WorldWideScience

Sample records for magnetic detection

  1. Corrosion detection of nanowires by magnetic sensors

    KAUST Repository

    Kosel, Jü rgen; Amara, Selma; Ivanov, Iurii; Blanco, Mario

    2017-01-01

    Disclosed are various embodiments related to a corrosion detection device for detecting corrosive environments. A corrosion detection device comprises a magnetic sensor and at least one magnetic nanowire disposed on the magnetic sensor. The magnetic sensor is configured to detect corrosion of the one or more magnetic nanowires based at least in part on a magnetic field of the one or more magnetic nanowires.

  2. Corrosion detection of nanowires by magnetic sensors

    KAUST Repository

    Kosel, Jürgen

    2017-10-05

    Disclosed are various embodiments related to a corrosion detection device for detecting corrosive environments. A corrosion detection device comprises a magnetic sensor and at least one magnetic nanowire disposed on the magnetic sensor. The magnetic sensor is configured to detect corrosion of the one or more magnetic nanowires based at least in part on a magnetic field of the one or more magnetic nanowires.

  3. Magnetic biosensor system to detect biological targets

    KAUST Repository

    Li, Fuquan; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2012-01-01

    magnetic concentration, magnetic as well as mechanical trapping and magnetic sensing. Target detection is based on the size difference between bare magnetic beads and magnetic beads with targets attached. This method remedies the need for a coating layer

  4. A Magnetic Sensor System for Biological Detection

    KAUST Repository

    Li, Fuquan

    2015-01-01

    Magnetic biosensors detect biological targets through sensing the stray field of magnetic beads which label the targets. Commonly, magnetic biosensors employ the “sandwich” method to immobilize biological targets, i.e., the targets are sandwiched

  5. Detection of magnetic nanoparticles with magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Jia Wenyan [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Xu, Guizhi [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 (China); Sclabassi, Robert J. [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Zhu Jiangang [Department of Electrical and Computer Engineering, Carnegie Melon University, Pittsburgh, PA 15213 (United States); Bagic, Anto [Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Sun Mingui [Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15260 (United States)], E-mail: mrsun@neuronet.pitt.edu

    2008-04-15

    Superconducting quantum interference devices (SQUIDs) have been widely utilized in biomedical applications due to their extremely high sensitivity to magnetic signals. The present study explores the feasibility of a new type of nanotechnology-based imaging method using standard clinical magnetoencephalographic (MEG) systems equipped with SQUID sensors. Previous studies have shown that biological targets labeled with non-toxic, magnetized nanoparticles can be imaged by measuring the magnetic field generated by these particles. In this work, we demonstrate that (1) the magnetic signals from certain nanoparticles can be detected without magnetization using standard clinical MEG, (2) for some types of nanoparticles, only bound particles produce detectable signals, and (3) the magnetic field of particles several hours after magnetization is significantly stronger than that of un-magnetized particles. These findings hold promise in facilitating the potential application of magnetic nanoparticles to in vivo tumor imaging. The minimum amount of nanoparticles that produce detectable signals is predicted by theoretical modeling and computer simulation.

  6. Force detection of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Rugar, D.; Zueger, O.; Hoen, S.; Yannoni, C.S.; Vieth, H.M.; Kendrick, R.D.

    1994-01-01

    Micromechanical sensing of magnetic force was used to detect nuclear magnetic resonance with exceptional sensitivity and spatial resolution. With a 900 angstrom thick silicon nitride cantilever capable of detecting subfemtonewton forces, a single shot sensitivity of 1.6 x 10 13 protons was achieved for an ammonium nitrate sample mounted on the cantilever. A nearby millimeter-size iron particle produced a 600 tesla per meter magnetic field gradient, resulting in a spatial resolution of 2.6 micrometers in one dimension. These results suggest that magnetic force sensing is a viable approach for enhancing the sensitivity and spatial resolution of nuclear magnetic resonance microimaging

  7. A Magnetic Sensor System for Biological Detection

    KAUST Repository

    Li, Fuquan

    2015-05-01

    Magnetic biosensors detect biological targets through sensing the stray field of magnetic beads which label the targets. Commonly, magnetic biosensors employ the “sandwich” method to immobilize biological targets, i.e., the targets are sandwiched between a bio-functionalized sensor surface and bio-functionalized magnetic beads. This method has been used very successfully in different application, but its execution requires a rather elaborate procedure including several washing and incubation steps. This dissertation investigates a new magnetic biosensor concept, which enables a simple and effective detection of biological targets. The biosensor takes advantage of the size difference between bare magnetic beads and compounds of magnetic beads and biological targets. First, the detection of super-paramagnetic beads via magnetic tunnel junction (MTJ) sensors is implemented. Frequency modulation is used to enhance the signal-to-noise ratio, enabling the detection of a single magnetic bead. Second, the concept of the magnetic biosensor is investigated theoretically. The biosensor consists of an MTJ sensor, which detects the stray field of magnetic beads inside of a trap on top of the MTJ. A microwire between the trap and the MTJ is used to attract magnetic beads to the trapping well by applying a current to it. The MTJ sensor’s output depends on the number of beads inside the trap. If biological targets are in the sample solution, the beads will form bead compounds consisting of beads linked to the biological targets. Since bead compounds are larger than bare beads, the number of beads inside the trapping well will depend on the presence of biological targets. Hence, the output of the MTJ sensor will depend on the biological targets. The dependences of sensor signals on the sizes of the MTJ sensor, magnetic beads and biological targets are studied to find the optimum constellations for the detection of specific biological targets. The optimization is demonstrated

  8. Biosensing Using Magnetic Particle Detection Techniques

    Directory of Open Access Journals (Sweden)

    Yi-Ting Chen

    2017-10-01

    Full Text Available Magnetic particles are widely used as signal labels in a variety of biological sensing applications, such as molecular detection and related strategies that rely on ligand-receptor binding. In this review, we explore the fundamental concepts involved in designing magnetic particles for biosensing applications and the techniques used to detect them. First, we briefly describe the magnetic properties that are important for bio-sensing applications and highlight the associated key parameters (such as the starting materials, size, functionalization methods, and bio-conjugation strategies. Subsequently, we focus on magnetic sensing applications that utilize several types of magnetic detection techniques: spintronic sensors, nuclear magnetic resonance (NMR sensors, superconducting quantum interference devices (SQUIDs, sensors based on the atomic magnetometer (AM, and others. From the studies reported, we note that the size of the MPs is one of the most important factors in choosing a sensing technique.

  9. Magnetic biosensor system to detect biological targets

    KAUST Repository

    Li, Fuquan

    2012-09-01

    Magneto-resistive sensors in combination with magnetic beads provide sensing platforms, which are small in size and highly sensitive. These platforms can be fully integrated with microchannels and electronics to enable devices capable of performing complex tasks. Commonly, a sandwich method is used that requires a specific coating of the sensor\\'s surface to immobilize magnetic beads and biological targets on top of the sensor. This paper concerns a micro device to detect biological targets using magnetic concentration, magnetic as well as mechanical trapping and magnetic sensing. Target detection is based on the size difference between bare magnetic beads and magnetic beads with targets attached. This method remedies the need for a coating layer and reduces the number of steps required to run an experiment. © 2012 IEEE.

  10. Advances in mechanical detection of magnetic resonance

    International Nuclear Information System (INIS)

    Kuehn, Seppe; Hickman, Steven A.; Marohn, John A.

    2008-01-01

    The invention and initial demonstration of magnetic resonance force microscopy (MRFM) in the early 1990s launched a renaissance of mechanical approaches to detecting magnetic resonance. This article reviews progress made in MRFM in the last decade, including the demonstration of scanned probe detection of magnetic resonance (electron spin resonance, ferromagnetic resonance, and nuclear magnetic resonance) and the mechanical detection of electron spin resonance from a single spin. Force and force-gradient approaches to mechanical detection are reviewed and recent related work using attonewton sensitivity cantilevers to probe minute fluctuating electric fields near surfaces is discussed. Given recent progress, pushing MRFM to single proton sensitivity remains an exciting possibility. We will survey some practical and fundamental issues that must be resolved to meet this challenge.

  11. Magnetic GMI sensor for detection of biomolecules

    International Nuclear Information System (INIS)

    Chiriac, Horia; Tibu, Mihai; Moga, Anca-Eugenia; Herea, Dumitru D.

    2005-01-01

    A magnetic sensor based on the giant magnetoimpedance (GMI) effect for the detection of biomolecules was made with a CoFeSiB amorphous magnetic microwire as sensing element. Using soft ferromagnetic cobalt microparticles and field sensitivities of the impedance of about 2.5%/A m -1 in the very low field region (less than 200 A m -1 ) at frequencies close to 10 MHz, a highly sensitive response was measured, appropriate for the detection of low biomolecule concentrations

  12. Detection Range of Airborne Magnetometers in Magnetic Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Chengjing Li

    2015-11-01

    Full Text Available Airborne magnetometers are utilized for the small-range search, precise positioning, and identification of the ferromagnetic properties of underwater targets. As an important performance parameter of sensors, the detection range of airborne magnetometers is commonly set as a fixed value in references regardless of the influences of environment noise, target magnetic properties, and platform features in a classical model to detect airborne magnetic anomalies. As a consequence, deviation in detection ability analysis is observed. In this study, a novel detection range model is proposed on the basis of classic detection range models of airborne magnetometers. In this model, probability distribution is applied, and the magnetic properties of targets and the environment noise properties of a moving submarine are considered. The detection range model is also constructed by considering the distribution of the moving submarine during detection. A cell-averaging greatest-of-constant false alarm rate test method is also used to calculate the detection range of the model at a desired false alarm rate. The detection range model is then used to establish typical submarine search probabilistic models. Results show that the model can be used to evaluate not only the effects of ambient magnetic noise but also the moving and geomagnetic features of the target and airborne detection platform. The model can also be utilized to display the actual operating range of sensor systems.

  13. Magnetic bead detection using nano-transformers

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Kwon; Ahn, Doyeol [Institute of Quantum Information Processing and Systems, University of Seoul, 90 Jeonnong, Dongdaemun, Seoul 130-743 (Korea, Republic of); Hwang, Jong Seung; Hwang, Sung Woo, E-mail: dahn@uos.ac.kr [Research Center for Time-domain Nano-functional Devices and School of Electrical Engineering, Korea University, 5-1 Anam, Sungbuk, Seoul 136-701 (Korea, Republic of)

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.

  14. Magnetic bead detection using nano-transformers.

    Science.gov (United States)

    Kim, Hyung Kwon; Hwang, Jong Seung; Hwang, Sung Woo; Ahn, Doyeol

    2010-11-19

    A novel scheme to detect magnetic beads using a nano-scale transformer with a femtoweber resolution is reported. We have performed a Faraday's induction experiment with the nano-transformer at room temperature. The transformer shows the linear output voltage responses to the sinusoidal input current. When magnetic beads are placed on the transformer, the output responses are increased by an amount corresponding to the added magnetic flux from the beads when compared with the case of no beads on the transformer. In this way, we could determine whether magnetic beads are on top of the transformer in a single particle level.

  15. Sensor for detecting changes in magnetic fields

    Science.gov (United States)

    Praeg, Walter F.

    1981-01-01

    A sensor for detecting changes in the magnetic field of the equilibrium-field coil of a Tokamak plasma device comprises a pair of bifilar wires disposed circumferentially, one inside and one outside the equilibrium-field coil. Each is shorted at one end. The difference between the voltages detected at the other ends of the bifilar wires provides a measure of changing flux in the equilibrium-field coil. This difference can be used to detect faults in the coil in time to take action to protect the coil.

  16. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    McDermott, Robert; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Mueck, Michael; Myers, Whittier; Haken, Bernard ten; Seton, H.C.; Trabesinger, Andreas H.; Pines, Alex; Clarke, John

    2003-01-01

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  17. Surface crack detection by magnetic particle inspection

    International Nuclear Information System (INIS)

    Goebbels, K.

    1988-01-01

    For ferromagnetic materials magnetic particle inspection is without doubt the most sensitive method to detect surface cracks and the least sensitive method referring to disturbing boundary conditions. Up to now the technique is based on experiments, experience, on empirical facts and on a subjective evaluation. This contribution for the first time presents a concept which allows the objective, reproducible as well as reliable magnetic particle inspection: Modelling of testing based on Maxwell's equations by finite element calculation; objective setting of test-parameters and their surveillance, handling systems, illumination and sensors, image processing and fully automated evaluation. Economy and safety of magnetic particle inspection are strongly improved by this procedure. (orig./HP) [de

  18. Ferritin protein imaging and detection by magnetic force microscopy.

    Science.gov (United States)

    Hsieh, Chiung-Wen; Zheng, Bin; Hsieh, Shuchen

    2010-03-14

    Magnetic force microscopy was used to image and detect ferritin proteins and the strength of the magnetic signal is discussed, revealing a large workable lift height between the magnetic tip and the ferritin sample.

  19. Adaptive algorithm of magnetic heading detection

    Science.gov (United States)

    Liu, Gong-Xu; Shi, Ling-Feng

    2017-11-01

    Magnetic data obtained from a magnetic sensor usually fluctuate in a certain range, which makes it difficult to estimate the magnetic heading accurately. In fact, magnetic heading information is usually submerged in noise because of all kinds of electromagnetic interference and the diversity of the pedestrian’s motion states. In order to solve this problem, a new adaptive algorithm based on the (typically) right-angled corridors of a building or residential buildings is put forward to process heading information. First, a 3D indoor localization platform is set up based on MPU9250. Then, several groups of data are measured by changing the experimental environment and pedestrian’s motion pace. The raw data from the attached inertial measurement unit are calibrated and arranged into a time-stamped array and written to a data file. Later, the data file is imported into MATLAB for processing and analysis using the proposed adaptive algorithm. Finally, the algorithm is verified by comparison with the existing algorithm. The experimental results show that the algorithm has strong robustness and good fault tolerance, which can detect the heading information accurately and in real-time.

  20. Magnetic detection of ferrofluid injection zones

    Energy Technology Data Exchange (ETDEWEB)

    Borglin, S.; Moridis, G.; Becker, A.

    1998-03-01

    Ferrofluids are stable colloidal suspensions of magnetic particles that can be stabilized in various carrier liquids. In this study the authors investigate the potential of ferrofluids to trace the movement and position of liquids injected in the subsurface using geophysical methods. An ability to track and monitor the movement and position of injected liquids is essential in assessing the effectiveness of the delivery system and the success of the process. Ferrofluids can also provide a significant detection and verification tool in containment technologies, where they can be injected with the barrier liquids to provide a strong signature allowing determination of the barrier geometry, extent, continuity and integrity. Finally, ferrofluids may have unique properties as tracers for detecting preferential flow features (such as fractures) in the subsurface, and thus allow the design of more effective remediation systems. In this report the authors review the results of the investigation of the potential of ferrofluids to trace the movement and position of liquids injected in the subsurface using geophysical methods. They demonstrate the feasibility of using conventional magnetometry for detecting subsurface zones of injected ferrofluids used to trace liquids injected for remediation or barrier formation. The geometrical shapes considered were a sphere, a thin disk, a rectangular horizontal slab, and a cylinder. Simple calculations based on the principles of magnetometry are made to determine the detection depths of FTs. Experiments involving spherical, cylindrical and horizontal slabs show a very good agreement between predictions and measurements.

  1. Method and means for detecting magnetic deposits in tubular plant

    Energy Technology Data Exchange (ETDEWEB)

    Lord, W

    1981-03-04

    Deposits of magnetite on tubes in a heat exchanger, e.g., a steam generator, are detected by measuring the magnetic reluctance within the tubes. A probe for measuring the reluctance includes a permanent magnet (or a magnetic core and an excitation coil wound on the core) and a magnetic flux detector such as a Hall generator mounted for example on one of the non-magnetic rings. Changes in flux density as the probe is pushed through the tubes are detected by the Hall generator, thus indicating the presence of magnetite deposits. The probe includes a non-magnetic tube for pushing it through the heat exchanger tubes.

  2. Theory and Application of Magnetic Flux Leakage Pipeline Detection.

    Science.gov (United States)

    Shi, Yan; Zhang, Chao; Li, Rui; Cai, Maolin; Jia, Guanwei

    2015-12-10

    Magnetic flux leakage (MFL) detection is one of the most popular methods of pipeline inspection. It is a nondestructive testing technique which uses magnetic sensitive sensors to detect the magnetic leakage field of defects on both the internal and external surfaces of pipelines. This paper introduces the main principles, measurement and processing of MFL data. As the key point of a quantitative analysis of MFL detection, the identification of the leakage magnetic signal is also discussed. In addition, the advantages and disadvantages of different identification methods are analyzed. Then the paper briefly introduces the expert systems used. At the end of this paper, future developments in pipeline MFL detection are predicted.

  3. Tactile sensor of hardness recognition based on magnetic anomaly detection

    Science.gov (United States)

    Xue, Lingyun; Zhang, Dongfang; Chen, Qingguang; Rao, Huanle; Xu, Ping

    2018-03-01

    Hardness, as one kind of tactile sensing, plays an important role in the field of intelligent robot application such as gripping, agricultural harvesting, prosthetic hand and so on. Recently, with the rapid development of magnetic field sensing technology with high performance, a number of magnetic sensors have been developed for intelligent application. The tunnel Magnetoresistance(TMR) based on magnetoresistance principal works as the sensitive element to detect the magnetic field and it has proven its excellent ability of weak magnetic detection. In the paper, a new method based on magnetic anomaly detection was proposed to detect the hardness in the tactile way. The sensor is composed of elastic body, ferrous probe, TMR element, permanent magnet. When the elastic body embedded with ferrous probe touches the object under the certain size of force, deformation of elastic body will produce. Correspondingly, the ferrous probe will be forced to displace and the background magnetic field will be distorted. The distorted magnetic field was detected by TMR elements and the output signal at different time can be sampled. The slope of magnetic signal with the sampling time is different for object with different hardness. The result indicated that the magnetic anomaly sensor can recognize the hardness rapidly within 150ms after the tactile moment. The hardness sensor based on magnetic anomaly detection principal proposed in the paper has the advantages of simple structure, low cost, rapid response and it has shown great application potential in the field of intelligent robot.

  4. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    OpenAIRE

    Marchevsky, M.; Wang, X.; Sabbi, G.; Prestemon, S.

    2014-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01 [...

  5. Development of automatic flaw detection systems for magnetic particle examination

    International Nuclear Information System (INIS)

    Shirai, T.; Kimura, J.; Amako, T.

    1988-01-01

    Utilizing a video camera and an image processor, development was carried out on automatic flaw detection and discrimination techniques for the purpose of achieving automated magnetic particle examination. Following this, fluorescent wet magnetic particle examination systems for blade roots and rotor grooves of turbine rotors and the non-fluorescent dry magnetic particle examination system for butt welds, were developed. This paper describes these automatic magnetic particle examination (MT) systems and the functional test results

  6. A magnetic biosensor system for detection of E. coli

    KAUST Repository

    Li, Fuquan

    2013-07-01

    This work describes a device for detecting E. coli bacteria by manipulating superparamagnetic beads to a sensing area and immobilizing them in a trapping well. The trapping well replaces the biochemical immobilization layer, which is commonly used in magnetic biosensor systems. A concept exploiting the volume difference between bare magnetic beads and magnetic bead-bioanalyte compounds is utilized to detect E. coli bacteria. Trapped beads are detected by the help of a tunnel magneto-resistive sensor. Frequency modulation is employed, in order to increase the signal-to-noise ratio, enabling the detection of individual superparamagnetic beads of 2.8 μm in diameter. Replacing the biochemical immobilization layer by the trapping well greatly simplifies the detection process. After applying the mixture of E. coli and magnetic beads to the biosensor system, bacteria detection is achieved in a single step, within a few minutes. © 2013 IEEE.

  7. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    International Nuclear Information System (INIS)

    Marchevsky, M; Wang, X; Sabbi, G; Prestemon, S

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb3Sn quadrupole HQ01, we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed. (author)

  8. Acoustic detection in superconducting magnets for performance characterization and diagnostics

    CERN Document Server

    Marchevsky, M.; Sabbi, G.; Prestemon, S.

    2013-01-01

    Quench diagnostics in superconducting accelerator magnets is essential for understanding performance limitations and improving magnet design. Applicability of the conventional quench diagnostics methods such as voltage taps or quench antennas is limited for long magnets or complex winding geometries, and alternative approaches are desirable. Here, we discuss acoustic sensing technique for detecting mechanical vibrations in superconducting magnets. Using LARP high-field Nb$_{3}$Sn quadrupole HQ01 [1], we show how acoustic data is connected with voltage instabilities measured simultaneously in the magnet windings during provoked extractions and current ramps to quench. Instrumentation and data analysis techniques for acoustic sensing are reviewed.

  9. Pulse-driven magnetoimpedance sensor detection of cardiac magnetic activity.

    Directory of Open Access Journals (Sweden)

    Shinsuke Nakayama

    Full Text Available This study sought to establish a convenient method for detecting biomagnetic activity in the heart. Electrical activity of the heart simultaneously induces a magnetic field. Detection of this magnetic activity will enable non-contact, noninvasive evaluation to be made. We improved the sensitivity of a pulse-driven magnetoimpedance (PMI sensor, which is used as an electric compass in mobile phones and as a motion sensor of the operation handle in computer games, toward a pico-Tesla (pT level, and measured magnetic fields on the surface of the thoracic wall in humans. The changes in magnetic field detected by this sensor synchronized with the electric activity of the electrocardiogram (ECG. The shape of the magnetic wave was largely altered by shifting the sensor position within 20 mm in parallel and/or perpendicular to the thoracic wall. The magnetic activity was maximal in the 4th intercostals near the center of the sterna. Furthermore, averaging the magnetic activity at 15 mm in the distance between the thoracic wall and the sensor demonstrated magnetic waves mimicking the P wave and QRS complex. The present study shows the application of PMI sensor in detecting cardiac magnetic activity in several healthy subjects, and suggests future applications of this technology in medicine and biology.

  10. Quench detection of superconducting magnets using ultrasonic wave

    International Nuclear Information System (INIS)

    Ninomiya, A.; Sakaniwa, K.; Kado, H.; Ishigohka, T.; Higo, Y.

    1989-01-01

    A method to detect a quench of a superconducting magnet using ultrasonic technique is presented. This method is a kind of non-destructive one which monitors a change of acoustic transfer function of a superconducting magnet induced by a local temperature rise or an epoxy crack etc.. Some experiments are carried out on a small epoxy impregnated magnet. The experimental results show that a local temperature rise of about 2-3K can be detected by this method. And, some leading symptoms before quench were detected

  11. Mikhailov's experiments on detection of magnetic charge

    International Nuclear Information System (INIS)

    Akers, D.

    1988-01-01

    In a reanalysis of Mikhailov's experiments, it is argued that observations of magnetic charge g = (1/2)(1/137)(1/3)e on ferromagnetic aerosols are incorrect. Future experiments of the type conducted by Mikhailov must take into an account the component of particle velocity orthogonal to E and H. It is shown that Mikhailov's data are consistent with the existence of a Dirac unit of magnetic charge g = (137/2)e found in meson spectroscopy

  12. Quench Detection and Instrumentation for the Tokamak Physics Experiment magnets

    International Nuclear Information System (INIS)

    Chaplin, M.R.; Hassenzahl, W.V.; Schultz, J.H.

    1993-01-01

    The design of the Local Instrumentation ampersand Control (I ampersand C) System for the Tokamak Physics Experiment (TPX) superconducting PF ampersand TF magnets is presented. The local I ampersand C system monitors the status of the magnet systems and initiates the proper control sequences to protect the magnets from any foreseeable fault. Local I ampersand C also stores magnet-system data for analysis and archiving. Quench Detection for the TPX magnets must use a minimum of two independent sensing methods and is allowed a detection time of one second. Proposed detection methods include the measurement of; (1) normal-zone resistive voltage, (2) cooling-path helium flow, (3) local temperature in the winding pack, (4) local pressure in the winding pack. Fiber-optic based isolation systems are used to remove high common-mode magnet voltages and eliminate ground loops. The data acquisition and fault-detection systems are computer based. The design of the local I ampersand C system incorporates redundant, fault-tolerant, and/or fail-safe features at all component levels. As part of a quench detection R ampersand D plan, a Quench Detection Model Coil has been proposed to test all detection methods. Initial cost estimates and schedule for the local I ampersand C system are presented

  13. Spin microscope based on optically detected magnetic resonance

    Science.gov (United States)

    Berman, Gennady P.; Chernobrod, Boris M.

    2007-12-11

    The invention relates to scanning magnetic microscope which has a photoluminescent nanoprobe implanted in the tip apex of an atomic force microscope (AFM), a scanning tunneling microscope (STM) or a near-field scanning optical microscope (NSOM) and exhibits optically detected magnetic resonance (ODMR) in the vicinity of unpaired electron spins or nuclear magnetic moments in the sample material. The described spin microscope has demonstrated nanoscale lateral resolution and single spin sensitivity for the AFM and STM embodiments.

  14. Magnetic microbead detection using the planar Hall effect

    International Nuclear Information System (INIS)

    Ejsing, Louise; Hansen, Mikkel F.; Menon, Aric K.; Ferreira, Hugo A.; Graham, Daniel L.; Freitas, Paulo P.

    2005-01-01

    Magnetic sensors based on the planar Hall effect of exchanged-biased permalloy have been fabricated and characterized. It is demonstrated that the sensors are feasible for detecting just a few commercial 2.0 μm magnetic beads commonly used for bioseparation (Micromer-M, Micromod, Germany) and that the sensor sense current is sufficient to generate a signal from the beads

  15. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Ley, Mikkel Wennemoes Hvitfeld; Flyvbjerg, Henrik

    2015-01-01

    Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a functionalized area. This area is often larger than the area of the sensor. Both the sign and magnitude of the average magnetic field experienced by the sensor from a magnetic bead depends on the location...... of the bead relative to the sensor. Consequently, the signal from multiple beads also depends on their locations. Thus, a given coverage of the functionalized area with magnetic beads does not result in a given detector response, except on the average, over many realizations of the same coverage. We present...... a systematic theoretical analysis of how this location-dependence affects the sensor response. The analysis is done for beads magnetized by a homogeneous in-plane magnetic field. We determine the expected value and standard deviation of the sensor response for a given coverage, as well as the accuracy...

  16. Electrical detection of magnetization reversal without auxiliary magnets

    Czech Academy of Sciences Publication Activity Database

    Olejník, Kamil; Novák, Vít; Wunderlich, Joerg; Jungwirth, Tomáš

    2015-01-01

    Roč. 91, č. 18 (2015), , "180402-1"-"180402-5" ISSN 1098-0121 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : spin Hall effect * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  17. Strain-based quench detection for a solenoid superconducting magnet

    International Nuclear Information System (INIS)

    Wang Xingzhe; Guan Mingzhi; Ma Lizhen

    2012-01-01

    In this paper, we present a non-electric quench detection method based on the strain gauge measurement of a superconducting solenoid magnet at cryogenic temperature under an intense magnetic field. Unlike the traditional voltage measurement of quench detection, the strain-based detection method utilizes low-temperature strain gauges, which evidently reduce electromagnetic noise and breakdown, to measure the magneto/thermo-mechanical behavior of the superconducting magnet during excitation. The magnet excitation, quench tests and trainings were performed on a prototype 5 T superconducting solenoid magnet. The transient strains and their abrupt changes were compared with the current, magnetic field and temperature signals collected during excitation and quench tests to indicate that the strain gauge measurements can detect the quench feature of the superconducting magnet. The proposed method is expected to be able to detect the quench of a superconducting coil independently or utilized together with other electrical methods. In addition, the axial quench propagation velocity of the solenoid is evaluated by the quench time lags among different localized strains. The propagation velocity is enhanced after repeated quench trainings. (paper)

  18. Optimization of a quench detection system for superconducting magnets

    International Nuclear Information System (INIS)

    Borlein, M.

    2004-12-01

    Subject of this report is the detection of a quench in a superconducting magnet. For the safe operation of superconducting magnets one of the most important issues is the quench detection system which controls the superconducting state of the magnet and triggers a safety discharge if necessary. If it comes to a breakdown of the superconductivity (quench), the magnet has to be discharged very quickly to avoid any damage or danger for the magnet or its environment. First an introducing overview is given. Next different methods of quench detection will be presented, partially on the basis of existing quench detection systems and the applicability of these methods in different states of the magnet operation will be shown. The different quench detection methods are compared and evaluated partially by using test experiments described in the appendix. As an application example this report contains a proposal for the quench detection system for the Wendelstein 7-X facility, actually built by the Institute for Plasma Physics, Garching [de

  19. Voltage spike detection in high field superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.; /Fermilab

    2004-12-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are {approx}15mV in magnitude and lasts for {approx}30 {micro}sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb{sub 3}Sn magnets at currents up to {approx}20KA will also be shown.

  20. Voltage spike detection in high field superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Orris, D.F.; Carcagno, R.; Feher, S.; Makulski, A.; Pischalnikov, Y.M.

    2004-01-01

    A measurement system for the detection of small magnetic flux changes in superconducting magnets, which are due to either mechanical motion of the conductor or flux jump, has been developed at Fermilab. These flux changes are detected as small amplitude, short duration voltage spikes, which are ∼15mV in magnitude and lasts for ∼30(micro)sec. The detection system combines an analog circuit for the signal conditioning of two coil segments and a fast data acquisition system for digitizing the results, performing threshold detection, and storing the resultant data. The design of the spike detection system along with the modeling results and noise analysis will be presented. Data from tests of high field Nb3Sn magnets at currents up to ∼20KA will also be shown

  1. Electrical detection of magnetization dynamics via spin rectification effects

    Energy Technology Data Exchange (ETDEWEB)

    Harder, Michael, E-mail: michael.harder@umanitoba.ca; Gui, Yongsheng, E-mail: ysgui@physics.umanitoba.ca; Hu, Can-Ming, E-mail: hu@physics.umanitoba.ca

    2016-11-23

    The purpose of this article is to review the current status of a frontier in dynamic spintronics and contemporary magnetism, in which much progress has been made in the past decade, based on the creation of a variety of micro and nanostructured devices that enable electrical detection of magnetization dynamics. The primary focus is on the physics of spin rectification effects, which are well suited for studying magnetization dynamics and spin transport in a variety of magnetic materials and spintronic devices. Intended to be intelligible to a broad audience, the paper begins with a pedagogical introduction, comparing the methods of electrical detection of charge and spin dynamics in semiconductors and magnetic materials respectively. After that it provides a comprehensive account of the theoretical study of both the angular dependence and line shape of electrically detected ferromagnetic resonance (FMR), which is summarized in a handbook format easy to be used for analysing experimental data. We then review and examine the similarity and differences of various spin rectification effects found in ferromagnetic films, magnetic bilayers and magnetic tunnel junctions, including a discussion of how to properly distinguish spin rectification from the spin pumping/inverse spin Hall effect generated voltage. After this we review the broad applications of rectification effects for studying spin waves, nonlinear dynamics, domain wall dynamics, spin current, and microwave imaging. We also discuss spin rectification in ferromagnetic semiconductors. The paper concludes with both historical and future perspectives, by summarizing and comparing three generations of FMR spectroscopy which have been developed for studying magnetization dynamics.

  2. Synthesis of streptavidin-conjugated magnetic nanoparticles for DNA detection

    International Nuclear Information System (INIS)

    Gong Peijun; Peng Zheyang; Wang Yao; Qiao Ru; Mao Weixing; Qian Haisheng; Zhang Mengya; Li Congcong; Shi Shenyuan

    2013-01-01

    In this paper, we report a fabrication of streptavidin-coated magnetic nanoparticles used for DNA detection. Initially, amino-functionalized Fe 3 O 4 nanoparticles with high saturation magnetization are prepared by a photopolymerization method using allylamine as monomer. It is followed by covalent immobilization of streptavidin onto the particle surface via a two-step reaction using glutaraldehyde as coupling agent. Streptavidin-coated magnetic nanoparticles are characterized and further tested for their ability to capture DNA target after binding biotinylated oligonucleotide probes. The results show that the products (∼27.2 nm) have a maximum biotin-binding capacity of 0.71 nmol mg −1 when the immobilization reaction is conducted with a mass ratio of streptavidin to magnetic carriers above 0.2 in phosphate buffered saline (pH 7.4) for 24 h. In addition, highly negative ζ-potential and good magnetic susceptibility of the nanocomposites make them applicable for DNA collection and detection, which is verified by the results from the preliminary application of streptavidin-coated magnetic nanoparticles in DNA detection. Therefore, the magnetic nanoparticles provide a promising approach for rapid collection and detection of gene.

  3. Bats use magnetite to detect the earth's magnetic field.

    Science.gov (United States)

    Holland, Richard A; Kirschvink, Joseph L; Doak, Thomas G; Wikelski, Martin

    2008-02-27

    While the role of magnetic cues for compass orientation has been confirmed in numerous animals, the mechanism of detection is still debated. Two hypotheses have been proposed, one based on a light dependent mechanism, apparently used by birds and another based on a "compass organelle" containing the iron oxide particles magnetite (Fe(3)O(4)). Bats have recently been shown to use magnetic cues for compass orientation but the method by which they detect the Earth's magnetic field remains unknown. Here we use the classic "Kalmijn-Blakemore" pulse re-magnetization experiment, whereby the polarity of cellular magnetite is reversed. The results demonstrate that the big brown bat Eptesicus fuscus uses single domain magnetite to detect the Earths magnetic field and the response indicates a polarity based receptor. Polarity detection is a prerequisite for the use of magnetite as a compass and suggests that big brown bats use magnetite to detect the magnetic field as a compass. Our results indicate the possibility that sensory cells in bats contain freely rotating magnetite particles, which appears not to be the case in birds. It is crucial that the ultrastructure of the magnetite containing magnetoreceptors is described for our understanding of magnetoreception in animals.

  4. Magnetic particle detection in unshielded environment using orthogonal fluxgate gradiometer

    Energy Technology Data Exchange (ETDEWEB)

    Elrefai, Ahmed L., E-mail: a.lotfyelrefai@gmail.com; Sasada, Ichiro [Applied Science for Electronics and Materials, Kyushu University, Kasuga (Japan)

    2015-05-07

    A new detection system for magnetic particles, which can operate in an unshielded environment, is developed using a fundamental mode orthogonal fluxgate gradiometer. The proposed detection system offers the advantages of cost, size, and weight reduction as compared to contamination detection systems using superconducting quantum interference device sensor. The detection system can be used to detect metallic contamination in foods or lithium ion battery production lines. The system has been investigated numerically to optimize various design parameters of the system. Experimental setup has been developed to evaluate some of the numerically predicted results. Steel balls were successfully detected down to the diameter of 50 μm.

  5. Single cell detection using a magnetic zigzag nanowire biosensor.

    Science.gov (United States)

    Huang, Hao-Ting; Ger, Tzong-Rong; Lin, Ya-Hui; Wei, Zung-Hang

    2013-08-07

    A magnetic zigzag nanowire device was designed for single cell biosensing. Nanowires with widths of 150, 300, 500, and 800 nm were fabricated on silicon trenches by electron beam lithography, electron beam evaporation, and lift-off processes. Magnetoresistance measurements were performed before and after the attachment of a single magnetic cell to the nanowires to characterize the magnetic signal change due to the influence of the magnetic cell. Magnetoresistance responses were measured in different magnetic field directions, and the results showed that this nanowire device can be used for multi-directional detection. It was observed that the highest switching field variation occurred in a 150 nm wide nanowire when the field was perpendicular to the substrate plane. On the other hand, the highest magnetoresistance ratio variation occurred in a 800 nm wide nanowire also when the field was perpendicular to the substrate plane. Besides, the trench-structured substrate proposed in this study can fix the magnetic cell to the sensor in a fluid environment, and the stray field generated by the corners of the magnetic zigzag nanowires has the function of actively attracting the magnetic cells for detection.

  6. Detection of the Magnetic Easy Direction in Steels Using Induced Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Edgard M. Silva

    2016-12-01

    Full Text Available Conventional manufacturing processes cause plastic deformation that leads to magnetic anisotropy in processed materials. A deeper understanding of materials characterization under rotational magnetization enables engineers to optimize the overall volume, mass, and performance of devices such as electrical machines in industry. Therefore, it is important to find the magnetic easy direction of the magnetic domains in a simple and straightforward manner. The Magnetic easy direction can be obtained through destructive tests such as the Epstein frame method and the Single Sheet Tester by taking measurements in regions of irreversible magnetization usually called domains. In the present work, samples of rolled SAE 1045 steel (formed by perlite and ferrite microstructures were submitted to induced magnetic fields in the reversibility region of magnetic domains to detect the magnetic easy direction. The magnetic fields were applied to circular samples with different thicknesses and angles varying from 0° to 360° with steps of 45°. A square sample with a fixed thickness was also tested. The results showed that the proposed non-destructive approach is promising to evaluate the magnetic anisotropy in steels independently of the geometry of the sample. The region studied presented low induction losses and was affected by magnetic anisotropy, which did not occur in other works that only took into account regions of high induction losses.

  7. Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rümenapp, Christine, E-mail: ruemenapp@tum.de [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Gleich, Bernhard [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Mannherz, Hans Georg [Abteilung für Anatomie und Molekulare Embryologie, Ruhr Universität Bochum, Bochum (Germany); Haase, Axel [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany)

    2015-04-15

    For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5–7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T{sub 2} relaxation time at 0.5 T (≈21.7 MHz). In case of a specific binding the particles cluster and the T{sub 2} relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 10{sup 7} cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy.

  8. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    International Nuclear Information System (INIS)

    Meyer, Martin H.F.; Krause, Hans-Joachim; Hartmann, Markus; Miethe, Peter; Oster, Juergen; Keusgen, Michael

    2007-01-01

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP[reg] polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10 4 -10 6 cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum

  9. Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Martin H.F. [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany); Krause, Hans-Joachim [Institute of Bio-and Nanosystems (IBN-2), Research Center Juelich (Germany); Hartmann, Markus [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany); Miethe, Peter [SENOVA GmbH, Jena (Germany); Oster, Juergen [chemagen GmbH, Baesweiler (Germany); Keusgen, Michael [Institute for Pharmaceutical Chemistry, Philipps-Universitaet Marburg (Germany)]. E-mail: Keusgen@staff.uni-marburg.de

    2007-04-15

    A biosensor that uses resonant coils with a special frequency-mixing technique and magnetic beads as detectable labels has been established for the detection of Francisella tularensis, the causative agent for tularemia. The detection principle is based on a sandwich immunoassay using an anti-Ft antibody for immunofiltration immobilized to ABICAP[reg] polyethylene filters, and biotinylated with streptavidin-coated magnetic beads as labels. The linear detection range of this biosensor was found to be 10{sup 4}-10{sup 6} cfu F. tularensis lipopolysaccharide (LPS) per ml. Tested sample matrices were physiological PBS buffer and rabbit serum.

  10. Anomaly detection using magnetic flux leakage technology

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Raymond G. [BJ Pipeline Inspection Services, Alberta (Canada)

    2005-07-01

    There are many aspects to properly assessing the integrity of a pipeline. In-line-Inspection (ILI) tools, in particular those that employ the advanced use of Magnetic Flux Leakage (MFL) technology, provide a valuable means of achieving required up-to-date knowledge of a pipeline. More prevalent use of High Resolution MFL In-Line-Inspection tools is growing the knowledge base that leads to more reliable and accurate identification of anomalies in a pipeline, thus, minimizing the need for expensive verification excavations. Accurate assessment of pipeline anomalies can improve the decision making process within an Integrity Management Program and excavation programs can then focus on required repairs instead of calibration or exploratory digs. Utilizing the information from an MFL ILI inspection is not only cost effective but, as well, can also prove to be an extremely valuable building block of a Pipeline Integrity Management Program. (author)

  11. Optical detection of magnetic nanoparticles in colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Gimenez, Alejandro J.; Ramirez-Wong, Diana G.; Favela-Camacho, Sarai E. [Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional Unidad Querétaro, Querétaro, México (Mexico); Sanchez, Isaac C. [Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712 (United States); Yáñez-Limón, J.M.; Luna-Bárcenas, Gabriel [Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional Unidad Querétaro, Querétaro, México (Mexico)

    2016-03-15

    This study reports the change of light transmittance and light scattering dispersion by colloidal suspensions of magnetic nanoparticles. Optical changes were observed during the application of transversal magnetic fields to magnetic nanoparticles and nanowires at concentrations spanning from 20 µg/mL to 2 ng/mL. Results show that light scattering modulation is a simple, fast and inexpensive method for detection of magnetic nanoparticles at low concentrations. Frequency and time response of the optical modulation strongly depends on the geometry of the particles. In this regard, light transmittance and scattering measurements may prove useful in characterizing the morphology of suspended nanoparticles. - Highlights: • A simple route to characterize magnetic nanowire suspension is proposed. • Studied concentration as low as 2 ng/mL compares with more complex techniques. • Transmission and scattering modes allow full characterization of nanoparticles.

  12. Quench detection, protection and simulation studies on SST-1 magnets

    International Nuclear Information System (INIS)

    Sharma, Aashoo N.; Khristi, Yohan; Pradhan, Subrata; Doshi, Kalpesh; Prasad, Upendra; Banaudha, Moni; Varmora, Pankaj; Praghi, Bhadresh R.

    2015-01-01

    Steady-state Superconducting Tokamak-1 (SST-1) is India's first tokamak with superconducting toroidal field (TF) and Poloidal Field (PF) magnets. These magnets are made with NbTi based Cable-In-Conduit-Conductors. The quench characteristic of SST-1 CICC has been extensively studied both analytically and using simulation codes. Dedicated experiments like model coil test program, TF coil test program and laboratory experiments were conducted to fully characterize the performance of the CICC and the magnets made using this CICC. Results of quench experiments performed during these tests have been used to design the SST-1 quench detection and protection system. Simulation results of TF coil quenches and slow propagation quench of TF busbars have been used to further optimize these systems during the SST-1 tokamak operation. Redundant hydraulic based quench detection is also proposed for the TF coil quench detection. This paper will give the overview of these development and simulation activities. (author)

  13. Detection of magnetic resonance signals using a magnetoresistive sensor

    Science.gov (United States)

    Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S

    2013-10-01

    A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.

  14. Digital lock-in detection of site-specific magnetism in magnetic materials

    Science.gov (United States)

    Haskel, Daniel [Naperville, IL; Lang, Jonathan C [Naperville, IL; Srajer, George [Oak Park, IL

    2008-07-22

    The polarization and diffraction characteristics of x-rays incident upon a magnetic material are manipulated to provide a desired magnetic sensitivity in the material. The contrast in diffracted intensity of opposite helicities of circularly polarized x-rays is measured to permit separation of magnetic signals by element type and by atomic environment. This allows for the direct probing of magnetic signals from elements of the same species in nonequivalent atomic environments to better understand the behavior and characteristics of permanent magnetic materials. By using known crystallographic information together with manipulation of the polarization of x-rays having energies tuned near element-specific electronic excitations and by detecting and comparing the incident and diffracted photons at the same frequency, more accurate magnetic measurements can be made over shorter observation periods.

  15. Rolled-up magnetic sensor: nanomembrane architecture for in-flow detection of magnetic objects.

    Science.gov (United States)

    Mönch, Ingolf; Makarov, Denys; Koseva, Radinka; Baraban, Larysa; Karnaushenko, Daniil; Kaiser, Claudia; Arndt, Karl-Friedrich; Schmidt, Oliver G

    2011-09-27

    Detection and analysis of magnetic nanoobjects is a crucial task in modern diagnostic and therapeutic techniques applied to medicine and biology. Accomplishment of this task calls for the development and implementation of electronic elements directly in fluidic channels, which still remains an open and nontrivial issue. Here, we present a novel concept based on rolled-up nanotechnology for fabrication of multifunctional devices, which can be straightforwardly integrated into existing fluidic architectures. We apply strain engineering to roll-up a functional nanomembrane consisting of a magnetic sensor element based on [Py/Cu](30) multilayers, revealing giant magnetoresistance (GMR). The comparison of the sensor's characteristics before and after the roll-up process is found to be similar, allowing for a reliable and predictable method to fabricate high-quality ultracompact GMR devices. The performance of the rolled-up magnetic sensor was optimized to achieve high sensitivity to weak magnetic fields. We demonstrate that the rolled-up tube itself can be efficiently used as a fluidic channel, while the integrated magnetic sensor provides an important functionality to detect and respond to a magnetic field. The performance of the rolled-up magnetic sensor for the in-flow detection of ferromagnetic CrO(2) nanoparticles embedded in a biocompatible polymeric hydrogel shell is highlighted. © 2011 American Chemical Society

  16. Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing

    Directory of Open Access Journals (Sweden)

    Hector Carreon

    2017-05-01

    Full Text Available The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.

  17. Thermoelectric detection of inclusions in metallic biomaterials by magnetic sensing

    Science.gov (United States)

    Carreon, Hector

    2017-05-01

    The detectability of small inclusions and subtle imperfections by magnetic measurements that senses thermoelectric currents produced by a temperature gradient is ultimately limited by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. The probability of detection (POD) of a given material flaw is determined by the resulting signal-to-noise ratio rather than by the absolute magnitude of the signal itself. The strength of the magnetic field to be detected greatly depends on the physical nature of the host medium and dimensions of the imperfection. This paper presents experimental data for the magnetic field produced by thermoelectric currents around tin inclusions in different host medium such as 316LVM stainless steel and Ti-6Al-4V titanium alloy under external thermal excitation. The diameter of the inclusions and the lift-off distance varied from 0.39 to 3.175 mm and from 1 to 10 mm, respectively. A 0.6 °C/cm temperature gradient in the samples produced peak magnetic flux densities ranging from 0.1 to 280 nT, that was measured by a fluxgate magnetometer. The numerical results were found to be in good agreement with theoretical predictions and demonstrated that both property anisotropy and gradient in thermoelectric materials can significantly influence the induced thermoelectric currents and magnetic fields.

  18. Magnetic resonance imaging of living systems by remote detection

    Science.gov (United States)

    Wemmer, David; Pines, Alexander; Bouchard, Louis; Xu, Shoujun; Harel, Elad; Budker, Dmitry; Lowery, Thomas; Ledbetter, Micah

    2013-10-29

    A novel approach to magnetic resonance imaging is disclosed. Blood flowing through a living system is prepolarized, and then encoded. The polarization can be achieved using permanent or superconducting magnets. The polarization may be carried out upstream of the region to be encoded or at the place of encoding. In the case of an MRI of a brain, polarization of flowing blood can be effected by placing a magnet over a section of the body such as the heart upstream of the head. Alternatively, polarization and encoding can be effected at the same location. Detection occurs at a remote location, using a separate detection device such as an optical atomic magnetometer, or an inductive Faraday coil. The detector may be placed on the surface of the skin next to a blood vessel such as a jugular vein carrying blood away from the encoded region.

  19. Detecting Magnetic Monopoles in Spin Ice with NV-magnetometry

    Science.gov (United States)

    Flicker, Felix; Kirschner, Franziska; Yao, Norman; Blundell, Stephen

    2017-04-01

    Magnetic monopoles, isolated north and south poles, appear not to exist as fundamental particles in our universe. Nevertheless, it has been proposed that they may emerge as quasiparticles in certain materials: the geometrically-frustrated `spin ice' pyrochlores dysprosium and holmium titanate. Despite a great deal of experimental and theoretical work, the smoking gun signature of magnetic monopoles in spin ice remains to be discovered. A promising candidate for the detection of individual magnetic monopoles comes in the form of Nitrogen-Vacancy (NV) defects in diamond, which act as very sensitive probes of vector magnetic fields on the nanometre scale. We present the result of Monte Carlo modeling for the precise signals one would expect to see with nanometre-scale probes such as NV-magnetometers or muon spin rotation.

  20. Light Magnetic Dark Matter in Direct Detection Searches

    DEFF Research Database (Denmark)

    Del Nobile, Eugenio; Kouvaris, Christoforos; Panci, Paolo

    2012-01-01

    We study a fermionic Dark Matter particle carrying magnetic dipole moment and analyze its impact on direct detection experiments. In particular we show that it can accommodate the DAMA, CoGeNT and CRESST experimental results. Assuming conservative bounds, this candidate is shown not to be ruled out...

  1. FUZZY FAULT DETECTION FOR PERMANENT MAGNET SYNCHRONOUS GENERATOR

    Directory of Open Access Journals (Sweden)

    N. Selvaganesan

    2011-07-01

    Full Text Available Faults in engineering systems are difficult to avoid and may result in serious consequences. Effective fault detection and diagnosis can improve system reliability and avoid expensive maintenance. In this paper fuzzy system based fault detection scheme for permanent magnet synchronous generator is proposed. The sequence current components like positive and negative sequence currents are used as fault indicators and given as inputs to fuzzy fault detector. Also, the fuzzy inference system is created and rule base is evaluated, relating the sequence current component to the type of faults. These rules are fired for specific changes in sequence current component and the faults are detected. The feasibility of the proposed scheme for permanent magnet synchronous generator is demonstrated for different types of fault under various operating conditions using MATLAB/Simulink.

  2. Frequency Mixing Magnetic Detection Scanner for Imaging Magnetic Particles in Planar Samples.

    Science.gov (United States)

    Hong, Hyobong; Lim, Eul-Gyoon; Jeong, Jae-Chan; Chang, Jiho; Shin, Sung-Woong; Krause, Hans-Joachim

    2016-06-09

    The setup of a planar Frequency Mixing Magnetic Detection (p-FMMD) scanner for performing Magnetic Particles Imaging (MPI) of flat samples is presented. It consists of two magnetic measurement heads on both sides of the sample mounted on the legs of a u-shaped support. The sample is locally exposed to a magnetic excitation field consisting of two distinct frequencies, a stronger component at about 77 kHz and a weaker field at 61 Hz. The nonlinear magnetization characteristics of superparamagnetic particles give rise to the generation of intermodulation products. A selected sum-frequency component of the high and low frequency magnetic field incident on the magnetically nonlinear particles is recorded by a demodulation electronics. In contrast to a conventional MPI scanner, p-FMMD does not require the application of a strong magnetic field to the whole sample because mixing of the two frequencies occurs locally. Thus, the lateral dimensions of the sample are just limited by the scanning range and the supports. However, the sample height determines the spatial resolution. In the current setup it is limited to 2 mm. As examples, we present two 20 mm × 25 mm p-FMMD images acquired from samples with 1 µm diameter maghemite particles in silanol matrix and with 50 nm magnetite particles in aminosilane matrix. The results show that the novel MPI scanner can be applied for analysis of thin biological samples and for medical diagnostic purposes.

  3. Quench Detection and Protection of the MQT Type Magnet

    CERN Document Server

    Teng, M

    1998-01-01

    The LHC design as from version 5 is equipped with tuning, trim and skew quadrupoles with similar cross-section designs (MQT). To qualify the quench detection and magnet protection needs, several compu tational methods have been applied. They range from global calculation of a uniform adiabatic temperature rise to more refined simulations, including the Quaber simulation package which is also applie d for quench calculations on the main magnets. A very important parameter is the quench propagation velocity, on which the Quaber simulations rely. An attempt was made to simulate the physics of the p ropagation itself, taking into account the temperature dependence of the wire parameters with the Quenchprop algorithm described in this report. The calculated results were compared with those from ex periments on a single wire. Further results of measurements on prototype magnets will allow fine-tuning of the program parameters.

  4. Magnetic Sensor for Detection of Ground Vehicles Based on Microwave Spin Wave Generation in Ferrite Films

    National Research Council Canada - National Science Library

    Slavin, A; Tiberkevich, V; Bankowski, E

    2006-01-01

    We propose to use the magnetic signatures, formed either by the residual magnetization or by deformation of the local Earth's magnetic field by large metal masses, for distant detection of ground vehicles...

  5. Quench detection electronics testing protocol for SST-1 magnets

    International Nuclear Information System (INIS)

    Banaudha, Moni; Varmora, Pankaj; Parghi, Bhadresh; Prasad, Upendra

    2017-01-01

    Quench Detection (QD) system consisting 204 signal channels has been successfully installed and working well during plasma experiment of SST-1 Tokamak. QD system requires testing, validation and maintenance in every SST-1 campaign for better reliability and maintainability of the system. Standalone test of each channel of the system is essential for hard-ware validation. The standard Testing Protocol follow in every campaign which validate each section of QD electronics as well as voltage tap signal cables which are routed inside the cryostat and then extended outside of the SST-1 machine up-to the magnet control room. Fiber link for Quench signal transmission to the SST-1 magnet power supply is also test and validate before every plasma campaign. Precise instrument used as a dummy source of quench signal and for manual quench generation to test the each channel and Master Quench Logic. Each signal Integrated with the magnet DAQ system, signal observed at 1Hz and 50Hz configuration to validate the logging data, compare with actual and previous test data. This paper describes the testing protocol follow in every campaign to validate functionality of QD electronics, limitation of testing, test results and overall integration of the quench detection system for SST-1 magnet. (author)

  6. Novel method for detecting weak magnetic fields at low frequencies

    Science.gov (United States)

    González-Martínez, S.; Castillo-Torres, J.; Mendoza-Santos, J. C.; Zamorano-Ulloa, R.

    2005-06-01

    A low-level-intensity magnetic field detection system has been designed and developed based on the amplification-selection process of signals. This configuration is also very sensitive to magnetic field changes produced by harmonic-like electrical currents transported in finite-length wires. Experimental and theoretical results of magnetic fields detection as low as 10-9T at 120Hz are also presented with an accuracy of around 13%. The assembled equipment is designed to measure an electromotive force induced in a free-magnetic-core coil in order to recover signals which are previously selected, despite the fact that their intensities are much lower than the environment electromagnetic radiation. The prototype has a signal-to-noise ratio of 60dB. This system also presents the advantage for using it as a portable unit of measurement. The concept and prototype may be applied, for example, as a nondestructive method to analyze any corrosion formation in metallic oil pipelines which are subjected to cathodic protection.

  7. Biomarker detection of global infectious diseases based on magnetic particles.

    Science.gov (United States)

    Carinelli, Soledad; Martí, Mercè; Alegret, Salvador; Pividori, María Isabel

    2015-09-25

    Infectious diseases affect the daily lives of millions of people all around the world, and are responsible for hundreds of thousands of deaths, mostly in the developing world. Although most of these major infectious diseases are treatable, the early identification of individuals requiring treatment remains a major issue. The incidence of these diseases would be reduced if rapid diagnostic tests were widely available at the community and primary care level in low-resource settings. Strong research efforts are thus being focused on replacing standard clinical diagnostic methods, such as the invasive detection techniques (biopsy or endoscopy) or expensive diagnostic and monitoring methods, by affordable and sensitive tests based on novel biomarkers. The development of new methods that are needed includes solid-phase separation techniques. In this context, the integration of magnetic particles within bioassays and biosensing devices is very promising since they greatly improve the performance of a biological reaction. The diagnosis of clinical samples with magnetic particles can be easily achieved without pre-enrichment, purification or pretreatment steps often required for standard methods, simplifying the analytical procedures. The biomarkers can be specifically isolated and preconcentrated from complex biological matrixes by magnetic actuation, increasing specificity and the sensitivity of the assay. This review addresses these promising features of the magnetic particles for the detection of biomarkers in emerging technologies related with infectious diseases affecting global health, such as malaria, influenza, dengue, tuberculosis or HIV. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Electrical detection of single magnetic skyrmion at room temperature

    Directory of Open Access Journals (Sweden)

    Riccardo Tomasello

    2017-05-01

    Full Text Available This paper proposes a protocol for the electrical detection of a magnetic skyrmion via the change of the tunneling magnetoresistive (TMR signal in a three-terminal device. This approach combines alternating spin-transfer torque from both spin-filtering (due to a perpendicular polarizer and spin-Hall effect with the TMR signal. Micromagnetic simulations, used to test and verify such working principle, show that there exists a frequency region particularly suitable for this achievement. This result can be at the basis of the design of a TMR based read-out for skyrmion detection, overcoming the difficulties introduced by the thermal drift of the skyrmion once nucleated.

  9. Salmonella detection in a microfluidic channel using orbiting magnetic beads

    Science.gov (United States)

    Ballard, Matt; Mills, Zachary; Owen, Drew; Hanasoge, Srinivas; Hesketh, Peter; Alexeev, Alexander

    2015-03-01

    We use three-dimensional simulations to model the detection of salmonella in a complex fluid sample in a microfluidic channel. Salmonella is captured using magnetic microbeads orbiting around soft ferromagnetic discs at the microchannel bottom subjected to a rotating external magnetic field. Numerical simulations are used to model the dynamics of salmonella and microbeads throughout the detection process. We examine the effect of the channel geometry on the salmonella capture, and the forces applied to the salmonella as it is dragged through the fluid after capture. Our findings guide the design of a lab-on-a-chip device to be used for detection of salmonella in food samples in a way that ensures that salmonella captured by orbiting microbeads are preserved until they can be extracted from the system for testing, and are not washed away by the fluid flow or damaged due to the experience of excessive stresses. Such a device is needed to detect bacteria at the food source and prevention of consumption of contaminated food, and also can be used for the detection of a variety of biomaterials of interest from complex fluid samples. Support from USDA and NSF is gratefully acknowledged.

  10. Energy detection based on undecimated discrete wavelet transform and its application in magnetic anomaly detection.

    Directory of Open Access Journals (Sweden)

    Xinhua Nie

    Full Text Available Magnetic anomaly detection (MAD is a passive approach for detection of a ferromagnetic target, and its performance is often limited by external noises. In consideration of one major noise source is the fractal noise (or called 1/f noise with a power spectral density of 1/fa (0detection method based on undecimated discrete wavelet transform (UDWT is proposed in this paper. Firstly, the foundations of magnetic anomaly detection and UDWT are introduced in brief, while a possible detection system based on giant magneto-impedance (GMI magnetic sensor is also given out. Then our proposed energy detection based on UDWT is described in detail, and the probabilities of false alarm and detection for given the detection threshold in theory are presented. It is noticeable that no a priori assumptions regarding the ferromagnetic target or the magnetic noise probability are necessary for our method, and different from the discrete wavelet transform (DWT, the UDWT is shift invariant. Finally, some simulations are performed and the results show that the detection performance of our proposed detector is better than that of the conventional energy detector even utilized in the Gaussian white noise, especially when the spectral parameter α is less than 1.0. In addition, a real-world experiment was done to demonstrate the advantages of the proposed method.

  11. FIRST SIMULTANEOUS DETECTION OF MOVING MAGNETIC FEATURES IN PHOTOSPHERIC INTENSITY AND MAGNETIC FIELD DATA

    International Nuclear Information System (INIS)

    Lim, Eun-Kyung; Yurchyshyn, Vasyl; Goode, Philip

    2012-01-01

    The formation and the temporal evolution of a bipolar moving magnetic feature (MMF) was studied with high-spatial and temporal resolution. The photometric properties were observed with the New Solar Telescope at Big Bear Solar Observatory using a broadband TiO filter (705.7 nm), while the magnetic field was analyzed using the spectropolarimetric data obtained by Hinode. For the first time, we observed a bipolar MMF simultaneously in intensity images and magnetic field data, and studied the details of its structure. The vector magnetic field and the Doppler velocity of the MMF were also studied. A bipolar MMF with its positive polarity closer to the negative penumbra formed, accompanied by a bright, filamentary structure in the TiO data connecting the MMF and a dark penumbral filament. A fast downflow (≤2 km s –1 ) was detected at the positive polarity. The vector magnetic field obtained from the full Stokes inversion revealed that a bipolar MMF has a U-shaped magnetic field configuration. Our observations provide a clear intensity counterpart of the observed MMF in the photosphere, and strong evidence of the connection between the MMF and the penumbral filament as a serpentine field.

  12. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    Science.gov (United States)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  13. Detection of carcinoembryonic antigen using functional magnetic and fluorescent nanoparticles in magnetic separators

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H. Y., E-mail: annetsai@csmu.edu.tw [Chung Shan Medical University, Department of Applied Chemistry (China); Chang, C. Y.; Li, Y. C.; Chu, W. C.; Viswanathan, K.; Bor Fuh, C., E-mail: cbfuh@ncnu.edu.tw [National Chi Nan University, Department of Applied Chemistry (China)

    2011-06-15

    We combined a sandwich immunoassay, anti-CEA/CEA/anti-CEA, with functional magnetic ({approx}80 nm) and fluorescent ({approx}180 nm) nanoparticles in magnetic separators to demonstrate a detection method for carcinoembryonic antigen (CEA). Determination of CEA in serum can be used in clinical diagnosis and monitoring of tumor-related diseases. The CEA concentrations in samples were deduced and determined based on the reference plot using the measured fluorescent intensity of sandwich nanoparticles from the sample. The linear range of CEA detection was from 18 ng/mL to 1.8 pg/mL. The detection limit of CEA was 1.8 pg/mL. In comparison with most other detection methods, this method had advantages of lower detection limit and wider linear range. The recovery was higher than 94%. The CEA concentrations of two serum samples were determined to be 9.0 and 55 ng/mL, which differed by 6.7% (9.6 ng/mL) and 9.1% (50 ng/mL) from the measurements of enzyme-linked immunosorbent assay (ELISA), respectively. The analysis time can be reduced to one third of ELISA. This method has good potential for other biomarker detections and biochemical applications.

  14. SQUID-Detected Magnetic Resonance Imaging in MicroteslaFields

    Energy Technology Data Exchange (ETDEWEB)

    Moessle, Michael; Hatridge, Michael; Clarke, John

    2006-08-14

    amplitude in MRI using laser polarized noble gases such as {sup 3}He or {sup 129}Xe (10-12). Hyperpolarized gases were used successfully to image the human lung in fields on the order of several mT (13-15). To overcome the sensitivity loss of Faraday detection at low frequencies, ultrasensitive magnetometers based on the Superconducting QUantum Interference Device (SQUID) (16) are used to detect NMR and MRI signals (17-24). Recently, SQUID-based MRI systems capable of acquiring in vivo images have appeared. For example, in the 10-mT system of Seton et al. (18) signals are coupled to a SQUID via a superconducting tuned circuit, while Clarke and coworkers (22, 25, 26) developed a system at 132 {micro}T with an untuned input circuit coupled to a SQUID. In a quite different approach, atomic magnetometers have been used recently to detect the magnetization (27) and NMR signal (28) of hyperpolarized gases. This technique could potentially be used for low-field MRI in the future. The goal of this review is to summarize the current state-of-the-art of MRI in microtesla fields detected with SQUIDs. The principles of SQUIDs and NMR are briefly reviewed. We show that very narrow NMR linewidths can be achieved in low magnetic fields that are quite inhomogeneous, with illustrative examples from spectroscopy. After describing our ultralow-field MRI system, we present a variety of images. We demonstrate that in microtesla fields the longitudinal relaxation T{sub 1} is much more material dependent than is the case in high fields; this results in a substantial improvement in 'T{sub 1}-weighted contrast imaging'. After outlining the first attempts to combine microtesla NMR with magnetoencephalography (MEG) (29), we conclude with a discussion of future directions.

  15. Optically detected magnetic resonance of sulfur doped gallium phosphide

    International Nuclear Information System (INIS)

    Brower, K.L.

    1990-01-01

    The authors have recently extended our magnetic resonance capabilities to include optically detected magnetic resonance (ODMR) for purposes of studying defects in III-V compound semiconductors systems. Some of the systems of particular interest with regard to defect studies are samples implanted with particular isotopes. For example, this technique may allow one to observe the hyperfine structure of impurity donors in GaP. Other interesting material systems are the strained layer superlattices and their interfaces. GaP is one of the III-V compound semiconductors of particular interest for ODMR studies. In this paper the authors report the results of preliminary ODMR observations on as-grown sulfur doped GaP

  16. Dynamic Vehicle Detection via the Use of Magnetic Field Sensors

    Directory of Open Access Journals (Sweden)

    Vytautas Markevicius

    2016-01-01

    Full Text Available The vehicle detection process plays the key role in determining the success of intelligent transport management system solutions. The measurement of distortions of the Earth’s magnetic field using magnetic field sensors served as the basis for designing a solution aimed at vehicle detection. In accordance with the results obtained from research into process modeling and experimentally testing all the relevant hypotheses an algorithm for vehicle detection using the state criteria was proposed. Aiming to evaluate all of the possibilities, as well as pros and cons of the use of anisotropic magnetoresistance (AMR sensors in the transport flow control process, we have performed a series of experiments with various vehicles (or different series from several car manufacturers. A comparison of 12 selected methods, based on either the process of determining the peak signal values and their concurrence in time whilst calculating the delay, or by measuring the cross-correlation of these signals, was carried out. It was established that the relative error can be minimized via the Z component cross-correlation and Kz criterion cross-correlation methods. The average relative error of vehicle speed determination in the best case did not exceed 1.5% when the distance between sensors was set to 2 m.

  17. Neutron detection in the frame of spatial magnetic spin resonance

    Energy Technology Data Exchange (ETDEWEB)

    Jericha, Erwin, E-mail: jericha@ati.ac.at [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Bosina, Joachim [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Austrian Academy of Sciences, Stefan Meyer Institute, Boltzmanngasse 3, 1090 Wien (Austria); Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble (France); Geltenbort, Peter [Institut Laue–Langevin, 71 Avenue des Martyrs, 38042 Grenoble (France); Hino, Masahiro [Kyoto University, Research Reactor Institute, Kumatori, Osaka 590-0494 (Japan); Mach, Wilfried [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria); Oda, Tatsuro [Kyoto University, Department of Nuclear Engineering, Kyoto 615-8540 (Japan); Badurek, Gerald [TU Wien, Atominstitut, Stadionallee 2, 1020 Wien (Austria)

    2017-02-11

    This work is related to neutron detection in the context of the polarised neutron optics technique of spatial magnetic spin resonance. By this technique neutron beams may be tailored in their spectral distribution and temporal structure. We have performed experiments with very cold neutrons (VCN) at the high-flux research reactor of the Institut Laue Langevin (ILL) in Grenoble to demonstrate the potential of this method. A combination of spatially and temporally resolving neutron detection allowed us to characterize a prototype neutron resonator. With this detector we were able to record neutron time-of-flight spectra, assess and minimise neutron background and provide for normalisation of the spectra owing to variations in reactor power and ambient conditions at the same time.

  18. Detection of acute cerebral hemorrhage in rabbits by magnetic induction

    International Nuclear Information System (INIS)

    Sun, J.; Jin, G.; Qin, M.X.; Wan, Z.B.; Wang, J.B.; Wang, C.; Guo, W.Y.; Xu, L.; Ning, X.; Xu, J.; Pu, X.J.; Chen, M.S.; Zhao, H.M.

    2014-01-01

    Acute cerebral hemorrhage (ACH) is an important clinical problem that is often monitored and studied with expensive devices such as computed tomography, magnetic resonance imaging, and positron emission tomography. These devices are not readily available in economically underdeveloped regions of the world, emergency departments, and emergency zones. We have developed a less expensive tool for non-contact monitoring of ACH. The system measures the magnetic induction phase shift (MIPS) between the electromagnetic signals on two coils. ACH was induced in 6 experimental rabbits and edema was induced in 4 control rabbits by stereotactic methods, and their intracranial pressure and heart rate were monitored for 1 h. Signals were continuously monitored for up to 1 h at an exciting frequency of 10.7 MHz. Autologous blood was administered to the experimental group, and saline to the control group (1 to 3 mL) by injection of 1-mL every 5 min. The results showed a significant increase in MIPS as a function of the injection volume, but the heart rate was stable. In the experimental (ACH) group, there was a statistically significant positive correlation of the intracranial pressure and MIPS. The change of MIPS was greater in the ACH group than in the control group. This high-sensitivity system could detect a 1-mL change in blood volume. The MIPS was significantly related to the intracranial pressure. This observation suggests that the method could be valuable for detecting early warning signs in emergency medicine and critical care units

  19. Detection of acute cerebral hemorrhage in rabbits by magnetic induction

    Energy Technology Data Exchange (ETDEWEB)

    Sun, J.; Jin, G.; Qin, M.X. [College of Biomedical Engineering and Medical Imaging, Third Military Medical University, Chongqing, China, College of Biomedical Engineering and Medical Imaging, Third Military Medical University, Chongqing (China); Wan, Z.B. [Experimental Animal Center, Third Military Medical University, Chongqing, China, Experimental Animal Center, Third Military Medical University, Chongqing (China); Wang, J.B.; Wang, C.; Guo, W.Y. [College of Electronic Engineering, Xidian University, Xi' an, China, College of Electronic Engineering, Xidian University, Xi' an (China); Xu, L.; Ning, X.; Xu, J.; Pu, X.J.; Chen, M.S. [College of Biomedical Engineering and Medical Imaging, Third Military Medical University, Chongqing, China, College of Biomedical Engineering and Medical Imaging, Third Military Medical University, Chongqing (China); Zhao, H.M. [Experimental Animal Center, Third Military Medical University, Chongqing, China, Experimental Animal Center, Third Military Medical University, Chongqing (China)

    2014-02-17

    Acute cerebral hemorrhage (ACH) is an important clinical problem that is often monitored and studied with expensive devices such as computed tomography, magnetic resonance imaging, and positron emission tomography. These devices are not readily available in economically underdeveloped regions of the world, emergency departments, and emergency zones. We have developed a less expensive tool for non-contact monitoring of ACH. The system measures the magnetic induction phase shift (MIPS) between the electromagnetic signals on two coils. ACH was induced in 6 experimental rabbits and edema was induced in 4 control rabbits by stereotactic methods, and their intracranial pressure and heart rate were monitored for 1 h. Signals were continuously monitored for up to 1 h at an exciting frequency of 10.7 MHz. Autologous blood was administered to the experimental group, and saline to the control group (1 to 3 mL) by injection of 1-mL every 5 min. The results showed a significant increase in MIPS as a function of the injection volume, but the heart rate was stable. In the experimental (ACH) group, there was a statistically significant positive correlation of the intracranial pressure and MIPS. The change of MIPS was greater in the ACH group than in the control group. This high-sensitivity system could detect a 1-mL change in blood volume. The MIPS was significantly related to the intracranial pressure. This observation suggests that the method could be valuable for detecting early warning signs in emergency medicine and critical care units.

  20. Magnetic force microscopy method and apparatus to detect and image currents in integrated circuits

    Science.gov (United States)

    Campbell, Ann. N.; Anderson, Richard E.; Cole, Jr., Edward I.

    1995-01-01

    A magnetic force microscopy method and improved magnetic tip for detecting and quantifying internal magnetic fields resulting from current of integrated circuits. Detection of the current is used for failure analysis, design verification, and model validation. The interaction of the current on the integrated chip with a magnetic field can be detected using a cantilevered magnetic tip. Enhanced sensitivity for both ac and dc current and voltage detection is achieved with voltage by an ac coupling or a heterodyne technique. The techniques can be used to extract information from analog circuits.

  1. Detection of mechanical damage using the magnetic flux leakage technique

    International Nuclear Information System (INIS)

    Clapham, L.; Babbar, V.; Byrne, J.

    2007-01-01

    Since magnetism is strongly stress dependent, Magnetic Flux Leakage (MFL) inspection tools have the potential to locate and characterize mechanical damage in pipelines. However, MFL application to mechanical damage detection faces hurdles which make signal interpretation problematic: 1) the MFL signal is a superposition of geometrical and stress effects; 2) the stress distribution around a mechanically damaged region is very complex, consisting of plastic deformation and residual (elastic) stresses; 3) the effect of stress on magnetic behaviour is not well understood. This paper summarizes recent results of experimental and modeling studies of MFL signals resulting from mechanical damage. In experimental studies, mechanical damage was simulated using a tool and die press to produce dents of varying depths in plate samples. MFL measurements were made before and after selective stress-relieving heat treatments. These annealing treatments enabled the stress and geometry components of the MFL signal to be separated. In general, geometry effects scale with dent depth and tend to dominate in deep dents, while stress contribution to the MFL signals is relatively constant and is more significant for shallow dents. The influence of other parameters such as flux density and topside/bottomside inspection was also quantified. In the finite element analysis work, stress was incorporated by modifying the magnetic permeability in the residual stress regions of the modeled dent. Both stress and geometry contributions to the MFL signal were examined separately. Despite using a number of simplifying assumptions, the modeled results matched the experimental results very closely, and were used to aid in interpretation of the MFL signals. (author)

  2. On the importance of sensor height variation for detection of magnetic labels by magnetoresistive sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Wang, Shan Xiang; Hansen, Mikkel Fougt

    2015-01-01

    Magnetoresistive sensors are widely used for biosensing by detecting the signal from magnetic labels bound to a functionalized area that usually covers the entire sensor structure. Magnetic labels magnetized by a homogeneous applied magnetic field weaken and strengthen the applied field when...

  3. Magnetic Bead Based Immunoassay for Autonomous Detection of Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Y; Hara, C A; Knize, M G; Hwang, M H; Venkatesteswaran, K S; Wheeler, E K; Bell, P M; Renzi, R F; Fruetel, J A; Bailey, C G

    2008-05-01

    As a step towards toward the development of a rapid, reliable analyzer for bioagents in the environment, we are developing an automated system for the simultaneous detection of a group of select agents and toxins. To detect toxins, we modified and automated an antibody-based approach previously developed for manual medical diagnostics that uses fluorescent eTag{trademark} reporter molecules and is suitable for highly multiplexed assays. Detection is based on two antibodies binding simultaneously to a single antigen, one of which is labeled with biotin while the other is conjugated to a fluorescent eTag{trademark} through a cleavable linkage. Aqueous samples are incubated with the mixture of antibodies along with streptavidin-coated magnetic beads coupled to a photo-activatable porphyrin complex. In the presence of antigen, a molecular complex is formed where the cleavable linkage is held in proximity to the photoactivable group. Upon excitation at 680 nm, free radicals are generated, which diffuse and cleave the linkage, releasing the eTags{trademark}. Released eTags{trademark} are analyzed using capillary gel electrophoresis with laser-induced fluorescence detection. Limits of detection for ovalbumin and botulinum toxoid individually were 4 ng/mL (or 80 pg) and 16 ng/mL (or 320 pg), respectively, using the manual assay. In addition, we demonstrated the use of pairs of antibodies from different sources in a single assay to decrease the rate of false positives. Automation of the assay was demonstrated on a flow-through format with higher LODs of 125 ng/mL (or 2.5 ng) each of a mixture of ovalbumin and botulinum toxoid. This versatile assay can be easily modified with the appropriate antibodies to detect a wide range of toxins and other proteins.

  4. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide

    Directory of Open Access Journals (Sweden)

    Borgert Jörn

    2011-06-01

    Full Text Available Abstract Background Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Methods Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. Results The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. Conclusions It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method

  5. Development of dual field magnetic flux leakage (MFL) inspection technology to detect mechanical damage.

    Science.gov (United States)

    2013-03-01

    This report details the development and testing of a dual magnetization in-line inspection (ILI) : tool for detecting mechanical damage in operating pipelines, including the first field trials of a : fully operational dual-field magnetic flux leakage...

  6. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    International Nuclear Information System (INIS)

    Hong Xia; Liu Yanmei; Li Jun; Guo Wei; Bai Yubai

    2009-01-01

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  7. Detection of magnetic-labeled antibody specific recognition events by combined atomic force and magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hong Xia [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV Light-Emitting Materials and Technology, Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry, Jilin University, Changchun 130023 (China)], E-mail: xiahong@nenu.edu.cn; Liu Yanmei; Li Jun; Guo Wei; Bai Yubai [College of Chemistry, Jilin University, Changchun 130023 (China)

    2009-09-15

    Atomic force (AFM) and magnetic force microscopy (MFM) were developed to detect biomolecular specific interaction. Goat anti-mouse immunoglobulin (anti-IgG) was covalently attached onto gold substrate modified by a self-assembly monolayer of thioctic acid via 1-ethyl-3-[3-(dimethylamino) propyl] carbodiimide (EDC) activation. Magnetic-labeled IgG then specifically adsorbed onto anti-IgG surface. The morphological variation was identified by AFM. MFM was proved to be a fine assistant tool to distinguish the immunorecognized nanocomposites from the impurities by detection of the magnetic signal from magnetic-labeled IgG. It would enhance the understanding of biomolecular recognition process.

  8. Non-enzymatic glucose detection using magnetic nanoemulsions

    International Nuclear Information System (INIS)

    Mahendran, V.; Philip, John

    2014-01-01

    We probe the optical properties and intermolecular interactions in magnetically responsive nanoemulsions in the presence of glucose. The equilibrium interdroplet distance between the emulsion droplets in an one-dimensional array increases by several nanometers in the presence of glucose because of intermolecular hydrogen bonding with sodium dodecyl sulphate molecules at the oil-water interface that gives rise to stretched lamellae-like structure. The observed large red shift in the diffracted Bragg peak (∼50–100 nm) and the linear response in the glucose concentration range of 0.25–25 mM offer a simple, fast, and cost effective non-enzymatic approach for glucose detection.

  9. Detection of acute cerebral hemorrhage in rabbits by magnetic induction

    Directory of Open Access Journals (Sweden)

    J. Sun

    2014-02-01

    Full Text Available Acute cerebral hemorrhage (ACH is an important clinical problem that is often monitored and studied with expensive devices such as computed tomography, magnetic resonance imaging, and positron emission tomography. These devices are not readily available in economically underdeveloped regions of the world, emergency departments, and emergency zones. We have developed a less expensive tool for non-contact monitoring of ACH. The system measures the magnetic induction phase shift (MIPS between the electromagnetic signals on two coils. ACH was induced in 6 experimental rabbits and edema was induced in 4 control rabbits by stereotactic methods, and their intracranial pressure and heart rate were monitored for 1 h. Signals were continuously monitored for up to 1 h at an exciting frequency of 10.7 MHz. Autologous blood was administered to the experimental group, and saline to the control group (1 to 3 mL by injection of 1-mL every 5 min. The results showed a significant increase in MIPS as a function of the injection volume, but the heart rate was stable. In the experimental (ACH group, there was a statistically significant positive correlation of the intracranial pressure and MIPS. The change of MIPS was greater in the ACH group than in the control group. This high-sensitivity system could detect a 1-mL change in blood volume. The MIPS was significantly related to the intracranial pressure. This observation suggests that the method could be valuable for detecting early warning signs in emergency medicine and critical care units.

  10. Magnetic and/or electric label assisted detection system and method

    NARCIS (Netherlands)

    2008-01-01

    A detection system is described for detecting analytes in a fluid sample. The detection system comprises a transporting means for transporting magnetic and/or elec. labels after interaction between the sample fluid and the reagents towards a detection receptacle. The detection receptacle is

  11. Multiparametric magnetic resonance imaging in the detection of prostate cancer

    International Nuclear Information System (INIS)

    Durmus, T.; Baur, A.; Hamm, B.

    2014-01-01

    Prostate cancer is the most common malignancy in men, but only about 10 % of patients die from that cancer. Recent studies suggest that not all patients benefit from a radical therapeutic approach. When prostate cancer is suspected, magnetic resonance imaging (MRI) can make an important contribution to cancer localization within the prostate. Many studies show that T2-weighted morphologic imaging should be supplemented by multiparametric MRI techniques including diffusion-weighted imaging, contrast-enhanced sequences, and MR spectroscopy. This approach detects aggressive prostate cancer with high sensitivity and specificity. The findings of multiparametric MRI additionally contribute information to the assessment of cancer aggressiveness. The use of these multiparametric MRI techniques will gain an increasing role in the clinical management of prostate cancer patients. They can help in establishing a definitive diagnosis with a minimum of invasiveness and may also contribute to optimal individualized treatment. This review article presents the different techniques of multiparametric MRI and discusses their contribution to the detection of prostate cancer. Moreover, this review outlines an objective approach to image interpretation and structured reporting of MRI findings using the PI-RADS criteria. The review concludes with an outline of approaches to prostate biopsy on the basis of MRI (transrectal ultrasound, direct MRI guidance of tissue sampling, and MRI-ultrasound fusion biopsy) and emerging future uses of MRI in the planning of focal treatment options and in the active surveillance of patients diagnosed with prostate cancer. (orig.)

  12. Controlled trapping and detection of magnetic particles by a magnetic microactuator and a giant magnetoresistance (GMR) sensor

    KAUST Repository

    Giouroudi, Ioanna; Gooneratne, Chinthaka Pasan; Kokkinis, Georgios

    2014-01-01

    This paper presents the design and testing of an integrated micro-chip for the controlled trapping and detection of magnetic particles (MPs). A unique magnetic micro-actuator consisting of square-shaped conductors is used to manipulate the MPs

  13. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.; Liang, Cai; Giouroudi, Ioanna; Kosel, Jü rgen

    2012-01-01

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection

  14. Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer

    International Nuclear Information System (INIS)

    Yu Dindi; Ruangchaithaweesuk, Songtham; Yao Li; Xu Shoujun

    2012-01-01

    The detection of magnetically labeled molecules and cells involves three essential parameters: sensitivity, spatial resolution, and molecular specificity. We report on the use of atomic magnetometry and its derivative techniques to achieve high performance in terms of all these parameters. With a sensitivity of 80 fT/√Hz for dc magnetic fields, we show that 7,000 streptavidin-conjugated magnetic microparticles magnetized by a permanent magnet produce a magnetic field of 650 pT; this result predicts that a single such particle can be detected during one second of signal averaging. Spatial information is obtained using a scanning magnetic imaging scheme. The spatial resolution is 20 μm with a detection distance of more than 1 cm; this distance is much longer than that in previous reports. The molecular specificity is achieved using force-induced remnant magnetization spectroscopy, which currently uses an atomic magnetometer for detection. As an example, we perform measurement of magnetically labeled human CD4+ T cells, whose count in the blood is the diagnostic criterion for human immunodeficiency virus infection. Magnetic particles that are specifically bound to the cells are resolved from nonspecifically bound particles and quantitatively correlate with the number of cells. The magnetic particles have an overall size of 2.8 μm, with a magnetic core in nanometer regime. The combination of our techniques is predicted to be useful in molecular and cellular imaging.

  15. Detecting molecules and cells labeled with magnetic particles using an atomic magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Yu Dindi; Ruangchaithaweesuk, Songtham; Yao Li; Xu Shoujun, E-mail: sxu7@uh.edu [University of Houston, Department of Chemistry (United States)

    2012-09-15

    The detection of magnetically labeled molecules and cells involves three essential parameters: sensitivity, spatial resolution, and molecular specificity. We report on the use of atomic magnetometry and its derivative techniques to achieve high performance in terms of all these parameters. With a sensitivity of 80 fT/{radical}Hz for dc magnetic fields, we show that 7,000 streptavidin-conjugated magnetic microparticles magnetized by a permanent magnet produce a magnetic field of 650 pT; this result predicts that a single such particle can be detected during one second of signal averaging. Spatial information is obtained using a scanning magnetic imaging scheme. The spatial resolution is 20 {mu}m with a detection distance of more than 1 cm; this distance is much longer than that in previous reports. The molecular specificity is achieved using force-induced remnant magnetization spectroscopy, which currently uses an atomic magnetometer for detection. As an example, we perform measurement of magnetically labeled human CD4+ T cells, whose count in the blood is the diagnostic criterion for human immunodeficiency virus infection. Magnetic particles that are specifically bound to the cells are resolved from nonspecifically bound particles and quantitatively correlate with the number of cells. The magnetic particles have an overall size of 2.8 {mu}m, with a magnetic core in nanometer regime. The combination of our techniques is predicted to be useful in molecular and cellular imaging.

  16. Envelope detection using temporal magnetization dynamics of resonantly interacting spin-torque oscillator

    Science.gov (United States)

    Nakamura, Y.; Nishikawa, M.; Osawa, H.; Okamoto, Y.; Kanao, T.; Sato, R.

    2018-05-01

    In this article, we propose the detection method of the recorded data pattern by the envelope of the temporal magnetization dynamics of resonantly interacting spin-torque oscillator on the microwave assisted magnetic recording for three-dimensional magnetic recording. We simulate the envelope of the waveform from recorded dots with the staggered magnetization configuration, which are calculated by using a micromagnetic simulation. We study the data detection methods for the envelope and propose a soft-output Viterbi algorithm (SOVA) for partial response (PR) system as a signal processing system for three dimensional magnetic recording.

  17. Direct detection of light anapole and magnetic dipole DM

    International Nuclear Information System (INIS)

    Nobile, Eugenio Del; Gelmini, Graciela B.; Huh, Ji-Haeng; Gondolo, Paolo

    2014-01-01

    We present comparisons of direct detection data for ''light WIMPs'' with an anapole moment interaction (ADM) and a magnetic dipole moment interaction (MDM), both assuming the Standard Halo Model (SHM) for the dark halo of our galaxy and in a halo-independent manner. In the SHM analysis we find that a combination of the 90% CL LUX and CDMSlite limits or the new 90% CL SuperCDMS limit by itself exclude the parameter space regions allowed by DAMA, CoGeNT and CDMS-II-Si data for both ADM and MDM. In our halo-independent analysis the new LUX bound excludes the same potential signal regions as the previous XENON100 bound. Much of the remaining signal regions is now excluded by SuperCDMS, while the CDMSlite limit is much above them. The situation is of strong tension between the positive and negative search results both for ADM and MDM. We also clarify the confusion in the literature about the ADM scattering cross section

  18. Planar Hall effect sensor bridge geometries optimized for magnetic bead detection

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Henriksen, Anders Dahl

    2014-01-01

    Novel designs of planar Hall effect bridge sensors optimized for magnetic bead detection are presented and characterized. By constructing the sensor geometries appropriately, the sensors can be tailored to be sensitive to an external magnetic field, the magnetic field due to beads being magnetized...... by the sensor self-field or a combination thereof. The sensors can be made nominally insensitive to small external magnetic fields, while being maximally sensitive to magnetic beads, magnetized by the sensor self-field. Thus, the sensor designs can be tailored towards specific applications with minimal...... of the dynamic magnetic response of suspensions of magnetic beads with a nominal diameter of 80 nm are performed. Furthermore, a method to amplify the signal by appropriate combinations of multiple sensor segments is demonstrated....

  19. Numerical study of remote detection outside the magnet with travelling wave Magnetic Resonance Imaging at 3T

    International Nuclear Information System (INIS)

    López, M; Vázquez, F; Solís-Nájera, S; Rodriguez, A O

    2015-01-01

    The use of the travelling wave approach for high magnetic field magnetic resonance imaging has been used recently with very promising results. This approach offer images one with greater field-of-view and a reasonable signal-to-noise ratio using a circular waveguide. This scheme has been proved to be successful at 7 T and 9.4 T with whole-body imager. Images have also been acquired with clinical magnetic resonance imaging systems whose resonant frequencies were 64 MHz and 128 MHz. These results motivated the use of remote detection of the magnetic resonance signal using a parallel-plate waveguide together with 3 T clinical scanners, to acquired human leg images. The cut-off frequency of this waveguide is zero for the principal mode, allowing us to overcome the barrier of transmitting waves at lower frequency than 300 MHz or 7 T for protons. These motivated the study of remote detection outside the actual magnet. We performed electromagnetic field simulations of a parallel-plate waveguide and a phantom. The signal transmission was done at 128 MHz and using a circular surface coil located almost 200 cm away for the magnet isocentre. Numerical simulations demonstrated that the magnetic field of the principal mode propagate inside a waveguide outside the magnet. Numerical results were compared with previous experimental-acquired image data under similar conditions

  20. Magnetic resonance imaging in the detection of breast cancer

    International Nuclear Information System (INIS)

    Olcucuoglu, E.; Tuncbilek, I.; Oztekin, P.; Asal, N.; Yilmaz, O.; Kosar, U.

    2012-01-01

    Full text: Purpose: The aim of the study is to state breast Magnetic Resonance Imaging (MRI) diagnostic value of examination of MG (MG), ultrasonography (U.S.) by comparing with the results of a biopsy revealed, and emphasize the value of detecting breast cancer. Materials and methods: 327 patients were included in the breast MRI examination. MG breast MRI and U.S. were performed before the cases, respectively. All tests which are in fact planned no later than two months in between and evaluation were performed by two radiologists. BI-RADS classification was evaluated according to the investigations. As a result of MRI BIRADS 4 and 5 cases that were diagnosed in a biopsy was recommended. Following the recommended BI-RADS 3 biopsies diagnosed as those of the cases were due to the physical examination findings. MG with the results of a biopsy, U.S., and MRI results were compared. Results: The study recommended a biopsy of BIRADS 4 and 5 group, 36 out of 63 cases of breast cancer (32 invasive ductal carcinomas, 2 invasive lobular carcinoma, 1 lymphoma, 1 angiosarcoma) were diagnosed. 16% of patients with BI-RADS 4 group, 94% of BI-RADS 5 group of patients were diagnosed as breast cancer. BI-RADS is a group of breast cancer with axillary adenopathy in a patient with the diagnosis of MRI examination was no diagnostic. False-positive cases in our study were counted for the majority of cases as fibrocystic. Conclusion: MRI sensitivity, specificity, positive predictive value, negative predictive value and accuracy of tests with the highest rates, while the combination of MG and MRI, were found to be the best non-invasive examination methods

  1. High frequency write head measurement with the phase detection magnetic force microscope

    International Nuclear Information System (INIS)

    Abe, M.; Tanaka, Y.

    2001-01-01

    We demonstrated the measurement of the high frequency (HF) magnetic field of a write head with the phase detection magnetic force microscope. An amplitude-modulated current was applied to the head coil to detect the force gradient induced by the HF magnetic field. Spatial resolution of this method was higher than that of the deflection detection method previously proposed. By the phase detection method, dynamic HF magnetic fields at the poles of the write heads were clearly imaged. HF magnetic field leakage was observed along the P2 pole shape on the air-bearing surface. The frequency dependence of the write head dynamics up to 350 MHz was also investigated. [copyright] 2001 American Institute of Physics

  2. Planar Hall effect sensor for magnetic micro- and nanobead detection

    DEFF Research Database (Denmark)

    Ejsing, Louise Wellendorph; Hansen, Mikkel Fougt; Menon, Aric Kumaran

    2004-01-01

    Magnetic bead sensors based on the planar Hall effect in thin films of exchange-biased permalloy have been fabricated and characterized. Typical sensitivities are 3 muV/Oe mA. The sensor response to an applied magnetic field has been measured without and with coatings of commercially available 2 ...

  3. Apparatus and method for detecting a magnetic anomaly contiguous to remote location by SQUID gradiometer and magnetometer systems

    Science.gov (United States)

    Overton, W.C. Jr.; Steyert, W.A. Jr.

    1981-05-22

    A superconducting quantum interference device (SQUID) magnetic detection apparatus detects magnetic fields, signals, and anomalies at remote locations. Two remotely rotatable SQUID gradiometers may be housed in a cryogenic environment to search for and locate unambiguously magnetic anomalies. The SQUID magnetic detection apparatus can be used to determine the azimuth of a hydrofracture by first flooding the hydrofracture with a ferrofluid to create an artificial magnetic anomaly therein.

  4. Time-resolved optically-detected magnetic resonance of II-VI diluted-magnetic-semiconductor heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V.Yu.; Karczewski, G. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Godlewski, M. [Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw (Poland); Dept. Mathem. and Natural Sci. College of Sci., Card. S. Wyszynski Univ., Warsaw (Poland); Yakovlev, D.R. [Experimental Physics 2, University of Dortmund, 44221 Dortmund (Germany); A. F. Ioffe Physico-Technical Institute, 194017 St. Petersburg (Russian Federation); Ryabchenko, S.M. [Institute of Physics NAS Ukraine, 03028 Kiev (Ukraine); Waag, A. [Institute of Semiconductor Technology, Braunschweig Technical University, 38106 Braunschweig (Germany)

    2007-01-15

    Time-resolved optically-detected magnetic resonance (ODMR) technique was used to study spin dynamics of Mn{sup 2+} ions in (Zn,Mn)Se- and (Cd,Mn)Te-based diluted magnetic semiconductor quantum wells. Times of spin-lattice relaxation have been measured directly from a dynamical shift of exciton luminescence lines after a pulsed impact of 60 GHz microwave radiation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Detection of magnetic field intensity gradient by homing pigeons (Columba livia in a novel "virtual magnetic map" conditioning paradigm.

    Directory of Open Access Journals (Sweden)

    Cordula V Mora

    Full Text Available It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a "virtual magnetic map" during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain.

  6. Preparation of Immuno-magnetic Beads and Their Separation & Detection to Ovary Cancer Cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The organic monomer-molecule with nanometer magnetic powder by means of reforming the surface of nanometer magnetic powder have been synthesized.Magnetic beads in diameter of 2μm or so are obtained by controlling conditions.Ovary cancer cells of ascites are separated and ovary cancer cells of blood are detected by using immuno-magnetic beads linked with ovary cancer cell mono-antibodies.Results show that the specificity is 85%,sensitivity is 87%,accuracy is 84%,cells acquiring purity is 90%,cells activity is 92% and detection sensitivity is 25×10-7.

  7. Detection of ferromagnetic target based on mobile magnetic gradient tensor system

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Y.I.N., E-mail: gang.gang88@163.com; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren

    2016-03-15

    Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source–sensor displacement vector. Secondly, unit source–sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source–sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source–sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source–sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method. - Highlights: • Ferromagnetic target detection method is proposed based on rotational invariants • Intermediate eigenvector is perpendicular to magnetic moment and displacement vector • Angle between magnetic moment and displacement vector is a rotational invariant • Magnetic moment and displacement vector are derived based on invariants of two points.

  8. Self-Biased 215MHz Magnetoelectric NEMS Resonator for Ultra-Sensitive DC Magnetic Field Detection

    Science.gov (United States)

    Nan, Tianxiang; Hui, Yu; Rinaldi, Matteo; Sun, Nian X.

    2013-06-01

    High sensitivity magnetoelectric sensors with their electromechanical resonance frequencies electromechanical systems (NEMS) resonator with an electromechanical resonance frequency of 215 MHz based on an AlN/(FeGaB/Al2O3) × 10 magnetoelectric heterostructure for detecting DC magnetic fields. This magnetoelectric NEMS resonator showed a high quality factor of 735, and strong magnetoelectric coupling with a large voltage tunable sensitivity. The admittance of the magnetoelectric NEMS resonator was very sensitive to DC magnetic fields at its electromechanical resonance, which led to a new detection mechanism for ultra-sensitive self-biased RF NEMS magnetoelectric sensor with a low limit of detection of DC magnetic fields of ~300 picoTelsa. The magnetic/piezoelectric heterostructure based RF NEMS magnetoelectric sensor is compact, power efficient and readily integrated with CMOS technology, which represents a new class of ultra-sensitive magnetometers for DC and low frequency AC magnetic fields.

  9. Lunar magnetic anomalies detected by the Apollo substatellite magnetometers

    Science.gov (United States)

    Hood, L.L.; Coleman, P.J.; Russell, C.T.; Wilhelms, D.E.

    1979-01-01

    Properties of lunar crustal magnetization thus far deduced from Apollo subsatellite magnetometer data are reviewed using two of the most accurate presently available magnetic anomaly maps - one covering a portion of the lunar near side and the other a part of the far side. The largest single anomaly found within the region of coverage on the near-side map correlates exactly with a conspicuous, light-colored marking in western Oceanus Procellarum called Reiner Gamma. This feature is interpreted as an unusual deposit of ejecta from secondary craters of the large nearby primary impact crater Cavalerius. An age for Cavalerius (and, by implication, for Reiner Gamma) of 3.2 ?? 0.2 ?? 109 y is estimated. The main (30 ?? 60 km) Reiner Gamma deposit is nearly uniformly magnetized in a single direction, with a minimum mean magnetization intensity of ???7 ?? 10-2 G cm3/g (assuming a density of 3 g/cm3), or about 700 times the stable magnetization component of the most magnetic returned samples. Additional medium-amplitude anomalies exist over the Fra Mauro Formation (Imbrium basin ejecta emplaced ???3.9 ?? 109 y ago) where it has not been flooded by mare basalt flows, but are nearly absent over the maria and over the craters Copernicus, Kepler, and Reiner and their encircling ejecta mantles. The mean altitude of the far-side anomaly gap is much higher than that of the near-side map and the surface geology is more complex, so individual anomaly sources have not yet been identified. However, it is clear that a concentration of especially strong sources exists in the vicinity of the craters Van de Graaff and Aitken. Numerical modeling of the associated fields reveals that the source locations do not correspond with the larger primary impact craters of the region and, by analogy with Reiner Gamma, may be less conspicuous secondary crater ejecta deposits. The reason for a special concentration of strong sources in the Van de Graaff-Aitken region is unknown, but may be indirectly

  10. Suitability of magnetic single- and multi-core nanoparticles to detect protein binding with dynamic magnetic measurement techniques

    International Nuclear Information System (INIS)

    Remmer, Hilke; Dieckhoff, Jan; Schilling, Meinhard; Ludwig, Frank

    2015-01-01

    We investigated the binding of biotinylated proteins to various streptavidin functionalized magnetic nanoparticles with different dynamic magnetic measurement techniques to examine their potential for homogeneous bioassays. As particle systems, single-core nanoparticles with a nominal core diameter of 30 nm as well as multi-core nanoparticles with hydrodynamic sizes varying between nominally 60 nm and 100 nm were chosen. As experimental techniques, fluxgate magnetorelaxometry (MRX), complex ac susceptibility (ACS) and measurements of the phase lag between rotating field and sample magnetization are applied. MRX measurements are only suited for the detection of small analytes if the multivalency of functionalized nanoparticles and analytes causes cross-linking, thus forming larger aggregates. ACS measurements showed for all nanoparticle systems a shift of the imaginary part's maximum towards small frequencies. In rotating field measurements only the single-core nanoparticle systems with dominating Brownian mechanism exhibit an increase of the phase lag upon binding in the investigated frequency range. The coexistence of Brownian and Néel relaxation processes can cause a more complex phase lag change behavior, as demonstrated for multi-core nanoparticle systems. - Highlights: • Cealization of homogeneous magnetic bioassays using different magnetic techniques. • Comparison of single- and multi-core nanoparticle systems. • ac Susceptibility favorable for detection of small analytes. • Magnetorelaxometry favorable for detection of large analytes or cross-linking assays

  11. Construction and characterisation of a modular microfluidic system: coupling magnetic capture and electrochemical detection

    DEFF Research Database (Denmark)

    Godino, N.; Snakenborg, Detlef; Kutter, Jörg Peter

    2010-01-01

    , and a polycarbonate base where permanent magnets are hosted; these parts are designed to fit so that wire bonding and encapsulation are avoided. This system can perform bioassays over the surface of magnetic beads and uses only 50 mu L of bead suspension per assay. Following detection, captured beads are released...

  12. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Toshifumi, E-mail: sakuta.k@usp.ac.jp; Ohashi, Masaharu; Sakuta, Ken

    2016-11-15

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  13. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    International Nuclear Information System (INIS)

    Yagi, Toshifumi; Ohashi, Masaharu; Sakuta, Ken

    2016-01-01

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  14. Multi-scale magnetic nanoparticle based optomagnetic bioassay for sensitive DNA and bacteria detection

    DEFF Research Database (Denmark)

    Tian, Bo; Zardán Gómez De La Torre, Teresa; Donolato, Marco

    2016-01-01

    nanoparticles (binding to the target) and thus the optomagnetic response of the sample, which is measured by an optomagnetic setup including a 405 nm laser and a photodetector. The limit of detection is mainly set by the lowest measurable concentration of magnetic nanoparticles. Herein, as new results compared...... with the target. We show that the optimization and lowering of the 100 nm magnetic nanoparticle concentration result in a limit of detection of 780 fM of DNA coils formed by rolling circle amplification (size of about 1 μm) and 105 CFU per mL Salmonella (for immunoassay). These values are 15 times lower than...... those reported previously for this readout principle. Finally, we show that the 250 nm magnetic nanoparticles can serve as a second detection label for qualitative biplex detection of DNA coils formed by rolling circle amplification from V. cholerae and E. coli DNA coils using 100 nm and 250 nm magnetic...

  15. Production and detection of atomic hexadecapole at Earth's magnetic field.

    Science.gov (United States)

    Acosta, V M; Auzinsh, M; Gawlik, W; Grisins, P; Higbie, J M; Jackson Kimball, D F; Krzemien, L; Ledbetter, M P; Pustelny, S; Rochester, S M; Yashchuk, V V; Budker, D

    2008-07-21

    Optical magnetometers measure magnetic fields with extremely high precision and without cryogenics. However, at geomagnetic fields, important for applications from landmine removal to archaeology, they suffer from nonlinear Zeeman splitting, leading to systematic dependence on sensor orientation. We present experimental results on a method of eliminating this systematic error, using the hexadecapole atomic polarization moment. In particular, we demonstrate selective production of the atomic hexadecapole moment at Earth's magnetic field and verify its immunity to nonlinear Zeeman splitting. This technique promises to eliminate directional errors in all-optical atomic magnetometers, potentially improving their measurement accuracy by several orders of magnitude.

  16. Spectrometer for external detection of magnetic and related double resonance

    International Nuclear Information System (INIS)

    Sagalyn, P.L.; Alexander, M.N.

    1977-01-01

    The patent relates to an improvement in nuclear magnetic resonance spectrometer apparatus. It consists of a spectrometer which utilizes separate materials containing, respectively, sample and detector spin systems as opposed to one in which the sample and detector spins are contained in the same single material

  17. Method for the detection of a magnetic field utilizing a magnetic vortex

    Science.gov (United States)

    Novosad, Valentyn [Chicago, IL; Buchanan, Kristen [Batavia, IL

    2010-04-13

    The determination of the strength of an in-plane magnetic field utilizing one or more magnetically-soft, ferromagnetic member, having a shape, size and material whereas a single magnetic vortex is formed at remanence in each ferromagnetic member. The preferred shape is a thin circle, or dot. Multiple ferromagnetic members can also be stacked on-top of each other and separated by a non-magnetic spacer. The resulting sensor is hysteresis free. The sensor's sensitivity, and magnetic saturation characteristics may be easily tuned by simply altering the material, size, shape, or a combination thereof to match the desired sensitivity and saturation characteristics. The sensor is self-resetting at remanence and therefore does not require any pinning techniques.

  18. Development of rapid detection system on BEPC Ⅱ magnet power supply

    International Nuclear Information System (INIS)

    Chen Suying; Zhan Mingchuan; Long Fengli; Ye Weidong

    2014-01-01

    To quickly find the causes of the accelerator unstable or lost beam caused by magnet power supply in Beijing Electron Positron Collider (BEPC Ⅱ) running, the rapid detection system for magnet power supply was developed. The stability of the system in 8 h is about 0.005%, and it can acquire over nearly 500 sets of magnet power supply current values most quickly in 0.33 ms. All data were written to the MySQL database in real time, so as to be able to quickly troubleshoot magnet power supply problem through historical data analysis and comparison. (authors)

  19. Quench detection and behaviour in case of quench in the ITER magnet systems

    International Nuclear Information System (INIS)

    Coatanea-Gouachet, M.

    2012-02-01

    The quench of one of the ITER magnet system is an irreversible transition from superconducting to normal resistive state, of a conductor. This normal zone propagates along the cable in conduit conductor dissipating a large power. The detection has to be fast enough to dump out the magnetic energy and avoid irreversible damage of the systems. The primary quench detection in ITER is based on voltage detection, which is the most rapid detection. The very magnetically disturbed environment during the plasma scenario makes the voltage detection particularly difficult, inducing large inductive components in the coils and voltage compensations have to be designed to discriminate the resistive voltage associated with the quench. A conceptual design of the quench detection based on voltage measurements is proposed for the three majors magnet systems of ITER. For this, a clear methodology was developed. It includes the classical hot spot criterion, the quench propagation study using the commercial code Gandalf and the careful estimation of the inductive disturbances by developing the TrapsAV code. Specific solutions have been proposed for the compensation in the three ITER magnet systems and for the quench detection parameters, which are the voltage threshold (in the range of 0.1 V - 0.55 V) and the holding time (in the range of 1-1.4 s). The selected values, in particular the holding time, are sufficiently high to ensure the reliability of the system and avoid fast safety discharges not induced by a quench, which is a classical problem. (author)

  20. Quench Detection and Magnet Protection Study for MFTF. LLL final review

    International Nuclear Information System (INIS)

    1979-06-01

    The results of a Quench Detection and Magnet Protection Study for MFTF are summarized. The study was directed toward establishing requirements and guidelines for the electronic package used to protect the MFTF superconducting magnets. Two quench detection schemes were analyzed in detail, both of which require a programmable quench detector. Hardware and software recommendations for the quench detector were presented as well as criteria for dumping the magnet energy in the event of a quench. Overall magnet protection requirements were outlined in a detailed Failure Mode Effects and Criticality analysis, (FMECA). Hardware and software packages compatible with the FMECA were recommended, with the hardware consisting of flexible, dedicated intelligent modules specifically designed for magnet protection

  1. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1994-01-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures - Detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot - Protection. The temperature rise is diluted by firing heaters along the length of the magnet to ensure that the dissipated energy is spread. It is interesting that there is not a significant amount of published research on detection. To afford a more reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, the authors followed an iterative top-down approach. First they defend the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then they further optimize the system through iterative upgrading based on their signal and noise character findings

  2. Nanoscale thermoelectrical detection of magnetic domain wall propagation

    Czech Academy of Sciences Publication Activity Database

    Krzysteczko, P.; Wells, J.; Scarioni, A.F.; Šobáň, Zbyněk; Janda, Tomáš; Hu, X.; Saidl, Vít; Campion, R. P.; Mansell, R.; Lee, J.H.; Cowburn, R.P.; Němec, P.; Kazakova, O.; Wunderlich, Joerg; Schumacher, H.W.

    2017-01-01

    Roč. 95, č. 22 (2017), s. 1-6, č. článku 220410. ISSN 2469-9950 R&D Projects: GA ČR GB14-37427G EU Projects: European Commission(XE) 610115 - SC2 Institutional support: RVO:68378271 Keywords : microscope * driven * wire Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  3. Scalable DNA-Based Magnetic Nanoparticle Agglutination Assay for Bacterial Detection in Patient Samples

    DEFF Research Database (Denmark)

    Mezger, Anja; Fock, Jeppe; Antunes, Paula Soares Martins

    2015-01-01

    and on the introduction of a magnetic incubation scheme. This enables multiplex detection of Escherichia coli, Proteus mirabilis and Pseudomonas aeruginosa at clinically relevant concentrations, demonstrating a factor of 30 improvement in sensitivity compared to previous MNP-based detection schemes. Thanks...

  4. Controlled trapping and detection of magnetic particles by a magnetic microactuator and a giant magnetoresistance (GMR) sensor

    KAUST Repository

    Giouroudi, Ioanna

    2014-04-01

    This paper presents the design and testing of an integrated micro-chip for the controlled trapping and detection of magnetic particles (MPs). A unique magnetic micro-actuator consisting of square-shaped conductors is used to manipulate the MPs towards a giant magnetoresistance (GMR) sensing element which rapidly detects the majority of MPs trapped around the square-shaped conductors. The ability to precisely transport a small number of MPs in a controlled manner over long distances by magnetic forces enables the rapid concentration of a majority of MPs to the sensing zone for detection. This is especially important in low concentration samples. The conductors are designed in such a manner so as to increase the capture efficiency as well as the precision and speed of transportation. By switching current to different conductors, MPs can be manipulated and immobilized on the innermost conductor where the GMR sensor is located. This technique rapidly guides the MPs towards the sensing zone. Secondly, for optimum measurement capability with high spatial resolution the GMR sensor is fabricated directly underneath and all along the innermost conductor to detect the stray fields originating from the MPs. Finally, a microfluidic channel is fabricated on top of this micro-chip. Experiments inside the microchannel were carried out and the MPs were successfully trapped at the sensing area. © (2014) Trans Tech Publications.

  5. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    Science.gov (United States)

    Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter

    2017-11-01

    Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  6. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    Directory of Open Access Journals (Sweden)

    Roman Windl

    2017-11-01

    Full Text Available Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  7. A magnetic biosensor system for detection of E. coli

    KAUST Repository

    Li, Fuquan; Kosel, Jü rgen

    2013-01-01

    This work describes a device for detecting E. coli bacteria by manipulating superparamagnetic beads to a sensing area and immobilizing them in a trapping well. The trapping well replaces the biochemical immobilization layer, which is commonly used

  8. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules

    Science.gov (United States)

    Li, Yunjie; Hu, Xiaoxiao; Ding, Ding; Zou, Yuxiu; Xu, Yiting; Wang, Xuewei; Zhang, Yin; Chen, Long; Chen, Zhuo; Tan, Weihong

    2017-06-01

    Helicobacter pylori infection is implicated in the aetiology of many diseases. Despite numerous studies, a painless, fast and direct method for the in situ detection of H. pylori remains a challenge, mainly due to the strong acidic/enzymatic environment of the gastric mucosa. Herein, we report the use of stable magnetic graphitic nanocapsules (MGNs), for in situ targeted magnetic resonance imaging (MRI) detection of H. pylori. Several layers of graphene as the shell effectively protect the magnetic core from corrosion while retaining the superior contrast effect for MRI in the gastric environment. Boronic-polyethylene glycol molecules were synthesized and modified on the MGN surface for targeted MRI detection. In a mouse model of H. pylori-induced infection, H. pylori was specifically detected through both T2-weighted MR imaging and Raman gastric mucosa imaging using functionalized MGNs. These results indicated that enhancement of MRI using MGNs may be a promising diagnostic and bioimaging platform for very harsh conditions.

  9. High temperature radio-frequency superconducting quantum interference device system for detection of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Pretzell, Alf

    2012-01-01

    This doctoral thesis was aimed at establishing a set-up with high-temperature superconductor (HTS) radio-frequency (rf) superconducting quantum interference device (SQUID) technology for the detection of magnetic nanoparticles and in particular for testing applications of magnetic nanoparticle immunoassays. It was part of the EU-project ''Biodiagnostics'' running from 2005 to 2008. The method of magnetic binding assays was developed as an alternative to other methods of concentration determination like enzyme linked immunosorbent assay (ELISA), or fluorescent immunoassay. The ELISA has sensitivities down to analyte-concentrations of pg/ml. Multiple incubation and washing steps have to be performed for these techniques, the analyte has to diffuse to the site of binding. The magnetic assay uses magnetic nanoparticles as markers for the substance to be detected. It is being explored by current research and shows similar sensitivity compared to ELISA but in contrast - does not need any washing and can be read out directly after binding - can be applied in solution with opaque media, e.g. blood or muddy water - additionally allows magnetic separation or concentration - in combination with small magnetoresistive or Hall sensors, allows detection of only a few particles or even single beads. For medical or environmental samples, maybe opaque and containing a multitude of substances, it would be advantageous to devise an instrument, which allows to be read out quickly and with high sensitivity. Due to the mentioned items the magnetic assay might be a possibility here.

  10. Design and implementation of quench detection instrumentation for TF magnet system of SST-1

    International Nuclear Information System (INIS)

    Khristi, Y.; Sharma, A.N.; Doshi, K.; Banaudha, M.; Prasad, U.; Varmora, P.; Patel, D.; Pradhan, S.

    2014-01-01

    Steady State Superconducting Tokamak-1 (SST-1) at Institute for Plasma Research (IPR), India is now in engineering validation phase. The assembled Toroidal Field (TF) magnet system of SST-1 will be operated at 10 kA of nominal current at helium cooled condition of 4.5 K. A reliable and fail proof quench detection (QD) system is essential for the safety and the investment protection requirements of the magnets. This QD system needs to continuously monitor all the superconducting coils, which include 16 TF magnets, return-loop, bus bars and current leads. In case of any event initiating the normal resistive zone and reaching thermal run-away, the QD system needs to trigger the magnet protection circuits. Precision instrumentation and control system with 204 signal channels had been developed for detection of quench anywhere in the entire TF magnet system. In the present configuration of quench detection scheme, the voltage drop across each double pancake (DP) of each TF coil are compared with its two adjacent DPs for the detection of normal zone and cancelation of inductive couples. Two identical redundant systems with one out of two configurations are successfully commissioned and tested at IPR. This paper describes the design and implementation of the QD system, Installation experience, validation test and initial results from the recent SST-1 magnet system charging

  11. Detection of fine magnetic particles coated on a thread using an HTS-SQUID

    International Nuclear Information System (INIS)

    Kawagishi, K.; Itozaki, H.; Kondo, T.; Komori, K.; Koetitz, R.

    2004-01-01

    Polymer-coated magnetic particles, which contain superparamagnetic ferrite nanoparticles, were attached to a nylon thread of 0.35 mm in diameter and were detected by an HTS-SQUID. The length of the sample attached into the thread was within 3 mm and its interval was 30 mm. The particles were magnetized by a coil applied dc field or by a magnet of 1.4 T. The thread ran 2 mm under the SQUID with 20-100 mm/s of the rate. Signals of magnetic beads were detected and the peak-to-peak amplitude of the signals was directly proportional to the applied field and the weight of the magnetic particles. Obtained peak-to-peak amplitude for 20 ng of magnetite particles was 350 pT at 0.25 mT of applied dc field with noise of 18 pT, and estimated detection limit was 10 ng. S/N ratio was improved by the remanence measurement using the magnet and 5.8 ng of detection limit was obtained. This measurement has been proved to be promising for the continuous analysis of ultra dilute DNA solution

  12. A quench detection/logging system for the SSCL Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Kim, K.; Coles, M.; Dryer, J.; Lambert, D.

    1993-05-01

    The quench in a magnet describes a process which occurs while the superconductivity state goes to the normal resistive state. The consequence of a quench is the conversion of the stored electromagnetic energy into heat. During this process the initiating point will reach a high temperature, which will char the insulation or melt the conductor and thereby destroy the magnet. To prevent the magnet from being lost, it is standard practice to observe several resistance and/or inductance voltages across the magnet as quench signatures -- detection. When a quench symptom is detected, protection operations are initiated: proper shutdown of the magnet excitation systems and treatment to dilute the heat energy at a spot -- protection. The temperature rise is diluted by firing heaters along the length of the magnet to insure that the dissipated energy is spread. To develop a reliable quench detection system, two distinct approaches have been tried in the past: (i) Understanding of the Noise Mechanism and Sub-system Optimization, and (ii) Escaping from the Known Electromagnetic Noises by Observing Optical Waves or Acoustic Waves. The MTL of SSCL confronts a mass-measurement of about 10,000 production magnets. To meet the testing schedule, the false quench detection rate needs to be further optimized while the true quench detection rate remains secure for the magnet measurement safety. To meet these requirements, we followed an iterative top-down approach. First we defined the signal and noise characteristics of the quench phenomena by using existing software tools to build a rapid prototype system incorporating all proven functionality of the existing system. Then we further optimize the system through iterative upgrading based on our signal and noise character findings

  13. Detection of Defect-Induced Magnetism in Low-Dimensional ZnO Structures by Magnetophotocurrent.

    Science.gov (United States)

    Lorite, Israel; Kumar, Yogesh; Esquinazi, Pablo; Zandalazini, Carlos; de Heluani, Silvia Perez

    2015-09-09

    The detection of defect-induced magnetic order in single low-dimensional oxide structures is in general difficult because of the relatively small yield of magnetically ordered regions. In this work, the effect of an external magnetic field on the transient photocurrent measured after light irradiation on different ZnO samples at room temperature is studied. It has been found that a magnetic field produces a change in the relaxation rate of the transient photocurrent only in magnetically ordered ZnO samples. This rate can decrease or increase with field, depending on whether the magnetically ordered region is in the bulk or only at the surface of the ZnO sample. The phenomenon reported here is of importance for the development of magneto-optical low-dimensional oxides devices and provides a new guideline for the detection of magnetic order in low-dimensional magnetic semiconductors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    International Nuclear Information System (INIS)

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; Fermilab

    2005-01-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results

  15. An FPGA-based quench detection and protection system for superconducting accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.H.; Feher, S.; Lamm, M.; Makulski, A.; Nehring, R.; Orris, D.F.; Pischalnikov, Y.; Tartaglia, M.; /Fermilab

    2005-05-01

    A new quench detection and protection system for superconducting accelerator magnets was developed for the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commercially available, integrated hardware and software components. It provides all the functions of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and a more powerful user interface and analysis tools. The new system has been used successfully for testing LHC Interaction Region Quadrupoles correctors and High Field Magnet HFDM04. In this paper we describe the system and present results.

  16. Resolution improvement of low frequency AC magnetic field detection for modulated MR sensors.

    Science.gov (United States)

    Hu, Jinghua; Pan, Mengchun; Hu, Jiafei; Li, Sizhong; Chen, Dixiang; Tian, Wugang; Sun, Kun; Du, Qingfa; Wang, Yuan; Pan, Long; Zhou, Weihong; Zhang, Qi; Li, Peisen; Peng, Junping; Qiu, Weicheng; Zhou, Jikun

    2017-09-01

    Magnetic modulation methods especially Micro-Electro-Mechanical System (MEMS) modulation can improve the sensitivity of magnetoresistive (MR) sensors dramatically, and pT level detection of Direct Current (DC) magnetic field can be realized. While in a Low Frequency Alternate Current (LFAC) magnetic field measurement situation, frequency measurement is limited by a serious spectrum aliasing problem caused by the remanence in sensors and geomagnetic field, leading to target information loss because frequency indicates the magnetic target characteristics. In this paper, a compensation field produced with integrated coils is applied to the MR sensor to remove DC magnetic field distortion, and a LFAC magnetic field frequency estimation algorithm is proposed based on a search of the database, which is derived from the numerical model revealing the relationship of the LFAC frequency and determination factor [defined by the ratio of Discrete Fourier Transform (DFT) coefficients]. In this algorithm, an inverse modulation of sensor signals is performed to detect jumping-off point of LFAC in the time domain; this step is exploited to determine sampling points to be processed. A determination factor is calculated and taken into database to figure out frequency with a binary search algorithm. Experimental results demonstrate that the frequency measurement resolution of the LFAC magnetic field is improved from 12.2 Hz to 0.8 Hz by the presented method, which, within the signal band of a magnetic anomaly (0.04-2 Hz), indicates that the proposed method may expand the applications of magnetoresistive (MR) sensors to human healthcare and magnetic anomaly detection (MAD).

  17. Lunar surface remanent magnetic fields detected by the electron reflection method

    Science.gov (United States)

    Lin, R. P.; Anderson, K. A.; Bush, R.; Mcguire, R. E.; Mccoy, J. E.

    1976-01-01

    We present maps of the lunar surface remanent magnetic fields detected by the electron reflection method. These maps provide substantial coverage of the latitude band from 30 N southward to 30 S with a resolution of about 40 km and a sensitivity of about 0.2 gamma at the lunar surface. Regions of remanent magnetization are observed ranging in size from the resolution limit of 1.25 deg to above approximately 60 deg. The largest contiguous region fills the Big Backside Basin where it is intersected by the spacecraft orbital tracks. Preliminary analyses of the maps show that the source regions of lunar limb compressions correspond to regions of strong surface magnetism, and that there does not appear to be sharply discontinuous magnetization at the edges of maria. We also analyze the electron reflection observations to obtain information on the direction and distribution of magnetization in the Van de Graaff anomaly region.

  18. Simultaneous capture and sequential detection of two malarial biomarkers on magnetic microparticles.

    Science.gov (United States)

    Markwalter, Christine F; Ricks, Keersten M; Bitting, Anna L; Mudenda, Lwiindi; Wright, David W

    2016-12-01

    We have developed a rapid magnetic microparticle-based detection strategy for malarial biomarkers Plasmodium lactate dehydrogenase (pLDH) and Plasmodium falciparum histidine-rich protein II (PfHRPII). In this assay, magnetic particles functionalized with antibodies specific for pLDH and PfHRPII as well as detection antibodies with distinct enzymes for each biomarker are added to parasitized lysed blood samples. Sandwich complexes for pLDH and PfHRPII form on the surface of the magnetic beads, which are washed and sequentially re-suspended in detection enzyme substrate for each antigen. The developed simultaneous capture and sequential detection (SCSD) assay detects both biomarkers in samples as low as 2.0parasites/µl, an order of magnitude below commercially available ELISA kits, has a total incubation time of 35min, and was found to be reproducible between users over time. This assay provides a simple and efficient alternative to traditional 96-well plate ELISAs, which take 5-8h to complete and are limited to one analyte. Further, the modularity of the magnetic bead-based SCSD ELISA format could serve as a platform for application to other diseases for which multi-biomarker detection is advantageous. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Detection of fast oscillating magnetic fields using dynamic multiple TR imaging and Fourier analysis.

    Directory of Open Access Journals (Sweden)

    Ki Hwan Kim

    Full Text Available Neuronal oscillations produce oscillating magnetic fields. There have been trials to detect neuronal oscillations using MRI, but the detectability in in vivo is still in debate. Major obstacles to detecting neuronal oscillations are (i weak amplitudes, (ii fast oscillations, which are faster than MRI temporal resolution, and (iii random frequencies and on/off intervals. In this study, we proposed a new approach for direct detection of weak and fast oscillating magnetic fields. The approach consists of (i dynamic acquisitions using multiple times to repeats (TRs and (ii an expanded frequency spectral analysis. Gradient echo echo-planar imaging was used to test the feasibility of the proposed approach with a phantom generating oscillating magnetic fields with various frequencies and amplitudes and random on/off intervals. The results showed that the proposed approach could precisely detect the weak and fast oscillating magnetic fields with random frequencies and on/off intervals. Complex and phase spectra showed reliable signals, while no meaningful signals were observed in magnitude spectra. A two-TR approach provided an absolute frequency spectrum above Nyquist sampling frequency pixel by pixel with no a priori target frequency information. The proposed dynamic multiple-TR imaging and Fourier analysis are promising for direct detection of neuronal oscillations and potentially applicable to any pulse sequences.

  20. Sub-Audio Magnetics: Miniature Sensor Technology for Simultaneous Magnetic and Electromagnetic Detection of UXO

    Science.gov (United States)

    2010-07-01

    inputs such as laser altimeters and fluxgate magnetometers to determine heading errors etc. 2.2 Technology Development Introduction The technology...hardware and software development, testing and performance evaluation. Initial funding saw the development of a fast sampling magnetometer (called the...Electromagnetic Induction TMI Total Magnetic Intensity TM-6 Magnetometer system developed for SAM applications Tx Transmitter UXO Unexploded

  1. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    Science.gov (United States)

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. Copyright © 2016, American Association for the Advancement of Science.

  2. Pulsed magneto-motive ultrasound imaging to detect intracellular accumulation of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Mehrmohammadi, Mohammad; Qu Min; Sokolov, Konstantin V; Emelianov, Stanislav Y; Ma, Li L; Johnston, Keith P; Romanovicz, Dwight K

    2011-01-01

    As applications of nanoparticles in medical imaging and biomedicine rapidly expand, the interactions of nanoparticles with living cells have become an area of active interest. For example, intracellular accumulation of nanoparticles-an important part of cell-nanoparticle interaction-has been well studied using plasmonic nanoparticles and optical or optics-based techniques due to the change in optical properties of the nanoparticle aggregates. However, magnetic nanoparticles, despite their wide range of clinical applications, do not exhibit plasmonic-resonant properties and therefore their intracellular aggregation cannot be detected by optics-based imaging techniques. In this study, we investigated the feasibility of a novel imaging technique-pulsed magneto-motive ultrasound (pMMUS)-to identify intracellular accumulation of endocytosed magnetic nanoparticles. In pMMUS imaging a focused, high intensity, pulsed magnetic field is used to excite the cells labeled with magnetic nanoparticles, and ultrasound imaging is then used to monitor the mechanical response of the tissue. We demonstrated previously that clusters of magnetic nanoparticles amplify the pMMUS signal in comparison to the signal from individual nanoparticles. Here we further demonstrate that pMMUS imaging can identify interaction between magnetic nanoparticles and living cells, i.e. intracellular accumulation of nanoparticles within the cells. The results of our study suggest that pMMUS imaging can not only detect the presence of magnetic nanoparticles but also provides information about their intracellular accumulation non-invasively and in real-time.

  3. Detection of a normal zone in the MFTF magnets

    International Nuclear Information System (INIS)

    Owen, E.W.

    1979-01-01

    A method is described for the electrical detection of a normal zone in inductively coupled superconducting coils. Measurements are made with two kinds of bridges, mutual inductance bridges and self-inductance bridges. The bridge outputs are combined with other measured voltages to form a detector that can be realized with either analog circuits or a computer algorithm. The detection of a normal zone in a pair of coupled coils, each with taps, is discussed in detail. It is also shown that the method applies to a pair of coils when one has no taps and to a pair when one coil is superconducting and the other is not. The method is extended, in principle, to a number of coils. A description is given of a technique for balancing the bridges at near the operating currents of the coils

  4. Detecting the presence of a magnetic field under Gaussian and non-Gaussian noise by adaptive measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuan-Mei; Li, Jun-Gang, E-mail: jungl@bit.edu.cn; Zou, Jian

    2017-06-15

    Highlights: • Adaptive measurement strategy is used to detect the presence of a magnetic field. • Gaussian Ornstein–Uhlenbeck noise and non-Gaussian noise have been considered. • Weaker magnetic fields may be more easily detected than some stronger ones. - Abstract: By using the adaptive measurement method we study how to detect whether a weak magnetic field is actually present or not under Gaussian noise and non-Gaussian noise. We find that the adaptive measurement method can effectively improve the detection accuracy. For the case of Gaussian noise, we find the stronger the magnetic field strength, the easier for us to detect the magnetic field. Counterintuitively, for non-Gaussian noise, some weaker magnetic fields are more likely to be detected rather than some stronger ones. Finally, we give a reasonable physical interpretation.

  5. Extracardiac findings detected by cardiac magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wyttenbach, Rolf; Medioni, Nathalie; Santini, Paolo; Vock, Peter; Szucs-Farkas, Zsolt

    2012-01-01

    To determine the prevalence and importance of extracardiac findings (ECF) in patients undergoing clinical CMR and to test the hypothesis that the original CMR reading focusing on the heart may underestimate extracardiac abnormalities. 401 consecutive patients (mean age 53 years) underwent CMR at 1.5 T. Main indications were ischaemic heart disease (n = 183) and cardiomyopathy (n = 164). All CMR sequences, including scout images, were reviewed with specific attention to ECF in a second reading by the same radiologist who performed the first clinical reading. Potentially significant findings were defined as abnormalities requiring additional clinical or radiological follow-up. 250 incidental ECF were detected, of which 84 (34%) had potentially significant ECF including bronchial carcinoma (n = 1), lung consolidation (n = 7) and abdominal abnormalities. In 166 CMR studies (41%) non-significant ECF were detected. The number of ECF identified at second versus first reading was higher for significant (84 vs. 47) and non-significant (166 vs. 36) findings (P < 0.00001). About one fifth of patients undergoing CMR were found to have potentially significant ECF requiring additional work-up. The second dedicated reading detected significantly more ECF compared with the first clinical reading emphasising the importance of active search for extracardiac abnormalities when evaluating CMR studies. circle Many patients undergoing cardiac MR have significant extracardiac findings (ECF) circle These impact on management and require additional work-up. circle Wide review of scout and cine sequences will detect most ECFs. circle Education of radiologists is important to identify ECFs on CMR studies. (orig.)

  6. Harmonic detection of magnetic resonance for sensitivity improvement of optical atomic magnetometers

    Energy Technology Data Exchange (ETDEWEB)

    Ranjbaran, M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Tehranchi, M.M., E-mail: teranchi@sbu.ac.ir [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Physics Department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Hamidi, S.M. [Laser and Plasma Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Khalkhali, S.M.H. [Physics Department, Kharazmi University, Tehran (Iran, Islamic Republic of)

    2017-02-15

    Highly sensitive atomic magnetometers use optically detected magnetic resonance of atomic spins to measure extremely weak magnetic field changes. The magnetometer sensitivity is directly proportional to the ratio of intensity to line-shape of the resonance signal. To obtain narrower resonance signal, we implemented harmonic detection of magnetic resonance method in M{sub x} configuration. The nonlinear spin polarization dynamics in detection of the higher harmonics were employed in phenomenological Bloch equations. The measured and simulated harmonic components of the resonance signals in frequency domain yielded significantly narrower line-width accompanying much improved sensitivity. Our results confirm the sensitivity improvement by a factor of two in optical atomic magnetometer via second harmonic signal which can open a new insight in the weak magnetic field measurement system design. - Highlights: • Highly sensitive atomic magnetometers have been used to measure weak magentic filed. • To obtain narrower resonance signal, we impalnted harmonic detection of magnetic resonance. • The nonlinear spin polarization dynamics in detetion of the higher harmonics were imployed.

  7. Fiber optic quench detection via optimized Rayleigh Scattering in high-field YBCO accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, Gene [North Carolina State Univ., Raleigh, NC (United States)

    2016-02-17

    Yttrium barium copper oxide (YBCO) coated conductors are known for their ability to operate in the superconducting state at relatively high temperatures, even above the boiling point of liquid nitrogen (77 K). When these same conductors are operated at lower temperatures, they are able to operate in much higher magnetic fields than traditional superconductors like NiTi or Nb3Sn. Thus, YBCO superconducting magnets are one of the primary options for generating the high magnetic fields needed for future high energy physics devices. Due to slow quench propagation, quench detection remains one of the primary limitations to YBCO magnets. Fiber optic sensing, based upon Rayleigh scattering, has the potential for spatial resolution approaching the wavelength of light, or very fast temporal resolution at low spatial resolution, and a continuum of combinations in between. This project has studied, theoretically and experimentally, YBCO magnets and Rayleigh scattering quench detection systems to demonstrate feasibility of the systems for YBCO quench protection systems. Under this grant an experimentally validated 3D quench propagation model was used to accurately define the acceptable range of spatial and temporal resolutions for effective quench detection in YBCO magnets and to evaluate present-day and potentially improved YBCO conductors. The data volume and speed requirements for quench detection via Rayleigh scattering required the development of a high performance fiber optic based quench detection/data acquisition system and its integration with an existing voltage tap/thermo-couple based system. In this project, optical fibers are tightly co-wound into YBCO magnet coils, with the fiber on top of the conductor as turn-to-turn insulation. Local changes in the temperature or strain of the conductor are sensed by the optical fiber, which is in close thermal and mechanical contact with the conductor. Intrinsic imperfections in the fiber reflect Rayleigh

  8. Electrochemical analysis of gold-coated magnetic nanoparticles for detecting immunological interaction

    International Nuclear Information System (INIS)

    Pham, Thao Thi-Hien; Sim, Sang Jun

    2010-01-01

    An electrochemical impedance immunosensor was developed for detecting the immunological interaction between human immunoglobulin (IgG) and protein A from Staphylococcus aureus based on the immobilization of human IgG on the surface of modified gold-coated magnetic nanoparticles. The nanoparticles with an Au shell and Fe oxide cores were functionalized by a self-assembled monolayer of 11-mercaptoundecanoic acid. The electrochemical analysis was conducted on the modified magnetic carbon paste electrodes with the nanoparticles. The magnetic nanoparticles were attached to the surface of the magnetic carbon paste electrodes via magnetic force. The cyclic voltammetry technique and electrochemical impedance spectroscopy measurements of the magnetic carbon paste electrodes coated with magnetic nanoparticles-human IgG complex showed changes in its alternating current (AC) response both after the modification of the surface of the electrode and the addition of protein A. The immunological interaction between human IgG on the surface of the modified magnetic carbon paste electrodes and protein A in the solution could be successfully monitored.

  9. High resolution in-operando microimaging of solar cells with pulsed electrically-detected magnetic resonance

    Science.gov (United States)

    Katz, Itai; Fehr, Matthias; Schnegg, Alexander; Lips, Klaus; Blank, Aharon

    2015-02-01

    The in-operando detection and high resolution spatial imaging of paramagnetic defects, impurities, and states becomes increasingly important for understanding loss mechanisms in solid-state electronic devices. Electron spin resonance (ESR), commonly employed for observing these species, cannot meet this challenge since it suffers from limited sensitivity and spatial resolution. An alternative and much more sensitive method, called electrically-detected magnetic resonance (EDMR), detects the species through their magnetic fingerprint, which can be traced in the device's electrical current. However, until now it could not obtain high resolution images in operating electronic devices. In this work, the first spatially-resolved electrically-detected magnetic resonance images (EDMRI) of paramagnetic states in an operating real-world electronic device are provided. The presented method is based on a novel microwave pulse sequence allowing for the coherent electrical detection of spin echoes in combination with powerful pulsed magnetic-field gradients. The applicability of the method is demonstrated on a device-grade 1-μm-thick amorphous silicon (a-Si:H) solar cell and an identical device that was degraded locally by an electron beam. The degraded areas with increased concentrations of paramagnetic defects lead to a local increase in recombination that is mapped by EDMRI with ∼20-μm-scale pixel resolution. The novel approach presented here can be widely used in the nondestructive in-operando three-dimensional characterization of solid-state electronic devices with a resolution potential of less than 100 nm.

  10. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The CMS magnet has been running steadily and smoothly since the summer, with no detected flaw. The magnet instrumentation is entirely operational and all the parameters are at their nominal values. Three power cuts on the electrical network affected the magnet run in the past five months, with no impact on the data-taking as the accelerator was also affected at the same time. On 22nd June, a thunderstorm caused a power glitch on the service electrical network. The primary water cooling at Point 5 was stopped. Despite a quick restart of the water cooling, the inlet temperature of the demineralised water on the busbar cooling circuit increased by 5 °C, up to 23.3 °C. It was kept below the threshold of 27 °C by switching off other cooling circuits to avoid the trigger of a slow dump of the magnet. The cold box of the cryogenics also stopped. Part of the spare liquid helium volume was used to maintain the cooling of the magnet at 4.5 K. The operators of the cryogenics quickly restarted ...

  11. High-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip supports for AFP detection

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Xiaoqun [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Yan, Huan; Yang, Jiumin [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Wu, Yudong; Zhang, Jian; Yao, Yingyi [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Ping [Bioscience (Tianjin) Diagnostic Technology CO., LTD, Tianjin, 300300 (China); Wang, Huiquan [Department of Biomedical Engineering, School of Electronics and Information Engineering, Tianjin Polytechnic University, Tianjin, 300387 (China); Hu, Zhidong, E-mail: huzhidong27@163.com [Department of Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 (China); Chang, Jin, E-mail: jinchang@tju.edu.cn [School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2016-10-05

    Fluorescence-encoded magnetic microbeads (FEMMs), with the fluorescence encoding ability of quantum dots (QDs) and magnetic enrichment and separation functions of Fe{sub 3}O{sub 4} nanoparticles, have been widely used for multiple biomolecular detection as microfluidic protein chip supports. However, the preparation of FEMMs with long-term fluorescent encoding and immunodetection stability is still a challenge. In this work, we designed a novel high-temperature chemical swelling strategy. The QDs and Fe{sub 3}O{sub 4} nanoparticles were effectively packaged into microbeads via the thermal motion of the polymer chains and the hydrophobic interaction between the nanoparticles and microbeads. The FEMMs obtained a highly uniform fluorescent property and long-term encoding and immunodetection stability and could be quickly magnetically separated and enriched. Then, the QD-encoded magnetic microbeads were applied to alpha fetoprotein (AFP) detection via sandwich immunoreaction. The properties of the encoded microspheres were characterized using a self-designed detecting apparatus, and the target molecular concentration in the sample was also quantified. The results suggested that the high-performance FEMMs have great potential in the field of biomolecular detection. - Graphical abstract: We designed a novel strategy to prepare a kind of high-performance fluorescence-encoded magnetic microbeads as microfluidic protein chip support with long-time fluorescent encoding and immunodetection stability for AFP detection. - Highlights: • A novel strategy combined the high temperature with chemical swelling technology is designed. • Based on hydrophobic interaction and polymer thermal motion, QDs and Fe{sub 3}O{sub 4} were effectively packaged into microbeads. • The fluorescence-encoded magnetic microbeads show long-term fluorescent encoding and immunodetection stability.

  12. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    Science.gov (United States)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  13. Detection of smaller Jc region and damage in YBCO coated conductors by using permanent magnet method

    International Nuclear Information System (INIS)

    Hattori, K.; Saito, A.; Takano, Y.; Suzuki, T.; Yamada, H.; Takayama, T.; Kamitani, A.; Ohshima, S.

    2011-01-01

    We developed a non-destructive method for measuring the critical current density (J c ) in YBCO-coated conductors by using a permanent magnet (Sm 2 Co 17 ). J c could be determined from the repulsive force (F r ) generated between a permanent magnet and a coated conductor where shielding current flows. We also examined the influence of damage to the film on the J c distribution. The measured F r when the permanent magnet approached the cut part was smaller than that of the undamaged area. We developed a non-destructive method for measuring the critical current density (J c ) in YBCO-coated conductors by using a permanent magnet (Sm 2 Co 17 ). J c could be determined from the repulsive force (F r ) generated between a permanent magnet and a coated conductor where shielding current flows. We tried to detect a smaller J c region in the coated conductor by using the system. The J c distribution could be determined without influence from the thick copper film on YBCO thin film. We also examined the influence of damage to the film on the J c distribution. The surface of the coated conductors was cut by using a knife. The measured F r when the permanent magnet approached the cut part was smaller than that of the undamaged area. This J c measurement technique will be useful for detecting smaller J c regions and defects in coated conductors.

  14. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, David A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2012-05-15

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  15. Magnetic molecularly imprinted polymer for the isolation and detection of biotin and biotinylated biomolecules.

    Science.gov (United States)

    Ben Aissa, A; Herrera-Chacon, A; Pupin, R R; Sotomayor, M D P T; Pividori, M I

    2017-02-15

    Magnetic separation based on biologically-modified magnetic particles is a preconcentration procedure commonly integrated in magneto actuated platforms for the detection of a huge range of targets. However, the main drawback of this material is the low stability and high cost. In this work, a novel hybrid molecularly-imprinted polymer with magnetic properties is presented with affinity towards biotin and biotinylated biomolecules. During the synthesis of the magneto core-shell particles, biotin was used as a template. The characterization of this material by microscopy techniques including SEM, TEM and confocal microscopy is presented. The application of the magnetic-MIPs for the detection of biotin and biotinylated DNA in magneto-actuated platforms is also described for the first time. The magnetic-MIP showed a significant immobilization capacity of biotinylated molecules, giving rise to a cheaper and a robust method (it is not required to be stored at 4°C) with high binding capacity for the separation and purification under magnetic actuation of a wide range of biotinylated molecules, and their downstream application including determination of their specific targets. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Biomimetic ELISA detection of malachite green based on magnetic molecularly imprinted polymers.

    Science.gov (United States)

    Li, Lu; Lin, Zheng-Zhong; Peng, Ai-Hong; Zhong, Hui-Ping; Chen, Xiao-Mei; Huang, Zhi-Yong

    2016-11-01

    A direct competitive enzyme-linked immunosorbent assay (ELISA) method was used for the detection of malachite green (MG) with a high sensitivity and selectivity using magnetic molecularly imprinted polymers (MMIPs) as a bionic antibody. MMIPs were prepared through emulsion polymerization using Fe 3 O 4 nanoparticles as magnetic nuclei, MG as a template, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a crosslinking agent and span-80/tween-80 as mixed emulsifiers. The MMIPs were characterized by scanning electron micrographs (SEM), thermal-gravimetric analyzer (TGA), Fourier transform infrared spectrometer (FT-IR) and vibrating sample magnetometer (VSM), respectively. A high magnetic saturation value of 54.1emug -1 was obtained, resulting in rapid magnetic separation of MMIPs with an external magnet. The IC 50 of the established ELISA method was 20.1μgL -1 and the detection limit (based on IC 85 ) was 0.1μgL -1 . The MMIPs exhibited high selective binding capacity for MG with cross-reactivities less than 3.9% for MG structural analogues. The MG spiking recoveries were 85.0%-106% with the relative standard deviations less than 4.7%. The results showed that the biomimetic ELISA method by using MMIPs as bionic antibody could be used to detect MG rapidly in fish samples with a high sensitivity and accuracy. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Primary haemochromatosis. Early detection of commitment myocardium through cardiac magnetic resonance

    International Nuclear Information System (INIS)

    Corbella, F.; Rivas, Carlos; Dragonetti, Laura; Eyheremendy, Eduardo; Calo, Claudia

    2009-01-01

    Primary haemochromatosis is the most common genetic disease of the West (1 in 300 to 400 people). Cardiac involvement during its early stages is not detected by imaging techniques.During this period potentially lethal arrhythmias can occur. Using cardiac magnetic resonance (CMR) with T2 star sequence it is possible an early detection of cardiac involvement as well as a risk stratification and a monitoring the progress of the therapy. [es

  18. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  19. An FPGA-Based Quench Detection and Protection System for Superconducting Accelerator Magnets

    CERN Document Server

    Carcagno, Ruben H; Lamm, Michael J; Makulski, Andrzej; Nehring, Roger; Orris, Darryl; Pishchalnikov, Yu M; Tartaglia, M

    2005-01-01

    A new quench detection and protection system for superconducting accelerator magnets was developed at the Fermilab's Magnet Test Facility (MTF). This system is based on a Field-Programmable Gate Array (FPGA) module, and it is made of mostly commerically available, integrated hardware and software components. It provides most of the functionality of our existing VME-based quench detection and protection system, but in addition the new system is easily scalable to protect multiple magnets powered independently and has a more powerful user interface and analysis tools. First applications of the new system will be for testing corrector coil packages. In this paper we describe the new system and present results of testing LHC Interaction Region Quadrupole (IRQ) correctors.

  20. Porous silicon platform for optical detection of functionalized magnetic particles biosensing.

    Science.gov (United States)

    Ko, Pil Ju; Ishikawa, Ryousuke; Sohn, Honglae; Sandhu, Adarsh

    2013-04-01

    The physical properties of porous materials are being exploited for a wide range of applications including optical biosensors, waveguides, gas sensors, micro capacitors, and solar cells. Here, we review the fast, easy and inexpensive electrochemical anodization based fabrication porous silicon (PSi) for optical biosensing using functionalized magnetic particles. Combining magnetically labeled biomolecules with PSi offers a rapid and one-step immunoassay and real-time detection by magnetic manipulation of superparamagnetic beads (SPBs) functionalized with target molecules onto corresponding probe molecules immobilized inside nano-pores of PSi. We first give an introduction to electrochemical and chemical etching procedures used to fabricate a wide range of PSi structures. Next, we describe the basic properties of PSi and underlying optical scattering mechanisms that govern their unique optical properties. Finally, we give examples of our experiments that demonstrate the potential of combining PSi and magnetic beads for real-time point of care diagnostics.

  1. Magnetic resonance imaging-based detection of glial brain tumors in mice after antiangiogenic treatment.

    NARCIS (Netherlands)

    Claes, A.; Gambarota, G.; Hamans, B.C.; Tellingen, O. van; Wesseling, P.; Maass, C.N.; Heerschap, A.; Leenders, W.P.J.

    2008-01-01

    Proper delineation of gliomas using contrast-enhanced magnetic resonance imaging (CE-MRI) poses a problem in neuro-oncology. The blood brain barrier (BBB) in areas of diffuse-infiltrative growth may be intact, precluding extravasation and subsequent MR-based detection of the contrast agent

  2. Methods to detect faulty splices in the superconducting magnet system of the LHC

    International Nuclear Information System (INIS)

    Bailey, R.; Bellesia, B.; Lasheras, N.Catalan; Dahlerup-Petersen, K.; Denz, R.; Robles, C.; Koratzinos, M.; Pojer, M.; Ponce, L.; Saban, R.; Schmidt, R.

    2009-01-01

    The incident of 19 September 2008 at the LHC was caused by a faulty inter-magnet splice of about 200 n(Omega) resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The existing quench protection system can be used to detect internal splices with R > 20 n(Omega). Since this system does not cover the bus between magnets, the cryogenic system is used to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved, allowing detection of excess resistance, if it is more than 40 n(Omega) in a cryogenic subsector (two optical cells). Follow-up electrical measurements are made in regions identified by the cryogenic system. These techniques have detected two abnormal internal magnet splices of 100 n(Omega) and 50 n(Omega) respectively. In 2009, this ad hoc system will be replaced with a permanent one to monitor all splices at the n(Omega) level

  3. Methods to detect faulty splices in the superconducting magnet system of the LHC

    CERN Document Server

    Bailey, R; Catalan Lasheras, N; Dahlerup-Petersen, K; Denz, R; Robles, C; Koratzinos, M; Pojer, M; Ponce, L; Saban, R; Schmidt, R; Siemko, A; Solfaroli Camillocci, M; Thiesen, H; Vergara Fernandez, A; Flora, R H; Charifoulline, Z; Bednarek, M; Górnicki, E; Jurkiewicz, P; Kapusta, P; Strait, J

    2010-01-01

    The incident of 19 September 2008 at the LHC was caused by a faulty inter-magnet splice of about 200 nΩ resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The existing quench protection system can be used to detect internal splices with R>20 nΩ. Since this system does not cover the bus between magnets, the cryogenic system is used to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved, allowing detection of excess resistance, if it is more than 40 nΩ in a cryogenic subsector (two optical cells). Follow-up electrical measurements are made in regions identified by the cryogenic system. These techniques have detected two abnormal internal magnet splices of 100 nΩ and 50 nΩ respectively. In 2009, this ad hoc system will be replaced with a permanent one to monitor all splices at the nΩ level.

  4. Theory and detection of magnetic monopoles in gauge theories a collected set of lecture notes

    CERN Document Server

    Giacomelli, G; Nahm, Werner; Shafi, Qaisar

    1986-01-01

    These lecture notes discusses the developments both in the theoretical understanding of the physics and mathematics of magnetic monopoles as well as the ways in which they can be detected experimentally.The subject has now become highly interdisciplinary and recent monopole meetings have attracted participants from low temperature physics at one extreme to cosmology at the other.

  5. Remote detection of oil spilled under ice and snow using nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Nedwed, T.; Srnka, L.; Thomann, H.

    2008-01-01

    The technical challenge of detecting oil that has been accidentally spilled under ice and snow was discussed with particular reference to the tools used to characterize the molecular composition of liquids and solids. One such tool is nuclear magnetic resonance (NMR) which works by releasing electromagnetic energy. The NMR signals from oil and water can be differentiated based on the inherent differences in the NMR signal responses from different fluid types. The method can also use the Earth's magnetic field as the static magnetic field and thereby eliminate the complexity and cost of generating an independent magnetic field for remotely detecting fluids below a surface. This study examined the feasibility of altering existing surface-based instruments and placing them in a helicopter for aerial monitoring. The goal of this research was to develop a tool for remote detection of oil under ice in a marine environment, or for detection of oil under snow on land using an inexpensive tool that can quickly inspect large areas. The proposed tool and technique produces a direct hydrocarbon signal that may not have interference from ice and snow. 9 refs., 6 figs

  6. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  7. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  8. Fault detection of a Five-Phase Permanent-Magnet Machine

    DEFF Research Database (Denmark)

    Bianchini, Claudio; Matzen, Torben N.; Bianchi, Nicola

    2008-01-01

    The paper focuses on the fault detection of a five-phase Permanent-Magnet (PM) machine. This machine has been de-signed for fault tolerant applications, and it is characterised by a mutual inductance equal to zero and a high self inductance, with the purpose to limit the short circuit current...

  9. Behaviour of large-area avalanche photodiodes under intense magnetic fields for VUV- visible- and X-ray photon detection

    International Nuclear Information System (INIS)

    Fernandes, L.M.P.; Antognini, A.; Boucher, M.; Conde, C.A.N.; Huot, O.; Knowles, P.; Kottmann, F.; Ludhova, L.; Mulhauser, F.; Pohl, R.; Schaller, L.A.; Santos, J.M.F. dos; Taqqu, D.; Veloso, J.F.C.A.

    2003-01-01

    The behaviour of large-area avalanche photodiodes for X-rays, visible and vacuum-ultra-violet (VUV) light detection in magnetic fields up to 5 T is described. For X-rays and visible light detection, the photodiode pulse amplitude and energy resolution were unaffected from 0 to 5 T, demonstrating the insensitivity of this type of detector to strong magnetic fields. For VUV light detection, however, the photodiode relative pulse amplitude decreases with increasing magnetic field intensity reaching a reduction of about 24% at 5 T, and the energy resolution degrades noticeably with increasing magnetic field

  10. Quench detection of superconducting magnet by dual-core optical fiber

    International Nuclear Information System (INIS)

    Tsukamoto, O.; Kawai, K.; Kokubun, Y.; Takao, T.

    1988-01-01

    A quench-detecting technique using two single-mode optical cores in one fiber has been developed. The technique can detect quench from a temperature rise of 1.0 K at 4.2 K. An electromagnetic force-stress to the fiber did not deteriorate quench detection sensitivity. A quench detector using this method was immune from electromagnetic noise and free from troubles caused by high voltage tension. Problems arising when applying this method to a large scale magnet and possible improvements in the instrumentation are discussed

  11. Online Detection of Peroxidase Using 3D Printing, Active Magnetic Mixing, and Spectra Analysis

    Directory of Open Access Journals (Sweden)

    Shanshan Bai

    2017-01-01

    Full Text Available A new method for online detection of peroxidase (POD using 3D printing, active magnetic mixing, fluidic control, and optical detection was developed and demonstrated in this study. The proposed POD detection system consisted of a 3D printing and active magnetic mixing based fluidic chip for online catalytic reaction, an optical detector with a fluidic flow cell for quantitative determination of the final catalysate, and a single-chip microcontroller based controller for automatic control of two rotating magnetic fields and four precise peristaltic pumps. Horseradish peroxidase (HRP was used as research model and a linear relationship between the absorbance at the characteristic wavelength of 450 nm and the concentration of HRP of 1/4–1/128 μg mL−1 was obtained as A  =  0.257ln⁡(C + 1.425 (R2  = 0.976. For the HRP spiked pork tests, the recoveries of HRP ranged from 93.5% to 110.4%, indicating that this proposed system was capable of detecting HRP in real samples. It has the potential to be extended for online detection of the activity of other enzymes and integration with ELISA method for biological and chemical analysis.

  12. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. A method to detect ultra high energy electrons using earth's magnetic field as a radiator

    Science.gov (United States)

    Stephens, S. A.; Balasubrahmanyan, V. K.

    1983-01-01

    It is pointed out that the detection of electrons with energies exceeding a few TeV, which lose energy rapidly through synchrotron and inverse Compton processes, would provide valuable information on the distribution of sources and on the propagation of cosmic rays in the solar neighborhood. However, it would not be possible to measure the energy spectrum beyond a few TeV with any of the existing experimental techniques. The present investigation is, therefore concerned with the possibility of detecting electrons with energies exceeding a few TeV on the basis of the photons emitted through synchrotron radiation in the earth's magnetic field. Attention is given to the synchrotron radiation of electrons in the earth's magnetic field, detector response and energy estimation, and the characteristics of an ideal detector, capable of detecting photons with energies equal to or greater than 20 keV.

  14. Practical assessment of magnetic methods for corrosion detection in an adjacent precast, prestressed concrete box-beam bridge

    Science.gov (United States)

    Fernandes, Bertrand; Titus, Michael; Nims, Douglas Karl; Ghorbanpoor, Al; Devabhaktuni, Vijay Kumar

    2013-06-01

    Magnetic methods are progressing in the detection of corrosion in prestressing strands in adjacent precast, prestressed concrete box-beam bridges. This study is the first field trial of magnetic strand defect detection systems on an adjacent box-beam bridge. A bridge in Fayette County, Ohio, which was scheduled for demolition, was inspected. Damage to prestressed box-beams is often due to corrosion of the prestressing strands. The corroded strands show discontinuities and a reduced cross-sectional area. These changes, due to corrosion, are reflected in the magnetic signatures of the prestressing steel. Corrosion in the prestressing steel was detected using two magnetic methods, namely the 'magnetic flux leakage' (MFL) and the 'induced magnetic field'. The purpose of these tests was to demonstrate the ability of the magnetic methods to detect hidden corrosion in box-beams in the field and tackle the logistic problem of inspecting box-beams from the bottom. The inspections were validated by dissecting the bottom of the box-beams after the inspections. The results showed that the MFL method can detect hidden corrosion and strand breaks. Both magnetic field methods were also able to estimate corrosion by detecting the effective cross-sectional area of the strand in sections of the beams. Thus, it was shown that the magnetic methods can be used to predict hidden corrosion in prestressing strands of box-beams.

  15. Development of RIA reagents for detection of serum T3 using magnetic assay method

    International Nuclear Information System (INIS)

    Prasarnleungwirai, P.; Suprarop, P.; Tanjoy, V.; Saraneeyatham, T.

    1992-01-01

    The T3 RIA assay is widely used for diagnosis of the disease caused by malfunction of thyroid organ. The common methods used are: 1. Liquid phase, second antibody and PEG. 2. Solid phase, cellulose or sepharose. Since these two techniques need expensive refrigerated centrifuges to separate the bound from free, small labs in the remote part of the countries whose budgets are limited cannot use this technique. Magnetic assay technique for T3 detection employ strong magnetic plate for separation thus eliminate the use of costly refrigerated centrifuge. Preparation of magnetizable cellulose particles conjugated to proper anti T3 serum is done by activation of selected magnetizable cellulose particle with CDI (1,1 carbonyl dimidazole). The activated magnetic particles are then coupled to specific antibody in borate buffer pH 8. The assessment of prepared magnetic particle capture anti T3 are done by selecting the proper concentration of anti T3 magnetic particles. The result from both magnetic technique and second antibody/PEG are compared, and they show good correlation

  16. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    Science.gov (United States)

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  17. DIRECT DETECTION OF THE HELICAL MAGNETIC FIELD GEOMETRY FROM 3D RECONSTRUCTION OF PROMINENCE KNOT TRAJECTORIES

    Energy Technology Data Exchange (ETDEWEB)

    Zapiór, Maciej; Martinez-Gómez, David, E-mail: zapior.maciek@gmail.com [Physics Department, University of the Balearic Islands, Cra. de Valldemossa, km 7.5. Palma (Illes Balears), E-07122 (Spain)

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1–3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 10{sup 9} A.

  18. Direct Detection of the Helical Magnetic Field Geometry from 3D Reconstruction of Prominence Knot Trajectories

    Science.gov (United States)

    Zapiór, Maciej; Martínez-Gómez, David

    2016-02-01

    Based on the data collected by the Vacuum Tower Telescope located in the Teide Observatory in the Canary Islands, we analyzed the three-dimensional (3D) motion of so-called knots in a solar prominence of 2014 June 9. Trajectories of seven knots were reconstructed, giving information of the 3D geometry of the magnetic field. Helical motion was detected. From the equipartition principle, we estimated the lower limit of the magnetic field in the prominence to ≈1-3 G and from the Ampère’s law the lower limit of the electric current to ≈1.2 × 109 A.

  19. Selection of a quench detection system for the ITER CS magnet

    International Nuclear Information System (INIS)

    Coatanea, Marc; Duchateau, Jean-Luc; Lacroix, Benoit; Nicollet, Sylvie; Rodriguez-Mateos, Felix; Topin, Frederic

    2011-01-01

    At variance with most of the existing superconducting systems operating in the world, the ITER central solenoid (CS) magnet is a fast pulsed system. This peculiarity creates a specific situation regarding the quench detection system, as a small resistive signal associated with a quench has to be discriminated from the high inductive signals imposed by the plasma scenario. The quench detection is based on an inductive compensation built from three adjacent double pancakes. The ITER protection rules for a superconducting magnet impose to respect the so-called maximum hot spot temperature criterion of 250 K in the quenched cable at the end of the fast discharge. A careful analysis of the residual inductive signals in the detection voltage shows that a blanking of the quench detection cannot be avoided during the early times of the plasma discharge (i.e. during 3.5 s). It is demonstrated that this blanking is, however, acceptable while fulfilling the hot spot criterion because the plasma initiation phase (PIP) is very similar to a fast safety discharge and corresponds to a fast decrease of the modules currents, which is favourable for the magnet protection.

  20. Adaptive cancellation of geomagnetic background noise for magnetic anomaly detection using coherence

    International Nuclear Information System (INIS)

    Liu, Dunge; Xu, Xin; Huang, Chao; Zhu, Wanhua; Liu, Xiaojun; Fang, Guangyou; Yu, Gang

    2015-01-01

    Magnetic anomaly detection (MAD) is an effective method for the detection of ferromagnetic targets against background magnetic fields. Currently, the performance of MAD systems is mainly limited by the background geomagnetic noise. Several techniques have been developed to detect target signatures, such as the synchronous reference subtraction (SRS) method. In this paper, we propose an adaptive coherent noise suppression (ACNS) method. The proposed method is capable of evaluating and detecting weak anomaly signals buried in background geomagnetic noise. Tests with real-world recorded magnetic signals show that the ACNS method can excellently remove the background geomagnetic noise by about 21 dB or more in high background geomagnetic field environments. Additionally, as a general form of the SRS method, the ACNS method offers appreciable advantages over the existing algorithms. Compared to the SRS method, the ACNS algorithm can eliminate the false target signals and represents a noise suppressing capability improvement of 6.4 dB. The positive outcomes in terms of intelligibility make this method a potential candidate for application in MAD systems. (paper)

  1. Static magnetic Faraday rotation spectroscopy combined with a differential scheme for OH detection

    Science.gov (United States)

    Zhao, Weixiong; Deng, Lunhua; Qian, Xiaodong; Fang, Bo; Gai, Yanbo; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    The hydroxyl (OH) radical plays a critical role in atmospheric chemistry due to its high reactivity with volatile organic compounds (VOCs) and other trace gaseous species. Because of its very short life time and very low concentration in the atmosphere, interference-free high sensitivity in-situ OH monitoring by laser spectroscopy represents a real challenge. Faraday rotation spectroscopy (FRS) relies on the particular magneto-optic effect observed for paramagnetic species, which makes it capable of enhancing the detection sensitivity and mitigation of spectral interferences from diamagnetic species in the atmosphere. When an AC magnetic field is used, the Zeeman splitting of the molecular absorption line (and thus the magnetic circular birefringence) is modulated. This provides an 'internal modulation' of the sample, which permits to suppress the external noise like interference fringes. An alternative FRS detection scheme is to use a static magnetic field (DC-field) associated with laser wavelength modulation to effectively modulate the Zeeman splitting of the absorption lines. In the DC field case, wavelength modulation of the laser frequency can provide excellent performance compared to most of the sensing systems based on direct absorption and wavelength modulation spectroscopy. The dimension of the DC solenoid is not limited by the resonant frequency of the RLC circuit, which makes large dimension solenoid coil achievable and the absorption base length could be further increased. By employing a combination of the environmental photochemical reactor or smog chamber with multipass absorption cell, one can lower the minimum detection limit for high accuracy atmospheric chemistry studies. In this paper, we report on the development of a DC field based FRS in conjunction with a balanced detection scheme for OH radical detection at 2.8 μm and the construction of OH chemistry research platform which combined a large dimension superconducting magnetic coil with the

  2. Biological cell as a soft magnetoelectric material: Elucidating the physical mechanisms underpinning the detection of magnetic fields by animals

    Science.gov (United States)

    Krichen, S.; Liu, L.; Sharma, P.

    2017-10-01

    Sharks, birds, bats, turtles, and many other animals can detect magnetic fields. Aside from using this remarkable ability to exploit the terrestrial magnetic field map to sense direction, a subset is also able to implement a version of the so-called geophysical positioning system. How do these animals detect magnetic fields? The answer to this rather deceptively simple question has proven to be quite elusive. The currently prevalent theories, while providing interesting insights, fall short of explaining several aspects of magnetoreception. For example, minute magnetic particles have been detected in magnetically sensitive animals. However, how is the detected magnetic field converted into electrical signals given any lack of experimental evidence for relevant electroreceptors? In principle, a magnetoelectric material is capable of converting magnetic signals into electricity (and vice versa). This property, however, is rare and restricted to a rather small set of exotic hard crystalline materials. Indeed, such elements have never been detected in the animals studied so far. In this work we quantitatively outline the conditions under which a biological cell may detect a magnetic field and convert it into electrical signals detectable by biological cells. Specifically, we prove the existence of an overlooked strain-mediated mechanism and show that most biological cells can act as nontrivial magnetoelectric materials provided that the magnetic permeability constant is only slightly more than that of a vacuum. The enhanced magnetic permeability is easily achieved by small amounts of magnetic particles that have been experimentally detected in magnetosensitive animals. Our proposed mechanism appears to explain most of the experimental observations related to the physical basis of magnetoreception.

  3. Magnetization Transfer Magnetic Resonance Imaging Noninvasively Detects Renal Fibrosis in Swine Atherosclerotic Renal Artery Stenosis at 3.0 T.

    Science.gov (United States)

    Jiang, Kai; Ferguson, Christopher M; Woollard, John R; Zhu, Xiangyang; Lerman, Lilach O

    2017-11-01

    Renal fibrosis is a useful biomarker for diagnosis and evaluation of therapeutic interventions of renal diseases but often requires invasive testing. Magnetization transfer magnetic resonance imaging (MT-MRI), which evaluates the presence of macromolecules, offers a noninvasive tool to probe renal fibrosis in murine renal artery stenosis (RAS) at 16.4 T. In this study, we aimed to identify appropriate imaging parameters for collagen detection at 3.0 T MRI and to test the utility of MT-MRI in measuring renal fibrosis in a swine model of atherosclerotic RAS (ARAS). To select the appropriate offset frequency, an MT-MRI study was performed on a phantom containing 0% to 40% collagen I and III with offset frequencies from -1600 to +1600 Hz and other MT parameters empirically set as pulse width at 16 milliseconds and flip angle at 800 degrees. Then selected MT parameters were used in vivo on pigs 12 weeks after sham (n = 8) or RAS (n = 10) surgeries. The ARAS pigs were fed with high-cholesterol diet to induce atherosclerosis. The MT ratio (MTR) was compared with ex vivo renal fibrosis measured using Sirius-red staining. Offset frequencies at 600 and 1000 Hz were selected for collagen detection without direct saturation of free water signal, and subsequently applied in vivo. The ARAS kidneys showed mild cortical and medullary fibrosis by Sirius-red staining. The cortical and medullary MTRs at 600 and 1000 Hz were both increased. Renal fibrosis measured ex vivo showed good linear correlations with MTR at 600 (cortex: Pearson correlation coefficient r = 0.87, P 3.0 T. Therefore, MT-MRI may potentially be clinically applicable and useful for detection and monitoring of renal pathology in subjects with RAS.

  4. New type of fluxgate magnetometer for the heart’s magnetic fields detection

    Directory of Open Access Journals (Sweden)

    Rybalko Ruslan

    2015-09-01

    Full Text Available The application area of fluxgate sensors is limited by their sensitivity. Medical researches create high demand on the magnetometers with the characteristics of high accuracy and sensibility for measuring weak magnetic fields produced by the human body, such as the heart‘s magnetic field. Due to the insufficient sensitivity of fluxgate sensors, superconducting magnetometers (SQUID take the dominant position for the cardiomagnetic measurements. They have to be cooled by liquefied gases and it leads to high service costs. Therefore an idea of creating a high sensitive sensor based on fluxgate principles and known methods of measurement is attractive and up to date. This paper is dedicated to the modified flux-gate sensors based on Racetrack technology with a new approach of signal demodulation. The improved fluxgate sensor system provides detection of the heart‘s magnetic field without additional expenditures for use.

  5. Little bits of diamond: Optically detected magnetic resonance of nitrogen-vacancy centers

    Science.gov (United States)

    Zhang, Haimei; Belvin, Carina; Li, Wanyi; Wang, Jennifer; Wainwright, Julia; Berg, Robbie; Bridger, Joshua

    2018-03-01

    We give instructions for the construction and operation of a simple apparatus for performing optically detected magnetic resonance measurements on diamond samples containing high concentrations of nitrogen-vacancy (NV) centers. Each NV center has a spin degree of freedom that can be manipulated and monitored by a combination of visible and microwave radiation. We observe Zeeman shifts in the presence of small external magnetic fields and describe a simple method to optically measure magnetic field strengths with a spatial resolution of several microns. The activities described are suitable for use in an advanced undergraduate lab course, powerfully connecting core quantum concepts to cutting edge applications. An even simpler setup, appropriate for use in more introductory settings, is also presented.

  6. Thermoelectric detection of spherical tin inclusions in copper by magnetic sensing

    International Nuclear Information System (INIS)

    Carreon, Hector; Nagy, Peter B.; Nayfeh, Adnan H.

    2000-01-01

    Inclusions and other types of imperfections in metals can be nondestructively detected by noncontacting magnetic measurements that sense the thermoelectric currents around such flaws when the specimen is subjected to directional heating and cooling. This article presents experimental data for the magnetic field produced by thermoelectric currents around surface-breaking spherical tin inclusions in copper under external thermal excitation for different lift-off distances between the sensor and the surface of the specimen. The diameter of the inclusions and the lift-off distance varied from 2.4 to 12.7 mm and from 12 to 20 mm, respectively. A fairly modest 0.7 o C/cm temperature gradient in the specimen produced peak magnetic flux densities ranging from 1 to 250 nT. These results were found to be in good agreement with recently published theoretical predictions [P. B. Nagy and A. H. Nayfeh, J. Appl. Phys. 87, 7481 (2000)

  7. A method for real time detecting of non-uniform magnetic field

    Science.gov (United States)

    Marusenkov, Andriy

    2015-04-01

    The principle of measuring magnetic signatures for observing diverse objects is widely used in Near Surface work (unexploded ordnance (UXO); engineering & environmental; archaeology) and security and vehicle detection systems as well. As a rule, the magnitude of the signals to be measured is much lower than that of the quasi-uniform Earth magnetic field. Usually magnetometers for these purposes contain two or more spatially separated sensors to estimate the full tensor gradient of the magnetic field or, more frequently, only partial gradient components. The both types (scalar and vector) of magnetic sensors could be used. The identity of the scale factors and proper alignment of the sensitivity axes of the vector sensors are very important for deep suppression of the ambient field and detection of weak target signals. As a rule, the periodical calibration procedure is used to keep matching sensors' parameters as close as possible. In the present report we propose the technique for detection magnetic anomalies, which is almost insensitive to imperfect matching of the sensors. This method based on the idea that the difference signals between two sensors are considerably different when the instrument is rotated or moved in uniform and non-uniform fields. Due to the misfit of calibration parameters the difference signal observed at the rotation in the uniform field is similar to the total signal - the sum of the signals of both sensors. Zero change of the difference and total signals is expected, if the instrument moves in the uniform field along a straight line. In contrast, the same move in the non-uniform field produces some response of each of the sensors. In case one measures dB/dx and moves along x direction, the sensors signals is shifted in time with the lag proportional to the distance between sensors and the speed of move. It means that the difference signal looks like derivative of the total signal at move in the non-uniform field. So, using quite simple

  8. Detection of magnetic nanoparticles with a large scale AC superconducting susceptometer

    Science.gov (United States)

    Hincapie Ladino, E. A.; Zufelato, N.; Bakuzis, A. F.; Oliveira Carneiro, A. A.; Covas, D. T.; Baffa, O.

    2017-08-01

    Magnetic nanoparticles (MNPs) are being used in several applications in medicine such as hyperthermia, magnetic particle imaging, in vitro and in vivo bioassay, and still there are many other possibilities for use of these particles to come as research progress in this field. One crucial step of its use is the detection of these particles when present in a certain tissue. For in vitro bioassay, the sample can be harvested and placed inside the detector in optimal conditions to favor sensitivity. However, for in vivo human measurements the system must be noninvasive and conform to the anatomic restrictions requiring sensitive detectors and dedicated setups. In this study, we detect nanoparticles with an AC biosusceptometer having an excitation homogeneous magnetic field with 145 μT, provided by a set of rectangular large Rubens coils driven at 10 Hz. The magnetization induced in the sample was detected by a second-order axial gradiometer (20 mm in diameter and 40 mm of baseline) coupled to an RF Superconducting Quantum Interference Device (SQUID) model 330X (BTi). The MNPs used were manganese ferrite-based surface-coated with citric acid ({{M}}{{n}}{{F}}{{{e}}}2{{{O}}}4-{{C}}{{i}}{{t}}{{r}}{{a}}{{t}}{{e}}), dissolved in water at various concentrations. The colloid is stable at physiological conditions. X-ray diffraction confirmed the spinel structure and using Scherrer’s relation revealed a particle size of 17.3 nm. The magnetization curve showed a typical superparamagnetic behavior with a specific saturation magnetization of 51.2 emu g-1. The stock solution of nanoparticles had a concentration of 23.17 mg ml-1, corresponding to 1.7 × 1015 NPs ml-1. Measurements were made in a volume of 30 ml with 20 × 103-100 × 103 dilutions of the stock solution of nanoparticles and performed at distances of 1.1, 1.5 and 2.5 cm from the top of the sample vial to the closest coil of the gradiometer. The limits of detection were 8.1 × 109 NP ml-1, 9.5 × 109 NP ml-1 and 11

  9. A generic method for real time detection of magnetic sensor failure on tokamaks

    International Nuclear Information System (INIS)

    Nouailletas, Rémy; Moreau, Philippe; Bremond, Sylvain

    2012-01-01

    Highlights: ► We propose a generic method to detect and correct in real time faults on magnetic sensor. ► This method is applied to Tore Supra and tested offline with real data. ► Then the method is modified to be applied to ITER ex-vessel sensor configuration. ► The method is tested on the ITER case with simulated data. - Abstract: In tokamaks, magnetic field probe sensors are used to measure the plasma position. If a sensor provides a wrong data, the error may propagate through the control loop and cause undesirable contact between the vessel wall and the plasma. In the case of a tokamak with water cooled walls, these types of event may be very serious. Despite of these unlikely faults, the potential damages call for a real time check of magnetic sensor data before using them for control. In this paper a simple and generic method based on the comparison of each sensor to a weighted sum of its neighbors is proposed. From the analysis of the residue (the result of the comparison), the fault can be detected and compensated. The method is tuned and tested against Tore Supra experimental data. Then, the method is adapted to ITER and assessed on a reference ITER scenario using simulated magnetic sensor data.

  10. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    International Nuclear Information System (INIS)

    Chang-Hwan Kim

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms

  11. Optically Detected Magnetic Resonance and Thermal Activation Spectroscopy Study of Organic Semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang-Hwan [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Organic electronic materials are a new class of emerging materials. Organic light emitting devices (OLEDs) are the most promising candidates for future flat panel display technologies. The photophysical characterization is the basic research step one must follow to understand this new class of materials and devices. The light emission properties are closely related to the transport properties of these materials. The objective of this dissertation is to probe the relation between transport and photophysical properties of organic semiconductors. The transport characteristics were evaluated by using thermally stimulated current and thermally stimulated luminescence techniques. The photoluminescence detected magnetic resonance and photoluminescence quantum yield studies provide valuable photophysical information on this class of materials. OLEDs are already in the market. However, detailed studies on the degradation mechanisms are still lacking. Since both optically detected magnetic resonance and thermal activation spectroscopy probe long-lived defect-related states in organic semiconductors, the combined study generates new insight on the OLED operation and degradation mechanisms.

  12. Rapid fluorescence detection of pathogenic bacteria using magnetic enrichment technique combined with magnetophoretic chromatography.

    Science.gov (United States)

    Che, Yulan; Xu, Yi; Wang, Renjie; Chen, Li

    2017-08-01

    A rapid and sensitive analytical method was developed to detect pathogenic bacteria which combined magnetic enrichment, fluorescence labeling with polyethylene glycol (PEG) magnetophoretic chromatography. As pathogenic bacteria usually exist in complex matrixes at low concentration, an efficient enrichment is essential for diagnosis. In order to capture series types of pathogenic bacteria in samples, amino-modified magnetic nanoparticles (Fe 3 O 4 @SiO 2 -NH 2 ) were prepared for efficient enrichment by the electrostatic interaction with pathogenic bacteria. It was shown that the capture efficiency reached up to 95.4% for Escherichia coli (E. coli). Furthermore, quantitative analysis of the bacteria was achieved by using acridine orange (AO) as a fluorescence probe for the captured E. coli due to its ability of staining series types of bacteria and rapid labeling. In order to remove the free magnetic nanoparticles and redundant fluorescent reagent, the labeled suspension was poured into a PEG separation column and was separated by applying an external magnetic field. The presence of 100 cfu mL -1 E. coli could be detected for semi-quantitative analysis by observing the separation column with the naked eye, and the concentration could be further evaluated by fluorescence detection. All the above processes were finished within 80 min. It was demonstrated that a good linear relationship existed between the fluorescence intensity and the concentration of E. coli ranging from 10 2 to 10 6  cfu mL -1 , with a detection limit of 100 cfu mL -1 when E. coli acted as target bacteria. The recovery rate of E. coli was 93.6∼102.0% in tap water and cooked meat samples, and the RSD was lower than 7% (n = 6); the result coincided with the conventional plate count method. Graphical abstract ᅟ.

  13. A tosyl-activated magnetic bead cellulose as solid support for sensitive protein detection

    Czech Academy of Sciences Publication Activity Database

    Yan, J.; Horák, Daniel; Lenfeld, Jiří; Hammond, M.; Kamali-Moghaddam, M.

    2013-01-01

    Roč. 167, č. 3 (2013), s. 235-240 ISSN 0168-1656 R&D Projects: GA ČR GAP503/10/0664; GA MŠk 7E12054 EU Projects: European Commission(XE) 259796 - DIATOOLS Institutional support: RVO:61389013 Keywords : bead cellulose * magnetic * protein detection Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.884, year: 2013

  14. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection.

    Science.gov (United States)

    Dyvorne, Hadrien A; Jajamovich, Guido H; Bane, Octavia; Fiel, M Isabel; Chou, Hsin; Schiano, Thomas D; Dieterich, Douglas; Babb, James S; Friedman, Scott L; Taouli, Bachir

    2016-05-01

    Establishing accurate non-invasive methods of liver fibrosis quantification remains a major unmet need. Here, we assessed the diagnostic value of a multiparametric magnetic resonance imaging (MRI) protocol including diffusion-weighted imaging (DWI), dynamic contrast-enhanced (DCE)-MRI and magnetic resonance elastography (MRE) in comparison with transient elastography (TE) and blood tests [including ELF (Enhanced Liver Fibrosis) and APRI] for liver fibrosis detection. In this single centre cross-sectional study, we prospectively enrolled 60 subjects with liver disease who underwent multiparametric MRI (DWI, DCE-MRI and MRE), TE and blood tests. Correlation was assessed between non-invasive modalities and histopathologic findings including stage, grade and collagen content, while accounting for covariates such as age, sex, BMI, HCV status and MRI-derived fat and iron content. ROC curve analysis evaluated the performance of each technique for detection of moderate-to-advanced liver fibrosis (F2-F4) and advanced fibrosis (F3-F4). Magnetic resonance elastography provided the strongest correlation with fibrosis stage (r = 0.66, P fibrosis (F2-F4), AUCs were 0.78, 0.82, 0.72, 0.79, 0.71 for MRE, TE, DCE-MRI, DWI and APRI, respectively. For detection of advanced fibrosis (F3-F4), AUCs were 0.94, 0.77, 0.79, 0.79 and 0.70, respectively. Magnetic resonance elastography provides the highest correlation with histopathologic markers and yields high diagnostic performance for detection of advanced liver fibrosis and cirrhosis, compared to DWI, DCE-MRI, TE and serum markers. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  15. Chemiluminescence enzyme immunoassay based on magnetic nanoparticles for detection of hepatocellular carcinoma marker glypican-3

    Directory of Open Access Journals (Sweden)

    Qian-Yun Zhang

    2011-08-01

    Full Text Available Glypican-3 (GPC3 is reported as a great promising tumor marker for hepatocellular carcinoma (HCC diagnosis. Highly sensitive and accurate analysis of serum GPC3 (sGPC3, in combination with or instead of traditional HCC marker alpha-fetoprotein (AFP, is essential for early diagnosis of HCC. Biomaterial-functionalized magnetic particles have been utilized as solid supports with good biological compatibility for sensitive immunoassay. Here, the magnetic nanoparticles (MnPs and magnetic microparticles (MmPs with carboxyl groups were further modified with streptavidin, and applied for the development of chemiluminescence enzyme immunoassay (CLEIA. After comparing between MnPs- and MmPs-based CLEIA, MnPs-based CLEIA was proved to be a better method with less assay time, greater sensitivity, better linearity and longer chemiluminescence platform. MnPs-based CLEIA was applied for detection of sGPC3 in normal liver, hepatocirrhosis, secondary liver cancer and HCC serum samples. The results indicated that sGPC3 was effective in diagnosis of HCC with high performance. Keywords: Magnetic nanoparticle, Magnetic microparticle, Chemiluminescence enzyme immunoassay, Glypican-3, Hepatocellular carcinoma

  16. Application of magnetic resonance imaging to non-destructive void detection in watermelon

    Science.gov (United States)

    Saito, K.; Miki, T.; Hayashi, S.; Kajikawa, H.; Shimada, M.; Kawate, Y.; Nishizawa, T.; Ikegaya, D.; Kimura, N.; Takabatake, K.; Sugiura, N.; Suzuki, M.

    A novel application of magnetic resonance imaging (MRI) is described. The possibility of utilizing MRI for non-destructive quality evaluation of watermelons was studied. In this study, we applied MRI to the detection of internal voids in watermelons. In order to increase the measurement rate, we employed a one-dimensional projection profile method instead of observing a two-dimensional cross-sectional image. The void detection was carried out with this technique over 30 samples and 28 samples were correctly evaluated. The measurement rate was 900 ms per sample, which is an acceptable speed for a sorting machine in the agricultural field.

  17. Rapid Detection of Ricin in Serum Based on Cu-Chelated Magnetic Beads Using Mass Spectrometry

    Science.gov (United States)

    Zhao, Yong-Qiang; Song, Jian; Wang, Hong-Li; Xu, Bin; Liu, Feng; He, Kun; Wang, Na

    2016-04-01

    The protein toxin ricin obtained from castor bean plant (Ricinus communis) seeds is a potent biological warfare agent due to its ease of availability and acute toxicity. In this study, we demonstrated a rapid and simple method to detect ricin in serum in vitro. The ricin was mixed with serum and digested by trypsin, then all the peptides were efficiently extracted using Cu-chelated magnetic beads and were detected with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The specific ricin peptides were identified by Nanoscale Ultra Performance liquid chromatography coupled to tandem mass spectrometry according to their sequences. The assay required 2.5 hours, and a characteristic peptide could be detected down to 4 ng/μl and used as a biomarker to detect ricin in serum. The high sensitivity and simplicity of the procedure makes it valuable in clinical practice.

  18. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-03-09

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection. The GMRsensor is fabricated in a horseshoe shape in order to detect the majority of MPs that are trapped around the conducting structure. The GMR sensing elements are connected in a Wheatstone bridge circuit topology for optimum noise suppression. Full fabrication details of the micro-chip, characterization of the GMRsensors, and experimental results with MPs are presented in this paper. Experimental results showed that the micro-chip can detect MPs from low concentration samples after they were guided toward the GMRsensors by applying current to the conducting ring structure.

  19. A new method for detecting cerebral hemorrhage in rabbits by magnetic inductive phase shift.

    Science.gov (United States)

    Jin, Gui; Sun, Jian; Qin, Mingxin; Tang, Qinghua; Xu, Lin; Ning, Xu; Xu, Jia; Pu, Xianjie; Chen, Mingsheng

    2014-02-15

    Cerebral hemorrhage, which is an important clinical problem, is often monitored and studied using expensive devices, such as magnetic resonance imaging (MRI) and positron emission tomography (PET) that are unavailable in economically underdeveloped regions. Magnetic induction tomography (MIT) is a new type of non-contact, non-invasive, and low-cost detection technology, and exhibits prospects for wide application, especially for the detection of brain diseases. However, the previous studies on MIT have focused on laboratory models and rarely on in vivo applications because the induced signals produced by biological tissues are notably weak. Based on the symmetry between the two brain hemispheres and the fact that a local brain hemorrhage will not affect the contra-lateral hemisphere, a symmetric cancellation-type sensor detection system, which is characterized by one excitation coil and two receiving coils, was designed to improve the detection sensitivity of MIT. This method was subsequently used to detect the occurrence of cerebral hematomas in rabbits. The average phase drift induced by a 3-ml injection of autologous blood was 1.885°, which is a fivefold improvement compared with the traditional single excitation coil and single receiving coil method. The results indicate that this system has high sensitivity and anti-interference ability and high practical value. © 2013 Published by Elsevier B.V.

  20. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology.

    Science.gov (United States)

    Fan, Kai; Zhang, Min

    2018-02-16

    Nuclear magnetic resonance (NMR) is a rapid, accurate and non-invasive technology and widely used to detect the quality of food, particularly to fruits and vegetables, meat and aquatic products. This review is a survey of recent developments in experimental results for the quality of food on various NMR technologies in processing and storage over the past decade. Following a discussion of the quality discrimination and classification of food, analysis of food compositions and detection of physical, chemical, structural and microbiological properties of food are outlined. Owing to high cost, low detection limit and sensitivity, the professional knowledge involved and the safety issues related to the maintenance of the magnetic field, so far the practical applications are limited to detect small range of food. In order to promote applications for a broader range of foods further research and development efforts are needed to overcome the limitations of NMR in the detection process. The needs and opportunities for future research and developments are outlined.

  1. Automatic vs. Human Detection of Bipolar Magnetic Regions: Using the Best of Both Worlds

    Science.gov (United States)

    Munoz-Jaramillo, A.; DeLuca, M. D.; Windmueller, J. C.; Longcope, D. W.

    2014-12-01

    The solar cycle can be understood as a process that alternates the large-scale magnetic field of the Sun between poloidal and toroidal configurations. Although the process that transitions the solar cycle between toroidal and poloidal phases is still not fully understood, theoretical studies, and observational evidence, suggest that this process is driven by the emergence and decay of bipolar magnetic regions (BMRs) at the photosphere. Furthermore, the emergence of BMRs at the photosphere is the main driver behind solar variability and solar activity in general; making the study of their properties doubly important for heliospheric physics. However, in spite of their critical role, there is still no unified catalog of BMRs spanning multiple instruments and covering the entire period of systematic measurement of the solar magnetic field (i.e. 1975 to present).One of the interesting aspects of the detection of BMRs is that, due to the time and spatial scales of interest, it is tractable for both human observers and automatic detection algorithms. This makes it ideal for comparative studies of the advantages and failing of both approaches. In this presentation we will compare three different BMR catalogs, reduced from magnetograms taken by SOHO/MDI, using human, automatic, and hybrid methods of detection. The focus will be the comparative performance between the three methods, their merits, and disadvantages, and the lessons that can be applied to other imaging data sets.

  2. Microfluidic biosensing device for controlled trapping and detection of magnetic microparticles

    KAUST Repository

    Giouroudi, Ioanna

    2013-05-01

    A magnetic microfluidic device is proposed to transport and trap magnetic microparticles (MPs) to a sensing area. Once the MPs are concentrated in the vicinity of the sensing area, a spin valve type giant magnetoresistance (GMR) sensor is used to detect their presence. The device is used for the detection of biological targets once they are labeled with functionalized MPs. Manipulation of the MPs is achieved by employing a microstructure which consists of planar ringshaped conducting microloops. These microloops are designed to produce high magnetic field gradients which are directly proportional to the force applied to manipulate the MPs. Upon sequential application of current, starting from the outermost loop, MPs are directed to move from the outermost to the innermost loop. The speed with which the MPs move towards the sensing area is controlled by the speed with which current is switched between the loops. On top of the microstructure, a microfluidic channel is fabricated using a standard photolithography technique and a dry film resist layer (Ordyl SY355). Experimental results showed that MPs of different diameters were successfully trapped at the sensing area and detected by the GMR sensor located directly under the innermost square loop. © 2013 IEEE.

  3. Pulsed magnetic flux leakage method for hairline crack detection and characterization

    Science.gov (United States)

    Okolo, Chukwunonso K.; Meydan, Turgut

    2018-04-01

    The Magnetic Flux leakage (MFL) method is a well-established branch of electromagnetic Non-Destructive Testing (NDT), extensively used for evaluating defects both on the surface and far-surface of pipeline structures. However the conventional techniques are not capable of estimating their approximate size, location and orientation, hence an additional transducer is required to provide the extra information needed. This research is aimed at solving the inevitable problem of granular bond separation which occurs during manufacturing, leaving pipeline structures with miniature cracks. It reports on a quantitative approach based on the Pulsed Magnetic Flux Leakage (PMFL) method, for the detection and characterization of the signals produced by tangentially oriented rectangular surface and far-surface hairline cracks. This was achieved through visualization and 3D imaging of the leakage field. The investigation compared finite element numerical simulation with experimental data. Experiments were carried out using a 10mm thick low carbon steel plate containing artificial hairline cracks with various depth sizes, and different features were extracted from the transient signal. The influence of sensor lift-off and pulse width variation on the magnetic field distribution which affects the detection capability of various hairline cracks located at different depths in the specimen is explored. The findings show that the proposed technique can be used to classify both surface and far-surface hairline cracks and can form the basis for an enhanced hairline crack detection and characterization for pipeline health monitoring.

  4. Functional Polymers in Protein Detection Platforms: Optical, Electrochemical, Electrical, Mass-Sensitive, and Magnetic Biosensors

    Directory of Open Access Journals (Sweden)

    Jong-in Hahm

    2011-03-01

    Full Text Available The rapidly growing field of proteomics and related applied sectors in the life sciences demands convenient methodologies for detecting and measuring the levels of specific proteins as well as for screening and analyzing for interacting protein systems. Materials utilized for such protein detection and measurement platforms should meet particular specifications which include ease-of-mass manufacture, biological stability, chemical functionality, cost effectiveness, and portability. Polymers can satisfy many of these requirements and are often considered as choice materials in various biological detection platforms. Therefore, tremendous research efforts have been made for developing new polymers both in macroscopic and nanoscopic length scales as well as applying existing polymeric materials for protein measurements. In this review article, both conventional and alternative techniques for protein detection are overviewed while focusing on the use of various polymeric materials in different protein sensing technologies. Among many available detection mechanisms, most common approaches such as optical, electrochemical, electrical, mass-sensitive, and magnetic methods are comprehensively discussed in this article. Desired properties of polymers exploited for each type of protein detection approach are summarized. Current challenges associated with the application of polymeric materials are examined in each protein detection category. Difficulties facing both quantitative and qualitative protein measurements are also identified. The latest efforts on the development and evaluation of nanoscale polymeric systems for improved protein detection are also discussed from the standpoint of quantitative and qualitative measurements. Finally, future research directions towards further advancements in the field are considered.

  5. A half-ring GMR sensor for detection of magnetic beads immobilized on a circular micro-trap

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2011-11-01

    Utilizing magnetic principles in biological immunoassays is an attractive option given its ability to remotely and non-invasively manipulate and detect cells tagged with micro/nano size superparamagnetic type beads and due to the fact that even the most complex biological immunoassays will have very little magnetic effect. The presence of magnetic beads can be detected by a magnetic sensor which quantifies the amount of target cells present in the immunoassay. In order to increase the detection rate a circular conducting micro-trap is employed to attract, trap and transport the magnetic beads to the sensing area. In this research we propose a half-ring spin valve type giant magnetoresistance (GMR) sensor for the measurement of stray fields produced by 2 μm magnetic beads which are around the circular micro-trap. A couple of half-ring GMR sensors can be used to cover the entire circular border width, in order to detect the majority of the immobilized magnetic beads. Analytical and numerical analysis leading towards the fabrication of the half-ring GMR sensor are presented. DC characterization of the fabricated sensor showed a magnetoresistance of 5.9 %. Experimental results showed that the half-ring GMR sensor detected the presence of 2 μm magnetic beads. Hence, half-ring GMR sensors integrated with a circular micro-trap have great potential to be used as an effective disease diagnostic device. © 2011 IEEE.

  6. A half-ring GMR sensor for detection of magnetic beads immobilized on a circular micro-trap

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Liang, Cai; Useinov, Arthur; Kosel, Jü rgen; Giouroudi, Ioanna

    2011-01-01

    Utilizing magnetic principles in biological immunoassays is an attractive option given its ability to remotely and non-invasively manipulate and detect cells tagged with micro/nano size superparamagnetic type beads and due to the fact that even the most complex biological immunoassays will have very little magnetic effect. The presence of magnetic beads can be detected by a magnetic sensor which quantifies the amount of target cells present in the immunoassay. In order to increase the detection rate a circular conducting micro-trap is employed to attract, trap and transport the magnetic beads to the sensing area. In this research we propose a half-ring spin valve type giant magnetoresistance (GMR) sensor for the measurement of stray fields produced by 2 μm magnetic beads which are around the circular micro-trap. A couple of half-ring GMR sensors can be used to cover the entire circular border width, in order to detect the majority of the immobilized magnetic beads. Analytical and numerical analysis leading towards the fabrication of the half-ring GMR sensor are presented. DC characterization of the fabricated sensor showed a magnetoresistance of 5.9 %. Experimental results showed that the half-ring GMR sensor detected the presence of 2 μm magnetic beads. Hence, half-ring GMR sensors integrated with a circular micro-trap have great potential to be used as an effective disease diagnostic device. © 2011 IEEE.

  7. Detection of cerebral hemorrhage in rabbits by time-difference magnetic inductive phase shift spectroscopy.

    Directory of Open Access Journals (Sweden)

    Wencai Pan

    Full Text Available Cerebral hemorrhage, a difficult issue in clinical practice, is often detected and studied with computed tomography (CT, magnetic resonance imaging (MRI, and positron emission tomography (PET. However, these expensive devices are not readily available in economically underdeveloped regions, and hence are unable to provide bedside and emergency on-site monitoring. The magnetic inductive phase shift (MIPS is an emerging technology that may become a new tool to detect cerebral hemorrhage and to serve as an inexpensive partial substitute to medical imaging. In order to study a wider band of cerebral hemorrhage MIPS and to provide more useful information for measuring cerebral hemorrhage, we established a cerebral hemorrhage magnetic induction phase shift spectroscopy (MIPSS detection system. Thirteen rabbits with five cerebral hemorrhage states were studied using a single coil-coil within a 1 MHz-200 MHz frequency range in linear sweep. A feature band (FB with the highest detection sensitivity and the greatest stability was selected for further analysis and processing. In addition, a maximum conductivity cerebrospinal fluid (CSF MRI was performed to verify and interpret the MIPSS result. The average phase shift change induced by a 3 ml injection of autologous blood under FB was -7.7503° ± 1.4204°, which was considerably larger than our previous work. Data analysis with a non-parametric statistical Friedman M test showed that in the FB, MIPSS could distinguish the five states of cerebral hemorrhage in rabbits, with a statistical significance of p<0.05. A B-F distribution profile was designed according to the MIPSS under FB that can provide instantaneous diagnostic information about the cerebral hemorrhage severity from a single set of measurements. The results illustrate that the MIPSS detection method is able to provide a new possibility for real-time monitoring and diagnosis of the severity of cerebral hemorrhage.

  8. Detection of Cerebral Hemorrhage in Rabbits by Time-Difference Magnetic Inductive Phase Shift Spectroscopy

    Science.gov (United States)

    Pan, Wencai; Yan, Qingguang; Qin, Mingxin; Jin, Gui; Sun, Jian; Ning, Xu; Zhuang, Wei; Peng, Bin; Li, Gen

    2015-01-01

    Cerebral hemorrhage, a difficult issue in clinical practice, is often detected and studied with computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). However, these expensive devices are not readily available in economically underdeveloped regions, and hence are unable to provide bedside and emergency on-site monitoring. The magnetic inductive phase shift (MIPS) is an emerging technology that may become a new tool to detect cerebral hemorrhage and to serve as an inexpensive partial substitute to medical imaging. In order to study a wider band of cerebral hemorrhage MIPS and to provide more useful information for measuring cerebral hemorrhage, we established a cerebral hemorrhage magnetic induction phase shift spectroscopy (MIPSS) detection system. Thirteen rabbits with five cerebral hemorrhage states were studied using a single coil-coil within a 1 MHz-200 MHz frequency range in linear sweep. A feature band (FB) with the highest detection sensitivity and the greatest stability was selected for further analysis and processing. In addition, a maximum conductivity cerebrospinal fluid (CSF) MRI was performed to verify and interpret the MIPSS result. The average phase shift change induced by a 3 ml injection of autologous blood under FB was -7.7503° ± 1.4204°, which was considerably larger than our previous work. Data analysis with a non-parametric statistical Friedman M test showed that in the FB, MIPSS could distinguish the five states of cerebral hemorrhage in rabbits, with a statistical significance of phemorrhage severity from a single set of measurements. The results illustrate that the MIPSS detection method is able to provide a new possibility for real-time monitoring and diagnosis of the severity of cerebral hemorrhage. PMID:26001112

  9. Potential Applications of Microtesla Magnetic Resonance Imaging Detected Using a Superconducting Quantum Interference Device

    International Nuclear Information System (INIS)

    Myers, Whittier R.

    2006-01-01

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 (micro)T. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz -1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm 3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm 3 images of bell peppers and 3 x 3 x 26 mm 3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T 1 ) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The measured T 1 of ex vivo normal and cancerous

  10. Potential Applications of Microtesla Magnetic Resonance ImagingDetected Using a Superconducting Quantum Interference Device

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Whittier Ryan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 μT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz-1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm3 images of bell peppers and 3 x 3 x 26 mm3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T1) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The

  11. WE-H-207A-09: Theoretical Limits to Molecular Biomarker Detection Using Magnetic Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, J [Dartmouth-Hitchcock Medical Center, Lebanon, NH (United States); Geisel School of Medicine, Dartmouth College, Hanover, NH (United States)

    2016-06-15

    Purpose: Estimate the limits of molecular biomarker detection using magnetic nanoparticle methods like in vivo ELISA. Methods: Magnetic nanoparticles in an alternating magnetic field produce a magnetization that can be detected at exceedingly low levels because the signal at the harmonic frequencies is uniquely produced by the nanoparticles. Because the magnetization can also be used to characterize the nanoparticle rotational freedom, the bound state can be found. If the nanoparticles are coated with molecules that bind the desired biomarker, the rotational freedom reflects the biomarker concentration. The irreducible noise limit is the thermal noise or Johnson noise of the tissue and the contrast that can be measured must be larger than that limit. The contrast produced is a function of the applied field and depends strongly on nanoparticle volume. We have estimated the contrast using a Langevin function of a single composite variable to approximate the full stochastic Langevin equation for nanoparticle dynamics. Results: The thermal noise for a bandwidth reasonable for spectroscopy suggests mid zeptomolar (10–21) to low attomolar (10–18) concentrations can be measured in a volume that is 10cm in scale. The suggested sensitivity is far below the physiologically concentrations of almost all critical biomarkers including cytokines (picomolar), hormones (nanomolar) and heat shock proteins. Conclusion: The sensitivity of in vivo ELISA concentration measurements should be sufficient to measure physiological concentrations of critical biomarkers like cytokines in vivo. Further the sensitivity should be sufficient to measure concentrations of other biomarkers that are six to eight orders of magnitude lower in concentration than immune signaling molecules like cytokines. NIH - 1U54CA151662-01 Department of Radiology.

  12. Detection of alpha-fetoprotein in magnetic immunoassay of thin channels using biofunctional nanoparticles

    Science.gov (United States)

    Tsai, H. Y.; Gao, B. Z.; Yang, S. F.; Li, C. S.; Fuh, C. Bor

    2014-01-01

    This paper presents the use of fluorescent biofunctional nanoparticles (10-30 nm) to detect alpha-fetoprotein (AFP) in a thin-channel magnetic immunoassay. We used an AFP model biomarker and s-shaped deposition zones to test the proposed detection method. The results show that the detection using fluorescent biofunctional nanoparticle has a higher throughput than that of functional microparticle used in previous experiments on affinity reactions. The proposed method takes about 3 min (versus 150 min of previous method) to detect 100 samples. The proposed method is useful for screening biomarkers in clinical applications, and can reduce the run time for sandwich immunoassays to less than 20 min. The detection limits (0.06 pg/ml) and linear ranges (0.068 pg/ml-0.68 ng/ml) of AFP using fluorescent biofunctional nanoparticles are the same as those of using functional microparticles within experimental errors. This detection limit is substantially lower and the linear range is considerably wider than those of enzyme-linked immunosorbent assay (ELISA) and other methods in sandwich immunoassay methods. The differences between this method and an ELISA in AFP measurements of serum samples were less than 12 %. The proposed method provides simple, fast, and sensitive detection with a high throughput for biomarkers.

  13. A Compact Magnetic Field-Based Obstacle Detection and Avoidance System for Miniature Spherical Robots

    Directory of Open Access Journals (Sweden)

    Fang Wu

    2017-05-01

    Full Text Available Due to their efficient locomotion and natural tolerance to hazardous environments, spherical robots have wide applications in security surveillance, exploration of unknown territory and emergency response. Numerous studies have been conducted on the driving mechanism, motion planning and trajectory tracking methods of spherical robots, yet very limited studies have been conducted regarding the obstacle avoidance capability of spherical robots. Most of the existing spherical robots rely on the “hit and run” technique, which has been argued to be a reasonable strategy because spherical robots have an inherent ability to recover from collisions. Without protruding components, they will not become stuck and can simply roll back after running into bstacles. However, for small scale spherical robots that contain sensitive surveillance sensors and cannot afford to utilize heavy protective shells, the absence of obstacle avoidance solutions would leave the robot at the mercy of potentially dangerous obstacles. In this paper, a compact magnetic field-based obstacle detection and avoidance system has been developed for miniature spherical robots. It utilizes a passive magnetic field so that the system is both compact and power efficient. The proposed system can detect not only the presence, but also the approaching direction of a ferromagnetic obstacle, therefore, an intelligent avoidance behavior can be generated by adapting the trajectory tracking method with the detection information. Design optimization is conducted to enhance the obstacle detection performance and detailed avoidance strategies are devised. Experimental results are also presented for validation purposes.

  14. Semi-Quantitative Method for Streptococci Magnetic Detection in Raw Milk

    Directory of Open Access Journals (Sweden)

    Carla Duarte

    2016-04-01

    Full Text Available Bovine mastitis is the most costly disease for dairy farmers and the most frequent reason for the use of antibiotics in dairy cattle; thus, control measures to detect and prevent mastitis are crucial for dairy farm sustainability. The aim of this study was to develop and validate a sensitive method to magnetically detect Streptococcus agalactiae (a Group B streptococci and Streptococcus uberis in raw milk samples. Mastitic milk samples were collected aseptically from 44 cows with subclinical mastitis, from 11 Portuguese dairy farms. Forty-six quarter milk samples were selected based on bacterial identification by conventional microbiology. All samples were submitted to PCR analysis. In parallel, these milk samples were mixed with a solution combining specific antibodies and magnetic nanoparticles, to be analyzed using a lab-on-a-chip magnetoresistive cytometer, with microfluidic sample handling. This paper describes a point of care methodology used for detection of bacteria, including analysis of false positive/negative results. This immunological recognition was able to detect bacterial presence in samples spiked above 100 cfu/mL, independently of antibody and targeted bacteria used in this work. Using PCR as a reference, this method correctly identified 73% of positive samples for streptococci species with an anti-S. agalactiae antibody, and 41% of positive samples for an anti-GB streptococci antibody.

  15. Mechanical design parameters for detection of nuclear signals by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Moore, G.J.; Hanlon, J.A.; Lamartine, B.; Hawley, M.; Solem, J.C.; Signer, S.; Jarmer, J.J.; Penttila, S.; Sillerud, L.O.; Pryputniewicz, R.J.

    1993-01-01

    Recent theoretical work has shown that mechanical detection of magnetic resonance from a single nuclear spin is in principle possible. This theory has recently been experimentally validated by the mechanical detection of electron spin resonance signals using microscale cantilevers. Currently we are extending this technology in an attempt to detect nuclear signals which are extending this technology in an attempt to detect nuclear signals which are three orders of magnitude lower in intensity than electron signals. In order to achieve the needed thousand-fold improvement in sensitivity we have undertaken the development of optimized mechanical cantilevers and highly polarized samples. Finite element modeling is used as a tool to simulate cantilever beam dynamics and to optimize the mechanical properties including Q, resonant frequency, amplitude of vibration and spring constant. Simulations are compared to experiments using heterodyne hologram interferometry. Nanofabrication of optimized cantilevers via ion milling will be directed by the outcome of these simulations and experiments. Highly polarized samples are developed using a three-fold approach: (1) high magnetic field strength (2.5T), (2) low temperature (1K), and (3) use of samples polarized by dynamic nuclear polarization. Our recent experiments have demonstrated nuclear polarizations in excess of 50% in molecules of toulene

  16. Detection of the pedogenic magnetic fraction in volcanic soils developed on basalts using frequency-dependent magnetic susceptibility: comparison of two instruments

    Science.gov (United States)

    Grison, Hana; Petrovsky, Eduard; Kapicka, Ales; Hanzlikova, Hana

    2017-05-01

    In studies of the magnetic properties of soils, the frequency-dependent magnetic susceptibility percentage (χFD%) is often used for the identification of ultrafine magnetically superparamagnetic/stable single-domain (SP/SSD) particles. This parameter is commonly used as an indicator for increased pedogenesis. In strongly magnetic soils, the SP/SSD magnetic signal (mostly bio-pedogenic) may be masked by lithological signals; making pedogenesis hard to detect. In this study, we compare results for the detection of ultrafine SP/SSD magnetic particles in andic soils using two instruments: a Bartington MS2B dual-frequency meter and an AGICO Kappabridge MFK1-FA. In particular, the study focuses on the effect of pedogenesis by investigating the relationship between specific soil magnetic and chemical properties (soil organic carbon and pHH2O). The values of χFD% obtained with the MS2B varied from 2.4 to 5.9 per cent, and mass-specific magnetic susceptibility (χLF) from 283 to 1688 × 10-8 m3 kg-1, while values of χFD% and χLF obtained with the MFK1-FA varied from 2.7 to 8.2 per cent and from 299 to 1859 × 10-8 m3 kg-1, respectively. Our results suggest that the detection of the SP/SSD magnetic fraction can be accomplished by comparing relative trends of χFD% along the soil profile. Moreover, the discrimination between bio-pedogenic and lithogenic magnetic contributions in the SP/SSD fraction is possible by comparing the χFD% and χLF data determined in the fine earth (<2 mm) and the coarse fraction (4-10 mm) samples down the soil profile.

  17. Magnetic Carpet Probe for Large Area Instant Crack/Corrosion Detection and Health Monitoring

    International Nuclear Information System (INIS)

    Sun Yushi; Ouyang Tianhe; Yang Xinle; Zhu Haiou

    2007-01-01

    Recently a new NDE tool, Magnet Carpet Probe (MCP), has been developed by Innovative Materials Testing Technologies, Inc. supported by FAA to meet the demands of large area crack/corrosion detection and health monitoring. MCP is a two-dimensional coil array built on a piece of very thin flexible printed circuit board. A two-dimensional electromagnetic scan is going on within the MCP placed on top of a metallic surface under inspection. Therefore, one can finish the inspection, without moving anything, and see the crack/corrosion identification image on the instrument screen in a few second. Recent test results show that it can detect 0.030 x 0.016'' EDM notches on a Titanium standard; 0.024'' ∼ 0.036: real cracks on titanium standards, as well as penetrate through a 0.040'' aluminum layer for corrosion detection

  18. A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection

    KAUST Repository

    Gooneratne, Chinthaka P.

    2011-03-28

    In this paper a novel spin valvegiant magnetoresistance(GMR) ring-sensor integrated with a microstructure is proposed for concentrating, trapping, and detecting superparamagnetic beads (SPBs). Taking advantage of the fact that SPBs can be manipulated by an external magnetic field, a unique arrangement of conducting microrings is utilized to manipulate the SPBs toward the GMR sensing area in order to increase the reliability of detection. The microrings are arranged and activated in such a manner so as to enable the detection of minute concentrations of SPBs in a sample. Precise manipulation is achieved by applying current sequentially to the microrings. The fabricated ring-shaped GMR element is located underneath the innermost ring and has a magnetoresistance of approximately 5.9%. By the performed experiments it was shown that SPBs could be successfully manipulated toward the GMR sensing zone.

  19. A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection

    KAUST Repository

    Gooneratne, Chinthaka P.; Giouroudi, Ioanna; Liang, Cai; Kosel, Jü rgen

    2011-01-01

    In this paper a novel spin valvegiant magnetoresistance(GMR) ring-sensor integrated with a microstructure is proposed for concentrating, trapping, and detecting superparamagnetic beads (SPBs). Taking advantage of the fact that SPBs can be manipulated by an external magnetic field, a unique arrangement of conducting microrings is utilized to manipulate the SPBs toward the GMR sensing area in order to increase the reliability of detection. The microrings are arranged and activated in such a manner so as to enable the detection of minute concentrations of SPBs in a sample. Precise manipulation is achieved by applying current sequentially to the microrings. The fabricated ring-shaped GMR element is located underneath the innermost ring and has a magnetoresistance of approximately 5.9%. By the performed experiments it was shown that SPBs could be successfully manipulated toward the GMR sensing zone.

  20. Detection of Primordial Magnetic Fields in TeV gamma-ray data

    Science.gov (United States)

    Wingler, A.

    The analysis of the time-variable flux of γ-ray photons from extragalactic sources is currently the only proposed way to directly determine the magnetic field strengths in intergalactic space - far away from galaxies and clusters (in the cosmological "voids") - in the range below about 10,10 Gauss (Plaga 1995). Remnant magnetic fields with field strengths much below this, which may well have formed in early cosmological times, could exist in these voids. Due to their interaction with infrared photons TeV gamma-rays induce pair production in intergalactic space. The electrons and positrons are deflected by ambient magnetic fields and produce γ-rays via inverse Compton scattering that are delayed with respect to the original photons in an energy-dependent, characteristic manner. A standard method to identify these delayed events in a data sample of a source with a variable VHE γ-ray flux (as available from several Cherenkov telescope experiments for the high-emission phase of the AGN Mrk 501 in 1997) is described. Monte-Carlo simulations of existing data sets (taking into backgrounds and instrumental limitations) are used to explore how sensitive data sets similar to the existing ones are to primordial magnetic fields. We find that about 22000 (15000) events from a source with characteristics similar to Mrk 501 are needed to detect a primordial B field of 3 (10) atto Gauss (10,18 G) with a 3 significance.

  1. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Science.gov (United States)

    Corte-León, H.; Krzysteczko, P.; Marchi, F.; Motte, J.-F.; Manzin, A.; Schumacher, H. W.; Antonov, V.; Kazakova, O.

    2016-05-01

    Hybrid ferromagnetic(Py)/non-magnetic metal(Au) junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM) with a magnetic bead (MB) attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ˜1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  2. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy

    Directory of Open Access Journals (Sweden)

    H. Corte-León

    2016-05-01

    Full Text Available Hybrid ferromagnetic(Py/non-magnetic metal(Au junctions with a width of 400 nm are studied by magnetotransport measurements, magnetic scanning gate microscopy (SGM with a magnetic bead (MB attached to the probe, and micromagnetic simulations. In the transverse geometry, the devices demonstrate a characteristic magnetoresistive behavior that depends on the direction of the in plane magnetic field, with minimum/maximum variation when the field is applied parallel/perpendicular to the Py wire. The SGM is performed with a NdFeB bead of 1.6 μm diameter attached to the scanning probe. Our results demonstrate that the hybrid junction can be used to detect this type of MB. A rough approximation of the sensing volume of the junction has the shape of elliptical cylinder with the volume of ∼1.51 μm3. Micromagnetic simulations coupled to a magnetotransport model including anisotropic magnetoresistance and planar Hall effects are in good agreement with the experimental findings, enabling the interpretation of the SGM images.

  3. Comparison of optomagnetic and AC susceptibility readouts in a magnetic nanoparticle agglutination assay for detection of C-reactive protein

    DEFF Research Database (Denmark)

    Fock, Jeppe; Parmvi, Mattias; Strömberg, Mattias

    2017-01-01

    There is an increasing need to develop biosensor methods that are highly sensitive and that can be combined with low-cost consumables. The use of magnetic nanoparticles (MNPs) is attractive because their detection is compatible with low-cost disposables and because application of a magnetic field...

  4. Comparison of sensitivity of magnetic resonance imaging and evoked potentials in the detection of brainstem involvement in multiple sclerosis

    International Nuclear Information System (INIS)

    Comi, G.; Martinelli, V.; Medaglini, S.; Locatelli, T.; Magnani, G.; Poggi, A.; Triulzi, F.

    1988-01-01

    A comparison was made of the sensitivity of magnetic resonance imaging and the combined use of Brainstem Auditory Evoked Potential and Median Somatosensory Evoked Potential in the detection of brainstem dysfunction in 54 multiple sclerosis patients. 10 refs.; 2 tabs

  5. Seven-Tesla Magnetization Transfer Imaging to Detect Multiple Sclerosis White Matter Lesions.

    Science.gov (United States)

    Chou, I-Jun; Lim, Su-Yin; Tanasescu, Radu; Al-Radaideh, Ali; Mougin, Olivier E; Tench, Christopher R; Whitehouse, William P; Gowland, Penny A; Constantinescu, Cris S

    2018-03-01

    Fluid-attenuated inversion recovery (FLAIR) imaging at 3 Tesla (T) field strength is the most sensitive modality for detecting white matter lesions in multiple sclerosis. While 7T FLAIR is effective in detecting cortical lesions, it has not been fully optimized for visualization of white matter lesions and thus has not been used for delineating lesions in quantitative magnetic resonance imaging (MRI) studies of the normal appearing white matter in multiple sclerosis. Therefore, we aimed to evaluate the sensitivity of 7T magnetization-transfer-weighted (MT w ) images in the detection of white matter lesions compared with 3T-FLAIR. Fifteen patients with clinically isolated syndrome, 6 with multiple sclerosis, and 10 healthy participants were scanned with 7T 3-dimensional (D) MT w and 3T-2D-FLAIR sequences on the same day. White matter lesions visible on either sequence were delineated. Of 662 lesions identified on 3T-2D-FLAIR images, 652 were detected on 7T-3D-MT w images (sensitivity, 98%; 95% confidence interval, 97% to 99%). The Spearman correlation coefficient between lesion loads estimated by the two sequences was .910. The intrarater and interrater reliability for 7T-3D-MT w images was good with an intraclass correlation coefficient (ICC) of 98.4% and 81.8%, which is similar to that for 3T-2D-FLAIR images (ICC 96.1% and 96.7%). Seven-Tesla MT w sequences detected most of the white matter lesions identified by FLAIR at 3T. This suggests that 7T-MT w imaging is a robust alternative for detecting demyelinating lesions in addition to 3T-FLAIR. Future studies need to compare the roles of optimized 7T-FLAIR and of 7T-MT w imaging. © 2017 The Authors. Journal of Neuroimaging published by Wiley Periodicals, Inc. on behalf of American Society of Neuroimaging.

  6. Detection of microcalcifications by characteristic magnetic susceptibility effects using MR phase image cross-correlation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Baheza, Richard A. [Department of Biomedical Engineering and Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Welch, E. Brian [Institute of Imaging Science and Departments of Radiology and Radiological Sciences and Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Gochberg, Daniel F. [Institute of Imaging Science and Departments of Radiology and Radiological Sciences, and Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Sanders, Melinda [Department of Pathology, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Harvey, Sara [Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Gore, John C. [Institute of Imaging Science and Departments of Biomedical Engineering, Radiology and Radiological Sciences, Physics and Astronomy, and Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States); Yankeelov, Thomas E., E-mail: thomas.yankeelov@vanderbilt.edu [Institute of Imaging Science and Departments of Radiology and Radiological Sciences, Biomedical Engineering, Physics and Astronomy, and Cancer Biology, Vanderbilt University, Nashville, Tennessee 37232-2310 (United States)

    2015-03-15

    Purpose: To develop and evaluate a new method for detecting calcium deposits using their characteristic magnetic susceptibility effects on magnetic resonance (MR) images at high fields and demonstrate its potential in practice for detecting breast microcalcifications. Methods: Characteristic dipole signatures of calcium deposits were detected in magnetic resonance phase images by computing the cross-correlation between the acquired data and a library of templates containing simulated phase patterns of spherical deposits. The influence of signal-to-noise ratio and various other MR parameters on the results were assessed using simulations and validated experimentally. The method was tested experimentally for detection of calcium fragments within gel phantoms and calcium-like inhomogeneities within chicken tissue at 7 T with optimized MR acquisition parameters. The method was also evaluated for detection of simulated microcalcifications, modeled from biopsy samples of malignant breast cancer, inserted in silico into breast magnetic resonance imaging (MRIs) of healthy subjects at 7 T. For both assessments of calcium fragments in phantoms and biopsy-based simulated microcalcifications in breast MRIs, receiver operator characteristic curve analyses were performed to determine the cross-correlation index cutoff, for achieving optimal sensitivity and specificity, and the area under the curve (AUC), for measuring the method’s performance. Results: The method detected calcium fragments with sizes of 0.14–0.79 mm, 1 mm calcium-like deposits, and simulated microcalcifications with sizes of 0.4–1.0 mm in images with voxel sizes between (0.2 mm){sup 3} and (0.6 mm){sup 3}. In images acquired at 7 T with voxel sizes of (0.2 mm){sup 3}–(0.4 mm){sup 3}, calcium fragments (size 0.3–0.4 mm) were detected with a sensitivity, specificity, and AUC of 78%–90%, 51%–68%, and 0.77%–0.88%, respectively. In images acquired with a human 7 T scanner, acquisition times below 12

  7. A novel method based on learning automata for automatic lesion detection in breast magnetic resonance imaging.

    Science.gov (United States)

    Salehi, Leila; Azmi, Reza

    2014-07-01

    Breast cancer continues to be a significant public health problem in the world. Early detection is the key for improving breast cancer prognosis. In this way, magnetic resonance imaging (MRI) is emerging as a powerful tool for the detection of breast cancer. Breast MRI presently has two major challenges. First, its specificity is relatively poor, and it detects many false positives (FPs). Second, the method involves acquiring several high-resolution image volumes before, during, and after the injection of a contrast agent. The large volume of data makes the task of interpretation by the radiologist both complex and time-consuming. These challenges have led to the development of the computer-aided detection systems to improve the efficiency and accuracy of the interpretation process. Detection of suspicious regions of interests (ROIs) is a critical preprocessing step in dynamic contrast-enhanced (DCE)-MRI data evaluation. In this regard, this paper introduces a new automatic method to detect the suspicious ROIs for breast DCE-MRI based on region growing. The results indicate that the proposed method is thoroughly able to identify suspicious regions (accuracy of 75.39 ± 3.37 on PIDER breast MRI dataset). Furthermore, the FP per image in this method is averagely 7.92, which shows considerable improvement comparing to other methods like ROI hunter.

  8. Theory of triplet-triplet annihilation in optically detected magnetic resonance

    Science.gov (United States)

    Keevers, T. L.; McCamey, D. R.

    2016-01-01

    Triplet-triplet annihilation allows two low-energy photons to be upconverted into a single high-energy photon. By essentially engineering the solar spectrum, this allows solar cells to be made more efficient and even exceed the Shockley-Quiesser limit. Unfortunately, optimizing the reaction pathway is difficult, especially with limited access to the microscopic time scales and states involved in the process. Optical measurements can provide detailed information: triplet-triplet annihilation is intrinsically spin dependent and exhibits substantial magnetoluminescence in the presence of a static magnetic field. Pulsed optically detected magnetic resonance is especially suitable, since it combines high spin sensitivity with coherent manipulation. In this paper, we develop a time-domain theory of triplet-triplet annihilation for complexes with arbitrary spin-spin coupling. We identify unique "Rabi fingerprints" for each coupling regime and show that this can be used to characterize the microscopic Hamiltonian.

  9. Detection of cortical activities on eye movement using functional magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Masaki; Kawai, Kazushige; Kitahara, Kenji [Jikei Univ., Tokyo (Japan). School of Medicine; Soulie, D.; Cordoliani, Y.S.; Iba-Zizen, M.T.; Cabanis, E.A.

    1997-11-01

    Cortical activity during eye movement was examined with functional magnetic resonance imaging. Horizontal saccadic eye movements and smooth pursuit eye movements were elicited in normal subjects. Activity in the frontal eye field was found during both saccadic and smooth pursuit eye movements at the posterior margin of the middle frontal gyrus and in parts of the precentral sulcus and precentral gyrus bordering the middle frontal gyrus (Brodmann`s areas 8, 6, and 9). In addition, activity in the parietal eye field was found in the deep, upper margin of the angular gyrus and of the supramarginal gyrus (Brodmann`s areas 39 and 40) during saccadic eye movement. Activity of V5 was found at the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus during smooth pursuit eye movement. Our results suggest that functional magnetic resonance imaging is useful for detecting cortical activity during eye movement. (author)

  10. Detection of cortical activities on eye movement using functional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Yoshida, Masaki; Kawai, Kazushige; Kitahara, Kenji; Soulie, D.; Cordoliani, Y.S.; Iba-Zizen, M.T.; Cabanis, E.A.

    1997-01-01

    Cortical activity during eye movement was examined with functional magnetic resonance imaging. Horizontal saccadic eye movements and smooth pursuit eye movements were elicited in normal subjects. Activity in the frontal eye field was found during both saccadic and smooth pursuit eye movements at the posterior margin of the middle frontal gyrus and in parts of the precentral sulcus and precentral gyrus bordering the middle frontal gyrus (Brodmann's areas 8, 6, and 9). In addition, activity in the parietal eye field was found in the deep, upper margin of the angular gyrus and of the supramarginal gyrus (Brodmann's areas 39 and 40) during saccadic eye movement. Activity of V5 was found at the intersection of the ascending limb of the inferior temporal sulcus and the lateral occipital sulcus during smooth pursuit eye movement. Our results suggest that functional magnetic resonance imaging is useful for detecting cortical activity during eye movement. (author)

  11. Detection of Magnetic Field Intensity Gradient by Homing Pigeons (Columba livia) in a Novel “Virtual Magnetic Map” Conditioning Paradigm

    Science.gov (United States)

    Mora, Cordula V.; Bingman, Verner P.

    2013-01-01

    It has long been thought that birds may use the Earth's magnetic field not only as a compass for direction finding, but that it could also provide spatial information for position determination analogous to a map during navigation. Since magnetic field intensity varies systematically with latitude and theoretically could also provide longitudinal information during position determination, birds using a magnetic map should be able to discriminate magnetic field intensity cues in the laboratory. Here we demonstrate a novel behavioural paradigm requiring homing pigeons to identify the direction of a magnetic field intensity gradient in a “virtual magnetic map” during a spatial conditioning task. Not only were the pigeons able to detect the direction of the intensity gradient, but they were even able to discriminate upward versus downward movement on the gradient by differentiating between increasing and decreasing intensity values. Furthermore, the pigeons typically spent more than half of the 15 second sampling period in front of the feeder associated with the rewarded gradient direction indicating that they required only several seconds to make the correct choice. Our results therefore demonstrate for the first time that pigeons not only can detect the presence and absence of magnetic anomalies, as previous studies had shown, but are even able to detect and respond to changes in magnetic field intensity alone, including the directionality of such changes, in the context of spatial orientation within an experimental arena. This opens up the possibility for systematic and detailed studies of how pigeons could use magnetic intensity cues during position determination as well as how intensity is perceived and where it is processed in the brain. PMID:24039812

  12. Numerical investigations on applicability of permanent magnet method to crack detection in HTS film

    Energy Technology Data Exchange (ETDEWEB)

    Kamitani, A., E-mail: kamitani@yz.yamagata-u.ac.jp [Yamagata University, 4-3-16, Johnan, Yonezawa, Yamagata 992-8510 (Japan); Takayama, T. [Yamagata University, 4-3-16, Johnan, Yonezawa, Yamagata 992-8510 (Japan); Saitoh, A. [University of Hyogo, 2167, Shosha, Himeji, Hyogo 671-2280 (Japan)

    2014-09-15

    Highlights: • The defect parameter is defined for characterizing a crack position. • The defect parameter shows a remarkable change only near a crack. • A crack detection method is proposed on the basis of the permanent-magnet method. • The high-speed rough detection can be achieved by means of the proposed method. - Abstract: The scanning permanent-magnet (PM) method was originally developed for determining the spatial distribution of the critical current density in a high-temperature superconducting (HTS) film. In the present study, its applicability to the crack detection in an HTS film is investigated numerically. To this end, a defect parameter is defined for characterizing a crack position and it is calculated along various scanning lines. The results of computations show that, only when the scanning position is near a crack, the defect parameter shows a violent change. On the basis of the behavior of the defect parameter, the method for roughly identifying a crack is also proposed.

  13. Numerical investigations on applicability of permanent magnet method to crack detection in HTS film

    International Nuclear Information System (INIS)

    Kamitani, A.; Takayama, T.; Saitoh, A.

    2014-01-01

    Highlights: • The defect parameter is defined for characterizing a crack position. • The defect parameter shows a remarkable change only near a crack. • A crack detection method is proposed on the basis of the permanent-magnet method. • The high-speed rough detection can be achieved by means of the proposed method. - Abstract: The scanning permanent-magnet (PM) method was originally developed for determining the spatial distribution of the critical current density in a high-temperature superconducting (HTS) film. In the present study, its applicability to the crack detection in an HTS film is investigated numerically. To this end, a defect parameter is defined for characterizing a crack position and it is calculated along various scanning lines. The results of computations show that, only when the scanning position is near a crack, the defect parameter shows a violent change. On the basis of the behavior of the defect parameter, the method for roughly identifying a crack is also proposed

  14. Creation, transport and detection of imprinted magnetic solitons stabilized by spin-polarized current

    Science.gov (United States)

    Loreto, R. P.; Moura-Melo, W. A.; Pereira, A. R.; Zhang, X.; Zhou, Y.; Ezawa, M.; de Araujo, C. I. L.

    2018-06-01

    With the recent proposition of skyrmion utilization in racetrack memories at room temperature, skyrmionics has become a very attractive field. However, for the stability of skyrmions, it is essential to incorporate the Dzyaloshinskii-Moriya interaction (DMI) and the out-of-plane magnetic field into the system. In this work, we explore a system without these interactions. First, we propose a controlled way for the creation of magnetic skyrmions and skyrmioniums imprinted on a ferromagnetic nanotrack via a nanopatterned nanodisk with the magnetic vortex state. Then we investigate the detachment of the imprinted spin textures from the underneath of the nanodisk, as well as its transport by the spin-transfer torque imposed by spin-polarized current pulses applied in the nanotrack. A prominent feature of the moving imprinted spin texture is that its topological number Q is oscillating around the averaged value of Q = 0 as if it is a resonant state between the skyrmions with Q = ± 1 and the bubble with Q = 0 . We may call it a resonant magnetic soliton (RMS). A RMS moves along a straight line since it is free from the skyrmion Hall effect. In our studied device, the same electrodes are employed to realize the imprinted spin texture detachment and its transport. In addition, we have investigated the interaction between the RMS and a magnetic tunnel junction sensor, where the passing of the RMS in the nanotrack can be well detected. Our results would be useful for the development of novel spintronic devices based on moveable spin textures.

  15. Deep gray matter demyelination detected by magnetization transfer ratio in the cuprizone model.

    Directory of Open Access Journals (Sweden)

    Sveinung Fjær

    Full Text Available In multiple sclerosis (MS, the correlation between lesion load on conventional magnetic resonance imaging (MRI and clinical disability is weak. This clinico-radiological paradox might partly be due to the low sensitivity of conventional MRI to detect gray matter demyelination. Magnetization transfer ratio (MTR has previously been shown to detect white matter demyelination in mice. In this study, we investigated whether MTR can detect gray matter demyelination in cuprizone exposed mice. A total of 54 female C57BL/6 mice were split into one control group ( and eight cuprizone exposed groups ([Formula: see text]. The mice were exposed to [Formula: see text] (w/w cuprizone for up to six weeks. MTR images were obtained at a 7 Tesla Bruker MR-scanner before cuprizone exposure, weekly for six weeks during cuprizone exposure, and once two weeks after termination of cuprizone exposure. Immunohistochemistry staining for myelin (anti-Proteolopid Protein and oligodendrocytes (anti-Neurite Outgrowth Inhibitor Protein A was obtained after each weekly scanning. Rates of MTR change and correlations between MTR values and histological findings were calculated in five brain regions. In the corpus callosum and the deep gray matter a significant rate of MTR value decrease was found, [Formula: see text] per week ([Formula: see text] and [Formula: see text] per week ([Formula: see text] respectively. The MTR values correlated to myelin loss as evaluated by immunohistochemistry (Corpus callosum: [Formula: see text]. Deep gray matter: [Formula: see text], but did not correlate to oligodendrocyte density. Significant results were not found in the cerebellum, the olfactory bulb or the cerebral cortex. This study shows that MTR can be used to detect demyelination in the deep gray matter, which is of particular interest for imaging of patients with MS, as deep gray matter demyelination is common in MS, and is not easily detected on conventional clinical MRI.

  16. Magnets

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    A magnet pole piece for an NMR imaging magnet is made of a plurality of magnetic wires with one end of each wire held in a non-magnetic spacer, the other ends of the wires being brought to a pinch, and connected to a magnetic core. The wires may be embedded in a synthetic resin and the magnetisation and uniformity thereof can be varied by adjusting the density of the wires at the spacer which forms the pole piece. (author)

  17. A feasibility study of magnetic resonance electrical impedance tomography for prostate cancer detection

    International Nuclear Information System (INIS)

    Liu, Yang; Zhang, Yingchun

    2014-01-01

    Magnetic resonance electrical impedance tomography (MREIT) is an imaging technique that reconstructs the conductivity distribution inside the subject using magnetic flux density or current density measurements acquired by a magnetic resonance imaging system. Since the primary prostate cancer diagnostic method, prostate biopsy, has limited accuracy in cancer diagnosis and malignant tissues have shown significantly different electrical properties from normal or benign tissues, MREIT has potential application in prostate cancer detection. The feasibility of utilizing MREIT in detecting prostate cancer was evaluated via a series of well-designed computer simulations in the present study. MREIT techniques with three different electrode configurations (external, trans-rectal, and trans-urethral electrode arrays) and two different reconstruction algorithms (J-substitution algorithm and harmonic B z  algorithm) were successfully developed. The performance of different MREIT techniques were evaluated and compared based on the imaging accuracy of the reconstructed conductivity distribution in the prostate. Without the presence of noise, the external MREIT achieves a better imaging accuracy than the two endo-MREIT (trans-rectal and trans-urethral) techniques, while the trans-urethral MREIT achieves the best imaging accuracy in noisy environments. We also found that the J-substitution reconstruction algorithm consistently offered better imaging accuracy than the harmonic B z  algorithm. When Gaussian distributed random noise with a standard deviation of 0.25 nT was added, the relative errors (RE) between the reconstructed and target conductivity distributions inside the prostate were observed to be 14.18% and 17.35% by the trans-urethral MREIT with the J-substitution and harmonic B z  algorithms respectively. The lower REs of 9.64% and 11.17% were achieved respectively when the standard deviation of noise was reduced to 0.05 nT. The simulation results demonstrate the

  18. Transcranial magnetic stimulation of right inferior parietal cortex causally influences prefrontal activation for visual detection

    DEFF Research Database (Denmark)

    Leitao, Joana; Thielscher, Axel; Lee, Hweeling

    2017-01-01

    -parietal areas integrating the evidence into a decision variable that is compared to a decisional threshold. This concurrent transcranial magnetic stimulation (TMS)-fMRI study applied 10 Hz bursts of four TMS (or Sham) pulses to the intraparietal sulcus (IPS) to investigate the causal influence of IPS...... affect participants' performance accuracy, it affected how observers adjusted their response times after making an error. We therefore suggest that activation increases in superior frontal gyri for misses relative to correct responses may not be critical for signal detection performance, but rather...

  19. Alcoholism detection in magnetic resonance imaging by Haar wavelet transform and back propagation neural network

    Science.gov (United States)

    Yu, Yali; Wang, Mengxia; Lima, Dimas

    2018-04-01

    In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.

  20. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  1. Optically Detected Magnetic Resonance Studies on π-conjugated semiconductor systems

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Optically Detected Magnetic Resonance (ODMR) techniques were used to investigate the dynamics of excitons and charge carriers in π-conjugated organic semiconductors. Degradation behavior of the negative spin-1/2 electroluminescence-detected magnetic resonance (ELDMR) was observed in Alq3 devices. The increase in the resonance amplitude implies an increasing bipolaron formation during degradation, which might be the result of growth of charge traps in the device. The same behavior of the negative spin-1/2 ELDMR was observed in 2wt% Rubrene doped Tris(8-hydroxyquinolinato)aluminium (Alq3) devices. However, with increasing injection current, a positive spin-1/2 ELDMR, together with positive spin 1 triplet powder patterns at ΔmS=±1 and ΔmS=±2, emerges. Due to the similarities in the frequency dependences of single and double modulated ELDMR and the photoluminescence-detected magnetic resonance (PLDMR) results in poly[2-methoxy-5-(2 -ethyl-hexyloxy)-1,4-phenyl ene vinylene] (MEH-PPV) films, the mechanism for this positive spin-1/2 ELDMR was assigned to enhanced triplet-polaron quenching under resonance conditions. The ELDMR in rubrene doped Alq3 devices provides a path to investigate charge distribution in the device under operational conditions. Combining the results of several devices with different carrier blocking properties and the results from transient EL, it was concluded trions not only exist near buffer layer but also exist in the electron transport layer. This TPQ model can also be used to explain the positive spin-1/2 PLDMR in poly(3-hexylthiophene) (P3HT) films at low temperature and in MEH-PPV films at various temperatures up to room temperature. Through quantitative analysis, TE-polaron quenching (TPQ) model is shown having the ability to explain most behaviors of the positive spin-1/2 resonance. Photocurrent detected magnetic resonance (PCDMR) studies on MEH-PPV devices revealed a novel transient resonance signal. The signal

  2. Novel quench detection methods for the superconducting magnets in ITER and TPX

    International Nuclear Information System (INIS)

    Schultz, J.H.; Pourrahimi, S.; Diatchenko, N.; Guss, W.; Chaniotakis, E.; Pillsbury, R.D. Jr.; Smith, S.; Wang, P.W.; Citrolo, J.; Chaplin, M.; Zbasnik, J.

    1995-01-01

    The US is providing novel sensors to Japan to be used in the conductor for QUELL, the ITER Quench Experiment on Long-Lengths to be performed in the SULTAN magnet in 1995. These include cowound voltage sensors, fiber optic thermometers, cowound and conventional pressure sensors, and flow meters. TPX has a redundant quench detection system using cowound voltage sensors, fiber-optic temperaure sensors, conventional voltage taps, and flow meters. Sensors are extracted only at joint regions, but are terminated every two pancakes, providing high signal-noise ratios through differencing techniques. (orig.)

  3. Technological Innovations in Magnetic Resonance for Early Detection of Cardiovascular Diseases.

    Science.gov (United States)

    Santarelli, Maria F; Positano, Vincenzo; Martini, Nicola; Valvano, Giuseppe; Landini, Luigi

    2016-01-01

    Most recent technical innovations in cardiovascular MR imaging (CMRI) are presented in this review. They include hardware and software developments, and novelties in parametric mapping. All these recent improvements lead to high spatial and temporal resolution and quantitative information on the heart structure and function. They make it achievable ambitious goals in the field of magnetic resonance, such as the early detection of cardiovascular pathologies. In this review article, we present recent innovations in CMRI, emphasizing the progresses performed and the solutions proposed to some yet opened technical problems.

  4. Detection of eosinophilic myocarditis using contrast-enhanced magnetic resonance imaging: case report

    International Nuclear Information System (INIS)

    Takahashi, N.; Murakami, Y.; Shimada, T.; Kashima, Y.; Nakamura, K.; Inoue, S.-I.; Sugamori, T.; Katoh, H.; Ishibashi, Y.; Maruyama, R.

    2001-01-01

    Hypereosinophilic syndrome is characterized by idiopathic eosinophilia in the peripheral blood and multiorgan dysfunction secondary to mature eosinophil infiltration. It is essential to diagnose myocardial involvement in the early stage of the disease when active myocarditis due to cardiotoxic substances from eosinophils is still taking place, but clinical tools for the diagnosis of myocardial lesions in patients without overt cardiac dysfunction are not yet available. We present a case of successful detection of myocarditis due to hypereosinophilic syndrome by gadolinium-diethylenetriaminepentaascetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI). (author)

  5. Detection of eosinophilic myocarditis using contrast-enhanced magnetic resonance imaging: case report

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, N.; Murakami, Y.; Shimada, T.; Kashima, Y.; Nakamura, K.; Inoue, S.-I.; Sugamori, T.; Katoh, H.; Ishibashi, Y. [Shimane Medical Univ., The Fourth Dept. of Internal Medicine, Izumo City, Shimane (Japan); Maruyama, R. [Shimane Medical Univ., Dept. of Laboratory Medicine, Izumo City, Shimane (Japan)

    2001-02-01

    Hypereosinophilic syndrome is characterized by idiopathic eosinophilia in the peripheral blood and multiorgan dysfunction secondary to mature eosinophil infiltration. It is essential to diagnose myocardial involvement in the early stage of the disease when active myocarditis due to cardiotoxic substances from eosinophils is still taking place, but clinical tools for the diagnosis of myocardial lesions in patients without overt cardiac dysfunction are not yet available. We present a case of successful detection of myocarditis due to hypereosinophilic syndrome by gadolinium-diethylenetriaminepentaascetic acid (Gd-DTPA) enhanced magnetic resonance imaging (MRI). (author)

  6. Edge detection of magnetic anomalies using analytic signal of tilt angle (ASTA)

    Science.gov (United States)

    Alamdar, K.; Ansari, A. H.; Ghorbani, A.

    2009-04-01

    Magnetic is a commonly used geophysical technique to identify and image potential subsurface targets. Interpretation of magnetic anomalies is a complex process due to the superposition of multiple magnetic sources, presence of geologic and cultural noise and acquisition and positioning error. Both the vertical and horizontal derivatives of potential field data are useful; horizontal derivative, enhance edges whereas vertical derivative narrow the width of anomaly and so locate source bodies more accurately. We can combine vertical and horizontal derivative of magnetic field to achieve analytic signal which is independent to body magnetization direction and maximum value of this lies over edges of body directly. Tilt angle filter is phased-base filter and is defined as angle between vertical derivative and total horizontal derivative. Tilt angle value differ from +90 degree to -90 degree and its zero value lies over body edge. One of disadvantage of this filter is when encountering with deep sources the detected edge is blurred. For overcome this problem many authors introduced new filters such as total horizontal derivative of tilt angle or vertical derivative of tilt angle which Because of using high-order derivative in these filters results may be too noisy. If we combine analytic signal and tilt angle, a new filter termed (ASTA) is produced which its maximum value lies directly over body edge and is easer than tilt angle to delineate body edge and no complicity of tilt angle. In this work new filter has been demonstrated on magnetic data from an area in Sar- Cheshme region in Iran. This area is located in 55 degree longitude and 32 degree latitude and is a copper potential region. The main formation in this area is Andesith and Trachyandezite. Magnetic surveying was employed to separate the boundaries of Andezite and Trachyandezite from adjacent area. In this regard a variety of filters such as analytic signal, tilt angle and ASTA filter have been applied which

  7. Optimization of metabolite detection by quantum mechanics simulations in magnetic resonance spectroscopy.

    Science.gov (United States)

    Gambarota, Giulio

    2017-07-15

    Magnetic resonance spectroscopy (MRS) is a well established modality for investigating tissue metabolism in vivo. In recent years, many efforts by the scientific community have been directed towards the improvement of metabolite detection and quantitation. Quantum mechanics simulations allow for investigations of the MR signal behaviour of metabolites; thus, they provide an essential tool in the optimization of metabolite detection. In this review, we will examine quantum mechanics simulations based on the density matrix formalism. The density matrix was introduced by von Neumann in 1927 to take into account statistical effects within the theory of quantum mechanics. We will discuss the main steps of the density matrix simulation of an arbitrary spin system and show some examples for the strongly coupled two spin system. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Influence of magnetic saturation effects on the fault detection of induction motors

    Directory of Open Access Journals (Sweden)

    Drozdowski Piotr

    2014-09-01

    Full Text Available In this paper, the influence of impact damage to the induction motors on the zero-sequence voltage and its spectrum is presented. The signals detecting the damages result from a detailed analysis of the formula describing this voltage component which is induced in the stator windings due to core magnetic saturation and the discrete displacement of windings. Its course is affected by the operation of both the stator and the rotor. Other fault detection methods, are known and widely applied by analysing the spectrum of stator currents. The presented method may be a complement to other methods because of the ease of measurements of the zero voltage for star connected motors. Additionally, for converter fed motors the zero sequence voltage eliminates higher time harmonics displaced by 120 degrees. The results of the method application are presented through measurements and explained by the use of a mathematical model of the slip-ring induction motor

  9. Detection of magnetized quark-nuggets, a candidate for dark matter.

    Science.gov (United States)

    VanDevender, J Pace; VanDevender, Aaron P; Sloan, T; Swaim, Criss; Wilson, Peter; Schmitt, Robert G; Zakirov, Rinat; Blum, Josh; Cross, James L; McGinley, Niall

    2017-08-18

    Quark nuggets are theoretical objects composed of approximately equal numbers of up, down, and strange quarks and are also called strangelets and nuclearites. They have been proposed as a candidate for dark matter, which constitutes ~85% of the universe's mass and which has been a mystery for decades. Previous efforts to detect quark nuggets assumed that the nuclear-density core interacts directly with the surrounding matter so the stopping power is minimal. Tatsumi found that quark nuggets could well exist as a ferromagnetic liquid with a ~10 12 -T magnetic field. We find that the magnetic field produces a magnetopause with surrounding plasma, as the earth's magnetic field produces a magnetopause with the solar wind, and substantially increases their energy deposition rate in matter. We use the magnetopause model to compute the energy deposition as a function of quark-nugget mass and to analyze testing the quark-nugget hypothesis for dark matter by observations in air, water, and land. We conclude the water option is most promising.

  10. Magnetic detection of sigma phase in duplex stainless steel UNS S31803

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, S.S.M., E-mail: ssmtavares@terra.com.b [Universidade Federal Fluminense, Departamento de Engenharia Mecanica, PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi (Brazil); Pardal, J.M.; Guerreiro, J.L. [Universidade Federal Fluminense, Departamento de Engenharia Mecanica, PGMEC, Rua Passo da Patria, 156, CEP 24210-240, Niteroi (Brazil); Gomes, A.M. [Universidade Federal do Rio de Janeiro, Instituto de Fisica (Brazil); Silva, M.R. da [Universidade Federal de Itajuba, Instituto de Ciencias (Brazil)

    2010-09-15

    Duplex stainless steels are high strength and corrosion resistant steels extensively used in the chemical and petrochemical industry. The best mechanical properties and corrosion resistance are obtained with a microstructure composed by equal parts of ferrite and austenite and free from tertiary phases. Sigma phase is one of these deleterious tertiary phases. In the present work different amounts of sigma phase were precipitated by heat treatments in a UNS S31803 stainless steel. Some specimens were cold rolled before sigma phase precipitation in order to evaluate the effect of deformation on the magnetic measurements. The amount of sigma phase was precisely determined by microscopy and image analysis for each heat treatment condition. The effects of sigma phase on the steel properties were investigated, confirming the detrimental effects of very small percentages on corrosion resistance and toughness. Two magnetic methods were used to detect sigma phase: magnetization saturation measurements in a Vibrating Sample Magnetometer and ferritoscope testing. Both methods were found to be sensitive to small percentages of sigma phase in the microstructure.

  11. UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection

    Energy Technology Data Exchange (ETDEWEB)

    Viegas, Aldino; Viennet, Thibault [Heinrich-Heine-University, Institute of Physical Biology (Germany); Yu, Tsyr-Yan [Academia Sinica, Institute of Atomic and Molecular Sciences (China); Schumann, Frank [Bruker BioSpin GmbH (Switzerland); Bermel, Wolfgang [Bruker BioSpin GmbH (Germany); Wagner, Gerhard [Harvard Medical School, Department of Biological Chemistry and Molecular Pharmacology (United States); Etzkorn, Manuel, E-mail: manuel.etzkorn@hhu.de [Heinrich-Heine-University, Institute of Physical Biology (Germany)

    2016-01-15

    A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. {sup 1}H) and low-γ (e.g. {sup 13}C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-x{sub L} (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins.

  12. UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection

    International Nuclear Information System (INIS)

    Viegas, Aldino; Viennet, Thibault; Yu, Tsyr-Yan; Schumann, Frank; Bermel, Wolfgang; Wagner, Gerhard; Etzkorn, Manuel

    2016-01-01

    A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. 1 H) and low-γ (e.g. 13 C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-x L (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins

  13. UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection.

    Science.gov (United States)

    Viegas, Aldino; Viennet, Thibault; Yu, Tsyr-Yan; Schumann, Frank; Bermel, Wolfgang; Wagner, Gerhard; Etzkorn, Manuel

    2016-01-01

    A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. (1)H) and low-γ (e.g. (13)C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-xL (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins.

  14. Yersinia pestis detection by loop-mediated isothermal amplification combined with magnetic bead capture of DNA

    Directory of Open Access Journals (Sweden)

    Na Feng

    Full Text Available ABSTRACT We developed a loop-mediated isothermal amplification (LAMP assay for the detection of Y. pestis by targeting the 3a sequence on chromosome. All 11 species of the genus Yersinia were used to evaluate the specificity of LAMP and PCR, demonstrating that the primers had a high level of specificity. The sensitivity of LAMP or PCR was 2.3 or 23 CFU for pure culture, whereas 2.3 × 104 or 2.3 × 106 CFU for simulated spleen and lung samples. For simulated liver samples, the sensitivity of LAMP was 2.3 × 106 CFU, but PCR was negative at the level of 2.3 × 107 CFU. After simulated spleen and lung samples were treated with magnetic beads, the sensitivity of LAMP or PCR was 2.3 × 103 or 2.3 × 106 CFU, whereas 2.3 × 105 or 2.3 × 107 CFU for magnetic bead-treated liver samples. These results indicated that some components in the tissues could inhibit LAMP and PCR, and liver tissue samples had a stronger inhibition to LAMP and PCR than spleen and lung tissue samples. LAMP has a higher sensitivity than PCR, and magnetic bead capture of DNAs could remarkably increase the sensitivity of LAMP. LAMP is a simple, rapid and sensitive assay suitable for application in the field or poverty areas.

  15. Smart nanoprobes for ultrasensitive detection of breast cancer via magnetic resonance imaging

    International Nuclear Information System (INIS)

    Lee, Jaemin; Yang, Jaemoon; Seo, Sung-Baek; Haam, Seungjoo; Ko, Hyun-Ju; Suh, Jin-Suck; Huh, Yong-Min

    2008-01-01

    Antibody-conjugated hydrophilic magnetic nanocrystals for use as smart nanoprobes were developed for ultrasensitive detection of breast cancer via magnetic resonance (MR) imaging. MnFe 2 O 4 nanocrystals (MNCs) for use as MR imaging contrast agents were synthesized by thermal decomposition to take advantage of their MR signal enhancement effect. The MNC surfaces were then modified with amphiphilic tri-block copolymers (dicarboxy poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol)), not only allowing the MNCs to transfer from the organic to the aqueous phase, but also increasing the colloidal stability of the MNCs by masking poly(ethylene glycol). The physicochemical properties of the synthesized hydrophilic magnetic nanocrystals (HMNCs) were fully investigated. Trastuzumab (TZ), a monoclonal antibody against human epidermal growth factor receptor (HER2/neu), was further conjugated on the surface of HMNCs to specifically target HER2/neu over-expressed breast cancer cells. MR imaging analysis of target cells treated with TZ-conjugated HMNCs (TZ-HMNCs) clearly demonstrated their potential as high-performance nanoprobes for selective imaging.

  16. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-SQUID

    Science.gov (United States)

    Wang, Ning; Jin, Yirong; Li, Shao; Ren, Yufeng; Tian, Ye; Chen, Yingfei; Li, Jie; Chen, Genghua; Zheng, Dongning

    2012-12-01

    We have detected the ultra-low field nuclear magnetic resonance signal from water samples using a high-Tc dc-SQUID sensor. The measurements were carried out in a homemade magnetically shielded room. Resonance spectra of 1H from tap water and other substance samples were obtained in the field range from 7-110μT corresponding to resonance frequency 300-4.68kHz. Two kind of experimental systems were built, the first one is a directly coupled system, its signal to noise ratio in a single-shot measurement is around 4 for about 15 ml water. The second one used a Cu coil to transfer the flux to the SQUID sensor. Signal to noise ratio was improved to about 20 in a single-shot measurement for 5ml water, which benefits from the improvement of coupling efficiency. The effect of residual gradient in the magnetically shielded room was also investigated. J-coupling of 2,2,2-Trifluoroethyl alcohol was measured, the peaks are consistent with high field results.

  17. Detection of nuclear magnetic resonance in the microtesla range using a high Tc dc-SQUID

    International Nuclear Information System (INIS)

    Wang Ning; Jin Yirong; Li Shao; Ren Yufeng; Tian Ye; Chen Yingfei; Li Jie; Chen Genghua; Zheng Dongning

    2012-01-01

    We have detected the ultra-low field nuclear magnetic resonance signal from water samples using a high-T c dc-SQUID sensor. The measurements were carried out in a homemade magnetically shielded room. Resonance spectra of 1 H from tap water and other substance samples were obtained in the field range from 7-110μT corresponding to resonance frequency 300-4.68kHz. Two kind of experimental systems were built, the first one is a directly coupled system, its signal to noise ratio in a single-shot measurement is around 4 for about 15 ml water. The second one used a Cu coil to transfer the flux to the SQUID sensor. Signal to noise ratio was improved to about 20 in a single-shot measurement for 5ml water, which benefits from the improvement of coupling efficiency. The effect of residual gradient in the magnetically shielded room was also investigated. J-coupling of 2,2,2-Trifluoroethyl alcohol was measured, the peaks are consistent with high field results.

  18. Development of magnetic nanoparticle based calorimetric assay for the detection of bovine mastitis in cow milk.

    Science.gov (United States)

    Chinnappan, Raja; Al Attas, Sana; Kaman, Wendy E; Bikker, Floris J; Zourob, Mohammed

    2017-04-15

    Mastitis in dairy cattle is an inflammatory reaction of the udder tissue. Mastitis increases plasmin levels, leading to an increased proteolysis of milk proteins such as casein, resulting in a significant decrease in milk quality and related dairy products. Due to its key-role in mastitis, we used plasmin proteolytic activity as a biomarker for the detection of mastitis in bovine mastitic milk. Inspired by earlier studies on protease activity using mastitic milk samples, we developed a simple colorimetric assay to distinguish mastitic milk from milk derived from healthy animals. The plasmin substrate coupled to magnetic nanoparticles form a black self-assembled monolayer on a gold sensor surface. In the presence of increased levels of plasmin, the substrate is cleaved and the peptide fragment attached to the magnetic beads, will be attracted by the magnet which is present under the sensor strips revealing the golden surface. We found the area of the golden color surface proportional to plasmin activity. The sensitivity of this method was determined to be 1 ng/ml of plasmin in vitro. Next, we tested the biosensor using mastitis positive milk of which infection is confirmed by bacterial cultures. This newly developed colorimetric biosensor has high potential in applications for the diagnosis of mastitis with potential spin offs to health, food and environmental sectors. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Detection of a weak ring current in a nonaromatic porphyrin nanoring using magnetic circular dichroism.

    Science.gov (United States)

    Kowalska, Patrycja; Peeks, Martin D; Roliński, Tomasz; Anderson, Harry L; Waluk, Jacek

    2017-12-13

    We compare the absorption and magnetic circular dichroism (MCD) spectra of a series of porphyrin oligomers - dimer, tetramer, and hexamer - bound in a linear or cyclic fashion. The MCD signal is extremely weak for low energy transitions in the linear oligomers, but it is amplified when the cyclic porphyrin hexamer binds a template, restricting rotational freedom. The appearance of Faraday A terms in the MCD spectra demonstrates the presence of a magnetic moment, and thus, uncompensated electronic current. The value of the excited state magnetic moment estimated from the A term is very low compared with those of monomeric porphyrins, which confirms the nonaromatic character of the cyclic array and the lack of a global ring current in the ground state of the neutral nanoring. DFT calculations predict the absorption and MCD patterns reasonably well, but fail to reproduce the MCD sign inversion observed in substituted monomeric zinc porphyrins ("soft" chromophores). Interestingly, a correct sign pattern is predicted by INDO/S calculations. Analysis of the MCD spectra of the monomeric porphyrin unit allowed us to distinguish between two close-lying lowest energy transitions, which some previous assignments placed further apart. The present results prove the usefulness of MCD not only for deconvolution and assignment of electronic transitions, but also as a sensitive tool for detecting electronic ring currents.

  20. Value of magnetic resonance imaging for the noninvasive detection of stenosis in coronary artery bypass grafts and recipient coronary arteries

    NARCIS (Netherlands)

    Langerak, Susan E.; Vliegen, Hubert W.; Jukema, J. Wouter; Kunz, Patrik; Zwinderman, Aeilko H.; Lamb, Hildo J.; van der Wall, Ernst E.; de Roos, Albert

    2003-01-01

    BACKGROUND: Magnetic resonance imaging (MRI) is a potential noninvasive diagnostic tool to detect coronary artery bypass graft stenosis, but its value in clinical practice remains to be established. We investigated the value of MRI in detecting stenotic grafts, including recipient vessels. METHODS

  1. Enhanced detection of gametocytes by magnetic deposition microscopy predicts higher potential for Plasmodium falciparum transmission

    Directory of Open Access Journals (Sweden)

    Zborowski Maciej

    2008-04-01

    Full Text Available Abstract Background Aggregated haemozoin crystals within malaria-infected erythrocytes confer susceptibility of parasitized cells to a magnetic field. Here the utility of this method for diagnosis of human malaria is evaluated in a malaria-endemic region of Papua New Guinea (PNG. Methods and findings Individuals with Plasmodium falciparum malaria symptoms (n = 55 provided samples for conventional blood smear (CBS and magnetic deposition microscopy (MDM diagnosis. Standard Giemsa staining and light microscopy was performed to evaluate all preparations. Plasmodium falciparum parasitaemia observed on MDM slides was consistently higher than parasitaemia observed by (CBS for ring (CBS = 2.6 vs. MDM = 3.4%; t-test P-value = 0.13, trophozoite (CBS = 0.5 vs. MDM = 1.6%; t-test P-value = 0.01, schizont (CBS = 0.003 vs. MDM = 0.1%; t-test P-value = 0.08 and gametocyte (CBS = 0.001 vs. MDM = 0.4%; t-test P-value = 0.0002 parasitaemias. Gametocyte prevalence determined by CBS compared to MDM increased from 7.3% to 45%, respectively. Conclusion MDM increased detection sensitivity of P. falciparum-infected, haemozoin-containing erythrocytes from infected humans while maintaining detection of ring-stage parasites. Gametocyte prevalence five-fold higher than observed by CBS suggests higher malaria transmission potential in PNG endemic sites compared to previous estimates.

  2. Detection of magnetic nanoparticles in tissue using magneto-motive ultrasound

    International Nuclear Information System (INIS)

    Oh, Junghwan; Feldman, Marc D; Kim, Jeehyun; Condit, Chris; Emelianov, Stanislav; Milner, Thomas E

    2006-01-01

    The purpose of this study was to demonstrate the magneto-motive ultrasonic detection of superparamagnetic iron oxide (SPIO) nanoparticles as a marker of macrophage recruitment in tissue. The capability of ultrasound to detect SPIO nanoparticles (core diameter ∼20 nm) taken up by murine liver macrophages was investigated. Eight mice were sacrificed two days after the intravenous administration of four SPIO doses (1.5, 1.0, 0.5, and 0.1 mmol Fe/kg body weight). In the iron-laden livers, ultrasound Doppler measurements showed a frequency shift in response to an applied time-varying magnetic field. M-mode scan and colour power Doppler images of the iron-laden livers also demonstrated nanoparticle movement under focused magnetic field excitation. In the livers of two saline injected control mice, no movement was observed using any ultrasound imaging modes. The results of our experiments indicate that ultrasound imaging of magneto-motive excitation is a candidate imaging modality to identify tissue-based macrophages containing SPIO nanoparticles

  3. Large area APDs for low energy X-ray detection in intense magnetic fields

    International Nuclear Information System (INIS)

    Boucher, M.; Huot, O.; Knowles, P.E.; Ludhova, L.; Mulhauser, F.; Schaller, L.A.; Conde, C.A.N.; Santos, J.M.F. dos; Fernandes, L.M.P.; Veloso, J.F.C.A.; Kottmann, F.; Antognini, A.; Pohl, R.; Taqqu, D.

    2003-01-01

    An experiment to measure the energy difference between the 2S-2P atomic levels (Lamb shift) in muonic hydrogen is being prepared at PSI. Since the energy levels of muonic hydrogen are a factor of 186 more energetic than those of hydrogen, according to the ratio of reduced masses, the transitions lie in the soft X-ray region. The experiment needs long-lived muonic hydrogen in the 2S state. This is achieved by stopping a low energy muon beam in a small volume of low pressure hydrogen in a 5 T magnetic field. A pulsed beam from a tunable laser induces the 2S-2P transition and the 1.9 keV X-ray photons resulting from the 2P-1S deexcitation will be detected. Measuring the coincidences between the laser pulse and the X-ray as a function of the laser wavelength allows us to determine the Lamb shift. In this presentation we will discuss the perspectives of using large area avalanche photodiodes for the direct detection of the X-rays. Compared to gaseous detectors, they are more compact and simpler in operation. They are also insensitive to magnetic fields

  4. Large area APDs for low energy X-ray detection in intense magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, M.; Huot, O.; Knowles, P.E.; Ludhova, L.; Mulhauser, F. E-mail: francoise.mulhauser@unifr.ch; Schaller, L.A.; Conde, C.A.N.; Santos, J.M.F. dos; Fernandes, L.M.P.; Veloso, J.F.C.A.; Kottmann, F.; Antognini, A.; Pohl, R.; Taqqu, D

    2003-06-01

    An experiment to measure the energy difference between the 2S-2P atomic levels (Lamb shift) in muonic hydrogen is being prepared at PSI. Since the energy levels of muonic hydrogen are a factor of 186 more energetic than those of hydrogen, according to the ratio of reduced masses, the transitions lie in the soft X-ray region. The experiment needs long-lived muonic hydrogen in the 2S state. This is achieved by stopping a low energy muon beam in a small volume of low pressure hydrogen in a 5 T magnetic field. A pulsed beam from a tunable laser induces the 2S-2P transition and the 1.9 keV X-ray photons resulting from the 2P-1S deexcitation will be detected. Measuring the coincidences between the laser pulse and the X-ray as a function of the laser wavelength allows us to determine the Lamb shift. In this presentation we will discuss the perspectives of using large area avalanche photodiodes for the direct detection of the X-rays. Compared to gaseous detectors, they are more compact and simpler in operation. They are also insensitive to magnetic fields.

  5. Reliability of magnetic resonance imaging for the detection of hypopituitarism in children with optic nerve hypoplasia.

    Science.gov (United States)

    Ramakrishnaiah, Raghu H; Shelton, Julie B; Glasier, Charles M; Phillips, Paul H

    2014-01-01

    It is essential to identify hypopituitarism in children with optic nerve hypoplasia (ONH) because they are at risk for developmental delay, seizures, or death. The purpose of this study is to determine the reliability of neurohypophyseal abnormalities on magnetic resonance imaging (MRI) for the detection of hypopituitarism in children with ONH. Cross-sectional study. One hundred one children with clinical ONH who underwent MRI of the brain and orbits and a detailed pediatric endocrinologic evaluation. Magnetic resonance imaging studies were performed on 1.5-Tesla scanners. The imaging protocol included sagittal T1-weighted images, axial fast fluid-attenuated inversion-recovery/T2-weighted images, and diffusion-weighted images of the brain. Orbital imaging included fat-saturated axial and coronal images and high-resolution axial T2-weighted images. The MRI studies were reviewed by 2 pediatric neuroradiologists for optic nerve hypoplasia, absent or ectopic posterior pituitary, absent pituitary infundibulum, absent septum pellucidum, migration anomalies, and hemispheric injury. Medical records were reviewed for clinical examination findings and endocrinologic status. All patients underwent a clinical evaluation by a pediatric endocrinologist and a standardized panel of serologic testing that included serum insulin-like growth factor-1, insulin-like growth factor binding protein-3, prolactin, cortisol, adrenocorticotropic hormone, thyroid-stimulating hormone, and free thyroxine levels. Radiologists were masked to patients' endocrinologic status and funduscopic findings. Sensitivity and specificity of MRI findings for the detection of hypopituitarism. Neurohypophyseal abnormalities, including absent pituitary infundibulum, ectopic posterior pituitary bright spot, and absent posterior pituitary bright spot, occurred in 33 children. Magnetic resonance imaging disclosed neurohypophyseal abnormalities in 27 of the 28 children with hypopituitarism (sensitivity, 96%). A

  6. Comparison of breast cancer detection by diffusion-weighted magnetic resonance imaging and mammography

    International Nuclear Information System (INIS)

    Yoshikawa, Miho I.; Kikuchi, Keiichi; Mochizuki, Teruhito; Ohsumi, Shozo; Sugata, Shigenori; Kataoka, Masaaki; Takashima, Shigemitsu

    2007-01-01

    Breast cancer-detecting ability of diffusion-weighted magnetic resonance imaging (DW-MRI) was investigated by comparing the breast cancer detection rates of DW-MRI and mammography (MMG). The subjects were 48 women who had breast cancer (53 cancer lesions) who underwent DW-MRI before surgery. Altogether, 41 lesions were invasive ductal carcinoma (IDC), 7 were noninvasive ductal carcinoma (NIDC) and 5 were ''others.'' The breast cancer detection rates by MMG and DW-MRI were 84.9% and 94.3% (P -3 , 1.50±0.24 x 10 -3 , 1.12±0.25 x 10 -3 , and 2.01±0.29 x 10 -3 mm 2 /s for IDC, NIDC, others, and normal breast, respectively, showing that the values of IDC and NIDC were significantly different from that of the normal breast (P<0.001 each). A significant difference was also noted between IDC and NIDC (P<0.001). DW-MRI may be useful for detecting breast cancer in a wide age group of women, including young women with dense mammary glands. (author)

  7. Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging.

    Science.gov (United States)

    Kuijpers, Dirkjan; Ho, Kai Yiu J A M; van Dijkman, Paul R M; Vliegenthart, Rozemarijn; Oudkerk, Matthijs

    2003-04-01

    The purpose of this study was to assess the value of high-dose dobutamine cardiovascular magnetic resonance (CMR) with myocardial tagging for the detection of wall motion abnormalities as a measure of myocardial ischemia in patients with known or suspected coronary artery disease. Two hundred eleven consecutive patients with chest pain underwent dobutamine-CMR 4 days after antianginal medication was stopped. Dobutamine-CMR was performed at rest and during increasing doses of dobutamine. Cine-images were acquired during breath-hold with and without myocardial tagging at 3 short-axis levels. Regional wall motion was assessed in a 16-segment short-axis model. Patients with new wall motion abnormalities (NWMA) were examined by coronary angiography. Dobutamine-CMR was successfully performed in 194 patients. Dobutamine-CMR without tagging detected NWMA in 58 patients, whereas NWMA were detected in 68 patients with tagging (P=0.002, McNemar). Coronary angiography showed coronary artery disease in 65 (96%) of these 68 patients. All but 3 of the 65 patients needed revascularization. In the 112 patients with a negative dobutamine-CMR study, without baseline wall motion abnormalities, the cardiovascular occurrence-free survival rate was 98.2% during the mean follow-up period of 17.3 months (range, 7 to 31). Dobutamine-CMR with myocardial tagging detected more NWMA compared with dobutamine-CMR without tagging and reliably separated patients with a normal life expectancy from those at increased risk of major adverse cardiac events.

  8. High Magnetic Field in THz Plasma Wave Detection by High Electron Mobility Transistors

    Science.gov (United States)

    Sakowicz, M.; Łusakowski, J.; Karpierz, K.; Grynberg, M.; Valusis, G.

    The role of gated and ungated two dimensional (2D) electron plasma in THz detection by high electron mobility transistors (HEMTs) was investigated. THz response of GaAs/AlGaAs and GaN/AlGaN HEMTs was measured at 4.4K in quantizing magnetic fields with a simultaneous modulation of the gate voltage UGS. This allowed us to measure both the detection signal, S, and its derivative dS/dUGS. Shubnikov - de-Haas oscillations (SdHO) of both S and dS/dUGS were observed. A comparison of SdHO observed in detection and magnetoresistance measurements allows us to associate unambiguously SdHO in S and dS/dUGS with the ungated and gated parts of the transistor channel, respectively. This allows us to conclude that the entire channel takes part in the detection process. Additionally, in the case of GaAlAs/GaAs HEMTs, a structure related to the cyclotron resonance transition was observed.

  9. Highly Sensitive Magnetic-SERS Dual-Function Silica Nanoprobes for Effective On-Site Organic Chemical Detection

    Science.gov (United States)

    Jeong, Cheolhwan; Kim, Hyung-Mo; Park, So Yeon; Cha, Myeong Geun; Park, Sung-Jun; Kyeong, San; Pham, Xuan-Hung; Hahm, Eunil; Ha, Yuna; Jeong, Dae Hong; Jun, Bong-Hyun; Lee, Yoon-Sik

    2017-01-01

    We report magnetic silver nanoshells (M-AgNSs) that have both magnetic and SERS properties for SERS-based detection. The M-AgNSs are composed of hundreds of Fe3O4 nanoparticles for rapid accumulation and bumpy silver shell for sensitive SERS detection by near-infrared laser excitation. The intensity of the SERS signal from the M-AgNSs was strong enough to provide single particle-level detection. We obtained much stronger SERS signal intensity from the aggregated M-AgNSs than from the non-aggregated AgNSs. 4-Fluorothiophenol was detected at concentrations as low as 1 nM, which corresponds to 0.16 ppb. The limit of detection for tetramethylthiuram disulfide was 10 μM, which corresponds to 3 ppm. The M-AgNSs can be used to detect trace amounts of organic molecules using a portable Raman system. PMID:28608835

  10. Highly Sensitive Magnetic-SERS Dual-Function Silica Nanoprobes for Effective On-Site Organic Chemical Detection

    Directory of Open Access Journals (Sweden)

    Cheolhwan Jeong

    2017-06-01

    Full Text Available We report magnetic silver nanoshells (M-AgNSs that have both magnetic and SERS properties for SERS-based detection. The M-AgNSs are composed of hundreds of Fe3O4 nanoparticles for rapid accumulation and bumpy silver shell for sensitive SERS detection by near-infrared laser excitation. The intensity of the SERS signal from the M-AgNSs was strong enough to provide single particle-level detection. We obtained much stronger SERS signal intensity from the aggregated M-AgNSs than from the non-aggregated AgNSs. 4-Fluorothiophenol was detected at concentrations as low as 1 nM, which corresponds to 0.16 ppb. The limit of detection for tetramethylthiuram disulfide was 10 μM, which corresponds to 3 ppm. The M-AgNSs can be used to detect trace amounts of organic molecules using a portable Raman system.

  11. Fast and sensitive medical diagnostic protocol based on integrating circular current lines for magnetic washing and optical detection of fluorescent magnetic nanobeads

    Directory of Open Access Journals (Sweden)

    Jaiyam Sharma

    2016-07-01

    Full Text Available Magnetic nanoparticles (MNPs are increasingly being used as ‘magnetic labels’ in medical diagnostics. Practical applications of MNPs necessitate reducing their non-specific interactions with sensor surfaces that result in noise in measurements. Here we describe the design and implementation of a sensing platform that incorporates circular shaped current lines that reduce non-specific binding by enabling the “magnetic washing” of loosely attached MNPs attached to the senor surface. Generating magnetic fields by passing electrical currents through the circular shaped current lines enabled the capture and collection of fluorescent MNPs that was more efficient and effective than straight current lines reported to-date. The use of fluorescent MNPs allows their optical detection rather than with widely used magnetoresistive sensors. As a result our approach is not affected by magnetic noise due to the flow of currents. Our design is expected to improve the speed, accuracy, and sensitivity of MNPs based medical diagnostics. Keywords: Biosensors, Magnetic beads, Fluorescent magnetic nanoparticles, Lab on chip, Point of care testing

  12. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction

    International Nuclear Information System (INIS)

    Zhan Fangfang; Zhou Xiaoming; Xing Da

    2013-01-01

    Graphical abstract: In this work, we have developed and demonstrated a magnetic primer based RT-PCR assay for ECL detection of rotavirus. In the presence of two functional primers (magnetic primer and TBR-primer) and PCR reagents, cDNA from RT was amplified directly onto MPs during PCR cycles of denaturation, annealing and extension. The resulting MPs–TBR complexes were easily loaded on the electrode surface and produced a concentrated ECL signal. The figure shows the schematic illustration of magnetic primer RT-PCR based ECL assay for rotavirus detection. Highlights: ► A novel method for detection of rotavirus has been developed. ► In the presence of magnetic primer, TBR-primer and PCR reagents, cDNA form RT was amplified directly onto MPs. ► To obtain the best sensing and efficient performance, important parameters associated with the efficiency were investigated carefully. ► The proposed method will find numerous applications in food safety field and clinical diagnosis. - Abstract: A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2′-bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs–TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection. In this study, rotavirus in fecal specimens was successfully detected within 1.5 h. Experimental

  13. Rapid and sensitive electrochemiluminescence detection of rotavirus by magnetic primer based reverse transcription-polymerase chain reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Fangfang; Zhou Xiaoming [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China); Xing Da, E-mail: xingda@scnu.edu.cn [MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631 (China)

    2013-01-25

    Graphical abstract: In this work, we have developed and demonstrated a magnetic primer based RT-PCR assay for ECL detection of rotavirus. In the presence of two functional primers (magnetic primer and TBR-primer) and PCR reagents, cDNA from RT was amplified directly onto MPs during PCR cycles of denaturation, annealing and extension. The resulting MPs-TBR complexes were easily loaded on the electrode surface and produced a concentrated ECL signal. The figure shows the schematic illustration of magnetic primer RT-PCR based ECL assay for rotavirus detection. Highlights: Black-Right-Pointing-Pointer A novel method for detection of rotavirus has been developed. Black-Right-Pointing-Pointer In the presence of magnetic primer, TBR-primer and PCR reagents, cDNA form RT was amplified directly onto MPs. Black-Right-Pointing-Pointer To obtain the best sensing and efficient performance, important parameters associated with the efficiency were investigated carefully. Black-Right-Pointing-Pointer The proposed method will find numerous applications in food safety field and clinical diagnosis. - Abstract: A novel method for detection of rotavirus has been developed by integrating magnetic primer based reverse transcription-polymerase chain reaction (RT-PCR) with electrochemiluminescence (ECL) detection. This is realized by accomplishing RT of rotavirus RNA in traditional way and performing PCR of the resulting cDNA fragment on the surface of magnetic particles (MPs). In order to implement PCR on MPs and achieve rapid ECL detection, forward and reverse primers are bounded to MPs and tris-(2,2 Prime -bipyridyl) ruthenium (TBR), respectively. After RT-PCR amplification, the TBR labels are directly enriched onto the surface of MPs. Then the MPs-TBR complexes can be loaded on the electrode surface and analyzed by magnetic ECL platform without any post-modification or post-incubation process. So some laborious manual operations can be avoided to achieve rapid yet sensitive detection

  14. Fabrication of tunable microreactor with enzyme modified magnetic nanoparticles for microfluidic electrochemical detection of glucose

    Energy Technology Data Exchange (ETDEWEB)

    Sheng Jin; Zhang Lei; Lei Jianping [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ju Huangxian, E-mail: hxju@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China)

    2012-01-04

    Highlights: Black-Right-Pointing-Pointer An enzyme microreactor is prepared using an enzyme-nanoparticles packed microchannel. Black-Right-Pointing-Pointer The optimal performance can be obtained by the tunable length of the microreactor. Black-Right-Pointing-Pointer Baseline separation from interferents can be achieved with a microfluidic device. Black-Right-Pointing-Pointer A pretreatment-free determination method for glucose is proposed. - Abstract: A microfluidic device was designed for amperometric determination of glucose by packing enzyme modified magnetic nanoparticles (MNPs) in its microchannel as an enzyme microreactor. Glucose oxidase was covalently attached to the surface of MNPs and localized in the microchannel by the help of an external magnetic field, leading to a tunable packing length. By changing the length of microreactor from 3 to 10 mm, the performance for glucose detection was optimized. The optimal linear range to glucose was from 25 {mu}M to 15 mM with a detection limit of 11 {mu}M at a length of 6 mm. The inter- and intra-day precisions for determination of 1.0 mM glucose were 0.8% and 1.7%, respectively, and the device-to-device reproducibility was 95.6%. The enzyme reactor remained its 81% activity after three-week storage. Due to the advantages of the device and fracture sampling technique, serum samples could be directly sampled through the fracture to achieve baseline separation from ascorbic acid, and proteins in the samples did not interfere with the detection. This work provided a promising way for pretreatment-free determination of glucose with low cost and excellent performance.

  15. Fabrication of tunable microreactor with enzyme modified magnetic nanoparticles for microfluidic electrochemical detection of glucose

    International Nuclear Information System (INIS)

    Sheng Jin; Zhang Lei; Lei Jianping; Ju Huangxian

    2012-01-01

    Highlights: ► An enzyme microreactor is prepared using an enzyme-nanoparticles packed microchannel. ► The optimal performance can be obtained by the tunable length of the microreactor. ► Baseline separation from interferents can be achieved with a microfluidic device. ► A pretreatment-free determination method for glucose is proposed. - Abstract: A microfluidic device was designed for amperometric determination of glucose by packing enzyme modified magnetic nanoparticles (MNPs) in its microchannel as an enzyme microreactor. Glucose oxidase was covalently attached to the surface of MNPs and localized in the microchannel by the help of an external magnetic field, leading to a tunable packing length. By changing the length of microreactor from 3 to 10 mm, the performance for glucose detection was optimized. The optimal linear range to glucose was from 25 μM to 15 mM with a detection limit of 11 μM at a length of 6 mm. The inter- and intra-day precisions for determination of 1.0 mM glucose were 0.8% and 1.7%, respectively, and the device-to-device reproducibility was 95.6%. The enzyme reactor remained its 81% activity after three-week storage. Due to the advantages of the device and fracture sampling technique, serum samples could be directly sampled through the fracture to achieve baseline separation from ascorbic acid, and proteins in the samples did not interfere with the detection. This work provided a promising way for pretreatment-free determination of glucose with low cost and excellent performance.

  16. Quantitative and multiplexed detection for blood typing based on quantum dot-magnetic bead assay.

    Science.gov (United States)

    Xu, Ting; Zhang, Qiang; Fan, Ya-Han; Li, Ru-Qing; Lu, Hua; Zhao, Shu-Ming; Jiang, Tian-Lun

    2017-01-01

    Accurate and reliable blood grouping is essential for safe blood transfusion. However, conventional methods are qualitative and use only single-antigen detection. We overcame these limitations by developing a simple, quantitative, and multiplexed detection method for blood grouping using quantum dots (QDs) and magnetic beads. In the QD fluorescence assay (QFA), blood group A and B antigens were quantified using QD labeling and magnetic beads, and the blood groups were identified according to the R value (the value was calculated with the fluorescence intensity from dual QD labeling) of A and B antigens. The optimized performance of QFA was established by blood typing 791 clinical samples. Quantitative and multiplexed detection for blood group antigens can be completed within 35 min with more than 10 5 red blood cells. When conditions are optimized, the assay performance is satisfactory for weak samples. The coefficients of variation between and within days were less than 10% and the reproducibility was good. The ABO blood groups of 791 clinical samples were identified by QFA, and the accuracy obtained was 100% compared with the tube test. Receiver-operating characteristic curves revealed that the QFA has high sensitivity and specificity toward clinical samples, and the cutoff points of the R value of A and B antigens were 1.483 and 1.576, respectively. In this study, we reported a novel quantitative and multiplexed method for the identification of ABO blood groups and presented an effective alternative for quantitative blood typing. This method can be used as an effective tool to improve blood typing and further guarantee clinical transfusion safety.

  17. Detection of antisymmetric tensor contribution to the magnetic screening of 13C nuclei

    International Nuclear Information System (INIS)

    Kuhn, W.

    1983-01-01

    In the present thesis for the first time a practicable way for the detection of antisymmetric contributions to the tensor of the magnetic screening of atomic nuclei is indicated. The detection is based on the relaxation efficiency of the antisymmetric screening. The measurements were performed on the 13 C nuclei of phthalic acid anhydride. Measured were the spin-lattice relaxation times of all 13 C nuclei of the molecule at field strengths between 4.69 T and 11.74 T, this corresponds to 1 H resonance frequencies in the range from 200 MHz to 500 MHz. From this the interaction-specific relaxation rates could be determined without problems. The space-group of the crystal and the molecule geometry were determined by X-ray structure analysis. For the accurate determination of the hydrogen position on a deuterated monocrystal by means of deuterium nuclear resonance measurements the electric field gradient tensors were measured and from the orientation of the main axes of these tensors the bonding angles calculated. On a monocrystal enriched in the C(7) respectively C(8) position with 13 C the symmetric part of the tensor of the magnetic screening of these two nuclei was measured. With these values and the relaxation rates of the 13 C nuclei by an iterative procedure from the equations for the theoretical relaxation rates of all 13 C nuclei of the molecule the main values of the rotation-diffusion tensor could be determined. On the base of the plane molecule geometry from this the tensor element sigmasub(xz)sup(A) could be explicety detected according to an amount of 11.7 ppm. (orig.) [de

  18. Automated prostate cancer detection via comprehensive multi-parametric magnetic resonance imaging texture feature models

    International Nuclear Information System (INIS)

    Khalvati, Farzad; Wong, Alexander; Haider, Masoom A.

    2015-01-01

    Prostate cancer is the most common form of cancer and the second leading cause of cancer death in North America. Auto-detection of prostate cancer can play a major role in early detection of prostate cancer, which has a significant impact on patient survival rates. While multi-parametric magnetic resonance imaging (MP-MRI) has shown promise in diagnosis of prostate cancer, the existing auto-detection algorithms do not take advantage of abundance of data available in MP-MRI to improve detection accuracy. The goal of this research was to design a radiomics-based auto-detection method for prostate cancer via utilizing MP-MRI data. In this work, we present new MP-MRI texture feature models for radiomics-driven detection of prostate cancer. In addition to commonly used non-invasive imaging sequences in conventional MP-MRI, namely T2-weighted MRI (T2w) and diffusion-weighted imaging (DWI), our proposed MP-MRI texture feature models incorporate computed high-b DWI (CHB-DWI) and a new diffusion imaging modality called correlated diffusion imaging (CDI). Moreover, the proposed texture feature models incorporate features from individual b-value images. A comprehensive set of texture features was calculated for both the conventional MP-MRI and new MP-MRI texture feature models. We performed feature selection analysis for each individual modality and then combined best features from each modality to construct the optimized texture feature models. The performance of the proposed MP-MRI texture feature models was evaluated via leave-one-patient-out cross-validation using a support vector machine (SVM) classifier trained on 40,975 cancerous and healthy tissue samples obtained from real clinical MP-MRI datasets. The proposed MP-MRI texture feature models outperformed the conventional model (i.e., T2w+DWI) with regard to cancer detection accuracy. Comprehensive texture feature models were developed for improved radiomics-driven detection of prostate cancer using MP-MRI. Using a

  19. Horizontal Directional Drilling-Length Detection Technology While Drilling Based on Bi-Electro-Magnetic Sensing

    Directory of Open Access Journals (Sweden)

    Yudan Wang

    2017-04-01

    Full Text Available The drilling length is an important parameter in the process of horizontal directional drilling (HDD exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.

  20. Accelerometer-based automatic voice onset detection in speech mapping with navigated repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Vitikainen, Anne-Mari; Mäkelä, Elina; Lioumis, Pantelis; Jousmäki, Veikko; Mäkelä, Jyrki P

    2015-09-30

    The use of navigated repetitive transcranial magnetic stimulation (rTMS) in mapping of speech-related brain areas has recently shown to be useful in preoperative workflow of epilepsy and tumor patients. However, substantial inter- and intraobserver variability and non-optimal replicability of the rTMS results have been reported, and a need for additional development of the methodology is recognized. In TMS motor cortex mappings the evoked responses can be quantitatively monitored by electromyographic recordings; however, no such easily available setup exists for speech mappings. We present an accelerometer-based setup for detection of vocalization-related larynx vibrations combined with an automatic routine for voice onset detection for rTMS speech mapping applying naming. The results produced by the automatic routine were compared with the manually reviewed video-recordings. The new method was applied in the routine navigated rTMS speech mapping for 12 consecutive patients during preoperative workup for epilepsy or tumor surgery. The automatic routine correctly detected 96% of the voice onsets, resulting in 96% sensitivity and 71% specificity. Majority (63%) of the misdetections were related to visible throat movements, extra voices before the response, or delayed naming of the previous stimuli. The no-response errors were correctly detected in 88% of events. The proposed setup for automatic detection of voice onsets provides quantitative additional data for analysis of the rTMS-induced speech response modifications. The objectively defined speech response latencies increase the repeatability, reliability and stratification of the rTMS results. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Magnetic resonance pharmacological stress for detecting coronary disease. Comparison with echocardiography

    International Nuclear Information System (INIS)

    Baer, F.M.; Crnac, J.; Jochims, M.; Schneider, C.; Erdmann, E.; Schmidt, M.; Theissen, P.; Schicha, H.

    2000-01-01

    Stress testing is the cornerstone in the diagnosis of patients with suspected coronary artery disease (CAD). Although exercise ECG remains the primary approach for the detection of ischemia in patients with chest pain syndromes, its sensitivity and specificity is limited and exercise ECG does not provide detailed information about the localisation and extent of CAD. Stress echocardiography has been used for the detection of ischemia for more than a decade and has become an increasingly popular noninvasive method for the detection of CAD. In experienced hands wall motion analysis based on stress echocardiography has proved to be as sensitive and specific for the detection of myocardial ischemia as scintigraphic techniques. Recent technical improvements, namely the availability of ultrafast imaging sequences with a significant reduction of imaging time have initiated several studies which examined the combination of pharmacological stress and magnetic resonance imaging (MRI) for the detection of suspected CAD. The most well developed stress-MRI technique is wall motion imaging during dobutamine stress. This technique is analogous to stress echocardiography, but MRI has the inherent advantages of better resolution, higher reproducibility and true long and short axis imaging with contiguous parallel slices. However, the clinical impact of MRI for the diagnosis of CAD is still low. Further technical developments including real time imaging and a reliable automated quantitative analysis of left ventricular function are required before stress-MRI becomes a serious challenge to stressechocardiography in the clinical arena. Currently, only a few MRI facilities and physicians are dedicated to pharmacological stress testing with MRI and the future clinical impact of this promising technique will depend on its potential to provide information beyond myocardial function including perfusion, metabolism and coronary anatomy in form of a ''one-stop''-shop for the cardiac patient

  2. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R. [University of Melbourne, Parkville, VIC (Australia). Department of Radiology

    1998-08-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet). Images were reviewed by two `blinded` radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient`s hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd 16 refs., 1 fig.

  3. Detection of renal arteries with fast spin-echo magnetic resonance imaging

    International Nuclear Information System (INIS)

    Tello, R.; Mitchell, P.J.; Witte, D.J.; Thomson, K.R.

    1998-01-01

    With the increasing use of non-invasive imaging with MR and volumetric CT to evaluate renal arteries, the ability to accurately detect the number and state of native renal arteries becomes critical if conventional angiography is to be supplanted in these settings. The present study evaluated the utility of a fast spin-echo (FSE) T2-weighted sequence to detect the number and course of renal arteries and their ostia compared to conventional angiography. Ten patients underwent conventional catheter angiography either for renal artery stenosis evaluation or as potential renal donors. Each patient then had an MR study of the renal arteries and kidneys with FSE MR (TR = 4000 ms, TE = 102 ms, eight- echo train length, 5-mm-thick interleaved 128 phase encodes, superior and inferior saturation pulses, number of excitations (NEX) = 4, on a 1.5-T superconducting magnet. Images were reviewed by two 'blinded' radiologists and renal arteries were counted and their ostia were evaluated. Results were compared with angiography and inter- and intra-observer statistics were calculated. All 10 patients underwent MR successfully, nine for renal artery stenosis (RAS) evaluation and one was a renal donor. A total of 24 renal arteries were imaged in 19 kidneys. Fast spin-echo MR is 95% accurate (95%CI: 88-100%) in detection of renal arteries, with no statistical difference between FSE MR and catheter angiography (McNemar P = 0.0). Inter- and intra-observer statistics demonstrate good-to-excellent agreement in renal artery detection (kappa: 0.63-0.90). In one case of RAS evaluation an incidental adrenal mass was detected as the aetiology of the patient's hypertension. Fast spin-echo MR can be a useful adjunct as part of the imaging for renal arteries with MRI. Copyright (1998) Blackwell Science Pty Ltd

  4. Detection of Botulinum Toxin Muscle Effect in Humans Using Magnetic Resonance Imaging: A Qualitative Case Series.

    Science.gov (United States)

    O'Dell, Michael W; Villanueva, Mark; Creelman, Carly; Telhan, Gaurav; Nestor, Jaclyn; Hentel, Keith D; Ballon, Douglas; Dyke, Jonathan P

    2017-12-01

    Although important for dosing and dilution, there are few data describing botulinum toxin (BT) movement in human muscle. To better understand BT movement within human muscle. Proof-of-concept study with descriptive case series. Outpatient academic practice. Five subjects with stroke who were BT naive with a mean age of 60.4 ± 14 years and time poststroke of 4.6 ± 3.7 years. Three standardized injections were given to the lateral gastrocnemius muscle (LGM): 2 contained 25 units (U) of onabotulinumtoxinA (Botox) in 0.25 mL of saline solution and the third 0.25 mL of saline solution only. The tibialis anterior muscle (TAM) was not injected in any subject. A leg magnetic resonance image was obtained at baseline, 2 months, and 3 months later with a 3.0 Tesla Siemens scanner. Three muscles, the LGM, lateral soleus muscle (LSM), and TAM, were manually outlined on the T2 mapping sequence at each time point. A histogram of T2 relaxation times (T2-RT) for all voxels at baseline was used to calculate a mean and standard deviation (SD) T2-RT for each muscle. Botulinum toxin muscle effect (BTME) at 2 months and 3 months was defined as a subject- and muscle-specific T2-RT voxel threshold ≥3 SD above the baseline mean at or near BT injection sites. BTME volume for each leg magnetic resonance imaging slice at 3 time points and 3 muscles for all subjects. One subject missed the 3-month scan, leaving 18 potential observations of BTME. Little to no BTME effect was seen in the noninjected TAM. A BTME was detected in the LGM in 13 of 18 possible observations, and no effect was detected in 5 observations. Possible BTME effect was seen in the LSM in 3 subjects due to either diffusion through fascia or needle misplacement. Volume of BTME, as defined here, appeared to be substantially greater than the 0.25-mL injection volume. This descriptive case series is among the first attempts to quantify BTME within human muscle. Our findings are preliminary and are limited by a few

  5. Magnetic resonance elastography in the detection of hepatorenal syndrome in patients with cirrhosis and ascites

    Energy Technology Data Exchange (ETDEWEB)

    Low, Gavin [Cambridge University Hospitals NHS Foundation Trust Hospital, Department of Radiology, Addenbrooke' s Hospital, England (United Kingdom); University of Alberta, Edmonton, Alberta (Canada); University of Cambridge School of Clinical Medicine, Department of Radiology, Cambridge (United Kingdom); Owen, Nicola E.; Alexander, Graeme J.M. [Cambridge University Hospitals NHS Foundation Trust Hospital, Division of Gastroenterology and Hepatology, Addenbrooke' s Hospital, England (United Kingdom); Joubert, Ilse; Patterson, Andrew J.; Graves, Martin J. [Cambridge University Hospitals NHS Foundation Trust Hospital, Department of Radiology, Addenbrooke' s Hospital, England (United Kingdom); Lomas, David J. [Cambridge University Hospitals NHS Foundation Trust Hospital, Department of Radiology, Addenbrooke' s Hospital, England (United Kingdom); University of Cambridge School of Clinical Medicine, Department of Radiology, Cambridge (United Kingdom)

    2015-10-15

    Hepatorenal syndrome (HRS) is the most lethal cause of renal impairment in cirrhosis. Magnetic resonance elastography (MRE) is a diagnostic test that characterises tissues based on their biomechanical properties. The aim of this study was to assess the feasibility of MRE for detecting HRS in cirrhotic patients. A prospective diagnostic investigation was performed. Renal MRE was performed on 21 hospitalised patients with cirrhosis and ascites. Six patients had HRS, one patient had non-HRS renal impairment, and 14 patients had normal renal function. The MRE-measured renal stiffness was compared against the clinical diagnosis as determined by clinical review alongside laboratory and radiologic results. The MRE-measured renal stiffness was significantly lower in patients with HRS (median stiffness of 3.30 kPa at 90 Hz and 2.62 kPa at 60 Hz) compared with patients with normal renal function (median stiffness of 5.08 kPa at 90 Hz and 3.41 kPa at 60 Hz) (P ≤ 0.014). For the detection of HRS, MRE had an area under the receiver operating characteristic curve of 0.94 at 90 Hz and 0.89 at 60 Hz. MRE had excellent inter-rater agreement, as assessed by Bland-Altman and intraclass correlation coefficient (> 0.9). MRE shows potential in the detection of HRS. (orig.)

  6. Effect of background parenchymal enhancement on breast cancer detection with magnetic resonance imaging.

    Science.gov (United States)

    Telegrafo, M; Rella, L; Stabile Ianora, A A; Angelelli, G; Moschetta, M

    2016-03-01

    To investigate whether background parenchymal enhancement (BPE) may influence the sensitivity of dynamic contrast-enhanced magnetic resonance (DCE-MR) imaging in breast cancer detection. A total of 180 consecutive women with 194 breast cancers underwent MR imaging examination. Women were assigned to two different groups depending on the degree of BPE. Group 1 consisted of women with minimal or mild BPE and group 2 of women with moderate or marked BPE. The distributions of histotypes of tumors within the two groups were compared using the χ(2) test. Difference in sensitivities of DCE-MR imaging for tumor detection between the two groups was searched for using the Student t-test. No differences in terms of distributions of histotypes of tumors between the two groups of women were found (P=0.5). The 11% difference in sensitivity of DCE-MR imaging for tumor detection between group 1 (91/92; 99%; 95% CI: 94-100%) and group 2 (90/102; 88%; 95% CI: 80-94%) was statistically significant (P=0.0058). The sensitivity of DCE-MR imaging is significantly lower in women with moderate and marked BPE as compared with women with minimal and mild BPE regardless of cancer histotype. BPE could represent a limitation for breast MR imaging interpretation and should be indicated in MR imaging reports. Copyright © 2015 Éditions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  7. Hippocampus shape analysis for temporal lobe epilepsy detection in magnetic resonance imaging

    Science.gov (United States)

    Kohan, Zohreh; Azmi, Reza

    2016-03-01

    There are evidences in the literature that Temporal Lobe Epilepsy (TLE) causes some lateralized atrophy and deformation on hippocampus and other substructures of the brain. Magnetic Resonance Imaging (MRI), due to high-contrast soft tissue imaging, is one of the most popular imaging modalities being used in TLE diagnosis and treatment procedures. Using an algorithm to help clinicians for better and more effective shape deformations analysis could improve the diagnosis and treatment of the disease. In this project our purpose is to design, implement and test a classification algorithm for MRIs based on hippocampal asymmetry detection using shape and size-based features. Our method consisted of two main parts; (1) shape feature extraction, and (2) image classification. We tested 11 different shape and size features and selected four of them that detect the asymmetry in hippocampus significantly in a randomly selected subset of the dataset. Then, we employed a support vector machine (SVM) classifier to classify the remaining images of the dataset to normal and epileptic images using our selected features. The dataset contains 25 patient images in which 12 cases were used as a training set and the rest 13 cases for testing the performance of classifier. We measured accuracy, specificity and sensitivity of, respectively, 76%, 100%, and 70% for our algorithm. The preliminary results show that using shape and size features for detecting hippocampal asymmetry could be helpful in TLE diagnosis in MRI.

  8. Phone camera detection of glucose blood level based on magnetic particles entrapped inside bubble wrap.

    Science.gov (United States)

    Martinkova, Pavla; Pohanka, Miroslav

    2016-12-18

    Glucose is an important diagnostic biochemical marker of diabetes but also for organophosphates, carbamates, acetaminophens or salicylates poisoning. Hence, innovation of accurate and fast detection assay is still one of priorities in biomedical research. Glucose sensor based on magnetic particles (MPs) with immobilized enzymes glucose oxidase (GOx) and horseradish peroxidase (HRP) was developed and the GOx catalyzed reaction was visualized by a smart-phone-integrated camera. Exponential decay concentration curve with correlation coefficient 0.997 and with limit of detection 0.4 mmol/l was achieved. Interfering and matrix substances were measured due to possibility of assay influencing and no effect of the tested substances was observed. Spiked plasma samples were also measured and no influence of plasma matrix on the assay was proved. The presented assay showed complying results with reference method (standard spectrophotometry based on enzymes glucose oxidase and peroxidase inside plastic cuvettes) with linear dependence and correlation coefficient 0.999 in concentration range between 0 and 4 mmol/l. On the grounds of measured results, method was considered as highly specific, accurate and fast assay for detection of glucose.

  9. Detection of pericardial inflammation with late-enhancement cardiac magnetic resonance imaging: initial results

    International Nuclear Information System (INIS)

    Taylor, Andrew M.; Dymarkowski, Steven; Bogaert, Jan; Verbeken, Eric K.

    2006-01-01

    To examine the value of late-enhancement cardiac magnetic resonance imaging (MRI) for detection of pericardial inflammation. Late-enhancement cardiac MRI was performed in 16 patients with clinical suspicion of pericardial disease. Pericardial effusion, pericardial thickening and pericardial enhancement were assessed. MRI findings were compared with those of definitive pericardial histology (n=14) or microbiology (n=2). A control group of 12 patients with no clinical evidence of pericardial disease were also imaged with the same MRI protocol. Sensitivity and specificity for late-enhancement MRI detection of pericardial inflammation was of 100%. There was MRI late enhancement of the pericardial layers in all five patients with histological/microbiological evidence of inflammatory pericarditis. MRI demonstrated no pericardial thickening and no MRI late enhancement with or without a pericardial effusion in any of the five patients with histological evidence of a normal pericardium. MRI detected pericardial thickening in the absence of both pericardial effusion and late enhancement in all six patients with histological evidence of chronic fibrosing pericarditis. The 12 control subjects showed no evidence of pericardial MRI late enhancement. These findings demonstrate that MRI late enhancement can be used to visualize pericardial inflammation in patients with clinical suspicion of pericardial disease. (orig.)

  10. Osteonecrosis detected by whole body magnetic resonance in patients with Hodgkin Lymphoma treated by BEACOPP

    Energy Technology Data Exchange (ETDEWEB)

    Albano, Domenico; La Grutta, Ludovico; Grassedonio, Emanuele; Brancatelli, Giuseppe; Lagalla, Roberto; Midiri, Massimo; Galia, Massimo [University of Palermo, Department of Radiology, DIBIMED, Palermo (Italy); Patti, Caterina; Mule, Antonino [Azienda Ospedali Riuniti Villa Sofia-Cervello, Department of Hematology I, Palermo (Italy)

    2017-05-15

    The purpose of our retrospective review of prospectively acquired Whole Body Magnetic Resonance (WB-MRI) scans was to assess the incidence of osteonecrosis in patients who received different chemotherapies. We evaluated the WB-MRI scans performed on 42 patients with Hodgkin Lymphoma treated by three chemotherapy regimens (6ABVD, 2ABVD + 4BEACOPP, 2ABVD + 8BEACOPP), excluding patients with the main risk factors for osteonecrosis. Six out of seven patients (86 %) who received eight BEACOPP and one out of five patients (20 %) treated by four BEACOPP presented osteonecrosis, with a statistically significant difference of frequency between the two groups of patients (p < 0.05); no injury has been reported in patients treated by only ABVD. Among a total of 48 osteonecrotic lesions observed, 48 % were detected in the knee; multifocal osteonecrosis were detected in six out of seven patients (86 %). The development of osteonecrosis is strictly related to the chemotherapy protocol adopted and the number of cycles received, with a strong correlation between the dose of corticosteroids included in the BEACOPP scheme and this complication. WB-MRI can be considered as a helpful tool that allows detecting earlier osteonecrotic lesions in patients treated with corticosteroids. (orig.)

  11. Estimation of Low Concentration Magnetic Fluid Weight Density and Detection inside an Artificial Medium Using a Novel GMR Sensor

    Directory of Open Access Journals (Sweden)

    Chinthaka GOONERATNE

    2008-04-01

    Full Text Available Hyperthermia treatment has been gaining momentum in the past few years as a possible method to manage cancer. Cancer cells are different to normal cells in many ways including how they react to heat. Due to this difference it is possible for hyperthermia treatment to destroy cancer cells without harming the healthy normal cells surrounding the tumor. Magnetic particles injected into the body generate heat by hysteresis loss and temperature is increased when a time varying external magnetic field is applied. Successful treatment depends on how efficiently the heat is controlled. Thus, it is very important to estimate the magnetic fluid density in the body. Experimental apparatus designed for testing, numerical analysis, and results obtained by experimentation using a simple yet novel and minimally invasive needle type spin-valve giant magnetoresistance (SV-GMR sensor, to estimate low concentration magnetic fluid weight density and detection of magnetic fluid in a reference medium is reported.

  12. Development of quench detection/protection system based on active power method for superconducting magnet by using capacitor circuit

    International Nuclear Information System (INIS)

    Nanato, N.; Otsuka, T.; Hesaka, S.; Murase, S.

    2013-01-01

    Highlights: ► The authors have presented an active power method for quench detection. ► A method for improving its characteristics using a capacitor circuit was proposed. ► Quench detection/protection test for a Bi2223 superconducting coil was carried out. ► The proposed method was more useful than the conventional one. -- Abstract: When a quench occurs in a superconducting magnet, excessive joule heating in normal region may damage the magnet. It is necessary to detect the quench as soon as possible and discharge magnetic energy stored in the magnet. The authors have presented a quench detection/protection system based on an active power method which detects the quench regardless of a self-inductive and mutual-inductive voltages and electromagnetic noise. In the conventional active power method, the inductive voltages are removed by cancel coils. In this paper, the authors propose a method to cancel an inductive voltage using a capacitor circuit. The quench detection/protection system becomes more precise and smaller than the conventional system through the capacitor circuit

  13. Reusable nanosilver-coated magnetic particles for ultrasensitive SERS-based detection of malachite green in water samples

    Science.gov (United States)

    Song, Dan; Yang, Rong; Wang, Chongwen; Xiao, Rui; Long, Feng

    2016-01-01

    A novel nanosilver-deposited silica-coated Fe3O4 magnetic particle (Fe3O4@SiO2@Ag) with uniform size, good SERS activity and magnetic responsiveness was synthesized using amination polymer. The Fe3O4@SiO2@Ag magnetic particles have been successfully applied for ultrasensitive SERS detection of malachite green (MG) in water samples. The mechanism is that MG can be adsorbed on the silver surface of nanosilver-coated magnetic particles via one nitrogen atom, and the Raman signal intensity of MG is significantly enhanced by the nanosilver layer formed on the magnetic particles. The developed sensing system exhibited a sensitive response to MG in the range of 10 fM to 100 μM with a low limit of detection (LOD) 2 fM under optimal conditions. The LOD was several orders of magnitude lower than those of other methods. This SERS-based sensor showed good reproducibility and stability for MG detection. The silver-coated magnetic particles could easily be regenerated as SERS substrates only using low pH solution for multiple sensing events. The recovery of MG added to several water samples at different concentrations ranged from 90% to 110%. The proposed method facilitates the ultrasensitive analysis of dyes to satisfy the high demand for ensuring the safety of water sources. PMID:26964502

  14. The influence of bias magnetization of nanoparticles on GMR sensor signal and sensitivity for the ultra-low concentration detection

    Science.gov (United States)

    Zhang, Yang; Xu, Jie; Cao, Derang; Li, Qiang; Zhao, Guoxia; Sun, Nian X.; Li, Shandong

    2018-05-01

    In the broad research of the GMR bio-sensing technology, it is vital to explore appropriate magnetic labels and its influences on the detection signal. In this work, four kinds of ferrite particles of γ-Fe2O3, CoFe2O4, NiFe2O4 and NiZnFe2O4 were prepared through calcining the Dimethyl Formamide (DMF) solution of the transition metal nitrates [Fe(NO3)3 and X(NO3)2, X = Co, Ni, Zn] to study the effect of magnetic properties on detection signals using a DC in-plane measuring method. It was revealed that for four particles, the output voltage differences |ΔV| between with and without magnetic particles exhibit log-linear functions of the particles concentrations x in the range from 0.1 to 10 ng/mL. A very low limitation of detection (LOD) of 0.1 ng/mL for all the samples was obtained, which is two orders smaller than that in the previous work. Moreover, the change of output voltage difference at the LOD (|ΔVlim|) is proportional to the magnetization at bias field (bias magnetization, Mbias), which indicates that larger Mbias leads to a lower LOD. This work provides a useful guidance in selecting or preparing magnetic labels to enhance the sensitivity of GMR biosensors.

  15. The fabrication of magnetic particle-based chemiluminescence immunoassay for human epididymis protein-4 detection in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Xiaoling Fu

    2018-03-01

    Full Text Available The magnetic particles have a significant influence on the immunoassay detection and cancer therapy. Herein, the chemiluminescence immunoassay combined with the magnetic particles (MPCLIA was presented for the clinical determination and analysis of human epididymis protein 4 (HE4 in the human serum. Under the optimized experiment conditions, the secure MPCLIA method can detect HE4 in the broader range of 0–1000 pmol/L, with a lower detection limit of 1.35 pmol/L. The satisfactory recovery rate of the method in the serum ranged from 83.62% to 105.10%, which was well within the requirement of clinical analysis. Moreover, the results showed the good correlation with enzyme-linked immunosorbent assay (ELISA, with the correlation coefficient of 0.9589. This proposed method has been successfully applied to the clinical determination of HE4 in the human serum. Keywords: Chemiluminescence immunoassay, Magnetic particles, Human epididymis protein 4

  16. Broadband, large-area microwave antenna for optically detected magnetic resonance of nitrogen-vacancy centers in diamond

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kento; Monnai, Yasuaki; Saijo, Soya; Fujita, Ryushiro; Ishi-Hayase, Junko; Itoh, Kohei M., E-mail: kitoh@appi.keio.ac.jp; Abe, Eisuke, E-mail: e-abe@keio.jp [School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Watanabe, Hideyuki [Correlated Electronics Group, Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8565 (Japan)

    2016-05-15

    We report on a microwave planar ring antenna specifically designed for optically detected magnetic resonance (ODMR) of nitrogen-vacancy (NV) centers in diamond. It has the resonance frequency at around 2.87 GHz with the bandwidth of 400 MHz, ensuring that ODMR can be observed under external magnetic fields up to 100 G without the need of adjustment of the resonance frequency. It is also spatially uniform within the 1-mm-diameter center hole, enabling the magnetic-field imaging in the wide spatial range. These features facilitate the experiments on quantum sensing and imaging using NV centers at room temperature.

  17. Photonic crystal fiber injected with Fe{sub 3}O{sub 4} nanofluid for magnetic field detection

    Energy Technology Data Exchange (ETDEWEB)

    Thakur, Harneet V.; Nalawade, Sandipan M.; Gupta, Swati [Photonics Group, Department of Applied Physics, Defence Institute of Advanced Technology, Girinagar, Pune 411 025 (India); Kitture, Rohini [Department of Electronic-Science, Fergusson College, Pune 411 004 (India); Kale, S. N. [Nanotechnology Group, Department of Applied Physics, Defence Institute of Advanced Technology, Girinagar, Pune 411 025 (India)

    2011-10-17

    We report a magnetic field sensor having advantages of both photonic crystal fiber and optofluidics, combining them on a single platform by infiltrating small amount of Fe{sub 3}O{sub 4} magnetic optofluid/nanofluid in cladding holes of polarization-maintaining photonic crystal fiber. We demonstrated that magnetic field of few mT can be easily and very well detected with higher sensitivity of 242 pm/mT. The change in the birefringence values has been correlated to the response of nanofluid to applied field.

  18. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection

    Energy Technology Data Exchange (ETDEWEB)

    Timin, Alexander S., E-mail: a_timin@mail.ru [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation); RASA Center in Tomsk, Tomsk Polytechnic University, pros. Lenina, 30, Tomsk (Russian Federation); Solomonov, Alexey V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation); Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001 (Israel); Kumagai, Akiko; Miyawaki, Atsushi [Cell Function Dynamics, Brain Science Institute RIKEN, 2-1 Hirosawa, Wako-city, Saitama, 351-0198 (Japan); Khashirova, Svetlana Yu; Zhansitov, Azamat [Kabardino-Balkar State University, 173 Chernyshevskogo St., Nal' chik, 360004, Kabardino-Balkaria (Russian Federation); Rumyantsev, Evgeniy V. [Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology (ISUCT), 7, Sheremetevsky prosp., 153000, Ivanovo (Russian Federation)

    2016-11-01

    The synthesis of multifunctional nano-sized materials is leading to the rapid development of key application, including improved drug delivery, bioimaging and protein separation. In this work, magnetic silica particles modified with novel guanidine containing co-polymers were manufactured via sol-gel method. To evaluate the chemical composition of our prepared samples, FT-IR spectroscopy and thermogravimetry were conducted. Scanning electron microscopy was used in order to investigate the morphology of final products after modification by guanidine containing co-polymers and iron nanoparticles. In addition, the surface of polymer-silica composites was functionalized by the novel bilirubin-inducible fluorescent protein UnaG. In an aqueous bilirubin solution, the silica particles decorated with the polymer-UnaG have showed bright fluorescence. Synthesis and characterization of these hybrid materials allow developing of new multifunctional nano-sized materials, which will be used for detection and separation of bilirubin, a lipophilic heme catabolite that is a clinical diagnostic for liver function. - Highlights: • Novel magnetic silicas grafted by guanidine containing co-polymers were prepared. • Unag protein was effectively loaded into polymer coated silicas. • The fluorescent properties depend on content of bilirubin.

  19. Magnetic polymer-silica composites as bioluminescent sensors for bilirubin detection

    International Nuclear Information System (INIS)

    Timin, Alexander S.; Solomonov, Alexey V.; Kumagai, Akiko; Miyawaki, Atsushi; Khashirova, Svetlana Yu; Zhansitov, Azamat; Rumyantsev, Evgeniy V.

    2016-01-01

    The synthesis of multifunctional nano-sized materials is leading to the rapid development of key application, including improved drug delivery, bioimaging and protein separation. In this work, magnetic silica particles modified with novel guanidine containing co-polymers were manufactured via sol-gel method. To evaluate the chemical composition of our prepared samples, FT-IR spectroscopy and thermogravimetry were conducted. Scanning electron microscopy was used in order to investigate the morphology of final products after modification by guanidine containing co-polymers and iron nanoparticles. In addition, the surface of polymer-silica composites was functionalized by the novel bilirubin-inducible fluorescent protein UnaG. In an aqueous bilirubin solution, the silica particles decorated with the polymer-UnaG have showed bright fluorescence. Synthesis and characterization of these hybrid materials allow developing of new multifunctional nano-sized materials, which will be used for detection and separation of bilirubin, a lipophilic heme catabolite that is a clinical diagnostic for liver function. - Highlights: • Novel magnetic silicas grafted by guanidine containing co-polymers were prepared. • Unag protein was effectively loaded into polymer coated silicas. • The fluorescent properties depend on content of bilirubin.

  20. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging.

    Directory of Open Access Journals (Sweden)

    Alexander J Taylor

    Full Text Available Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.

  1. Probe-Specific Procedure to Estimate Sensitivity and Detection Limits for 19F Magnetic Resonance Imaging.

    Science.gov (United States)

    Taylor, Alexander J; Granwehr, Josef; Lesbats, Clémentine; Krupa, James L; Six, Joseph S; Pavlovskaya, Galina E; Thomas, Neil R; Auer, Dorothee P; Meersmann, Thomas; Faas, Henryk M

    2016-01-01

    Due to low fluorine background signal in vivo, 19F is a good marker to study the fate of exogenous molecules by magnetic resonance imaging (MRI) using equilibrium nuclear spin polarization schemes. Since 19F MRI applications require high sensitivity, it can be important to assess experimental feasibility during the design stage already by estimating the minimum detectable fluorine concentration. Here we propose a simple method for the calibration of MRI hardware, providing sensitivity estimates for a given scanner and coil configuration. An experimental "calibration factor" to account for variations in coil configuration and hardware set-up is specified. Once it has been determined in a calibration experiment, the sensitivity of an experiment or, alternatively, the minimum number of required spins or the minimum marker concentration can be estimated without the need for a pilot experiment. The definition of this calibration factor is derived based on standard equations for the sensitivity in magnetic resonance, yet the method is not restricted by the limited validity of these equations, since additional instrument-dependent factors are implicitly included during calibration. The method is demonstrated using MR spectroscopy and imaging experiments with different 19F samples, both paramagnetically and susceptibility broadened, to approximate a range of realistic environments.

  2. Spin transport, magnetoresistance, and electrically detected magnetic resonance in amorphous hydrogenated silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, Michael J. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Lenahan, Patrick M. [Intercollege Program of Materials, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); King, Sean W. [Logic Technology Development, Intel Corporation, Hillsboro, Oregon 97124 (United States)

    2016-08-08

    We report on a study of spin transport via electrically detected magnetic resonance (EDMR) and near-zero field magnetoresistance (MR) in silicon nitride films. Silicon nitrides have long been important materials in solid state electronics. Although electronic transport in these materials is not well understood, electron paramagnetic resonance studies have identified a single dominating paramagnetic defect and have also provided physical and chemical descriptions of the defects, called K centers. Our EDMR and MR measurements clearly link the near-zero field MR response to the K centers and also indicate that K center energy levels are approximately 3.1 eV above the a-SiN:H valence band edge. In addition, our results suggest an approach for the study of defect mediated spin-transport in inorganic amorphous insulators via variable electric field and variable frequency EDMR and MR which may be widely applicable.

  3. Alzheimer's Disease Detection in Brain Magnetic Resonance Images Using Multiscale Fractal Analysis

    International Nuclear Information System (INIS)

    Lahmiri, Salim; Boukadoum, Mounir

    2013-01-01

    We present a new automated system for the detection of brain magnetic resonance images (MRI) affected by Alzheimer's disease (AD). The MRI is analyzed by means of multiscale analysis (MSA) to obtain its fractals at six different scales. The extracted fractals are used as features to differentiate healthy brain MRI from those of AD by a support vector machine (SVM) classifier. The result of classifying 93 brain MRIs consisting of 51 images of healthy brains and 42 of brains affected by AD, using leave-one-out cross-validation method, yielded 99.18% ± 0.01 classification accuracy, 100% sensitivity, and 98.20% ± 0.02 specificity. These results and a processing time of 5.64 seconds indicate that the proposed approach may be an efficient diagnostic aid for radiologists in the screening for AD

  4. Detectability of Neuronal Currents in Human Brain with Magnetic Resonance Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Howland D. T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayer, Andrew R. [Mind Research Network, Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Caprihan, Arvind [Mind Research Network, Albuquerque, NM (United States); Gasparovic, Charles [Mind Research Network, Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Blagoev, Krastan B. [Mind Research Network, Albuquerque, NM (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haaland, David M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-09-01

    Magnetic resonance spectroscopy has been used in a high-risk, high-payoff search for neuronal current (NC) signals in the free induction decay (FID) data from the visual cortex of human subjects during visual stimulation. If successful, this approach could make possible the detection of neuronal currents in the brain at high spatial and temporal resolution. Our initial experiments indicated the presence of a statistically significant change in the FID containing the NC relative to FIDs with the NC absent, and this signal was consistent with the presence of NC. Unfortunately, two follow-on experiments were not able to confirm or replicate the positive findings of the first experiment. However, even if the result from the first experiment were evidence of NC in the FID, it is clear that its effect is so small, that a true NC imaging experiment would not be possible with the current instrumentation and experimental protocol used here.

  5. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  6. Study and realization of a detection apparatus for the Grenoble magnetic spectrometer

    International Nuclear Information System (INIS)

    Burel, J.-P.

    1975-01-01

    Two multiwire proportional chambers were studied for a magnetic spectrometer. The first one is constructed for visualization of the attenuated beam at the place of the target. The sensitive area is 4x4cm 2 . The anode wires are 0.020mm diameter, gold plated tungsten, 2mm spaced. Each cathode plane wires are connected to a 20 units-5ns delay line. The planes are 3.2mm spaced. The spatial resolution obtained is better than 0.3mm. The second chamber is placed at the focal plane of the spectrometer. The sensitive area is 50x5cm 2 . The horizontal position detection uses an original charge-division system with four chains of capacitors. The particle position results of the center of gravity calculus of different amplified pulses. An electronic circuit has been constructed and the result is directly stored in a memory unit. The spatial resolution obtained is 0.4mm [fr

  7. Structure and dynamics of olefin radical cation aggregates. Time-resolved fluorescence detected magnetic resonance

    International Nuclear Information System (INIS)

    Desrosiers, M.F.; Trifunac, A.D.

    1986-01-01

    The time-resolved EPR spectra and thus the structure and dynamics of transient hydrocarbon radical cations are obtained by the pulse radiolysis-fluorescence detected magnetic resonance (FDMR) technique. Here the authors report the observation of short-lived radical cations from olefins. FDMR-EPR spectra of radical cations from tetramethylethylene and cyclohexadiene are illustrated. The olefin radical cations, FDMR spectra are concentration-dependent, since dimerization with neutral molecules takes place at higher (>10 -2 M) olefin concentration. Rate constants for the dimerization reaction are derived and the effect of solvent viscosity on aggregate formation is demonstrated. By monitoring the further reactions of dimer cations the authors have obtained EPR evidence for previously unobserved higher-order (multimer) radical cation aggregates of olefins. 16 references, 5 figures

  8. P-N defect in GaNP studied by optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Chen, W.M.; Thinh, N.Q.; Vorona, I.P.; Buyanova, I.A.; Xin, H.P.; Tu, C.W.

    2003-01-01

    We provide experimental evidence for an intrinsic defect in GaNP from optically detected magnetic resonance (ODMR). This defect is identified as a P-N complex, exhibiting hyperfine structure due to interactions with a nuclear spin I=((1)/(2)) of one P atom and also a nuclear spin I=1 due to one N atom. The introduction of the defect is assisted by the incorporation of N within the studied N composition range of up to 3.1%, under non-equilibrium growth conditions during gas-source molecular beam epitaxy. The corresponding ODMR spectrum was found to be isotropic, suggesting an A 1 symmetry of the defect state. The localization of the electron wave function at the P-N defect in GaNP is found to be even stronger than that for the isolated P Ga antisite in its parent binary compound GaP

  9. On-the-fly detection of images with gastritis aspects in magnetically guided capsule endoscopy

    Science.gov (United States)

    Mewes, P. W.; Neumann, D.; Juloski, A. L.; Angelopoulou, E.; Hornegger, J.

    2011-03-01

    Capsule Endoscopy (CE) was introduced in 2000 and has since become an established diagnostic procedure for the small bowel, colon and esophagus. For the CE examination the patient swallows the capsule, which then travels through the gastrointestinal tract under the influence of the peristaltic movements. CE is not indicated for stomach examination, as the capsule movements can not be controlled from the outside and the entire surface of the stomach can not be reliably covered. Magnetically-guided capsule endoscopy (MGCE) was introduced in 2010. For the MGCE procedure the stomach is filled with water and the capsule is navigated from the outside using an external magnetic field. During the examination the operator can control the motion of the capsule in order to obtain a sufficient number of stomach-surface images with diagnostic value. The quality of the examination depends on the skill of the operator and his ability to detect aspects of interest in real time. We present a novel computer-assisted diagnostic-procedure (CADP) algorithm for indicating gastritis pathologies in the stomach during the examination. Our algorithm is based on pre-processing methods and feature vectors that are suitably chosen for the challenges of the MGCE imaging (suspended particles, bubbles, lighting). An image is classified using an ada-boost trained classifier. For the classifier training, a number of possible features were investigated. Statistical evaluation was conducted to identify relevant features with discriminative potential. The proposed algorithm was tested on 12 video sequences stemming from 6 volunteers. A mean detection rate of 91.17% was achieved during leave-one out cross-validation.

  10. A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR

    OpenAIRE

    Karl, Stephan; Davis, Timothy ME; St-Pierre, Tim G

    2009-01-01

    Abstract Background The magnetic properties of Plasmodium-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that Plasmodium falciparum gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sens...

  11. A comparison of the sensitivities of detection of Plasmodium falciparum gametocytes by magnetic fractionation, thick blood film microscopy, and RT-PCR

    Directory of Open Access Journals (Sweden)

    St-Pierre Tim G

    2009-05-01

    Full Text Available Abstract Background The magnetic properties of Plasmodium-infected erythrocytes have been exploited for different clinical and research purposes. A recent study in a rural clinical setting in Papua New Guinea has demonstrated that Plasmodium falciparum gametocyte detection is facilitated by magnetic deposition microscopy but no study has yet determined the relative sensitivity and limit of detection of a magnetic fractionation technique. The present study compares the detection limit and sensitivity of a technique based on the use of commercially available magnetic fractionation columns with those for thick blood film microscopy and reverse transcriptase polymerase chain reaction (RT-PCR methods. Methods Gametocyte detection in six series of dilutions of cultured P. falciparum parasites with known gametocytaemia was conducted using magnetic fractionation, thick blood film, and RT-PCR techniques. Results The preparations obtained by the magnetic fractionation method were of thin film quality allowing easy gametocyte identification by light microscopy. Magnetic fractionation had a higher sensitivity and approximately two orders of magnitude better limit of detection than thick blood film microscopy. Gametocytes were also more readily detectable on the magnetically fractionated preparations. Magnetic fractionation had a similar limit of detection to that of RT-PCR. Conclusion Magnetic fractionation is a highly sensitive and convenient method for gametocyte detection in comparison with the standard thick blood film and RT-PCR methods, and could readily be adapted to field application.

  12. Is 0.6T Magnetic Resonance Mammography Adequate in the Detection of Breast Cancer?

    International Nuclear Information System (INIS)

    Marklund, M.; Moller, J.M.; Burchardt, A.J.; Bentzon, N.; Balslev, E.; Sletting, S.; Nolsoe, C.P.

    2006-01-01

    Purpose: To evaluate whether relevant diagnostic information can be achieved when using magnetic resonance mammography (MRM) on mid-field as a supplement to conventional imaging and clinical examination in women with primary breast cancer. Material and Methods: 30 women (55 breasts containing 49 malignant tumors) planned for uni- or bilateral mastectomy were examined with dynamic MRM on mid-field, 0.6T. The women were examined with mammography (M) and ultrasonography (US) prior to MRM. The descriptions of the conventional examinations were evaluated retrospectively, whereas the MRM was evaluated prospectively, with knowledge of the M+US findings. Imaging findings suggesting malignancy were registered and correlated with pathology after mastectomy. A home-made rating system for evaluation of the detected lesions was tested. Results: MRM detected seven additional malignant tumors, failed to detect three lesions and characterized four as gray-zone lesions according to the rating system. Sensitivity of finding the tumors with M+US was 79.0%, with a PPV for malignant tumors of 84.4%. One breast in which MRM found a malignant tumor had not initially been examined with US. Sensitivity with MRM was 91.6%, with a positive predictive value of malignant tumors of 97.7%. Conclusion: MRM on mid-field seems to improve the detection of cancers when used as a supplement to M+US in women with primary breast cancer. We believe that the results are fair compared to MRM on high-field, although further research and refinement are needed

  13. Adrenal gland abnormalities detected by magnetic resonance imaging in patients with antiphospholipid syndrome.

    Science.gov (United States)

    Shahin, A A; El Desouky, S M; Awadallah, M Y; Megahed, D E

    2017-03-01

    Adrenal infarction is a rare complication of antiphospholipid syndrome (APS). The purpose of the current study is to detect and study the magnetic resonance imaging (MRI) findings of adrenal glands in APS patients. In a cross-sectional study, the data of 20 patients with primary or secondary APS were compared to 20 SLE patients without antiphospholipid antibody (aPL) syndrome (controls). MRI of the abdomen showing the adrenal glands was performed. Of the patients, 80% were females with a mean age 32.45 ± 9.93 years, and mean disease duration of 46.65 ± 58.71 months. Adrenal gland abnormalities in the MRI study were detected in 35 % of APS patients vs. no abnormalities detected in the SLE controls. Adrenal gland enlargement was found in all patients (35 %). Capsular enhancement (infarction or hemorrhagic infarction) was found in 5 patients, increased stranding of the surrounding fat planes (inflammatory process) in 4 patients and increased signal on T1WI and T2WI (hemorrhage) in 3 patients. In patients with adrenal gland involvement, 71.4 % had triple aPL positivity compared to 23.1 % in patients with normal adrenal findings (p = 0.04). Adrenal gland abnormalities on MRI were detected in 35 % of the APS patients (whether primary or secondary); thus, increased focus on management is needed. This percentage is not small and needs to be focused on in terms of management.

  14. Nonhemorrhagic brain lesions detected by magnetic resonance imaging in closed head injured patients

    International Nuclear Information System (INIS)

    Kinoshita, Yoshihiro; Hiraide, Atsushi; Yoshioka, Toshiji; Sugimoto, Tadashi; Ichimura, Teruhisa; Saito, Akira; Ohno, Yoshioki.

    1990-01-01

    This study evaluated the diagnostic usefulness of magnetic resonance imaging (MRI) in 83 closed head injured patients in whom CT failed to detect focal intra or extraaxial hematoma and/or apparent brain contusion. The patients were divided into three groups on the basis of unconsciousness duration: Group 1 comprised 50 patients diagnosed as having classical cerebral concussion; group 2 comprised 19 patients who presented to the hospital with 6-hr unconsciousness and was recovered within a week; and group 3 comprised 14 patients whose unconsciousness persisted for a week or more. There was no CT evidence of abnormal findings for group 1; and intraventricular hemorrhage and subarachnoid hemorrhage were visualized on CT in 26% and 16%, respectively, for group 2 and 71% and 14% for group 3. Intraaxial nonhemorrhagic lesions were detected on T2-weighted MRI. According to high signal intensity, diffuse axonal injury and cortical contusion could be distinguished; i.e., in the former the corpus callosum, basal ganglia, or brain stem showed a high signal intensity, and in the latter the frontal, temporal, or parietal lobe adjacent to the skull showed a low signal intensity. T2-weighted MRI revealed cortical contusion in 6% for group 1, 37% for group 2, and 14% for group 3; and diffuse axonal injury in 42% for group 2 and 79% for group 3. For 62 patients with normal CT findings, diffuse axonal injury was detected in 88%. There was a good correlation between intraventricular hemorrhage on CT and diffuse axonal injury on MRI. In conclusion, T2-weighted MRI was significantly superior to CT in detecting nonhemorrhagic lesions, and it was of great help for predicting neurologic recovery in closed head injured patients without apparent focal lesions on CT. (N.K.)

  15. High Frequency Voltage Injection Methods and Observer Design for Initial Position Detection of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Jin, Xinhai; Ni, Ronggang; Chen, Wei

    2018-01-01

    The information of the initial rotor position is essential for smooth start up and robust control of Permanent Magnet Synchronous Machines (PMSMs). RoTating Voltage Injection (RTVI) methods in the stationary reference frame have been commonly adopted to detect the initial rotor position at stands......The information of the initial rotor position is essential for smooth start up and robust control of Permanent Magnet Synchronous Machines (PMSMs). RoTating Voltage Injection (RTVI) methods in the stationary reference frame have been commonly adopted to detect the initial rotor position...

  16. A magnetic bead-based method for concentrating DNA from human urine for downstream detection.

    Science.gov (United States)

    Bordelon, Hali; Russ, Patricia K; Wright, David W; Haselton, Frederick R

    2013-01-01

    Due to the presence of PCR inhibitors, PCR cannot be used directly on most clinical samples, including human urine, without pre-treatment. A magnetic bead-based strategy is one potential method to collect biomarkers from urine samples and separate the biomarkers from PCR inhibitors. In this report, a 1 mL urine sample was mixed within the bulb of a transfer pipette containing lyophilized nucleic acid-silica adsorption buffer and silica-coated magnetic beads. After mixing, the sample was transferred from the pipette bulb to a small diameter tube, and captured biomarkers were concentrated using magnetic entrainment of beads through pre-arrayed wash solutions separated by small air gaps. Feasibility was tested using synthetic segments of the 140 bp tuberculosis IS6110 DNA sequence spiked into pooled human urine samples. DNA recovery was evaluated by qPCR. Despite the presence of spiked DNA, no DNA was detectable in unextracted urine samples, presumably due to the presence of PCR inhibitors. However, following extraction with the magnetic bead-based method, we found that ∼50% of spiked TB DNA was recovered from human urine containing roughly 5×10(3) to 5×10(8) copies of IS6110 DNA. In addition, the DNA was concentrated approximately ten-fold into water. The final concentration of DNA in the eluate was 5×10(6), 14×10(6), and 8×10(6) copies/µL for 1, 3, and 5 mL urine samples, respectively. Lyophilized and freshly prepared reagents within the transfer pipette produced similar results, suggesting that long-term storage without refrigeration is possible. DNA recovery increased with the length of the spiked DNA segments from 10±0.9% for a 75 bp DNA sequence to 42±4% for a 100 bp segment and 58±9% for a 140 bp segment. The estimated LOD was 77 copies of DNA/µL of urine. The strategy presented here provides a simple means to achieve high nucleic acid recovery from easily obtained urine samples, which does not contain inhibitors of PCR.

  17. A magnetic bead-based method for concentrating DNA from human urine for downstream detection.

    Directory of Open Access Journals (Sweden)

    Hali Bordelon

    Full Text Available Due to the presence of PCR inhibitors, PCR cannot be used directly on most clinical samples, including human urine, without pre-treatment. A magnetic bead-based strategy is one potential method to collect biomarkers from urine samples and separate the biomarkers from PCR inhibitors. In this report, a 1 mL urine sample was mixed within the bulb of a transfer pipette containing lyophilized nucleic acid-silica adsorption buffer and silica-coated magnetic beads. After mixing, the sample was transferred from the pipette bulb to a small diameter tube, and captured biomarkers were concentrated using magnetic entrainment of beads through pre-arrayed wash solutions separated by small air gaps. Feasibility was tested using synthetic segments of the 140 bp tuberculosis IS6110 DNA sequence spiked into pooled human urine samples. DNA recovery was evaluated by qPCR. Despite the presence of spiked DNA, no DNA was detectable in unextracted urine samples, presumably due to the presence of PCR inhibitors. However, following extraction with the magnetic bead-based method, we found that ∼50% of spiked TB DNA was recovered from human urine containing roughly 5×10(3 to 5×10(8 copies of IS6110 DNA. In addition, the DNA was concentrated approximately ten-fold into water. The final concentration of DNA in the eluate was 5×10(6, 14×10(6, and 8×10(6 copies/µL for 1, 3, and 5 mL urine samples, respectively. Lyophilized and freshly prepared reagents within the transfer pipette produced similar results, suggesting that long-term storage without refrigeration is possible. DNA recovery increased with the length of the spiked DNA segments from 10±0.9% for a 75 bp DNA sequence to 42±4% for a 100 bp segment and 58±9% for a 140 bp segment. The estimated LOD was 77 copies of DNA/µL of urine. The strategy presented here provides a simple means to achieve high nucleic acid recovery from easily obtained urine samples, which does not contain inhibitors of PCR.

  18. Fiber-Optic Magnetic-Field-Strength Measurement System for Lightning Detection

    Science.gov (United States)

    Gurecki, Jay; Scully, Robert; Davis, Allen; Kirkendall, Clay; Bucholtz, Frank

    2011-01-01

    A fiber-optic sensor system is designed to measure magnetic fields associated with a lightning stroke. Field vector magnitudes are detected and processed for multiple locations. Since physical limitations prevent the sensor elements from being located in close proximity to highly conductive materials such as aluminum, the copper wire sensor elements (3) are located inside a 4-cubic-in. (.66-cubic-cm) plastic housing sensor head and connected to a fiber-optic conversion module by shielded cabling, which is limited to the shortest length feasible. The signal path between the conversion module and the avionics unit which processes the signals are fiber optic, providing enhanced immunity from electromagnetic radiation incident in the vicinity of the measurements. The sensors are passive, lightweight, and much smaller than commercial B-dot sensors in the configuration which measures a three-dimensional magnetic field. The system is expandable, and provides a standard-format output signal for downstream processing. Inside of the sensor head, three small search coils, each having a few turns on a circular form, are mounted orthogonally inside the non-metallic housing. The fiber-optic conversion module comprises three interferometers, one for each search coil. Each interferometer has a high bandwidth optical phase modulator that impresses the signal received from its search coil onto its output. The output of each interferometer travels by fiber optic cable to the avionics unit, and the search coil signal is recovered by an optical phase demodulator. The output of each demodulator is fed to an analog-to-digital converter, whose sampling rate is determined by the maximum expected rate of rise and peak signal magnitude. The output of the digital processor is a faithful reproduction of the coil response to the incident magnetic field. This information is provided in a standard output format on a 50-ohm port that can be connected to any number of data collection and processing

  19. PCR-free detection of genetically modified organisms using magnetic capture technology and fluorescence cross-correlation spectroscopy.

    Directory of Open Access Journals (Sweden)

    Xiaoming Zhou

    2009-11-01

    Full Text Available The safety of genetically modified organisms (GMOs has attracted much attention recently. Polymerase chain reaction (PCR amplification is a common method used in the identification of GMOs. However, a major disadvantage of PCR is the potential amplification of non-target DNA, causing false-positive identification. Thus, there remains a need for a simple, reliable and ultrasensitive method to identify and quantify GMO in crops. This report is to introduce a magnetic bead-based PCR-free method for rapid detection of GMOs using dual-color fluorescence cross-correlation spectroscopy (FCCS. The cauliflower mosaic virus 35S (CaMV35S promoter commonly used in transgenic products was targeted. CaMV35S target was captured by a biotin-labeled nucleic acid probe and then purified using streptavidin-coated magnetic beads through biotin-streptavidin linkage. The purified target DNA fragment was hybridized with two nucleic acid probes labeled respectively by Rhodamine Green and Cy5 dyes. Finally, FCCS was used to detect and quantify the target DNA fragment through simultaneously detecting the fluorescence emissions from the two dyes. In our study, GMOs in genetically engineered soybeans and tomatoes were detected, using the magnetic bead-based PCR-free FCCS method. A detection limit of 50 pM GMOs target was achieved and PCR-free detection of GMOs from 5 microg genomic DNA with magnetic capture technology was accomplished. Also, the accuracy of GMO determination by the FCCS method is verified by spectrophotometry at 260 nm using PCR amplified target DNA fragment from GM tomato. The new method is rapid and effective as demonstrated in our experiments and can be easily extended to high-throughput and automatic screening format. We believe that the new magnetic bead-assisted FCCS detection technique will be a useful tool for PCR-free GMOs identification and other specific nucleic acids.

  20. MAGNET

    CERN Multimedia

    by B. Curé

    2011-01-01

    The magnet operation was very satisfactory till the technical stop at the end of the year 2010. The field was ramped down on 5th December 2010, following the successful regeneration test of the turbine filters at full field on 3rd December 2010. This will limit in the future the quantity of magnet cycles, as it is no longer necessary to ramp down the magnet for this type of intervention. This is made possible by the use of the spare liquid Helium volume to cool the magnet while turbines 1 and 2 are stopped, leaving only the third turbine in operation. This obviously requires full availability of the operators to supervise the operation, as it is not automated. The cryogenics was stopped on 6th December 2010 and the magnet was left without cooling until 18th January 2011, when the cryoplant operation resumed. The magnet temperature reached 93 K. The maintenance of the vacuum pumping was done immediately after the magnet stop, when the magnet was still at very low temperature. Only the vacuum pumping of the ma...

  1. Colonic inflammation in pediatric inflammatory bowel disease: detection with magnetic resonance enterography

    Energy Technology Data Exchange (ETDEWEB)

    Campari, Alessandro [E. Bassini Hospital - ASST Nord Milano, Radiology Department, Milan (Italy); V. Buzzi Children' s Hospital - ASST Fatebenefratelli-Sacco, Pediatric Radiology Department, Milan (Italy); Napolitano, Marcello [V. Buzzi Children' s Hospital - ASST Fatebenefratelli-Sacco, Pediatric Radiology Department, Milan (Italy); Zuin, Giovanna [V. Buzzi Children' s Hospital - ASST Fatebenefratelli-Sacco, Pediatric Department, Milan (Italy); Maestri, Luciano [V. Buzzi Children' s Hospital - ASST Fatebenefratelli-Sacco, Pediatric Surgery Department, Milan (Italy); Di Leo, Giovanni [IRCCS Policlinico San Donato, Radiology Unit, Milan (Italy); Sardanelli, Francesco [IRCCS Policlinico San Donato, Radiology Unit, Milan (Italy); Universita degli Studi di Milano, Department of Biomedical Sciences for Health, Milan (Italy)

    2017-06-15

    Colonic involvement in pediatric inflammatory bowel disease is common. Magnetic resonance (MR) enterography is considered the best imaging modality for pediatric inflammatory bowel disease evaluation. It is unclear whether the lack of a dedicated large bowel preparation prevents a reliable colonic assessment. To determine the diagnostic performance of standard MR enterography in detecting and grading colonic inflammatory activity. We retrospectively evaluated children who underwent both MR enterography and ileocolonoscopy with biopsies <4 weeks apart. Two radiologists independently reviewed MR examinations and quantified inflammation in each of the five colonic segments using a standardized MR score system. Findings were compared with histological examination of the corresponding segment. Mann-Whitney, Kruskal-Wallis, Jonckheere-Terpstra and Bland-Altman statistics were used. One hundred seventy-five segments from 37 examinations were included. MR enterography diagnostic performance for inflammation was as follows: sensitivity 94% (95% confidence interval [CI]: 90-97%), specificity: 64% (95% CI: 57-71%). A significant positive correlation was found between MR score and inflammatory activity histologically graded (P<0.001, Jonckheere-Terpstra test). The interobserver agreement was good (mean difference between MR enterography scores was -0.03; limits of agreement -2.8 to 2.7). Standard MR enterography is sensitive for the detection of actively inflamed colonic segments. MR enterography might provide useful information for guiding biopsies and its role as an alternative to ileocolonoscopy in monitoring colonic disease activity in children should be further investigated. (orig.)

  2. Multiparametric magnetic resonance imaging of the prostate with computer-aided detection: experienced observer performance study

    International Nuclear Information System (INIS)

    Giannini, Valentina; Mazzetti, Simone; Armando, Enrico; Carabalona, Silvia; Russo, Filippo; Giacobbe, Alessandro; Muto, Giovanni; Regge, Daniele

    2017-01-01

    To compare the performance of experienced readers in detecting prostate cancer (PCa) using likelihood maps generated by a CAD system with that of unassisted interpretation of multiparametric magnetic resonance imaging (mp-MRI). Three experienced radiologists reviewed mp-MRI prostate cases twice. First, readers observed CAD marks on a likelihood map and classified as positive those suspicious for cancer. After 6 weeks, radiologists interpreted mp-MRI examinations unassisted, using their favourite protocol. Sensitivity, specificity, reading time and interobserver variability were compared for the two reading paradigms. The dataset comprised 89 subjects of whom 35 with at least one significant PCa. Sensitivity was 80.9% (95% CI 72.1-88.0%) and 87.6% (95% CI 79.8-93.2; p = 0.105) for unassisted and CAD paradigm respectively. Sensitivity was higher with CAD for lesions with GS > 6 (91.3% vs 81.2%; p = 0.046) or diameter ≥10 mm (95.0% vs 80.0%; p = 0.006). Specificity was not affected by CAD. The average reading time with CAD was significantly lower (220 s vs 60 s; p < 0.001). Experienced readers using likelihood maps generated by a CAD scheme can detect more patients with ≥10 mm PCa lesions than unassisted MRI interpretation; overall reporting time is shorter. To gain more insight into CAD-human interaction, different reading paradigms should be investigated. (orig.)

  3. Colonic inflammation in pediatric inflammatory bowel disease: detection with magnetic resonance enterography

    International Nuclear Information System (INIS)

    Campari, Alessandro; Napolitano, Marcello; Zuin, Giovanna; Maestri, Luciano; Di Leo, Giovanni; Sardanelli, Francesco

    2017-01-01

    Colonic involvement in pediatric inflammatory bowel disease is common. Magnetic resonance (MR) enterography is considered the best imaging modality for pediatric inflammatory bowel disease evaluation. It is unclear whether the lack of a dedicated large bowel preparation prevents a reliable colonic assessment. To determine the diagnostic performance of standard MR enterography in detecting and grading colonic inflammatory activity. We retrospectively evaluated children who underwent both MR enterography and ileocolonoscopy with biopsies <4 weeks apart. Two radiologists independently reviewed MR examinations and quantified inflammation in each of the five colonic segments using a standardized MR score system. Findings were compared with histological examination of the corresponding segment. Mann-Whitney, Kruskal-Wallis, Jonckheere-Terpstra and Bland-Altman statistics were used. One hundred seventy-five segments from 37 examinations were included. MR enterography diagnostic performance for inflammation was as follows: sensitivity 94% (95% confidence interval [CI]: 90-97%), specificity: 64% (95% CI: 57-71%). A significant positive correlation was found between MR score and inflammatory activity histologically graded (P<0.001, Jonckheere-Terpstra test). The interobserver agreement was good (mean difference between MR enterography scores was -0.03; limits of agreement -2.8 to 2.7). Standard MR enterography is sensitive for the detection of actively inflamed colonic segments. MR enterography might provide useful information for guiding biopsies and its role as an alternative to ileocolonoscopy in monitoring colonic disease activity in children should be further investigated. (orig.)

  4. Multiparametric magnetic resonance imaging of the prostate with computer-aided detection: experienced observer performance study

    Energy Technology Data Exchange (ETDEWEB)

    Giannini, Valentina; Mazzetti, Simone; Armando, Enrico; Carabalona, Silvia; Russo, Filippo [FPO, IRCCS, Department of Radiology at the Candiolo Cancer Institute, Candiolo, Turin (Italy); Giacobbe, Alessandro [San Giovanni Bosco Hospital, Department of Urology, Turin (Italy); Muto, Giovanni [University Campus Biomedico, Department of Urology, Rome (Italy); Regge, Daniele [FPO, IRCCS, Department of Radiology at the Candiolo Cancer Institute, Candiolo, Turin (Italy); University of Torino, A.O.U. Citta della Salute e della Scienza, Department of Surgical Sciences, Turin (Italy)

    2017-10-15

    To compare the performance of experienced readers in detecting prostate cancer (PCa) using likelihood maps generated by a CAD system with that of unassisted interpretation of multiparametric magnetic resonance imaging (mp-MRI). Three experienced radiologists reviewed mp-MRI prostate cases twice. First, readers observed CAD marks on a likelihood map and classified as positive those suspicious for cancer. After 6 weeks, radiologists interpreted mp-MRI examinations unassisted, using their favourite protocol. Sensitivity, specificity, reading time and interobserver variability were compared for the two reading paradigms. The dataset comprised 89 subjects of whom 35 with at least one significant PCa. Sensitivity was 80.9% (95% CI 72.1-88.0%) and 87.6% (95% CI 79.8-93.2; p = 0.105) for unassisted and CAD paradigm respectively. Sensitivity was higher with CAD for lesions with GS > 6 (91.3% vs 81.2%; p = 0.046) or diameter ≥10 mm (95.0% vs 80.0%; p = 0.006). Specificity was not affected by CAD. The average reading time with CAD was significantly lower (220 s vs 60 s; p < 0.001). Experienced readers using likelihood maps generated by a CAD scheme can detect more patients with ≥10 mm PCa lesions than unassisted MRI interpretation; overall reporting time is shorter. To gain more insight into CAD-human interaction, different reading paradigms should be investigated. (orig.)

  5. Experimental study on early detection of alloxan-induced pulmonary injury by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Awai, Kazuo; Fukuda, Hiroshi; Nakamura, Susumu; Fujikawa, Koichi; Utsumi, Toshio; Kajima, Toshio; Azuma, Kazuyoshi; Ito, Katsuhide.

    1995-01-01

    We studied the early detection of alloxan-induced pulmonary injury by magnetic resonance imaging in vivo. Permeability edema was induced in ten rats by intravenous injection of alloxan at 100 mg/Kg. T1-and T2-weighted images were acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging and examined microscopically. CT images were also acquired in five rats every 30 min for 120 min after alloxan injection. Five rats served as controls. The rats were sacrificed immediately after imaging, and the wet-to-dry ratio of the lung was measured. In T1-weighted images, relative signal intensity from the lung with permeability edema rose from 30 min to 120 min, and was greater than that from normal lung every time. In T2-weighted images, there was no statistically significant difference in relative signal intensity of the lung between permeability edema and the control during 120 min. In CT images, there was also no statistically significant difference in lung density between permeability edema and the control during 120 min. There was no statistically significant difference in the wet-to-dry lung ratio between edematous lung and normal lung. In histological study, mild congestion and interstitial edema were observed in edematous lung. These results suggest the potential capability of MR imaging in detecting the early phase of permeability pulmonary edema. (author)

  6. Detection and characterization of intracranial aneurysms: magnetic resonance angiography versus digital subtraction angiography

    International Nuclear Information System (INIS)

    Shahzad, R.; Younas, F.

    2011-01-01

    Objective: To compare magnetic resonance angiography (MRA) with Intra-arterial digital subtraction angiography (IA-DSA) in detection and characterization of intracranial aneurysms. Study Design: Comparative cross-sectional study. Place and Duration of Study: Department of Diagnostic Imaging, Lahore General Hospital, Lahore, from January to June 2007. Methodology: Thirty patients presented with aneurysmal subarachnoid haemorrhage (SAH) and focal neurological signs were selected by convenience sampling. Three dimensional time of flight (3D TOF) MRA using maximum intensity projection (MIP) was performed on all patients along with DSA. Results of 3D TOF MRA were compared with those of IA-DSA taking IA-DSA as Gold standard. Results: Out of 30 patients 14 (46.7%) were males and 16 (53.3%) were females with mean age of 41+-14.1 years. MRA detected 29 out of 30 aneurysmal lesions with sensitivity of 96.7%. Regarding characterization of aneurysms results of MRA were comparable to those of IA-DSA. Conclusion: 3D TOF MRA technique showed a high sensitivity in this study. This technique can be used as a non-invasive screening test for intracranial aneurysms and as a suitable alternative primary examination to IA-DSA prior to aneurysmal surgery. (author)

  7. Computer aided detection of tumor and edema in brain FLAIR magnetic resonance image using ANN

    Science.gov (United States)

    Pradhan, Nandita; Sinha, A. K.

    2008-03-01

    This paper presents an efficient region based segmentation technique for detecting pathological tissues (Tumor & Edema) of brain using fluid attenuated inversion recovery (FLAIR) magnetic resonance (MR) images. This work segments FLAIR brain images for normal and pathological tissues based on statistical features and wavelet transform coefficients using k-means algorithm. The image is divided into small blocks of 4×4 pixels. The k-means algorithm is used to cluster the image based on the feature vectors of blocks forming different classes representing different regions in the whole image. With the knowledge of the feature vectors of different segmented regions, supervised technique is used to train Artificial Neural Network using fuzzy back propagation algorithm (FBPA). Segmentation for detecting healthy tissues and tumors has been reported by several researchers by using conventional MRI sequences like T1, T2 and PD weighted sequences. This work successfully presents segmentation of healthy and pathological tissues (both Tumors and Edema) using FLAIR images. At the end pseudo coloring of segmented and classified regions are done for better human visualization.

  8. A magnetic particles-based chemiluminescence enzyme immunoassay for rapid detection of ovalbumin.

    Science.gov (United States)

    Feng, Xiao-Li; Ren, Hong-Lin; Li, Yan-Song; Hu, Pan; Zhou, Yu; Liu, Zeng-Shan; Yan, Dong-Ming; Hui, Qi; Liu, Dong; Lin, Chao; Liu, Nan-Nan; Liu, Yan-Yan; Lu, Shi-Ying

    2014-08-15

    Egg allergy is an important public health and safety concern, so quantification and administration of food or vaccines containing ovalbumin (OVA) are urgently needed. This study aimed to establish a rapid and sensitive magnetic particles-chemiluminescence enzyme immunoassay (MPs-CLEIA) for the determination of OVA. The proposed method was developed on the basis of a double antibodies sandwich immunoreaction and luminol-H2O2 chemiluminescence system. The MPs served as both the solid phase and separator, the anti-OVA MPs-coated polyclonal antibodies (pAbs) were used as capturing antibody, and the horseradish peroxidase (HRP)-labeled monoclonal antibody (mAb) was taken as detecting antibody. The parameters of the method were evaluated and optimized. The established MPs-CLEIA method had a linear range from 0.31 to 100ng/ml with a detection limit of 0.24ng/ml. The assays showed low reactivities and less than 5% of intraassay and interassay coefficients of variation (CVs), and the average recoveries were between 92 and 97%. Furthermore, the developed method was applied in real samples analysis successfully, and the correlation coefficient with the commercially available OVA kit was 0.9976. Moreover, it was more rapid and sensitive compared with the other methods for testing OVA. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Detection of Inter-turn Faults in Five-Phase Permanent Magnet Synchronous Motors

    Directory of Open Access Journals (Sweden)

    SAAVEDRA, H.

    2014-11-01

    Full Text Available Five-phase permanent magnet synchronous motors (PMSMs have inherent fault-tolerant capabilities. This paper analyzes the detection of inter-turn short circuit faults in five-phase PMSMs in their early stage, i.e. with only one turn in short circuit by means of the analysis of the stator currents and the zero-sequence voltage component (ZSVC spectra. For this purpose, a parametric model of five-phase PMSMs which accounts for the effects of inter-turn short circuits is developed to determine the most suitable harmonic frequencies to be analyzed to detect such faults. The amplitudes of these fault harmonic are analyzed in detail by means of finite-elements method (FEM simulations, which corroborate the predictions of the parametric model. A low-speed five-phase PMSM for in-wheel applications is studied and modeled. This paper shows that the ZSVC-based method provides better sensitivity to diagnose inter-turn faults in the analyzed low-speed application. Results presented under a wide speed range and different load levels show that it is feasible to diagnose such faults in their early stage, thus allowing applying a post-fault strategy to minimize their effects while ensuring a safe operation.

  10. Renal damage after extracorporeal shock-wave lithotripsy detected by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Torii, Shinichiro; Machida, Toyohei; Ooishi, Yukihiko; Tashiro, Kazuya; Mochizuki, Atsushi; Yoshigoe, Fukuo

    1988-08-01

    The acute effects of extracorporeal Shock-wave lithotripsy (ESWL) on morphology of the renal parenchyma were evaluated by Magnetic Resonance Imaging (MRI) in 15 kidneys, before and immediately after (within 24 hours) ESWL in 11 cases. The renal parenchymal damages were observed by MRI as the changes of signal itensity of renal cortex and medulla, perirenal fluid, loss of corticomedullar differentiation, and other renal traumas. Loss of corticomedullar differentiation was seen in 9/11 cases and peripheral fluid of the kidney was seen in 4/11 cases. Irregular and edematous changes of renal capsula were seen in 5/11 cases. Obvious abnormal findings indicated renal trauma were not observed in this study. Several MRI findings may transient and reversible changes and the morpholigic changes detected by MRI may attributed to renal parenchymal obstruction and edema and decreasing of renal capillary flow, such as in renal contusion. It is concluded that MRI is very sensitive and the best technique to detect the effects and clinical trouble of ESWL.

  11. Renal damage after extracorporeal shock-wave lithotripsy detected by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Torii, Shinichiro; Machida, Toyohei; Ooishi, Yukihiko; Tashiro, Kazuya; Mochizuki, Atsushi; Yoshigoe, Fukuo

    1988-01-01

    The acute effects of extracorporeal Shock-wave lithotripsy (ESWL) on morphology of the renal parenchyma were evaluated by Magnetic Resonance Imaging (MRI) in 15 kidneys, before and immediately after (within 24 hours) ESWL in 11 cases. The renal parenchymal damages were observed by MRI as the changes of signal itensity of renal cortex and medulla, perirenal fluid, loss of corticomedullar differentiation, and other renal traumas. Loss of corticomedullar differentiation was seen in 9/11 cases and peripheral fluid of the kidney was seen in 4/11 cases. Irregular and edematous changes of renal capsula were seen in 5/11 cases. Obvious abnormal findings indicated renal trauma were not observed in this study. Several MRI findings may transient and reversible changes and the morpholigic changes detected by MRI may attributed to renal parenchymal obstruction and edema and decreasing of renal capillary flow, such as in renal contusion. It is concluded that MRI is very sensitive and the best technique to detect the effects and clinical trouble of ESWL. (author)

  12. Neural - levelset shape detection segmentation of brain tumors in dynamic susceptibility contrast enhanced and diffusion weighted magnetic resonance images

    International Nuclear Information System (INIS)

    Vijayakumar, C.; Bhargava, Sunil; Gharpure, Damayanti Chandrashekhar

    2008-01-01

    A novel Neuro - level set shape detection algorithm is proposed and evaluated for segmentation and grading of brain tumours. The algorithm evaluates vascular and cellular information provided by dynamic contrast susceptibility magnetic resonance images and apparent diffusion coefficient maps. The proposed neural shape detection algorithm is based on the levels at algorithm (shape detection algorithm) and utilizes a neural block to provide the speed image for the level set methods. In this study, two different architectures of level set method have been implemented and their results are compared. The results show that the proposed Neuro-shape detection performs better in differentiating the tumor, edema, necrosis in reconstructed images of perfusion and diffusion weighted magnetic resonance images. (author)

  13. Detection of superparamagnetic particles in soils developed on basalts using frequency- and amplitude-dependent magnetic susceptibility

    Science.gov (United States)

    Grison, H.; Petrovsky, E.; Kapicka, A.

    2016-12-01

    In rock, soil and environmental studies dealing with magnetic methods, the frequency-dependent magnetic susceptibility (κFD%) is parameter generally accepted as a tool for identification of ultrafine superparamagnetic (SP) particles. This parameter became an indicator of pedogenic magnetic fraction (increased pedogenesis). Despite the number of studies using this parameter, knowledge about threshold values of κFD% is not clear enough and this parameter may be misinterpreted. Moreover, in strongly magnetic soils, magnetic signal of the SP (mostly pedogenic) minerals may be masked by dominant lithological signal, carried by coarse-grain mineral fraction; therefore, influence of pedogenesis is hard to detect. The aim of this contribution is to compare results in determination of ultrafine SP magnetic particles in soils determined using different instruments: (a) Bartington MS2B dual-frequency meter, and (b) more sensitive AGICO Kappameter MFK1-FA. The values of the κFD % obtained by the Bartington MS2B varied from 0.9 to 5.8% (mass-specific magnetic susceptibility from 119 to 1533 × 10-8 m3/kg) while the AGICO MFK1-FA varied from 3.7 to 8.2% (mass-specific magnetic susceptibility from 295 to 1843 × 10-8 m3/kg). Although both instruments suggest significant portion of SP magnetic particles, the results can't be interpreted using the generally accepted threshold values based on Bartington data. However, our results suggest that relation between the mass-specific magnetic susceptibility and κFD% along whole soil profile may serve as suitable tool in discriminating between lithogenic and pedogenic control of magnetic fraction in the soil profile. Moreover, we propose new concept of identification of SP particles, based on field-dependent magnetic susceptibility. Its behaviour shows distinct features with significant change at amplitudes of about 100 A/m. Below this value, susceptibility decreases with increasing amplitude, reflecting saturation of magnetization due

  14. The performance of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury: a meta-analysis.

    Science.gov (United States)

    Wang, Z X; Chen, S L; Wang, Q Q; Liu, B; Zhu, J; Shen, J

    2015-06-01

    The aim of this study was to evaluate the accuracy of magnetic resonance imaging in the detection of triangular fibrocartilage complex injury through a meta-analysis. A comprehensive literature search was conducted before 1 April 2014. All studies comparing magnetic resonance imaging results with arthroscopy or open surgery findings were reviewed, and 25 studies that satisfied the eligibility criteria were included. Data were pooled to yield pooled sensitivity and specificity, which were respectively 0.83 and 0.82. In detection of central and peripheral tears, magnetic resonance imaging had respectively a pooled sensitivity of 0.90 and 0.88 and a pooled specificity of 0.97 and 0.97. Six high-quality studies using Ringler's recommended magnetic resonance imaging parameters were selected for analysis to determine whether optimal imaging protocols yielded better results. The pooled sensitivity and specificity of these six studies were 0.92 and 0.82, respectively. The overall accuracy of magnetic resonance imaging was acceptable. For peripheral tears, the pooled data showed a relatively high accuracy. Magnetic resonance imaging with appropriate parameters are an ideal method for diagnosing different types of triangular fibrocartilage complex tears. © The Author(s) 2015.

  15. Semi-automated scar detection in delayed enhanced cardiac magnetic resonance images

    Science.gov (United States)

    Morisi, Rita; Donini, Bruno; Lanconelli, Nico; Rosengarden, James; Morgan, John; Harden, Stephen; Curzen, Nick

    2015-06-01

    Late enhancement cardiac magnetic resonance images (MRI) has the ability to precisely delineate myocardial scars. We present a semi-automated method for detecting scars in cardiac MRI. This model has the potential to improve routine clinical practice since quantification is not currently offered due to time constraints. A first segmentation step was developed for extracting the target regions for potential scar and determining pre-candidate objects. Pattern recognition methods are then applied to the segmented images in order to detect the position of the myocardial scar. The database of late gadolinium enhancement (LE) cardiac MR images consists of 111 blocks of images acquired from 63 patients at the University Hospital Southampton NHS Foundation Trust (UK). At least one scar was present for each patient, and all the scars were manually annotated by an expert. A group of images (around one third of the entire set) was used for training the system which was subsequently tested on all the remaining images. Four different classifiers were trained (Support Vector Machine (SVM), k-nearest neighbor (KNN), Bayesian and feed-forward neural network) and their performance was evaluated by using Free response Receiver Operating Characteristic (FROC) analysis. Feature selection was implemented for analyzing the importance of the various features. The segmentation method proposed allowed the region affected by the scar to be extracted correctly in 96% of the blocks of images. The SVM was shown to be the best classifier for our task, and our system reached an overall sensitivity of 80% with less than 7 false positives per patient. The method we present provides an effective tool for detection of scars on cardiac MRI. This may be of value in clinical practice by permitting routine reporting of scar quantification.

  16. Can magnetic resonance imaging at 3.0-Tesla reliably detect patients with endometriosis? Initial results.

    Science.gov (United States)

    Thomeer, Maarten G; Steensma, Anneke B; van Santbrink, Evert J; Willemssen, Francois E; Wielopolski, Piotr A; Hunink, Myriam G; Spronk, Sandra; Laven, Joop S; Krestin, Gabriel P

    2014-04-01

    The aim of this study was to determine whether an optimized 3.0-Tesla magnetic resonance imaging (MRI) protocol is sensitive and specific enough to detect patients with endometriosis. This was a prospective cohort study with consecutive patients. Forty consecutive patients with clinical suspicion of endometriosis underwent 3.0-Tesla MRI, including a T2-weighted high-resolution fast spin echo sequence (spatial resolution=0.75 ×1.2 ×1.5 mm³) and a 3D T1-weighted high-resolution gradient echo sequence (spatial resolution=0.75 ×1.2 × 2.0 mm³). Two radiologists reviewed the dataset with consensus reading. During laparoscopy, which was used as reference standard, all lesions were characterized according to the revised criteria of the American Fertility Society. Patient-level and region-level sensitivities and specificities and lesion-level sensitivities were calculated. Patient-level sensitivity was 42% for stage I (5/12) and 100% for stages II, III and IV (25/25). Patient-level specificity for all stages was 100% (3/3). The region-level sensitivity and specificity was 63% and 97%, respectively. The sensitivity per lesion was 61% (90% for deep lesions, 48% for superficial lesions and 100% for endometriomata). The detection rate of obliteration of the cul-the-sac was 100% (10/10) with no false positive findings. The interreader agreement was substantial to perfect (kappa=1 per patient, 0.65 per lesion and 0.71 for obliteration of the cul-the-sac). An optimized 3.0-Tesla MRI protocol is accurate in detecting stage II to stage IV endometriosis. © 2014 The Authors. Journal of Obstetrics and Gynaecology Research © 2014 Japan Society of Obstetrics and Gynecology.

  17. Theoretical investigation of metal magnetic memory testing technique for detection of magnetic flux leakage signals from buried defect

    Science.gov (United States)

    Xu, Kunshan; Qiu, Xingqi; Tian, Xiaoshuai

    2018-01-01

    The metal magnetic memory testing (MMMT) technique has been extensively applied in various fields because of its unique advantages of easy operation, low cost and high efficiency. However, very limited theoretical research has been conducted on application of MMMT to buried defects. To promote study in this area, the equivalent magnetic charge method is employed to establish a self-magnetic flux leakage (SMFL) model of a buried defect. Theoretical results based on the established model successfully capture basic characteristics of the SMFL signals of buried defects, as confirmed via experiment. In particular, the newly developed model can calculate the buried depth of a defect based on the SMFL signals obtained via testing. The results show that the new model can successfully assess the characteristics of buried defects, which is valuable in the application of MMMT in non-destructive testing.

  18. Quench detection for high temperature superconductor magnets: a novel technique based on Rayleigh-backscattering interrogated optical fibers

    International Nuclear Information System (INIS)

    Scurti, F; Ishmael, S; Schwartz, J; Flanagan, G

    2016-01-01

    High temperature superconducting materials are the only option for the generation of magnetic fields exceeding 25 T and for magnets operating over a broad range of temperature and magnetic field for power applications. One remaining obstacle for the implementation of high temperature superconductors magnets into systems, however, is the inability to rapidly detect a quench. In this letter we present a novel quench detection technique that has been investigated experimentally. Optical fibers are co-wound into two small Bi 2 Sr 2 Ca 2 Cu 3 O 10+x superconducting coils and interrogated by Rayleigh-backscattering. Two different configurations are used, one with the fiber atop the conductor and the other with the fiber located as turn-to-turn insulation. Each coil is also instrumented with voltage taps (VTs) and thermocouples for comparison during heater-induced quenches. The results show that Rayleigh-backscattering interrogated optical fibers (RIOF) have significant advantages over traditional techniques, including very high spatial resolution and the ability to detect a hot-spot well before the peak local temperature exceeds the current sharing temperature. Thus, RIOF quench detection is intrinsically faster than VTs, and this intrinsic advantage is greater as the coil size and/or current margin increases. (letter)

  19. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting

    NARCIS (Netherlands)

    Dickinson, L.; Ahmed, H.U.; Allen, C.; Barentsz, J.O.; Carey, B.; Futterer, J.J.; Heijmink, S.W.T.P.J.; Hoskin, P.J.; Kirkham, A.; Padhani, A.R.; Persad, R.; Puech, P.; Punwani, S.; Sohaib, A.S.; Tombal, B.; Villers, A.; Meulen, J. van der; Emberton, M.

    2011-01-01

    BACKGROUND: Multiparametric magnetic resonance imaging (mpMRI) may have a role in detecting clinically significant prostate cancer in men with raised serum prostate-specific antigen levels. Variations in technique and the interpretation of images have contributed to inconsistency in its reported

  20. Detection of electron magnetic circular dichroism signals under zone axial diffraction geometry

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dongsheng [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Rusz, Jan [Department of Physics and Astronomy, Uppsala University, Box 516, S-751 20 Uppsala (Sweden); Cai, Jianwang [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhu, Jing, E-mail: jzhu@mail.tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE) and The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-15

    EMCD (electron magnetic circular dichroism) technique provides us a new opportunity to explore magnetic properties in the transmission electron microscope. However, specific diffraction geometry is the major limitation. Only the two-beam and three-beam case are demonstrated in the experiments until now. Here, we present the more general case of zone axial (ZA) diffraction geometry through which the EMCD signals can be detected even with the very strong sensitivity to dynamical diffraction conditions. Our detailed calculations and well-controlled diffraction conditions lead to experiments in agreement with theory. The effect of dynamical diffraction conditions on EMCD signals are discussed both in theory and experiments. Moreover, with the detailed analysis of dynamical diffraction effects, we experimentally obtain the separate EMCD signals for each crystallographic site in Y{sub 3}Fe{sub 5}O{sub 12}, which is also applicable for other materials and cannot be achieved by site-specific EMCD and XMCD technique directly. Our work extends application of more general diffraction geometries and will further promote the development of EMCD technique. - Highlights: • The zone axial (ZA) diffraction geometry is presented for EMCD technique. • The detailed calculations for EMCD signals under ZA case are conducted. • The EMCD signals are obtained under the ZA case in the experiments. • The effect of dynamical effect on EMCD signals under ZA case is discussed. • Site-specific EMCD signals of Fe in Y{sub 3}Fe{sub 5}O{sub 12} are obtained by specific ZA conditions.

  1. Gadolinium-porphyrins: new potential magnetic resonance imaging contrast agents for melanoma detection

    Directory of Open Access Journals (Sweden)

    Daryoush Shahbazi-Gahrouei

    2006-11-01

    Full Text Available BACKGROUND: Two new porphyrin-based magnetic resonance imaging (MRI contrast agents, Gd-hematoporphyrin (Gd-H and Gd-tetra-carboranylmethoxyphenyl-porphyrin (Gd-TCP were synthesized and tested in nude mice with human melanoma (MM-138 xenografts as new melanoma contrast agents. METHODS: Subcutaneous xenografts of human melanoma cells (MM-138 were studied in 30 (five groups of six nude mice. The effect of different contrast agents (Gd-TCP, Gd-H, GdCl3 and Gd-DTPA on proton relaxation times was measured in tumors and other organs. T1 values, signal enhancement and the Gd concentration for different contrast agent solutions were also investigated. RESULTS: The porphyrin agents showed higher relaxivity compared to the clincal agent, Gd-DTPA. A significant 16% and 21% modification in T1 relaxation time of the water in human melanoma tumors grafted in the nude mice was revealed 24 hours after injection of Gd-TCP and Gd-H, respectively. The percentage of injected Gd localized to the tumor measured by inductively coupled plasma atomic emission spectrometry (ICP-AES was approximately 21% for Gd-TCP and 28% for Gd-H which were higher than that of Gd-DTPA (10%. CONCLUSIONS: The high concentration of Gd in the tumor is indicative of a selective retention of the compounds and indicates that Gd-TCP and Gd-H are promising MR imaging contrast agents for melanoma detection. Gd-porphyrins have considerable promise for further diagnostic applications in magnetic resonance imaging. KEY WORDS: MRI, porphyrin-based contrast agent, hematoporphyrin, melanoma.

  2. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    Operation of the magnet has gone quite smoothly during the first half of this year. The magnet has been at 4.5K for the full period since January. There was an unplanned short stop due to the CERN-wide power outage on May 28th, which caused a slow dump of the magnet. Since this occurred just before a planned technical stop of the LHC, during which access in the experimental cavern was authorized, it was decided to leave the magnet OFF until 2nd June, when magnet was ramped up again to 3.8T. The magnet system experienced a fault also resulting in a slow dump on April 14th. This was triggered by a thermostat on a filter choke in the 20kA DC power converter. The threshold of this thermostat is 65°C. However, no variation in the water-cooling flow rate or temperature was observed. Vibration may have been the root cause of the fault. All the thermostats have been checked, together with the cables, connectors and the read out card. The tightening of the inductance fixations has also been checked. More tem...

  3. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet was energised at the beginning of March 2012 at a low current to check all the MSS safety chains. Then the magnet was ramped up to 3.8 T on 6 March 2012. Unfortunately two days later an unintentional switch OFF of the power converter caused a slow dump. This was due to a misunderstanding of the CCC (CERN Control Centre) concerning the procedure to apply for the CMS converter control according to the beam-mode status at that time. Following this event, the third one since 2009, a discussion was initiated to define possible improvement, not only on software and procedures in the CCC, but also to evaluate the possibility to upgrade the CMS hardware to prevent such discharge from occurring because of incorrect procedure implementations. The magnet operation itself was smooth, and no power cuts took place. As a result, the number of magnetic cycles was reduced to the minimum, with only two full magnetic cycles from 0 T to 3.8 T. Nevertheless the magnet suffered four stops of the cryogeni...

  4. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      Following the unexpected magnet stops last August due to sequences of unfortunate events on the services and cryogenics [see CMS internal report], a few more events and initiatives again disrupted the magnet operation. All the magnet parameters stayed at their nominal values during this period without any fault or alarm on the magnet control and safety systems. The magnet was stopped for the September technical stop to allow interventions in the experimental cavern on the detector services. On 1 October, to prepare the transfer of the liquid nitrogen tank on its new location, several control cables had to be removed. One cable was cut mistakenly, causing a digital input card to switch off, resulting in a cold-box (CB) stop. This tank is used for the pre-cooling of the magnet from room temperature down to 80 K, and for this reason it is controlled through the cryogenics control system. Since the connection of the CB was only allowed for a field below 2 T to avoid the risk of triggering a fast d...

  5. Electrochemical biotin detection based on magnetic beads and a new magnetic flow cell for screen printed electrode.

    Science.gov (United States)

    Biscay, Julien; González García, María Begoña; Costa García, Agustín

    2015-01-01

    The use of the first flow-cell for magnetic assays with an integrated magnet is reported here. The flow injection analysis system (FIA) is used for biotin determination. The reaction scheme is based on a one step competitive assay between free biotin and biotin labeled with horseradish peroxidase (B-HRP). The mixture of magnetic beads modified with streptavidin (Strep-MB), biotin and B-HRP is left 15 min under stirring and then a washing step is performed. After that, 100 μL of the mixture is injected and after 30s 100 μL of 3,3',5,5'-Tetramethylbenzidine (TMB) is injected and the FIAgram is recorded applying a potential of -0.2V. The linear range obtained is from 0.01 to 1 nM of biotin and the sensitivity is 758 nA/nM. The modification and cleaning of the electrode are performed in an easy way due to the internal magnet of the flow cell. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. On-chip bio-analyte detection utilizing the velocity of magnetic microparticles in a fluid

    KAUST Repository

    Giouroudi, Ioanna; van den Driesche, Sander; Kosel, Jü rgen; Grössinger, Roland; Vellekoop, Michael J.

    2011-01-01

    change when analyte is attached to their surface via antibody–antigen binding. When the magnetic microparticles are attracted by a magnetic field within a microfluidic channel their velocity depends on the presence of analyte. Specifically, their velocity

  7. Passive electromagnetic NDE for mechanical damage inspection by detecting leakage magnetic flux. (I. Reconstruction of magnetic charges from detected field signals)

    International Nuclear Information System (INIS)

    Chen, Zhenmao; Aoto, Kazumi; Kato, Syoichi

    1999-07-01

    In this report, reconstruction of magnetic charges induced by mechanical damages in a test piece of SUS304 stainless steel is performed as a part of efforts to establish a passive nondestructive testing method on the basis of the inspection of leakage magnetic field. The approach for solving this typical ill-posed inverse problem is selected as a way in the least square method category. Concerning the ill-poseness of the system of equations, an iteration algorithm is adopted to its solving in which the designations of initial profile, the weight coefficients and the total number of iterations are taken as means of regularization. From examples using simulated input data, it is verified that the approach gives good reconstruction results in case of signals with a relative high S/N ratio. For improving the robustness of the proposed method, a Galerkin procedure with base functions chosen as the Daubechies' wavelet is also introduced for discretizing the governing equation. By comparing the reconstruction results of the least square method and those using wavelet discretization, it is found that the wavelet used approach is more feasible in the inversion of noise polluted signals. Reconstruction of 1-D and 2-D magnetic charges with the least square strategy and reconstruction of an 1-D problem with the wavelet used method are carried out from both simulated and measured magnetic field signals which are used as the validation of the proposed inversion strategy. (author)

  8. The fabrication of magnetic particle-based chemiluminescence immunoassay for human epididymis protein-4 detection in ovarian cancer.

    Science.gov (United States)

    Fu, Xiaoling; Liu, Yangyang; Qiu, Ruiyun; Foda, Mohamed F; Zhang, Yong; Wang, Tao; Li, Jinshan

    2018-03-01

    The magnetic particles have a significant influence on the immunoassay detection and cancer therapy. Herein, the chemiluminescence immunoassay combined with the magnetic particles (MPCLIA) was presented for the clinical determination and analysis of human epididymis protein 4 (HE4) in the human serum. Under the optimized experiment conditions, the secure MPCLIA method can detect HE4 in the broader range of 0-1000 pmol/L, with a lower detection limit of 1.35 pmol/L. The satisfactory recovery rate of the method in the serum ranged from 83.62% to 105.10%, which was well within the requirement of clinical analysis. Moreover, the results showed the good correlation with enzyme-linked immunosorbent assay (ELISA), with the correlation coefficient of 0.9589. This proposed method has been successfully applied to the clinical determination of HE4 in the human serum.

  9. Prostate cancer detection by prebiopsy 3.0-tesla magnetic resonance imaging

    International Nuclear Information System (INIS)

    Nishida, Sachiyo; Kinoshita, Hidefumi; Mishima, Takao; Kurokawa, Hiroaki; Sakaida, Noriko; Matsuda, Tadashi

    2011-01-01

    The diagnostic value of 3.0-Tesla magnetic resonance imaging (MRI) for prostate cancer remains to be determined. The aim of the present study was to assess the features of prostate cancer detectable by prebiopsy 3.0-Tesla MRI. From January 2007 through to December 2008, 116 patients who were examined by prebiopsy 3.0-Tesla MRI underwent radical prostatectomy for localized prostate cancer. Prostate specimens were examined to see whether the largest cancer area was the same as the area indicated on the MRI. Univariate and multivariate logistic regression analyses were conducted to identify variables predictive of agreement between MRI and histopathological findings. Sixty-six (56.9%) patients were suspected of having prostate cancer on the basis of MRI findings. In 49 of these patients (74.2%), it was considered that there was agreement between the abnormal area on the MRI and the index tumor. Univariate analysis revealed that there were significant differences in abnormal digital rectal examination, capsular penetration, the diameter of the index tumor of the radical prostatectomy specimen, and the Gleason scores of the biopsy and radical prostatectomy specimens. Multivariate analysis revealed that the Gleason score of the radical prostatectomy specimen was associated with the accurate detection of the prostate cancer by MRI (P=0.0177). In conclusion, 3.0-Tesla MRI tends to accurately diagnose prostate cancer with high tumor burden and aggressiveness. Multimodal examination (T2-weighted imaging, dynamic contrast-enhanced imaging, and diffusion-weighted imaging) is recommended for the diagnosis of prostate cancer using 3.0-Tesla MRI. (author)

  10. MAGNET

    CERN Multimedia

    B. Curé

    2012-01-01

      The magnet and its sub-systems were stopped at the beginning of the winter shutdown on 8th December 2011. The magnet was left without cooling during the cryogenics maintenance until 17th January 2012, when the cryoplant operation resumed. The magnet temperature reached 93 K. The vacuum pumping was maintained during this period. During this shutdown, the yearly maintenance was performed on the cryogenics, the vacuum pumps, the magnet control and safety systems, and the power converter and discharge lines. Several preventive actions led to the replacement of the electrovalve command coils, and the 20A DC power supplies of the magnet control system. The filters were cleaned on the demineralised water circuits. The oil of the diffusion pumps was changed. On the cryogenics, warm nitrogen at 343 K was circulated in the cold box to regenerate the filters and the heat exchangers. The coalescing filters have been replaced at the inlet of both the turbines and the lubricant trapping unit. The active cha...

  11. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

      The magnet was operated without any problem until the end of the LHC run in February 2013, apart from a CERN-wide power glitch on 10 January 2013 that affected the CMS refrigerator, causing a ramp down to 2 T in order to reconnect the coldbox. Another CERN-wide power glitch on 15 January 2013 didn’t affect the magnet subsystems, the cryoplant or the power converter. At the end of the magnet run, the reconnection of the coldbox at 2.5 T was tested. The process will be updated, in particular the parameters of some PID valve controllers. The helium flow of the current leads was reduced but only for a few seconds. The exercise will be repeated with the revised parameters to validate the automatic reconnection process of the coldbox. During LS1, the water-cooling services will be reduced and many interventions are planned on the electrical services. Therefore, the magnet cryogenics and subsystems will be stopped for several months, and the magnet cannot be kept cold. In order to avoid unc...

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet was successfully operated at the end of the year 2009 despite some technical problems on the cryogenics. The magnet was ramped up to 3.8 T at the end of November until December 16th when the shutdown started. The magnet operation met a few unexpected stops. The field was reduced to 3.5 T for about 5 hours on December 3rd due to a faulty pressure sensor on the helium compressor. The following day the CERN CCC stopped unintentionally the power converters of the LHC and the experiments, triggering a ramp down that was stopped at 2.7 T. The magnet was back at 3.8 T about 6 hours after CCC sent the CERN-wide command. Three days later, a slow dump was triggered due to a stop of the pump feeding the power converter water-cooling circuit, during an intervention on the water-cooling plant done after several disturbances on the electrical distribution network. The magnet was back at 3.8 T in the evening the same day. On December 10th a break occurred in one turbine of the cold box producing the liquid ...

  13. Estimation method of finger tapping dynamics using simple magnetic detection system

    Science.gov (United States)

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  14. Estimation method of finger tapping dynamics using simple magnetic detection system.

    Science.gov (United States)

    Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo

    2010-05-01

    We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.

  15. Detecting unfrozen sediments below thermokarst lakes with surface nuclear magnetic resonance

    Science.gov (United States)

    Parsekian, Andrew D.; Grosse, Guido; Walbrecker, Jan O.; Müller-Petke, Mike; Keating, Kristina; Liu, Lin; Jones, Benjamin M.; Knight, Rosemary

    2013-01-01

    A talik is a layer or body of unfrozen ground that occurs in permafrost due to an anomaly in thermal, hydrological, or hydrochemical conditions. Information about talik geometry is important for understanding regional surface water and groundwater interactions as well as sublacustrine methane production in thermokarst lakes. Due to the direct measurement of unfrozen water content, surface nuclear magnetic resonance (NMR) is a promising geophysical method for noninvasively estimating talik dimensions. We made surface NMR measurements on thermokarst lakes and terrestrial permafrost near Fairbanks, Alaska, and confirmed our results using limited direct measurements. At an 8 m deep lake, we observed thaw bulb at least 22 m below the surface; at a 1.4 m deep lake, we detected a talik extending between 5 and 6 m below the surface. Our study demonstrates the value that surface NMR may have in the cryosphere for studies of thermokarst lake hydrology and their related role in the carbon cycle.

  16. Perfusion-weighted magnetic resonance imaging detects recurrent isolated vertigo caused by cerebral hypoperfusion.

    Science.gov (United States)

    Xu, Xiaowei; Jiang, Li; Luo, Man; Li, Jiaoxing; Li, Weidong; Sheng, Wenli

    2015-06-01

    The etiology of isolated vertigo has been a substantial diagnostic challenge for both neurologists and otolaryngologists. This study was designed to detect recurrent isolated vertigo due to cerebral hypoperfusion using perfusion-weighted magnetic resonance imaging (PWI). We recruited isolated vertigo patients whose clinical condition was suspected to be caused by hypodynamics of the brain; these individuals formed the case group. We generated two additional groups: a negative group composed of vertigo patients whose symptoms were caused by problems associated with the ear and a healthy control group. Each subject underwent PWI, and seven regions of interest (ROIs) were chosen. The relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), and mean transit time (MTT) were obtained from each ROI. We further calculated the absolute difference of relative parameter values between two mirrored ROIs. The significant difference in the relative MTT from the mirrored cerebellar ROI (|rMTTleft-right|) of the case group was larger than those from the negative and healthy control groups (p = 0.026 and p = 0.038, respectively). Signal differences in |rrCBVleft-right| and |rrCBFleft-right| were not found among the three groups. In summary, disequilibrium in the rMTT of the bilateral cerebellum in the case group implied that hypoperfusion of the posterior circulation could trigger recurrent isolated vertigo and could be shown efficiently using PWI.

  17. Magnetic resonance imaging goes postmortem: noninvasive detection and assessment of myocardial infarction by postmortem MRI

    International Nuclear Information System (INIS)

    Jackowski, Christian; Warntjes, Marcel J.B.; Persson, Anders; Berge, Johan; Baer, Walter

    2011-01-01

    To investigate the performance of postmortem magnetic resonance imaging (pmMRI) in identification and characterization of lethal myocardial infarction in a non-invasive manner on human corpses. Before forensic autopsy, 20 human forensic corpses were examined on a 1.5-T system for the presence of myocardial infarction. Short axis, transversal and longitudinal long axis images (T1-weighted; T2-weighted; PD-weighted) were acquired in situ. In subsequent autopsy, the section technique was adapted to short axis images. Histological investigations were conducted to confirm autopsy and/or radiological diagnoses. Nineteen myocardial lesions were detected and age staged with pmMRI, of which 13 were histologically confirmed (chronic, subacute and acute). Six lesions interpreted as peracute by pmMRI showed no macroscopic or histological finding. Five of the six peracute lesions correlated well to coronary pathology, and one case displayed a severe hypertrophic alteration. pmMRI reliably demonstrates chronic, subacute and acute myocardial infarction in situ. In peracute cases pmMRI may display ischemic lesions undetectable at autopsy and routine histology. pmMRI has the potential to substantiate autopsy and to counteract the loss of reliable information on causes of death due to the recent disappearance of the clinical autopsy. (orig.)

  18. Magnetic Stirrer Method for the Detection of Trichinella Larvae in Muscle Samples.

    Science.gov (United States)

    Mayer-Scholl, Anne; Pozio, Edoardo; Gayda, Jennifer; Thaben, Nora; Bahn, Peter; Nöckler, Karsten

    2017-03-03

    Trichinellosis is a debilitating disease in humans and is caused by the consumption of raw or undercooked meat of animals infected with the nematode larvae of the genus Trichinella. The most important sources of human infections worldwide are game meat and pork or pork products. In many countries, the prevention of human trichinellosis is based on the identification of infected animals by means of the artificial digestion of muscle samples from susceptible animal carcasses. There are several methods based on the digestion of meat but the magnetic stirrer method is considered the gold standard. This method allows the detection of Trichinella larvae by microscopy after the enzymatic digestion of muscle samples and subsequent filtration and sedimentation steps. Although this method does not require special and expensive equipment, internal controls cannot be used. Therefore, stringent quality management should be applied throughout the test. The aim of the present work is to provide detailed handling instructions and critical control points of the method to analysts, based on the experience of the European Union Reference Laboratory for Parasites and the National Reference Laboratory of Germany for Trichinella.

  19. Optical Dependence of Electrically Detected Magnetic Resonance in Lightly Doped Si:P Devices

    Science.gov (United States)

    Zhu, Lihuang; van Schooten, Kipp J.; Guy, Mallory L.; Ramanathan, Chandrasekhar

    2017-06-01

    Using frequency-modulated electrically detected magnetic resonance (EDMR), we show that signals measured from lightly doped (1.2 - 5 ×1 015 cm-3 ) silicon devices vary significantly with the wavelength of the optical excitation used to generate the mobile carriers. We measure EDMR spectra at 4.2 K as a function of modulation frequency and applied microwave power using a 980-nm laser, a 405-nm laser, and a broadband white-light source. EDMR signals are observed from the phosphorus donor and two distinct defect species in all of the experiments. With near-infrared irradiation, we find that the EDMR signal primarily arises from donor-defect pairs, while, at higher photon energies, there are significant additional contributions from defect-defect pairs. The contribution of spins from different spatial regions to the EDMR signal is seen to vary as the optical penetration depth changes from about 120 nm at 405-nm illumination to 100 μ m at 980-nm illumination. The modulation frequency dependence of the EDMR signal shows that the energy of the optical excitation strongly modulates the kinetics of the underlying spin-dependent recombination (SDR) process. Careful tuning of the optical photon energy could therefore be used to control both the subset of spin pairs contributing to the EDMR signal and the dynamics of the SDR process.

  20. Combining magnetic nanoparticle with biotinylated nanobodies for rapid and sensitive detection of influenza H3N2

    Science.gov (United States)

    Zhu, Min; Hu, Yonghong; Li, Guirong; Ou, Weijun; Mao, Panyong; Xin, Shaojie; Wan, Yakun

    2014-09-01

    Our objective is to develop a rapid and sensitive assay based on magnetic beads to detect the concentration of influenza H3N2. The possibility of using variable domain heavy-chain antibodies (nanobody) as diagnostic tools for influenza H3N2 was investigated. A healthy camel was immunized with inactivated influenza H3N2. A nanobody library of 8 × 108 clones was constructed and phage displayed. After three successive biopanning steps, H3N2-specific nanobodies were successfully isolated, expressed in Escherichia coli, and purified. Sequence analysis of the nanobodies revealed that we possessed four classes of nanobodies against H3N2. Two nanobodies were further used to prepare our rapid diagnostic kit. Biotinylated nanobody was effectively immobilized onto the surface of streptavidin magnetic beads. The modified magnetic beads with nanobody capture specifically influenza H3N2 and can still be recognized by nanobodies conjugated to horseradish peroxidase (HRP) conjugates. Under optimized conditions, the present immunoassay exhibited a relatively high sensitive detection with a limit of 50 ng/mL. In conclusion, by combining magnetic beads with specific nanobodies, this assay provides a promising influenza detection assay to develop a potential rapid, sensitive, and low-cost diagnostic tool to screen for influenza infections.

  1. MAGNET

    CERN Multimedia

    B. Curé

    2011-01-01

    The magnet ran smoothly in the last few months until a fast dump occurred on 9th May 2011. Fortunately, this occurred in the afternoon of the first day of the technical stop. The fast dump was due to a valve position controller that caused the sudden closure of a valve. This valve is used to regulate the helium flow on one of the two current leads, which electrically connects the coil at 4.5 K to the busbars at room temperature. With no helium flow on the lead, the voltage drop and the temperatures across the leads increase up to the defined thresholds, triggering a fast dump through the Magnet Safety System (MSS). The automatic reaction triggered by the MSS worked properly. The helium release was limited as the pressure rise was just at the limit of the safety valve opening pressure. The average temperature of the magnet reached 72 K. It took four days to recover the temperature and refill the helium volumes. The faulty valve controller was replaced by a spare one before the magnet ramp-up resumed....

  2. Magnetic resonance pharmacological stress for detecting coronary disease. Comparison with echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Baer, F.M.; Crnac, J.; Jochims, M.; Schneider, C.; Erdmann, E. [Clinic III of Internal Medicine, Univ. of Cologne (Germany); Schmidt, M.; Theissen, P.; Schicha, H. [Clinic und Ambulant Clinic of Nuclear Medicine, Univ. of Cologne (Germany)

    2000-06-01

    Stress testing is the cornerstone in the diagnosis of patients with suspected coronary artery disease (CAD). Although exercise ECG remains the primary approach for the detection of ischemia in patients with chest pain syndromes, its sensitivity and specificity is limited and exercise ECG does not provide detailed information about the localisation and extent of CAD. Stress echocardiography has been used for the detection of ischemia for more than a decade and has become an increasingly popular noninvasive method for the detection of CAD. In experienced hands wall motion analysis based on stress echocardiography has proved to be as sensitive and specific for the detection of myocardial ischemia as scintigraphic techniques. Recent technical improvements, namely the availability of ultrafast imaging sequences with a significant reduction of imaging time have initiated several studies which examined the combination of pharmacological stress and magnetic resonance imaging (MRI) for the detection of suspected CAD. The most well developed stress-MRI technique is wall motion imaging during dobutamine stress. This technique is analogous to stress echocardiography, but MRI has the inherent advantages of better resolution, higher reproducibility and true long and short axis imaging with contiguous parallel slices. However, the clinical impact of MRI for the diagnosis of CAD is still low. Further technical developments including real time imaging and a reliable automated quantitative analysis of left ventricular function are required before stress-MRI becomes a serious challenge to stressechocardiography in the clinical arena. Currently, only a few MRI facilities and physicians are dedicated to pharmacological stress testing with MRI and the future clinical impact of this promising technique will depend on its potential to provide information beyond myocardial function including perfusion, metabolism and coronary anatomy in form of a ''one-stop''-shop for

  3. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.; Patzek, Tadeusz; van Oort, Eric

    2017-01-01

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  4. Detecting Poor Cement Bonding and Zonal Isolation Problems Using Magnetic Cement Slurries

    KAUST Repository

    Nair, Sriramya D.

    2017-10-02

    There has been growing interest in the use of magnetorheological fluids to improve displacement efficiency of fluids (drilling fluids, spacer fluids, cement slurries) in the eccentric casing annuli. When magnetic particles are mixed with the cement slurry for improved displacement, they provide an excellent opportunity for sensing the presence and quality of cement in the annulus. This work focuses on using sophisticated 3D computational electromagnetics to simulate the use of a magnetic cement slurry for well cement monitoring. The main goal is to develop a new tool, which is capable of locating magnetic cement slurry that is placed behind a stainless steel casing. An electromagnetic coil was used to generate a magnetic field inside the borehole. It was found that when a current was passed through the electric coils, magnetic field lines passed through the stainless steel casing, the cement annulus and the rock formation. Three sensors were placed inside the cased borehole and the magnetic field strength variations were observed at these locations. Various factors that have a significant influence on zonal isolation were considered. These include, effect of debonding between casing and cement annulus, effect of changing annuli thickness, influence of a fracture in the rock formation, effect of changing magnetic permeability of cement and finally influence of annuli eccentricity. Based on the results shown in the paper along with the next generation of supersensitive magnetic sensors that are being developed, the magnetic approach appears to be a viable alternative for evaluating the quality of the cement annulus to ensure good zonal isolation.

  5. Early Magnetic Resonance Detection of Natalizumab-Related Progressive Multifocal Leukoencephalopathy in a Patient with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Guglielmo Manenti

    2013-01-01

    Full Text Available Diagnosis of progressive multifocal leukoencephalopathy is usually based on the clinical presentation, on the demonstration of the brain lesions at the magnetic resonance imaging examination, and on the detection of the JC virus DNA in the cerebrospinal fluid with high sensitive polymerase chain reaction. The role of magnetic resonance imaging specifically in natalizumab-associated progressive multifocal leukoencephalopathy is strengthening, and it is gaining importance not only as an irreplaceable diagnostic tool but also as a surveillance and risk stratifying tool in treated patients. While other imaging techniques such as computed tomography lack sensitivity and specificity, magnetic resonance performed with morphological and functional sequences offers clinicians the possibility to early identify the stage of the disease and the emergence of an immune reconstitution inflammatory syndrome after natalizumab blood removal plasmapheresis.

  6. Fiber-Optic Magnetometry and Thermometry Using Optically Detected Magnetic Resonance With Nitrogen-Vacancy Centers in Diamond

    Science.gov (United States)

    Blakley, Sean Michael

    Nitrogen--vacancy diamond (NVD) quantum sensors are an emerging technology that has shown great promise in areas like high-resolution thermometry and magnetometry. Optical fibers provide attractive new application paradigms for NVD technology. A detailed description of the fabrication processes associated with the development of novel fiber-optic NVD probes are presented in this work. The demonstrated probes are tested on paradigmatic model systems designed to ascertain their suitability for use in challenging biological environments. Methods employing optically detected magnetic resonance (ODMR) are used to accurately measure and map temperature distributions of small objects and to demonstrate emergent temperature-dependent phenomena in genetically modified living organisms. These methods are also used to create detailed high resolution spatial maps of both magnetic scalar and magnetic vector field distributions of spatially localized weak field features in the presence of a noisy, high-field background.

  7. Development of references of anomalies detection on P91 material using Self-Magnetic Leakage Field (SMLF) technique

    Science.gov (United States)

    Husin, Shuib; Afiq Pauzi, Ahmad; Yunus, Salmi Mohd; Ghafar, Mohd Hafiz Abdul; Adilin Sekari, Saiful

    2017-10-01

    This technical paper demonstrates the successful of the application of self-magnetic leakage field (SMLF) technique in detecting anomalies in weldment of a thick P91 materials joint (1 inch thickness). Boiler components such as boiler tubes, stub boiler at penthouse and energy piping such as hot reheat pipe (HRP) and H-balance energy piping to turbine are made of P91 material. P91 is ferromagnetic material, therefore the technique of self-magnetic leakage field (SMLF) is applicable for P91 in detecting anomalies within material (internal defects). The technique is categorized under non-destructive technique (NDT). It is the second passive method after acoustic emission (AE), at which the information on structures radiation (magnetic field and energy waves) is used. The measured magnetic leakage field of a product or component is a magnetic leakage field occurring on the component’s surface in the zone of dislocation stable slipbands under the influence of operational (in-service) or residual stresses or in zones of maximum inhomogeneity of metal structure in new products or components. Inter-granular and trans-granular cracks, inclusion, void, cavity and corrosion are considered types of inhomogeneity and discontinuity in material where obviously the output of magnetic leakage field will be shown when using this technique. The technique does not required surface preparation for the component to be inspected. This technique is contact-type inspection, which means the sensor has to touch or in-contact to the component’s surface during inspection. The results of application of SMLF technique on the developed P91 reference blocks have demonstrated that the technique is practical to be used for anomaly inspection and detection as well as identification of anomalies’ location. The evaluation of this passive self-magnetic leakage field (SMLF) technique has been verified by other conventional non-destructive tests (NDTs) on the reference blocks where simulated

  8. Detection of smaller J{sub c} region and damage in YBCO coated conductors by using permanent magnet method

    Energy Technology Data Exchange (ETDEWEB)

    Hattori, K., E-mail: tey88221@st.yamagata-u.ac.jp [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); Saito, A. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan); Takano, Y.; Suzuki, T. [Tohoku Seiki Industries, Ltd., 3-1246, Tachiyagawa, Yamagata 990-2251 (Japan); Yamada, H.; Takayama, T.; Kamitani, A.; Ohshima, S. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510 (Japan)

    2011-11-15

    We developed a non-destructive method for measuring the critical current density (J{sub c}) in YBCO-coated conductors by using a permanent magnet (Sm{sub 2}Co{sub 17}). J{sub c} could be determined from the repulsive force (F{sub r}) generated between a permanent magnet and a coated conductor where shielding current flows. We also examined the influence of damage to the film on the J{sub c} distribution. The measured F{sub r} when the permanent magnet approached the cut part was smaller than that of the undamaged area. We developed a non-destructive method for measuring the critical current density (J{sub c}) in YBCO-coated conductors by using a permanent magnet (Sm{sub 2}Co{sub 17}). J{sub c} could be determined from the repulsive force (F{sub r}) generated between a permanent magnet and a coated conductor where shielding current flows. We tried to detect a smaller J{sub c} region in the coated conductor by using the system. The J{sub c} distribution could be determined without influence from the thick copper film on YBCO thin film. We also examined the influence of damage to the film on the J{sub c} distribution. The surface of the coated conductors was cut by using a knife. The measured F{sub r} when the permanent magnet approached the cut part was smaller than that of the undamaged area. This J{sub c} measurement technique will be useful for detecting smaller J{sub c} regions and defects in coated conductors.

  9. Detection of light images by simple tissues as visualized by photosensitized magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Catherine Tempel-Brami

    Full Text Available In this study, we show how light can be absorbed by the body of a living rat due to an injected pigment circulating in the blood stream. This process is then physiologically translated in the tissue into a chemical signature that can be perceived as an image by magnetic resonance imaging (MRI. We previously reported that illumination of an injected photosynthetic bacteriochlorophyll-derived pigment leads to a generation of reactive oxygen species, upon oxygen consumption in the blood stream. Consequently, paramagnetic deoxyhemoglobin accumulating in the illuminated area induces changes in image contrast, detectable by a Blood Oxygen Level Dependent (BOLD-MRI protocol, termed photosensitized (psMRI. Here, we show that laser beam pulses synchronously trigger BOLD-contrast transients in the tissue, allowing representation of the luminous spatiotemporal profile, as a contrast map, on the MR monitor. Regions with enhanced BOLD-contrast (7-61 fold were deduced as illuminated, and were found to overlap with the anatomical location of the incident light. Thus, we conclude that luminous information can be captured and translated by typical oxygen exchange processes in the blood of ordinary tissues, and made visible by psMRI (Fig. 1. This process represents a new channel for communicating environmental light into the body in certain analogy to light absorption by visual pigments in the retina where image perception takes place in the central nervous system. Potential applications of this finding may include: non-invasive intra-operative light guidance and follow-up of photodynamic interventions, determination of light diffusion in opaque tissues for optical imaging and possible assistance to the blind.

  10. Brain Activity in Patients With Adductor Spasmodic Dysphonia Detected by Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Kiyuna, Asanori; Kise, Norimoto; Hiratsuka, Munehisa; Kondo, Shunsuke; Uehara, Takayuki; Maeda, Hiroyuki; Ganaha, Akira; Suzuki, Mikio

    2017-05-01

    Spasmodic dysphonia (SD) is considered a focal dystonia. However, the detailed pathophysiology of SD remains unclear, despite the detection of abnormal activity in several brain regions. The aim of this study was to clarify the pathophysiological background of SD. This is a case-control study. Both task-related brain activity measured by functional magnetic resonance imaging by reading the five-digit numbers and resting-state functional connectivity (FC) measured by 150 T2-weighted echo planar images acquired without any task were investigated in 12 patients with adductor SD and in 16 healthy controls. The patients with SD showed significantly higher task-related brain activation in the left middle temporal gyrus, left thalamus, bilateral primary motor area, bilateral premotor area, bilateral cerebellum, bilateral somatosensory area, right insula, and right putamen compared with the controls. Region of interest voxel FC analysis revealed many FC changes within the cerebellum-basal ganglia-thalamus-cortex loop in the patients with SD. Of the significant connectivity changes between the patients with SD and the controls, the FC between the left thalamus and the left caudate nucleus was significantly correlated with clinical parameters in SD. The higher task-related brain activity in the insula and cerebellum was consistent with previous neuroimaging studies, suggesting that these areas are one of the unique characteristics of phonation-induced brain activity in SD. Based on FC analysis and their significant correlations with clinical parameters, the basal ganglia network plays an important role in the pathogenesis of SD. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Mirror Birefringence in a Fabry-Perot Cavity and the Detection of Vacuum Birefringence in a Magnetic Field

    Science.gov (United States)

    Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.

    1995-01-01

    We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.

  12. MAGNET

    CERN Multimedia

    Benoit Curé

    2010-01-01

    The magnet worked very well at 3.8 T as expected, despite a technical issue that manifested twice in the cryogenics since June. All the other magnet sub-systems worked without flaw. The issue in the cryogenics was with the cold box: it could be observed that the cold box was getting progressively blocked, due to some residual humidity and air accumulating in the first thermal exchanger and in the adsorber at 65 K. This was later confirmed by the analysis during the regeneration phases. An increase in the temperature difference between the helium inlet and outlet across the heat exchanger and a pressure drop increase on the filter of the adsorber were observed. The consequence was a reduction of the helium flow, first compensated by the automatic opening of the regulation valves. But once they were fully opened, the flow and refrigeration power reduced as a consequence. In such a situation, the liquid helium level in the helium Dewar decreased, eventually causing a ramp down of the magnet current and a field...

  13. MAGNET

    CERN Multimedia

    B. Curé

    MAGNET During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bough...

  14. MAGNET

    CERN Multimedia

    Benoit Curé.

    The magnet operation restarted end of June this year. Quick routine checks of the magnet sub-systems were performed at low current before starting the ramps up to higher field. It appeared clearly that the end of the field ramp down to zero was too long to be compatible with the detector commissioning and operations plans. It was decided to perform an upgrade to keep the ramp down from 3.8T to zero within 4 hours. On July 10th, when a field of 1.5T was reached, small movements were observed in the forward region support table and it was decided to fix this problem before going to higher field. At the end of July the ramps could be resumed. On July 28th, the field was at 3.8T and the summer CRAFT exercise could start. This run in August went smoothly until a general CERN wide power cut took place on August 3rd, due to an insulation fault on the high voltage network outside point 5. It affected the magnet powering electrical circuit, as it caused the opening of the main circuit breakers, resulting in a fast du...

  15. MAGNET

    CERN Multimedia

    B. Curé

    2013-01-01

    The magnet is fully stopped and at room temperature. The maintenance works and consolidation activities on the magnet sub-systems are progressing. To consolidate the cryogenic installation, two redundant helium compressors will be installed as ‘hot spares’, to avoid the risk of a magnet downtime in case of a major failure of a compressor unit during operation. The screw compressors, their motors, the mechanical couplings and the concrete blocks are already available and stored at P5. The metallic structure used to access the existing compressors in SH5 will be modified to allow the installation of the two redundant ones. The plan is to finish the installation and commissioning of the hot spare compressors before the summer 2014. In the meantime, a bypass on the high-pressure helium piping will be installed for the connection of a helium drier unit later during the Long Shutdown 1, keeping this installation out of the schedule critical path. A proposal is now being prepared for the con...

  16. Environmental magnetic methods for detecting and mapping contaminated sediments in lakes

    Science.gov (United States)

    Boyce, J. I.

    2009-05-01

    The remediation of contaminated sediments is an urgent environmental priority in the Great Lakes and requires detailed mapping of impacted sediment layer thickness, areal distribution and pollutant levels. Magnetic property measurements of sediment cores from two heavily polluted basins in Lake Ontario (Hamilton Harbour, Frenchman's Bay) show that concentrations of hydrocarbons (PAH) and a number of heavy metals (Pb, As, Ni, Cu, Cr, Zn, Cd, Fe) are strongly correlated with magnetic susceptibility. The magnetic susceptibility contrast between the contaminated sediment and underlying 'pre-colonial' sediments is sufficient to generate a total field anomaly (ca. 2-20 nT) that can be measured with a magnetometer towed above the lake bed. Systematic magnetic surveying (550 line km) of Hamilton Harbour using a towed marine magnetometer clearly identifies a number of well-defined magnetic anomalies that coincide with known accumulations of contaminated lake sediment. When calibrated against in-situ magnetic property measurements, the modeled apparent susceptibility from magnetic survey results can be used to classify the relative contaminant impact levels. The results demonstrate the potential of magnetic property measurements for rapid reconnaissance mapping of large areas of bottom contamination prior to detailed coring and sediment remediation.

  17. The new PVLAS apparatus for detection of magnetic birefringence of vacuum

    International Nuclear Information System (INIS)

    Della Valle, F.; Di Domenico, G.; Gastaldi, U.; Milotti, E.; Messineo, G.; Pengo, R.; Piemontese, L.; Ruoso, G.; Zavattini, G.

    2013-01-01

    The PVLAS experiment aims at the observation and measurement of the effect of magnetic birefringence of vacuum (MBV) predicted by Quantum Electrodynamics. We describe here the new PVLAS apparatus which is currently being set up in INFN Ferrara. The apparatus features two rotating permanent dipole magnets and an ellipsometer operating under UHV with a high finesse Fabry–Perot cavity

  18. Design of a compact permanent magnet Cyclotron Mass Spectrometer for the detection and measurement of trace isotopes

    International Nuclear Information System (INIS)

    Young, A.T.; Bertsche, K.J.; Clark, D.J.; Halbach, K.; Kunkel, W.B.; Leung, K.N.; Li, C.Y.

    1992-07-01

    A technique for the detection of trace amounts of rare isotopes, Cyclotron mass Spectrometry (CMS), is described. This technique uses the relationships between particle mass, charge, magnetic field strength and cyclotron orbital frequency to provide high mass resolution. The instrument also has high sensitivity and is capable of measuring isotopes with abundances of - 12 . Improvements now being implemented will lead to further increases in the sensitivity and enhance operating parameters such as cost, portability, and sample throughput

  19. Dynamics of a magnetic monopole in matter, Maxwell equations in dyonic matter and detection of electric dipole moments

    International Nuclear Information System (INIS)

    Artru, X.; Fayolle, D.

    2001-01-01

    For a monopole, the analogue of the Lorentz equation in matter is shown to be f = g (H-v centre dot D). Dual-symmetric Maxwell equations, for matter containing hidden magnetic charge in addition to electric ones, are given. They apply as well to ordinary matter if the particles possess T-violating electric dipole moments. Two schemes of experiments for the detection of such moments in macroscopic pieces of matter are proposed

  20. ¹⁹F magnetic resonance probes for live-cell detection of peroxynitrite using an oxidative decarbonylation reaction.

    Science.gov (United States)

    Bruemmer, Kevin J; Merrikhihaghi, Sara; Lollar, Christina T; Morris, Siti Nur Sarah; Bauer, Johannes H; Lippert, Alexander R

    2014-10-21

    We report a newly discovered oxidative decarbonylation reaction of isatins that is selectively mediated by peroxynitrite (ONOO(-)) to provide anthranilic acid derivatives. We have harnessed this rapid and selective transformation to develop two reaction-based probes, 5-fluoroisatin and 6-fluoroisatin, for the low-background readout of ONOO(-) using (19)F magnetic resonance spectroscopy. 5-fluoroisatin was used to non-invasively detect ONOO(-) formation in living lung epithelial cells stimulated with interferon-γ (IFN-γ).

  1. Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition.

    Science.gov (United States)

    Wang, Junfeng; Wu, Xuezhong; Wang, Chongwen; Shao, Ningsheng; Dong, Peitao; Xiao, Rui; Wang, Shengqi

    2015-09-23

    A magnetically assisted surface-enhanced Raman scattering (SERS) biosensor for single-cell detection of S. aureus on the basis of aptamer recognition is reported for the first time. The biosensor consists of two basic elements including a SERS substrate (Ag-coated magnetic nanoparticles, AgMNPs) and a novel SERS tag (AuNR-DTNB@Ag-DTNB core-shell plasmonic NPs or DTNB-labeled inside-and-outside plasmonic NPs, DioPNPs). Uniform, monodisperse, and superparamagnetic AgMNPs with favorable SERS activity and magnetic responsiveness are synthesized by using polymer polyethylenimine. AgMNPs use magnetic enrichment instead of repeated centrifugation to prevent sample sedimentation. DioPNPs are designed and synthesized as a novel SERS tag. The Raman signal of DioPNPs is 10 times stronger than that of the commonly used SERS tag AuNR-DTNB because of the double-layer DTNB and the LSPR position adjustment to match the given laser excitation wavelength. Consequently, a strong SERS enhancement is achieved. Under the optimized aptamer density and linker length, capture by aptamer-modified AgMNPs can achieve favorable bacteria arrest (up to 75%). With the conventional Raman spectroscopy, the limit of detection (LOD) is 10 cells/mL for S. aureus detection, and a good linear relationship is also observed between the SERS intensity at Raman peak 1331 cm(-1) and the logarithm of bacteria concentrations ranging from 10(1) to 10(5) cells/mL. With the help of the newly developed SERS mapping technique, single-cell detection of S. aureus is easily achieved.

  2. Vibration-synchronized magnetic resonance imaging for the detection of myocardial elasticity changes.

    Science.gov (United States)

    Elgeti, Thomas; Tzschätzsch, Heiko; Hirsch, Sebastian; Krefting, Dagmar; Klatt, Dieter; Niendorf, Thoralf; Braun, Jürgen; Sack, Ingolf

    2012-04-01

    Vibration synchronized magnetic resonance imaging of harmonically oscillating tissue interfaces is proposed for cardiac magnetic resonance elastography. The new approach exploits cardiac triggered cine imaging synchronized with extrinsic harmonic stimulation (f = 22.83 Hz) to display oscillatory tissue deformations in magnitude images. Oscillations are analyzed by intensity threshold-based image processing to track wave amplitude variations over the cardiac cycle. In agreement to literature data, results in 10 volunteers showed that endocardial wave amplitudes during systole (0.13 ± 0.07 mm) were significantly lower than during diastole (0.34 ± 0.14 mm, P magnetic resonance imaging improves the temporal resolution of magnetic resonance elastography as it overcomes the use of extra motion encoding gradients, is less sensitive to susceptibility artifacts, and does not suffer from dynamic range constraints frequently encountered in phase-based magnetic resonance elastography. Copyright © 2012 Wiley Periodicals, Inc.

  3. Lab-on-a-disc agglutination assay for protein detection by optomagnetic readout and optical imaging using nano- and micro-sized magnetic beads

    DEFF Research Database (Denmark)

    Uddin, Rokon; Burger, Robert; Donolato, Marco

    2016-01-01

    of manual steps involved. The detection of the target protein was achieved in two ways: (1) optomagnetic readout using magnetic nanobeads (MNBs); (2) optical imaging using magnetic microbeads (MMBs). The optomagnetic readout of agglutination is based on optical measurement of the dynamics of MNB aggregates...... whereas the imaging method is based on direct visualization and quantification of the average size of MMB aggregates. By enhancing magnetic particle agglutination via application of strong magnetic field pulses, we obtained identical limits of detection of 25 pM with the same sample-to-answer time (15 min...

  4. Improved detection limits for electrospray ionization on a magnetic sector mass spectrometer by using an array detector.

    Science.gov (United States)

    Cody, R B; Tamura, J; Finch, J W; Musselman, B D

    1994-03-01

    Array detection was compared with point detection for solutions of hen egg-white lysozyme, equine myoglobin, and ubiquitin analyzed by electrospray ionization with a magnetic sector mass spectrometer. The detection limits for samples analyzed by using the array detector system were at least 10 times lower than could be achieved by using a point detector on the same mass spectrometer. The minimum detectable quantity of protein corresponded to a signal-to-background ratio of approximately 2∶1 for a 500 amol/μL solution of hen egg-white lysozyme. However, the ultimate practical sample concentrations appeared to be in the 10-100 fmol/μL range for the analysis of dilute solutions of relatively pure proteins or simple mixtures.

  5. Development of an in situ magnetic beads based RT-PCR method for electrochemiluminescent detection of rotavirus

    Science.gov (United States)

    Zhan, Fangfang; Zhou, Xiaoming

    2012-12-01

    Rotaviruses are double-stranded RNA viruses belonging to the family of enteric pathogens. It is a major cause of diarrhoeal disease in infants and young children worldwide. Consequently, rapid and accurate detection of rotaviruses is of great importance in controlling and preventing food- and waterborne diseases and outbreaks. Reverse transcription-polymerase chain reaction (RT-PCR) is a reliable method that possesses high specificity and sensitivity. It has been widely used to detection of viruses. Electrochemiluminescence (ECL) can be considered as an important and powerful tool in analytical and clinical application with high sensitivity, excellent specificity, and low cost. Here we have developed a method for the detection of rotavirus by combining in situ magnetic beads (MBs) based RT-PCR with ECL. RT of rotavirus RNA was carried out in a traditional way and the resulting cDNA was directly amplified on MBs. Forward primers were covalently bounded to MBs and reverse primers were labeled with tris-(2, 2'-bipyridyl) ruthenium (TBR). During the PCR cycling, the TBR labeled products were directly loaded and enriched on the surface of MBs. Then the MBs-TBR complexes could be analyzed by a magnetic ECL platform without any post-modification or post-incubation which avoid some laborious manual operations and achieve rapid yet sensitive detection. In this study, rotavirus from fecal specimens was successfully detected within 2 h, and the limit of detection was estimated to be 104copies/μL. This novel in situ MBs based RT-PCR with ECL detection method can be used for pathogen detection in food safety field and clinical diagnosis.

  6. Detection of a milling-induced surface damage by the magnetic Barkhausen noise

    Science.gov (United States)

    Stupakov, A.; Neslušan, M.; Perevertov, O.

    2016-07-01

    The potential of the magnetic Barkhausen noise method for a non-destructive evaluation of the steel surface damage cased by milling was comprehensively investigated. A typical bearing steel was heat treated to three different hardnesses and then machined using the cutting tools with different degrees of the flank wear. The magnetic low-frequency measurements with a high reading depth were performed using a unique laboratory system providing a full control of the magnetization process. The high-frequency measurements were performed using a commercial Rollscan device. To study the induced magnetic anisotropy, the measurements were performed in two magnetization directions. In the feeding direction, the Barkhausen noise profiles showed a second high-field peak ascribed to an induced hardened surface layer, a so-called white layer. The most reliable results were obtained with the controlled waveform of the surface magnetic field measured directly by Hall sensors. In the perpendicular rotation direction, formation of the preferentially oriented matrix resulted in an enormously high Barkhausen noise activity. Based on these results, new magnetic parameters were proposed for the non-destructive evaluation of the white layer formation.

  7. On-chip bio-analyte detection utilizing the velocity of magnetic microparticles in a fluid

    KAUST Repository

    Giouroudi, Ioanna

    2011-03-22

    A biosensing principle utilizing the motion of suspended magnetic microparticles in a microfluidic system is presented. The system utilizes the innovative concept of the velocity dependence of magnetic microparticles (MPs) due to their volumetric change when analyte is attached to their surface via antibody–antigen binding. When the magnetic microparticles are attracted by a magnetic field within a microfluidic channel their velocity depends on the presence of analyte. Specifically, their velocity decreases drastically when the magnetic microparticles are covered by (nonmagnetic) analyte (LMPs) due to the increased drag force in the opposite direction to that of the magnetic force. Experiments were carried out as a proof of concept. A promising 52% decrease in the velocity of the LMPs in comparison to that of the MPs was measured when both of them were accelerated inside a microfluidic channel using an external permanent magnet. The presented biosensing methodology offers a compact and integrated solution for a new kind of on-chip analysis with potentially high sensitivity and shorter acquisition time than conventional laboratory based systems.

  8. Interplanetary magnetic field orientations associated with bidirectional electron heat fluxes detected at ISEE 3

    International Nuclear Information System (INIS)

    Stansberry, J.A.; Gosling, J.T.; Thomsen, M.F.; Bame, S.J.; Smith, E.J.

    1988-01-01

    A statistical survey of interplanetary magnetic field orientations associated with bidirectional electron heat fluxes observed at ISEE 3 in orbit about the Sunward Lagrange point indicates that magnetic connection of the spacecraft to the Earth's bow shock was frequently the source of the bidirectionality. When the interplanetary magnetic field was oriented within 5 0 of the Earth-spacecraft line, backstreaming electrons from the bow shock were clearly observed approximately 18% of the time, and connections apparently occurred for angles as large as ∼30 0 --35 0 . copyright American Geophysical Union 1988

  9. Multiplex Biosensing Based on Highly Sensitive Magnetic Nanolabel Quantification: Rapid Detection of Botulinum Neurotoxins A, B, and E in Liquids.

    Science.gov (United States)

    Orlov, Alexey V; Znoyko, Sergey L; Cherkasov, Vladimir R; Nikitin, Maxim P; Nikitin, Petr I

    2016-11-01

    We present a multiplex quantitative lateral flow (LF) assay for simultaneous on-site detection of botulinum neurotoxin (BoNT) types A, B, and E in complex matrixes, which is innovative by virtually no sacrifice in performance while transition from the single-plex assays and by characteristics on the level of laboratory quantitative methods. The novel approach to easy multiplexing is realized via joining an on-demand set of single-plex LF strips, which employ magnetic nanolabels, into a miniature cylinder cartridge that mimics LF strip during all assay stages. The cartridge is read out by an original portable multichannel reader based on the magnetic particle quantification technique. The developed reader offers the unmatched 60 zmol detection limit and 7-order linear dynamic range for volumetric registration of magnetic labels inside a cartridge of several millimeters in diameter regardless of its optical transparency. Each of the test strips, developed here as building blocks for the multiplex assay, can be used "as is" for autonomous quantitative single-plex detection with the same measuring setup, exhibiting the limits of detection (LOD) of 0.22, 0.11, and 0.32 ng/mL for BoNT-A, -B, and -E, respectively. The proposed multiplex assay has demonstrated the remarkably similar LOD values of 0.20, 0.12, 0.35 ng/mL under the same conditions. The multiplex assay performance was successfully validated by BoNT detection in milk and apple and orange juices. The developed methods can be extended to other proteins and used for rapid multianalyte tests for point-of-care in vitro diagnostics, food analysis, biosafety and environmental monitoring, forensics, and security, etc.

  10. MAGNET

    CERN Multimedia

    Benoit Curé

    The magnet subsystems resumed operation early this spring. The vacuum pumping was restarted mid March, and the cryogenic power plant was restarted on March 30th. Three and a half weeks later, the magnet was at 4.5 K. The vacuum pumping system is performing well. One of the newly installed vacuum gauges had to be replaced at the end of the cool-down phase, as the values indicated were not coherent with the other pressure measurements. The correction had to be implemented quickly to be sure no helium leak could be at the origin of this anomaly. The pressure measurements have been stable and coherent since the change. The cryogenics worked well, and the cool-down went quite smoothly, without any particular difficulty. The automated start of the turbines had to be fine-tuned to get a smooth transition, as it was observed that the cooling power delivered by the turbines was slightly higher than needed, causing the cold box to stop automatically. This had no consequence as the cold box safety system acts to keep ...

  11. MAGNET

    CERN Multimedia

    B. Curé

    During the winter shutdown, the magnet subsystems went through a full maintenance. The magnet was successfully warmed up to room temperature beginning of December 2008. The vacuum was broken later on by injecting nitrogen at a pressure just above one atmosphere inside the vacuum tank. This was necessary both to prevent any accidental humidity ingress, and to allow for a modification of the vacuum gauges on the vacuum tank and maintenance of the diffusion pumps. The vacuum gauges had to be changed, because of erratic variations on the measurements, causing spurious alarms. The new type of vacuum gauges has been used in similar conditions on the other LHC experiments and without problems. They are shielded against the stray field. The lubricants of the primary and diffusion pumps have been changed. Several minor modifications were also carried out on the equipment in the service cavern, with the aim to ease the maintenance and to allow possible intervention during operation. Spare sensors have been bought. Th...

  12. Manufacturing inspection of electrical steels using Magnetic Barkhausen Noise: residual stress detection

    Energy Technology Data Exchange (ETDEWEB)

    Samimi, A.A., E-mail: 9aa8@queensu.ca [Queen' s Univ., Applied Magnetics Group, Kingston, Ontario (Canada); Krause, T.W. [Royal Military College of Canada, NDE Lab., Kingston, Ontario (Canada); Clapham, L. [Queen' s Univ., Applied Magnetics Group, Kingston, Ontario (Canada); Gallaugher, M.; Ding, Y.; Chromik, R. [McGill Univ., Dept. of Mining and Materials Engineering, Montreal, Quebec (Canada)

    2016-09-15

    Non-oriented Electrical Steel (NOES) is the magnetic core lamination material used for flux transfer in rotary machines. The presence of residual stress associated with material processing may be detrimental to magnetic domain structure refinement and as a result, magnetic performance of NOES. Therefore, manufacturing inspection of NOES that identifies the presence of residual stress could contribute to the production of more energy efficient cores. However, standard materials evaluation is limited to destructive and off-line techniques. The present work employed Magnetic Barkhausen Noise (MBN) for nondestructive identification of local residual stress associated with stages in material processing. Analysis of MBN from single strips of NOES demonstrated clear response to applied tensile stress, mechanical shearing, the presence of an insulating coating and punching. The results establish the potential of MBN as a nondestructive testing technology for quality control of electrical steels at various stages of manufacture. (author)

  13. Learning curve in the detection of ovarian and deep endometriosis by using Magnetic Resonance

    International Nuclear Information System (INIS)

    Saba, Luca; Guerriero, Stefano; Sulis, Rosa; Pilloni, Monica; Ajossa, Silvia; Melis, Gianbenedetto; Mallarini, Giorgio

    2011-01-01

    Purpose: Determining if Magnetic Resonance Imaging (MRI) accuracy in diagnosing endometriosis is related to radiologist's expertise. Methods and materials: Written informed consent was obtained from all patients. This study is compliant to STARD method. Thirty patients (mean age 34; range 21-45 years) who had undergone MRI study for suspected endometriosis underwent surgery were retrospectively evaluated. MRI at 1.5 T was performed with SE and TSE sequences, T1 and T2-weighted with and without fat suppression. Four localizations were analyzed: ovary, uterosacral ligaments (USL), vaginal fornix and Rectum/Sigma/Douglas (R.S.D.). One radiologist evaluated each dataset; sensitivity, specificity, PPV and NPV, accuracy, LR+ and LR- were calculated according to the surgical results (first analysis). Dataset were then re-analyzed 12 months (second analysis) and 24 months (third analysis) later. McNemar test was applied to determine differences between the three analysis. Results: Sensitivity, specificity and accuracy for the ovary at the first analysis were 88.9%, 87% and 88%, at the second 92.6%, 87% and 90% whereas at the third 92.6%, 91.3% and 92%. Sensitivity, specificity and accuracy for the USLs at the first analysis were 62.5%, 76.9% and 70%, at the second 72%, 80.8% and 76% whereas at the third 80%, 84.6% and 82%. Sensitivity, specificity and accuracy for the vaginal fornix at the first analysis were 63.2%, 64.5% and 64%, at the second 73.7%, 77.4% and 76% whereas at the third 73.7%, 83.9% and 80%. Sensitivity, specificity and accuracy for the R.S.D. at the first analysis were 39.1%, 81.5% and 62%, at the second 62.5%, 85.2% and 76% whereas at the third 73.9%, 88.9% and 82%. McNemar test indicated a significant statistical difference in sensitivity in detecting nodules of endometriosis in R.S.D. between first and third analysis (p = 0.0215). The mean review time decreased (p = 0.0001). Conclusions: Accuracy of MRI in diagnosing endometriosis increased with

  14. Learning curve in the detection of ovarian and deep endometriosis by using Magnetic Resonance

    Energy Technology Data Exchange (ETDEWEB)

    Saba, Luca, E-mail: lucasaba@tiscali.it [Department of Science of the Images, Azienda Ospedaliero Universitaria di Cagliari, s.s. 554 Monserrato (Cagliari) 09045 (Italy); Guerriero, Stefano [Department of Gynaecology, Azienda Ospedaliero Universitaria di Cagliari, Via Ospedale (Cagliari) 09100 (Italy); Sulis, Rosa [Department of Science of the Images, Azienda Ospedaliero Universitaria di Cagliari, s.s. 554 Monserrato (Cagliari) 09045 (Italy); Pilloni, Monica [Department of Gynaecology, Azienda Ospedaliero Universitaria di Cagliari, Via Ospedale (Cagliari) 09100 (Italy); Ajossa, Silvia [Department of Science of the Images, Azienda Ospedaliero Universitaria di Cagliari, s.s. 554 Monserrato (Cagliari) 09045 (Italy); Department of Gynaecology, Azienda Ospedaliero Universitaria di Cagliari, Via Ospedale (Cagliari) 09100 (Italy); Melis, Gianbenedetto [Department of Gynaecology, Azienda Ospedaliero Universitaria di Cagliari, Via Ospedale (Cagliari) 09100 (Italy); Mallarini, Giorgio [Department of Science of the Images, Azienda Ospedaliero Universitaria di Cagliari, s.s. 554 Monserrato (Cagliari) 09045 (Italy)

    2011-08-15

    Purpose: Determining if Magnetic Resonance Imaging (MRI) accuracy in diagnosing endometriosis is related to radiologist's expertise. Methods and materials: Written informed consent was obtained from all patients. This study is compliant to STARD method. Thirty patients (mean age 34; range 21-45 years) who had undergone MRI study for suspected endometriosis underwent surgery were retrospectively evaluated. MRI at 1.5 T was performed with SE and TSE sequences, T1 and T2-weighted with and without fat suppression. Four localizations were analyzed: ovary, uterosacral ligaments (USL), vaginal fornix and Rectum/Sigma/Douglas (R.S.D.). One radiologist evaluated each dataset; sensitivity, specificity, PPV and NPV, accuracy, LR+ and LR- were calculated according to the surgical results (first analysis). Dataset were then re-analyzed 12 months (second analysis) and 24 months (third analysis) later. McNemar test was applied to determine differences between the three analysis. Results: Sensitivity, specificity and accuracy for the ovary at the first analysis were 88.9%, 87% and 88%, at the second 92.6%, 87% and 90% whereas at the third 92.6%, 91.3% and 92%. Sensitivity, specificity and accuracy for the USLs at the first analysis were 62.5%, 76.9% and 70%, at the second 72%, 80.8% and 76% whereas at the third 80%, 84.6% and 82%. Sensitivity, specificity and accuracy for the vaginal fornix at the first analysis were 63.2%, 64.5% and 64%, at the second 73.7%, 77.4% and 76% whereas at the third 73.7%, 83.9% and 80%. Sensitivity, specificity and accuracy for the R.S.D. at the first analysis were 39.1%, 81.5% and 62%, at the second 62.5%, 85.2% and 76% whereas at the third 73.9%, 88.9% and 82%. McNemar test indicated a significant statistical difference in sensitivity in detecting nodules of endometriosis in R.S.D. between first and third analysis (p = 0.0215). The mean review time decreased (p = 0.0001). Conclusions: Accuracy of MRI in diagnosing endometriosis increased with

  15. Effects of magnetic core geometry on false detection in residual current sensor

    International Nuclear Information System (INIS)

    Colin, Bruno; Chillet, Christian; Kedous-Lebouc, Afef; Mas, Patrick

    2006-01-01

    Under high-supply current, residual circuit breakers are subject to abnormal tripping, caused by false residual currents. Geometric or magnetic anomalies in the circuit breaker ring core seem to be responsible for these abnormal currents. This paper studies a few anomalies (spiral shape effect, conductor eccentricity, lamination effect) and calculates different contributions using the finite element simulations. The results show that the ring core, made of thin wound magnetic tape, is particularly sensitive to primary conductor eccentricity

  16. Magnetic relaxation switch and colorimetric detection of thrombin using aptamer-functionalized gold-coated iron oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liang Guohai; Cai Shaoyu; Zhang Peng [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Peng Youyuan [Department of Chemistry, Quanzhou Normal University, Quanzhou 362000 (China); Chen Hui; Zhang Song [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China); Kong Jilie, E-mail: jlkong@fudan.edu.cn [Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433 (China)

    2011-03-18

    We describe a sensitive biosensing system combining magnetic relaxation switch diagnosis and colorimetric detection of human {alpha}-thrombin, based on the aptamer-protein interaction induced aggregation of Fe{sub 3}O{sub 4}-Au nanoparticles. To demonstrate the concept, gold-coated iron oxide nanoparticle was synthesized by iterative reduction of HAuCl{sub 4} onto the dextran-coated Fe{sub 3}O{sub 4} nanoparticles. The resulting core-shell structure had a flowerlike shape with pretty narrow size distribution (referred to as 'nanorose'). The two aptamers corresponding to human {alpha}-thrombin were conjugated separately to two distinct nanorose populations. Once a solution containing human {alpha}-thrombin was introduced, the nanoroses switched from a well dispersed state to an aggregated one, leading to a change in the spin-spin relaxation time (T{sub 2}) as well as the UV-Vis absorption spectra of the solution. Thus the qualitative and quantitative detection method for human {alpha}-thrombin was established. The dual-mode detection is clearly advantageous in obtaining a more reliable result; the detection range is widened as well. By using the dual-mode detection method, a detectable T{sub 2} change is observed with 1.0 nM human {alpha}-thrombin, and the detection range is from 1.6 nM to 30.4 nM.

  17. Development and evaluation of a magnetic immunochromatographic test to detect Taenia solium, which causes taeniasis and neurocysticercosis in humans.

    Science.gov (United States)

    Handali, Sukwan; Klarman, Molly; Gaspard, Amanda N; Dong, X Fan; Laborde, Ronald; Noh, John; Lee, Yeuk-Mui; Rodriguez, Silvia; Gonzalez, Armando E; Garcia, Hector H; Gilman, Robert H; Tsang, Victor C W; Wilkins, Patricia P

    2010-04-01

    Taeniasis/cysticercosis caused by Taenia solium is a frequent parasitic infection of the human brain in most of the world. Rapid and simple screening tools to identify taeniasis and cysticercosis cases are needed for control programs, mostly to identify tapeworm carriers which are the source of infection and need to be treated, or as tools for point-of-care case detection or confirmation. These screening assays should be affordable, reliable, rapid, and easy to perform. Immunochromatographic tests meet these criteria. To demonstrate proof of principle, we developed and evaluated two magnetic immunochromatographic tests (MICTs) for detection of human Taenia solium taeniasis antibodies (ES33-MICT) and neurocysticercosis antibodies (T24-MICT). These assays detected stage-specific antibodies by using two recombinant proteins, rES33 for detection of taeniasis antibodies and rT24H for detection of cysticercosis antibodies. The sensitivity and specificity of the ES33-MICT to detect taeniasis infections were 94.5% and 96%, respectively, and those of the T24-MICT to detect cases of human cysticercosis with two or more viable brain cysts were 93.9% and 98.9%, respectively. These data provide proof of principle that the ES33- and T24-MICTs provide rapid and suitable methods to identify individuals with taeniasis and cysticercosis.

  18. Development and Evaluation of a Magnetic Immunochromatographic Test To Detect Taenia solium, Which Causes Taeniasis and Neurocysticercosis in Humans▿

    Science.gov (United States)

    Handali, Sukwan; Klarman, Molly; Gaspard, Amanda N.; Dong, X. Fan; LaBorde, Ronald; Noh, John; Lee, Yeuk-Mui; Rodriguez, Silvia; Gonzalez, Armando E.; Garcia, Hector H.; Gilman, Robert H.; Tsang, Victor C. W.; Wilkins, Patricia P.

    2010-01-01

    Taeniasis/cysticercosis caused by Taenia solium is a frequent parasitic infection of the human brain in most of the world. Rapid and simple screening tools to identify taeniasis and cysticercosis cases are needed for control programs, mostly to identify tapeworm carriers which are the source of infection and need to be treated, or as tools for point-of-care case detection or confirmation. These screening assays should be affordable, reliable, rapid, and easy to perform. Immunochromatographic tests meet these criteria. To demonstrate proof of principle, we developed and evaluated two magnetic immunochromatographic tests (MICTs) for detection of human Taenia solium taeniasis antibodies (ES33-MICT) and neurocysticercosis antibodies (T24-MICT). These assays detected stage-specific antibodies by using two recombinant proteins, rES33 for detection of taeniasis antibodies and rT24H for detection of cysticercosis antibodies. The sensitivity and specificity of the ES33-MICT to detect taeniasis infections were 94.5% and 96%, respectively, and those of the T24-MICT to detect cases of human cysticercosis with two or more viable brain cysts were 93.9% and 98.9%, respectively. These data provide proof of principle that the ES33- and T24-MICTs provide rapid and suitable methods to identify individuals with taeniasis and cysticercosis. PMID:20181766

  19. Improved Peak Capacity for Capillary Electrophoretic Separations of Enzyme Inhibitors with Activity-Based Detection Using Magnetic Bead Microreactors

    Science.gov (United States)

    Yan, Xiaoyan; Gilman, S. Douglass

    2010-01-01

    A technique for separating and detecting enzyme inhibitors was developed using capillary electrophoresis with an enzyme microreactor. The on-column enzyme microreactor was constructed using NdFeB magnet(s) to immobilize alkaline phosphatase-coated superparamagnetic beads (2.8 μm diameter) inside a capillary before the detection window. Enzyme inhibition assays were performed by injecting a plug of inhibitor into a capillary filled with the substrate, AttoPhos. Product generated in the enzyme microreactor was detected by laser-induced fluorescence. Inhibitor zones electrophoresed through the capillary, passed through the enzyme microreactor, and were observed as negative peaks due to decreased product formation. The goal of this study was to improve peak capacities for inhibitor separations relative to previous work, which combined continuous engagement electrophoretically mediated microanalysis (EMMA) and transient engagement EMMA to study enzyme inhibition. The effects of electric field strength, bead injection time and inhibitor concentrations on peak capacity and peak width were investigated. Peak capacities were increased to ≥20 under optimal conditions of electric field strength and bead injection time for inhibition assays with arsenate and theophylline. Five reversible inhibitors of alkaline phosphatase (theophylline, vanadate, arsenate, L-tryptophan and tungstate) were separated and detected to demonstrate the ability of this technique to analyze complex inhibitor mixtures. PMID:20024913

  20. Detection of secondary phases in duplex stainless steel by magnetic force microscopy and scanning Kelvin probe force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramírez-Salgado, J. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Domínguez-Aguilar, M.A., E-mail: madoming@imp.mx [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Castro-Domínguez, B. [University of Tokyo, Department of Chemical System Engineering, Faculty of Engineering Bldg. 5, 7F 722, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113–8656 (Japan); Hernández-Hernández, P. [Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central Norte Lázaro Cárdenas, No. 152, 07730 D.F., México (Mexico); Newman, R.C. [University of Toronto, Department of Chemical Engineering and Applied Chemistry, 200 College Street, Toronto M5S 3E5 (Canada)

    2013-12-15

    The secondary phase transformations in a commercial super duplex stainless steel were investigated by micro-chemical analyses and high resolution scanning probe microscopy. Energy dispersive X-ray and electron probe detected ferrite and austenite as well as secondary phases in unetched aged duplex stainless steel type 25Cr-7Ni-3Mo. Volta potential indicated that nitride and sigma appeared more active than ferrite, while secondary austenite and austenite presented a nobler potential. Reversal order in nobility is thought to be attributable to the potential ranking provided by oxide nature diversity as a result of secondary phase surface compositions on steel. After eutectoid transformation, secondary austenite was detected by electron probe microanalysis, whereas atomic force microscopy distinguished this phase from former austenite by image contrast. Magnetic force microscopy revealed a “ghosted” effect on the latter microstructure probably derived from metal memory reminiscence of mechanical polishing at passivity and long range magnetic forces of ferrite phase. - Highlights: • Nobility detection of secondary phases by SKPFM in DSS particles is not a straightforward procedure. • As Volta potential and contrast are not always consistent SKPFM surface oxides is thought played an important role in detection. • AFM distinguished secondary austenite from former austenite by image contrast though SEM required EPMA.

  1. X-ray detected magnetic resonance of YIG thin films in the nonlinear regime of spin waves

    Energy Technology Data Exchange (ETDEWEB)

    Goulon, J., E-mail: goulon@esrf.f [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Rogalev, A.; Wilhelm, F.; Goujon, G. [European Synchrotron Radiation Facility (ESRF), B.P. 220, F-38043 Grenoble Cedex (France); Brouder, Ch. [Institut de Mineralogie et de Physique des Milieux Condenses, UMR-CNRS 7590, Universite Paris VI-VII, 4 place Jussieu, F-75252 Paris Cedex 05 (France); Yaresko, A. [Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart (Germany); Ben Youssef, J.; Indenbom, M.V. [Laboratoire de Magnetisme de Bretagne, CNRS FRE 2697, UFR Sciences et Techniques, F-29328 Brest Cedex (France)

    2010-08-15

    We discuss the information content of element/edge resolved X-ray detected magnetic resonance (XDMR) experiments carried out on yttrium iron garnet (YIG) thin films. Starting with a phenomenological approach, it is shown that the photoionisation of deep atomic core levels by circularly polarized X-rays can be used to probe the precession dynamics of spin or orbital magnetization components in empty final states of proper symmetry. Crude estimates of the opening angle of the uniform precession mode were tentatively deduced from the ratio of the XDMR and XMCD absorption cross-sections either at the iron or yttrium absorbing sites. The implications of the most recent experimental results collected at the ESRF are analyzed, keeping in mind that: (i) the Fe K-edge XDMR signal is largely dominated by the precession of orbital magnetization components at the tetrahedral iron sites; (ii) the Y L-edges XDMR signal essentially describes the precession of induced spin magnetization involving the 4d states of yttrium. In the magnetostatic regime, we produce clear experimental evidence of collective excitations of orbital magnetization waves, especially under high pumping power. Several coupling mechanisms could explain our observations, starting with pseudo-dipolar interactions in ferromagnetic systems. In ferrimagnetic systems in which orbital degeneracy and orbital ordering make the excitation of orbitons possible, one may envisage additional modes of excitation or relaxation of orbital magnetization waves. This interpretation looks fully consistent with the results of band structure calculations carried out recently on YIG with fully relativistic LMTO-LSDA methods.

  2. [Drainage characteristic of the brain interstitial fluid detected by using fluorescence and magnetic tracer method].

    Science.gov (United States)

    Zhao, Y; Li, Y Q; Li, H Y; Li, Y L; Liu, L X; Yuan, L; Zhang, S J; Han, H B

    2017-04-18

    Compare the results of molecular diffusion and mass flow in the interstitial space(ISS) displayed by using optical and magnetic probes and study partitioned drainage of the brain interstitial fluid (ISF). In the study, 36 male SD rats were randomly divided into fluorescent inspection group (18), magnetic tracer group (18). Then they were divided equally into caudate nucleus (Cn), thalamus (T) and substantia nigra (Sn) subgroup, 6 rats in each subgroup. Referencing the brain stereotaxic atlas, the coronal globus pallidus as center level, Cn, T or Sn were acted as puncture positioning target. A 10 μL microsyringe was stereotaxically positioned and the lucifer yellow (LY) solution of 2 μL 10 mmol/L was infused into centric position. The coronary slices undergo cardiac perfusion and fix respectively in time point Cn 3 h, T 2 h and Sn 1 h. The rat brain was placed in rat stainless steel brain matrices and cut backward along visual intersection. The injection point of coronal slice as the center level, take 3 slices in front of the center level and 2 slices behind of it. 1 mm for each slice and 6 slices in total. Then slices were detected by laser scanning confocal microscope (LSCM). Simultaneous, in the same coordinate brain regions of another three groups, a gadolinium-diethylene triamine pentaacetic acidm (Gd-DTPA) solution of 2 μL 10 mmol/L was infused into different injection and detected by MRI tracer-based method. Then the Radiant can be used to measure distribution area of Gd-DTPA. LY and Gd-DTPA have different distribution regions in Cn, T and Sn. After LY and Gd-DTPA were introduced into the Cn subgroup 3 h, compare the 1 to 6 levels distribution area of LY and Gd-DTPA as follows: (10.95±4.27) mm 2 vs. (8.33±2.25) mm 2 , (18.16±4.74) mm 2 vs. (16.42±2.88) mm 2 , (24.57±3.65) mm 2 vs. (20.75±2.29) mm 2 , (34.81±3.32) mm 2 vs. (28.88±1.51) mm 2 , (30.53±3.12) mm 2 vs. (20.92±2.75) mm 2 , (12.15±4.92) mm 2 vs. (10.00±1.89) mm 2 . The statistical

  3. Rapid detection of Prunus necrotic ringspot virus using magnetic nanoparticle-assisted reverse transcription loop-mediated isothermal amplification.

    Science.gov (United States)

    Zong, Xiaojuan; Wang, Wenwen; Wei, Hairong; Wang, Jiawei; Chen, Xin; Xu, Li; Zhu, Dongzi; Tan, Yue; Liu, Qingzhong

    2014-11-01

    Prunus necrotic ringspot virus (PNRSV) has seriously reduced the yield of Prunus species worldwide. In this study, a highly efficient and specific two-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed to detect PNRSV. Total RNA was extracted from sweet cherry leaf samples using a commercial kit based on a magnetic nanoparticle technique. Transcripts were used as the templates for the assay. The results of this assay can be detected using agarose gel electrophoresis or by assessing in-tube fluorescence after adding SYBR Green I. The assay is highly specific for PNRSV, and it is more sensitive than reverse-transcription polymerase chain reaction (RT-PCR). Restriction enzyme digestion verified further the reliability of this RT-LAMP assay. To our knowledge, this is the first report of the application of RT-LAMP to PNRSV detection in Prunus species. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Additional diagnostic value of systolic dysfunction induced by dipyridamole stress cardiac magnetic resonance used in detecting coronary artery disease.

    Science.gov (United States)

    Husser, Oliver; Bodí, Vicente; Sanchís, Juan; Mainar, Luis; Núñez, Julio; López-Lereu, María P; Monmeneu, José V; Ruiz, Vicente; Rumiz, Eva; Moratal, David; Chorro, Francisco J; Llácer, Angel

    2009-04-01

    Dipyridamole stress perfusion cardiovascular magnetic resonance (CMR) is used to detect coronary artery disease (CAD). However, few data are available on the diagnostic value of the systolic dysfunction induced by dipyridamole. This study investigated whether the induction of systolic dysfunction supplements the diagnostic information provided by perfusion imaging in the detection of CAD. Overall, 166 patients underwent dipyridamole CMR and quantitative coronary angiography, with CAD being defined as a stenosis > or =70%. Systolic dysfunction at rest, systolic dysfunction with dipyridamole, induced systolic dysfunction, and stress first-pass perfussion deficit (PD) and delayed enhancement were quantified. In the multivariate analysis, PD (hazard ratio [HR]=1.6; 95% confidence interval [CI], 1.33-1.91;Pstatistic for predicting CAD (0.81 vs. 0.87; P=.02). Combining induced systolic dysfunction with perfusion imaging increases the diagnostic accuracy of detecting CAD and enables patients with severe ischemia and a high probability of CAD to be identified.

  5. Cardiac Involvement in Myotonic Dystrophy Type 2 Patients With Preserved Ejection Fraction: Detection by Cardiovascular Magnetic Resonance.

    Science.gov (United States)

    Schmacht, Luisa; Traber, Julius; Grieben, Ulrike; Utz, Wolfgang; Dieringer, Matthias A; Kellman, Peter; Blaszczyk, Edyta; von Knobelsdorff-Brenkenhoff, Florian; Spuler, Simone; Schulz-Menger, Jeanette

    2016-07-01

    Myotonic dystrophy type 2 (DM2) is a genetic disorder characterized by skeletal muscle symptoms, metabolic changes, and cardiac involvement. Histopathologic alterations of the skeletal muscle include fibrosis and fatty infiltration. The aim of this study was to investigate whether subclinical cardiac involvement in DM2 is already detectable in preserved left ventricular function by cardiovascular magnetic resonance. Twenty-seven patients (mean age, 54±10 years; 20 females) with a genetically confirmed diagnosis of DM2 were compared with 17 healthy age- and sex-matched controls using a 1.5 T magnetic resonance imaging. For myocardial tissue differentiation, T1 and T2 mapping, fat/water-separated imaging, focal fibrosis imaging (late gadolinium enhancement [LGE]), and (1)H magnetic resonance spectroscopy were performed. Extracellular volume fraction was calculated. Conduction abnormalities were diagnosed based on Groh criteria. LGE located subepicardial basal inferolateral was detectable in 22% of the patients. Extracellular volume was increased in this region and in the adjacent medial inferolateral segment (P=0.03 compared with healthy controls). In 21% of patients with DM2, fat deposits were detectable (all women). The control group showed no abnormalities. Myocardial triglycerides were not different in LGE-positive and LGE-negative subjects (P=0.47). Six patients had indicators for conduction disease (60% of LGE-positive patients and 12.5% of LGE-negative patients). In DM2, subclinical myocardial injury was already detectable in preserved left ventricular ejection fraction. Extracellular volume was also increased in regions with no focal fibrosis. Myocardial fibrosis was related to conduction abnormalities. © 2016 American Heart Association, Inc.

  6. A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis.

    Science.gov (United States)

    Lin, Chih-Wen; Wei, Kuo-Chen; Liao, Shih-sheng; Huang, Chiung-Yin; Sun, Chia-Liang; Wu, Pei-Jung; Lu, Yu-Jen; Yang, Hung-Wei; Ma, Chen-Chi M

    2015-05-15

    Early cancer diagnosis is critical for the prevention of metastasis. However, simple and efficient methods are needed to improve the diagnosis and evaluation of cancer. Here, we propose a reusable biosensor based on a magnetic graphene oxide (MGO)-modified Au electrode to detect vascular endothelial growth factor (VEGF) in human plasma for cancer diagnosis. In this biosensor, Avastin is used as the specific biorecognition element, and MGO is used as the carrier for Avastin loading. The use of MGO enables rapid purification due to its magnetic properties, which prevents the loss of bioactivity. Moreover, the biosensor can be constructed quickly, without requiring a drying process, which is convenient for proceeding to detection. Our reusable biosensor provides the appropriate sensitivity for clinical diagnostics and has a wide range of linear detection, from 31.25-2000 pg mL(-1), compared to ELISA analysis. In addition, in experiments with 100% serum from clinical samples, readouts from the sensor and an ELISA for VEGF showed good correlation within the limits of the ELISA kit. The relative standard deviation (RSD) of the change in current (ΔC) for reproducibility of the Au biosensor was 2.36% (n=50), indicating that it can be reused with high reproducibility. Furthermore, the advantages of the Avastin-MGO-modified biosensor for VEGF detection are that it provides an efficient detection strategy that not only improves the detection ability but also reduces the cost and decreases the response time by 10-fold, indicating its potential as a diagnosis product. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Denaturation strategies for detection of double stranded PCR products on GMR magnetic biosensor array

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Lee, Jung-Rok; Guldberg, Per

    2017-01-01

    Microarrays and other surface-based nucleic acid detection schemes rely on the hybridization of the target to surface-bound detection probes. We present the first comparison of two strategies to detect DNA using a giant magnetoresistive (GMR) biosensor platform starting from an initially double...

  8. A Rapid Detection Method of Brucella with Quantum Dots and Magnetic Beads Conjugated with Different Polyclonal Antibodies

    Science.gov (United States)

    Song, Dandan; Qu, Xiaofeng; Liu, Yushen; Li, Li; Yin, Dehui; Li, Juan; Xu, Kun; Xie, Renguo; Zhai, Yue; Zhang, Huiwen; Bao, Hao; Zhao, Chao; Wang, Juan; Song, Xiuling; Song, Wenzhi

    2017-03-01

    Brucella spp. are facultative intracellular bacteria that cause zoonotic disease of brucellosis worldwide. Traditional methods for detection of Brucella spp. take 48-72 h that does not meet the need of rapid detection. Herein, a new rapid detection method of Brucella was developed based on polyclonal antibody-conjugating quantum dots and antibody-modified magnetic beads. First, polyclonal antibodies IgG and IgY were prepared and then the antibody conjugated with quantum dots (QDs) and immunomagnetic beads (IMB), respectively, which were activated by N-(3-dimethylaminopropyl)- N'-ethylcar-bodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) to form probes. We used the IMB probe to separate the Brucella and labeled by the QD probe, and then detected the fluorescence intensity with a fluorescence spectrometer. The detection method takes 105 min with a limit of detection of 103 CFU/mL and ranges from 10 to 105 CFU/mL ( R 2 = 0.9983), and it can be well used in real samples.

  9. Online fault detection of permanent magnet demagnetization for IPMSMs by nonsingular fast terminal-sliding-mode observer.

    Science.gov (United States)

    Zhao, Kai-Hui; Chen, Te-Fang; Zhang, Chang-Fan; He, Jing; Huang, Gang

    2014-12-05

    To prevent irreversible demagnetization of a permanent magnet (PM) for interior permanent magnet synchronous motors (IPMSMs) by flux-weakening control, a robust PM flux-linkage nonsingular fast terminal-sliding-mode observer (NFTSMO) is proposed to detect demagnetization faults. First, the IPMSM mathematical model of demagnetization is presented. Second, the construction of the NFTSMO to estimate PM demagnetization faults in IPMSM is described, and a proof of observer stability is given. The fault decision criteria and fault-processing method are also presented. Finally, the proposed scheme was simulated using MATLAB/Simulink and implemented on the RT-LAB platform. A number of robustness tests have been carried out. The scheme shows good performance in spite of speed fluctuations, torque ripples and the uncertainties of stator resistance.

  10. Optical detection of magnetic resonance of the F-centre in CaO in its phosphorescent state

    International Nuclear Information System (INIS)

    Krap, C.J.

    1980-01-01

    The F-centre in CaO consists of two electrons trapped in an oxygen vacancy. The centre possesses bound excited states, of which the phosphorescent 3 Tsub(1u) state is a Jahn-Teller state. Jahn-Teller systems have been of interest in many investigations. However, detailed experimental studies about the relaxation paths for the Jahn-Teller states are relatively few. The author studies by means of optical detection of magnetic resonance (ODMR) and phosphorescence microwave double resonance (PMDR) techniques the relaxation between the components of the 3 Tsub(1u) state, the magnetic properties of the individual spin-vibronic Jahn-Teller states and the inhomogeneous line broadening in the ODMR and PMDR spectra. (Auth.)

  11. Sensitivity and spatial resolution for electron-spin-resonance detection by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Zhang, Z.; Roukes, M.L.; Hammel, P.C.

    1996-01-01

    The signal intensity of electron spin resonance in magnetic resonance force microscopy (MRFM) experiments employing periodic saturation of the electron spin magnetization is determined by four parameters: the rf field H 1 , the modulation level of the bias field H m , the spin relaxation time τ 1 , and the magnetic size R(∂H/∂z) of the sample. Calculations of the MRFM spectra obtained from a 2,2-diphenyl-1-picrylhydrazyl particle have been performed for various conditions. The results are compared with experimental data and excellent agreement is found. The systematic variation of the signal intensity as a function of H 1 and H m provides a powerful tool to characterize the MRFM apparatus. copyright 1996 American Institute of Physics

  12. Optical detection of nanoparticle agglomeration in a living system under the influence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Müller, Robert, E-mail: robert.mueller@ipht-jena.de [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Stranik, Ondrej [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Schlenk, Florian; Werner, Sebastian [Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University, Otto-Schott-Str. 41, 07745 Jena (Germany); Malsch, Daniéll [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany); Fischer, Dagmar [Department of Pharmaceutical Technology, Institute of Pharmacy, Friedrich Schiller University, Otto-Schott-Str. 41, 07745 Jena (Germany); Fritzsche, Wolfgang [Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena (Germany)

    2015-04-15

    Nanoparticles are important in diagnosis and therapy. In order to apply their potential, an understanding of the behavior of particles in the body is crucial. However, in vitro experiments usually do not mimic the dynamic conditions of the in vivo situation. The aim of our work was an in vivo observation of particle transport in chicken egg vessels in the presence of a magnetic field by particle tracking. For that we demonstrate the spatial resolution of our observations in a vein and a temporal resolution by observation of the cardiac cycle in an artery. Microscopic images were recorded in dark field reflection and fluorescence mode. - Highlights: • Optically accessible blood circulation in hen's egg CAV model. • Observation of transport of magnetic particles in chicken egg vessels. • Irreversibility of agglomerates after removing the magnetic field.

  13. Adenosine stress cardiovascular magnetic resonance with variable-density spiral pulse sequences accurately detects coronary artery disease: initial clinical evaluation.

    Science.gov (United States)

    Salerno, Michael; Taylor, Angela; Yang, Yang; Kuruvilla, Sujith; Ragosta, Michael; Meyer, Craig H; Kramer, Christopher M

    2014-07-01

    Adenosine stress cardiovascular magnetic resonance perfusion imaging can be limited by motion-induced dark-rim artifacts, which may be mistaken for true perfusion abnormalities. A high-resolution variable-density spiral pulse sequence with a novel density compensation strategy has been shown to reduce dark-rim artifacts in first-pass perfusion imaging. We aimed to assess the clinical performance of adenosine stress cardiovascular magnetic resonance using this new perfusion sequence to detect obstructive coronary artery disease. Cardiovascular magnetic resonance perfusion imaging was performed during adenosine stress (140 μg/kg per minute) and at rest on a Siemens 1.5-T Avanto scanner in 41 subjects with chest pain scheduled for coronary angiography. Perfusion images were acquired during injection of 0.1 mmol/kg Gadolinium-diethylenetriaminepentacetate at 3 short-axis locations using a saturation recovery interleaved variable-density spiral pulse sequence. Significant stenosis was defined as >50% by quantitative coronary angiography. Two blinded reviewers evaluated the perfusion images for the presence of adenosine-induced perfusion abnormalities and assessed image quality using a 5-point scale (1 [poor] to 5 [excellent]). The prevalence of obstructive coronary artery disease by quantitative coronary angiography was 68%. The average sensitivity, specificity, and accuracy were 89%, 85%, and 88%, respectively, with a positive predictive value and negative predictive value of 93% and 79%, respectively. The average image quality score was 4.4±0.7, with only 1 study with more than mild dark-rim artifacts. There was good inter-reader reliability with a κ statistic of 0.67. Spiral adenosine stress cardiovascular magnetic resonance results in high diagnostic accuracy for the detection of obstructive coronary artery disease with excellent image quality and minimal dark-rim artifacts. © 2014 American Heart Association, Inc.

  14. Magnetic

    Science.gov (United States)

    Aboud, Essam; El-Masry, Nabil; Qaddah, Atef; Alqahtani, Faisal; Moufti, Mohammed R. H.

    2015-06-01

    The Rahat volcanic field represents one of the widely distributed Cenozoic volcanic fields across the western regions of the Arabian Peninsula. Its human significance stems from the fact that its northern fringes, where the historical eruption of 1256 A.D. took place, are very close to the holy city of Al-Madinah Al-Monawarah. In the present work, we analyzed aeromagnetic data from the northern part of Rahat volcanic field as well as carried out a ground gravity survey. A joint interpretation and inversion of gravity and magnetic data were used to estimate the thickness of the lava flows, delineate the subsurface structures of the study area, and estimate the depth to basement using various geophysical methods, such as Tilt Derivative, Euler Deconvolution and 2D modeling inversion. Results indicated that the thickness of the lava flows in the study area ranges between 100 m (above Sea Level) at the eastern and western boundaries of Rahat Volcanic field and getting deeper at the middle as 300-500 m. It also showed that, major structural trend is in the NW direction (Red Sea trend) with some minor trends in EW direction.

  15. MAGNET

    CERN Multimedia

    Benoit Curé

    The cooling down to the nominal temperature of 4.5 K was achieved at the beginning of August, in conjunction with the completion of the installation work of the connection between the power lines and the coil current leads. The temperature gradient on the first exchanger of the cold box is now kept within the nominal range. A leak of lubricant on a gasket of the helium compressor station installed at the surface was observed and several corrective actions were necessary to bring the situation back to normal. The compressor had to be refilled with lubricant and a regeneration of the filters and adsorbers was necessary. The coil cool down was resumed successfully, and the cryogenics is running since then with all parameters being nominal. Preliminary tests of the 20kA coil power supply were done earlier at full current through the discharge lines into the dump resistors, and with the powering busbars from USC5 to UXC5 without the magnet connected. On Monday evening August 25th, at 8pm, the final commissionin...

  16. MAGNET

    CERN Document Server

    B. Curé

    The first phase of the commissioning ended in August by a triggered fast dump at 3T. All parameters were nominal, and the temperature recovery down to 4.5K was carried out in two days by the cryogenics. In September, series of ramps were achieved up to 3 and finally 3.8T, while checking thoroughly the detectors in the forward region, measuring any movement of and around the HF. After the incident of the LHC accelerator on September 19th, corrective actions could be undertaken in the forward region. When all these displacements were fully characterized and repetitive, with no sign of increments in displacement at each field ramp, it was possible to start the CRAFT, Cosmic Run at Four Tesla (which was in fact at 3.8T). The magnet was ramped up to 18.16kA and the 3 week run went smoothly, with only 4 interruptions: due to the VIP visits on 21st October during the LHC inauguration day; a water leak on the cooling demineralized water circuit, about 1 l/min, that triggered a stop of the cooling pumps, and resulte...

  17. MAGNET

    CERN Multimedia

    Benoit Curé

    2013-01-01

    Maintenance work and consolidation activities on the magnet cryogenics and its power distribution are progressing according to the schedules. The manufacturing of the two new helium compressor frame units has started. The frame units support the valves, all the sensors and the compressors with their motors. This activity is subcontracted. The final installation and the commissioning at CERN are scheduled for March–April 2014. The overhauls of existing cryogenics equipment (compressors, motors) are in progress. The reassembly of the components shall start in early 2014. The helium drier, to be installed on the high-pressure helium piping, has been ordered and will be delivered in the first trimester of 2014. The power distribution for the helium compressors in SH5 on the 3.3kV network is progressing. The 3.3kV switches, between each compressor and its hot spare compressor, are being installed, together with the power cables for the new compressors. The 3.3kV electrical switchboards in SE5 will ...

  18. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    Energy Technology Data Exchange (ETDEWEB)

    Reverté, Laia [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain); Prieto-Simón, Beatriz [ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Future Industries Institute, University of South Australia, SA 5095 (Australia); Campàs, Mònica, E-mail: monica.campas@irta.cat [IRTA, Carretera Poble Nou km. 5.5, 43540 Sant Carles de la Ràpita, Tarragona (Spain)

    2016-02-18

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  19. New advances in electrochemical biosensors for the detection of toxins: Nanomaterials, magnetic beads and microfluidics systems. A review

    International Nuclear Information System (INIS)

    Reverté, Laia; Prieto-Simón, Beatriz; Campàs, Mònica

    2016-01-01

    The use of nanotechnology in bioanalytical devices has special advantages in the detection of toxins of interest in food safety and environmental applications. The low levels to be detected and the small size of toxins justify the increasing number of publications dealing with electrochemical biosensors, due to their high sensitivity and design versatility. The incorporation of nanomaterials in their development has been exploited to further increase their sensitivity, providing simple and fast devices, with multiplexed capabilities. This paper gives an overview of the electrochemical biosensors that have incorporated carbon and metal nanomaterials in their configurations for the detection of toxins. Biosensing systems based on magnetic beads or integrated into microfluidics systems have also been considered because of their contribution to the development of compact analytical devices. The roles of these materials, the methods used for their incorporation in the biosensor configurations as well as the advantages they provide to the analyses are summarised. - Highlights: • Nanomaterials improve the performance of electrochemical biosensors. • Carbon nanomaterials can act as electrocatalysts or label supports in biosensors. • Metal nanomaterials can act as nanostructured supports or labels in biosensors. • Magnetic beads are exploited as immobilisation supports and/or label carriers.

  20. Magnetic Gradient Horizontal Operator (MHGO) useful for detecting objects buried at shallow depth: cultural heritage (Villa degli Antonini, Rota Rio)

    Science.gov (United States)

    Di Filippo, Michele; Di Nezza, Maria

    2016-04-01

    Several factors were taken into consideration in order to appropriately tailor the geophysical explorations at the cultural heritage. Given the fact that each site has been neglected for a long time and in recent times used as an illegal dumping area, we thoroughly evaluated for this investigation the advantages and limitations of each specific technique, and the general conditions and history of the site. We took into account the extension of the areas to be investigated and the need for rapid data acquisition and processing. Furthermore, the survey required instrumentation with sensitivity to small background contrasts and as little as possible affected by background noise sources. In order to ascertain the existence and location of underground buried walls, a magnetic gradiometer survey (MAG) was planned. The map of the magnetic anomalies is not computed to reduction at the pole (RTP), but with a magnetic horizontal gradient operator (MHGO). The magnetic horizontal gradient operator (MHGO) generates from a grid of vertical gradient a grid of steepest slopes (i.e. the magnitude of the gradient) at any point on the surface. The MHGO is reported as a number (rise over run) rather than degrees, and the direction is opposite to that of the slope. The MHGO is zero for a horizontal surface, and approaches infinity as the slope approaches the vertical. The gradient data are especially useful for detecting objects buried at shallow depth. The map reveals some details of the anomalies of the geomagnetic field. Magnetic anomalies due to walls are more evident than in the total intensity map, whereas anomalies due to concentrations of debris are very weak. In this work we describe the results of an investigation obtained with magnetometry investigation for two archaeological sites: "Villa degli Antonini" (Genzano, Rome) and Rota Ria (Mugnano in Teverina, Viterbo). Since the main goal of the investigation was to understand the nature of magnetic anomalies with cost

  1. Detection of radiation induced lung injury in rats using dynamic hyperpolarized 129Xe magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Fox, Matthew S.; Ouriadov, Alexei; Hegarty, Elaine; Thind, Kundan; Wong, Eugene; Hope, Andrew; Santyr, Giles E.

    2014-01-01

    Purpose: Radiation induced lung injury (RILI) is a common side effect for patients undergoing thoracic radiation therapy (RT). RILI can lead to temporary or permanent loss of lung function and in extreme cases, death. Combining functional lung imaging information with conventional radiation treatment plans may lead to more desirable treatment plans that reduce lung toxicity and improve the quality of life for lung cancer survivors. Magnetic Resonance Imaging of the lung following inhalation of hyperpolarized 129 Xe may provide a useful nonionizing approach for probing changes in lung function and structure associated with RILI before, during, or after RT (early and late time-points). Methods: In this study, dynamic 129 Xe MR spectroscopy was used to measure whole-lung gas transfer time constants for lung tissue and red blood cells (RBC), respectively (T Tr-tissue and T Tr-RBC ) in groups of rats at two weeks and six weeks following 14 Gy whole-lung exposure to radiation from a 60 Co source. A separate group of six healthy age-matched rats served as a control group. Results: T Tr-tissue values at two weeks post-irradiation (51.6 ± 6.8 ms) were found to be significantly elevated (p < 0.05) with respect to the healthy control group (37.2 ± 4.8 ms). T Tr-RBC did not show any significant changes between groups. T Tr-tissue was strongly correlated with T Tr-RBC in the control group (r = 0.9601 p < 0.05) and uncorrelated in the irradiated groups. Measurements of arterial partial pressure of oxygen obtained by arterial blood sampling were found to be significantly decreased (p < 0.05) in the two-week group (54.2 ± 12.3 mm Hg) compared to those from a representative control group (85.0 ± 10.0 mm Hg). Histology of a separate group of similarly irradiated animals confirmed the presence of inflammation due to radiation exposure with alveolar wall thicknesses that were significantly different (p < 0.05). At six weeks post-irradiation, T Tr-tissue returned to values (35

  2. Exploring the potential of acquisition curves of the anhysteretic remanent magnetization as a tool to detect subtle magnetic alteration induced by heating

    Science.gov (United States)

    de Groot, Lennart V.; Dekkers, Mark J.; Mullender, Tom A. T.

    2012-03-01

    Recently, many new methods and improved protocols to determine the absolute paleointensity of lavas reliably have been proposed. Here we study eight recent flows from three different volcanic edifices (Mt. Etna, La Palma and Hawaii) with the so-called multispecimen parallel differential pTRM (MSP) method including the recently proposed domain-state correction (MSP-DSC) (Fabian and Leonhardt, 2010). Surprisingly, apart from approximately correct paleointensity values, we observe major underestimates of the paleofield. These deviations are possibly related to alteration that is not revealed by rock-magnetic analysis. We explore the potential of high-resolution acquisition curves of the anhysteretic remanent magnetization (ARM) to detect subtle alteration in the samples. It appears that assessing changes in the ARM acquisition properties before and after heating to the desired MSP temperature discriminates between underestimates and approximately correct estimations of the paleofield in the outcomes of the MSP-DSC protocol. By combining observations from the domain-state corrected MSP protocol and ARM acquisition experiments before and after heating, an extended MSP protocol is suggested which makes it possible to assess the best set temperature for the MSP-DSC protocol and to label MSP results as being approximately correct, or an underestimate of the paleofield.

  3. Rapid Colorimetric Detection of Cartap Residues by AgNP Sensor with Magnetic Molecularly Imprinted Microspheres as Recognition Elements

    Directory of Open Access Journals (Sweden)

    Mao Wu

    2018-06-01

    Full Text Available The overuse of cartap in tea tree leads to hazardous residues threatening human health. A colorimetric determination was established to detect cartap residues in tea beverages by silver nanoparticles (AgNP sensor with magnetic molecularly imprinted polymeric microspheres (Fe3O4@mSiO2@MIPs as recognition elements. Using Fe3O4 as supporting core, mesoporous SiO2 as intermediate shell, methylacrylic acid as functional monomer, and cartap as template, Fe3O4@mSiO2@MIPs were prepared to selectively and magnetically separate cartap from tea solution before colorimetric determination by AgNP sensors. The core-shell Fe3O4@mSiO2@MIPs were also characterized by FT-IR, TEM, VSM, and experimental adsorption. The Fe3O4@mSiO2@MIPs could be rapidly separated by an external magnet in 10 s with good reusability (maintained 95.2% through 10 cycles. The adsorption process of cartap on Fe3O4@mSiO2@MIPs conformed to Langmuir adsorption isotherm with maximum adsorption capacity at 0.257 mmol/g and short equilibrium time of 30 min at 298 K. The AgNP colorimetric method semi-quantified cartap ≥5 mg/L by naked eye and quantified cartap 0.1–5 mg/L with LOD 0.01 mg/L by UV-vis spectroscopy. The AgNP colorimetric detection after pretreatment with Fe3O4@mSiO2@MIPs could be successfully utilized to recognize and detect cartap residues in tea beverages.

  4. Detection and Elimination of Oncogenic Signaling Networks in Premalignant and Malignant Cells with Magnetic Resonance Imaging

    Science.gov (United States)

    2015-10-01

    proton resonance frequency TR- relaxation time GRE- gradient echo MT- magnetization transfer 6 FSE- fast spin echo 7 3. Overall Progress Summary...support project. – SBA certified 8(a)/Small Disadvantaged Business, HUBZone, and 8(m)/Economically Disadvantaged Woman owned, technology services

  5. Detection and Elimination of Oncogenic Signalling Networks in Premalignant and Malignant Cells with Magnetic Resonance Imaging

    Science.gov (United States)

    2015-10-01

    proton resonance frequency TR- relaxation time GRE- gradient echo MT- magnetization transfer 6 FSE- fast spin echo 7 3. Overall Progress Summary...support project. – SBA certified 8(a)/Small Disadvantaged Business, HUBZone, and 8(m)/Economically Disadvantaged Woman owned, technology services

  6. Superconducting Magnetic Tensor Gradiometer System for Detection of Underwater Military Munitions

    Science.gov (United States)

    2012-06-01

    TILTING IN THE GEOMAGNETIC FIELD ....................................................................................... 75 7.4 MAGNETIC DIPOLE...the full geomagnetic field indicate that the required sensitivity specification can be met if the field seen by the devices is substantially reduced...between discrete values similar to random telegraph noise. Fortunately, this noise source can be substantially suppressed by using an AC bias reversal

  7. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  8. A new segmentation strategy for processing magnetic anomaly detection data of shallow depth ferromagnetic pipeline

    Science.gov (United States)

    Feng, Shuo; Liu, Dejun; Cheng, Xing; Fang, Huafeng; Li, Caifang

    2017-04-01

    Magnetic anomalies produced by underground ferromagnetic pipelines because of the polarization of earth's magnetic field are used to obtain the information on the location, buried depth and other parameters of pipelines. In order to achieve a fast inversion and interpretation of measured data, it is necessary to develop a fast and stable forward method. Magnetic dipole reconstruction (MDR), as a kind of integration numerical method, is well suited for simulating a thin pipeline anomaly. In MDR the pipeline model must be cut into small magnetic dipoles through different segmentation methods. The segmentation method has an impact on the stability and speed of forward calculation. Rapid and accurate simulation of deep-buried pipelines has been achieved by exciting segmentation method. However, in practical measurement, the depth of underground pipe is uncertain. When it comes to the shallow-buried pipeline, the present segmentation may generate significant errors. This paper aims at solving this problem in three stages. First, the cause of inaccuracy is analyzed by simulation experiment. Secondly, new variable interval section segmentation is proposed based on the existing segmentation. It can help MDR method to obtain simulation results in a fast way under the premise of ensuring the accuracy of different depth models. Finally, the measured data is inversed based on new segmentation method. The result proves that the inversion based on the new segmentation can achieve fast and accurate inversion of depth parameters of underground pipes without being limited by pipeline depth.

  9. Detection of a milling-induced surface damage by the magnetic Barkhausen noise

    Czech Academy of Sciences Publication Activity Database

    Stupakov, Alexandr; Neslušan, M.; Perevertov, Oleksiy

    2016-01-01

    Roč. 410, Jul (2016), 198-209 ISSN 0304-8853 R&D Projects: GA ČR GB14-36566G; GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : Barkhausen noise * surface field measurement * magnetization waveformcontrol * hard turning * surface integrity Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 2.630, year: 2016

  10. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin, E-mail: binhu@whu.edu.cn

    2015-05-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L{sup −1} for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L{sup −1}, n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009–88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3–116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix. - Highlights: • Novel Cd(II)-II-MMS was prepared by surface imprinting combined with a sol–gel process. • Cd(II)-II-MMS has a high selectivity and adsorption capacity for Cd(II). • A sensitive and selective method of Cd(II)-IIMSPE-GFAAS was developed for trace cadmium analysis. • The method can be applied to determine trace Cd in various samples with complicated matrix.

  11. Novel ion imprinted magnetic mesoporous silica for selective magnetic solid phase extraction of trace Cd followed by graphite furnace atomic absorption spectrometry detection

    International Nuclear Information System (INIS)

    Zhao, Bingshan; He, Man; Chen, Beibei; Hu, Bin

    2015-01-01

    Determination of trace Cd in environmental, biological and food samples is of great significance to toxicological research and environmental pollution monitoring. While the direct determination of Cd in real-world samples is difficult due to its low concentration and the complex matrix. Herein, a novel Cd(II)-ion imprinted magnetic mesoporous silica (Cd(II)-II-MMS) was prepared and was employed as a selective magnetic solid-phase extraction (MSPE) material for extraction of trace Cd in real-world samples followed by graphite furnace atomic absorption spectrometry (GFAAS) detection. Under the optimized conditions, the detection limit of the proposed method was 6.1 ng L −1 for Cd with the relative standard deviation (RSD) of 4.0% (c = 50 ng L −1 , n = 7), and the enrichment factor was 50-fold. To validate the proposed method, Certified Reference Materials of GSBZ 50009–88 environmental water, ZK018-1 lyophilized human urine and NIES10-b rice flour were analyzed and the determined values were in a good agreement with the certified values. The proposed method exhibited a robust anti-interference ability due to the good selectivity of Cd(II)-II-MMS toward Cd(II). It was successfully employed for the determination of trace Cd(II) in environmental water, human urine and rice samples with recoveries of 89.3–116%, demonstrating that the proposed method has good application potential in real world samples with complex matrix. - Highlights: • Novel Cd(II)-II-MMS was prepared by surface imprinting combined with a sol–gel process. • Cd(II)-II-MMS has a high selectivity and adsorption capacity for Cd(II). • A sensitive and selective method of Cd(II)-IIMSPE-GFAAS was developed for trace cadmium analysis. • The method can be applied to determine trace Cd in various samples with complicated matrix

  12. Animal magnetocardiography using superconducting quantum interference device gradiometers assisted with magnetic nanoparticle injection: A sensitive method for early detecting electromagnetic changes induced by hypercholesterolemia

    Science.gov (United States)

    Wu, C. C.; Hong, B. F.; Wu, B. H.; Yang, S. Y.; Horng, H. E.; Yang, H. C.; Tseng, W. Y. Isaac; Tseng, W. K.; Liu, Y. B.; Lin, L. C.; Lu, L. S.; Lee, Y. H.

    2007-01-01

    In this work, the authors used a superconducting quantum interference device (SQUID) magnetocardiography (MCG) system consisted of 64-channel low-transition-temperature SQUID gradiometers to detect the MCG signals of hepercholesterolemic rabbits. In addition, the MCG signals were recorded before and after the injection of magnetic nanoparticles into the rabbits' ear veins to investigate the effects of magnetic nanoparticles on the MCG signals. These MCG data were compared to those of normal rabbits to reveal the feasibility for early detection of the electromagnetic changes induced by hypercholesterolemia using MCG with the assistance of magnetic nanoparticle injection.

  13. Texture analysis of cardiac cine magnetic resonance imaging to detect nonviable segments in patients with chronic myocardial infarction.

    Science.gov (United States)

    Larroza, Andrés; López-Lereu, María P; Monmeneu, José V; Gavara, Jose; Chorro, Francisco J; Bodí, Vicente; Moratal, David

    2018-04-01

    To investigate the ability of texture analysis to differentiate between infarcted nonviable, viable, and remote segments on cardiac cine magnetic resonance imaging (MRI). This retrospective study included 50 patients suffering chronic myocardial infarction. The data were randomly split into training (30 patients) and testing (20 patients) sets. The left ventricular myocardium was segmented according to the 17-segment model in both cine and late gadolinium enhancement (LGE) MRI. Infarcted myocardium regions were identified on LGE in short-axis views. Nonviable segments were identified as those showing LGE ≥ 50%, and viable segments those showing 0 cine images. A support vector machine (SVM) classifier was trained with different combination of texture features to obtain a model that provided optimal classification performance. The best classification on testing set was achieved with local binary patterns features using a 2D + t approach, in which the features are computed by including information of the time dimension available in cine sequences. The best overall area under the receiver operating characteristic curve (AUC) were: 0.849, sensitivity of 92% to detect nonviable segments, 72% to detect viable segments, and 85% to detect remote segments. Nonviable segments can be detected on cine MRI using texture analysis and this may be used as hypothesis for future research aiming to detect the infarcted myocardium by means of a gadolinium-free approach. © 2018 American Association of Physicists in Medicine.

  14. Detecting the sensitivity of magnetic response on different pollution sources--A case study from typical mining cities in northwestern China.

    Science.gov (United States)

    Wang, Bo; Xia, Dunsheng; Yu, Ye; Jia, Jia; Nie, Yan; Wang, Xin

    2015-12-01

    Rapid monitoring and discriminating different anthropogenic pollution is a key scientific issue. To detect the applicability and sensitivity of magnetic measurements for evaluating different industrial pollution in urban environment, characteristics of topsoil from three typical fast developing industrial cities (Jinchang, Baiyin and Jiayuguan in Gansu province, northwestern China) were studied by magnetic and geochemical analyses. The results showed that magnetic susceptibility was enhanced near industrial areas, and PSD-MD magnetite dominated the magnetic properties. Magnetic concentration parameters (χlf, SIRM, and χARM) showed different correlations with heavy metals and PLI in the three cities, indicating significantly different magnetic response to different pollution sources. Principal component analysis showed that ferrimagnetic minerals coexist with heavy metals of Fe, As, Cu, Pb, and Zn in Baiyin and Fe, V, Cu, Mn, Pb, and Cr in Jiayuguan. Fuzzy cluster analysis and regression analysis further indicated that the sensitivity of magnetic monitoring to fuel dust is higher than that to mineral dust near non-ferrous metal smelters, and fossil fuel consumption is an important factor for increasing magnetite content. In all the three cities, the sensitivity of magnetic monitoring to pollutants from steel plants is much higher than that from non-ferrous metal plants. Therefore, magnetic proxies provide a rapid means for detecting heavy metal contamination caused by multi-anthropogenic pollution sources in a large scale area, however, the sensitivity was controlled by pollution sources. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Prospective comparative study of spiral computer tomography and magnetic resonance imaging for detection of hepatocellular carcinoma

    NARCIS (Netherlands)

    Stoker, J.; Romijn, M. G.; de Man, R. A.; Brouwer, J. T.; Weverling, G. J.; van Muiswinkel, J. M.; Zondervan, P. E.; Laméris, J. S.; Ijzermans, J. N. M.

    2002-01-01

    Background: Hepatocellular carcinoma (HCC) is often detected at a relatively late stage when tumour size prohibits curative surgery. Screening to detect HCC at an early stage is performed for patients at risk. Aim: The aim of this study was to compare prospectively the diagnostic accuracy and

  16. Shape anisotropy enhanced optomagnetic measurement for prostate-specific antigen detection via magnetic chain formation

    DEFF Research Database (Denmark)

    Tian, Bo; Wetterskog, Erik; Qiu, Zhen

    2017-01-01

    anisotropy), and directly increasing the optomagnetic signal (via optical shape anisotropy). We achieve a limit of detection (LOD) of 5.5 pM (0.82 ng/mL) for the detection of a model multivalent molecule, biotinylated anti-streptavidin, in PBS. For the measurements of prostate-specific antigen (PSA) in 50...

  17. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kato, Y.; Holm, David Alberg; Okollie, B.

    2010-01-01

    demonstrate partial breakdown of the BBB/BTB and good vascularization in U87MG xenografts. A [C-13] TMZ peak was detected at 3.9 ppm by HMQC from a selected volume of about 0.15 cm(3) within the brain tumor with HMQC pulse sequences. This study clearly demonstrates the noninvasive detection of [C-13]TMZ...

  18. Airborne detection of magnetic anomalies associated with soils on the Oak Ridge Reservation, Tennessee

    International Nuclear Information System (INIS)

    Doll, W.E.; Beard, L.P.; Helm, J.M.

    1995-01-01

    Reconnaissance airborne geophysical data acquired over the 35,000-acre Oak Ridge Reservation (ORR), TN, show several magnetic anomalies over undisturbed areas mapped as Copper Ridge Dolomite (CRD). The anomalies of interest are most apparent in magnetic gradient maps where they exceed 0.06 nT/m and in some cases exceed 0.5 nT/m. Anomalies as large as 25nT are seen on maps. Some of the anomalies correlate with known or suspected karst, or with apparent conductivity anomalies calculated from electromagnetic data acquired contemporaneously with the magnetic data. Some of the anomalies have a strong correlation with topographic lows or closed depressions. Surface magnetic data have been acquired over some of these sites and have confirmed the existence of the anomalies. Ground inspections in the vicinity of several of the anomalies has not led to any discoveries of manmade surface materials of sufficient size to generate the observed anomalies. One would expect an anomaly of approximately 1 nT for a pickup truck from 200 ft altitude. Typical residual magnetic anomalies have magnitudes of 5--10 nT, and some are as large as 25nT. The absence of roads or other indications of culture (past or present) near the anomalies and the modeling of anomalies in data acquired with surface instruments indicate that man-made metallic objects are unlikely to be responsible for the anomaly. The authors show that observed anomalies in the CRD can reasonably be associated with thickening of the soil layer. The occurrence of the anomalies in areas where evidences of karstification are seen would follow because sediment deposition would occur in topographic lows. Linear groups of anomalies on the maps may be associated with fracture zones which were eroded more than adjacent rocks and were subsequently covered with a thicker blanket of sediment. This study indicates that airborne magnetic data may be of use in other sites where fracture zones or buried collapse structures are of interest

  19. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Zhenyu, E-mail: liaozy08@163.com [Tianjin Product Quality Inspection Technology Research Institute, The National Center of Supervision and Inspection for Quality of Food (China); Zhang, Ying [Tianjin University, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (China); Su, Lin [Tianjin Medical University Eye Hospital, Eye Institute and School of Optometry and Ophthalmology (China); Chang, Jin; Wang, Hanjie, E-mail: wanghj@tju.edu.cn [Tianjin University, School of Life Sciences, Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (China)

    2017-02-15

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe{sub 3}O{sub 4} nanoparticles (Fe{sub 3}O{sub 4} NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  20. Application of upconversion luminescent-magnetic microbeads with weak background noise and facile separation in ochratoxin A detection

    International Nuclear Information System (INIS)

    Liao, Zhenyu; Zhang, Ying; Su, Lin; Chang, Jin; Wang, Hanjie

    2017-01-01

    Ochratoxin A (OTA), the most harmful and abundant ochratoxin, is chemically stable and commonly existed in foodstuffs. In this work, upconversion luminescent-magnetic microbeads (UCLMMs) -based cytometric bead array for OTA detection with a less reagent consumption and high sensitivity has been established and optimized. In UCLMMs, upconversion nanocrystals (UCNs) for optical code present a weak background noise and no spectral cross talk between the encoding signals and target labels under two excitation conditions to improve detection sensitivity. While the superparamagnetic Fe_3O_4 nanoparticles (Fe_3O_4 NPs) aim for rapid analysis. The results show that the developed method has a sensitivity of 9.553 ppt below HPLC with a 50-μL sample and can be completed in <2 h with good accuracy and high reproducibility. Therefore, different colors of UCLMMs will become a promising assay platform for multiple mycotoxins after further improvement.

  1. Central nervous system abnormalities on midline facial defects with hypertelorism detected by magnetic resonance image and computed tomography

    International Nuclear Information System (INIS)

    Lopes, Vera Lucia Gil da Silva; Giffoni, Silvio David Araujo

    2006-01-01

    The aim of this study were to describe and to compare structural central nervous system (CNS) anomalies detected by magnetic resonance image (MRI) and computed tomography (CT) in individuals affected by midline facial defects with hypertelorism (MFDH) isolated or associated with multiple congenital anomalies (MCA). The investigation protocol included dysmorphological examination, skull and facial X-rays, brain CT and/or MRI. We studied 24 individuals, 12 of them had an isolated form (Group I) and the others, MCA with unknown etiology (Group II). There was no significant difference between Group I and II and the results are presented in set. In addition to the several CNS anomalies previously described, MRI (n=18) was useful for detection of neuronal migration errors. These data suggested that structural CNS anomalies and MFDH seem to have an intrinsic embryological relationship, which should be taken in account during the clinical follow-up. (author)

  2. Manufacture and Testing of a High Field Gradient Magnetic Fractionation System for Quantitative Detection of Plasmodium falciparum Gametocytes

    Science.gov (United States)

    Karl, Stephan; Woodward, Robert C.; Davis, Timothy M. E.; St. Pierre, Tim G.

    2010-12-01

    Plasmodium falciparum is the most dangerous of the human malaria parasite species and accounts for millions of clinical episodes of malaria each year in tropical countries. The pathogenicity of Plasmodium falciparum is a result of its ability to infect erythrocytes where it multiplies asexually over 48 h or develops into sexual forms known as gametocytes. If sufficient male and female gametocytes are taken up by a mosquito vector, it becomes infectious. Therefore, the presence and density of gametocytes in human blood is an important indicator of human-to-mosquito transmission of malaria. Recently, we have shown that high field gradient magnetic fractionation improves gametocyte detection in human blood samples. Here we present two important new developments. Firstly we introduce a quantitative approach to replace the previous qualitative method and, secondly, we describe a novel method that enables cost-effective production of the magnetic fractionation equipment required to carry out gametocyte quantification. We show that our custom-made magnetic fractionation equipment can deliver results with similar sensitivity and convenience but for a small fraction of the cost.

  3. Magnetic sulfur-doped porous carbon for preconcentration of trace mercury in environmental water prior to ICP-MS detection.

    Science.gov (United States)

    Peng, Chuyu; He, Man; Chen, Beibei; Huang, Lijin; Hu, Bin

    2017-11-20

    A novel magnetic sulfur-doped porous carbon (MSPC) was fabricated via a simple one-step carbonization of a mixture of sucrose, basic magnesium sulfate whiskers and Fe 3 O 4 @SiO 2 nanoparticles. Due to the high S content, the prepared MSPC possessed high adsorption capacity for Hg 2+ (343 mg g -1 ) with good selectivity. Based on this, a method coupling magnetic solid phase extraction (MSPE) with inductively coupled plasma mass spectrometry (ICP-MS) was developed for the determination of trace Hg 2+ in environmental water samples. Various parameters such as pH, desorption solvent and its concentration, desorption volume and time, sample volume, and adsorption time that affect the determination have been optimized. Under the optimal conditions, a high enrichment factor of 100-fold was obtained, the limit of detection (LOD) was found to be 0.52 pg mL -1 with a relative standard deviation (c = 10 pg mL -1 , n = 7) of 7.1%, and a good linearity was obtained within the concentration range of 2-5000 pg mL -1 for Hg 2+ . Besides, the proposed method has very fast adsorption/desorption kinetics, target Hg 2+ could be rapidly adsorbed on the prepared MSPC in 2 min and desorbed from the MSPC in 2 min with the assistance of a permanent magnet. Therefore, the proposed method of MSPE-ICP-MS exhibits good application potential in the determination of trace Hg 2+ in environmental water samples.

  4. Inspection method of cable-stayed bridge using magnetic flux leakage detection: principle, sensor design, and signal processing

    International Nuclear Information System (INIS)

    Xu, Fengyu; Wang, Xingsong; Wu, Hongtao

    2012-01-01

    A nondestructive testing technique based on magnetic flux leakage is presented to inspect automatically the stay cables with large diameters of a cable-stayed bridge. Using the proposed inspection method, an online nondestructive testing (NDT) modular sensor is developed. The wreath-like sensor is composed of several sensor units that embrace the cable at equal angles. Each sensor unit consists of two permanent magnets and a hall sensor to detect the magnetic flux density. The modular sensor can be installed conveniently on cables with various diameters by increasing the number of sensor units and adjusting the relative distances between adjacent sensor units. Results of the experiments performed on a man-made cable with faults prove that the proposed sensor can inspect the status signals of the inner wires of the cables. To filter the interfering signals, three processing algorithms are discussed, including the moving average method, improved detrending algorithm, and signal processing based on a digital filter. Results show that the developed NDT sensor carried by a cable inspection robot can move along the cable and monitor the state of the stay cables

  5. Fluorescence bio-barcode DNA assay based on gold and magnetic nanoparticles for detection of Exotoxin A gene sequence.

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2017-06-15

    Bio-barcode DNA based on gold nanoparticle (bDNA-GNPs) as a new generation of biosensor based detection tools, holds promise for biological science studies. They are of enormous importance in the emergence of rapid and sensitive procedures for detecting toxins of microorganisms. Exotoxin A (ETA) is the most toxic virulence factor of Pseudomonas aeruginosa. ETA has ADP-ribosylation activity and decisively affects the protein synthesis of the host cells. In the present study, we developed a fluorescence bio-barcode technology to trace P. aeruginosa ETA. The GNPs were coated with the first target-specific DNA probe 1 (1pDNA) and bio-barcode DNA, which acted as a signal reporter. The magnetic nanoparticles (MNPs) were coated with the second target-specific DNA probe 2 (2pDNA) that was able to recognize the other end of the target DNA. After binding the nanoparticles with the target DNA, the following sandwich structure was formed: MNP 2pDNA/tDNA/1pDNA-GNP-bDNA. After isolating the sandwiches by a magnetic field, the DNAs of the probes which have been hybridized to their complementary DNA, GNPs and MNPs, via the hydrogen, electrostatic and covalently bonds, were released from the sandwiches after dissolving in dithiothreitol solution (DTT 0.8M). This bio-barcode DNA with known DNA sequence was then detected by fluorescence spectrophotometry. The findings showed that the new method has the advantages of fast, high sensitivity (the detection limit was 1.2ng/ml), good selectivity, and wide linear range of 5-200ng/ml. The regression analysis also showed that there was a good linear relationship (∆F=0.57 [target DNA]+21.31, R 2 =0.9984) between the fluorescent intensity and the target DNA concentration in the samples. Copyright © 2016. Published by Elsevier B.V.

  6. Novel Magnetic Microprobe with Benzoboroxole-Modified Flexible Multisite Arm for High-Efficiency cis-Diol Biomolecule Detection.

    Science.gov (United States)

    Chen, Guosheng; Huang, Siming; Kou, Xiaoxue; Zhang, Jin'ge; Wang, Fuxin; Zhu, Fang; Ouyang, Gangfeng

    2018-03-06

    With regard to regulating a variety of biological events, including molecular recognition, signal transduction, cell adhesion, and immune response, cis-diol biomolecules, such as saccharides and glycoproteins, play vital roles. However, saccharides and glycoproteins in living systems usually exist in very low abundance, along with abundant interfering components. High-efficiency detection of saccharides and glycoproteins is a challenging yet highly impactful area of research. Herein, we reported a novel magnetic microprobe with a benzoboroxole-modified flexible multisite arm (PEG 2000-grafted PAMAM dendrimers; the microprobe was denoted as BFMA-MNP) for high-efficiency saccharides detection. The extraction capacity was significantly improved by ∼2 orders of magnitude, because of the integration of the enhanced hydrophilicity and multivalency effects in benzoboroxoles and the enhanced accessibility of the binding sites within the PEG 2000-grafted PAMAM dendrimers. As a result, the proposed approach possessed several advantages, compared with previous boronic acid-based methods, including ultrahigh sensitivity (limit of detection was <1 ng/mL), wide linear range (ranged from 0.5 μM to 2000 μM), and applicable in physiological pH condition. Furthermore, we established a general BFMA-MNP/glycoproteins/AuNPs sandwich assay to realize the visual glycoprotein qualitative screening for the first time. The unique sandwich assay possessed the dual nature of the magnetic separation by BFMA-MNPs and specific coloration by citrate-coated AuNPs. This visual sandwich assay enabled fast differentiation of the existence of glycoproteins in complicated samples without any advanced instruments. We believe the proposed BFMA-MNP microprobe herein will advance the ideas to detect and identify trace saccharides and glycoproteins in important fields such as glycomics and glycoproteomics.

  7. An economic passive sampling method to detect particulate pollutants using magnetic measurements.

    Science.gov (United States)

    Cao, Liwan; Appel, Erwin; Hu, Shouyun; Ma, Mingming

    2015-10-01

    Identifying particulate matter (PM) emitted from industrial processes into the atmosphere is an important issue in environmental research. This paper presents a passive sampling method using simple artificial samplers that maintains the advantage of bio-monitoring, but overcomes some of its disadvantages. The samplers were tested in a heavily polluted area (Linfen, China) and compared to results from leaf samples. Spatial variations of magnetic susceptibility from artificial passive samplers and leaf samples show very similar patterns. Scanning electron microscopy suggests that the collected PM are mostly in the range of 2-25 μm; frequent occurrence of spherical shape indicates industrial combustion dominates PM emission. Magnetic properties around power plants show different features than other plants. This sampling method provides a suitable and economic tool for semi-quantifying temporal and spatial distribution of air quality; they can be installed in a regular grid and calibrate the weight of PM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Rapid detection and purification of sequence specific DNA binding proteins using magnetic separation

    Directory of Open Access Journals (Sweden)

    TIJANA SAVIC

    2006-02-01

    Full Text Available In this paper, a method for the rapid identification and purification of sequence specific DNA binding proteins based on magnetic separation is presented. This method was applied to confirm the binding of the human recombinant USF1 protein to its putative binding site (E-box within the human SOX3 protomer. It has been shown that biotinylated DNA attached to streptavidin magnetic particles specifically binds the USF1 protein in the presence of competitor DNA. It has also been demonstrated that the protein could be successfully eluted from the beads, in high yield and with restored DNA binding activity. The advantage of these procedures is that they could be applied for the identification and purification of any high-affinity sequence-specific DNA binding protein with only minor modifications.

  9. Detection and Characterization of Focal Hepatic lesions using Magnetic resonance Imaging

    International Nuclear Information System (INIS)

    Pulgarin, Luis G; Delgado, Jorge Andres; Toro Nancy

    2008-01-01

    A retrospective one year study was performed from June 2006 to June 2007. A total of ten focal liver lesions in 60 patients were examined, describing their magnetic resonance (MR) characteristics, using T1, T2 and dynamic Gd-enhanced T1 weighted sequences with and without fat suppression. Lesions were classified into benign or malignant tumors and a diagnosis was proposed. Specific diagnoses such as simple cyst, abscess, hemangioma, focal nodular hyperplasia, hepatocellular carcinoma, and cholangiocarcinoma were reported.

  10. Enhanced photoelectric detection of NV magnetic resonances in diamond under dual-beam excitation

    Czech Academy of Sciences Publication Activity Database

    Bourgeois, E.; Londero, E.; Buczak, K.; Hruby, J.; Gulka, M.; Balasubramaniam, Y.; Wachter, G.; Štursa, Jan; Dobes, K.; Aumayr, F.; Trupke, M.; Gali, A.; Nesládek, M.

    2017-01-01

    Roč. 95, č. 4 (2017), č. článku 041402. ISSN 2469-9950 R&D Projects: GA MŠk LM2015056 EU Projects: European Commission(XE) 611143 - DIADEMS Institutional support: RVO:61389005 Keywords : DIADEMS * diamonds * magnetic measurements * sensors Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  11. Magnetic poly(glycidyl methacrylate) microspheres for Campylobacter jejuni detection in food

    Czech Academy of Sciences Publication Activity Database

    Horák, Daniel; Hochel, I.

    061, - (2005), s. 1-12 ISSN 1618-7229 R&D Projects: GA ČR(CZ) GA525/05/0311; GA ČR(CZ) GA525/02/0287 Institutional research plan: CEZ:AV0Z40500505 Keywords : magnetic * microspheres * glycidyl methacrylate Subject RIV: GM - Food Processing Impact factor: 0.926, year: 2005 http://www.e-polymers.org

  12. Use of magnetic resonance imaging in detection of breast cancer recurrence: a systematic review.

    LENUS (Irish Health Repository)

    Quinn, Edel Marie

    2012-09-01

    Diagnosis of breast cancer recurrence can be difficult as a result of the presence of scar tissue in the breast. Magnetic resonance imaging (MRI) may be superior to traditional imaging in diagnosis of recurrence because of its ability to differentiate malignancy from scarring. Current guidelines on investigation of suspected breast cancer recurrence recommend MRI when other investigations have equivocal findings. We performed the first systematic review on this topic.

  13. Magnetic resonance beacon to detect intracellular microRNA during neurogenesis.

    Science.gov (United States)

    Lee, Jonghwan; Jin, Yeon A; Ko, Hae Young; Lee, Yong Seung; Heo, Hyejung; Cho, Sujeong; Kim, Soonhag

    2015-02-01

    Magnetic resonance imaging (MRI) offers great spatial resolution for viewing deep tissues and anatomy. We developed a self-assembling signal-on magnetic fluorescence nanoparticle to visualize intracellular microRNAs (miRNAs or miRs) during neurogenesis using MRI. The self-assembling nanoparticle (miR124a MR beacon) was aggregated by the incubation of three different oligonucleotides: a 3' adaptor, a 5' adaptor, and a linker containing miR124a-binding sequences. The T2-weighted magnetic resonance (MR) signal of the self-assembled nanoparticle was quenched when miR124a was absent from test tubes or was minimally expressed in cells and tissues. When miR124a was present in test tubes or highly expressed in vitro and in vivo during P19 cell neurogenesis, it hybridized with the miR124a MR beacon, causing the linker to detach, resulting in increased signal-on MRI intensity. This MR beacon can be used as a new imaging probe to monitor the miRNA-mediated regulation of cellular processes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. New ideas on the detection of cold dark matter and magnetic monopoles

    International Nuclear Information System (INIS)

    Gonzalez-Mestres, L.; Perret-Gallix, D.

    1988-05-01

    Superheated superconducting granules (SSG) provide several interesting targets for cold dark matter detection, not only through coherent scattering off nuclei, but also for Majorana fermions through spin-spin interactions. The concept of 'localized micro-avalanche' should introduce crucial improvements in SSG devices and, eventually, make feasible a cold dark matter detector based on nucleus recoil. Recent results on the metastability of very large granules also suggest that a SSG large area monopole detector may be feasible, if the theoretically conjectured detection principle (destruction of the superheated state by two injected flux quanta) is checked experimentally. We also consider the use of special crystal scintillators to detect Majorana fermions through inelastic scattering

  15. Diagnostic Accuracy of Diffusion Weighted Magnetic Resonance Imaging in the Detection of Myometrial Invasion in Endometrial Carcinoma

    International Nuclear Information System (INIS)

    Masroor, I.; Hussain, Z.; Taufiq, M.

    2016-01-01

    Objective: To determine the diagnostic accuracy of Diffusion-Weighted Magnetic Resonance Imaging (DWMRI) in the detection of myometrial invasion in endometrial cancer taking histopathology as gold standard. Study Design: Cross-sectional validation study. Place and Duration of Study: Department of Radiology, The Aga Khan University Hospital, Karachi, from January to December 2012. Methodology: DWMRI (b-value = 50,400 and 800 s/mm2) was performed in 85 patients of biopsy-proven endometrial carcinoma before hysterectomy using body and spine coil at 1.5 Tesla. DWI was evaluated for presence of myometrial invasion by tumor with histopathology as gold standard. Sensitivity, specificity, the negative predictive value and positive predictive value and accuracy of DWI were assessed against the gold standard. Results: On DWI, superficial myometrial invasion was found in 42 patients and deep myometrial invasion in 43. On histopathology, superficial myometrial invasion was found in 53 patients and deep myometrial invasion in 32. Hence sensitivity, specificity, positive predictive value, negative predictive value and accuracy for the assessment of myometrial invasion by endometrial tumor on DW images was 90 percentage, 73 percentage, 67 percentage, 92 percentage and 80 percentage, respectively. Diagnostic accuracy of diffusion-weighted magnetic resonance imaging in detection of myometrial invasion in endometrial cancer was 80 percentage. Conclusion: DWI is highly accurate in assessing myometrial invasion and can be used as an adjunct to routine MRI for pre-operative evaluation of myometrial invasion of endometrial cancer. (author)

  16. A rapid method for detection of genetically modified organisms based on magnetic separation and surface-enhanced Raman scattering.

    Science.gov (United States)

    Guven, Burcu; Boyacı, İsmail Hakkı; Tamer, Ugur; Çalık, Pınar

    2012-01-07

    In this study, a new method combining magnetic separation (MS) and surface-enhanced Raman scattering (SERS) was developed to detect genetically modified organisms (GMOs). An oligonucleotide probe which is specific for 35 S DNA target was immobilized onto gold coated magnetic nanospheres to form oligonucleotide-coated nanoparticles. A self assembled monolayer was formed on gold nanorods using 5,5'-dithiobis (2-nitrobenzoic acid) (DTNB) and the second probe of the 35 S DNA target was immobilized on the activated nanorod surfaces. Probes on the nanoparticles were hybridized with the target oligonucleotide. Optimization parameters for hybridization were investigated by high performance liquid chromatography. Optimum hybridization parameters were determined as: 4 μM probe concentration, 20 min immobilization time, 30 min hybridization time, 55 °C hybridization temperature, 750 mM buffer salt concentration and pH: 7.4. Quantification of the target concentration was performed via SERS spectra of DTNB on the nanorods. The correlation between the target concentration and the SERS signal was found to be linear within the range of 25-100 nM. The analyses were performed with only one hybridization step in 40 min. Real sample analysis was conducted using Bt-176 maize sample. The results showed that the developed MS-SERS assay is capable of detecting GMOs in a rapid and selective manner. This journal is © The Royal Society of Chemistry 2012

  17. Cationic polyelectrolyte functionalized magnetic particles assisted highly sensitive pathogens detection in combination with polymerase chain reaction and capillary electrophoresis.

    Science.gov (United States)

    Chen, Jia; Lin, Yuexin; Wang, Yu; Jia, Li

    2015-06-01

    Pathogenic bacteria cause significant morbidity and mortality to humans. There is a pressing need to establish a simple and reliable method to detect them. Herein, we show that magnetic particles (MPs) can be functionalized by poly(diallyl dimethylammonium chloride) (PDDA), and the particles (PDDA-MPs) can be utilized as adsorbents for capture of pathogenic bacteria from aqueous solution based on electrostatic interaction. The as-prepared PDDA-MPs were characterized by Fourier-transform infrared spectroscopy, zeta potential, vibrating sample magnetometry, X-ray diffraction spectrometry, scanning electron microscopy, and transmission electron microscopy. The adsorption equilibrium time can be achieved in 3min. According to the Langmuir adsorption isotherm, the maximum adsorption capacities for E. coli O157:H7 (Gram-negative bacteria) and L. monocytogenes (Gram-positive bacteria) were calculated to be 1.8×10(9) and 3.1×10(9)cfumg(-1), respectively. The bacteria in spiked mineral water (1000mL) can be completely captured when applying 50mg of PDDA-MPs and an adsorption time of 5min. In addition, PDDA-MPs-based magnetic separation method in combination with polymerase chain reaction and capillary electrophoresis allows for rapid detection of 10(1)cfumL(-1) bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Design and Performance of GMR Sensors for the Detection of Magnetic Microbeads in Biosensors

    National Research Council Canada - National Science Library

    Rife, J. C; Miller, M. M; Sheehan, P. E; Tamanaha, C. R; Tondra, M; Whitman, L. J

    2003-01-01

    We are developing a biosensor system, the Bead ARray Counter (BARC), based on the capture and detection of micron-sized, paramagnetic beads on a chip containing an array of giant magnetoresistive (GMR) sensors...

  19. Detection of unusual spin reorientation induced by magnetic field in DyFeO3

    International Nuclear Information System (INIS)

    Balbashov, A.M.; Marchukov, P.Yu.; Nikolaev, I.V.; Rudashevskij, E.G.

    1988-01-01

    It is detected that in DyFeO 3 the vector of antiferromagnetism reorientates continuously in two mutually perpendicular planes, and transition from one plane into the other one is a first-order phase transformation

  20. Detection of common bile duct stones: comparison between endoscopic ultrasonography, magnetic resonance cholangiography, and helical-computed-tomographic cholangiography

    International Nuclear Information System (INIS)

    Kondo, Shintaro; Isayama, Hiroyuki; Akahane, Masaaki; Toda, Nobuo; Sasahira, Naoki; Nakai, Yosuke; Yamamoto, Natsuyo; Hirano, Kenji; Komatsu, Yutaka; Tada, Minoru; Yoshida, Haruhiko; Kawabe, Takao; Ohtomo, Kuni; Omata, Masao

    2005-01-01

    Objectives: New modalities, namely, endoscopic ultrasonography (EUS), magnetic resonance cholangiopancreatography (MRCP), and helical computed-tomographic cholangiography (HCT-C), have been introduced recently for the detection of common bile duct (CBD) stones and shown improved detectability compared to conventional ultrasound or computed tomography. We conducted this study to compare the diagnostic ability of EUS, MRCP, and HCT-C in patients with suspected choledocholithiasis. Methods: Twenty-eight patients clinically suspected of having CBD stones were enrolled, excluding those with cholangitis or a definite history of choledocholithiasis. Each patient underwent EUS, MRCP, and HCT-C prior to endoscopic retrograde cholangio-pancreatography (ERCP), the result of which served as the diagnostic gold standard. Results: CBD stones were detected in 24 (86%) of 28 patients by ERCP/IDUS. The sensitivity of EUS, MRCP, and HCT-C was 100%, 88%, and 88%, respectively. False negative cases for MRCP and HCT-C had a CBD stone smaller than 5 mm in diameter. No serious complications occurred while one patient complained of itching in the eyelids after the infusion of contrast agent on HCT-C. Conclusions: When examination can be scheduled, MRCP or HCT-C will be the first choice because they were less invasive than EUS. MRCP and HCT-C had similar detectability but the former may be preferable considering the possibility of allergic reaction in the latter. When MRCP is negative, EUS is recommended to check for small CBD stones

  1. Ultrasonography versus magnetic resonance imaging in detecting and grading common extensor tendon tear in chronic lateral epicondylitis.

    Directory of Open Access Journals (Sweden)

    Artur Bachta

    Full Text Available To investigate the diagnostic performance and reliability of ultrasonography (US in detecting and grading common extensor tendon (CET tear in patients with chronic lateral epicondylitis (LE, using magnetic resonance imaging (MRI as the reference standard.The study comprised fifty-eight chronic LE patients. Each patient underwent US and MRI. CET status was classified as: high-grade tear (≥50% thickness, low-grade tear (<50% thickness, suspected tear (possible but not evident tear, no tear. Additionally, the following dichotomous scale was used: confirmed or unconfirmed CET tear. Relative US parameters (versus MRI for detecting CET tear included: sensitivity, specificity, positive predictive value (PPV, negative predictive value (NPV and accuracy. The agreement between US and MRI findings was measured using the weighted Cohen kappa coefficient (κ.US showed moderate agreement with MRI in detecting and grading CET tear (κ = 0.49. Sensitivity, specificity, and accuracy in CET tear detecting by US were 64.52%, 85.19%, and 72.73%, respectively. PPV and NPV of US were 83.33% and 67.65%, respectively. No patient with unconfirmed CET tear on US had high-grade CET tear on MRI.Ultrasonography is a valuable imaging modality that can be used as a screening tool to exclude high-grade CET tear in chronic LE patients. Once a tear is evident on US, MRI should be considered to assess precisely the extent of tendon injury.

  2. Europium(III) complex-functionalized magnetic nanoparticle as a chemosensor for ultrasensitive detection and removal of copper(II) from aqueous solution.

    Science.gov (United States)

    Liu, Jing; Zuo, Wei; Zhang, Wei; Liu, Jian; Wang, Zhiyi; Yang, Zhengyin; Wang, Baodui

    2014-10-07

    Ultrasensitive, accurate detection and separation of heavy metal ions is very important in environmental monitoring and biological detection. In this paper, a highly sensitive and specific detection method for Cu(2+) based on the fluorescence quenching of a europium(III) hybrid magnetic nanoprobe is presented. This nanoprobe can detect Cu(2+) over a wide pH range (5.0-10.0) with a detection limit as low as 0.1 nM and it can be used for detecting Cu(2+) in living cells. After the magnetic separation, the Cu(2+) concentration decreased to 1.18 ppm, which is less than the US EPA drinking water standard (1.3 ppm), and more than 70% Cu(2+) could be removed when the amount of nanocomposite 1 reached 1 mg.

  3. Detection of the position and cross-section of a tokamak plasma with magnetic probes

    International Nuclear Information System (INIS)

    Aikawa, Hiroshi; Ogata, Atsushi; Suzuki, Yasuo

    1977-02-01

    The position and cross-sectional shape of a Tokamak plasma are obtained analytically from magnetic probe signals, taking into consideration the toroidal effect. Multipole moment analysis of the plasma current density, introducing the vertical asymmetry, shows the horizontal and vertical displacements and the elliptical deviation. The error in the measurement is estimated by means of the least square method. The observed error is proportional to the error of setting the probes, and inversely proportional to the square root of the number of probes. (auth.)

  4. Cranial anatomy and detection of ischemic stroke in the cat by nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Buonanno, F.S.; Pykett, I.L.; Kistler, J.P.; Vielma, J.; Brady, T.J.; Hinshaw, W.S.; Goldman, M.R.; Newhouse, J.H.; Pohost, G.M.

    1982-01-01

    Proton nuclear magnetic resonance (NMR) images of cat heads were obtained using a small, experimental imaging system. As a prelude to the study of experimental ischemic brain infarction, the normal cat head was imaged for identification of anatomical features. Images of one cat which had undergone ligation of the middle cerebral artery three weeks previously showed brain changes associated with chronic ischemic stroke and compared favorably with findings on computed tomography (CT). The NMR images have millimetric spatial resolution. NMR parameters inherent in the tissues provide intensity variations and are sufficiently sensitive to yield contrast resolution surpassing that of CT

  5. Non Hodgkin lymphoma metastasis to the heart detected by cardiovascular magnetic resonance

    International Nuclear Information System (INIS)

    Martinez, Florange; Morales, Marisela; Pedreanez, Norma; Pabon, Luz; Carrillo, Milton

    2009-01-01

    Primary and secondary heart tumors are relatively rare occurrences but usually imply significant treatment decisions. The differential diagnosis among these tumors and other masses can sometimes be difficult and require the use of different imaging modalities to establish a confident verdict. Cardiovascular magnetic resonance CMR imaging is a very useful tool in these cases by allowing for the application of different strategies to better delineate masses, heart structures and adjacent tissues. In this case description, we present a woman with shortness of breath and a paracardiac mass showing how CMR can be applied. (author)

  6. Sinus of Valsalva aneurysm and bicuspid aortic valve: detection and mechanism by cardiac magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Jen Li Looi

    2011-09-01

    Full Text Available Cardiac magnetic resonance imaging (CMR demonstrated a sinus of Valsalva aneurysm (SVA with severe dilatation of the right coronary sinus in association with a congenital bicuspid aortic valve (BAV and subaortic membrane. The SVA had not been apparent on echocardiography as the dilatation was outside standard echo image planes. On both CMR and echo, blood flow was eccentrically directed into the right coronary sinus by the domed posterior leaflet of the BAV. The impact of the aortic jet on the wall of the right coronary sinus is probably important in the aetiology of the sinus dilatation. CMR proved valuable in demonstrating the SVA and understanding its aetiology.

  7. Sinus of Valsalva aneurysm and bicuspid aortic valve: detection and mechanism by cardiac magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Jen Li Looi

    2011-10-01

    Full Text Available Cardiac magnetic resonance imaging (CMR demonstrated a sinus of Valsalva aneurysm (SVA with severe dilatation of the right coronary sinus in association with a congenital bicuspid aortic valve (BAV and subaortic membrane. The SVA had not been apparent on echocardiography as the dilatation was outside standard echo image planes. On both CMR and echo, blood flow was eccentrically directed into the right coronary sinus by the domed posterior leaflet of the BAV. The impact of the aortic jet on the wall of the right coronary sinus is probably important in the aetiology of the sinus dilatation. CMR proved valuable in demonstrating the SVA and understanding its aetiology.

  8. Differential detection for measurements of Faraday rotation by means of ac magnetic fields

    International Nuclear Information System (INIS)

    Valev, V K; Wouters, J; Verbiest, T

    2008-01-01

    We demonstrate that by using a combination of a Wollaston prism and two photodiodes the accuracy in the measurements of Faraday rotation with ac magnetic fields can be greatly improved. Our experiments were performed on microscope cover glass plates with thicknesses between 0.13 and 0.16 mm. We show that our setup is capable of distinguishing between the Faraday rotation signals of glass plates having a difference in thickness of a few micrometers, corresponding to Faraday rotations of hundreds of microdegrees per Tesla only

  9. An ultrasensitive chemiluminescence immunoassay for fumonisin B1 detection in cereals based on gold-coated magnetic nanoparticles.

    Science.gov (United States)

    Jie, Mingsha; Yu, Songcheng; Yu, Fei; Liu, Lie; He, Leiliang; Li, Yanqiang; Zhang, Hongquan; Qu, Lingbo; Harrington, Peter de B; Wu, Yongjun

    2018-07-01

    In the present study, a novel highly sensitive magnetic enzyme chemiluminescence immunoassay (MECLIA) was developed to detect fumonisin B 1 (FB 1 ) in cereal samples. The gold-coated magnetic nanoparticles (Fe 3 O 4 @Au, GoldMag) were used as solid phase carrier to develop a competitive CLIA for detecting FB 1 , in which FB 1 in samples would compete with FB 1 -ovalbumin coated on the surface of Fe 3 O 4 @Au nanoparticles for binding with FB 1 antibodies. Successively, horseradish peroxidase labeled goat anti-rabbit IgG (HRP-IgG) was conjugated with FB 1 antibodies on the microplate. In substrate solution containing luminol and H 2 O 2 , HRP-IgG catalyzed luminol oxidation by H 2 O 2 , generating a high chemiluminescence signal. The FB 1 immune GoldMag particles were characterized by Fourier transform infrared spectroscopy, scanning electron microscope and zeta potential analysis, etc. RESULTS: The concentrations and the reaction times of these immunoreagents were optimized to improve the performances of this method. The established method could detect as low as 0.027 ng mL -1 FB 1 from 0.05 ng mL -1 to 25 ng mL -1 , demonstrating little cross-reaction (less than 2.4%) with other structurally related compounds. The average intrassay relative SD (RSD) (n = 6) was 3.4% and the average interassay RSD (n = 6) was 5.4%. This method was successfully applied for the determination of FB 1 in corn and wheat and gave recoveries of between 98-110% and 91-105%, respectively. The results of the present study suggest that the MECLIA approach has potential application for high-throughput fumonisin screening in cereals. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  10. Comparative in vivo mucoadhesion studies of thiomer formulations using magnetic resonance imaging and fluorescence detection.

    Science.gov (United States)

    Albrecht, K; Greindl, M; Kremser, C; Wolf, C; Debbage, P; Bernkop-Schnürch, A

    2006-09-28

    The aim of this study was to compare different oral delivery systems based on the thiolated polymer polycarbophil-cysteine (PCP-Cys) and to provide evidence for the validity of the hypothesis that unhydrated polymers provide better mucoadhesion in vivo. To achieve dry polymer application, a new, experimental dosage form named Eutex (made of Eudragit L100-55 and latex) capsule has been developed. Magnetic resonance imaging was used to localize the point of release of the thiolated polymer from the application forms via the positive magnetic resonance signal from a gadolinium complex (Gd-DTPA). In vivo mucoadhesion was determined by ascertaining the residence time of the fluorescence-tagged thiomer on intestinal mucosa after 3 h. Results showed that in comparison to conventional application forms the Eutex capsules led to 1.9-fold higher mucoadhesive properties of PCP-Cys when compared to application with a conventional enteric-coated capsule, and to 1.4-fold higher mucoadhesion when compared to administration with an enteric-coated tablet of the thiomer. The findings of this study should contribute to the understanding of mucoadhesion and mucoadhesion influencing parameters in vivo and should therefore be of considerable interest for the development of future mucoadhesive oral drug delivery dosage forms.

  11. Detection of cerebral atrophy in type- II diabetes mellitus by magnetic resonance imaging of brain

    International Nuclear Information System (INIS)

    Khan, G.; Khan, N.; Aziz, A.

    2010-01-01

    Background: Diabetes is a metabolic disorder that affects many systems in the body. Cerebral atrophy is one of the complications of diabetes and research is on going to find out its aetiopathological factors. The main aim of the study was to determine the frequency of cerebral atrophy in type-II diabetes mellitus using magnetic resonance imaging of the brain. Methods: One hundred diabetic patients (Random blood sugar >126 mg/dl) were recruited in this study after the informed consent from every patient. Duration of diabetes was five years and more in all the patients as determined by their glycosylated haemoglobin which was >6 in all the patients. All the patients were undergone MRI of brain using 1.5 Tesla power magnetic resonance imaging machine of Picker Company. Evan's index, a specific parameter for measurement of cerebral atrophy was calculated on MR images and was used in this study. Results: In male group the frequency of cerebral atrophy was 22 (47%) and in female group it was found to be 23 (43%). When we study the overall population the frequency was found to be 45 (45%). The results are well in concordance with the previous data published on this issue. Conclusions: Cerebral atrophy, a complication of long standing diabetes is quite frequent in our population and is well diagnosed by MRI. (author)

  12. Magnetic detection of mercuric ion using giant magnetoresistance-based biosensing system.

    Science.gov (United States)

    Wang, Wei; Wang, Yi; Tu, Liang; Klein, Todd; Feng, Yinglong; Li, Qin; Wang, Jian-Ping

    2014-04-15

    We have demonstrated a novel sensing strategy employing a giant magnetoresistance (GMR) biosensor and DNA chemistry for the detection of mercuric ion (Hg(2+)). This assay takes advantages of high sensitivity and real-time signal readout of GMR biosensor and high selectivity of thymine-thymine (T-T) pair for Hg(2+). The assay has a detection limit of 10 nM in both buffer and natural water, which is the maximum mercury level in drinking water regulated by U.S. Environmental Protection Agency (EPA). The magnitude of the dynamic range for Hg(2+) detection is up to three orders (10 nM to 10 μM). Herein, GMR sensing technology is first introduced into a pollutant monitoring area. It can be foreseen that the GMR biosensor could become a robust contender in the areas of environmental monitoring and food safety testing.

  13. Detection of the pedogenic magnetic fraction in volcanic soils developed on basalts using frequency-dependent magnetic susceptibility: comparison of two instruments

    Czech Academy of Sciences Publication Activity Database

    Grison, Hana; Petrovský, Eduard; Kapička, Aleš; Hanzlíková, Hana

    2017-01-01

    Roč. 209, č. 2 (2017), s. 654-660 ISSN 0956-540X R&D Projects: GA ČR GA13-10775S; GA MŠk(CZ) LG15036 Institutional support: RVO:67985530 Keywords : magnetic properties * environmental magnetism * rock and mineral magnetism Subject RIV: DE - Earth Magnetism, Geodesy, Geography OBOR OECD: Physical geography Impact factor: 2.414, year: 2016

  14. Pd nanoparticles encapsulated in magnetic carbon nanocages: an efficient nanoenzyme for the selective detection and multicolor imaging of cancer cells

    Science.gov (United States)

    Chen, Gaosong; Song, Jingjing; Zhang, Haoli; Jiang, Yuntian; Liu, Weisheng; Zhang, Wei; Wang, Baodui

    2015-08-01

    Rapid and simple molecular recognition based techniques for the identification of the subtypes of cancer cells are essential in molecular medicine. However, improving the sensitivity and accuracy of the early diagnosis of this disease remains a major challenge. Herein, we develop a novel approach for the in situ growth of palladium nanoparticles in magnetic carbon nanocages (PdNPs/MCNCs). The confined Pd NPs, which have excellent dispersion in magnetic carbon nanocages, show superior catalytic performance for the cleavage reaction of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH), thereby producing significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green) through the ICT process. Based on the abovementioned results, a novel sensing platform utilizing the PdNPs/MCNC nanocatalyst as an artificial enzyme and NNPH as a fluorescent and color change reporter molecule for the multicolor imaging and colorimetric detection of cancer cells was developed. We envision that this nanomaterial can be used as a power tool for a wide range of potential applications in biotechnology and medicine.Rapid and simple molecular recognition based techniques for the identification of the subtypes of cancer cells are essential in molecular medicine. However, improving the sensitivity and accuracy of the early diagnosis of this disease remains a major challenge. Herein, we develop a novel approach for the in situ growth of palladium nanoparticles in magnetic carbon nanocages (PdNPs/MCNCs). The confined Pd NPs, which have excellent dispersion in magnetic carbon nanocages, show superior catalytic performance for the cleavage reaction of N-butyl-4-NHAlloc-1,8-naphthalimide (NNPH), thereby producing significant changes in both color (from colorless to jade-green) and fluorescence (from blue to green) through the ICT process. Based on the abovementioned results, a novel sensing platform utilizing the PdNPs/MCNC nanocatalyst as an artificial enzyme and NNPH

  15. The reliability of magnetic resonance imaging in traumatic brain injury lesion detection

    NARCIS (Netherlands)

    Geurts, B.H.J.; Andriessen, T.M.J.C.; Goraj, B.M.; Vos, P.E.

    2012-01-01

    Objective: This study compares inter-rater-reliability, lesion detection and clinical relevance of T2-weighted imaging (T2WI), Fluid Attenuated Inversion Recovery (FLAIR), T2*-gradient recalled echo (T2*-GRE) and Susceptibility Weighted Imaging (SWI) in Traumatic Brain Injury (TBI). Methods: Three

  16. Magnetic resonance detection of CD34+ cells from umbilical cord blood using a 19F label

    NARCIS (Netherlands)

    L.E. Duinhouwer (Lucia); Van Rossum, B.J.M. (Bernard J. M.); S.T. van Tiel (Sandra); R.M. van der Werf (Ramon); R.Q. Doeswijk (Ronald); J.C. Haeck (Joost); Rombouts, E.W.J.C. (Elwin W. J. C.); M.N.D. Ter Borg (Mariëtte N. D.); G. Kotek (Gyula); E. Braakman (Eric); J.J. Cornelissen (Jan); M.R. Bernsen (Monique)

    2015-01-01

    textabstractImpaired homing and delayed recovery upon hematopoietic stem cell transplantation (HSCT) with hematopoietic stem cells (HSC) derived from umbilical cord blood (UCB) is a major problem. Tracking transplanted cells in vivo will be helpful to detect impaired homing at an early stage and

  17. Computer-Aided Detection in Breast Magnetic Resonance Imaging: A Review

    NARCIS (Netherlands)

    Dorrius, M. D.; Van Ooijen, P.M.A.

    2008-01-01

    The aim of this study is to give an overview on the accuracy of the discrimination between benign and malignant breast lesions on MRI with and without the use of a computer-aided detection (CAD) system. One investigator selected relevant articles based on title and abstract. Ten articles were

  18. Automatic Brain Tumor Detection in T2-weighted Magnetic Resonance Images

    Czech Academy of Sciences Publication Activity Database

    Dvořák, Pavel; Kropatsch, W.G.; Bartušek, Karel

    2013-01-01

    Roč. 13, č. 5 (2013), s. 223-230 ISSN 1335-8871 R&D Projects: GA ČR GAP102/12/1104; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Brain tumor * Brain tumor detection * Symmetry analysis Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.162, year: 2013

  19. Magnetic resonance spectroscopic imaging in breast cancer detection: possibilities beyond the conventional theoretical framework for data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Belkic, Karen E-mail: karen.belkic@radfys.ki.se

    2004-06-01

    Magnetic Resonance Spectroscopic Imaging (MRSI) is a promising method for breast cancer diagnosis, providing, in addition to the anatomic picture, complementary biochemical and physiologic information in the form of spectra. It should be able to identify key biochemical changes before the tumour becomes detectable by other functional imaging methods that rely upon single markers not entirely sensitive or specific for malignant activity. MRSI is potentially well suited for screening and repeated monitoring since it entails no radiation exposure. There are, however, limitations to current applications of Magnetic Resonance Spectroscopy (MRS) and MRSI. Many of these can be directly related to reliance upon the conventional data analytical method, i.e. the Fast Fourier Transform (FFT), which has low resolution, poor signal/noise (S/N) in clinical signals, supplies only shape spectra and requires fitting, which is non-unique, so that the number of metabolites must be guessed in advance. This can lead to spurious peaks (over-fitting) and true metabolites being undetected (under-fitting). These limitations of the FFT can be circumvented by recent mathematical advances in signal processing via e.g. the Fast Pade Transform (FPT). As a high resolution, non-linear, stable parametric method, the FPT substantially improves S/N, and fulfills stringent requirements for tumour diagnostics: no post-processing fitting, provides precise numerical results for all peak parameters, and specifies the exact number of metabolites (including those that overlap) from the encoded data. We illustrate in a realistic synthesized model problem similar to MRS that the FPT can identify overlapping peaks that are entirely missed by the FFT, and we give an example from in vivo MRS of the superior resolving power of the FPT compared to FFT at short acquisition time. We also perform detailed paired and logistic regression analyses of Nuclear Magnetic Resonance (NMR) data on extracted breast specimens

  20. Detection and Evaluation of Renal Injury in Burst Wave Lithotripsy Using Ultrasound and Magnetic Resonance Imaging.

    Science.gov (United States)

    May, Philip C; Kreider, Wayne; Maxwell, Adam D; Wang, Yak-Nam; Cunitz, Bryan W; Blomgren, Philip M; Johnson, Cynthia D; Park, Joshua S H; Bailey, Michael R; Lee, Donghoon; Harper, Jonathan D; Sorensen, Mathew D

    2017-08-01

    Burst wave lithotripsy (BWL) is a transcutaneous technique with potential to safely and effectively fragment renal stones. Preclinical investigations of BWL require the assessment of potential renal injury. This study evaluates the capabilities of real-time ultrasound and MRI to detect and evaluate BWL injury that was induced in porcine kidneys. Ten kidneys from five female farm pigs were treated with either a 170 or 335 kHz BWL transducer using variable treatment parameters and monitored in real-time with ultrasound. Eight kidneys were perfusion fixed and scanned with a 3-Tesla MRI scanner (T1-weighted, T2-weighted, and susceptibility-weighted imaging), followed by processing via an established histomorphometric technique for injury quantification. In addition, two kidneys were separately evaluated for histologic characterization of injury quality. Observed B-mode hyperechoes on ultrasound consistent with cavitation predicted the presence of BWL-induced renal injury with a sensitivity and specificity of 100% in comparison to the histomorphometric technique. Similarly, MRI detected renal injury with a sensitivity of 90% and specificity of 100% and was able to identify the scale of lesion volumes. The injuries purposefully generated with BWL were histologically similar to those formed by shock wave lithotripsy. BWL-induced renal injury can be detected with a high degree of sensitivity and specificity by real-time ultrasound and post-treatment ex vivo MRI. No injury occurred in this study without cavitation detected on ultrasound. Such capabilities for injury detection and lesion volume quantification on MRI can be used for preclinical testing of BWL.

  1. Cerebral metabolic abnormalities in congestive heart failure detected by proton magnetic resonance spectroscopy.

    Science.gov (United States)

    Lee, C W; Lee, J H; Kim, J J; Park, S W; Hong, M K; Kim, S T; Lim, T H; Park, S J

    1999-04-01

    Using proton magnetic resonance spectroscopy, we investigated cerebral metabolism and its determinants in congestive heart failure (CHF), and the effects of cardiac transplantation on these measurements. Few data are available about cerebral metabolism in CHF. Fifty patients with CHF (ejection fraction OGM) and parietal white matter (PWM). Absolute levels of the metabolites (N-acetylaspartate, creatine, choline, myo-inositol) were calculated. In PWM only creatine level was significantly lower in CHF than in control subjects, but in OGM all four metabolite levels were decreased in CHF. The creatine level was independently correlated with half-recovery time and duration of heart failure symptoms in PWM (r = -0.56, p OGM (r = 0.58, p < 0.05). Cerebral metabolic abnormalities were improved after successful cardiac transplantation. This study shows that cerebral metabolism is abnormally deranged in advanced CHF and it may serve as a potential marker of the disease severity.

  2. Tunneling splitting of magnetic levels in Fe8 detected by 1H NMR cross relaxation

    OpenAIRE

    Furukawa, Y.; Aizawa, K.; Kumagai, K.; Ullu, R.; Lascialfari, A.; Borsa, F.

    2003-01-01

    Measurements of proton NMR and the spin lattice relaxation rate 1/T1 in the octanuclear iron (III) cluster [Fe8(N3C6H15)6O2(OH)12][Br8 9H2O], in short Fe8, have been performed at 1.5 K in a powder sample aligned along the main anisotropy z axis, as a function of a transverse magnetic field (i.e., perpendicular to the main easy axis z). A big enhancement of 1/T1 is observed over a wide range of fields (2.5-5 T), which can be attributed to the tunneling dynamics; in fact, when the tunneling spl...

  3. DETECTION OF NONPOLAR IONS IN 2Π3/2 STATES BY RADIOASTRONOMY VIA MAGNETIC DIPOLE TRANSITIONS

    International Nuclear Information System (INIS)

    Morse, Michael D.; Maier, John P.

    2011-01-01

    The possibility of magnetic dipole-induced pure rotational transitions in the interstellar medium is investi- gated for symmetric Hund's case (a) linear molecules, such as H-C≡C-H + (X-tilde 2 Π 3/2u ), CO 2 + (X-tilde 2 Π 3/2g ), H-C≡C-C≡C-H + (X-tilde 2 Π 3/2g ), and N 3 (X-tilde 2 Π 3/2g ). These species lack an electric dipole moment and therefore cannot undergo pure rotational electric dipole transitions. These species can undergo pure rotational transitions via the parallel component of the magnetic dipole operator, however. The transition moments and Einstein A coefficients for the allowed pure rotational transitions are derived for a general Hund's case (a) linear molecule, and tabulated for the examples of H-C≡C-H + ( 2 Π 3/2u ) and H-C≡C-C≡C-H + ( 2 Π 3/2g ). It is found that the rates of emission are comparable to collision rates in interstellar clouds, suggesting that this decay mechanism may be important in simulating rotational population distributions in diffuse clouds and for detecting these molecules by radioastronomy. Expected line positions for the magnetic dipole-allowed R ef (J) and R fe (J) transitions of H-C≡C-H + ( 2 Π 3/2u ), H-C≡C-C≡C-H + ( 2 Π 3/2g ), CO 2 + ( 2 Π 3/2g ), and N 3 ( 2 Π 3/2g ) are tabulated to assist in their observation by radioastronomy or in the laboratory.

  4. Experimental demonstration of all-optical weak magnetic field detection using beam-deflection of single-mode fiber coated with cobalt-doped nickel ferrite nanoparticles.

    Science.gov (United States)

    Pradhan, Somarpita; Chaudhuri, Partha Roy

    2015-07-10

    We experimentally demonstrate single-mode optical-fiber-beam-deflection configuration for weak magnetic-field-detection using an optimized (low coercive-field) composition of cobalt-doped nickel ferrite nanoparticles. Devising a fiber-double-slit type experiment, we measure the surrounding magnetic field through precisely measuring interference-fringe yielding a minimum detectable field ∼100  mT and we procure magnetization data of the sample that fairly predicts SQUID measurement. To improve sensitivity, we incorporate etched single-mode fiber in double-slit arrangement and recorded a minimum detectable field, ∼30  mT. To further improve, we redefine the experiment as modulating fiber-to-fiber light-transmission and demonstrate the minimum field as 2.0 mT. The device will be uniquely suited for electrical or otherwise hazardous environments.

  5. Synthesis of a new magnetic-MIP for the selective detection of 1-chloro-2,4-dinitrobenzene, a highly allergenic compound

    Energy Technology Data Exchange (ETDEWEB)

    Uzuriaga-Sánchez, Rosario Josefina [Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), 14801-970 Araraquara, SP (Brazil); Laboratory of Physical Chemistry Research, Faculty of Science, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima (Peru); Wong, Ademar; Khan, Sabir [Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), 14801-970 Araraquara, SP (Brazil); Pividori, Maria I. [Sensors and Biosensors Group, Department of Chemistry, Autonomous University of Barcelona (UAB), 08193, Bellaterra, Barcelona (Spain); Picasso, Gino, E-mail: gpicasso@uni.edu.pe [Laboratory of Physical Chemistry Research, Faculty of Science, National University of Engineering, Av. Tupac Amaru 210, Rimac, Lima (Peru); Sotomayor, Maria D.P.T., E-mail: mpilar@iq.unesp.br [Department of Analytical Chemistry, Institute of Chemistry, State University of São Paulo (UNESP), 14801-970 Araraquara, SP (Brazil)

    2017-05-01

    Molecularly imprinted polymers (MIPs) in combination with magnetic nanoparticles, in a core@shell format, were studied for selective detection of 1-chloro-2,4-dinitrobenzene (CDNB), a powerful allergenic substance. Magnetic nanoparticles were prepared by the co-precipitation method and mixed with oleic acid (OA). This material was then encapsulated in three types of hydrophobic polymeric matrix, poly-(MA-co-EDGMA), poly-(AA-co-EDGMA), and poly-(1-VN-co-EDGMA), by the mini-emulsion method. These matrices were used due to their ability to interact specifically with the functional groups of the analyte. Finally, the MIP-CDNB was obtained on the magnetic-hydrophobic surfaces using precipitation polymerization in the presence of the analyte. XRD diffraction patterns suggested the presence of magnetite in the composite and SEM analysis revealed a nanoparticle size between 10 and 18 nm. Under the optimized adsorption conditions, the magnetic-MIP material showed a higher adsorption capacity (5.1 mg g{sup −1}) than its non-magnetic counterpart (4.2 mg g{sup −1}). In tests of the selectivity of the magnetic-MIP towards CDNB, α-values of 2.5 and 10.4, respectively, were obtained for dichlorophenol and o-nitrophenol, two structurally similar compounds, and no adsorption was observed for any other non-analogous analyte. The magnetic-MIP and magnetic-NIP were applied using water enriched with 0.5 mg L{sup −1} of CDNB, achieving recovery values of 83.8(± 0.8)% and 66(± 1)%, respectively, revealing the suitability of the material for detection of CDNB. - Highlights: • Novel engineered magnetic nanoparticles selective for allergenic CDBN with potential environmental impact • Morphological and molecular recognition properties of imprinted materials • Direct magnetic separation, removal efficiency, and active remediation of real samples.

  6. Synthesis of a new magnetic-MIP for the selective detection of 1-chloro-2,4-dinitrobenzene, a highly allergenic compound

    International Nuclear Information System (INIS)

    Uzuriaga-Sánchez, Rosario Josefina; Wong, Ademar; Khan, Sabir; Pividori, Maria I.; Picasso, Gino; Sotomayor, Maria D.P.T.

    2017-01-01

    Molecularly imprinted polymers (MIPs) in combination with magnetic nanoparticles, in a core@shell format, were studied for selective detection of 1-chloro-2,4-dinitrobenzene (CDNB), a powerful allergenic substance. Magnetic nanoparticles were prepared by the co-precipitation method and mixed with oleic acid (OA). This material was then encapsulated in three types of hydrophobic polymeric matrix, poly-(MA-co-EDGMA), poly-(AA-co-EDGMA), and poly-(1-VN-co-EDGMA), by the mini-emulsion method. These matrices were used due to their ability to interact specifically with the functional groups of the analyte. Finally, the MIP-CDNB was obtained on the magnetic-hydrophobic surfaces using precipitation polymerization in the presence of the analyte. XRD diffraction patterns suggested the presence of magnetite in the composite and SEM analysis revealed a nanoparticle size between 10 and 18 nm. Under the optimized adsorption conditions, the magnetic-MIP material showed a higher adsorption capacity (5.1 mg g −1 ) than its non-magnetic counterpart (4.2 mg g −1 ). In tests of the selectivity of the magnetic-MIP towards CDNB, α-values of 2.5 and 10.4, respectively, were obtained for dichlorophenol and o-nitrophenol, two structurally similar compounds, and no adsorption was observed for any other non-analogous analyte. The magnetic-MIP and magnetic-NIP were applied using water enriched with 0.5 mg L −1 of CDNB, achieving recovery values of 83.8(± 0.8)% and 66(± 1)%, respectively, revealing the suitability of the material for detection of CDNB. - Highlights: • Novel engineered magnetic nanoparticles selective for allergenic CDBN with potential environmental impact • Morphological and molecular recognition properties of imprinted materials • Direct magnetic separation, removal efficiency, and active remediation of real samples

  7. Moderate plasma treatment enhances the quality of optically detected magnetic resonance signals of nitrogen-vacancy centres in nanodiamonds

    Science.gov (United States)

    Sotoma, Shingo; Igarashi, Ryuji; Shirakawa, Masahiro

    2016-05-01

    We demonstrate that a moderate plasma treatment increases the quality of optically detected magnetic resonance (ODMR) signals from negatively charged nitrogen-vacancy centres in nanodiamonds (NDs). We measured the statistics of the ODMR spectra of 50-nm-size NDs before and after plasma treatment. We then evaluated each ODMR spectrum in terms of fluorescence and ODMR intensities, line width and signal-to-noise (SN) ratio. Our results showed that plasma treatment for more than 10 min contributes to higher-quality ODMR signals, i.e. signals that are brighter, stronger, sharper and have a higher SN ratio. We showed that such signal improvement is due to alteration of the surface chemical states of the NDs by the plasma treatment. Our study contributes to the advancement of biosensing applications using ODMR of NDs.

  8. The effect of extracorporeal shock wave lithotripsy on kidney and adjacent tissue detected by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Saiko, Yasushi; Hirose, Tomonobu; Yoshida, Masahiko; Saito, Isao

    1995-01-01

    Etracorporeal shock wave lithotripsy (ESWL) using YACHIYODA SZ1 was performed on 12 patients with renal stones and the effect on the kidney and adjacent tissue was evaluated by magnetic resonance imaging(MRI) before and after treatment. Some changes were seen in 6 of the 12 (50%) patients; perirenal fluid collection in 2 of the 12 (16.7%) patients, subcapsular hematoma in 2 of the 12 (16.7%) patients, renal enlargement in 5 of the 12 (31.3%) patients, increased signal intensity in perirenal tissue in 6 of the 12 (50%) patients, and loss of the corticomedullary junction in 2 out of 9 patients (22%). These findings indicated fewer changes in the kidney after ESWL using YACHIYODA SZ1 than in the other reports. MRI is also concluded to be effective to detect the changes of the kidney after ESWL. (author)

  9. The effect of extracorporeal shock wave lithotripsy on kidney and adjacent tissue detected by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Saiko, Yasushi; Hirose, Tomonobu; Yoshida, Masahiko; Saito, Isao [Tokyo Kyosai Hospital (Japan)

    1995-08-01

    Etracorporeal shock wave lithotripsy (ESWL) using YACHIYODA SZ1 was performed on 12 patients with renal stones and the effect on the kidney and adjacent tissue was evaluated by magnetic resonance imaging(MRI) before and after treatment. Some changes were seen in 6 of the 12 (50%) patients; perirenal fluid collection in 2 of the 12 (16.7%) patients, subcapsular hematoma in 2 of the 12 (16.7%) patients, renal enlargement in 5 of the 12 (31.3%) patients, increased signal intensity in perirenal tissue in 6 of the 12 (50%) patients, and loss of the corticomedullary junction in 2 out of 9 patients (22%). These findings indicated fewer changes in the kidney after ESWL using YACHIYODA SZ1 than in the other reports. MRI is also concluded to be effective to detect the changes of the kidney after ESWL. (author).

  10. Review of Literature on Probability of Detection for Magnetic Particle Nondestructive Testing

    Science.gov (United States)

    2013-01-01

    a precipitation hardened martensitic stainless steel . The inspections were based on MIL-STD-1949A [51], now superseded but current at the time...inspector population involved in the tests, it is not possible to draw any further conclusions.  MPT of flat 17-4PH stainless steel plates. A brief...inspection method used to detect surface-breaking cracks in high-strength steel components. A survey of the available literature