, whilst the Forward Detector - comprising the Forward Tracking Detector (FTD) and electron identification by transition radiation - concentrates on the important forward cone. The RTD (Rear Tracking Detector) provides accurate angle measurement of the recoil electron and the vertex detector (VXD) aims to find particles from heavy flavour decay. To measure momentum accurately the CTD sits in a high magnetic field (B=1,8 T) within the ZEUS calorimeter. (orig./HSI).

  16. Modular pixelated detector system with the spectroscopic capability and fast parallel read-out

    Czech Academy of Sciences Publication Activity Database

    Vavřík, Daniel; Holík, M.; Jakůbek, J.; Jakůbek, M.; Kraus, V.; Krejčí, F.; Soukup, P.; Tureček, D.; Vacík, Jiří; Žemlička, J.

    2014-01-01

    Roč. 9, June (2014), C06006 ISSN 1748-0221. [International workshop on radiation imaging detectors /15./. Paris, 23.06.2013-27.06.2013] R&D Projects: GA MŠk(CZ) LO1219; GA TA ČR(CZ) TA01010237 Institutional support: RVO:68378297 ; RVO:61389005 Keywords : particle tracking detectors * X-ray detectors * modular electronics * neutron detectors * solid-state detectors Subject RIV: JN - Civil Engineering; BM - Solid Matter Physics ; Magnetism (UJF-V) Impact factor: 1.399, year: 2014 http://iopscience.iop.org/1748-0221/9/06/C06006

  17. Detector Control System for the ATLAS Forward Proton detector

    CERN Document Server

    Czekierda, Sabina; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) is a forward detector using a Roman Pot technique, recently installed in the LHC tunnel. It is aiming at registering protons that were diffractively or electromagnetically scattered in soft and hard processes. Infrastructure of the detector consists of hardware placed both in the tunnel and in the control room USA15 (about 330 meters from the Roman Pots). AFP detector, like the other detectors of the ATLAS experiment, uses the Detector Control System (DCS) to supervise the detector and to ensure its safe and coherent operation, since the incorrect detector performance may influence the physics results. The DCS continuously monitors the detector parameters, subset of which is stored in data bases. Crucial parameters are guarded by alarm system. A detector representation as a hierarchical tree-like structure of well-defined subsystems built with the use of the Finite State Machine (FSM) toolkit allows for overall detector operation and visualization. Every node in the hierarchy is...

  18. New detector techniques

    CERN Document Server

    Iarocci, Enzo

    1994-03-14

    The intense R&D effort being carried out in view of LHC has given rise in a relatively short time to a wide spectrum of new detector concepts and technologies. Subject of the lectures will be some of the most interesting new ideas and developments, in the field of noble liquid, crystal and scintillating fiber trackers. The emphasis will be on the basic aspects of detector operation.

  19. The Micro Wire Detector

    International Nuclear Information System (INIS)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M.; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C.

    1999-01-01

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 μm 2 apertures, crossed by 25 μm anode strips to which it is attached by 50 μm kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  20. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Bjurman, B.; Erlandsson, B.

    1985-01-01

    This paper describes problems concerning the calibration of germanium detectors for the measurement of gamma-radiation from environmental samples. It also contains a brief description of some ways of reducing the uncertainties concerning the activity determination. These uncertainties have many sources, such as counting statistics, full energy peak efficiency determination, density correction and radionuclide specific-coincidence effects, when environmental samples are investigated at close source-to-detector distances

  1. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Thorndike, A.

    1976-01-01

    The study group met from June 7 to 11, 1976, with the dual purpose of reviewing an earlier Lepton Detector report in order to resolve some of the remaining design problems and of considering possible alternatives. Since the role of this group was primarily that of providing a critique of the earlier work, the reader is referred to that earlier paper for the general motivation and design of the detector. Problems studied at this session are described

  2. Liquid xenon detector engineering

    International Nuclear Information System (INIS)

    Chen, E.; Chen, M.; Gaudreau, M.P.J.; Montgomery, D.B.; Pelly, J.D.; Shotkin, S.; Sullivan, J.D.; Sumorok, K.; Yan, X.; Zhang, X.; Lebedenko, V.

    1991-01-01

    The design, engineering constraints and R and D status of a 15 m 3 precision liquid xenon, electromagnetic calorimeter for the Superconducting Super Collider are discussed in this paper. Several prototype liquid xenon detectors have been built, and preliminary results are described. The design of a conical 7 cell by 7 cell detector capable of measuring fully contained high energy electron showers is described in detail

  3. The LUCID-2 Detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    LUCID-2 (LUminosity Cherenkov Integrating Detector) is the upgrade of the main detector dedicated to luminosity measurements in ATLAS. Most changes were motivated by the number of interactions per bunch-crossing and the 25 ns bunch-spacing expected in LHC RUN II (2015-2018). Both fast online information used by LHC for luminosity optimisation and levelling in ATLAS, and per-bunch data to be used offline, come from LUCID-2

  4. FERMILAB: Collider detectors -2

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Last month's edition (April, page 12) included a status report on data collection and preliminary physics results from the 'newcomer' DO detector at Fermilab's Tevatron proton-antiproton collider. This time the spotlight falls in the Veteran' CDF detector, in action since 1985 and meanwhile significantly upgraded. Meanwhile the Tevatron collider continues to improve, with record collision rates

  5. Microsonic detector (MSD)

    International Nuclear Information System (INIS)

    Bober, J.T.; Haridas, P.; Oh, S.H.; Pless, I.A.; Stoughton, T.B.

    1983-01-01

    The microsonic detector (MSD) has good spatial resolution, moderate flux capacity, moderate event rate, and small volume. The MSD is a super clean bubble chamber driven at 10-50 KHz. It would be used in experiments as a vertex detector to detect short lived particles. Its characteristics--active volume, density, absorption length, radiation length, and spatial resolution--are given. The setup is schematicized, and a photograph of a 130 MeV/C photon bremsstrahlung beam is given

  6. Protecting detectors in ALICE

    International Nuclear Information System (INIS)

    Lechman, M.; Augustinus, A.; Chochula, P.; Di Mauro, A.; Stig Jirden, L.; Rosinsky, P.; Schindler, H.; Cataldo, G. de; Pinazza, O.; Kurepin, A.; Moreno, A.

    2012-01-01

    ALICE (A Large Ion Collider Experiment) is one of the big LHC (Large Hadron Collider) experiments at CERN in Geneva. It is composed of many sophisticated and complex detectors mounted very compactly around the beam pipe. Each detector is a unique masterpiece of design, engineering and construction and any damage to it could stop the experiment for months or even for years. It is therefore essential that the detectors are protected from any danger and this is one very important role of the Detector Control System (DCS). One of the main dangers for the detectors is the particle beam itself. Since the detectors are designed to be extremely sensitive to particles they are also vulnerable to any excess of beam conditions provided by the LHC accelerator. The beam protection consists of a combination of hardware interlocks and control software and this paper will describe how this is implemented and handled in ALICE. Tools have also been developed to support operators and shift leaders in the decision making related to beam safety. The gained experiences and conclusions from the individual safety projects are also presented. (authors)

  7. Radiation detectors for reactors

    International Nuclear Information System (INIS)

    Balagi, V.

    2005-01-01

    Detection and measurement of radiation plays a vital role in nuclear reactors from the point of view of control and safety, personnel protection and process control applications. Various types of radiation are measured over a wide range of intensity. Consequently a variety of detectors find use in nuclear reactors. Some of these devices have been developed in Electronics Division. They include gas-filled detectors such as 10 B-lined proportional counters and chambers, fission detectors and BF 3 counters are used for the measurement of neutron flux both for reactor control and safety, process control as well as health physics instrumentation. In-core neutron flux instrumentation employs the use detectors such as miniature fission detectors and self-powered detectors. In this development effort, several indigenous materials, technologies and innovations have been employed to suit the specific requirement of nuclear reactor applications. This has particular significance in view of the fact that several new types of reactors such as P-4, PWR and AHWR critical facilities, FBTR, PFBR as well as the refurbishment of old units like CIRUS are being developed. The development work has sought to overcome some difficulties associated with the non-availability of isotopically enriched neutron-sensing materials, achieving all-welded construction etc. The present paper describes some of these innovations and performance results. (author)

  8. Detectors for CBA

    International Nuclear Information System (INIS)

    Baggett, N.; Gordon, H.A.; Palmer, R.B.; Tannenbaum, M.J.

    1983-05-01

    We discuss some current approaches to a large solid angle detector. An alternative approach for utilizing the high rate of events at CBA is to design special purpose detectors for specific physics goals which can be pursued within a limited solid angle. In many cases this will be the only way to proceed, and then high luminosity has a different significance. The total rate in the restricted acceptance is less likely to be a problem, while the need for high luminosity to obtain sufficient data is obvious. Eight such experiments from studies carried out in the community are surveyed. Such experiments could be run on their own or in combination with others at the same intersection, or even with a large solid angle detector, if a window can be provided in the larger facility. The small solid angle detector would provide the trigger and special information, while the facility would provide back-up information on the rest of the event. We consider some possibilities of refurbishing existing detectors for use at CBA. This discussion is motivated by the fact that there is a growing number of powerful detectors at colliding beam machines around the world. Their builders have invested considerable amounts of time, money and ingenuity in them, and may wish to extend the useful lives of their creations, as new opportunities arise

  9. GANIL beam profile detectors

    International Nuclear Information System (INIS)

    Tribouillard, C.

    1997-01-01

    In the design phase of GANIL which started in 1977, one of the priorities of the project management was equipping the beamlines with a fast and efficient system for visualizing the beam position, thus making possible adjustment of the beam transport lines optics and facilitating beam control. The implantation of some thirty detectors was foreseen in the initial design. The assembly of installed detectors (around 190) proves the advantages of these detectors for displaying all the beams extracted from GANIL: transfer and transport lines, beam extracted from SISSI, very high intensity beam, secondary ion beams from the production target of the LISE and SPEG spectrometers, different SPIRAL project lines. All of these detectors are based on standard characteristics: - standard flange diameter (DN 160) with a standard booster for all the sensors; - identical analog electronics for all the detectors, with networking; - unique display system. The new micro-channel plate non-interceptive detectors (beam profile and ion packet lengths) make possible in-line control of the beam quality and accelerator stability. (author)

  10. Basic Radiation Detectors. Chapter 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Eijk, C. W.E. [Faculty of Applied Sciences, Delft University of Technology, Delft (Netherlands)

    2014-12-15

    Radiation detectors are of paramount importance in nuclear medicine. The detectors provide a wide range of information including the radiation dose of a laboratory worker and the positron emission tomography (PET) image of a patient. Consequently, detectors with strongly differing specifications are used. In this chapter, general aspects of detectors are discussed.

  11. Frontier detectors for frontier physics

    International Nuclear Information System (INIS)

    Cervelli, F.; Scribano, A.

    1984-01-01

    These proceedings contain the articles presented at the named meeting. These concern developments of radiation detectors and counting techniques in high energy physics. Especially considered are tracking detectors, calorimeters, time projection chambers, detectors for rare events, solid state detectors, particle identification, and optical readout systems. See hints under the relevant topics. (HSI)

  12. The ALICE forward multiplicity detector

    DEFF Research Database (Denmark)

    Holm Christensen, Christian; Gulbrandsen, Kristjan; Sogaard, Carsten

    2007-01-01

    The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4......The ALICE Forward Multiplicity Detector (FMD) is a silicon strip detector with 51,200 strips arranged in 5 rings, covering the range $-3.4...

  13. Progress in semiconductor drift detectors

    International Nuclear Information System (INIS)

    Rehak, P.; Walton, J.; Gatti, E.

    1985-01-01

    Progress in testing semiconductor drift detectors is reported. Generally better position and energy resolutions were obtained than resolutions published previously. The improvement is mostly due to new electronics better matched to different detectors. It is shown that semiconductor drift detectors are becoming versatile and reliable detectors for position and energy measurements

  14. Detectors on the drawing board

    CERN Document Server

    Katarina Anthony

    2011-01-01

    Linear collider detector developers inside and outside CERN are tackling the next generation of detector technology. While their focus has centred on high-energy linear collider detectors, their innovative concepts and designs will be applicable to any future detector.   A simulated event display in one of the new generation detectors. “While the LHC experiments remain the pinnacle of detector technology, you may be surprised to realise that the design and expertise behind them is well over 10 years old,” says Lucie Linssen, CERN’s Linear Collider Detector (LCD) project manager whose group is pushing the envelope of detector design. “The next generation of detectors will have to surpass the achievements of the LHC experiments. It’s not an easy task but, by observing detectors currently in operation and exploiting a decade’s worth of technological advancements, we’ve made meaningful progress.” The LCD team is curr...

  15. A novel transparent charged particle detector for the CPET upgrade at TITAN

    Science.gov (United States)

    Lascar, D.; Kootte, B.; Barquest, B. R.; Chowdhury, U.; Gallant, A. T.; Good, M.; Klawitter, R.; Leistenschneider, E.; Andreoiu, C.; Dilling, J.; Even, J.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.

    2017-10-01

    The detection of an electron bunch exiting a strong magnetic field can prove challenging due to the small mass of the electron. If placed too far from a solenoid's entrance, a detector outside the magnetic field will be too small to reliably intersect with the exiting electron beam because the light electrons will follow the diverging magnetic field outside the solenoid. The TITAN group at TRIUMF in Vancouver, Canada, has made use of advances in the practice and precision of photochemical machining (PCM) to create a new kind of charge collecting detector called the "mesh detector." The TITAN mesh detector was used to solve the problem of trapped electron detection in the new Cooler PEnning Trap (CPET) currently under development at TITAN. This thin array of wires etched out of a copper plate is a novel, low profile, charge agnostic detector that can be made effectively transparent or opaque at the user's discretion.

  16. Detectors for proton counting. Si-APD and scintillation detectors

    International Nuclear Information System (INIS)

    Kishimoto, Shunji

    2008-01-01

    Increased intensity of synchrotron radiation requests users to prepare photon pulse detectors having higher counting rates. As detectors for photon counting, silicon-avalanche photodiode (Si-APD) and scintillation detectors were chosen for the fifth series of detectors. Principle of photon detection by pulse and need of amplification function of the detector were described. Structure and working principle, high counting rate measurement system, bunch of electrons vs. counting rate, application example of NMR time spectroscopy measurement and comments for users were described for the Si-APD detector. Structure of scintillator and photomultiplier tube, characteristics of scintillator and performance of detector were shown for the NaI detector. Future development of photon pulse detectors was discussed. (T. Tanaka)

  17. The ATLAS Inner Detector commissioning and calibration

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Amorim, A.; Amoros, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F.; Argyropoulos, T.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bach, A.M.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos, F.Santos Pedrosa; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Guimara, J.Barreiro; Barrillon, P.; Bartoldus, R.; Bartsch, D.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Beddall, A.J.; Beddall, A.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S.; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S.; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B.; Blanchot, G.; Blocker, C.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Boser, S.; Bogaerts, J.A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boveia, A.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodet, E.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Bruckman de Renstrom, P.A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Buscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Urban, S.Cabrera; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Calvet, D.; Camarri, P.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G.D.; Carron Montero, S.; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Castaneda Hernadez, A.M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N.F.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, X.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El, R.Moursli; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, V.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Clark, P.J.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coggeshall, J.; Cogneras, E.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Muino, P.Conde; Coniavitis, E.; Conidi, M.C.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Cote, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crepe-Renaudin, S.; Cuenca Almenar, C.; Cuhadar Donszelmann, T.; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Daya, R.K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro, P.E.Faria Salgado; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De Mora, L.; De Oliveira, M.Branco; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J.B.; De Zorzi, G.; Dean, S.; Dedovich, D.V.; Degenhardt, J.; Dehchar, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; Vale, M.A.B.do; Do Valle, A.Wemans; Doan, T.K.O.; Dobos, D.; Dobson, E.; Dobson, M.; Doglioni, C.; Doherty, T.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Duhrssen, M.; Duflot, L.; Dufour, M-A.; Dunford, M.; Duran Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Duren, M.; Ebenstein, W.L.; Ebke, J.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L.R.; Flowerdew, M.J.; Fonseca Martin, T.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcia, C.; Navarro, J.E.Garcia; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giorgi, F.M.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Gopfert, T.; Goeringer, C.; Gossling, C.; Gottfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gomes, A.; Gomez Fajardo, L.S.; Goncalo, R.; Gonella, L.; Gong, C.; Gonzalez de la Hoz, S.; Gonzalez Silva, M.L.; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I.; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafstrom, P.; Grahn, K-J.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Hartel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernandez Jimenez, Y.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Higon-Rodriguez, E.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y.; Hou, S.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T.B.; Hughes, E.W.; Hughes, G.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jeanty, L.; Plante, I.Jen-La; Jenni, P.; Jez, P.; Jezequel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.J.; Jorge, P.M.; Joseph, J.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagounis, M.; Karagoz Unel, M.; Karnevskiy, M.; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Koneke, K.; Konig, A.C.; Koenig, S.; Kopke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Kruger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larner, A.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; Le Vine, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leitner, R.; Lellouch, D.; Lellouch, J.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R.; Lester, C.G.; Leung Fook, A.Cheong; Leveque, J.; Levin, D.; Levinson, L.J.; Leyton, M.; Li, H.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lilley, J.N.; Limosani, A.; Limper, M.; Lin, S.C.; Linnemann, J.T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, R.E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.A.; Lowe, A.J.; Lu, F.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J.A.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J.; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mattig, P.; Mattig, S.; Magalhaes Martins, P.J.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa.; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marroquim, F.; Marshall, Z.; Marti-Garcia, S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Dit Latour, B.Martin; Martinez, M.; Martinez Outschoorn, V.; Martini, A.; Martyniuk, A.C.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massa, I.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mc Donald, J.; Mc Kee, S.P.; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McMahon, S.J.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B.R.; Mendoza Navas, L.; Meng, Z.; Menke, S.; Meoni, E.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Metcalfe, J.; Mete, A.S.; Meyer, J-P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikestikova, M.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Milstein, D.; Minaenko, A.A.; Minano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjornmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Monig, K.; Moser, N.; Mohr, W.; Mohrdieck-Mock, S.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Llacer, M.Moreno; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Muller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R.; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D.; Oliver, J.; Oliver Garcia, E.; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th.D.; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pasztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M.I.; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E.; Perez Garcia-Estan, M.T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrino, R.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomeroy, D.; Pommes, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Porter, R.; Pospelov, G.E.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qin, Z.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Roa Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.E.M.; Robinson, M.; Robson, A.; Rocha de Lima, J.G.; Roda, C.; Roda Dos, D.Santos; Rodriguez, D.; Rodriguez Garcia, Y.; Roe, S.; Rohne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Ruhr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rurikova, Z.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.S.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M.A.; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandhu, P.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schafer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Scharf, V.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schmidt, E.S.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schonig, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skovpen, K.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spano, F.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R.D.St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Stavina, P.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Strohmer, R.; Strom, D.M.; Stroynowski, R.; Strube, J.; Stugu, B.; Sturm, P.; Soh, D.A.; Su, D.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.H.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sykora, I.; Sykora, T.; Szymocha, T.; Sanchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Therhaag, J.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Tipton, P.; Tique Aires, F.J.Viegas; Tisserant, S.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokar, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomoto, M.; Tompkins, L.; Toms, K.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torchiani, I.; Torrence, E.; Pastor, E.Torro; Toth, J.; Touchard, F.; Tovey, D.R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocme, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Tuggle, J.M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J.A.; Van Berg, R.; van der Graaf, H.; van der Kraaij, E.; van der Poel, E.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vellidis, C.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, S.M.; Warburton, A.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; White, A.; White, M.J.; White, S.; Whitehead, S.R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Wynne, B.M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Z.; Yao, W-M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; della Porta, G.Zevi; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zivkovic, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.

    2010-01-01

    The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 {\\mu}m and a relative momentum resolution {\\sigma}p/p = (4.83+/-0.16)...

  18. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  19. HPGe detector shielding adjustment

    International Nuclear Information System (INIS)

    Trnkova, L.; Rulik, P.

    2008-01-01

    Low-level background shielding of HPGe detectors is used mainly for environmental samples with very low content of radionuclides. National Radiation Protection Institute (SURO) in Prague is equipped with 14 HPGe detectors with relative efficiency up to 150%. The detectors are placed in a room built from materials with low content of natural radionuclides and equipped with a double isolation of the floor against radon. Detectors themselves are placed in lead or steel shielding. Steel shielding with one of these detectors with relative efficiency of 100% was chosen to be rebuilt to achieve lower minimum detectable activity (MDA). Additional lead and copper shielding was built up inside the original steel shielding to reduce the volume of the inner space and filled with nitrogen by means of evaporating liquid nitrogen. The additional lead and copper shielding, consequent reduction of the inner volume and supply of evaporated nitrogen, caused a decrease of the background count and accordingly MDA values as well. The effect of nitrogen evaporation on the net areas of peaks belonging to radon daughters is significant. The enhanced shielding adjustment has the biggest influence in low energy range, what can be seen in collected data. MDA values in energy range from 30 keV to 400 keV decreased to 0.65-0.85 of original value, in energy range from 400 keV to 2 MeV they fell to 0.70-0.97 of original value. (authors)

  20. Lepton detector workshop summary

    International Nuclear Information System (INIS)

    Imlay, R.; Iwata, S.; Jacobs, S.

    1976-01-01

    A discussion is given of the initial detector design, focusing on the cost estimates and on the inner detector modules. With regard to inner modules, the rate problem was examined for the closest elements, and the question whether one should use argon or lead-liquid scintillator calorimeters was discussed. New designs which involved major modifications to the lepton detector are considered. The major motivations for alternative designs were twofold. One was that the original detector looked quite expensive, and a study of the tradeoff of money versus physics had not really been done yet. The second point was that, since the physics region to be explored was totally new ground, one would like to leave as many options open as possible and build a detector that was as flexible as possible. A scaled-down version of the original design, which was strongly favored by this study, appears to save an appreciable amount of money with a small decrease in the initial physics scope. The more modular designs seem quite attractive, but not enough time was spent to demonstrate feasibility

  1. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  2. Solid state detector module

    International Nuclear Information System (INIS)

    Hoffman, D. M.

    1985-01-01

    A solid state detector in which each scintillator is optimally configured and coupled with its associated sensing diode in a way which exploits light piping effects to enhance efficiency, and at the same time provide a detector which is modular in nature. To achieve light piping, the scintillator crystal is oriented such that its sides conform with the crystal cleavage plane, and the sides are highly polished. An array of tungsten collimator plates define the individual channels. Multi-channel scintillator/diode modules are mounted behind and in registry with the plurality of collimator plates. A plurality of scintillators are bonded together after coating the surfaces thereof to minimize optical crosstalk. After lapping the face of the scintillator module, it is then bonded to a diode module with individual scintillators in registration with individual diodes. The module is then positioned in the detector array with collimator plates at the junctions between the scintillators

  3. Cryogenic Tracking Detectors

    CERN Multimedia

    Luukka, P R; Tuominen, E M; Mikuz, M

    2002-01-01

    The recent advances in Si and diamond detector technology give hope of a simple solution to the radiation hardness problem for vertex trackers at the LHC. In particular, we have recently demonstrated that operating a heavily irradiated Si detector at liquid nitrogen (LN$_2$) temperature results in significant recovery of Charge Collection Efficiency (CCE). Among other potential benefits of operation at cryogenic temperatures are the use of large low-resistivity wafers, simple processing, higher and faster electrical signal because of higher mobility and drift velocity of carriers, and lower noise of the readout circuit. A substantial reduction in sensor cost could result The first goal of the approved extension of the RD39 program is to demonstrate that irradiation at low temperature in situ during operation does not affect the results obtained so far by cooling detectors which were irradiated at room temperature. In particular we shall concentrate on processes and materials that could significantly reduce th...

  4. The H1 detector

    International Nuclear Information System (INIS)

    Cozzika, G.

    1992-11-01

    The H1 detector presently operating at the HERA e-p collider is described. A general overview of the detector is given with particular emphasis on the calorimeters, the main element of which is a liquid Argon calorimeter enclosed within a large radius solenoid. Calorimetry in the proton direction, close to the beam-pipe is provided by a copper-silicon pad hadronic calorimeter. In the electron direction a lead-scintillator electromagnetic calorimeter closes the solid angle between the rear part of the liquid Argon calorimeter and the beam-pipe. An iron limited streamer tube tail catcher using the return yoke of the solenoid as absorber completes the calorimetry of the detector. The hardware triggers derived from the calorimeters are also described and some performance details of the calorimeters are given

  5. Improved photon detector

    International Nuclear Information System (INIS)

    Zermeno, A.; Marsh, L.M.

    1981-01-01

    Apparatus and methods used to obtain image information from modulation of a uniform flux. A multi-layered detector apparatus is disclosed which comprises a first conductive layer having two sides, a photoconductive layer thick enough to obtain a desired level of sensitivity and resolution of the detector apparatus when the detector apparatus is exposed to radiation of known energy, one side of the photoconductive layer being integrally affixed to and in electrical contact with one side of the first conductive layer, an insulating layer having two sides that is a phosphor that will emit light when irradiated by x-rays, one side of the insulating layer being affixed to the other side of the photoconductive layer and a transparent conductive layer having two sides, one side of the transparent conductive layer being affixed to the other side of the insulating layer. (author)

  6. The ATLAS Inner Detector

    CERN Document Server

    Gray, HM; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the LHC is equipped with a charged particle tracking system, the Inner Detector, built on three subdetectors, which provide high precision measurements made from a fine detector granularity. The Pixel and microstrip (SCT) subdetectors, which use the silicon technology, are complemented with the Transition Radiation Tracker. Since the LHC startup in 2009, the ATLAS inner tracker has played a central role in many ATLAS physics analyses. Rapid improvements in the calibration and alignment of the detector allowed it to reach nearly the nominal performance in the timespan of a few months. The tracking performance proved to be stable as the LHC luminosity increased by five orders of magnitude during the 2010 proton run, New developments in the offline reconstruction for the 2011 run will improve the tracking performance in high pile-up conditions as well as in highly boosted jets will be discussed.

  7. Silicon radiation detector

    International Nuclear Information System (INIS)

    Benc, I.; Kerhart, J.; Kopecky, J.; Krca, P.; Veverka, V.; Weidner, M.; Weinova, H.

    1992-01-01

    The silicon radiation detector, which is designed for the detection of electrons with energies above 500 eV and of radiation within the region of 200 to 1100 nm, comprises a PIN or PNN + type photodiode. The active acceptor photodiode is formed by a detector surface of shallow acceptor diffusion surrounded by a collector band of deep acceptor diffusion. The detector surface of shallow P-type diffusion with an acceptor concentration of 10 15 to 10 17 atoms/cm 3 reaches a depth of 40 to 100 nm. One sixth to one eighth of the collector band width is overlapped by the P + collector band at a width of 150 to 300 μm with an acceptor concentration of 10 20 to 10 21 atoms/cm 3 down a depth of 0.5 to 3 μm. This band is covered with a conductive layer, of NiCr for instance. (Z.S.)

  8. Superlattice electroabsorption radiation detector

    International Nuclear Information System (INIS)

    Cooke, B.J.

    1993-06-01

    This paper provides a preliminary investigation of a new class of superlattice electroabsorption radiation detectors that employ direct optical modulation for high-speed, two-dimensional (2-D), high-resolution imaging. Applications for the detector include nuclear radiation measurements, tactical guidance and detection (laser radar), inertial fusion plasma studies, and satellite-based sensors. Initial calculations discussed in this paper indicate that a 1.5-μm (GaAlAs) multi-quantum-well (MQW) Fabry-Perot detector can respond directly to radiation of energies 1 eV to 10 KeV, and indirectly (with scattering targets) up through gamma, with 2-D sample rates on the order of 20 ps

  9. The AFP Detector Control System

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration

    2017-01-01

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  10. The AFP detector control system

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00514541; The ATLAS collaboration; Caforio, Davide; Czekierda, Sabina; Hajduk, Zbigniew; Olszowska, Jolanta; Sicho, Petr; Zabinski, Bartlomiej

    The ATLAS Forward Proton (AFP) detector is one of the forward detectors of the ATLAS experiment at CERN aiming at measuring momenta and angles of diffractively scattered protons. Silicon Tracking and Time-of-Flight detectors are located inside Roman Pot stations inserted into beam pipe aperture. The AFP detector is composed of two stations on each side of the ATLAS interaction point and is under commissioning. The detector is provided with high and low voltage distribution systems. Each station has vacuum and cooling systems, movement control and all the required electronics for signal processing. Monitoring of environmental parameters, like temperature and radiation, is also available. The Detector Control System (DCS) provides control and monitoring of the detector hardware and ensures the safe and reliable operation of the detector, assuring good data quality. Comparing with DCS systems of other detectors, the AFP DCS main challenge is to cope with the large variety of AFP equipment. This paper describes t...

  11. A Large-Acceptance Detector System for Electron Scattering from Polarized Internal targets.

    NARCIS (Netherlands)

    Passchier, E.; Bouwhuis, M.; Choi, S.; Zhou, Z.L.; Alarcon, R.; Anghinolfi, M.; Botto, T.; van den Brand, J.F.J.; Bulten, H.J.; Dimitroyannis, D.; Doets, M.; Ent, R.; Ferro Luzzi, M.M.E.; Higinbotham, D.W.; de Jager, C.W.; Lang, J.; de Lange, D.J.; Nikolenko, D.; Nooren, G.J.; Papadakis, N.; Passchier, I.; Popov, S.G.; Rachek, I.; Ripani, M.; Steijger, J.J.M.; Taiuti, M.; Vodinas, N.; de Vries, H.

    1997-01-01

    The design and the performance of a non-magnetic detector setup for internal target physics at the NIKHEF electron-scattering facility is described. The detector setup, used in the first internal-target experiment at the AmPS ring, measures the spin dependence in the elastic and break-up reaction

  12. The in-beam tracking detectors for R3B

    Energy Technology Data Exchange (ETDEWEB)

    Paschalis, Stefanos; Johansen, Jacob; Scheit, Heiko [Institut fuer Kernphysik, Technische Universitaet, D 64289 Darmstadt (Germany); Heil, Michael [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Aumann, Thomas [Institut fuer Kernphysik, Technische Universitaet, D 64289 Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Krivshich, Anatoly [PNPI St. Petersburg, 188300 Gatchina (Russian Federation); Collaboration: R3B-Collaboration

    2015-07-01

    The R3B experiment is part of the NUSTAR pillar at FAIR. One of the great strengths of the R3B experiment is the kinematically complete measurement of reactions with exotic ions with energies of up to 1 AGeV. Key components of the R3B experiment are the neutron detector NeuLAND, the γ and charge-particle calorimeter CALIFA, the Si Tracker and the in-beam tracking detectors. A cornerstone instrument of the setup is the new dipole magnet (GLAD) which bends and momentum analyses the high-rigidity beams. A precise tracking of the charged particles through the magnetic field is crucial to resolve the masses of heavy ions and measure the momentum of the fragments with high resolution. In this contribution we present the technical design details of the in-beam tracking detectors that will be used in the R3B experiment together with recent results obtained from in-beam prototype testing. In particular, we discuss Si detectors, detectors based on plastic-scintillator fibers and paddles, straw-tube gas detectors and the overall performance of the system.

  13. Semiconductor Thermal Neutron Detector

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2014-02-01

    Full Text Available The  CdTe  and  GaN  detector  with  a  Gd  converter  have  been developed  and  investigated  as  a  neutron  detector  for neutron  imaging.  The  fabricated  Gd/CdTe  detector  with  the  25  mm  thick  Gd  was  designed  on  the  basis  of  simulation results  of  thermal  neutron  detection  efficiency  and  spatial  resolution.  The  Gd/CdTe  detector  shows  the  detection  of neutron  capture  gamma  ray  emission  in  the  155Gd(n,  g156Gd,  157Gd(n,  g158Gd  and  113Cd(n,  g114Cd  reactions  and characteristic X-ray emissions due to conversion-electrons generated inside the Gd film. The observed efficient thermal neutron detection with the Gd/CdTe detector shows its promise in neutron radiography application. Moreover, a BGaN detector has also investigated to separate neutron signal from gamma-ray clearly. 

  14. Cerenkov ring imaging detector development at SLAC

    International Nuclear Information System (INIS)

    Williams, S.H.

    1984-06-01

    The imaging of Cerenkov light on to photosensitive detectors promises to be a powerful technique for identifying particles in colliding beam spectrometers. Toward this end two and three dimensional imaging photon detectors are being developed at SLAC. The present techniques involve photon conversion using easily ionized exotic chemicals like tetrakisdimethyl-amino-ethylene (TMAE) in a drift and amplifying gas mixture of methane and isobutane. Single photoelectrons from Cerenkov light are currently being drifted 20 cm and a new device under study will be used to study drifting up to 80 cm along a magnetic field. A short description of a large device currently being designed for the SLD spectrometer at the Stanford Linear Collider will be given

  15. The AMS-02 transition radiation detector

    CERN Document Server

    Kirn, Th

    2004-01-01

    The Alpha Magnetic Spectrometer AMS02 will be equipped with a large transition radiation detector (TRD) to achieve a proton background suppression necessary for dark matter searches. The AMS02 TRD consists of 20 layers of fleece radiator each with Xe/CO//2 proportional wire straw tubes read out by a dedicated low-power data- acquisition system. A space-qualified TRD design will be presented. The performance of a 20-layer prototype was tested at CERN with electron, myon and pion beams up to l00 GeV and with protons up to 250 GeV. The beam-test results will be compared to Geant3 MC predictions. The detector is under construction at RWTH Aachen; the gas system will be built at MIT, slow-control at MIT and INFN Rome and DAQ at TH Karlsruhe. This project is funded by the German Space Agency DLR, the US Department of Energy DOE and NASA.

  16. The Micro Wire Detector

    Energy Technology Data Exchange (ETDEWEB)

    Adeva, B.; Gomez, F.; Pazos, A.; Pfau, R.; Plo, M. E-mail: maximo.plo@cern.ch; Rodriguez, J.M.; Vazquez, P.; Labbe, J.C

    1999-10-11

    We present the performance of a new proportional gas detector. Its geometry consists of a cathode plane with 70x70 {mu}m{sup 2} apertures, crossed by 25 {mu}m anode strips to which it is attached by 50 {mu}m kapton spacers. In the region where the avalanche takes place, the anode strips are suspended in the gas mixture as in a standard wire chamber. This detector exhibits high rate capability and large gains, introducing very little material. (author)

  17. A neutron activation detector

    International Nuclear Information System (INIS)

    Ambardanishvili, T.S.; Kolomiitsev, M.A.; Zakharina, T.Y.; Dundua, V.J.; Chikhladze, N.V.

    1973-01-01

    The present invention concerns a neutron activation detector made from a moulded and hardened composition. According to the invention, that composition contains an activable substance constituted by at least two chemical elements and/or compounds of at least two chemical elements. Each of these chemical elements is capable of reacting with the neutrons forming radio-active isotopes with vatious levels of energy during desintegration. This neutron detector is mainly suitable for measuring integral thermal neutron and fast neutron fluxes during irradiation of the sample, and also for measuring the intensities of neutron fields [fr

  18. Acoustic emission intrusion detector

    International Nuclear Information System (INIS)

    Carver, D.W.; Whittaker, J.W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal

  19. Compton current detector

    International Nuclear Information System (INIS)

    Carvalho Campos, J.S. de.

    1984-01-01

    The project and construction of a Compton current detector, with cylindrical geometry using teflon as dielectric material; for electromagnetic radiation in range energy between 10 KeV and 2 MeV are described. The measurements of Compton current in teflon were obtained using an electrometer. The Compton current was promoted by photon flux proceeding from X ray sources (MG 150 Muller device) and gamma rays of 60 Co. The theory elaborated to explain the experimental results is shown. The calibration curves for accumulated charge and current in detector in function of exposition rates were obtained. (M.C.K.) [pt

  20. ATLAS Forward Proton Detector

    CERN Document Server

    Grieco, Chiara; The ATLAS collaboration

    2018-01-01

    The aim of the ATLAS Forward Proton (AFP) detector system is the measurement of protons scattered diffractively or electromagnetically at very small angles. The full two-arm setup was installed during the 2016/2017 EYETS. This allows measurements of processes with two forward protons: central diffraction, exclusive production, and two-photon processes. In 2017, AFP participated in the ATLAS high-luminosity data taking on the day-by-day basis. In addition, several special runs with reduced luminosity were taken. The poster will present the AFP detectors and the lessons learned from the last year operation and some performance from 2016 and 2017.

  1. Failed fuel detector

    International Nuclear Information System (INIS)

    Kogure, Sumio; Seya, Toru; Watanabe, Masaaki.

    1976-01-01

    Purpose: To enhance the reliability of a failed fuel detector which detects radioactivity of nuclear fission products leaked out from fuel elements in cooling water. Constitution: Collected specimen is introduced into a separator and co-existing material considered to be an impediment is separated and removed by ion exchange resins, after which this specimen is introduced into a container housing therein a detector to systematically measure radioactivity. Thereby, it is possible to detect a signal lesser in variation in background, and inspection work also becomes simple. (Kawakami, Y.)

  2. Neutron detector assembly

    International Nuclear Information System (INIS)

    Hanai, Koi; Shirayama, Shinpei.

    1978-01-01

    Purpose: To prevent gamma-ray from leaking externally passing through the inside of a neutron detector assembly. Constitution: In a neutron detector assembly having a protection pipe formed with an enlarged diameter portion which serves also as a spacer, partition plates with predetermined width are disposed at the upper and the lower portions in this expanded portion. A lot of metal particles are filled into spaces formed by the partition plates. In such a structure, the metal particles well-absorb the gamma-rays from above and convert them into heat to provide shielding for the gamma-rays. (Horiuchi, T.)

  3. Multiple chamber ionization detector

    International Nuclear Information System (INIS)

    Solomon, E.E.

    1982-01-01

    An ionization smoke detector employs a single radiation source in a construction comprising at least two chambers with a center or node electrode. The radioactive source is associated with this central electrode, and its positioning may be adjusted relative to the electrode to alter the proportion of the source that protrudes into each chamber. The source may also be mounted in the plane of the central electrode, and positioned relative to the center of the electrode. The central electrode or source may be made tiltable relative to the body of the detector

  4. High efficiency scintillation detectors

    International Nuclear Information System (INIS)

    Noakes, J.E.

    1976-01-01

    A scintillation counter consisting of a scintillation detector, usually a crystal scintillator optically coupled to a photomultiplier tube which converts photons to electrical pulses is described. The photomultiplier pulses are measured to provide information on impinging radiation. In inorganic crystal scintillation detectors to achieve maximum density, optical transparency and uniform activation, it has been necessary heretofore to prepare the scintillator as a single crystal. Crystal pieces fail to give a single composite response. Means are provided herein for obtaining such a response with crystal pieces, such means comprising the combination of crystal pieces and liquid or solid organic scintillator matrices having a cyclic molecular structure favorable to fluorescence. 8 claims, 6 drawing figures

  5. ALICE Transition Radiation Detector

    CERN Multimedia

    Pachmayer, Y

    2013-01-01

    The Transition Radiation Detector (TRD) is the main electron detector in ALICE. In conduction with the TPC and the ITS, it provides the necessary electron identification capability to study: - Production of light and heavy vector mesons as well as the continuum in the di-electron channel, - Semi leptonic decays of hadrons with open charm and open beauty via the single-electron channel using the displaced vertex information provided by the ITS, - Correlated DD and BB pairs via coincidences of electrons in the central barrel and muons in the forward muon arm, - Jets with high Pτ tracks in one single TRD stack.

  6. The LUCID-2 Detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    LUCID-2 (LUminosity Cherenkov Integrating Detector) is the upgrade of the main detector dedicated to luminosity monitoring and measurements in the ATLAS Experiment at CERN. Most changes were motivated by the large (up to 50) number of interactions per bunch-crossing and short (25 ns) bunch-spacing expected in LHC run 2 (2015-2018). Both fast online information used by LHC for luminosity optimisation and levelling in ATLAS, and per-bunch data to be used offline, come from LUCID-2.

  7. Electret radiation detector

    International Nuclear Information System (INIS)

    Kubu, M.

    1981-01-01

    The electret radiation detector consists of 30 to 35% of bee wax and of 65 to 70% of colophony. It is mainly the induction conductivity of charo.es between the dipoles in the electret which is used for detection. In the manufacture of the detector, the average atomic number of the electret can be altered by adding various compounds, such as ZnO, which also increases efficiency for gamma radiation. An alpha or beta emitter can also be built-in in the electret. (B.S.)

  8. An algorithm for calculating the Lorentz angle in silicon detectors [online

    OpenAIRE

    Bartsch, Valeria; De Boer, Willem; Bol, Johannes; Dierlamm, Alexander; Grigoriev, Eugene; Hauler, Florian; Heising, Stephan; Jungermann, Levin

    2001-01-01

    The CMS (Compact Muon Solenoid) detector will use silicon sensors in the harsh radiation environment of the LHC (Large Hadron Collider) and high magnetic fields. The drift direction of the charge carriers is aected by the Lorentz force due to the high magnetic field. Also the resulting radiation damage changes the properties of the drift. The CMS silicon strip detector is read out on the p-side of the sensors, where holes are coll...

  9. Report of the compact detector subgroup

    International Nuclear Information System (INIS)

    Kirkby, J.; Kondo, T.; Olsen, S.L.

    1988-01-01

    This report discusses different detector designs that are being proposed for Superconducting Super Collider experiments. The detectors discussed are: Higgs particle detector, Solid State Box detector, SMART detector, muon detection system, and forward detector. Also discussed are triggering strategies for these detectors, high field solenoids, barium fluoride option for EM calorimetry, radiation damage considerations, and cost estimates

  10. DEPFET-detectors: New developments

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)]. E-mail: gerhard.lutz@cern.ch; Andricek, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Eckardt, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Haelker, O. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Hermann, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Lechner, P. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Richter, R. [MPI Semiconductor Laboratory, Max Planck Institut fuer Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schaller, G. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Schopper, F. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Soltau, H. [MPI Semiconductor Laboratory, PNSensor GmbH, Otto Hahn Ring 6, D 81739 Munich (Germany); Strueder, L. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Treis, J. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Woelfl, S. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany); Zhang, C. [MPI Semiconductor Laboratory, Max Planck Institut fuer extraterrestrische Physik, Otto Hahn Ring 6, D 81739 Munich (Germany)

    2007-03-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available.

  11. DEPFET-detectors: New developments

    International Nuclear Information System (INIS)

    Lutz, G.; Andricek, L.; Eckardt, R.; Haelker, O.; Hermann, S.; Lechner, P.; Richter, R.; Schaller, G.; Schopper, F.; Soltau, H.; Strueder, L.; Treis, J.; Woelfl, S.; Zhang, C.

    2007-01-01

    The Depleted Field Effect Transistor (DEPFET) detector-amplifier structure forms the basis of a variety of detectors being developed at the MPI semiconductor laboratory. These detectors are foreseen to be used in astronomy and particle physics as well as other fields of science. The detector developments are described together with some intended applications. They comprise the X-ray astronomy missions XEUS and SIMBOL-X as well as the vertex detector of the planned International Linear Collider (ILC). All detectors are produced in the MPI semiconductor laboratory that has a complete silicon technology available

  12. Application of Geiger-mode photosensors in Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gamal, Ahmed, E-mail: gamal.ahmed@assoc.oeaw.ac.a [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Al-Azhar University, Faculty of Science, Physics Department, Cairo (Egypt); Paul, Buehler; Michael, Cargnelli [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Roland, Hohler [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Johann, Marton [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria); Herbert, Orth [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Ken, Suzuki [Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences, Vienna (Austria)

    2011-05-21

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. We are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  13. The design and construction of the ZEUS central tracking detector

    Energy Technology Data Exchange (ETDEWEB)

    Foster, B.; Malos, J.; Saxon, D.H.; Clark, D.E.; Jamdagni, A.K.; Markou, C.; Miller, D.B.; Miller, D.G.; Toudup, L.W.; Auty, C.G.; Blair, G.A.; Brooks, C.B.; Cashmore, R.J.; Hanford, A.T.; Harnew, N.; Holmes, A.R.; Linford, W.; Martin, N.C.; McArthur, I.C.; Nash, J.; Nobbs, K.N.; Wastie, R.L.; Williams, M.T.; Wilson, F.F.; Wilson, R.D.; Hart, J.C.; Hatley, R.W.; Hiddleston, J.W.; Gibson, M.D.; McCubbin, N.A.; Middleton, A.; Morrissey, M.C.; Morrow, D.; O' Brien, P.; Payne, B.T.; Roberts, J.C.H.; Shaw, T.B.; Sinclair, C.K.; Wallis, E.W.G.; White, D.J.; Yeo, K.L.; Bullock, F.W.; Dumper, J.; Fraser, T.J.; Hayes, D.; Jones, T.W.; Strachan, D.E.; Vine, I.A. (H.H. Wills Physics Lab., Univ. of Bristol (United Kingdom) Dept. of Physics and Astronomy, Univ. of Glasgow (United Kingdom) Blackett Lab., Physics Dept., Imperial Coll., London (United Kingdom) Dept. of Physics, Nuclear Physics Lab., Univ. of Oxford (United Kingdom) Rutherford Appleton Lab., Chilton (United Kingdom) Dept. of Physics an

    1994-01-15

    The mechanical, electrical and electronic design and construction of the ZEUS central tracking detector are described, together with the chamber monitoring and environmental control. This cylindrical drift chamber is designed for track reconstruction, electron identification and fast event triggering in a high beam-crossing rate, high magnetic field application. (orig.)

  14. CMS end-cap yoke at the detector's assembly site.

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The magnetic flux generated by the superconducting coil in the CMS detector is returned via an iron yoke comprising three end-cap discs at each end (end-cap yoke) and five concentric cylinders (barrel yoke). This picture shows the first of three end-cap discs (red) seen through the outer cylinder of the vacuum tank which will house the superconducting coil.

  15. Comparison of gamma densitometer detectors used in loss of coolant studies

    International Nuclear Information System (INIS)

    Shipp, R.L.

    1979-01-01

    Ionization chamber type gamma detectors are used in water-steam density measurements in loss of coolant studies at Oak Ridge National Laboratory. Ionization chambers have replaced current-mode scintillation detectors to obtain stability and freedom from magnetic field interference. However, this change results in some loss of fast transient response. Results of studies comparing the transient response of ionization chamber detectors, plastic scintillation detectors, and sodium iodide (NaI) detectors to rapid changes in gamma intensity demonstrate that plastic scintillation detectors have the fastest response and most closely reproduce the transient; ionization chambers have an initial fast response followed by a slower response, which may produce errors in fast transient measurements; and NaI scintillation detectors have a moderately fast initial response followed by an extremely slow response, which produces errors in even slow transient measurements

  16. ATLAS Magnet System Nearing Completion

    CERN Document Server

    ten Kate, H H J

    2008-01-01

    The ATLAS Detector at the Large Hadron Collider at CERN is equipped with a superconducting magnet system that consists of a Barrel Toroid, two End-Cap Toroids and a Central Solenoid. The four magnets generate the magnetic field for the muon- and inner tracking detectors, respectively. After 10 years of construction in industry, integration and on-surface tests at CERN, the magnets are now in the underground cavern where they undergo the ultimate test before data taking in the detector can start during the course of next year. The system with outer dimensions of 25 m length and 22 m diameter is based on using conduction cooled aluminum stabilized NbTi conductors operating at 4.6 K and 20.5 kA maximum coil current with peak magnetic fields in the windings of 4.1 T and a system stored magnetic energy of 1.6 GJ. The Barrel Toroid and Central Solenoid were already successfully charged after installation to full current in autumn 2006. This year the system is completed with two End Cap Toroids. The ultimate test of...

  17. Detector independent cellular automaton algorithm for track reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Kisel, Ivan; Kulakov, Igor; Zyzak, Maksym [Goethe Univ. Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany); Collaboration: CBM-Collaboration

    2013-07-01

    Track reconstruction is one of the most challenging problems of data analysis in modern high energy physics (HEP) experiments, which have to process per second of the order of 10{sup 7} events with high track multiplicity and density, registered by detectors of different types and, in many cases, located in non-homogeneous magnetic field. Creation of reconstruction package common for all experiments is considered to be important in order to consolidate efforts. The cellular automaton (CA) track reconstruction approach has been used successfully in many HEP experiments. It is very simple, efficient, local and parallel. Meanwhile it is intrinsically independent of detector geometry and good candidate for common track reconstruction. The CA implementation for the CBM experiment has been generalized and applied to the ALICE ITS and STAR HFT detectors. Tests with simulated collisions have been performed. The track reconstruction efficiencies are at the level of 95% for majority of the signal tracks for all detectors.

  18. Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    1993-01-01

    The work was directed in two complementary directions, the D0 experiment at Fermilab, and the GEM detector for the SSC. Efforts have been towards the data taking and analysis with the newly commissioned D0 detector at Fermilab in the bar pp Collider run that started in May 1992 and ended on June 1, 1993. We involved running and calibration of the calorimeter and tracking chambers, the second level trigger development, and various parts of the data analysis, as well as studies for the D0 upgrade planned in the second half of this decade. Another major accomplishment was the ''delivery'' of the Technical Design Report for the GEM SSC detector. Efforts to the overall detector and magnet design, design of the facilities, installation studies, muon system coordination, muon chamber design and tests, muon system simulation studies, and physics simulation studies. In this document we describe these activities separately

  19. Silicon photomultiplier as a detector of Cherenkov photons

    International Nuclear Information System (INIS)

    Korpar, S.; Dolenec, R.; Hara, K.; Iijima, T.; Krizan, P.; Mazuka, Y.; Pestotnik, R.; Stanovnik, A.; Yamaoka, M.

    2008-01-01

    A novel photon detector-i.e. the silicon photomultiplier-whose main advantage over conventional photomultiplier tubes is the operation in high magnetic fields, has been tested as a photon detector in a proximity focusing RICH with aerogel radiator. This type of RICH counter is proposed for the upgrade of the Belle detector at the KEK B-factory. Recently produced silicon photomultipliers show less noise and have larger size, which are important issues for a large area photon detector. We measured the single photon pulse height distribution, the timing resolution and the position sensitivity for different silicon photomultipliers (Hamamatsu MPPC HC025, HC050, and HC100). The silicon photomultipliers were then used to detect Cherenkov photons emitted by cosmic ray particles in a proximity focusing aerogel RICH. Various light guides were investigated in order to increase the detection efficiency

  20. The HERMES dual-radiator ring imaging Cherenkov detector

    CERN Document Server

    Akopov, N; Bailey, K; Bernreuther, S; Bianchi, N; Capitani, G P; Carter, P; Cisbani, E; De Leo, R; De Sanctis, E; De Schepper, D; Dzhordzhadze, V; Filippone, B W; Frullani, S; Garibaldi, F; Hansen, J O; Hommez, B; Iodice, M; Jackson, H E; Jung, P; Kaiser, R; Kanesaka, J; Kowalczyk, R; Lagamba, L; Maas, A; Muccifora, V; Nappi, E; Negodaeva, K; Nowak, Wolf-Dieter; O'Connor, T; O'Neill, T G; Potterveld, D H; Ryckbosch, D; Sakemi, Y; Sato, F; Schwind, A; Shibata, T A; Suetsugu, K; Thomas, E; Tytgat, M; Urciuoli, G M; Van De Kerckhove, K; Van De Vyver, R; Yoneyama, S; Zhang, L F; Zohrabyan, H G

    2002-01-01

    The construction and use of a dual radiator Ring Imaging Cherenkov (RICH) detector is described. This instrument was developed for the HERMES experiment at DESY which emphasises measurements of semi-inclusive deep-inelastic scattering. It provides particle identification for pions, kaons, and protons in the momentum range from 2 to 15 GeV, which is essential to these studies. The instrument uses two radiators, C sub 4 F sub 1 sub 0 , a heavy fluorocarbon gas, and a wall of silica aerogel tiles. The use of aerogel in a RICH detector has only recently become possible with the development of clear, large, homogeneous and hydrophobic aerogel. A lightweight mirror was constructed using a newly perfected technique to make resin-coated carbon-fiber surfaces of optical quality. The photon detector consists of 1934 photomultiplier tubes (PMT) for each detector half, held in a soft steel matrix to provide shielding against the residual field of the main spectrometer magnet.

  1. Design of startup neutron detector handling mechanism instrumentation

    International Nuclear Information System (INIS)

    Upadhyay, Chandra Kant; Sivaramakrishna, M.; Nagaraj, C.P.; Madhusoodanan, K.

    2010-01-01

    In PFBR, to monitor the reactor during first fuel loading and low power operation, special provision is made in the central fuel subassembly to accommodate the neutron detectors. During fuel handling operations, these detectors need to be lifted up to facilitate plug rotation. These detectors are also need to be lifted from the core to save their life, during intermediate and high power operations. Towards this, a mobile assembly containing these detectors is made with lowering and retracting provision. To control this operation, constant speed motor, torque limiter, proximity switch, wire drawn potentiometer, magnetic reed switches are provided. To ensure a smooth and safe handling of this assembly, control logic with necessary interlocks is developed. (author)

  2. Electromagnetic radiation detector

    Science.gov (United States)

    Benson, Jay L.; Hansen, Gordon J.

    1976-01-01

    An electromagnetic radiation detector including a collimating window, a cathode member having a photoelectric emissive material surface angularly disposed to said window whereby radiation is impinged thereon at acute angles, an anode, separated from the cathode member by an evacuated space, for collecting photoelectrons emitted from the emissive cathode surface, and a negatively biased, high transmissive grid disposed between the cathode member and anode.

  3. B-factory detectors

    International Nuclear Information System (INIS)

    Marlow, D.R.

    2002-01-01

    The designs of the recently commissioned BaBar and Belle B-Factory detectors are described. The discussion is organized around the methods and instruments used to detect the so-called gold-plated-mode B 0 →J/ΨK S decays and related modes

  4. The LUCID-2 Detector

    CERN Document Server

    Pinfold, James; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808/3546 filled/total LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept...

  5. ATLAS Pixel Detector Upgrade

    CERN Document Server

    Flick, T; The ATLAS collaboration

    2009-01-01

    The first upgrade for higher luminosity at LHC for the ATLAS pixel detector is the insertion of a forth layer, the IBL. The talk gives an overview about what the IBL is and how it will be set up, as well as to give a status of the research and develoment work.

  6. Calibration of germanium detectors

    International Nuclear Information System (INIS)

    Debertin, K.

    1983-01-01

    The process of determining the energy-dependent detection probability with measurements using Ge (Li) and high-grade germanium detectors is described. The paper explains which standards are best for a given purpose and given requirements as to accuracy, and how to assess measuring geometry variations and summation corrections. (DG) [de

  7. filled neutron detectors

    Indian Academy of Sciences (India)

    Boron trifluoride (BF3) proportional counters are used as detectors for thermal neutrons. They are characterized by high neutron sensitivity and good gamma discriminating properties. Most practical BF3 counters are filled with pure boron trifluoride gas enriched up to 96% 10B. But BF3 is not an ideal proportional counter ...

  8. The LUCID-2 Detector

    CERN Document Server

    Soluk, Richard; The ATLAS collaboration

    2017-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808 LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept stable at a perce...

  9. Diamond Pixel Detectors

    International Nuclear Information System (INIS)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D'Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L.; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M.

    2001-01-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles

  10. Diamond Pixel Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Adam, W.; Berdermann, E.; Bergonzo, P.; Bertuccio, G.; Bogani, F.; Borchi, E.; Brambilla, A.; Bruzzi, M.; Colledani, C.; Conway, J.; D' Angelo, P.; Dabrowski, W.; Delpierre, P.; Deneuville, A.; Doroshenko, J.; Dulinski, W.; Eijk, B. van; Fallou, A.; Fizzotti, F.; Foster, J.; Foulon, F.; Friedl, M.; Gan, K.K.; Gheeraert, E.; Gobbi, B.; Grim, G.P.; Hallewell, G.; Han, S.; Hartjes, F.; Hrubec, J.; Husson, D.; Kagan, H.; Kania, D.; Kaplon, J.; Kass, R.; Koeth, T.; Krammer, M.; Lander, R.; Logiudice, A.; Lu, R.; Lynne, L.M.; Manfredotti, C.; Meier, D.; Mishina, M.; Moroni, L.; Oh, A.; Pan, L.S.; Pernicka, M.; Perera, L. E-mail: perera@physics.rutgers.edu; Pirollo, S.; Plano, R.; Procario, M.; Riester, J.L.; Roe, S.; Rott, C.; Rousseau, L.; Rudge, A.; Russ, J.; Sala, S.; Sampietro, M.; Schnetzer, S.; Sciortino, S.; Stelzer, H.; Stone, R.; Suter, B.; Tapper, R.J.; Tesarek, R.; Trischuk, W.; Tromson, D.; Vittone, E.; Wedenig, R.; Weilhammer, P.; White, C.; Zeuner, W.; Zoeller, M

    2001-06-01

    Diamond based pixel detectors are a promising radiation-hard technology for use at the LHC. We present first results on a CMS diamond pixel sensor. With a threshold setting of 2000 electrons, an average pixel efficiency of 78% was obtained for normally incident minimum ionizing particles.

  11. The Borexino Detector

    Science.gov (United States)

    Montanari, David

    2010-04-01

    The Borexino detector is a large volume liquid scintillator detector for low energy neutrino spetroscopy currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. Main goal of the experiment is the real-time measurement of sub-MeV solar neutrinos, and particularly of the mono-energetic (862KeV) 7Be electron capture neutrinos, via neutrino-electron scattering in ultra-pure liquid scintillator. We report the description of the detector itself from its construction to the final current configuration. The initial requirements are first presented, then the strategy developed to achieve them: choice of materials and components, purification of the scintillator, cleaning, leak tightness, fluid handling. Every single point is analyzed, particularly the purification plants, that allowed reaching an ultra high pure scintillator and the fluid handling system, a large modular system connecting fluid receiving, purification and fluid delivery processes for every fluid involved. The different phases of the filling follow: from air to water to the final liquid scintillator, mainly focusing on the scintillator filling. The performances of the detector and the results are then presented.

  12. Ionic smoke detectors

    CERN Document Server

    2002-01-01

    Ionic smoke detectors are products incorporating radioactive material. This article summarises the process for their commercialization and marketing, and how the activity is controlled, according to regulations establishing strict design and production requisites to guarantee the absence of radiological risk associated both with their use and their final handling as conventional waste. (Author)

  13. Superconducting Single Photon Detectors

    NARCIS (Netherlands)

    Dorenbos, S.N.

    2011-01-01

    This thesis is about the development of a detector for single photons, particles of light. New techniques are being developed that require high performance single photon detection, such as quantum cryptography, single molecule detection, optical radar, ballistic imaging, circuit testing and

  14. The LUCID-2 detector

    CERN Document Server

    Sbarra, Carla; The ATLAS collaboration

    2018-01-01

    The LUCID-2 detector is the main online and offline luminosity provider of the ATLAS experiment. It provides over 100 different luminosity measurements from different algorithms for each of the 2808 LHC bunches. LUCID was entirely redesigned in preparation for LHC Run 2: both the detector and the electronics were upgraded in order to cope with the challenging conditions expected at the LHC center of mass energy of 13 TeV with only 25 ns bunch-spacing. While LUCID-1 used gas as a Cherenkov medium, the LUCID-2 detector is in a new unique way using the quartz windows of small photomultipliers as the Cherenkov medium. The main challenge for a luminometer is to keep the efficiency constant during years of data-taking. LUCID-2 is using an innovative calibration system based on radioactive 207 Bi sources deposited on the quartz window of the readout photomultipliers. This makes it possible to accurately monitor and control the gain of the photomultipliers so that the detector efficiency can be kept stable at a perce...

  15. Semiconductor detector physics

    International Nuclear Information System (INIS)

    Equer, B.

    1987-01-01

    Comprehension of semiconductor detectors follows comprehension of some elements of solid state physics. They are recalled here, limited to the necessary physical principles, that is to say the conductivity. P-n and MIS junctions are discussed in view of their use in detection. Material and structure (MOS, p-n, multilayer, ..) are also reviewed [fr

  16. Ionization chamber smoke detectors

    International Nuclear Information System (INIS)

    1988-03-01

    One kind of smoke detector, the ionization-type, is regulated by the Atomic Energy Control Board (AECB) because it uses a radioactive substance in its mechanism. Radioactivity and radiation are natural phenomena, but they are not very familiar to the average householder. This has led to a number of questions being asked of the AECB. These questions and AECB responses are outlined

  17. Radiation detector. [100 A

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P D; Hollands, D V

    1975-12-04

    A radiation detector is described in which the radiation is led to a sensor via a 100 A thick gold film filter, which reduces the infrared components of the irradiation to a greater extent than the ultra-violet component reaching the sensor.

  18. The LDC detector concept

    Indian Academy of Sciences (India)

    foresees a TPC with around 200 points measured along a track, and read out by a system of micro-pattern gas detectors. These novel gas amplification devices promise to provide a stable, reliable readout system, which can be realized with comparatively little material in the endplate compared to a traditional wire readout.

  19. Choosing a Motion Detector.

    Science.gov (United States)

    Ballard, David M.

    1990-01-01

    Examines the characteristics of three types of motion detectors: Doppler radar, infrared, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)

  20. Photovoltaic radiation detector element

    International Nuclear Information System (INIS)

    Agouridis, D.C.

    1980-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips

  1. ALICE Silicon Pixel Detector

    CERN Multimedia

    Manzari, V

    2013-01-01

    The Silicon Pixel Detector (SPD) forms the innermost two layers of the 6-layer barrel Inner Tracking System (ITS). The SPD plays a key role in the determination of the position of the primary collision and in the reconstruction of the secondary vertices from particle decays.

  2. Smoke Detector Technology.

    Science.gov (United States)

    Powell, Pamela, Ed.; Portugill, Jestyn, Ed.

    This manual, one in a series developed for public education, provides information on smoke detector selection, installation, operation, and maintenance. For the prospective buyer, the importance of looking for the seal of a recognized national testing laboratory--such as Underwriters' Laboratories, Inc. (UL)--indicating adequate laboratory testing…

  3. MUON DETECTORS: RPC

    CERN Multimedia

    P. Paolucci

    2012-01-01

    The RPC system is operating with a very high uptime, an average chamber efficiency of about 95% and an average cluster size around 1.8. The average number of active channels is 97.7%. Eight chambers are disconnected and forty are working in single-gap mode due to high-voltage problems. The total luminosity lost due to RPCs in 2012 is 88.46 pb–1. One of the main goals of 2012 was to improve the stability of the endcap trigger that is strongly correlated to the performances of the detector, due to the 3-out-3 trigger logic. At beginning of 2011 the instability of the detector efficiency was about 10%. Detailed studies found that this was mainly due to the strong correlation between the performance of the detector and the atmospheric pressure (P). Figure XXY shows the linear correlation between the average cluster size of the endcap chamber versus P. This effect is expected for gaseous detectors and can be reduced by correcting the applied high-voltage working point (HVapp) according to the followi...

  4. Chemochromic Hydrogen Leak Detectors

    Science.gov (United States)

    Roberson, Luke; Captain, Janine; Williams, Martha; Smith, Trent; Tate, LaNetra; Raissi, Ali; Mohajeri, Nahid; Muradov, Nazim; Bokerman, Gary

    2009-01-01

    At NASA, hydrogen safety is a key concern for space shuttle processing. Leaks of any level must be quickly recognized and addressed due to hydrogen s lower explosion limit. Chemo - chromic devices have been developed to detect hydrogen gas in several embodiments. Because hydrogen is odorless and colorless and poses an explosion hazard, there is an emerging need for sensors to quickly and accurately detect low levels of leaking hydrogen in fuel cells and other advanced energy- generating systems in which hydrogen is used as fuel. The device incorporates a chemo - chromic pigment into a base polymer. The article can reversibly or irreversibly change color upon exposure to hydrogen. The irreversible pigment changes color from a light beige to a dark gray. The sensitivity of the pigment can be tailored to its application by altering its exposure to gas through the incorporation of one or more additives or polymer matrix. Furthermore, through the incorporation of insulating additives, the chemochromic sensor can operate at cryogenic temperatures as low as 78 K. A chemochromic detector of this type can be manufactured into any feasible polymer part including injection molded plastic parts, fiber-spun textiles, or extruded tapes. The detectors are simple, inexpensive, portable, and do not require an external power source. The chemochromic detectors were installed and removed easily at the KSC launch pad without need for special expertise. These detectors may require an external monitor such as the human eye, camera, or electronic detector; however, they could be left in place, unmonitored, and examined later for color change to determine whether there had been exposure to hydrogen. In one type of envisioned application, chemochromic detectors would be fabricated as outer layers (e.g., casings or coatings) on high-pressure hydrogen storage tanks and other components of hydrogen-handling systems to provide visible indications of hydrogen leaks caused by fatigue failures or

  5. Systems integration for the L* detector

    International Nuclear Information System (INIS)

    Shannon, T.E.

    1991-01-01

    The L* is proposed as one of two large detectors to be installed at interaction points of the Superconducting Super Collider. The principal feature of the L* is a large solenoidal magnet which provides the field necessary for particle tracking within the device. This approach is based on the L3, a somewhat smaller detector presently in operation at CERN in Geneva, Switzerland. The detector is made up of four major subsystems: central tracker, electromagnetic calorimeter, hadron calorimeter, and muon chambers. These systems will deliver over 300,000 channels of electronic signals requiring massive computing systems for high speed data processing. The configuration of the L* represents a significant challenge for design, fabrication, construction and installation. It has an outer diameter of 24 meters and an overall length of 53 meters. The size and weight of the major components requires large facilities for on-site fabrication and assembly. The detector is to be installed in an experimental hall 55 meters below ground level. Precision alignment and calibration requires special fixtures and support structures which are continuously monitored. Present plans call for installation to be completed in early 1999. The L* collaboration consists of a worldwide team of scientists and engineers representing over 100 institutions. Major national centers have been established in the US to be the focal point for the collaboration: the Oak Ridge National Laboratory (for the Hadron Calorimeter and Engineering Coordination), Los Alamos National Laboratory (for the Central Tracker), and the Lawrence Livermore National Laboratory (for the Muon Chamber). This presentation describes the principal features of the detector and it's supporting facilities. Systems integration activities involved in the design and planning of the project are discussed

  6. Tracking Detectors in the STAR Experiment at RHIC

    Science.gov (United States)

    Wieman, Howard

    2015-04-01

    The STAR experiment at RHIC is designed to measure and identify the thousands of particles produced in 200 Gev/nucleon Au on Au collisions. This talk will focus on the design and construction of two of the main tracking detectors in the experiment, the TPC and the Heavy Flavor Tracker (HFT) pixel detector. The TPC is a solenoidal gas filled detector 4 meters in diameter and 4.2 meters long. It provides precise, continuous tracking and rate of energy loss in the gas (dE/dx) for particles at + - 1 units of pseudo rapidity. The tracking in a half Tesla magnetic field measures momentum and dE/dX provides particle ID. To detect short lived particles tracking close to the point of interaction is required. The HFT pixel detector is a two-layered, high resolution vertex detector located at a few centimeters radius from the collision point. It determines origins of the tracks to a few tens of microns for the purpose of extracting displaced vertices, allowing the identification of D mesons and other short-lived particles. The HFT pixel detector uses detector chips developed by the IPHC group at Strasbourg that are based on standard IC Complementary Metal-Oxide-Semiconductor (CMOS) technology. This is the first time that CMOS pixel chips have been incorporated in a collider application.

  7. nGEM fast neutron detectors for beam diagnostics

    International Nuclear Information System (INIS)

    Croci, G.; Claps, G.; Cavenago, M.; Dalla Palma, M.; Grosso, G.; Murtas, F.; Pasqualotto, R.; Perelli Cippo, E.; Pietropaolo, A.; Rebai, M.; Tardocchi, M.; Tollin, M.; Gorini, G.

    2013-01-01

    Fast neutron detectors with a sub-millimetric space resolution are required in order to qualify neutron beams in applications related to magnetically-controlled nuclear fusion plasmas and to spallation sources. A nGEM detector has been developed for the CNESM diagnostic system of the SPIDER NBI prototype for ITER and as beam monitor for fast neutrons lines at spallation sources. The nGEM is a triple GEM gaseous detector equipped with polypropylene and polyethylene layers used to convert fast neutrons into recoil protons through the elastic scattering process. This paper describes the results obtained by testing a nGEM detector at the ISIS spallation source on the VESUVIO beam line. Beam profiles (σ x =14.35 mm, σ y =15.75 mm), nGEM counting efficiency (around 10 -4 for 3 MeV n <15 MeV), detector stability (≈4.5%) and the effect of filtering the beam with different type of materials were successfully measured. The x beam profile was compared to the one measured by a single crystal diamond detector. Finally, the efficiency of the detector was simulated exploiting the GEANT4 tool

  8. The LHCb RICH system; detector description and operation

    Energy Technology Data Exchange (ETDEWEB)

    Papanestis, A., E-mail: antonis.papanestis@stfc.ac.uk

    2014-12-01

    Two RICH detectors provide positive charged hadron identification in the LHCb experiment at the Large Hadron Collider at CERN. RICH 1 covers the full acceptance of the spectrometer and contains two radiators: aerogel and C{sub 4}F{sub 10}. RICH 2 covers half the acceptance and uses CF{sub 4} as a Cherenkov radiator. Photon detection is performed by the Hybrid Photon Detectors (HPDs), with silicon pixel sensors and bump-bonded readout encapsulated in a vacuum tube for efficient, low-noise single photon detection. The LHCb RICH detectors form a complex system of three radiators, 120 mirrors and 484 photon detectors operating in the very challenging environment of the LHC. The high performance of the system in pion and kaon identification in the momentum range of 2–100 GeV/c is reached only after careful calibration of many parameters. Operational efficiency above 99% was achieved by a high level of automatization in the operation of the detectors, from switching-on to error recovery. The challenges of calibrating and operating such a system will be presented. - Highlights: • This paper describes the operation and calibration of the LHCb RICH detectors. • The scintillation of CF{sub 4} was successfully suppressed with CO{sub 2}. • The refractive index of the gas radiators was calibrated with data to an accuracy better than 0.1%. • The Hybrid Photons Detectors were calibrated for operation in a magnetic field without loss of resolution.

  9. Fire Emulator/Detector Evaluator

    Data.gov (United States)

    Federal Laboratory Consortium — Description:The fire emulator/detector evaluator (FE/DE) is a computer-controlled flow tunnel used to re-create the environments surrounding detectors in the early...

  10. Dismantling OPAL's cylindrical magnet core

    CERN Multimedia

    Laurent Guiraud

    2001-01-01

    Lifting a handling device for dismounting the pressure bells, which are inside the cylindrical magnet coil on the central section of OPAL, on the right part of the photo. OPAL was a detector on the LEP accelerator, which ran from 1989 to 2000.

  11. The status of BAT detector

    Science.gov (United States)

    Lien, Amy; Markwardt, Craig B.; Krimm, Hans Albert; Barthelmy, Scott D.; Cenko, Bradley

    2018-01-01

    We will present the current status of the Swift/BAT detector. In particular, we will report the updated detector gain calibration, the number of enable detectors, and the global bad time intervals with potential calibration issues. We will also summarize the results of the yearly BAT calibration using the Crab nebula. Finally, we will discuss the effects on the BAT survey, such as the sensitivity, localization, and spectral analysis, due to the changes in detector status.

  12. Magnetism and magnetic materials

    International Nuclear Information System (INIS)

    1990-01-01

    It describes the actual status of physics in Brazil concerning the study of magnetism and magnetic materials. It gives an overview of different research groups in Brazil, their needs, as well as the investments needed to improve the area. (A.C.A.S.)

  13. Radiation detectors laboratory; Laboratorio de detectores de radiacion

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez J, F.J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    The Radiation detectors laboratory was established with the assistance of the International Atomic Energy Agency which gave this the responsibility to provide its services at National and regional level for Latin America and it is located at the ININ. The more expensive and delicate radiation detectors are those made of semiconductor, so it has been put emphasis in the use and repairing of these detectors type. The supplied services by this laboratory are: selection consultant, detectors installation and handling and associated systems. Installation training, preventive and corrective maintenance of detectors and detection systems calibration. (Author)

  14. New electronically black neutron detectors

    International Nuclear Information System (INIS)

    Drake, D.M.; Feldman, W.C.; Hurlbut, C.

    1986-03-01

    Two neutron detectors are described that can function in a continuous radiation background. Both detectors identify neutrons by recording a proton recoil pulse followed by a characteristic capture pulse. This peculiar signature indicates that the neutron has lost all its energy in the scintillator. Resolutions and efficiencies have been measured for both detectors

  15. Workshops on radiation imaging detectors

    Energy Technology Data Exchange (ETDEWEB)

    Sochinskii, N V; Sun, G C; Kostamo, P; Silenas, A; Saynatjoki, A; Grant, J; Owens, A; Kozorezov, A G; Noschis, E; Van Eijk, C; Nagarkar, V; Sekiya, H; Pribat, D; Campbell, M; Lundgren, J; Arques, M; Gabrielli, A; Padmore, H; Maiorino, M; Volpert, M; Lebrun, F; Van der Putten, S; Pickford, A; Barnsley, R; Anton, M E.G.; Mitschke, M; Gros d' Aillon, E; Frojdh, C; Norlin, B; Marchal, J; Quattrocchi, M; Stohr, U; Bethke, K; Bronnimann, C H; Pouvesle, J M; Hoheisel, M; Clemens, J C; Gallin-Martel, M L; Bergamaschi, A; Redondo-Fernandez, I; Gal, O; Kwiatowski, K; Montesi, M C; Smith, K

    2005-07-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications.

  16. Workshops on radiation imaging detectors

    International Nuclear Information System (INIS)

    Sochinskii, N.V.; Sun, G.C.; Kostamo, P.; Silenas, A.; Saynatjoki, A.; Grant, J.; Owens, A.; Kozorezov, A.G.; Noschis, E.; Van Eijk, C.; Nagarkar, V.; Sekiya, H.; Pribat, D.; Campbell, M.; Lundgren, J.; Arques, M.; Gabrielli, A.; Padmore, H.; Maiorino, M.; Volpert, M.; Lebrun, F.; Van der Putten, S.; Pickford, A.; Barnsley, R.; Anton, M.E.G.; Mitschke, M.; Gros d'Aillon, E.; Frojdh, C.; Norlin, B.; Marchal, J.; Quattrocchi, M.; Stohr, U.; Bethke, K.; Bronnimann, C.H.; Pouvesle, J.M.; Hoheisel, M.; Clemens, J.C.; Gallin-Martel, M.L.; Bergamaschi, A.; Redondo-Fernandez, I.; Gal, O.; Kwiatowski, K.; Montesi, M.C.; Smith, K.

    2005-01-01

    This document gathers the transparencies that were presented at the international workshop on radiation imaging detectors. 9 sessions were organized: 1) materials for detectors and detector structure, 2) front end electronics, 3) interconnected technologies, 4) space, fusion applications, 5) the physics of detection, 6) industrial applications, 7) synchrotron radiation, 8) X-ray sources, and 9) medical and other applications

  17. Black and grey neutron detectors

    International Nuclear Information System (INIS)

    Gabbard, F.

    1977-01-01

    Recent progress in the development and use of ''black'' and ''grey'' detectors is reviewed. Such detectors are widely used for counting neutrons in (p,n) and (α,n) experiments and in neutron cross section measurements. Accuracy of each detector is stressed. 19 figures

  18. Lorentz angle studies for the SLD endcap Cerenkov Ring Imaging Detector

    International Nuclear Information System (INIS)

    Coyle, P.; Cavalli-Sforza, M.; Coyne, D.

    1987-11-01

    The design of the endcap Cerenkov Ring Imaging Detectors for SLD requires a detailed understanding of how electrons drift in gases under the influence of crossed electric and magnetic fields. In this report, we present recent measurements of Lorentz angles and drift velocities in gases suitable for the endcap CRID photon detectors. We compare these measurements to predictions from a theoretical model; good agreement is observed. Based on our results we present a design for detectors operating in a 0.6 Tesla transverse magnetic field. 14 refs., 10 figs., 4 tabs

  19. Characterisation of SI Detectors for the Use at 2 K*

    CERN Document Server

    Bartosik, M; Eisel, T; Kurfuerst, C; Rementeria, C; Sapinski, M; Eremin, V; Verbitskaya, E

    2013-01-01

    It is expected that the luminosity of the Large Hadron Collider (LHC) will be bounded in the future by the beam loss limits of the superconducting magnets. To protect the superconducting magnets of the high luminosity insertions an optimal detection of the energy deposition by the shower of beam particles is necessary. Therefore beam Loss Monitors (BLM) need to be placed close to the particle impact location in the cold mass of the magnets where they should operate in superfluid helium at 1.9 Kelvin. To choose optimal detectors n-type silicon wafers have been examined at superfluid helium temperature whilst under irradiation from a high intensity proton beam. The radiation hardness and leakage current of these detectors were found to be significantly improved at 1.9 Kelvin when compared to their operation at room temperature.

  20. The Diogene 4π detector at Saturne

    International Nuclear Information System (INIS)

    Alard, J.P.; Arnold, J.; Augerat, J.; Bastid, N.; Costilhes, J.P.; Crouau, M.; Dupieux, P.; Fraysse, L.; Montarou, G.; Parizet, M.J.; Tamain, J.C.; Valero, J.; Babinet, R.; Marco, N. de; Drouet, M.; Fanet, H.; Fodor, Z.; Girard, J.; Gosset, J.; Laspalles, C.; Lemaire, M.C.; L'Hote, D.; Lucas, B.; Papineau, A.; Poitou, J.; Schimmerling, W.; Terrien, Y.; Valette, O.; Brochard, F.; Gorodetzky, P.; Racca, C.

    1987-01-01

    Diogene, an electronic 4π detector, has been built and installed at the Saturne synchrotron in Saclay. The forward angular range (0 0 -6 0 ) is covered by 48 time-of-flight scintillator telescopes that provide charge identification. The trajectories of fragments emitted at larger angles are recorded in a cylindrical 0.4 m 3 Pictorial Drift Chamber (PDC) surrounding the target. The PDC is inside a 1-T magnetic field; the axis of the PDC cylinder and the magnetic field are parallel to the beam. Good identification has been obtained for both positive and negative π mesons and for hydrogen and helium isotopes. M