WorldWideScience

Sample records for magnetic compression

  1. Adiabatic compression and radiative compression of magnetic fields

    International Nuclear Information System (INIS)

    Woods, C.H.

    1980-01-01

    Flux is conserved during mechanical compression of magnetic fields for both nonrelativistic and relativistic compressors. However, the relativistic compressor generates radiation, which can carry up to twice the energy content of the magnetic field compressed adiabatically. The radiation may be either confined or allowed to escape

  2. [Application value of magnetic compression anastomosis in digestive tract reconstruction].

    Science.gov (United States)

    Du, Xilin; Fan, Chao; Zhang, Hongke; Lu, Jianguo

    2014-05-01

    Magnetic compression anastomosis can compress tissues together and restore the continuity. Magnetic compression anastomosis mainly experienced three stages: magnetic ring, magnetic ring and column, and smart self-assembling magnets for endoscopy (SAMSEN). Nowadays, the magnetic compression anastomosis has been applied in vascular and different digestive tract surgeries, especially for complex surgery, such as anastomotic stenosis of biliary ducts after liver transplantation or congenital esophageal stenosis. Although only case reports are available at present, the advantages of the magnetic compression anastomosis includes lower cost, simplicity, individualization, good efficacy, safety, and minimally invasiveness. We are building a better technical platform to make magnetic compression anastomosis more advanced and popularized.

  3. Magnetic compression/magnetized target fusion (MAGO/MTF)

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.

    1997-03-01

    Magnetized Target Fusion (MTF) was reported in two papers at the First Symposium on Current Trends in International Fusion Research. MTF is intermediate between two very different mainline approaches to fusion: Inertial Confinement Fusion (ICF) and magnetic confinement fusion (MCF). The only US MTF experiments in which a target plasma was compressed were the Sandia National Laboratory ''Phi targets''. Despite the very interesting results from that series of experiments, the research was not pursued, and other embodiments of MTF concept such as the Fast Liner were unable to attract the financial support needed for a firm proof of principle. A mapping of the parameter space for MTF showed the significant features of this approach. The All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) has an on-going interest in this approach to thermonuclear fusion, and Los Alamos National Laboratory (LANL) and VNIIEF have done joint target plasma generation experiments relevant to MTF referred to as MAGO (transliteration of the Russian acronym for magnetic compression). The MAGO II experiment appears to have achieved on the order of 200 eV and over 100 KG, so that adiabatic compression with a relatively small convergence could bring the plasma to fusion temperatures. In addition, there are other experiments being pursued for target plasma generation and proof of principle. This paper summarizes the previous reports on MTF and MAGO and presents the progress that has been made over the past three years in creating a target plasma that is suitable for compression to provide a scientific proof of principle experiment for MAGO/MTF

  4. Magnetic field compression using pinch-plasma

    International Nuclear Information System (INIS)

    Koyama, K.; Tanimoto, M.; Matsumoto, Y.; Veno, I.

    1987-01-01

    In a previous report, the method for ultra-high magnetic field compression by using the pinchplasma was discussed. It is summarized as follows. The experiment is performed with the Mather-type plasma focus device tau/sub 1/4/ = 2 μs, I=880 kA at V=20 kV). An initial DC magnetic field is fed by an electromagnet embedded in the inner electrode. The axial component of the magnetic field diverges from the maximum field of 1 kG on the surface of the inner electrode. The density profile deduced from a Mach-Zehnder interferogram with a 2-ns N/sub 2/-laser shows a density dip lasting for 30 ns along the axes. Using the measured density of 8 x 10/sup 18/ cm/sup -3/, the temperature of 1.5 keV and the pressure balance relation, the magnitude of the trapped magnetic field is estimated to be 1.0 MG. The magnitude of the compressed magnetic field is also measured by Faraday rotation in a single-mode quartz fiber and a magnetic pickup soil. A protective polyethylene tube (3-mm o.d.) is used along the central axis through the inner electrode and the discharge chamber. The peak value of the compressed field range from 150 to 190 kG. No signal of the magnetic field appears up to the instance of the maximum pinch

  5. Projectile-power-compressed magnetic-field pulse generator

    International Nuclear Information System (INIS)

    Barlett, R.H.; Takemori, H.T.; Chase, J.B.

    1983-01-01

    Design considerations and experimental results are presented of a compressed magnetic field pulsed energy source. A 100-mm-diameter, gun-fired projectile of approx. 2MJ kinetic energy was the input energy source. An initial magnetic field was trapped and compressed by the projectile. With a shorted load, a magajoule in a nanohenry was the design goal, i.e., 50 percent energy transformation from kinetic to magnetic. Five percent conversion was the highest recorded before gauge failure

  6. Task-oriented lossy compression of magnetic resonance images

    Science.gov (United States)

    Anderson, Mark C.; Atkins, M. Stella; Vaisey, Jacques

    1996-04-01

    A new task-oriented image quality metric is used to quantify the effects of distortion introduced into magnetic resonance images by lossy compression. This metric measures the similarity between a radiologist's manual segmentation of pathological features in the original images and the automated segmentations performed on the original and compressed images. The images are compressed using a general wavelet-based lossy image compression technique, embedded zerotree coding, and segmented using a three-dimensional stochastic model-based tissue segmentation algorithm. The performance of the compression system is then enhanced by compressing different regions of the image volume at different bit rates, guided by prior knowledge about the location of important anatomical regions in the image. Application of the new system to magnetic resonance images is shown to produce compression results superior to the conventional methods, both subjectively and with respect to the segmentation similarity metric.

  7. Compression of turbulent magnetized gas in giant molecular clouds

    Science.gov (United States)

    Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark

    2018-01-01

    Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.

  8. Self-compression of intense short laser pulses in relativistic magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Olumi, M.; Maraghechi, B., E-mail: behrouz@aut.ac.ir [Department of Physics, Amirkabir University of Technology, Post code 15916-34311 Tehran (Iran, Islamic Republic of)

    2014-11-15

    The compression of a relativistic Gaussian laser pulse in a magnetized plasma is investigated. By considering relativistic nonlinearity and using non-linear Schrödinger equation with paraxial approximation, a second-order differential equation is obtained for the pulse width parameter (in time) to demonstrate the longitudinal pulse compression. The compression of laser pulse in a magnetized plasma can be observed by the numerical solution of the equation for the pulse width parameter. The effects of magnetic field and chirping are investigated. It is shown that in the presence of magnetic field and negative initial chirp, compression of pulse is significantly enhanced.

  9. Magnetic compression into Brillouin flow

    International Nuclear Information System (INIS)

    Becker, R.

    1977-01-01

    The trajectories of beam edge electrons are calculated in the transition region between an electrostatic gun and an increasing magnetic field for various field shapes, transition length, and cathode fluxes, assuming that the resultant beam is of Brillouin flow type. The results give a good physical interpretation to the axial gradient of the magnetic field being responsible for the amount of magnetic compression and also for the proper injection conditions. Therefore it becomes possible to predict from the known characteristics of any fairly laminary electrostatic gun the necessary axial gradient of the magnetic field and the axial position of the gun with respect to the field build-up. (orig.) [de

  10. International magnetic pulse compression workshop: (Proceedings)

    Energy Technology Data Exchange (ETDEWEB)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    A few individuals have tried to broaden the understanding of specific and salient pulsed-power topics. One such attempt is this documentation of a workshop on magnetic switching as it applies primarily to pulse compression (power transformation), affording a truly international perspective by its participants under the initiative and leadership of Hugh Kirbie and Mark Newton of the Lawrence Livermore National Laboratory (LLNL) and supported by other interested organizations. During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card--its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants.

  11. International magnetic pulse compression workshop: [Proceedings

    International Nuclear Information System (INIS)

    Kirbie, H.C.; Newton, M.A.; Siemens, P.D.

    1991-04-01

    A few individuals have tried to broaden the understanding of specific and salient pulsed-power topics. One such attempt is this documentation of a workshop on magnetic switching as it applies primarily to pulse compression (power transformation), affording a truly international perspective by its participants under the initiative and leadership of Hugh Kirbie and Mark Newton of the Lawrence Livermore National Laboratory (LLNL) and supported by other interested organizations. During the course of the Workshop at Granlibakken, a great deal of information was amassed and a keen insight into both the problems and opportunities as to the use of this switching approach was developed. The segmented workshop format proved ideal for identifying key aspects affecting optimum performance in a variety of applications. Individual groups of experts addressed network and system modeling, magnetic materials, power conditioning, core cooling and dielectrics, and finally circuits and application. At the end, they came together to consolidate their input and formulate the workshop's conclusions, identifying roadblocks or suggesting research projects, particularly as they apply to magnetic switching's trump card--its high-average-power-handling capability (at least on a burst-mode basis). The workshop was especially productive both in the quality and quantity of information transfer in an environment conducive to a free and open exchange of ideas. We will not delve into the organization proper of this meeting, rather we wish to commend to the interested reader this volume, which provides the definitive and most up-to-date compilation on the subject of magnetic pulse compression from underlying principles to current state of the art as well as the prognosis for the future of magnetic pulse compression as a consensus of the workshop's organizers and participants

  12. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs.

  13. Development of ultra-short high voltage pulse technology using magnetic pulse compression

    International Nuclear Information System (INIS)

    Cha, Byung Heon; Kim, S. G.; Nam, S. M.; Lee, B. C.; Lee, S. M.; Jeong, Y. U.; Cho, S. O.; Jin, J. T.; Choi, H. L.

    1998-01-01

    The control circuit for high voltage switches, the saturable inductor for magnetic assist, and the magnetic pulse compression circuit were designed, constructed, and tested. The core materials of saturable inductors in magnetic pulse compression circuit were amorphous metal and ferrite and total compression stages were 3. By the test, in high repetition rate, high pulse compression were certified. As a result of this test, it became possible to increase life-time of thyratrons and to replace thyratrons by solid-state semiconductor switches. (author). 16 refs., 16 tabs

  14. Magnetic surface compression heating in the heliotron device

    International Nuclear Information System (INIS)

    Uo, K.; Motojima, O.

    1982-01-01

    The slow adiabatic compression of the plasma in the heliotron device is examined. It has a prominent characteristic that the plasma equilibrium always exists at each stage of the compression. The heating efficiency is calculated. We show the possible access to fusion. A large amount of the initial investment for the heating system (NBI or RF) is reduced by using the magnetic surface compression heating. (author)

  15. Self-similar compression of a magnetized plasma filled liner

    International Nuclear Information System (INIS)

    Felber, F.S.; Liberman, M.A.; Velikovich, A.L.

    1985-01-01

    New analytic, one-dimensional, self-similar solutions of magnetohydrodynamic equations describing the compression of a magnetized plasma by a thin cylindrical liner are presented. The solutions include several features that have not been included in an earlier self-similar solution of the equations of ideal magnetohydrodynamics. These features are the effects of finite plasma electrical conductivity, induction heating, thermal conductivity and related thermogalvanomagnetic effects, plasma turbulence, and plasma boundary effects. These solutions have been motivated by recent suggestions for production of ultrahigh magnetic fields by new methods. The methods involve radially imploding plasmas in which axial magnetic fields have been entrained. These methods may be capable of producing controlled magnetic fields up to approx. = 100 MG. Specific methods of implosion suggested were by ablative radial acceleration of a liner by a laser and by a gas-puff Z pinch. The model presented here addresses the first of these methods. The solutions derived here are used to estimate magnetic flux losses out of the compression volume, and to indicate conditions under which an impulsively-accelerated, plasma-filled liner may compress an axial magnetic field to large magnitude

  16. Estimating the magnetic energy inside traveling compression regions

    Directory of Open Access Journals (Sweden)

    S. A. Kiehas

    2009-05-01

    Full Text Available We investigate a series of six TCRs (traveling compression regions, appearing in the course of a small substorm on 19 September 2001. Except for two of these TCRs, all Cluster spacecraft were located in the lobe and detected the typical signatures of TCRs, i.e., compressions in |B| and bipolar Bz variations. We use these perturbations in Bz for calculations on the magnetic energy inside the TCR and compare the amount of magnetic field energy with the kinetic energy inside the underlying plasma bulge. According to results obtained from theory, the amount of magnetic energy inside TCRs is about two times higher than the kinetic plasma energy inside the accompanied plasma bulge. We verify this theoretical result by first investigations of the magnetic field energy inside TCRs. The calculations lead to a magnetic energy in the order of 1010 Joule per RE for each of the TCRs.

  17. Velocity and Magnetic Compressions in FEL Drivers

    CERN Document Server

    Serafini, L

    2005-01-01

    We will compare merits and issues of these two techniques suitable for increasing the peak current of high brightness electron beams. The typical range of applicability is low energy for the velocity bunching and middle to high energy for magnetic compression. Velocity bunching is free from CSR effects but requires very high RF stability (time jitters), as well as a dedicated additional focusing and great cure in the beam transport: it is very well understood theoretically and numerical simulations are pretty straightforward. Several experiments of velocity bunching have been performed in the past few years: none of them, nevertheless, used a photoinjector designed and optimized for that purpose. Magnetic compression is a much more consolidated technique: CSR effects and micro-bunch instabilities are its main drawbacks. There is a large operational experience with chicanes used as magnetic compressors and their theoretical understanding is quite deep, though numerical simulations of real devices are still cha...

  18. A design approach for systems based on magnetic pulse compression

    International Nuclear Information System (INIS)

    Praveen Kumar, D. Durga; Mitra, S.; Senthil, K.; Sharma, D. K.; Rajan, Rehim N.; Sharma, Archana; Nagesh, K. V.; Chakravarthy, D. P.

    2008-01-01

    A design approach giving the optimum number of stages in a magnetic pulse compression circuit and gain per stage is given. The limitation on the maximum gain per stage is discussed. The total system volume minimization is done by considering the energy storage capacitor volume and magnetic core volume at each stage. At the end of this paper, the design of a magnetic pulse compression based linear induction accelerator of 200 kV, 5 kA, and 100 ns with a repetition rate of 100 Hz is discussed with its experimental results

  19. A simple accurate chest-compression depth gauge using magnetic coils during cardiopulmonary resuscitation.

    Science.gov (United States)

    Kandori, Akihiko; Sano, Yuko; Zhang, Yuhua; Tsuji, Toshio

    2015-12-01

    This paper describes a new method for calculating chest compression depth and a simple chest-compression gauge for validating the accuracy of the method. The chest-compression gauge has two plates incorporating two magnetic coils, a spring, and an accelerometer. The coils are located at both ends of the spring, and the accelerometer is set on the bottom plate. Waveforms obtained using the magnetic coils (hereafter, "magnetic waveforms"), which are proportional to compression-force waveforms and the acceleration waveforms were measured at the same time. The weight factor expressing the relationship between the second derivatives of the magnetic waveforms and the measured acceleration waveforms was calculated. An estimated-compression-displacement (depth) waveform was obtained by multiplying the weight factor and the magnetic waveforms. Displacements of two large springs (with similar spring constants) within a thorax and displacements of a cardiopulmonary resuscitation training manikin were measured using the gauge to validate the accuracy of the calculated waveform. A laser-displacement detection system was used to compare the real displacement waveform and the estimated waveform. Intraclass correlation coefficients (ICCs) between the real displacement using the laser system and the estimated displacement waveforms were calculated. The estimated displacement error of the compression depth was within 2 mm (compression gauge, based on a new calculation method, provides an accurate compression depth (estimation error < 2 mm).

  20. MAGNAMOSIS IV: magnetic compression anastomosis for minimally invasive colorectal surgery.

    Science.gov (United States)

    Wall, J; Diana, M; Leroy, J; Deruijter, V; Gonzales, K D; Lindner, V; Harrison, M; Marescaux, J

    2013-08-01

    MAGNAMOSIS forms a compression anastomosis using self-assembling magnetic rings that can be delivered via flexible endoscopy. The system has proven to be effective in full-thickness porcine small-bowel anastomoses. The aim of this study was to show the feasibility of the MAGNAMOSIS system in hybrid endoscopic colorectal surgery and to compare magnetic and conventional stapled anastomoses. A total of 16 swine weighing 35 - 50 kg were used following animal ethical committee approval. The first animal was an acute model to establish the feasibility of the procedure. The subsequent 15 animals were survival models, 10 of which underwent side-to-side anastomoses (SSA) and 5 of which underwent end-to-side (ESA) procedures. Time to patency, surveillance endoscopy, burst pressure, compression force, and histology were assessed. Histology was compared with conventional stapled anastomoses. Magnetic compression forces were measured in various anastomosis configurations. Colorectal anastomoses were performed in all cases using a hybrid NOTES technique. The mean operating time was 71 minutes. Mean time to completion of the anastomosis was similar between the SSA and ESA groups. Burst pressure at 10 days was greater than 95 mmHg in both groups. One complication occurred in the ESA group. Compression force among various configurations of the magnetic rings was significantly different (P < 0.05). Inflammation and fibrosis were similar between magnetic SSA and conventional stapled anastomoses. MAGNAMOSIS was feasible in performing a hybrid NOTES colorectal anastomosis. It has the advantage over circular staplers of precise endoscopic delivery throughout the entire colon. SSA was reliable and effective. A minimum initial compression force of 4 N appears to be required for reliable magnetic anastomoses. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Injection, compression and confinement of electrons in a magnetic mirror

    International Nuclear Information System (INIS)

    Fisher, A.

    1975-01-01

    A Helmholtz coil configuration has been constructed where the magnetic field can be increased to about 10 kGauss in 20 μsec. Electrons are injected from a hot tantalum filament between two plates across which a potential of about 5 keV is applied. The electric field E is perpendicular to the magnetic field B so that the direction of the E x B drift is radial--into the magnetic mirror. About 10 14 electrons were injected and about 10 13 electrons were trapped. The initial electron energy was about 5 keV and after compression 500 keV x-rays were observed. The confinement time is very sensitive to vacuum. Confinement times of milliseconds and good compression were observed at vacuum of 5.10 -5 torr or less. Above 5.10 -5 torr there was no trapping or compression. After a compressed ring of electrons was formed, it was released by a pulse applied to one of the Helmholtz coils that reduced the field. Ejection of the electron ring was observed by x-ray measurements

  2. Compression of magnetized target in the magneto-inertial fusion

    Science.gov (United States)

    Kuzenov, V. V.

    2017-12-01

    This paper presents a mathematical model, numerical method and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion. The computer simulation of the compression process of magnetized cylindrical target by high-power laser pulse is presented.

  3. Three-dimensional density and compressible magnetic structure in solar wind turbulence

    Science.gov (United States)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-03-01

    The three-dimensional structure of both compressible and incompressible components of turbulence is investigated at proton characteristic scales in the solar wind. Measurements of the three-dimensional structure are typically difficult, since the majority of measurements are performed by a single spacecraft. However, the Cluster mission consisting of four spacecraft in a tetrahedral formation allows for a fully three-dimensional investigation of turbulence. Incompressible turbulence is investigated by using the three vector components of the magnetic field. Meanwhile compressible turbulence is investigated by considering the magnitude of the magnetic field as a proxy for the compressible fluctuations and electron density data deduced from spacecraft potential. Application of the multi-point signal resonator technique to intervals of fast and slow wind shows that both compressible and incompressible turbulence are anisotropic with respect to the mean magnetic field direction P⟂ ≫ P∥ and are sensitive to the value of the plasma beta (β; ratio of thermal to magnetic pressure) and the wind type. Moreover, the incompressible fluctuations of the fast and slow solar wind are revealed to be different with enhancements along the background magnetic field direction present in the fast wind intervals. The differences in the fast and slow wind and the implications for the presence of different wave modes in the plasma are discussed.

  4. Magnetic Compression Experiment at General Fusion with Simulation Results

    Science.gov (United States)

    Dunlea, Carl; Khalzov, Ivan; Hirose, Akira; Xiao, Chijin; Fusion Team, General

    2017-10-01

    The magnetic compression experiment at GF was a repetitive non-destructive test to study plasma physics applicable to Magnetic Target Fusion compression. A spheromak compact torus (CT) is formed with a co-axial gun into a containment region with an hour-glass shaped inner flux conserver, and an insulating outer wall. External coil currents keep the CT off the outer wall (levitation) and then rapidly compress it inwards. The optimal external coil configuration greatly improved both the levitated CT lifetime and the rate of shots with good compressional flux conservation. As confirmed by spectrometer data, the improved levitation field profile reduced plasma impurity levels by suppressing the interaction between plasma and the insulating outer wall during the formation process. We developed an energy and toroidal flux conserving finite element axisymmetric MHD code to study CT formation and compression. The Braginskii MHD equations with anisotropic heat conduction were implemented. To simulate plasma / insulating wall interaction, we couple the vacuum field solution in the insulating region to the full MHD solution in the remainder of the domain. We see good agreement between simulation and experiment results. Partly funded by NSERC and MITACS Accelerate.

  5. Magnetic pulse compression circuits for plasma devices

    Energy Technology Data Exchange (ETDEWEB)

    Georgescu, N; Zoita, V; Presura, R [Inst. of Physics and Technology of Radiation Devices, Bucharest (Romania)

    1997-12-31

    Two magnetic pulse compression circuits (MPCC), for two different plasma devices, are presented. The first is a 20 J/pulse, 3-stage circuit designed to trigger a low pressure discharge. The circuit has 16-18 kV working voltage, and 200 nF in each stage. The saturable inductors are realized with toroidal 25 {mu}m strip-wound cores, made of a Fe-Ni alloy, with 1.5 T saturation induction. The total magnetic volume is around 290 cm{sup 3}. By using a 25 kV/1 A thyratron as a primary switch, the time compression is from 3.5 {mu}s to 450 ns, in a short-circuit load. The second magnetic pulser is a 200 J/pulse circuit, designed to drive a high average power plasma focus soft X-ray source, for X-ray microlithography as the main application. The 3-stage pulser should supply a maximum load current of 100 kA with a rise-time of 250 - 300 ns. The maximum pulse voltage applied on the plasma discharge chamber is around 20 - 25 kV. The three saturable inductors in the circuit are made of toroidal strip-wound cores with METGLAS 2605 CO amorphous alloy as the magnetic material. The total, optimized mass of the magnetic material is 34 kg. The maximum repetition rate is limited at 100 Hz by the thyratron used in the first stage of the circuit, the driver supplying to the load about 20 kW average power. (author). 1 tab., 3 figs., 3 refs.

  6. Local System Matrix Compression for Efficient Reconstruction in Magnetic Particle Imaging

    Directory of Open Access Journals (Sweden)

    T. Knopp

    2015-01-01

    Full Text Available Magnetic particle imaging (MPI is a quantitative method for determining the spatial distribution of magnetic nanoparticles, which can be used as tracers for cardiovascular imaging. For reconstructing a spatial map of the particle distribution, the system matrix describing the magnetic particle imaging equation has to be known. Due to the complex dynamic behavior of the magnetic particles, the system matrix is commonly measured in a calibration procedure. In order to speed up the reconstruction process, recently, a matrix compression technique has been proposed that makes use of a basis transformation in order to compress the MPI system matrix. By thresholding the resulting matrix and storing the remaining entries in compressed row storage format, only a fraction of the data has to be processed when reconstructing the particle distribution. In the present work, it is shown that the image quality of the algorithm can be considerably improved by using a local threshold for each matrix row instead of a global threshold for the entire system matrix.

  7. Neutron measurements in the FRX-C/LSM magnetic compression experiment

    International Nuclear Information System (INIS)

    Chrien, R.E.; Baron, M.H.

    1989-01-01

    Neutron measurements are being pursued as an ion temperature diagnostic in the FRX-C/LSM Magnetic Compression Experiment. One can easily see that the d-d neutron emission is a sensitive measure of ion heating during adiabatic magnetic compression of FRCs. The reaction rate may be written as R = (1/2) n N left-angle σv right-angle, where n and N are the deuterium density and inventory. The fusion reactivity varies as left-angle σv right-angle ∝ T 5.6 for T ≅ 1 keV. For adiabatic compression, n ∝ B 1.2 and T ∝ B 0.8 so R ∝ B 5.7 in the absence of losses. The neutron yield is also sensitive to the time duration that the plasma remains near its peak temperature. 4 refs., 4 figs

  8. Seeding magnetic fields for laser-driven flux compression in high-energy-density plasmas.

    Science.gov (United States)

    Gotchev, O V; Knauer, J P; Chang, P Y; Jang, N W; Shoup, M J; Meyerhofer, D D; Betti, R

    2009-04-01

    A compact, self-contained magnetic-seed-field generator (5 to 16 T) is the enabling technology for a novel laser-driven flux-compression scheme in laser-driven targets. A magnetized target is directly irradiated by a kilojoule or megajoule laser to compress the preseeded magnetic field to thousands of teslas. A fast (300 ns), 80 kA current pulse delivered by a portable pulsed-power system is discharged into a low-mass coil that surrounds the laser target. A >15 T target field has been demonstrated using a hot spot of a compressed target. This can lead to the ignition of massive shells imploded with low velocity-a way of reaching higher gains than is possible with conventional ICF.

  9. Generation of intense, high-energy ion pulses by magnetic compression of ion rings

    International Nuclear Information System (INIS)

    Kapetanakos, C.A.

    1981-01-01

    A system based on the magnetic compression of ion rings, for generating intense (High-current), high-energy ion pulses that are guided to a target without a metallic wall or an applied external magnetic field includes a vacuum chamber; an inverse reflex tetrode for producing a hollow ion beam within the chamber; magnetic coils for producing a magnetic field, bo, along the axis of the chamber; a disc that sharpens a magnetic cusp for providing a rotational velocity to the beam and causing the beam to rotate; first and second gate coils for producing fast-rising magnetic field gates, the gates being spaced apart, each gate modifying a corresponding magnetic mirror peak (Near and far peaks) for trapping or extracting the ions from the magnetic mirror, the ions forming a ring or layer having rotational energy; a metal liner for generating by magnetic flux compression a high, time-varying magnetic field, the time-varying magnetic field progressively increasing the kinetic energy of the ions, the magnetic field from the second gate coil decreasing the far mirror peak at the end of the compression for extracting the trapped rotating ions from the confining mirror; and a disc that sharpens a magnetic half-cusp for increasing the translational velocity of the ion beam. The system utilizes the self-magnetic field of the rotating, propagating ion beam to prevent the beam from expanding radially upon extraction

  10. Magnetic compression ostomy for simple tube colostomy in rats--magnacolostomy.

    Science.gov (United States)

    Uygun, Ibrahim; Okur, Mehmet H; Arayici, Yilmaz; Keles, Aysenur; Ozturk, Hayrettin; Otcu, Selcuk

    2012-01-01

    Magnetic compression anastomoses (magnamosis) have been previously described for gastrointestinal, biliary, urinary, and vascular anastomoses. Objectives. Herein, the authors report the creation of a magnetic compression colostomy (magnacolostomy) using a simple technique in rats. Animals were randomized into two groups (n = 8, each): a magnetic colostomy (MC) group and a control surgical tube colostomy (SC) group. In the MC group, the first magnetic ball (3 mm) was rectally introduced into the rat colon. The second magnetic ball (4 mm) was placed subcutaneously into the left quadrant, and the two magnetic balls strongly coupled. On postoperative day 20 for the MC group and postoperative day 10 in the SC group, the rats were sacrificed and the colostomies evaluated macroscopically, histopathologically, and for mechanical burst testing. From the macroscopic evaluation, two rats failed to form the colostomy canal due to colostomy catheter and magnetic ball removal. In the remaining rats, evidence of complications were not observed. Two rats in the MC group displayed mild adhesion and all rats in the SC group displayed moderate adhesion. No significant differences between the burst pressures were observed. However, a significant difference (p colostomy procedures such as antegrade continence enemas, percutaneous endoscopic, and colostomy/cecostomy in humans.

  11. Role of compressibility on driven magnetic reconnection

    International Nuclear Information System (INIS)

    Sato, T.; Hayashi, T.; Watanabe, K.; Horiuchi, R.; Tanaka, M.; Sawairi, N.; Kusano, K.

    1991-08-01

    Whether it is induced by an ideal (current driven) instability or by an external force, plasma flow causes a change in the magnetic field configuration and often gives rise to a current intensification locally, thereby a fast driven reconnection being driven there. Many dramatic phenomena in magnetically confined plasmas such as magnetospheric substorms, solar flares, MHD self-organization and tokamak sawtooth crash, may be attributed to this fast driven reconnection. Using a fourth order MHD simulation code it is confirmed that compressibility of the plasma plays a crucial role in leading to a fast (MHD time scale) driven reconnection. This indicates that the incompressible representation is not always applicable to the study of a global dynamical behavior of a magnetically confined plasma. (author)

  12. SEED BANKS FOR MAGNETIC FLUX COMPRESSION GENERATORS

    Energy Technology Data Exchange (ETDEWEB)

    Fulkerson, E S

    2008-05-14

    In recent years the Lawrence Livermore National Laboratory (LLNL) has been conducting experiments that require pulsed high currents to be delivered into inductive loads. The loads fall into two categories (1) pulsed high field magnets and (2) the input stage of Magnetic Flux Compression Generators (MFCG). Three capacitor banks of increasing energy storage and controls sophistication have been designed and constructed to drive these loads. One bank was developed for the magnet driving application (20kV {approx} 30kJ maximum stored energy.) Two banks where constructed as MFCG seed banks (12kV {approx} 43kJ and 26kV {approx} 450kJ). This paper will describe the design of each bank including switching, controls, circuit protection and safety.

  13. Estimation of the iron loss in deep-sea permanent magnet motors considering seawater compressive stress.

    Science.gov (United States)

    Xu, Yongxiang; Wei, Yanyu; Zou, Jibin; Li, Jianjun; Qi, Wenjuan; Li, Yong

    2014-01-01

    Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM). The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  14. Estimation of the Iron Loss in Deep-Sea Permanent Magnet Motors considering Seawater Compressive Stress

    Directory of Open Access Journals (Sweden)

    Yongxiang Xu

    2014-01-01

    Full Text Available Deep-sea permanent magnet motor equipped with fluid compensated pressure-tolerant system is compressed by the high pressure fluid both outside and inside. The induced stress distribution in stator core is significantly different from that in land type motor. Its effect on the magnetic properties of stator core is important for deep-sea motor designers but seldom reported. In this paper, the stress distribution in stator core, regarding the seawater compressive stress, is calculated by 2D finite element method (FEM. The effect of compressive stress on magnetic properties of electrical steel sheet, that is, permeability, BH curves, and BW curves, is also measured. Then, based on the measured magnetic properties and calculated stress distribution, the stator iron loss is estimated by stress-electromagnetics-coupling FEM. At last the estimation is verified by experiment. Both the calculated and measured results show that stator iron loss increases obviously with the seawater compressive stress.

  15. Pressure and compressibility factor of bidisperse magnetic fluids

    Science.gov (United States)

    Minina, Elena S.; Blaak, Ronald; Kantorovich, Sofia S.

    2018-04-01

    In this work, we investigate the pressure and compressibility factors of bidisperse magnetic fluids with relatively weak dipolar interactions and different granulometric compositions. In order to study these properties, we employ the method of diagram expansion, taking into account two possible scenarios: (1) dipolar particles repel each other as hard spheres; (2) the polymer shell on the surface of the particles is modelled through a soft-sphere approximation. The theoretical predictions of the pressure and compressibility factors of bidisperse ferrofluids at different granulometric compositions are supported by data obtained by means of molecular dynamics computer simulations, which we also carried out for these systems. Both theory and simulations reveal that the pressure and compressibility factors decrease with growing dipolar correlations in the system, namely with an increasing fraction of large particles. We also demonstrate that even if dipolar interactions are too weak for any self-assembly to take place, the interparticle correlations lead to a qualitative change in the behaviour of the compressibility factors when compared to that of non-dipolar spheres, making the dependence monotonic.

  16. Pressure and compressibility of a quantum plasma in a magnetic field

    NARCIS (Netherlands)

    Suttorp, L.G.

    1993-01-01

    The equilibrium pressure tensor that occurs in the momentum balance equation for a quantum plasma in a magnetic field is shown to be anisotropic. Its relation to the pressure that follows from thermodynamics is elucidated. A general proof of the compressibility rule for a magnetized quantum plasma

  17. Large-scale vortices in compressible turbulent medium with the magnetic field

    Science.gov (United States)

    Gvaramadze, V. V.; Dimitrov, B. G.

    1990-08-01

    An averaged equation which describes the large scale vortices and Alfven waves generation in a compressible helical turbulent medium with a constant magnetic field is presented. The presence of the magnetic field leads to anisotropization of the vortex generation. Possible applications of the anisotropic vortex dynamo effect are accretion disks of compact objects.

  18. Investigation of shock compressed plasma parameters by interaction with magnetic field

    International Nuclear Information System (INIS)

    Dudin, S. V.; Fortov, V. E.; Gryaznov, V. K.; Mintsev, V. B.; Shilkin, N. S.; Ushnurtsev, A. E.

    1998-01-01

    The Hall effect parameters in shock compressed air, helium and xenon have been estimated and results of experiments with air and helium plasma are presented. Explosively driven shock tubes were used for the generation of strong shock waves. To obtain magnetic field a solenoid was winded over the shock tube. Calculations of dense shock compressed plasma parameters were carried out to plan the experiments. In the experiments with the magnetic field of ∼5 T it was found, that air plasma slug was significantly heated by the whirlwind electrical field. The reflected shock waves technique was used in the experiments with helium. Results on measurements of electrical conductivity and electron concentration of helium are presented

  19. Manipulating Electromagnetic Waves in Magnetized Plasmas: Compression, Frequency Shifting, and Release

    International Nuclear Information System (INIS)

    Avitzour, Yoav; Shvets, Gennady

    2008-01-01

    A new approach to manipulating the duration and frequency of microwave pulses using magnetized plasmas is demonstrated. The plasma accomplishes two functions: (i) slowing down and spatially compressing the incident wave, and (ii) modifying the propagation properties (group velocity and frequency) of the wave in the plasma during a uniform in space adiabatic in time variation of the magnitude and/or direction of the magnetic field. The increase in the group velocity results in the shortening of the temporal pulse duration. Depending on the plasma parameters, the frequency of the outgoing compressed pulse can either change or remain unchanged. Such dynamic manipulation of radiation in plasma opens new avenues for manipulating high power microwave pulses

  20. Direct current force sensing device based on compressive spring, permanent magnet, and coil-wound magnetostrictive/piezoelectric laminate.

    Science.gov (United States)

    Leung, Chung Ming; Or, Siu Wing; Ho, S L

    2013-12-01

    A force sensing device capable of sensing dc (or static) compressive forces is developed based on a NAS106N stainless steel compressive spring, a sintered NdFeB permanent magnet, and a coil-wound Tb(0.3)Dy(0.7)Fe(1.92)/Pb(Zr, Ti)O3 magnetostrictive∕piezoelectric laminate. The dc compressive force sensing in the device is evaluated theoretically and experimentally and is found to originate from a unique force-induced, position-dependent, current-driven dc magnetoelectric effect. The sensitivity of the device can be increased by increasing the spring constant of the compressive spring, the size of the permanent magnet, and/or the driving current for the coil-wound laminate. Devices of low-force (20 N) and high-force (200 N) types, showing high output voltages of 262 and 128 mV peak, respectively, are demonstrated at a low driving current of 100 mA peak by using different combinations of compressive spring and permanent magnet.

  1. A Compressed Sensing Framework for Magnetic Resonance Fingerprinting

    OpenAIRE

    Davies, Mike; Puy, Gilles; Vandergheynst, Pierre; Wiaux, Yves

    2013-01-01

    Inspired by the recently proposed Magnetic Resonance Fingerprinting (MRF) technique, we develop a principled compressed sensing framework for quantitative MRI. The three key components are: a random pulse excitation sequence following the MRF technique; a random EPI subsampling strategy and an iterative projection algorithm that imposes consistency with the Bloch equations. We show that theoretically, as long as the excitation sequence possesses an appropriate form of persistent excitation, w...

  2. The role of fluid compression in energy conversion and particle energization during magnetic reconnection

    Science.gov (United States)

    Li, X.; Guo, F.; Li, G.; Li, H.

    2016-12-01

    Theories of particle transport and acceleration have shown that fluid compression is the leading mechanism for particle acceleration and plasma energization. However, the role of compression in particle acceleration during magnetic reconnection is unclear. We use two approaches to study this issue. First, using fully kinetic simulations, we quantitatively calculate the effect of compression in energy conversion and particle energization during magnetic reconnection for a range of plasma beta and guide field. We show that compression has an important contribution for the energy conversion between the bulk kinetic energy and the internal energy when the guide field is smaller than the reconnecting component. Based on this result, we then study the large-scale reconnection acceleration by solving the Parker's transport equation in a background reconnecting flow provided by MHD simulations. Due to the compression effect, the simulations suggest fast particle acceleration to high energies in the reconnection layer. This study clarifies the nature of particle acceleration in reconnection layer, and may be important to understand particle acceleration and plasma energization during solar flares.

  3. Cerebral magnetic resonance imaging of compressed air divers in diving accidents.

    Science.gov (United States)

    Gao, G K; Wu, D; Yang, Y; Yu, T; Xue, J; Wang, X; Jiang, Y P

    2009-01-01

    To investigate the characteristics of the cerebral magnetic resonance imaging (MRI) of compressed air divers in diving accidents, we conducted an observational case series study. MRI of brain were examined and analysed on seven cases compressed air divers complicated with cerebral arterial gas embolism CAGE. There were some characteristics of cerebral injury: (1) Multiple lesions; (2) larger size; (3) Susceptible to parietal and frontal lobe; (4) Both cortical grey matter and subcortical white matter can be affected; (5) Cerebellum is also the target of air embolism. The MRI of brain is an sensitive method for detecting cerebral lesions in compressed air divers in diving accidents. The MRI should be finished on divers in diving accidents within 5 days.

  4. Splenorenal shunt via magnetic compression technique: a feasibility study in canine and cadaver.

    Science.gov (United States)

    Xue, Fei; Li, Jianpeng; Lu, Jianwen; Zhu, Haoyang; Liu, Wenyan; Zhang, Hongke; Yang, Huan; Guo, Hongchang; Lv, Yi

    2016-12-01

    The concept of magnetic compression technique (MCT) has been accepted by surgeons to solve a variety of surgical problems. In this study, we attempted to explore the feasibility of a splenorenal shunt using MCT in canine and cadaver. The diameters of the splenic vein (SV), the left renal vein (LRV), and the vertical interval between them, were measured in computer tomography (CT) images obtained from 30 patients with portal hypertension and in 20 adult cadavers. The magnetic devices used for the splenorenal shunt were then manufactured based on the anatomic parameters measured above. The observation of the anatomical structure showed there were no special structural tissues or any important organs between SV and LRV. Then the magnetic compression splenorenal shunt procedure was performed in three dogs and five cadavers. Seven days later, the necrotic tissue between the two magnets was shed and the magnets were removed with the anchor wire. The feasibility of splenorenal shunt via MCT was successfully shown in both canine and cadaver, thus providing a theoretical support for future clinical application.

  5. Model for field-induced reorientation strain in magnetic shape memory alloy with tensile and compressive loads

    International Nuclear Information System (INIS)

    Zhu Yuping; Dui Guansuo

    2008-01-01

    A model based on the micromechanical and the thermodynamic theory is presented for field-induced martensite reorientation in magnetic shape memory alloy (MSMA) single crystals. The influence of variants morphology and the material property to constitutive behavior is considered. The nonlinear and hysteretic strain and magnetization response of MSMA are investigated for two main loading cases, namely the magnetic field-induced reorientation of variants under constant compressive stress and tensile stress. The predicted results have shown that increasing tensile loading reduces the required field for actuation, while increasing compressive loads result in the required magnetic field growing considerably. It is helpful to design the intelligent composite with MSMA fibers

  6. Use of magnetic compression based on amorphous alloys as a drive for induction linacs

    International Nuclear Information System (INIS)

    Birx, D.L.; Cook, E.G.; Hawkins, S.A.; Poor, S.E.; Reginato, L.; Schmidt, J.; Smith, M.W.

    1984-01-01

    In anticipation of current and future needs for the Particle Beam Program and other programs at the Lawrence Livermore National Laboratory, we are continuing efforts in the development of high-repetition-rate magnetic pulse compressors that use ferromagnetic metallic glasses, both in the linear and very high saturation rates. These devices are ideally suited as drivers for linear induction accelerators, where duty factor or average repetition rates (hundred of hertz) requirements exceed the parameters that can be achieved by pulse compression using spark gaps. The technique of magnetic pulse compression has been with use for several decades, but relatively recent developments in rapidly quenched magnetic metals of very thin cross sections, has led to the development of state-of-the-art magnetic pulse compressors with very high peak power, repetition rates, and reliability. This paper will describe results of recent experiments and the relevant electrical and mechanical properties of magnetic pulse compressors to achieve high efficiency and reliability

  7. SSWL and BWL: finite element models of compressed magnetic field current generators

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, T.J.; Leeman, J.E.

    1976-01-01

    Documentation is presented for two new computer codes modeling the behavior of compressed magnetic field current generators. Code output results for the typical generator configurations are presented and compared to experimental results. (auth)

  8. The plasma formation stage in magnetic compression/magnetized target fusion (MAGO/MTF)

    International Nuclear Information System (INIS)

    Lindemuth, I.R.; Reinovsky, R.E.; Chrien, R.E.

    1996-01-01

    In early 1992, emerging governmental policy in the US and Russia began to encourage ''lab-to-lab'' interactions between the All- Russian Scientific Research Institute of Experimental Physics (VNIIEF) and the Los Alamos National Laboratory (LANL). As nuclear weapons stockpiles and design activities were being reduced, highly qualified scientists become for fundamental scientific research of interest to both nations. VNIIEF and LANL found a common interest in the technology and applications of magnetic flux compression, the technique for converting the chemical energy released by high-explosives into intense electrical pulses and intensely concentrated magnetic energy. Motivated originally to evaluate any possible defense applications of flux compression technology, the two teams worked independently for many years, essentially unaware of the others' accomplishments. But, an early US publication stimulated Soviet work, and the Soviets followed with a report of the achievement of 25 MG. During the cold war, a series of conferences on Megagauss Magnetic Field Generation and Related Topics became a forum for scientific exchange of ideas and accomplishments. Because of relationships established at the Megagauss conferences, VNIIEF and LANL were able to respond quickly to the initiatives of their respective governments. In late 1992, following the Megagauss VI conference, the two institutions agreed to combine resources to perform a series of experiments that essentially could not be performed by each institution independently. Beginning in September, 1993, the two institutions have performed eleven joint experimental campaigns, either at VNIIEF or at LANL. Megagauss- VII has become the first of the series to include papers with joint US and Russian authorship. In this paper, we review the joint LANL/VNIIEF experimental work that has relevance to a relatively unexplored approach to controlled thermonuclear fusion

  9. Compressive effect of the magnetic field on the positron range in commonly used positron emitters simulated using Geant4

    Science.gov (United States)

    Li, Chong; Cao, Xingzhong; Liu, Fuyan; Tang, Haohui; Zhang, Zhiming; Wang, Baoyi; Wei, Long

    2017-11-01

    The compressive effect of a magnetic field on the positron range from commonly used positron emitters in PET (Positron Emission Tomography) was simulated using the Geant4 toolkit with H2O as the environmental material. The compression of the positron range, which was different in the directions parallel and perpendicular to the magnetic field, showed finite final variation of relative change rate versus the magnetic field. The variation greatly depended on the positron-emission energy spectrum in the same medium. Furthermore, the volume of the positron annihilation point was dramatically compressed as the magnetic field was set in the range of 3-6T. It was more prominent for 82Rb , which is generally used as a positron source in PET technology.

  10. Long-term patency of experimental magnetic compression gastroenteric anastomoses achieved with covered stents.

    Science.gov (United States)

    Cope, C; Ginsberg, G G

    2001-06-01

    Our aim was to evaluate the efficacy of a prototype "YO-YO"-shaped covered stent for keeping experimental magnetic compression gastroenteric fistulas patent for 6 months. Magnets were introduced perorally with endoscopic and fluoroscopic guidance and were mated across the gastric and jejunal walls of 5 dogs. After a mean of 5.5 days a 12-mm diameter YO-YO stent was placed perorally in the resulting fistula. The gastroenteric anastomosis (GEA) with stent was observed endoscopically and gastrographically at 1- to 2-month intervals. There was no morbidity and there were no significant weight changes. The GEA was widely patent at necropsy at 6 months (n = 4); partial membrane separation occurred at 5 months in the fifth dog. There was minor breakage of the stent prongs in 2 animals. Peroral creation of a stented magnetic compression GEA is safe and provides long-term patency. This technique may be potentially useful for managing gastric outlet obstruction caused by malignancy.

  11. Magnetic resonance imaging of malignant extradural tumors with acute spinal cord compression

    International Nuclear Information System (INIS)

    Lien, H.H.; Blomlie, V.; Heimdal, K.; Norwegian Radium Hospital, Oslo; Norwegian Radium Hospital, Oslo

    1990-01-01

    Thirty-six cancer patients with extradural spinal metastatic disease and acute symptoms of spinal cord compression underwent magnetic resonance (MR) imaging at 1.5 T. Cord involvement was found in all 36, 7 of whom had lesions at 2 different sites. Vertebral metastases in addition to those corresponding to the cord compressions were detected in 27 patients, and 18 of these had widespread deposits. MR displayed the extent of the tumors in the craniocaudal and lateral directions. The ability to identify multiple sites of cord and vertebral involvement and to delineate tumor accurately makes MR the examination of choice in cancer patients with suspected spinal cord compression. It obviates the need for myelography and postmyelography CT in this group of patients. (orig.)

  12. Effect of aggregates on the magnetization property of ferrofluids: A model of gaslike compression

    Directory of Open Access Journals (Sweden)

    Jian Li, Yan Huang, Xiaodong Liu, Yueqing Lin, Lang Bai and Qiang Li

    2007-01-01

    Full Text Available The effect of field-induced aggregation of particles on the magnetization property of ferrofluids is investigated. From the viewpoint of energy, magnetizability of ferrofluids is more complicated than predicted by Langevin theory because the aggregation, i.e., the transition of ferrofluid microstructure, would consume the energy of the applied magnetic field. For calculating the effect of aggregates on the magnetization of ferrofluids, a model of gaslike compression (MGC is proposed to simulate the evolution of the aggregate structure. In this model, the field-induced colloidal particles aggregating in ferrofluids is equivalent to the "gas of the particles" being compressed by the applied magnetic field. The entropy change of the ferrofluid microstructure is proportional to the particle volume fraction in field-induced aggregates phivH. On the basis of the known behavior of ferrofluid magnetization and the aggregate structure determined from the present experiments, phivH is obtained and found to depend on the aggregating characteristic parameter of ferrofluid particles γ in addition to the particle volume fraction in ferrofluids phiv and the strength of applied magnetic field H. The effect of the nonmagnetic surface layer of ferrofluid particles is also studied. The theory of MGC conforms to our experimental results better than Langevin theory.

  13. Phase unwinding for dictionary compression with multiple channel transmission in magnetic resonance fingerprinting.

    Science.gov (United States)

    Lattanzi, Riccardo; Zhang, Bei; Knoll, Florian; Assländer, Jakob; Cloos, Martijn A

    2018-06-01

    Magnetic Resonance Fingerprinting reconstructions can become computationally intractable with multiple transmit channels, if the B 1 + phases are included in the dictionary. We describe a general method that allows to omit the transmit phases. We show that this enables straightforward implementation of dictionary compression to further reduce the problem dimensionality. We merged the raw data of each RF source into a single k-space dataset, extracted the transceiver phases from the corresponding reconstructed images and used them to unwind the phase in each time frame. All phase-unwound time frames were combined in a single set before performing SVD-based compression. We conducted synthetic, phantom and in-vivo experiments to demonstrate the feasibility of SVD-based compression in the case of two-channel transmission. Unwinding the phases before SVD-based compression yielded artifact-free parameter maps. For fully sampled acquisitions, parameters were accurate with as few as 6 compressed time frames. SVD-based compression performed well in-vivo with highly under-sampled acquisitions using 16 compressed time frames, which reduced reconstruction time from 750 to 25min. Our method reduces the dimensions of the dictionary atoms and enables to implement any fingerprint compression strategy in the case of multiple transmit channels. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. The phenomenon of radiative compression in dense magnetized plasmas

    International Nuclear Information System (INIS)

    Choi, Peter

    1998-01-01

    Full text: Localized regions of extremely high energy density have long been observed in dense magnetized plasma, created in different experiments, including vacuum spark, exploding wire, Z-pinch and plasma focus. The physical dimensions of these regions are typically tens to hundreds of microns with a characteristic temperature of few hundred eV upward. A theory of self-compression under enhanced cooling, when the radiation rate exceeds the joule heating rate, was first put forward by Shearer to explain the possible responsible mechanism. More recent work suggests that a radiative collapse formalism could indeed produce eaters of ultra-high density. In the paper the experimental evidences are examined, and the applicability limit of the radiative collapse picture is discussed, when the properties of the driving generator are considered. A new set of relations connecting the driver parameters and the limiting size of the compression is proposed

  15. Evaluation of the US Army Research Laboratory Squeeze 5 Magnetic Flux Compression Generator

    Science.gov (United States)

    2016-09-01

    armature cracking, high-voltage insulation , and electrical arcing. 15. SUBJECT TERMS magnetic flux compression, field diffusion, mega ampere, high... insulation and can result in arcing that robs energy from the system. Magnetic field diffusion into the conducting portions of the system can also play a...indicates a short circuit occurred internally to the device, most likely due to damaged insulation during construction. The high-voltage switch failed to

  16. Magnetic resonance image compression using scalar-vector quantization

    Science.gov (United States)

    Mohsenian, Nader; Shahri, Homayoun

    1995-12-01

    A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. SVQ is a fixed-rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity issues of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation which is typical of coding schemes which use variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit-rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original, when displayed on a monitor. This makes our SVQ based coder an attractive compression scheme for picture archiving and communication systems (PACS), currently under consideration for an all digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired.

  17. Intense synchrotron radiation from a magnetically compressed relativistic electron layer

    International Nuclear Information System (INIS)

    Shearer, J.W.; Nowak, D.A.; Garelis, E.; Condit, W.C.

    1975-10-01

    Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/μsec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation

  18. Stent placement of gastroenteric anastomoses formed by magnetic compression.

    Science.gov (United States)

    Cope, C; Clark, T W; Ginsberg, G; Habecker, P

    1999-01-01

    To evaluate the use of stents for prolonging the patency of gastroenteric anastomoses (GEA) induced by magnet compression. Rare earth magnets were inserted perorally and serially in 15 dogs so as to mate across the gastric and jejunal walls. After magnet excretion, the resulting GEA was identified endoscopically, dilated (n = 1), and stented with bare (n = 2) or partially covered (n = 6) flared 10-mm or 12-mm Z stents. The GEA was followed at 2-4-week intervals for patency; malfunctioning shunts were irrigated, or dilated with angioplasty balloons. Gross and histologic examination of the anastomotic tissues was performed in 14 animals. Magnet pairs were excreted in 5-7 days. Of the 19 magnet placements in 15 animals, stent placement was not possible because of early GEA closure (n = 6), failure to locate (n = 2), pancreatic abscess (n = 1), and magnet perforation with peritonitis (n = 1). Estimated duration of GEA patency was 19 days after balloon dilation, 40-64 days with bare Z stents, and 58-147 days (mean, 90 days) with partially covered Z stents. Shunt function was commonly hindered by bezoars. Stent narrowing or occlusion was caused by tissue overgrowth through bare stents (n = 2), between covered stent struts and through partially detached membrane (n = 2). Serious morbidity (n = 2) was due to malpositioned magnets across the pancreas in one animal and gastric perforation in the other. One dog was euthanized because of unsuspected kidney infection. Partially covered stents significantly extend the anatomic patency rate of magnetic GEA to 7 weeks or more. Functional patency is frequently impaired by bezoars. Ongoing improvements in covered stent design should provide longer-term GEA patency.

  19. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    International Nuclear Information System (INIS)

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-01-01

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  20. Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Yunsong Liu

    Full Text Available Compressed sensing has shown to be promising to accelerate magnetic resonance imaging. In this new technology, magnetic resonance images are usually reconstructed by enforcing its sparsity in sparse image reconstruction models, including both synthesis and analysis models. The synthesis model assumes that an image is a sparse combination of atom signals while the analysis model assumes that an image is sparse after the application of an analysis operator. Balanced model is a new sparse model that bridges analysis and synthesis models by introducing a penalty term on the distance of frame coefficients to the range of the analysis operator. In this paper, we study the performance of the balanced model in tight frame based compressed sensing magnetic resonance imaging and propose a new efficient numerical algorithm to solve the optimization problem. By tuning the balancing parameter, the new model achieves solutions of three models. It is found that the balanced model has a comparable performance with the analysis model. Besides, both of them achieve better results than the synthesis model no matter what value the balancing parameter is. Experiment shows that our proposed numerical algorithm constrained split augmented Lagrangian shrinkage algorithm for balanced model (C-SALSA-B converges faster than previously proposed algorithms accelerated proximal algorithm (APG and alternating directional method of multipliers for balanced model (ADMM-B.

  1. SVD compression for magnetic resonance fingerprinting in the time domain.

    Science.gov (United States)

    McGivney, Debra F; Pierre, Eric; Ma, Dan; Jiang, Yun; Saybasili, Haris; Gulani, Vikas; Griswold, Mark A

    2014-12-01

    Magnetic resonance (MR) fingerprinting is a technique for acquiring and processing MR data that simultaneously provides quantitative maps of different tissue parameters through a pattern recognition algorithm. A predefined dictionary models the possible signal evolutions simulated using the Bloch equations with different combinations of various MR parameters and pattern recognition is completed by computing the inner product between the observed signal and each of the predicted signals within the dictionary. Though this matching algorithm has been shown to accurately predict the MR parameters of interest, one desires a more efficient method to obtain the quantitative images. We propose to compress the dictionary using the singular value decomposition, which will provide a low-rank approximation. By compressing the size of the dictionary in the time domain, we are able to speed up the pattern recognition algorithm, by a factor of between 3.4-4.8, without sacrificing the high signal-to-noise ratio of the original scheme presented previously.

  2. Magnetic resonance imaging of vascular compression in trigeminal neuralgia and hemifacial spasms

    International Nuclear Information System (INIS)

    Nagaseki, Yoshishige; Horikoshi, Tohru; Omata, Tomohiro; Sugita, Masao; Nukui, Hideaki; Sakamoto, Hajime; Kumagai, Hiroshi; Sasaki, Hideo; Tsuji, Reizou.

    1991-01-01

    We show how neurosurgical planning can benefit from the better visualization of the precise vascular compression of the nerve provided by the oblique-sagittal and gradient-echo method (OS-GR image) using magnetic resonance images (MRI). The scans of 3 patients with trigeminal neuralgia (TN) and of 15 with hemifacial spasm (HFS) were analyzed for the presence and appearance of the vascular compression of the nerves. Imaging sequences consisted of an OS-GR image (TR/TE: 200/20, 3-mm-thick slice) cut along each nerve shown by the axial view, which was scanned at the angle of 105 degrees taken between the dorsal line of the brain stem and the line corresponding to the pontomedullary junction. In the OS-GR images of the TN's, the vascular compressions of the root entry zone (REZ) of the trigeminal nerve were well visualized as high-intensity lines in the 2 cases whose vessels were confirmed intraoperatively. In the other case, with atypical facial pain, vascular compression was confirmed at the rostral distal site on the fifth nerve, apart from the REZ. In the 15 cases of HFS, twelve OS-GR images (80%) demonstrated vascular compressions at the REZ of the facial nerves from the direction of the caudoventral side. During the surgery for these 12 cases, in 11 cases (excepting the 1 case whose facial nerve was not compressed by any vessels), vascular compressions were confirmed corresponding to the findings of the OS-GR images. Among the 10 OS-GR images on the non-affected side, two false-positive findings were visualized. It is concluded that OS-GR images obtained by means of MRI may serve as a useful planning aid prior to microvascular decompression for cases of TN and HFS. (author)

  3. Use of magnetic compression to support turbine engine rotors

    Science.gov (United States)

    Pomfret, Chris J.

    1994-01-01

    Ever since the advent of gas turbine engines, their rotating disks have been designed with sufficient size and weight to withstand the centrifugal forces generated when the engine is operating. Unfortunately, this requirement has always been a life and performance limiting feature of gas turbine engines and, as manufacturers strive to meet operator demands for more performance without increasing weight, the need for innovative technology has become more important. This has prompted engineers to consider a fundamental and radical breakaway from the traditional design of turbine and compressor disks which have been in use since the first jet engine was flown 50 years ago. Magnetic compression aims to counteract, by direct opposition rather than restraint, the centrifugal forces generated within the engine. A magnetic coupling is created between a rotating disk and a stationary superconducting coil to create a massive inwardly-directed magnetic force. With the centrifugal forces opposed by an equal and opposite magnetic force, the large heavy disks could be dispensed with and replaced with a torque tube to hold the blades. The proof of this concept has been demonstrated and the thermal management of such a system studied in detail; this aspect, especially in the hot end of a gas turbine engine, remains a stiff but not impossible challenge. The potential payoffs in both military and commercial aviation and in the power generation industry are sufficient to warrant further serious studies for its application and optimization.

  4. Compressed magnetic flux amplifier with capacitive load

    International Nuclear Information System (INIS)

    Stuetzer, O.M.

    1980-03-01

    A first-order analysis is presented for a compressed magnetic flux (CMF) current amplifier working into a load with a capacitive component. Since the purpose of the investigation was to gain a general understanding of the arrangement, a number of approximations and limitations were accepted. The inductance of the transducer varies with time; the inductance/resistance/capacitance (LRC) circuit therefore is parametric and solutions are different for the stable regime (high C), the oscillation regime (low C), and the transition case. Solutions and performance depend strongly on circuit boundary conditions, i.e., energization of the circuit by either an injected current or by an applied capacitor charge. The behavior of current and energy amplification for the various cases are discussed in detail. A number of experiments with small CMF devices showed that the first-order theory presented predicts transducer performance well in the linear regime

  5. The Roles of Fluid Compression and Shear in Electron Energization during Magnetic Reconnection

    Science.gov (United States)

    Li, Xiaocan; Guo, Fan; Li, Hui; Birn, Joachim

    2018-03-01

    Particle acceleration in space and astrophysical reconnection sites is an important unsolved problem in studies of magnetic reconnection. Earlier kinetic simulations have identified several acceleration mechanisms that are associated with particle drift motions. Here, we show that, for sufficiently large systems, the energization processes due to particle drift motions can be described as fluid compression and shear, and that the shear energization is proportional to the pressure anisotropy of energetic particles. By analyzing results from fully kinetic simulations, we show that the compression energization dominates the acceleration of high-energy particles in reconnection with a weak guide field, and the compression and shear effects are comparable when the guide field is 50% of the reconnecting component. Spatial distributions of those energization effects reveal that reconnection exhausts, contracting islands, and island-merging regions are the three most important regions for compression and shear acceleration. This study connects particle energization by particle guiding-center drift motions with that due to background fluid motions, as in the energetic particle transport theory. It provides foundations for building particle transport models for large-scale reconnection acceleration such as those in solar flares.

  6. Magnetic field effects on ultrafast lattice compression dynamics of Si(111) crystal when excited by linearly-polarized femtosecond laser pulses

    Science.gov (United States)

    Hatanaka, Koji; Odaka, Hideho; Ono, Kimitoshi; Fukumura, Hiroshi

    2007-03-01

    Time-resolved X-ray diffraction measurements of Si (111) single crystal are performed when excited by linearly-polarized femtosecond laser pulses (780 nm, 260 fs, negatively-chirped, 1 kHz) under a magnetic field (0.47 T). Laser fluence on the sample surface is 40 mJ/cm^2, which is enough lower than the ablation threshold at 200 mJ/cm^2. Probing X-ray pulses of iron characteristic X-ray lines at 0.193604 and 0.193998 nm are generated by focusing femtosecond laser pulses onto audio-cassette tapes in air. Linearly-polarized femtosecond laser pulse irradiation onto Si(111) crystal surface induces transient lattice compression in the picosecond time range, which is confirmed by transient angle shift of X-ray diffraction to higher angles. Little difference of compression dynamics is observed when the laser polarization is changed from p to s-pol. without a magnetic field. On the other hand, under a magnetic field, the lattice compression dynamics changes when the laser is p-polarized which is vertical to the magnetic field vector. These results may be assigned to photo-carrier formation and energy-band distortion.

  7. Implementing and diagnosing magnetic flux compression on the Z pulsed power accelerator

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Ryan D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bliss, David E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gomez, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Martin, Matthew R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jennings, Christopher Ashley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Slutz, Stephen A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rovang, Dean C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knapp, Patrick F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schmit, Paul F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Awe, Thomas James [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hess, M. H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lemke, Raymond W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Dolan, D. H. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lamppa, Derek C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jobe, Marc Ronald Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fang, Lu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hahn, Kelly D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chandler, Gordon A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cooper, Gary Wayne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ruiz, Carlos L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Maurer, A. J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robertson, Grafton Kincannon [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cuneo, Michael E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sinars, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tomlinson, Kurt [General Atomics, San Diego, CA (United States); Smith, Gary [General Atomics, San Diego, CA (United States); Paguio, Reny [General Atomics, San Diego, CA (United States); Intrator, Tom [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Weber, Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Greenly, John [Cornell Univ., Ithaca, NY (United States)

    2015-11-01

    We report on the progress made to date for a Laboratory Directed Research and Development (LDRD) project aimed at diagnosing magnetic flux compression on the Z pulsed-power accelerator (0-20 MA in 100 ns). Each experiment consisted of an initially solid Be or Al liner (cylindrical tube), which was imploded using the Z accelerator's drive current (0-20 MA in 100 ns). The imploding liner compresses a 10-T axial seed field, B z ( 0 ) , supplied by an independently driven Helmholtz coil pair. Assuming perfect flux conservation, the axial field amplification should be well described by B z ( t ) = B z ( 0 ) x [ R ( 0 ) / R ( t )] 2 , where R is the liner's inner surface radius. With perfect flux conservation, B z ( t ) and dB z / dt values exceeding 10 4 T and 10 12 T/s, respectively, are expected. These large values, the diminishing liner volume, and the harsh environment on Z, make it particularly challenging to measure these fields. We report on our latest efforts to do so using three primary techniques: (1) micro B-dot probes to measure the fringe fields associated with flux compression, (2) streaked visible Zeeman absorption spectroscopy, and (3) fiber-based Faraday rotation. We also mention two new techniques that make use of the neutron diagnostics suite on Z. These techniques were not developed under this LDRD, but they could influence how we prioritize our efforts to diagnose magnetic flux compression on Z in the future. The first technique is based on the yield ratio of secondary DT to primary DD reactions. The second technique makes use of the secondary DT neutron time-of-flight energy spectra. Both of these techniques have been used successfully to infer the degree of magnetization at stagnation in fully integrated Magnetized Liner Inertial Fusion (MagLIF) experiments on Z [P. F. Schmit et al. , Phys. Rev. Lett. 113 , 155004 (2014); P. F. Knapp et al. , Phys. Plasmas, 22 , 056312 (2015)]. Finally, we present some recent developments for designing

  8. Densimetry in compressed fluids by combining hydrostatic weighing and magnetic levitation

    International Nuclear Information System (INIS)

    Masui, R.; Haynes, W.M.; Chang, R.F.; Davis, H.A.; Sengers, J.M.H.L.

    1984-01-01

    A magnetic suspension densimeter is described that has been built for measuring the density of compressed liquids at pressures up to 15 MPa in the temperature range 20 0 --200 0 C with an uncertainty of 0.1%. The densimeter combines the principle of magnetic levitation of a buoy with that of liquid density determination by hydrostatic weighing. To accomplish this, the support coil is suspended from an electronic balance, and the balance readings are recorded (1) with the buoy at rest, and (2) with the buoy in magnetic suspension. Details are given of the construction of the cell, coil, buoy, and thermostat. The procedure is described by which cell and buoy are aligned so that the suspended buoy does not touch the cell wall. Test data on the densities of seven different liquids were obtained at room temperature. They agree with reliable literature values to within 0.1%. In a separate experiment, the bulk thermal expansion coefficient of the buoy material was determined. This experiment and its results are also given here

  9. Magnetic resonance imaging validation of pituitary gland compression and distortion by typical sellar pathology.

    Science.gov (United States)

    Cho, Charles H; Barkhoudarian, Garni; Hsu, Liangge; Bi, Wenya Linda; Zamani, Amir A; Laws, Edward R

    2013-12-01

    Identification of the normal pituitary gland is an important component of presurgical planning, defining many aspects of the surgical approach and facilitating normal gland preservation. Magnetic resonance imaging is a proven imaging modality for optimal soft-tissue contrast discrimination in the brain. This study is designed to validate the accuracy of localization of the normal pituitary gland with MRI in a cohort of surgical patients with pituitary mass lesions, and to evaluate for correlation between presurgical pituitary hormone values and pituitary gland characteristics on neuroimaging. Fifty-eight consecutive patients with pituitary mass lesions were included in the study. Anterior pituitary hormone levels were measured preoperatively in all patients. Video recordings from the endoscopic or microscopic surgical procedures were available for evaluation in 47 cases. Intraoperative identification of the normal gland was possible in 43 of 58 cases. Retrospective MR images were reviewed in a blinded fashion for the 43 cases, emphasizing the position of the normal gland and the extent of compression and displacement by the lesion. There was excellent agreement between imaging and surgery in 84% of the cases for normal gland localization, and in 70% for compression or noncompression of the normal gland. There was no consistent correlation between preoperative pituitary dysfunction and pituitary gland localization on imaging, gland identification during surgery, or pituitary gland compression. Magnetic resonance imaging proved to be accurate in identifying the normal gland in patients with pituitary mass lesions, and was useful for preoperative surgical planning.

  10. Longitudinal propagation of nonlinear surface Alfven waves at a magnetic interface in a compressible atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ruderman, M S

    1988-08-01

    Nonlinear Alfven surface wave propagation at a magnetic interface in a compressible fluid is considered. It is supposed that the magnetic field directions at both sides of the interface and the direction of wave propagation coincide. The equation governing time-evolution of nonlinear small-amplitude waves is derived by the method of multiscale expansions. This equation is similar to the equation for nonlinear Alfven surface waves in an incompressible fluid derived previously. The numerical solution of the equation shows that a sinusoidal disturbance overturns, i.e. infinite gradients arise.

  11. Computational simulation of breast compression based on segmented breast and fibroglandular tissues on magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Shih, Tzu-Ching [Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan (China); Chen, Jeon-Hor; Nie Ke; Lin Muqing; Chang, Daniel; Nalcioglu, Orhan; Su, Min-Ying [Tu and Yuen Center for Functional Onco-Imaging and Radiological Sciences, University of California, Irvine, CA 92697 (United States); Liu Dongxu; Sun Lizhi, E-mail: shih@mail.cmu.edu.t [Department of Civil and Environmental Engineering, University of California, Irvine, CA 92697 (United States)

    2010-07-21

    This study presents a finite element-based computational model to simulate the three-dimensional deformation of a breast and fibroglandular tissues under compression. The simulation was based on 3D MR images of the breast, and craniocaudal and mediolateral oblique compression, as used in mammography, was applied. The geometry of the whole breast and the segmented fibroglandular tissues within the breast were reconstructed using triangular meshes by using the Avizo (registered) 6.0 software package. Due to the large deformation in breast compression, a finite element model was used to simulate the nonlinear elastic tissue deformation under compression, using the MSC.Marc (registered) software package. The model was tested in four cases. The results showed a higher displacement along the compression direction compared to the other two directions. The compressed breast thickness in these four cases at a compression ratio of 60% was in the range of 5-7 cm, which is a typical range of thickness in mammography. The projection of the fibroglandular tissue mesh at a compression ratio of 60% was compared to the corresponding mammograms of two women, and they demonstrated spatially matched distributions. However, since the compression was based on magnetic resonance imaging (MRI), which has much coarser spatial resolution than the in-plane resolution of mammography, this method is unlikely to generate a synthetic mammogram close to the clinical quality. Whether this model may be used to understand the technical factors that may impact the variations in breast density needs further investigation. Since this method can be applied to simulate compression of the breast at different views and different compression levels, another possible application is to provide a tool for comparing breast images acquired using different imaging modalities--such as MRI, mammography, whole breast ultrasound and molecular imaging--that are performed using different body positions and under

  12. Compression experiments on the TOSKA tokamak

    International Nuclear Information System (INIS)

    Cima, G.; McGuire, K.M.; Robinson, D.C.; Wootton, A.J.

    1980-10-01

    Results from minor radius compression experiments on a tokamak plasma in TOSCA are reported. The compression is achieved by increasing the toroidal field up to twice its initial value in 200μs. Measurements show that particles and magnetic flux are conserved. When the initial energy confinement time is comparable with the compression time, energy gains are greater than for an adiabatic change of state. The total beta value increases. Central beta values approximately 3% are measured when a small major radius compression is superimposed on a minor radius compression. Magnetic field fluctuations are affected: both the amplitude and period decrease. Starting from low energy confinement times, approximately 200μs, increases in confinement times up to approximately 1 ms are measured. The increase in plasma energy results from a large reduction in the power losses during the compression. When the initial energy confinement time is much longer than the compression time, the parameter changes are those expected for an adiabatic change of state. (author)

  13. Microbunching and RF Compression

    International Nuclear Information System (INIS)

    Venturini, M.; Migliorati, M.; Ronsivalle, C.; Ferrario, M.; Vaccarezza, C.

    2010-01-01

    Velocity bunching (or RF compression) represents a promising technique complementary to magnetic compression to achieve the high peak current required in the linac drivers for FELs. Here we report on recent progress aimed at characterizing the RF compression from the point of view of the microbunching instability. We emphasize the development of a linear theory for the gain function of the instability and its validation against macroparticle simulations that represents a useful tool in the evaluation of the compression schemes for FEL sources.

  14. ECF2: A pulsed power generator based on magnetic flux compression for K-shell radiation production

    International Nuclear Information System (INIS)

    L'Eplattenier, P.; Lassalle, F.; Mangeant, C.; Hamann, F.; Bavay, M.; Bayol, F.; Huet, D.; Morell, A.; Monjaux, P.; Avrillaud, G.; Lalle, B.

    2002-01-01

    The 3 MJ energy stored ECF2 generator is developed at Centre d'Etudes de Gramat, France, for K-shell radiation production. This generator is based on microsecond LTD stages as primary generators, and on the magnetic flux compression scheme for power amplification from the microsecond to the 100ns regime. This paper presents a general overview of the ECF2 generator. The flux compression stage, a key component, will be studied in details. We will present its advantages and drawbacks. We will then present the first experimental and numerical results which show the improvements that have already been made on this scheme

  15. Evaluation of heterogeneous metabolic profile in an orthotopic human glioblastoma xenograft model using compressed sensing hyperpolarized 3D 13C magnetic resonance spectroscopic imaging.

    Science.gov (United States)

    Park, Ilwoo; Hu, Simon; Bok, Robert; Ozawa, Tomoko; Ito, Motokazu; Mukherjee, Joydeep; Phillips, Joanna J; James, C David; Pieper, Russell O; Ronen, Sabrina M; Vigneron, Daniel B; Nelson, Sarah J

    2013-07-01

    High resolution compressed sensing hyperpolarized (13)C magnetic resonance spectroscopic imaging was applied in orthotopic human glioblastoma xenografts for quantitative assessment of spatial variations in (13)C metabolic profiles and comparison with histopathology. A new compressed sensing sampling design with a factor of 3.72 acceleration was implemented to enable a factor of 4 increase in spatial resolution. Compressed sensing 3D (13)C magnetic resonance spectroscopic imaging data were acquired from a phantom and 10 tumor-bearing rats following injection of hyperpolarized [1-(13)C]-pyruvate using a 3T scanner. The (13)C metabolic profiles were compared with hematoxylin and eosin staining and carbonic anhydrase 9 staining. The high-resolution compressed sensing (13)C magnetic resonance spectroscopic imaging data enabled the differentiation of distinct (13)C metabolite patterns within abnormal tissues with high specificity in similar scan times compared to the fully sampled method. The results from pathology confirmed the different characteristics of (13)C metabolic profiles between viable, non-necrotic, nonhypoxic tumor, and necrotic, hypoxic tissue. Copyright © 2012 Wiley Periodicals, Inc.

  16. Experimental and theoretical study of helical explosive electrical current generators with magnetic field compression

    International Nuclear Information System (INIS)

    Antoni, Bernard; Nazet, Christian.

    1975-07-01

    A generator of electrical energy in which magnetic field compression is achieved by a solid explosive is described. The magnetic flux losses have been calculated for generators of various configurations by the skin depth concept. Calculations take the Joule heating of conductors into account. In helical generators the magnetic flux losses are higher than those calculated by considering diffusion only. Additional losses approximately as important as diffusion losses have already been observed elsewhere on similar devices. Detailed calculations of the motion of the explosively driven inner conductor show that losses come from the jumps encountered by sliding contact moving along the helix. The jumps are caused by little geometrical defects and the consequence on losses is strongly dependent on current intensity. The jumps decrease when the pitch of helix increases. The jumps are detrimental to the efficient use of the explosive energy. With helical generators only 5% of the energy is transferred into magnetic energy [fr

  17. Generation and compression of a target plasma for magnetized target fusion

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.; Lindemuth, I.R.; Sheehey, P.T.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Magnetized target fusion (MTF) is intermediate between the two very different approaches to fusion: inertial and magnetic confinement fusion (ICF and MCF). Results from collaboration with a Russian MTF team on their MAGO experiments suggest they have a target plasma suitable for compression to provide an MTF proof of principle. This LDRD project had tow main objectives: first, to provide a computational basis for experimental investigation of an alternative MTF plasma, and second to explore the physics and computational needs for a continuing program. Secondary objectives included analytic and computational support for MTF experiments. The first objective was fulfilled. The second main objective has several facets to be described in the body of this report. Finally, the authors have developed tools for analyzing data collected on the MAGO and LDRD experiments, and have tested them on limited MAGO data

  18. Explosive magnetic flux compression plate generators as fast high-energy power sources

    International Nuclear Information System (INIS)

    Caird, R.S.; Erickson, D.J.; Garn, W.B.; Fowler, C.M.

    1976-01-01

    A type of explosive driven generator, called a plate generator, is described. It is capable of delivering electrical energies in the MJ range at TW power levels. Plane wave detonated explosive systems accelerate two large-area metal plates to high opposing velocities. An initial magnetic field is compressed and the flux transferred to an external load. The characteristics of the plate generator are described and compared with those of other types of generators. Methods of load matching are discussed. The results of several high-power experiments are also given

  19. Results of subscale MTF compression experiments

    Science.gov (United States)

    Howard, Stephen; Mossman, A.; Donaldson, M.; Fusion Team, General

    2016-10-01

    In magnetized target fusion (MTF) a magnetized plasma torus is compressed in a time shorter than its own energy confinement time, thereby heating to fusion conditions. Understanding plasma behavior and scaling laws is needed to advance toward a reactor-scale demonstration. General Fusion is conducting a sequence of subscale experiments of compact toroid (CT) plasmas being compressed by chemically driven implosion of an aluminum liner, providing data on several key questions. CT plasmas are formed by a coaxial Marshall gun, with magnetic fields supported by internal plasma currents and eddy currents in the wall. Configurations that have been compressed so far include decaying and sustained spheromaks and an ST that is formed into a pre-existing toroidal field. Diagnostics measure B, ne, visible and x-ray emission, Ti and Te. Before compression the CT has an energy of 10kJ magnetic, 1 kJ thermal, with Te of 100 - 200 eV, ne 5x1020 m-3. Plasma was stable during a compression factor R0/R >3 on best shots. A reactor scale demonstration would require 10x higher initial B and ne but similar Te. Liner improvements have minimized ripple, tearing and ejection of micro-debris. Plasma facing surfaces have included plasma-sprayed tungsten, bare Cu and Al, and gettering with Ti and Li.

  20. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John [MSNW LLC, Redmond, WA (United States)

    2015-02-01

    To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuum and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power

  1. Effects of JPEG data compression on magnetic resonance imaging evaluation of small vessels ischemic lesions of the brain

    International Nuclear Information System (INIS)

    Kuriki, Paulo Eduardo de Aguiar; Abdala, Nitamar; Nogueira, Roberto Gomes; Carrete Junior, Henrique; Szejnfeld, Jacob

    2006-01-01

    Objective: to establish the maximum achievable JPEG compression ratio without affecting quantitative and qualitative magnetic resonance imaging analysis of ischemic lesion in small vessels of the brain. Material and method: fifteen DICOM images were converted to JPEG with a compression ratio of 1:10 to 1:60 and were assessed together with the original images by three neuro radiologists. The number, morphology and signal intensity of the lesions were analyzed. Results: lesions were properly identified up to a 1:30 ratio. More lesions were identified with a 1:10 ratio then in the original images. Morphology and edges were properly evaluated up toa 1:40 ratio. Compression did not affect signal. Conclusion: small lesions were identified ( < 2 mm ) and in all compression ratios the JPEG algorithm generated image noise that misled observers to identify more lesions in JPEG images then in DICOM images, thus generating false-positive results.(author)

  2. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Science.gov (United States)

    Maeda, Yoshitaka; Urata, Shinya; Nakai, Hideo; Takeuchi, Yuuya; Yun, Kyyoul; Yanase, Shunji; Okazaki, Yasuo

    2017-05-01

    In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D) magnetic properties (properties under the arbitrary alternating and the rotating flux conditions) of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  3. Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe–3%Si steel

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Schäfer, R.

    2012-01-01

    Roč. 45, č. 13 (2012), "135001-1"-"135001-11" ISSN 0022-3727 Grant - others:GA AV ČR(CZ) M100100906 Institutional research plan: CEZ:AV0Z10100520 Keywords : hysteresis curve * magnetic domains * compressive stress * goss steel * effective field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.528, year: 2012

  4. Repair of esophageal atresia with proximal fistula using endoscopic magnetic compression anastomosis (magnamosis) after staged lengthening.

    Science.gov (United States)

    Dorman, Robert M; Vali, Kaveh; Harmon, Carroll M; Zaritzky, Mario; Bass, Kathryn D

    2016-05-01

    We describe the treatment of a patient with long-gap esophageal atresia with an upper pouch fistula, mircogastria and minimal distal esophageal remnant. After 4.5 months of feeding via gastrostomy, a proximal fistula was identified by bronchoscopy and a thoracoscopic modified Foker procedure was performed reducing the gap from approximately 7-5 cm over 2 weeks of traction. A second stage to ligate the fistula and suture approximate the proximal and distal esophagus resulted in a gap of 1.5 cm. IRB and FDA approval was then obtained for endoscopic placement of 10-French catheter mounted magnets in the proximal and distal pouches promoting a magnetic compression anastomosis (magnamosis). Magnetic coupling occurred at 4 days and after magnet removal at 13 days an esophagram demonstrated a 10 French channel without leak. Serial endoscopic balloon dilation has allowed drainage of swallowed secretions as the baby learns bottling behavior at home.

  5. Compressed Gas Safety for Experimental Fusion Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lee C. Cadwallader

    2004-09-01

    Experimental fusion facilities present a variety of hazards to the operators and staff. There are unique or specialized hazards, including magnetic fields, cryogens, radio frequency emissions, and vacuum reservoirs. There are also more general industrial hazards, such as a wide variety of electrical power, pressurized air, and cooling water systems in use, there are crane and hoist loads, working at height, and handling compressed gas cylinders. This paper outlines the projectile hazard assoicated with compressed gas cylinders and mthods of treatment to provide for compressed gas safety. This information should be of interest to personnel at both magnetic and inertial fusion experiments.

  6. Magnetic compression anastomosis for enteroenterostomy under peritonitis conditions in dogs.

    Science.gov (United States)

    Zhang, Hongke; Tan, Kai; Fan, Chao; Du, Jingwei; Li, Jiangbin; Yang, Tao; Lv, Yi; Du, Xilin

    2017-02-01

    The risk of complications and mortality are high after enteroenterostomy in severe peritonitic conditions. Magnetic compression anastomosis (MCA) is a sutureless technique of high efficacy and safety. The purpose of this study was to compare the efficacy of MCA for enteroenterostomy with stapled and hand-sewn techniques under peritonitic conditions. The peritonitic conditions were created by puncturing the colon with a circular blade in 27 mongrel dogs. Eight hours later, the peritoneal cavity was washed with warm, sterilized normal saline solution. The animals were then randomly divided into three groups and underwent colonic anastomosis with MCA, stapled, or hand-sewn techniques, respectively. Animals were euthanized at 1, 2, and 4 w after the operation; anastomoses were compared on the basis of gross appearance and histology. All magnetic devices formed patent anastomoses without a leak. However, one stapled anastomosis and three hand-sewn anastomoses resulted in leaks. The anastomosis time was significantly less in the MCA group than that of the other two groups (P anastomoses for MCA was smoother than that of the other two groups. MCA is a feasible, safe, and effective alternative for enteroenterostomy under peritonitic conditions in the canine model. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings

    International Nuclear Information System (INIS)

    Koo, J H; Khan, F; Jang, D D; Jung, H J

    2009-01-01

    The primary goal of this paper is to characterize and model the compression properties of Magneto-Rheological Elastomers (MREs). MRE samples were fabricated by curing a two component elastomer resin with 30% content of 10 μm sized iron particles by volume. In order to vary the magnetic field during compressive testing, a test fixture was designed and fabricated in which two permanent magnets could be variably positioned on either side of the specimen. By changing the distance between the magnets, the fixture allowed for varying the magnetic field that passes uniformly through the sample. Using this test setup and a dynamic test frame, a series of compression tests of MRE samples was performed by varying the magnetic field and frequency of loading. The results show the MR effect (percent increase in the materials 'stiffness') increases as the magnetic field increases and loading frequency increases within the range of the magnetic field and input frequency considered in this study. Furthermore, a phenomenological model was developed to capture the dynamic behaviours of the MREs under compression loadings.

  8. Development of the apparatus for measuring magnetic properties of electrical steel sheets in arbitrary directions under compressive stress normal to their surface

    Directory of Open Access Journals (Sweden)

    Yoshitaka Maeda

    2017-05-01

    Full Text Available In designing motors, one must grasp the magnetic properties of electrical steel sheets considering actual conditions in motors. Especially important is grasping the stress dependence of magnetic power loss. This paper describes a newly developed apparatus to measure two-dimensional (2-D magnetic properties (properties under the arbitrary alternating and the rotating flux conditions of electrical steel sheets under compressive stress normal to the sheet surface. The apparatus has a 2-D magnetic excitation circuit to generate magnetic fields in arbitrary directions in the evaluation area. It also has a pressing unit to apply compressive stress normal to the sheet surface. During measurement, it is important to apply uniform stress throughout the evaluation area. Therefore, we have developed a new flux density sensor using needle probe method. It is composed of thin copper foils sputtered on electrical steel sheets. By using this sensor, the stress can be applied to the surface of the specimen without influence of this sensor. This paper described the details of newly developed apparatus with this sensor, and measurement results of iron loss by using are shown.

  9. Compressive sensing in medical imaging.

    Science.gov (United States)

    Graff, Christian G; Sidky, Emil Y

    2015-03-10

    The promise of compressive sensing, exploitation of compressibility to achieve high quality image reconstructions with less data, has attracted a great deal of attention in the medical imaging community. At the Compressed Sensing Incubator meeting held in April 2014 at OSA Headquarters in Washington, DC, presentations were given summarizing some of the research efforts ongoing in compressive sensing for x-ray computed tomography and magnetic resonance imaging systems. This article provides an expanded version of these presentations. Sparsity-exploiting reconstruction algorithms that have gained popularity in the medical imaging community are studied, and examples of clinical applications that could benefit from compressive sensing ideas are provided. The current and potential future impact of compressive sensing on the medical imaging field is discussed.

  10. Compression Molding and Novel Sintering Treatments for Alnico Type-8 Permanent Magnets in Near-Final Shape with Preferred Orientation

    Science.gov (United States)

    Kassen, Aaron G.; White, Emma M. H.; Tang, Wei; Hu, Liangfa; Palasyuk, Andriy; Zhou, Lin; Anderson, Iver E.

    2017-09-01

    Economic uncertainty in the rare earth (RE) permanent magnet marketplace, as well as in an expanding electric drive vehicle market that favors permanent magnet alternating current synchronous drive motors, motivated renewed research in RE-free permanent magnets like "alnico," an Al-Ni-Co-Fe alloy. Thus, high-pressure, gas-atomized isotropic type-8H pre-alloyed alnico powder was compression molded with a clean burn- out binder to near-final shape and sintered to density >99% of cast alnico 8 (full density of 7.3 g/cm3). To produce aligned sintered alnico magnets for improved energy product and magnetic remanence, uniaxial stress was attempted to promote controlled grain growth, avoiding directional solidification that provides alignment in alnico 9. Successful development of solid-state powder processing may enable anisotropically aligned alnico magnets with enhanced energy density to be mass-produced.

  11. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Peterkin, R.E. Jr.; Baca, G.P.; Beason, J.D.; Bell, D.E.; Dearborn, M.E.; Dietz, D.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Hackett, K.E.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Sovinec, C.R.; Turchi, P.J.; Bird, G.; Coffey, S.K.; Seiler, S.W.; Chen, Y.G.; Gale, D.; Graham, J.D.; Scott, M.; Sommars, W.

    1993-01-01

    Research on forming, compressing, and accelerating milligram-range compact toroids using a meter diameter, two-stage, puffed gas, magnetic field embedded coaxial plasma gun is described. The compact toroids that are studied are similar to spheromaks, but they are threaded by an inner conductor. This research effort, named MARAUDER (Magnetically Accelerated Ring to Achieve Ultra-high Directed Energy and Radiation), is not a magnetic confinement fusion program like most spheromak efforts. Rather, the ultimate goal of the present program is to compress toroids to high mass density and magnetic field intensity, and to accelerate the toroids to high speed. There are a variety of applications for compressed, accelerated toroids including fast opening switches, x-radiation production, radio frequency (rf) compression, as well as charge-neutral ion beam and inertial confinement fusion studies. Experiments performed to date to form and accelerate toroids have been diagnosed with magnetic probe arrays, laser interferometry, time and space resolved optical spectroscopy, and fast photography. Parts of the experiment have been designed by, and experimental results are interpreted with, the help of two-dimensional (2-D), time-dependent magnetohydrodynamic (MHD) numerical simulations. When not driven by a second discharge, the toroids relax to a Woltjer--Taylor equilibrium state that compares favorably to the results of 2-D equilibrium calculations and to 2-D time-dependent MHD simulations. Current, voltage, and magnetic probe data from toroids that are driven by an acceleration discharge are compared to 2-D MHD and to circuit solver/slug model predictions. Results suggest that compact toroids are formed in 7--15 μsec, and can be accelerated intact with material species the same as injected gas species and entrained mass ≥1/2 the injected mass

  12. Impact of compressibility and a guide field on Fermi acceleration during magnetic island coalescence

    Science.gov (United States)

    Montag, Peter; Egedal, Jan; Lichko, Emily; Wetherton, Blake

    2017-10-01

    Previous work has shown that Fermi acceleration can be an effective heating mechanism during magnetic island coalescence, where electrons may undergo repeated reflections as the magnetic field lines contract. This energization has the potential to account for the power-law distributions of particle energy inferred from observations of solar flares. Here, we develop a generalized framework for the analysis of Fermi acceleration that can incorporate the effects of compressibility and non-uniformity along field lines, which have commonly been neglected in previous treatments of the problem. Applying this framework to the simplified case of the uniform flux tube allows us to find both the power-law scaling of the distribution function and the rate at which the power-law behavior develops. We find that a guide magnetic field of order unity effectively suppresses the development of power-law distributions. The work was supported by NASA Grant No. NNX14AC68G, NSF GEM Grant No. 1405166, NSF Award 1404166, and NASA Award NNX15AJ73G.

  13. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings

    International Nuclear Information System (INIS)

    Koo, Jeong-Hoi; Khan, Fazeel; Jang, Dong-Doo; Jung, Hyung-Jo

    2010-01-01

    The primary goal of the research reported in this paper has been to characterize and model the compression properties of magneto-rheological elastomers (MREs). MRE samples were fabricated by curing a two-component elastomer resin with 30% content of 10 µm sized iron particles by volume. In order to vary the magnetic field during compressive testing, a test fixture was designed and fabricated in which two permanent magnets could be variably positioned on either side of the specimen. Changing the distance between the magnets of the fixture allowed the strength of the magnetic field passing uniformly through the sample to be varied. Using this test setup and a dynamic test frame, a series of compression tests of MRE samples were performed, by varying the magnetic field and the frequency of loading. The results show that the MR effect (per cent increase in the material 'stiffness') increases as the magnetic field increases and the loading frequency increases within the range of the magnetic field and input frequency considered in this study. Furthermore, a phenomenological model was developed to capture the dynamic behaviors of the MREs under compression loadings. (technical note)

  14. Compressive strength and magnetic properties of calcium silicate-zirconia-iron (III) oxide composite cements

    Science.gov (United States)

    Ridzwan, Hendrie Johann Muhamad; Shamsudin, Roslinda; Ismail, Hamisah; Yusof, Mohd Reusmaazran; Hamid, Muhammad Azmi Abdul; Awang, Rozidawati Binti

    2018-04-01

    In this study, ZrO2 microparticles and γ-Fe2O3 nanoparticles have been added into calcium silicate based cements. The purpose of this experiment was to investigate the compressive strength and magnetic properties of the prepared composite cement. Calcium silicate (CAS) powder was prepared by hydrothermal method. SiO2 and CaO obtained from rice husk ash and limestone respectively were autoclaved at 135 °C for 8 h and sintered at 950°C to obtain CAS powder. SiO2:CaO ratio was set at 45:55. CAS/ZrO2 sample were prepared with varying ZrO2 microparticles concentrations by 0-40 wt. %. Compressive strength value of CAS/ZrO2 cements range from 1.44 to 2.44 MPa. CAS/ZrO2/γ-Fe2O3 sample with 40 wt. % ZrO2 were prepared with varying γ-Fe2O3 nanoparticles concentrations (1-5 wt. %). The additions of γ-Fe2O3 nanoparticles showed up to twofold increase in the compressive strength of the cement. X-Ray diffraction (XRD) results confirm the formation of mixed phases in the produced composite cements. Vibrating sample magnetometer (VSM) analysis revealed that the ferromagnetic behaviour has been observed in CAS/ZrO2/γ-Fe2O3 composite cements.

  15. Compression of magnetohydrodynamic simulation data using singular value decomposition

    International Nuclear Information System (INIS)

    Castillo Negrete, D. del; Hirshman, S.P.; Spong, D.A.; D'Azevedo, E.F.

    2007-01-01

    Numerical calculations of magnetic and flow fields in magnetohydrodynamic (MHD) simulations can result in extensive data sets. Particle-based calculations in these MHD fields, needed to provide closure relations for the MHD equations, will require communication of this data to multiple processors and rapid interpolation at numerous particle orbit positions. To facilitate this analysis it is advantageous to compress the data using singular value decomposition (SVD, or principal orthogonal decomposition, POD) methods. As an example of the compression technique, SVD is applied to magnetic field data arising from a dynamic nonlinear MHD code. The performance of the SVD compression algorithm is analyzed by calculating Poincare plots for electron orbits in a three-dimensional magnetic field and comparing the results with uncompressed data

  16. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields

    International Nuclear Information System (INIS)

    Perkins, L. J.; Logan, B. G.; Zimmerman, G. B.; Werner, C. J.

    2013-01-01

    We report for the first time on full 2-D radiation-hydrodynamic implosion simulations that explore the impact of highly compressed imposed magnetic fields on the ignition and burn of perturbed spherical implosions of ignition-scale cryogenic capsules. Using perturbations that highly convolute the cold fuel boundary of the hotspot and prevent ignition without applied fields, we impose initial axial seed fields of 20–100 T (potentially attainable using present experimental methods) that compress to greater than 4 × 10 4 T (400 MG) under implosion, thereby relaxing hotspot areal densities and pressures required for ignition and propagating burn by ∼50%. The compressed field is high enough to suppress transverse electron heat conduction, and to allow alphas to couple energy into the hotspot even when highly deformed by large low-mode amplitudes. This might permit the recovery of ignition, or at least significant alpha particle heating, in submarginal capsules that would otherwise fail because of adverse hydrodynamic instabilities

  17. Tokamak plasma variations under rapid compression

    International Nuclear Information System (INIS)

    Holmes, J.A.; Peng, Y.K.M.; Lynch, S.J.

    1980-04-01

    Changes in plasmas undergoing large, rapid compressions are examined numerically over the following range of aspect ratios A:3 greater than or equal to A greater than or equal to 1.5 for major radius compressions of circular, elliptical, and D-shaped cross sections; and 3 less than or equal to A less than or equal to 6 for minor radius compressions of circular and D-shaped cross sections. The numerical approach combines the computation of fixed boundary MHD equilibria with single-fluid, flux-surface-averaged energy balance, particle balance, and magnetic flux diffusion equations. It is found that the dependences of plasma current I/sub p/ and poloidal beta anti β/sub p/ on the compression ratio C differ significantly in major radius compressions from those proposed by Furth and Yoshikawa. The present interpretation is that compression to small A dramatically increases the plasma current, which lowers anti β/sub p/ and makes the plasma more paramagnetic. Despite large values of toroidal beta anti β/sub T/ (greater than or equal to 30% with q/sub axis/ approx. = 1, q/sub edge/ approx. = 3), this tends to concentrate more toroidal flux near the magnetic axis, which means that a reduced minor radius is required to preserve the continuity of the toroidal flux function F at the plasma edge. Minor radius compressions to large aspect ratio agree well with the Furth-Yoshikawa scaling laws

  18. Flux compression generators as plasma compression power sources

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Erickson, D.J.; Freeman, B.L.; Thomson, D.B.; Garn, W.B.

    1979-01-01

    A survey is made of applications where explosive-driven magnetic flux compression generators have been or can be used to directly power devices that produce dense plasmas. Representative examples are discussed that are specific to the theta pinch, the plasma gun, the dense plasma focus and the Z pinch. These examples are used to illustrate the high energy and power capabilities of explosive generators. An application employing a rocket-borne, generator-powered plasma gun emphasizes the size and weight potential of flux compression power supplies. Recent results from a local effort to drive a dense plasma focus are provided. Imploding liners ae discussed in the context of both the theta and Z pinches

  19. The Grenoble station for producing strong transient magnetic fields higher than 100 teslas by an explosive driven flux compression

    International Nuclear Information System (INIS)

    Guillot, M.

    1976-01-01

    Reproducible transient magnetic fields up to 400 teslas (4 megaoersted) are achieved by a simple explosive driven flux compression. The results are described simply from the point of view of energy conversion. The problems of field measurements are studied: the precision is +-2% with a field cavity of 5 mm diameter [fr

  20. Ohmic ignition of Neo-Alcator tokamak with adiabatic compression

    International Nuclear Information System (INIS)

    Inoue, Nobuyuki; Ogawa, Yuichi

    1992-01-01

    Ohmic ignition condition on axis of the DT tokamak plasma heated by minor radius and major radius adiabatic compression is studied assuming parabolic profiles for plasma parameters, elliptic plasma cross section, and Neo-Alcator confinement scaling. It is noticeable that magnetic compression reduces the necessary total plasma current for Ohmic ignition device. Typically in compact ignition tokamak of the minor radius of 0.47 m, major radius of 1.5 m and on-axis toroidal field of 20 T, the plasma current of 6.8 MA is sufficient for compression plasma, while that of 11.7 MA is for no compression plasma. Another example with larger major radius is also described. In such a device the large flux swing of Ohmic transformer is available for long burn. Application of magnetic compression saves the flux swing and thereby extends the burn time. (author)

  1. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Rinderknecht, H. G., E-mail: hgr@mit.edu; Sio, H.; Frenje, J. A.; Gatu Johnson, M.; Zylstra, A. B.; Sinenian, N.; Rosenberg, M. J.; Li, C. K.; Sèguin, F. H.; Petrasso, R. D. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Magoon, J.; Agliata, A.; Shoup, M.; Glebov, V. U.; Hohenberger, M.; Stoeckl, C.; Sangster, T. C. [Laboratory for Laser Energetics, Rochester, New York 14623 (United States); Ayers, S.; Bailey, C. G.; Rygg, J. R. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); and others

    2014-11-15

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D{sup 3}He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D{sup 3}He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D{sup 3}He-filled surrogate implosions at the NIF.

  2. A magnetic particle time-of-flight (MagPTOF) diagnostic for measurements of shock- and compression-bang time at the NIF (invited).

    Science.gov (United States)

    Rinderknecht, H G; Sio, H; Frenje, J A; Magoon, J; Agliata, A; Shoup, M; Ayers, S; Bailey, C G; Gatu Johnson, M; Zylstra, A B; Sinenian, N; Rosenberg, M J; Li, C K; Sèguin, F H; Petrasso, R D; Rygg, J R; Kimbrough, J R; Mackinnon, A; Bell, P; Bionta, R; Clancy, T; Zacharias, R; House, A; Döppner, T; Park, H S; LePape, S; Landen, O; Meezan, N; Robey, H; Glebov, V U; Hohenberger, M; Stoeckl, C; Sangster, T C; Li, C; Parat, J; Olson, R; Kline, J; Kilkenny, J

    2014-11-01

    A magnetic particle time-of-flight (MagPTOF) diagnostic has been designed to measure shock- and compression-bang time using D(3)He-fusion protons and DD-fusion neutrons, respectively, at the National Ignition Facility (NIF). This capability, in combination with shock-burn weighted areal density measurements, will significantly constrain the modeling of the implosion dynamics. This design is an upgrade to the existing particle time-of-flight (pTOF) diagnostic, which records bang times using DD or DT neutrons with an accuracy better than ±70 ps [H. G. Rinderknecht et al., Rev. Sci. Instrum. 83, 10D902 (2012)]. The inclusion of a deflecting magnet will increase D(3)He-proton signal-to-background by a factor of 1000, allowing for the first time simultaneous measurements of shock- and compression-bang times in D(3)He-filled surrogate implosions at the NIF.

  3. Electromotive force in strongly compressible magnetohydrodynamic turbulence

    Science.gov (United States)

    Yokoi, N.

    2017-12-01

    Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow

  4. Influence of applied compressive stress on the hysteresis curves and magnetic domain structure of grain-oriented transverse Fe-3%Si steel

    International Nuclear Information System (INIS)

    Perevertov, O; Schäfer, R

    2012-01-01

    The influence of an applied compressive stress on the hysteresis curve and domain structure in conventional (1 1 0) [0 0 1] Fe-3%Si steel cut transverse to the rolling direction is studied. Quasistatic hysteresis loops under compressive stress up to 75 MPa were measured. The magnetic domains and magnetization processes were observed by longitudinal Kerr microscopy at different levels of stress. It is shown that the bulk hysteresis loop can be described with a good accuracy by the action of an effective field, which is the product of the stress and a function of magnetization. Domain observations have shown that the reasons for the effective field are demagnetizing fields due to the disappearance of supplementary domains along [0 1 0] and [1 0 0] at low fields and different domain systems in different grains at moderate fields. The latter are caused by differences in grain sensitivity to stress depending on the degree of misorientation. A decrease in the effective field above 1 T is connected with a transformation of all grains into the same domain system—the column pattern. (paper)

  5. Assessment of neurovascular compression in patients with trigeminal neuralgia with a boundary fusion three-dimensional magnetic resonance cisternogram/angiogram

    International Nuclear Information System (INIS)

    Satoh, Toru; Omi, Megumi; Ohsako, Chika; Onoda, Keisuke; Date, Isao

    2007-01-01

    Precise assessment of the complex nerve-vessel relationship at the root entry zone (REZ) of the trigeminal nerve is useful for the planning of the microvascular decompression (MVD) in patients with trigeminal neuralgia. We have applied a boundary imaging of fusion three-dimensional (3D) magnetic resonance (MR) cisternogram/angiogram. The boundary imaging allows virtual assessment of the spatial relationship of the neurovascular compression at the REZ of the trigeminal nerve. The boundary images depicted complex anatomical relationship of the offending vessels to the trigeminal nerve REZ. The presence of offending vessels, compressive site, and degree of neurovascular compression were assessed from various viewpoints in the cistern and virtually through the brainstem and trigeminal nerve per se. The 3D visualization of the nerve-vessel relationship with fusion images was consistent with the intraoperative findings. The boundary fusion 3D MR cisternogram/angiogram may prove a useful adjunct for the diagnosis and decision-marking process to execute the MVD in patients with trigeminal neuralgia. (author)

  6. Contribution to the understanding of the high magnetic field compression produced by the implosion of a thin metal tube

    International Nuclear Information System (INIS)

    Besancon, Jacques

    1970-12-01

    In this report we present the essential phenomena which occur during the magnetic flux compression obtained by the explosive-driven implosion of a thin conducting liner: acceleration time, dynamic evolution, heating and instability behaviour of the liner; field diffusion through the conducting wall and resulting flux losses which condition the increasing field in the cavity. Various implosion models are proposed and the one most elaborated leads to a numerical computation of the flux compression. Repeated experiments have permitted us to define and improve the flux injection techniques, the optical and electrical diagnostics and, consequently, the final compressed field. We now know how to obtain and record reproducible fields of 12 MOe in 0.8 cm diameter cavities. The final phase or the liner 'turnaround' has been specially observed. All the implosion shots are compared to the theoretical expectation. It may be concluded that the liner electrical conductivity and its variation essentially determine the final flux value. (author) [fr

  7. Anisotropy of linear thermal expansion and compressibility of Y.sub.2./sub.Fe.sub.17./sub. under pressure and its correlation to magnetic structure

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Kamarád, Jiří; Prokhnenko, Olexandr; Ritter, C.; Eto, T.; Honda, F.; Oomi, G.; Garcia-Landa, B.

    2002-01-01

    Roč. 22, - (2002), s. 175-179 ISSN 0895-7959 R&D Projects: GA ČR GA106/02/0943; GA AV ČR IAA1010018; GA MŠk ME 165 Institutional research plan: CEZ:AV0Z1010914 Keywords : intermetallic compounds * pressure effect * compressibility * thermal expansion * magnetic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.414, year: 2002

  8. Losses in magnetic flux compression generators: Part 2, Radiation losses

    International Nuclear Information System (INIS)

    Fowler, C.M.

    1988-06-01

    This is the second monograph devoted to the analysis of flux losses in explosive driven magnetic flux compression generators. In the first monograph, flux losses from magnetic field penetration into conductor walls was studied by conventional diffusion theory. In the present report flux loss by radiation from the outer conductor walls is treated. Flux leakage rates through walls of finite thickness are first obtained by diffusion theory. It is shown, for normal wall thicknesses, that flux leakage is determined essentially by the wall conductance, defined as the product of wall thickness and wall conductivity. This remains true when the wall thickness is reduced to zero at unchanged conductance. In this case the wall is said to be coalesced. Solutions for a cavity bounded by a perfect conductor on one side and a coalesced wall on the other are then obtained using the complete Maxwell wave equations in both the cavity and free space beyond the coalesced wall. Several anomalies, noted earlier, that arise from diffusion analysis are resolved by the wave treatment. Conditions for the validity of the diffusion treatment are noted, and an expression is obtained within the framework of diffusion theory for energy radiated into space from the cavity walls. The free space wave equations are solved by using the method of characteristics in both the cavity and free space regions. An extension of the characteristic method to situations where the constitutive relations are non-linear is outlined in an appendix. For a special class of these relations, Riemann-like invariants are determined explicitly and used to solve a particular example

  9. Applications of the computer codes FLUX2D and PHI3D for the electromagnetic analysis of compressed magnetic field generators and power flow channels

    International Nuclear Information System (INIS)

    Hodgdon, M.L.; Oona, H.; Martinez, A.R.; Salon, S.; Wendling, P.; Krahenbuhl, L.; Nicolas, A.; Nicolas, L.

    1990-01-01

    The authors present the results of three electromagnetic field problems for compressed magnetic field generators and their associated power flow channels. The first problem is the computation of the transient magnetic field in a two-dimensional model of a helical generator during loading. The second problem is the three-dimensional eddy current patterns in a section of an armature beneath a bifurcation point of a helical winding. The authors' third problem is the calculation of the three-dimensional electrostatic fields in a region known as the post-hole convolute in which a rod connects the inner and outer walls of a system of three concentric cylinders through a hole in the middle cylinder. While analytic solutions exist for many electromagnetic filed problems in cases of special and ideal geometries, the solution of these and similar problems for the proper analysis and design of compressed magnetic field generators and their related hardware require computer simulations

  10. The study of vascular dynamics for the effect of a compress pack on pain relief using magnetic resonance angiography

    International Nuclear Information System (INIS)

    Baek, Ji Won; Lim, Young Khi

    2015-01-01

    This study was to investigate the effects of the hot compress pack on alleviating local muscular discomfort, stiffness in limbs as well as the chronic pains such as migraine in terms of hemodynamics. In this study, the hot compress band was put on the neck and the local physiological change on the stimulation site and the cranial blood circulation change were examined. We recruited healthy volunteers (n=8, mean age: 32.13 (4.61)), who participated in the magnetic resonance imaging (MRI) study. Local skin color and temperature were measured for the local effect of the hot compress band and the changes of intra-cranial and extra-cranial blood vessels were examined with MR angiography (MRA) images. The skin temperature increased from 36.4 degrees Celsius at the rest condition to 36.7 degrees Celsius and 37.1 degrees Celsius after 15 min and 30 min stimulation, respectively. The change of the extra-cranial blood vessels between pre-stimulation and post-stimulation of 30 min was significantly increased (+38.8%), while the change of the intra-cranial blood vessels was negligible. In this study, we demonstrated that the hot compress band on the neck yielded the increase of local skin temperature on the stimulation site and it made an effect on the extracranial circulation. In conclusion, the stimulation with a hot compress could facilitate the blood circulation, causing to relieve the muscular discomfort, stiffness in limbs as well as the chronic pains such as migraine

  11. The study of vascular dynamics for the effect of a compress pack on pain relief using magnetic resonance angiography

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Ji Won; Lim, Young Khi [Gachon University, Sungnam (Korea, Republic of)

    2015-12-15

    This study was to investigate the effects of the hot compress pack on alleviating local muscular discomfort, stiffness in limbs as well as the chronic pains such as migraine in terms of hemodynamics. In this study, the hot compress band was put on the neck and the local physiological change on the stimulation site and the cranial blood circulation change were examined. We recruited healthy volunteers (n=8, mean age: 32.13 (4.61)), who participated in the magnetic resonance imaging (MRI) study. Local skin color and temperature were measured for the local effect of the hot compress band and the changes of intra-cranial and extra-cranial blood vessels were examined with MR angiography (MRA) images. The skin temperature increased from 36.4 degrees Celsius at the rest condition to 36.7 degrees Celsius and 37.1 degrees Celsius after 15 min and 30 min stimulation, respectively. The change of the extra-cranial blood vessels between pre-stimulation and post-stimulation of 30 min was significantly increased (+38.8%), while the change of the intra-cranial blood vessels was negligible. In this study, we demonstrated that the hot compress band on the neck yielded the increase of local skin temperature on the stimulation site and it made an effect on the extracranial circulation. In conclusion, the stimulation with a hot compress could facilitate the blood circulation, causing to relieve the muscular discomfort, stiffness in limbs as well as the chronic pains such as migraine.

  12. Apparent stress-strain relationships in experimental equipment where magnetorheological fluids operate under compression mode

    International Nuclear Information System (INIS)

    Mazlan, S A; Ekreem, N B; Olabi, A G

    2008-01-01

    This paper presents an experimental investigation of two different magnetorheological (MR) fluids, namely, water-based and hydrocarbon-based MR fluids in compression mode under various applied currents. Finite element method magnetics was used to predict the magnetic field distribution inside the MR fluids generated by a coil. A test rig was constructed where the MR fluid was sandwiched between two flat surfaces. During the compression, the upper surface was moved towards the lower surface in a vertical direction. Stress-strain relationships were obtained for arrangements of equipment where each type of fluid was involved, using compression test equipment. The apparent compressive stress was found to be increased with the increase in magnetic field strength. In addition, the apparent compressive stress of the water-based MR fluid showed a response to the compressive strain of greater magnitude. However, during the compression process, the hydrocarbon-based MR fluid appeared to show a unique behaviour where an abrupt pressure drop was discovered in a region where the apparent compressive stress would be expected to increase steadily. The conclusion is drawn that the apparent compressive stress of MR fluids is influenced strongly by the nature of the carrier fluid and by the magnitude of the applied current

  13. Bunch compression for an FEL at NLCTA

    International Nuclear Information System (INIS)

    Zimmermann, F.

    1997-04-01

    As part of the design effort for a free electron laser driven by the Next Linear Collider Test Accelerator (NLCTA), the author reports studies of bunch-length compression utilizing the existing infrastructure and hardware. In one possible version of the NLCTA FEL, bunches with 900-microm FWHM length, generated by an S-band photo-injector, would be compressed to an rms length of 60--120 microm before entering the FEL undulator. It is shown that, using the present magnetic chicane, the bunch compression is essentially straightforward, and that almost all emittance-diluting effects, e.g. wakefields, chromaticity, or space charge in the bending magnets, are small. The only exception to this finding is the predicted increase of the horizontal emittance due to coherent synchrotron radiation (CSR). Estimates based on existing theories of coherent synchrotron radiation suggest a tripling or quadrupling of the initial emittance, which seems to preclude bunch compression during regular FEL operation. Serendipitously, the magnitude of the predicted emittance growth would, on the other hand, make the NLCTA chicane an excellent tool for measuring the effects of coherent synchrotron radiation. This will be of considerable interest to many future projects, in particular to the Linac Coherent Light Source (LCLS). As an aside, it is shown that coherent synchrotron radiation in a bending magnet gives rise to a minimum possible bunch length, which is very reminiscent of the Oide limit on the vertical spot size at the interaction point of a linear collider

  14. Magneto thermal convection in a compressible couple-stress fluid

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahinder [Lovely School of Science, Dept. of Mathematics, Lovely Professional Univ., Phagwara (India); Kumar, Pardeep [Dept. of Mathematics, ICDEOL, H.P. Univ., Shimla (India)

    2010-03-15

    The problem of thermal instability of compressible, electrically conducting couple-stress fluids in the presence of a uniform magnetic field is considered. Following the linearized stability theory and normal mode analysis, the dispersion relation is obtained. For stationary convection, the compressibility, couple-stress, and magnetic field postpone the onset of convection. Graphs have been plotted by giving numerical values of the parameters to depict the stability characteristics. The principle of exchange of stabilities is found to be satisfied. The magnetic field introduces oscillatory modes in the system that were non-existent in its absence. The case of overstability is also studied wherein a sufficient condition for the non-existence of overstability is obtained. (orig.)

  15. Future pulsed magnetic field applications in dynamic high pressure research

    International Nuclear Information System (INIS)

    Fowler, C.M.; Caird, R.S.; Hawke, R.S.; Burgess, T.J.

    1977-01-01

    The generation of large pressures by magnetic fields to obtain equation of state information is of fairly recent origin. Magnetic fields used in compression experiments produce an almost isentropic sample compression. Axial magnetic field compression is discussed together with a few results chosen to show both advantages and limitations of the method. Magnetic compression with azimuthal fields is then considered. Although there are several potential pitfalls, the possibilities are encouraging for obtaining very large pressures. Next, improved diagnostic techniques are considered. An x-ray ''streaking camera'' is proposed for volume measurements and a more detailed discussion is given on the use of the shift of the ruby fluorescence lines for pressure measurements. Finally, some additional flux compression magnetic field sources are discussed briefly. 5 figures, 2 tables

  16. Electromagnetic ion cyclotron waves stimulated by modest magnetospheric compressions

    Science.gov (United States)

    Anderson, B. J.; Hamilton, D. C.

    1993-01-01

    AMPTE/CCE magnetic field and particle data are used to test the suggestion that increased hot proton temperature anisotropy resulting from convection during magnetospheric compression is responsible for the enhancement in Pc 1 emission via generation of electromagnetic ion cyclotron (EMIC) waves in the dayside outer equatorial magnetosphere. The relative increase in magnetic field is used to gauge the strength of the compression, and an image dipole model is used to estimate the motion of the plasma during compression. Proton data are used to analyze the evolution of the proton distribution and the corresponding changes in EMIC wave activity expected during the compression. It is suggested that enhancements in dynamic pressure pump the energetic proton distributions in the outer magnetosphere, driving EMIC waves. Waves are expected to be generated most readily close to the magnetopause, and transient pressure pulses may be associated with bursts of EMIC waves, which would be observed on the ground in association with ionospheric transient signatures.

  17. Role of magnetic resonance imaging in entrapment and compressive neuropathy - what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: part 1. Overview and lower extremity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungjun [Yonsei University, Department of Diagnostic Radiology, College of Medicine, Seoul (Korea); Hanyang University, Kuri Hospital, Department of Diagnostic Radiology, College of Medicine, Kuri City, Kyunggi-do (Korea); Choi, Jin-Young; Huh, Yong-Min; Song, Ho-Taek; Lee, Sung-Ah [Yonsei University, Department of Diagnostic Radiology, College of Medicine, Seoul (Korea); Kim, Seung Min [Yonsei University, Department of Neurology, College of Medicine, Seoul (Korea); Suh, Jin-Suck [Yonsei University, Department of Diagnostic Radiology, College of Medicine, Seoul (Korea); Yonsei University, Research Institute of Radiological Science, College of Medicine, Seoul (Korea)

    2007-01-15

    The diagnosis of nerve entrapment and compressive neuropathy has been traditionally based on the clinical and electrodiagnostic examinations. As a result of improvements in the magnetic resonance (MR) imaging modality, it plays not only a fundamental role in the detection of space-occupying lesions but also a compensatory role in clinically and electrodiagnostically inconclusive cases. Although ultrasound has undergone further development in the past decades and shows high resolution capabilities, it has inherent limitations due to its operator dependency. We review the general concepts that should be known to evaluate the entrapment and compressive neuropathy in MR imaging. We also review the course of normal peripheral nerves, as well as various clinical demonstrations and pathological features of compressed and entrapped nerves in the lower extremities on MR imaging, according to the nerves involved. The common sites of nerve entrapment of the lower extremity are as follows: sciatic nerve around the piriformis muscle; tibial nerve at the popliteal fossa and tarsal tunnel, common peroneal nerve around the fibular neck, and digital nerve near the metatarsal head. Although MR imaging can depict the peripheral nerves in the extremities effectively, radiologists should be familiar with nerve pathways, common sites of nerve compression, and common space-occupying lesions resulting in nerve compression in MR imaging. (orig.)

  18. Role of magnetic resonance imaging in entrapment and compressive neuropathy - what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: part 1. Overview and lower extremity

    International Nuclear Information System (INIS)

    Kim, Sungjun; Choi, Jin-Young; Huh, Yong-Min; Song, Ho-Taek; Lee, Sung-Ah; Kim, Seung Min; Suh, Jin-Suck

    2007-01-01

    The diagnosis of nerve entrapment and compressive neuropathy has been traditionally based on the clinical and electrodiagnostic examinations. As a result of improvements in the magnetic resonance (MR) imaging modality, it plays not only a fundamental role in the detection of space-occupying lesions but also a compensatory role in clinically and electrodiagnostically inconclusive cases. Although ultrasound has undergone further development in the past decades and shows high resolution capabilities, it has inherent limitations due to its operator dependency. We review the general concepts that should be known to evaluate the entrapment and compressive neuropathy in MR imaging. We also review the course of normal peripheral nerves, as well as various clinical demonstrations and pathological features of compressed and entrapped nerves in the lower extremities on MR imaging, according to the nerves involved. The common sites of nerve entrapment of the lower extremity are as follows: sciatic nerve around the piriformis muscle; tibial nerve at the popliteal fossa and tarsal tunnel, common peroneal nerve around the fibular neck, and digital nerve near the metatarsal head. Although MR imaging can depict the peripheral nerves in the extremities effectively, radiologists should be familiar with nerve pathways, common sites of nerve compression, and common space-occupying lesions resulting in nerve compression in MR imaging. (orig.)

  19. Biliary-duodenal anastomosis using magnetic compression following massive resection of small intestine due to strangulated ileus after living donor liver transplantation: a case report.

    Science.gov (United States)

    Saito, Ryusuke; Tahara, Hiroyuki; Shimizu, Seiichi; Ohira, Masahiro; Ide, Kentaro; Ishiyama, Kohei; Kobayashi, Tsuyoshi; Ohdan, Hideki

    2017-12-01

    Despite the improvements of surgical techniques and postoperative management of patients with liver transplantation, biliary complications are one of the most common and important adverse events. We present a first case of choledochoduodenostomy using magnetic compression following a massive resection of the small intestine due to strangulated ileus after living donor liver transplantation. The 54-year-old female patient had end-stage liver disease, secondary to liver cirrhosis, due to primary sclerosing cholangitis with ulcerative colitis. Five years earlier, she had received living donor liver transplantation using a left lobe graft, with resection of the extrahepatic bile duct and Roux-en-Y anastomosis. The patient experienced sudden onset of intense abdominal pain. An emergency surgery was performed, and the diagnosis was confirmed as strangulated ileus due to twisting of the mesentery. Resection of the massive small intestine, including choledochojejunostomy, was performed. Only 70 cm of the small intestine remained. She was transferred to our hospital with an external drainage tube from the biliary cavity and jejunostomy. We initiated total parenteral nutrition, and percutaneous transhepatic biliary drainage was established to treat the cholangitis. Computed tomography revealed that the biliary duct was close to the duodenum; hence, we planned magnetic compression anastomosis of the biliary duct and the duodenum. The daughter magnet was placed in the biliary drainage tube, and the parent magnet was positioned in the bulbus duodeni using a fiberscope. Anastomosis between the left hepatic duct and the duodenum was accomplished after 25 days, and the biliary drainage stent was placed over the anastomosis to prevent re-stenosis. Contributions to the successful withdrawal of parenteral nutrition were closure of the ileostomy in the adaptive period, preservation of the ileocecal valve, internal drainage of bile, and side-to-side anastomosis

  20. Role of magnetic resonance imaging in entrapment and compressive neuropathy - what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: Part 2. Upper extremity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sungjun [Yonsei University, Department of Diagnostic Radiology, College of Medicine, Seoul (Korea); Hanyang University, Kuri Hospital, Department of Diagnostic Radiology, College of Medicine, Kuri City, Kyunggi-do (Korea); Choi, Jin-Young; Huh, Yong-Min; Song, Ho-Taek; Lee, Sung-Ah [Yonsei University, Department of Diagnostic Radiology, College of Medicine, Seoul (Korea); Kim, Seung Min [Yonsei University, Department of Neurology, College of Medicine, Seoul (Korea); Suh, Jin-Suck [Yonsei University, Department of Diagnostic Radiology, College of Medicine, Seoul (Korea); Yonsei University, Research Institute of Radiological Science, College of Medicine, Seoul (Korea)

    2007-02-15

    The diagnosis of nerve entrapment and compressive neuropathy has been traditionally based on the clinical and electrodiagnostic examinations. As a result of improvements in the magnetic resonance (MR) imaging modality, it plays not only a fundamental role in the detection of space-occupying lesions, but also a compensatory role in clinically and electrodiagnostically inconclusive cases. Although ultrasound has undergone further development in the past decades and shows high resolution capabilities, it has inherent limitations due to its operator dependency. We review the course of normal peripheral nerves, as well as various clinical demonstrations and pathological features of compressed and entrapped nerves in the upper extremities on MR imaging, according to the nerves involved. The common sites of nerve entrapment of the upper extremity are as follows: the brachial plexus of the thoracic outlet; axillary nerve of the quadrilateral space; radial nerve of the radial tunnel; ulnar nerve of the cubital tunnel and Guyon's canal; median nerve of the pronator syndrome, anterior interosseous nerve syndrome, and carpal tunnel syndrome. Although MR imaging can depict the peripheral nerves in the extremities effectively, radiologists should be familiar with nerve pathways, common sites of nerve compression, and common space-occupying lesions resulting in nerve compression in MR imaging. (orig.)

  1. Role of magnetic resonance imaging in entrapment and compressive neuropathy - what, where, and how to see the peripheral nerves on the musculoskeletal magnetic resonance image: Part 2. Upper extremity

    International Nuclear Information System (INIS)

    Kim, Sungjun; Choi, Jin-Young; Huh, Yong-Min; Song, Ho-Taek; Lee, Sung-Ah; Kim, Seung Min; Suh, Jin-Suck

    2007-01-01

    The diagnosis of nerve entrapment and compressive neuropathy has been traditionally based on the clinical and electrodiagnostic examinations. As a result of improvements in the magnetic resonance (MR) imaging modality, it plays not only a fundamental role in the detection of space-occupying lesions, but also a compensatory role in clinically and electrodiagnostically inconclusive cases. Although ultrasound has undergone further development in the past decades and shows high resolution capabilities, it has inherent limitations due to its operator dependency. We review the course of normal peripheral nerves, as well as various clinical demonstrations and pathological features of compressed and entrapped nerves in the upper extremities on MR imaging, according to the nerves involved. The common sites of nerve entrapment of the upper extremity are as follows: the brachial plexus of the thoracic outlet; axillary nerve of the quadrilateral space; radial nerve of the radial tunnel; ulnar nerve of the cubital tunnel and Guyon's canal; median nerve of the pronator syndrome, anterior interosseous nerve syndrome, and carpal tunnel syndrome. Although MR imaging can depict the peripheral nerves in the extremities effectively, radiologists should be familiar with nerve pathways, common sites of nerve compression, and common space-occupying lesions resulting in nerve compression in MR imaging. (orig.)

  2. Benign compression fractures of the spine: signal patterns

    International Nuclear Information System (INIS)

    Ryu, Kyung Nam; Choi, Woo Suk; Lee, Sun Wha; Lim, Jae Hoon

    1992-01-01

    Fifteen patients with 38 compression fractures of the spine underwent magnetic resonance(MR) imaging. We retrospectively evaluated MR images in those benign compression fractures. MR images showed four patterns in T1-weighted images. MR imaging patterns were normal signal(21), band like low signal(8), low signal with preservation of peripheral portion of the body(8), and diffuse low signal through the vertebral body(1). The low signal portions were changed to high signal intensities in T2-weighted images. In 7 of 15 patients (11 compression fractures), there was a history of trauma, and the remaining 8 patients (27 compression fractures) had no history of trauma. Benign compression fractures of trauma, remained 8 patients (27 compression fractures) were non-traumatic. Benign compression fractures of the spine reveal variable signal intensities in MR imagings. These patterns of benign compression fractures may be useful in interpretation of MR imagings of the spine

  3. Shock-front compression of the magnetic field in the Canis Majoris R1 star-formation region

    International Nuclear Information System (INIS)

    Vrba, F.J.; Baierlein, R.; Herbst, W.; Wesleyan Univ., Middletown, CT; Van Vleck Observatory, Middletown, CT)

    1987-01-01

    Results are presented from a linear polarization survey at optical wavelengths of over 140 stars in the direction of the CMa R1 star-formation region; 26 of these are clearly associated with nebulosity within the area. The observations were obtained in order to test the argument of Herbst et al. (1978) that star formation in CMa R1 is driven by a shock wave from a nearby supernova (Herbs and Assousa, 1977 and 1978). The polarizations are found to be consistent with a simple model of the compression by a supernova-induced spherical shock front of an initially uniform interstellar magnetic field. The polarization vectors are inconsistent with a scenario of quiescent cloud collapse along magnetic-field lines. Multicolor polarimetry of the nebular stars provides evidence of grain growth toward increasing cloud optical depth, characterized by a ratio of total-to-selective extinction of R = 3.0 at E(B-V) = 0.23, increasing to R = 4.2 at E(B-V) = 0.7. 15 references

  4. Negative compressibility observed in graphene containing resonant impurities

    International Nuclear Information System (INIS)

    Chen, X. L.; Wang, L.; Li, W.; Wang, Y.; He, Y. H.; Wu, Z. F.; Han, Y.; Zhang, M. W.; Xiong, W.; Wang, N.

    2013-01-01

    We observed negative compressibility in monolayer graphene containing resonant impurities under different magnetic fields. Hydrogenous impurities were introduced into graphene by electron beam (e-beam) irradiation. Resonant states located in the energy region of ±0.04 eV around the charge neutrality point were probed in e-beam-irradiated graphene capacitors. Theoretical results based on tight-binding and Lifshitz models agreed well with experimental observations of graphene containing a low concentration of resonant impurities. The interaction between resonant states and Landau levels was detected by varying the applied magnetic field. The interaction mechanisms and enhancement of the negative compressibility in disordered graphene are discussed.

  5. Simulated and experimental compression of a compact toroid

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J N; Hwang, D Q; Horton, R D; Evans, R W; Owen, J M

    2009-05-06

    We present simulation results and experimental data for the compression of a compact toroid by a conducting nozzle without a center electrode. In both simulation and experiment, the flow of the plasma is greatly obstructed by even modest magnetic fields. A simple mechanism for this obstruction is suggested by our simulations. In particular, the configuration of the plasmoid's magnetic field plays a significant role in the success of the experiment. We analyze two types of plasma configurations under compression and demonstrate that the results from the simulations matches those from the experiments, and that the mechanism predicts the different behaviors observed in the two cases.

  6. Feasibility of intermittent pneumatic compression for venous thromboembolism prophylaxis during magnetic resonance imaging-guided interventions

    Energy Technology Data Exchange (ETDEWEB)

    Maybody, Majid, E-mail: maybodym@mskcc.org [Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Taslakian, Bedros, E-mail: bt05@aub.edu.lb [Department of Diagnostic Radiology, American University of Beirut Medical Center, Riad El-Solh, 1107 2020 Beirut (Lebanon); Durack, Jeremy C., E-mail: durackj@mskcc.org [Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Kaye, Elena A., E-mail: kayee@mskcc.org [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Erinjeri, Joseph P., E-mail: erinjerj@mskcc.org [Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Srimathveeravalli, Govindarajan, E-mail: srimaths@mskcc.org [Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Solomon, Stephen B., E-mail: solomons@mskcc.org [Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States)

    2015-04-15

    Highlights: •The controller of a standard SCD is labeled as an “MR-unsafe”. •No commercially available “MR-safe” SCDs. •Standard SCDs can be used in iMRI by placing the device outside the MRI scanner room. •Using serial extension tubing did not cause device failure. -- Abstract: Purpose: Venous thromboembolism (VTE) is a common cause of morbidity and mortality in hospitalized and surgical patients. To reduce risk, perioperative VTE prophylaxis is recommended for cancer patients undergoing surgical or interventional procedures. Magnetic resonance imaging (MRI) is increasingly used in interventional oncology when alternative imaging modalities do not adequately delineate malignancies. Extended periods of immobilization during MRI-guided interventions necessitate an MR compatible sequential compression device (SCD) for intra-procedural mechanical VTE prophylaxis. Such devices are not commercially available. Materials and methods: A standard SCD routinely used at our institution for VTE prophylaxis during interventional procedures was used. To satisfy MR safety requirements, the SCD controller was placed in the MR control room and connected to the compression sleeves in the magnet room through the wave guide using tubing extensions. The controller pressure sensor was used to monitor adequate pressure delivery and detect ineffective low or abnormal high pressure delivery. VTE prophylaxis was provided using the above mentioned device for 38 patients undergoing MR-guided ablations. Results: There was no evidence of device failure due to loss of pressure in the extension tubing assembly. No interference with the anesthesia or interventional procedures was documented. Conclusion: Although the controller of a standard SCD is labeled as “MR-unsafe”, the SCD can be used in interventional MR settings by placing the device outside the MR scanner room. Using serial tubing extensions did not cause device failure. The described method can be used to provide

  7. Multi-scale analysis of compressible fluctuations in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Owen W.; Escoubet, C. Philippe [ESA/ESTEC SCI-S, Noordwijk (Netherlands); Narita, Yasuhito [Austrian Academy of Sciences, Graz (Austria). Space Research Inst.

    2018-04-01

    Compressible plasma turbulence is investigated in the fast solar wind at proton kinetic scales by the combined use of electron density and magnetic field measurements. Both the scale-dependent cross-correlation (CC) and the reduced magnetic helicity (σ{sub m}) are used in tandem to determine the properties of the compressible fluctuations at proton kinetic scales. At inertial scales the turbulence is hypothesised to contain a mixture of Alfvenic and slow waves, characterised by weak magnetic helicity and anti-correlation between magnetic field strength B and electron density n{sub e}. At proton kinetic scales the observations suggest that the fluctuations have stronger positive magnetic helicities as well as strong anti-correlations within the frequency range studied. These results are interpreted as being characteristic of either counter-propagating kinetic Alfven wave packets or a mixture of anti-sunward kinetic Alfven waves along with a component of kinetic slow waves.

  8. Compressibility and rotation effects on transport suppression in magnetohydrodynamic turbulence

    International Nuclear Information System (INIS)

    Yoshizawa, A.

    1996-01-01

    Compressibility and rotation effects on turbulent transports in magnetohydrodynamic (MHD) flows under arbitrary mean field are investigated using a Markovianized two-scale statistical approach. Some new aspects of MHD turbulence are pointed out in close relation to plasma compressibility. Special attention is paid to the turbulent electromotive force, which plays a central role in the generation of magnetic and velocity fluctuations. In addition to plasma rotation, the interaction between compressibility and magnetic fields is shown to bring a few factors suppressing MHD fluctuations and, eventually, density and temperature transports, even in the presence of steep mean density and temperature gradients. This finding is discussed in the context of the turbulence-suppression mechanism in the tokamak close-quote s high-confinement modes. copyright 1996 American Institute of Physics

  9. Magnetic power piston fluid compressor

    Science.gov (United States)

    Gasser, Max G. (Inventor)

    1994-01-01

    A compressor with no moving parts in the traditional sense having a housing having an inlet end allowing a low pressure fluid to enter and an outlet end allowing a high pressure fluid to exit is described. Within the compressor housing is at least one compression stage to increase the pressure of the fluid within the housing. The compression stage has a quantity of magnetic powder within the housing, is supported by a screen that allows passage of the fluid, and a coil for selectively providing a magnetic field across the magnetic powder such that when the magnetic field is not present the individual particles of the powder are separated allowing the fluid to flow through the powder and when the magnetic field is present the individual particles of the powder pack together causing the powder mass to expand preventing the fluid from flowing through the powder and causing a pressure pulse to compress the fluid.

  10. Compact toroid formation, compression, and acceleration

    International Nuclear Information System (INIS)

    Degnan, J.H.; Bell, D.E.; Baca, G.P.; Dearborn, M.E.; Douglas, M.R.; Englert, S.E.; Englert, T.J.; Holmes, J.H.; Hussey, T.W.; Kiuttu, G.F.; Lehr, F.M.; Marklin, G.J.; Mullins, B.W.; Peterkin, R.E.; Price, D.W.; Roderick, N.F.; Ruden, E.L.; Turchi, P.J.; Coffey, S.K.; Seiler, S.W.; Bird, G.

    1992-01-01

    Research on the formation, compression, and acceleration of milligram Compact Toroids (CTs) will be discussed. This includes experiments with 2-stage coaxial gun discharges and calculations including 2D- MHD. The CTs are formed by 110 μf, 70 KV, 2 MA, 3 μs rise time discharges into 2 mg gas puffs in a 90 cm inner diameter, 7.6 cm gap coaxial gun with approximately 0.15 Tesla of radial-axial initial magnetic field. Reconnection at the neck of the toroidal magnetized plasma bubble extracted from the first stage gun forms the CT. Trapping, relaxation to a minimum energy Taylor state is observed with magnetic probe arrays. Low energy (few hundred KJ, 2 MA) acceleration in straight coaxial geometry, and high energy acceleration using a conical compression stage are discussed. The Phillips Laboratory 1,300 μf, 120 KV, 9.4 MJ SHIVA STAR capacitor bank is used for the acceleration discharge. The charging and triggering of the 36-module bank has been modified to permit use of any multiple of three modules. Highlights of fast photography, current, voltage, magnetic probe array, optical spectroscopy, interferometry, VUV, and higher energy radiation data and 2D-MHD calculations will be presented. Considerably more detail is presented in companion papers

  11. Bunch compression efficiency of the femtosecond electron source at Chiang Mai University

    International Nuclear Information System (INIS)

    Thongbai, C.; Kusoljariyakul, K.; Saisut, J.

    2011-01-01

    A femtosecond electron source has been developed at the Plasma and Beam Physics Research Facility (PBP), Chiang Mai University (CMU), Thailand. Ultra-short electron bunches can be produced with a bunch compression system consisting of a thermionic cathode RF-gun, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. To obtain effective bunch compression, it is crucial to provide a proper longitudinal phase-space distribution at the gun exit matched to the subsequent beam transport system. Via beam dynamics calculations and experiments, we investigate the bunch compression efficiency for various RF-gun fields. The particle distribution at the RF-gun exit will be tracked numerically through the alpha-magnet and beam transport. Details of the study and results leading to an optimum condition for our system will be presented.

  12. Bunch compression efficiency of the femtosecond electron source at Chiang Mai University

    Science.gov (United States)

    Thongbai, C.; Kusoljariyakul, K.; Saisut, J.

    2011-07-01

    A femtosecond electron source has been developed at the Plasma and Beam Physics Research Facility (PBP), Chiang Mai University (CMU), Thailand. Ultra-short electron bunches can be produced with a bunch compression system consisting of a thermionic cathode RF-gun, an alpha-magnet as a magnetic bunch compressor, and a linear accelerator as a post acceleration section. To obtain effective bunch compression, it is crucial to provide a proper longitudinal phase-space distribution at the gun exit matched to the subsequent beam transport system. Via beam dynamics calculations and experiments, we investigate the bunch compression efficiency for various RF-gun fields. The particle distribution at the RF-gun exit will be tracked numerically through the alpha-magnet and beam transport. Details of the study and results leading to an optimum condition for our system will be presented.

  13. Compression of a spherically symmetric deuterium-tritium plasma liner onto a magnetized deuterium-tritium target

    International Nuclear Information System (INIS)

    Santarius, J. F.

    2012-01-01

    Converging plasma jets may be able to reach the regime of high energy density plasmas (HEDP). The successful application of plasma jets to magneto-inertial fusion (MIF) would heat the plasma by fusion products and should increase the plasma energy density. This paper reports the results of using the University of Wisconsin’s 1-D Lagrangian, radiation-hydrodynamics, fusion code BUCKY to investigate two MIF converging plasma jet test cases originally analyzed by Samulyak et al.[Physics of Plasmas 17, 092702 (2010)]. In these cases, 15 cm or 5 cm radially thick deuterium-tritium (DT) plasma jets merge at 60 cm from the origin and converge radially onto a DT target magnetized to 2 T and of radius 5 cm. The BUCKY calculations reported here model these cases, starting from the time of initial contact of the jets and target. Compared to the one-temperature Samulyak et al. calculations, the one-temperature BUCKY results show similar behavior, except that the plasma radius remains about twice as long near maximum compression. One-temperature and two-temperature BUCKY results differ, reflecting the sensitivity of the calculations to timing and plasma parameter details, with the two-temperature case giving a more sustained compression.

  14. Radiologic image compression -- A review

    International Nuclear Information System (INIS)

    Wong, S.; Huang, H.K.; Zaremba, L.; Gooden, D.

    1995-01-01

    The objective of radiologic image compression is to reduce the data volume of and to achieve a lot bit rate in the digital representation of radiologic images without perceived loss of image quality. However, the demand for transmission bandwidth and storage space in the digital radiology environment, especially picture archiving and communication systems (PACS) and teleradiology, and the proliferating use of various imaging modalities, such as magnetic resonance imaging, computed tomography, ultrasonography, nuclear medicine, computed radiography, and digital subtraction angiography, continue to outstrip the capabilities of existing technologies. The availability of lossy coding techniques for clinical diagnoses further implicates many complex legal and regulatory issues. This paper reviews the recent progress of lossless and lossy radiologic image compression and presents the legal challenges of using lossy compression of medical records. To do so, the authors first describe the fundamental concepts of radiologic imaging and digitization. Then, the authors examine current compression technology in the field of medical imaging and discuss important regulatory policies and legal questions facing the use of compression in this field. The authors conclude with a summary of future challenges and research directions. 170 refs

  15. Extended particle-based simulation for magnetic-aligned compaction of hard magnetic particles

    Energy Technology Data Exchange (ETDEWEB)

    Soda, Rikio; Takagi, Kenta; Ozaki, Kimihiro, E-mail: r-soda@aist.go.jp

    2015-12-15

    In order to understand the magnetic-aligned compaction process, we develop a three-dimensional (3D) discrete element method for simulating the motion of hard magnetic particles subjected to strong compression and magnetic fields. The proposed simulation model also considers the exact magnetic force involved via the calculation of the magnetic moment. First, to validate the simulation model, single-action compaction in the absence of a magnetic field was calculated. The calculated compaction curves are in good quantitative agreement with experimental ones. Based on this simulation model, the alignment behavior of Nd–Fe–B particles during compression under the application of a static magnetic field. The developed simulation model enables the visualization of particle behavior including the misorientation of the magnetization easy axis, which provided the quantitative relationships between applied pressure and particle misorientation. - Highlights: • A practical 3D DEM simulation technique for magnetic-aligned compaction was developed. • An extended simulation model was introduced for hard magnetic particles. • Magnetic-aligned compaction was simulated using the developed simulation model.

  16. Magnetic force micropiston: An integrated force/microfluidic device for the application of compressive forces in a confined environment

    Science.gov (United States)

    Fisher, J. K.; Kleckner, N.

    2014-02-01

    Cellular biology takes place inside confining spaces. For example, bacteria grow in crevices, red blood cells squeeze through capillaries, and chromosomes replicate inside the nucleus. Frequently, the extent of this confinement varies. Bacteria grow longer and divide, red blood cells move through smaller and smaller passages as they travel to capillary beds, and replication doubles the amount of DNA inside the nucleus. This increase in confinement, either due to a decrease in the available space or an increase in the amount of material contained in a constant volume, has the potential to squeeze and stress objects in ways that may lead to changes in morphology, dynamics, and ultimately biological function. Here, we describe a device developed to probe the interplay between confinement and the mechanical properties of cells and cellular structures, and forces that arise due to changes in a structure's state. In this system, the manipulation of a magnetic bead exerts a compressive force upon a target contained in the confining space of a microfluidic channel. This magnetic force microfluidic piston is constructed in such a way that we can measure (a) target compliance and changes in compliance as induced by changes in buffer, extract, or biochemical composition, (b) target expansion force generated by changes in the same parameters, and (c) the effects of compression stress on a target's structure and function. Beyond these issues, our system has general applicability to a variety of questions requiring the combination of mechanical forces, confinement, and optical imaging.

  17. Multi-scale analysis of compressible fluctuations in the solar wind

    Science.gov (United States)

    Roberts, Owen W.; Narita, Yasuhito; Escoubet, C.-Philippe

    2018-01-01

    Compressible plasma turbulence is investigated in the fast solar wind at proton kinetic scales by the combined use of electron density and magnetic field measurements. Both the scale-dependent cross-correlation (CC) and the reduced magnetic helicity (σm) are used in tandem to determine the properties of the compressible fluctuations at proton kinetic scales. At inertial scales the turbulence is hypothesised to contain a mixture of Alfvénic and slow waves, characterised by weak magnetic helicity and anti-correlation between magnetic field strength B and electron density ne. At proton kinetic scales the observations suggest that the fluctuations have stronger positive magnetic helicities as well as strong anti-correlations within the frequency range studied. These results are interpreted as being characteristic of either counter-propagating kinetic Alfvén wave packets or a mixture of anti-sunward kinetic Alfvén waves along with a component of kinetic slow waves.

  18. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  19. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1985-01-01

    Several features of the problem of FRC translation into a compression coil are considered. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an ''abrupt transition'' model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  20. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Science.gov (United States)

    Hull, John R.

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  1. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    Science.gov (United States)

    Wereley, Norman M.; Perez, Colette; Choi, Young T.

    2018-05-01

    This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect) of magnetorheological elastomeric foams (MREFs). Isotropic MREF samples (i.e., no oriented particle chain structures), fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm) were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4) into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol%) were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR) strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%), the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10%) were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus) and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  2. Strain-dependent dynamic compressive properties of magnetorheological elastomeric foams

    Directory of Open Access Journals (Sweden)

    Norman M. Wereley

    2018-05-01

    Full Text Available This paper addresses the strain-dependent dynamic compressive properties (i.e., so-called Payne effect of magnetorheological elastomeric foams (MREFs. Isotropic MREF samples (i.e., no oriented particle chain structures, fabricated in flat square shapes (nominal size of 26.5 mm x 26.5 mm x 9.5 mm were synthesized by randomly dispersing micron-sized iron oxide particles (Fe3O4 into a liquid silicone foam in the absence of magnetic field. Five different Fe3O4 particle concentrations of 0, 2.5, 5.0, 7.5, and 10 percent by volume fraction (hereinafter denoted as vol% were used to investigate the effect of particle concentration on the dynamic compressive properties of the MREFs. The MREFs were sandwiched between two multi-pole flexible plate magnets in order to activate the magnetorheological (MR strengthening effect. Under two different pre-compression conditions (i.e., 35% and 50%, the dynamic compressive stresses of the MREFs with respect to dynamic strain amplitudes (i.e., 1%-10% were measured by using a servo-hydraulic testing machine. The complex modulus (i.e., storage modulus and loss modulus and loss factors of the MREFs with respect to dynamic strain amplitudes were presented as performance indices to evaluate their strain-dependent dynamic compressive behavior.

  3. Investigation of strain-induced magnetization change in ferromagnetic microparticles

    International Nuclear Information System (INIS)

    Chuklanov, A P; Nurgazizov, N I; Bizyaev, D A; Khanipov, T F; Bukharaev, A A; Yu Petukhov, V; Chirkov, V V; Gumarov, G G

    2016-01-01

    This work is devoted to investigation of magnetoelastic strain effect on the ferromagnetic microparticles of permalloy. An original method of sample fabrication with compressed microparticles is proposed. Magnetic force microscopy and magneto-optical Kerr experiments were carried out with unstrained and compressed microparticles. The domain walls transformation in compressed microparticles is in good agreement with numerical calculations. Hard axis of magnetization was observed on the compressed sample. (paper)

  4. Effects on MR images compression in tissue classification quality

    International Nuclear Information System (INIS)

    Santalla, H; Meschino, G; Ballarin, V

    2007-01-01

    It is known that image compression is required to optimize the storage in memory. Moreover, transmission speed can be significantly improved. Lossless compression is used without controversy in medicine, though benefits are limited. If we compress images lossy, where image can not be totally recovered; we can only recover an approximation. In this point definition of 'quality' is essential. What we understand for 'quality'? How can we evaluate a compressed image? Quality in images is an attribute whit several definitions and interpretations, which actually depend on the posterior use we want to give them. This work proposes a quantitative analysis of quality for lossy compressed Magnetic Resonance (MR) images, and their influence in automatic tissue classification, accomplished with these images

  5. Compression of toroidal plasma by imploding plasma-liner

    International Nuclear Information System (INIS)

    Ikuta, Kazunari.

    1979-07-01

    A new concept of compressing a plasma in a closed magnetic configuration by a version of liner implosion flux compression technique is considered. The liner consists of a dense plasma cylinder, i.e. the plasma-liner. Maximum compression ratio of toroidal plasma is determined just by the initial density ratio of the toroidal plasma to the liner plasma because of the Rayleigh-Taylor instability. A start-up senario of plasma-liner is also proposed with a possible application of this concept to the creation of a burning plasma in reversed field configurations, i.e. burning plasma vortex. (author)

  6. Electric-gun studies of conductors in high magnetic fields and experiments in dynamic flux compression

    International Nuclear Information System (INIS)

    Osher, J.E.; Chau, H.H.; Lee, R.S.; Tipton, R.E.; Weingart, R.C.

    1990-01-01

    Electric guns operate by discharging a fast capacitor bank through a thin, metallic bridge-foil load. The explosion of the foil and the accompanying magnetic forces acting on the bridge-foil plasma accelerate a thin flyer plate of dielectric material initially placed on top of the bridge foil. In hypervelocity impact studies with the linear electric gun, a thin, flat flyer is punched out of a cover sheet of dielectric (or dielectric/metallic composite) material by the explosion of the bridge foil and accelerated down a short barrel to impact on a target. In the coaxial gun, a cylindrical bridge foil is used to implode a cylindrical dielectric or dielectric/metallic composite (liner) flyer to produce a high peak compression through axial convergence. In this paper the authors discuss the range of currents, their rate of rise, and the magnetic fields attained by their fast capacitor banks, which supply power to the electric gun to explode the bridge foil. Also included is a study of the change of resistance of the bridge-foil element as a function of time for various flyer mass loadings for the linear geometry of the gun

  7. Magnetized Target Fusion At General Fusion: An Overview

    Science.gov (United States)

    Laberge, Michel; O'Shea, Peter; Donaldson, Mike; Delage, Michael; Fusion Team, General

    2017-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma on a timescale faster than the thermal confinement time of the plasma. If near adiabatic compression is achieved, volumetric compression of 350X or more of a 500 eV target plasma would achieve a final plasma temperature exceeding 10 keV. Interesting fusion gains could be achieved provided the compressed plasma has sufficient density and dwell time. General Fusion (GF) is developing a compression system using pneumatic pistons to collapse a cavity formed in liquid metal containing a magnetized plasma target. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although pneumatic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the pneumatic driver front.

  8. Compression and archiving of digital images

    International Nuclear Information System (INIS)

    Huang, H.K.

    1988-01-01

    This paper describes the application of a full-frame bit-allocation image compression technique to a hierarchical digital image archiving system consisting of magnetic disks, optical disks and an optical disk library. The digital archiving system without the compression has been in clinical operation in the Pediatric Radiology for more than half a year. The database in the system consists of all pediatric inpatients including all images from computed radiography, digitized x-ray films, CT, MR, and US. The rate of image accumulation is approximately 1,900 megabytes per week. The hardware design of the compression module is based on a Motorola 68020 microprocessor, A VME bus, a 16 megabyte image buffer memory board, and three Motorola digital signal processing 56001 chips on a VME board for performing the two-dimensional cosine transform and the quantization. The clinical evaluation of the compression module with the image archiving system is expected to be in February 1988

  9. Experimental investigation of axial plasma injection into a magnetic dipole field

    DEFF Research Database (Denmark)

    Jensen, Vagn Orla

    1968-01-01

    A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves t...... towards the injector. Simultaneously with the compression, an increase in the electron temperature and reflection of a small amount of plasma are seen. The amount of plasma transmitted through the dipole field is found to be nearly independent of the field strength.......A high-density helium plasma, accelerated from a conical pinch, is injected axially into a magnetic dipole field. Magnetic probe measurements show that, near the axis, a compression of the field is super-imposed on the standard diamagnetic depression. The compression starts downstream and moves...

  10. Methodological aspects of magnetic resonance tomographic diagnostics of metastatic compressive fractures of the spine

    Directory of Open Access Journals (Sweden)

    Александр Павлович Мягков

    2015-06-01

    Full Text Available Aim of the study – to define an information value of the different pulse patterns for a qualitative estimation of MR-signals in the body of compressed vertebras.Methods: 50 patients with metastatic compressive fractures (MCF were examined using MRT. 30 (60% mans and 20 (40% woman, average age 60,8 +/- 12,5 years. Fractures in the different parts of spine were considered: cervical – 6 (12,0; thoracic – 25 (50,0 %; lumbar – 19 (38 %. Metastasis in the spine are more frequent at a cancer of mammary gland (20,0 %, kidneys (17,5 % and prostate gland (15,0 %, less frequent at a cancer of lungs, thyroid gland and sarcomas (7,5 %.MRT was done for all patients using apparatus with magnetic force 0,2, 1,5 and 0,36Т (AIRIS Mate, ECHELON of "HitachimedicalCorp.", Japan, “I-Open 0, 36” Chinein 3 projections receiving Т1-, Т2- weighted (Т1WI, Т2WI and diffusion-weighted images (DWIand also images with suppression of signals from an adipose tissue (STIR, Fat/sat.Results: the more obvious pulse patterns (PP at MCF of spine are – STIR (97,8 %, Т1WI и DWI (80 %. DWI can be used as a screening and addition for above-listed PP. The more objective criterion for a judgment about MCF is abnormal uptake of CM (60 % on diffuse type.Conclusions: for MRT visualization of MCF the most optimal are the next PP – STIR, Т1WI and DWI, with a sensitivity, respectively – 97,8 %, 80 %, and 80 %. DWI must supplement but not substitute all existing PP. On the post-contrast T1WI an objective criterion for MRT diagnostics of MCF is an abnormal uptake of CM on diffuse type. An alteration of signal characteristics in the body of compressed vertebras is an evidence of an alteration of structure, but for more precise definition of its character it is necessary to study its morphological alterations

  11. DNABIT Compress - Genome compression algorithm.

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-22

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, "DNABIT Compress" for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that "DNABIT Compress" algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases.

  12. Development of 1D Liner Compression Code for IDL

    Science.gov (United States)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  13. An efficient algorithm for MR image reconstruction and compression

    International Nuclear Information System (INIS)

    Wang, Hang; Rosenfeld, D.; Braun, M.; Yan, Hong

    1992-01-01

    In magnetic resonance imaging (MRI), the original data are sampled in the spatial frequency domain. The sampled data thus constitute a set of discrete Fourier transform (DFT) coefficients. The image is usually reconstructed by taking inverse DFT. The image data may then be efficiently compressed using the discrete cosine transform (DCT). A method of using DCT to treat the sampled data is presented which combines two procedures, image reconstruction and data compression. This method may be particularly useful in medical picture archiving and communication systems where both image reconstruction and compression are important issues. 11 refs., 3 figs

  14. Derivation of Inviscid Quasi-geostrophic Equation from Rotational Compressible Magnetohydrodynamic Flows

    Science.gov (United States)

    Kwon, Young-Sam; Lin, Ying-Chieh; Su, Cheng-Fang

    2018-04-01

    In this paper, we consider the compressible models of magnetohydrodynamic flows giving rise to a variety of mathematical problems in many areas. We derive a rigorous quasi-geostrophic equation governed by magnetic field from the rotational compressible magnetohydrodynamic flows with the well-prepared initial data. It is a first derivation of quasi-geostrophic equation governed by the magnetic field, and the tool is based on the relative entropy method. This paper covers two results: the existence of the unique local strong solution of quasi-geostrophic equation with the good regularity and the derivation of a quasi-geostrophic equation.

  15. Reactor potential for magnetized target fusion

    International Nuclear Information System (INIS)

    Dahlin, J.E.

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well

  16. Reactor potential for magnetized target fusion

    Energy Technology Data Exchange (ETDEWEB)

    Dahlin, J.E

    2001-06-01

    Magnetized Target Fusion (MTF) is a possible pathway to thermonuclear fusion different from both magnetic fusion and inertial confinement fusion. An imploding cylindrical metal liner compresses a preheated and magnetized plasma configuration until thermonuclear conditions are achieved. In this report the Magnetized Target Fusion concept is evaluated and a zero-dimensional computer model of the plasma, liner and circuit as a connected system is designed. The results of running this code are that thermonuclear conditions are achieved indeed, but only during a very short time. At peak compression the pressure from the compressed plasma and magnetic field is so large reversing the liner implosion into an explosion. The time period of liner motion reversal is termed the dwell time and is crucial to the performance of the fusion system. Parameters as liner thickness and plasma density are certainly of significant importance to the dwell time, but it seems like a reactor based on the MTF principle hardly can become economic if not innovative solutions are introduced. In the report two such solutions are presented as well.

  17. Development and evaluation of a novel lossless image compression method (AIC: artificial intelligence compression method) using neural networks as artificial intelligence

    International Nuclear Information System (INIS)

    Fukatsu, Hiroshi; Naganawa, Shinji; Yumura, Shinnichiro

    2008-01-01

    This study was aimed to validate the performance of a novel image compression method using a neural network to achieve a lossless compression. The encoding consists of the following blocks: a prediction block; a residual data calculation block; a transformation and quantization block; an organization and modification block; and an entropy encoding block. The predicted image is divided into four macro-blocks using the original image for teaching; and then redivided into sixteen sub-blocks. The predicted image is compared to the original image to create the residual image. The spatial and frequency data of the residual image are compared and transformed. Chest radiography, computed tomography (CT), magnetic resonance imaging, positron emission tomography, radioisotope mammography, ultrasonography, and digital subtraction angiography images were compressed using the AIC lossless compression method; and the compression rates were calculated. The compression rates were around 15:1 for chest radiography and mammography, 12:1 for CT, and around 6:1 for other images. This method thus enables greater lossless compression than the conventional methods. This novel method should improve the efficiency of handling of the increasing volume of medical imaging data. (author)

  18. FRC translation into a compression coil

    International Nuclear Information System (INIS)

    Chrien, R.E.

    1986-01-01

    The equilibrium and translational kinematics of Field-Reversed Configurations (FRCs) in a cylindrical coil which does not conserve flux are problems that arise in connection with adiabatic compressional heating. In this paper, they consider several features of the problem of FRC translation into a compression coil. First, the magnitude of the guide field is calculated and found to exceed that which would be applied to a flux conserver. Second, energy conservation is applied to FRC translation from a flux conserver into a compression coil. It is found that a significant temperature decrease is required for translation to be energetically possible. The temperature change depends on the external inductance in the compression circuit. An analogous case is that of a compression region composed of a compound magnet; in this case the temperature change depends on the ratio of inner and outer coil radii. Finally, the kinematics of intermediate translation states are calculated using an abrupt transition model. It is found, in this model, that the FRC must overcome a potential hill during translation, which requires a small initial velocity

  19. Infiltrative lipoma compressing the spinal cord in 2 large-breed dogs.

    Science.gov (United States)

    Hobert, Marc K; Brauer, Christina; Dziallas, Peter; Gerhauser, Ingo; Algermissen, Dorothee; Tipold, Andrea; Stein, Veronika M

    2013-01-01

    Two cases of infiltrative lipomas compressing the spinal cord and causing nonambulatory paraparesis in 2 large-breed dogs are reported. Magnetic resonance imaging (MRI) revealed severe extradural spinal cord compression by inhomogenous masses that infiltrated the adjacent tissues and the muscles of the spine in both dogs. The presumptive clinical diagnoses were infiltrative lipomas, which were confirmed by histopathology. In rare cases infiltrative lipomas are able to compress the spinal cord by the agressive growth of invasive adipocytes causing neurological deficits.

  20. Drift Compression and Final Focus Options for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Hong Qin; Davidson, Ronald C.; Barnard, John J.; Lee, Edward P.

    2005-01-01

    A drift compression and final focus lattice for heavy ion beams should focus the entire beam pulse onto the same focal spot on the target. We show that this requirement implies that the drift compression design needs to satisfy a self-similar symmetry condition. For un-neutralized beams, the Lie symmetry group analysis is applied to the warm-fluid model to systematically derive the self-similar drift compression solutions. For neutralized beams, the 1-D Vlasov equation is solved explicitly, and families of self-similar drift compression solutions are constructed. To compensate for the deviation from the self-similar symmetry condition due to the transverse emittance, four time-dependent magnets are introduced in the upstream of the drift compression such that the entire beam pulse can be focused onto the same focal spot

  1. HVS-based medical image compression

    Energy Technology Data Exchange (ETDEWEB)

    Kai Xie [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)]. E-mail: xie_kai2001@sjtu.edu.cn; Jie Yang [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China); Min Zhuyue [CREATIS-CNRS Research Unit 5515 and INSERM Unit 630, 69621 Villeurbanne (France); Liang Lixiao [Institute of Image Processing and Pattern Recognition, Shanghai Jiaotong University, 200030 Shanghai (China)

    2005-07-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time.

  2. HVS-based medical image compression

    International Nuclear Information System (INIS)

    Kai Xie; Jie Yang; Min Zhuyue; Liang Lixiao

    2005-01-01

    Introduction: With the promotion and application of digital imaging technology in the medical domain, the amount of medical images has grown rapidly. However, the commonly used compression methods cannot acquire satisfying results. Methods: In this paper, according to the existed and stated experiments and conclusions, the lifting step approach is used for wavelet decomposition. The physical and anatomic structure of human vision is combined and the contrast sensitivity function (CSF) is introduced as the main research issue in human vision system (HVS), and then the main designing points of HVS model are presented. On the basis of multi-resolution analyses of wavelet transform, the paper applies HVS including the CSF characteristics to the inner correlation-removed transform and quantization in image and proposes a new HVS-based medical image compression model. Results: The experiments are done on the medical images including computed tomography (CT) and magnetic resonance imaging (MRI). At the same bit rate, the performance of SPIHT, with respect to the PSNR metric, is significantly higher than that of our algorithm. But the visual quality of the SPIHT-compressed image is roughly the same as that of the image compressed with our approach. Our algorithm obtains the same visual quality at lower bit rates and the coding/decoding time is less than that of SPIHT. Conclusions: The results show that under common objective conditions, our compression algorithm can achieve better subjective visual quality, and performs better than that of SPIHT in the aspects of compression ratios and coding/decoding time

  3. Influence of compression forces on tablets disintegration by AC Biosusceptometry.

    Science.gov (United States)

    Corá, Luciana A; Fonseca, Paulo R; Américo, Madileine F; Oliveira, Ricardo B; Baffa, Oswaldo; Miranda, José Ricardo A

    2008-05-01

    Analysis of physical phenomena that occurs during tablet disintegration has been studied by several experimental approaches; however none of them satisfactorily describe this process. The aim of this study was to investigate the influence of compression force on the tablets by associating the AC Biosusceptometry with consolidated methods in order to validate the biomagnetic technique as a tool for quality control in pharmaceutical processes. Tablets obtained at five compression levels were submitted to mechanical properties tests. For uncoated tablets, water uptake and disintegration force measurements were performed in order to compare with magnetic data. For coated tablets, magnetic measurements were carried out to establish a relationship between physical parameters of the disintegration process. According to the results, differences between the compression levels were found for water uptake, force development and magnetic area variation measurements. ACB method was able to estimate the disintegration properties as well as the kinetics of disintegration process for uncoated and coated tablets. This study provided a new approach for in vitro investigation and validated this biomagnetic technique as a tool for quality control for pharmaceutical industry. Moreover, using ACB will also be possible to test these parameters in humans allowing to establish an in vitro/in vivo correlation (IVIVC).

  4. Confinement requirements for OHMIC-compressive ignition of a Spheromak plasma

    International Nuclear Information System (INIS)

    Olson, R.; Gilligan, J.; Miley, G.

    1980-01-01

    The Moving Plasmoid Reactor (MPR) is an attractive alternative magnetic fusion scheme in which Spheromak plasmoids are envisioned to be formed, compressed, burned, and expanded as the plasmoids translate through a series of linear reactor modules. Although auxiliary heating of the plasmoids may be possible, the MPR scenario would be especially interesting if ohmic decay and compression along were sufficient to heat the plasmoids to an ignition temperature. In the present work, we will study the transport conditions under which a Spheromak plasmoid could be expected to reach ignition via a combination of ohmic and compression heating

  5. Confinement requirements for ohmic-compressive ignition of a Spheromak plasma

    International Nuclear Information System (INIS)

    Olson, R.E.; Miley, G.H.

    1981-01-01

    The Moving Plasmoid Reactor (MPR) is an attractive alternative magnetic fusion scheme in which Spheromak plasmoids are envisioned to be formed, compressed, burned, and expanded as the plasmoids translate through a series of linear reactor modules. Although auxiliary heating of the plasmoids may be possible, the MPR scenario would be especially interesting if ohmic decay and compression alone is sufficient to heat the plasmoids to an ignition temperature. In the present work, we examine the transport conditions under which a Spheromak plasmoid can be expected to reach ignition via a combination of ohmic and compression heating

  6. The role of diagnostic radiology in compressive and entrapment neuropathies

    International Nuclear Information System (INIS)

    Spratt, J.D.; Stanley, A.J.; Hide, I.G.; Campbell, R.S.D.; Grainger, A.J.

    2002-01-01

    Diagnostic imaging is increasingly being utilised to aid the diagnosis of compression and entrapment neuropathies. Cross-sectional imaging, primarily ultrasound and magnetic resonance imaging, can provide exquisite anatomical detail of peripheral nerves and the changes that may occur as a result of compression. Imaging can provide a useful diagnostic aid to clinicians, which may supplement clinical evaluation, and may eventually provide an alternative to other diagnostic techniques such as nerve conduction studies. This article describes the abnormalities that may be demonstrated by current imaging techniques, and critically analyses the impact of imaging in diagnosis of peripheral compressive neuropathy. (orig.)

  7. The role of diagnostic radiology in compressive and entrapment neuropathies

    Energy Technology Data Exchange (ETDEWEB)

    Spratt, J.D.; Stanley, A.J.; Hide, I.G.; Campbell, R.S.D. [Department of Radiology, James Cook University Hospital, Middlesbrough, TS4 3BW (United Kingdom); Grainger, A.J. [Department of Radiology, Leeds General Infirmary, Leeds (United Kingdom)

    2002-09-01

    Diagnostic imaging is increasingly being utilised to aid the diagnosis of compression and entrapment neuropathies. Cross-sectional imaging, primarily ultrasound and magnetic resonance imaging, can provide exquisite anatomical detail of peripheral nerves and the changes that may occur as a result of compression. Imaging can provide a useful diagnostic aid to clinicians, which may supplement clinical evaluation, and may eventually provide an alternative to other diagnostic techniques such as nerve conduction studies. This article describes the abnormalities that may be demonstrated by current imaging techniques, and critically analyses the impact of imaging in diagnosis of peripheral compressive neuropathy. (orig.)

  8. DNABIT Compress – Genome compression algorithm

    Science.gov (United States)

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our proposed algorithm achieves the best compression ratio for DNA sequences for larger genome. Significantly better compression results show that “DNABIT Compress” algorithm is the best among the remaining compression algorithms. While achieving the best compression ratios for DNA sequences (Genomes),our new DNABIT Compress algorithm significantly improves the running time of all previous DNA compression programs. Assigning binary bits (Unique BIT CODE) for (Exact Repeats, Reverse Repeats) fragments of DNA sequence is also a unique concept introduced in this algorithm for the first time in DNA compression. This proposed new algorithm could achieve the best compression ratio as much as 1.58 bits/bases where the existing best methods could not achieve a ratio less than 1.72 bits/bases. PMID:21383923

  9. Isentropic compression studies using the NHMFL single turn

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Douglas G [Los Alamos National Laboratory; Mielke, Charles [Los Alamos National Laboratory; Rodriguez, George [Los Alamos National Laboratory; Rickel, Dwight [Los Alamos National Laboratory

    2010-10-19

    Magnetic isentropic compression experiments (ICE) provide the most accurate shock free compression data for materials at megabar stresses. Recent ICE experiments performed on the Sandia Z-machine (Asay, 1999) and at the Los Alamos High Explosive Pulsed Power facility (Tasker, 2006) are providing our nation with data on material properties in extreme dynamic high stress environments. The LANL National High Magnetic Field Laboratory (NHMFL) can offer a less complex ICE experiment at high stresses (up to {approx}1Mbar) with a high sample throughput and relatively low cost. This is not to say that the NHMFL technique will replace the other methods but rather complement them. For example, NHMFL-ICE is ideal for the development of advanced diagnostics, e.g., to detect phase changes. We will discuss the physics of the NHMFL-ICE experiments and present data from the first proof-of-principle experiments that were performed in September 2010.

  10. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, N A D [Department of Physics, Gomal Unversity, D I Khan (Pakistan); Ahmad, Zahoor; Murtaza, G [National Tokamak Fusion Program, PAEC, Islamabad (Pakistan); Zakaullah, M [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)], E-mail: ktk_nad@yahoo.com

    2008-04-15

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field B{sub z} (in magnitudes), if the switching time for the additional current is properly synchronized.

  11. Compression enhancement by current stepping in a multicascade liner gas-puff Z-pinch plasma

    International Nuclear Information System (INIS)

    Khattak, N A D; Ahmad, Zahoor; Murtaza, G; Zakaullah, M

    2008-01-01

    Plasma dynamics of a liner consisting of two or three annular cascade gas-puffs with entrained axial magnetic field is studied using the modified snow-plow model. The current stepping technique (Les 1984 J. Phys. D: Appl. Phys. 17 733) is employed to enhance compression of the imploding plasma. A small-diameter low-voltage-driven system of imploding plasma is considered in order to work out the possibility of the highest gain, in terms of plasma parameters and radiation yield with a relatively simple and compact system. Our numerical results demonstrate that current stepping enhances the plasma compression, yielding high values of the plasma parameters and compressed magnetic field B z (in magnitudes), if the switching time for the additional current is properly synchronized

  12. Neutron depolarization in compressed ferrite powders

    International Nuclear Information System (INIS)

    Rekveldt, M.Th.; Kraan, W.H.

    1976-01-01

    The polarization change of a polarized neutron beam after transmission through a partly magnetized ferromagnetic material can be described by a (3x3) depolarization matrix. This matrix can be expressed in terms of domain quantities such as the reduced mean magnetization M, the mean domain size delta and the mean square direction cosinus γsub(y) of the inner magnetization within the domain, and can be used for measuring magnetic properties of ferromagnetic materials. In the underlying depolarization theory it is assumed that no correlations exist between the direction of the spontaneous magnetization Bs in neighbouring domains, and between the direction of Bs and the individual domain sizes. In order to extend the measuring method for ferromagnetic materials, measurements have been made with different compressed ferrite powders assuming that the mean domain size is equal to the mean particle size. The neutron depolarization matrix is measured as a function of an alternative external magnetic field and interpreted in terms of m, γsub(y), and delta. The possibilities and limitations of the measuring method are discussed

  13. Relationship between medical compression and intramuscular pressure as an explanation of a compression paradox.

    Science.gov (United States)

    Uhl, J-F; Benigni, J-P; Cornu-Thenard, A; Fournier, J; Blin, E

    2015-06-01

    Using standing magnetic resonance imaging (MRI), we recently showed that medical compression, providing an interface pressure (IP) of 22 mmHg, significantly compressed the deep veins of the leg but not, paradoxically, superficial varicose veins. To provide an explanation for this compression paradox by studying the correlation between the IP exerted by medical compression and intramuscular pressure (IMP). In 10 legs of five healthy subjects, we studied the effects of different IPs on the IMP of the medial gastrocnemius muscle. The IP produced by a cuff manometer was verified by a Picopress® device. The IMP was measured with a 21G needle connected to a manometer. Pressure data were recorded in the prone and standing positions with cuff manometer pressures from 0 to 50 mmHg. In the prone position, an IP of less than 20 did not significantly change the IMP. On the contrary, a perfect linear correlation with the IMP (r = 0.99) was observed with an IP from 20 to 50 mmHg. We found the same correlation in the standing position. We found that an IP of 22 mmHg produced a significant IMP increase from 32 to 54 mmHg, in the standing position. At the same time, the subcutaneous pressure is only provided by the compression device, on healthy subjects. In other words, the subcutaneous pressure plus the IP is only a little higher than 22 mmHg-a pressure which is too low to reduce the caliber of the superficial veins. This is in accordance with our standing MRI 3D anatomical study which showed that, paradoxically, when applying low pressures (IP), the deep veins are compressed while the superficial veins are not. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Progress In Magnetized Target Fusion Driven by Plasma Liners

    Science.gov (United States)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; hide

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  15. Energy transfer in compressible magnetohydrodynamic turbulence for isothermal self-gravitating fluids

    Science.gov (United States)

    Banerjee, Supratik; Kritsuk, Alexei G.

    2018-02-01

    Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.

  16. Energy storage, compression, and switching. Vol. 2

    International Nuclear Information System (INIS)

    Nardi, V.; Bostick, W.H.; Sahlin, H.

    1983-01-01

    This book is a compilation of papers presented at the Second International Conference on Energy Storage, Compression, and Switching, which was held in order to assemble active researchers with a major interest in plasma physics, electron beams, electric and magnetic energy storage systems, high voltage and high current switches, free-electron lasers, and pellet implosion plasma focus. Topics covered include: Slow systems: 50-60 Hz machinery, homopolar generators, slow capacitors, inductors, and solid state switches; Intermediate systems: fast capacitor banks; superconducting storage and switching; gas, vacuum, and dielectric switching; nonlinear (magnetic) switching; imploding liners capacitors; explosive generators; and fuses; and Fast systems: Marx, Blumlein, oil, water, and pressurized water dielectrics; switches; magnetic insulation; electron beams; and plasmas

  17. Bunch Compression Stability Dependence on RF Parameters

    CERN Document Server

    Limberg, T

    2005-01-01

    In present designs for FEL's with high electron peak currents and short bunch lengths, higher harmonic RF systems are often used to optimize the final longitudinal charge distributions. This opens degrees of freedom for the choice of RF phases and amplitudes to achieve the necessary peak current with a reasonable longitudinal bunch shape. It had been found empirically that different working points result in different tolerances for phases and amplitudes. We give an analytical expression for the sensitivity of the compression factor on phase and amplitude jitter for a bunch compression scheme involving two RF systems and two magnetic chicanes as well numerical results for the case of the European XFEL.

  18. Adiabatic compression of ion rings

    International Nuclear Information System (INIS)

    Larrabee, D.A.; Lovelace, R.V.

    1982-01-01

    A study has been made of the compression of collisionless ion rings in an increasing external magnetic field, B/sub e/ = zB/sub e/(t), by numerically implementing a previously developed kinetic theory of ring compression. The theory is general in that there is no limitation on the ring geometry or the compression ratio, lambdaequivalentB/sub e/ (final)/B/sub e/ (initial)> or =1. However, the motion of a single particle in an equilibrium is assumed to be completely characterized by its energy H and canonical angular momentum P/sub theta/ with the absence of a third constant of the motion. The present computational work assumes that plasma currents are negligible, as is appropriate for a low-temperature collisional plasma. For a variety of initial ring geometries and initial distribution functions (having a single value of P/sub theta/), it is found that the parameters for ''fat'', small aspect ratio rings follow general scaling laws over a large range of compression ratios, 1 3 : The ring radius varies as lambda/sup -1/2/; the average single particle energy as lambda/sup 0.72/; the root mean square energy spread as lambda/sup 1.1/; and the total current as lambda/sup 0.79/. The field reversal parameter is found to saturate at values typically between 2 and 3. For large compression ratios the current density is found to ''hollow out''. This hollowing tends to improve the interchange stability of an embedded low β plasma. The implications of these scaling laws for fusion reactor systems are discussed

  19. The effect of compressibility on the Alfven spatial resonance heating

    International Nuclear Information System (INIS)

    Azevedo, C.A.

    1984-01-01

    The effect of compressibility of magnetic field line on the damping rate of Alfven spatial resonance heating for a high beta plasma (Kinetic pressure/magnetic pressure) was analysed, using the ideal MHD (Magnetohydrodynamic) model in cylindrical geometry for a diffuse θ-pinch with conducting wall. The dispersion relation was obtained solving the equation of motion in the plasma and vacuum regions together with boundary conditions. (Author) [pt

  20. Venous compression syndromes: Causes, diagnosis, and therapy from the radiological point of view

    International Nuclear Information System (INIS)

    Alfke, H.; Ishaque, N.; Froehlich, J.J.; Klose, K.J.

    1997-01-01

    Venous compression is a clinical entity distinct from deep vein thrombosis although the clinical signs may be indistinguishable. Reasons for venous compression are tumors, scars, hematomas, postoperative changes and anatomic variations. The differential diagnosis between compression and thrombosis is important because therapy and prognosis differ markedly between the two patient groups. Ultrasound, computed tomography and magnetic resonance tomography are the diagnostic tools of choice because they offer not only information about the intraluminal situation but also about the extraluminal pathology. (orig.) [de

  1. Kinetic theory of plasma adiabatic major radius compression in tokamaks

    International Nuclear Information System (INIS)

    Gorelenkova, M.V.; Gorelenkov, N.N.; Azizov, E.A.; Romannikov, A.N.; Herrmann, H.W.

    1998-01-01

    In order to understand the individual charged particle behavior as well as plasma macroparameters (temperature, density, etc.) during the adiabatic major radius compression (R-compression) in a tokamak, a kinetic approach is used. The perpendicular electric field from the Ohm close-quote s law at zero resistivity is made use of in order to describe particle motion during the R-compression. Expressions for both passing and trapped particle energy and pitch angle change are derived for a plasma with high aspect ratio and circular magnetic surfaces. The particle behavior near the passing trapped boundary during the compression is studied to simulate the compression-induced collisional losses of alpha particles. Qualitative agreement is obtained with the alphas loss measurements in deuterium-tritium (D-T) experiments in the Tokamak Fusion Test Reactor (TFTR) [World Survey of Activities in Controlled Fusion Research [Nucl. Fusion special supplement (1991)] (International Atomic Energy Agency, Vienna, 1991)]. The plasma macroparameters evolution at the R-compression is calculated by solving the gyroaveraged drift kinetic equation. copyright 1998 American Institute of Physics

  2. Assessment of eddy current effects on compression experiments in the TFTR tokamak

    International Nuclear Information System (INIS)

    Wong, K.L.; Park, W.

    1986-05-01

    The eddy current induced on the TFTR vacuum vessel during compression experiments is estimated based on a cylindrical model. It produces an error magnetic field that generates magnetic islands at the rational magnetic surfaces. The widths of these islands are calculated and found to have some effect on electron energy confinement. However, resistive MHD simulation results indicate that the island formation process can be slowed down by plasma rotation

  3. Laser or charged-particle-beam fusion reactor with direct electric generation by magnetic flux compression

    International Nuclear Information System (INIS)

    Lasche, G.P.

    1988-01-01

    A method for recovering energy in an inertial confinement fusion reactor having a reactor chamber and a sphere forming means positioned above an opening in the reactor chamber is described, comprising: embedding a fusion target fuel capsule having a predetermined yield in the center of a hollow solid lithium tube and subsequently embedding the hollow solid lithium tube in a liquid lithium medium; using the sphere forming means for forming the liquid lithium into a spherical shaped liquid lithium mass having a diameter smaller than the length of the hollow solid lithium tube with the hollow solid lithium tube being positioned along a diameter of the spherical shaped mass, providing the spherical shaped liquid lithium mass with the fusion fuel target capsule and hollow solid lithium tube therein as a freestanding liquid lithium shaped spherical shaped mass without any external means for maintaining the spherical shape by dropping the liquid lithium spherical shaped mass from the sphere forming means into the reactor chamber; producing a magnetic field in the reactor chamber; imploding the target capsule in the reactor chamber to produce fusion energy; absorbing fusion energy in the liquid lithium spherical shaped mass to convert substantially all the fusion energy to shock induced kinetic energy of the liquid lithium spherical shaped mass which expands the liquid lithium spherical shaped mass; and compressing the magnetic field by expansion of the liquid lithium spherical shaped mass and recovering useful energy

  4. Compressible Analysis of Bénard Convection of Magneto Rotatory Couple-Stress Fluid

    Directory of Open Access Journals (Sweden)

    Mehta C.B.

    2018-02-01

    Full Text Available Thermal Instability (Benard’s Convection in the presence of uniform rotation and uniform magnetic field (separately is studied. Using the linearized stability theory and normal mode analyses the dispersion relation is obtained in each case. In the case of rotatory Benard’s stationary convection compressibility and rotation postpone the onset of convection whereas the couple-stress have duel character onset of convection depending on rotation parameter. While in the absence of rotation couple-stress always postpones the onset of convection. On the other hand, magnetic field on thermal instability problem on couple-stress fluid for stationary convection couple-stress parameter and magnetic field postpones the onset of convection. The effect of compressibility also postpones the onset of convection in both cases as rotation and magnetic field. Graphs have been plotted by giving numerical values to the parameters to depict the stationary characteristics. Further, the magnetic field and rotation are found to introduce oscillatory modes which were non-existent in their absence and then the principle of exchange of stability is valid. The sufficient conditions for non-existence of overstability are also obtained.

  5. Neutral-beam requirements for compression-boosted ignited tokamak plasmas

    International Nuclear Information System (INIS)

    Cohn, D.R.; Jassby, D.L.; Kreischer, K.

    1977-12-01

    Neutral-beam energies of 200 to 500-keV D 0 may be required to insure adequate penetration into the center of ignition-sized tokamak plasmas. However, the beam energy requirement can be reduced by using a start-up scenario in which the final plasma is formed by major-radius compression of a beam-heated plasma whose density-radius product, na, is determined by satisfactory neutral-beam penetration. ''Compression boosting'' is attractive only for plasmas in which ntau/sub E/ increases with na, because a major-radius compression C increases na by C 3 / 2 . The dependence on C of beam energy and beam power for plasmas which obey ''empirical scaling laws'' of the type ntau/sub E/ varies as (na) 2 is analyzed. The dependences on C of stored magnetic energy and TF-coil power dissipation are also determined. It is found that a compression ratio of 1.5 to attain the ignited plasma permits adequate penetration by 150-keV D 0 beams

  6. Tilt stability and compression heating studies of field-reversed configurations

    International Nuclear Information System (INIS)

    Rej, D.J.; Tuszewski, M.; Barnes, D.C.; Barnes, G.A.; Chrien, R.E.; Siemon, R.E.; Taggart, D.P.; Webster, R.B.; Wright, B.L.; Milroy, R.D.; Crawford, E.A.; Slough, J.T.; Steinhauer, L.C.; Bailey, A.D.; Baron, M.H.; Cobb, J.W.; Staudenmeier, J.L.; Sugimoto, S.; Takahashi, T.

    1990-01-01

    The first observations of internal tilt instabilities in field-reversed configurations (FRCs) are reported. Detailed comparisons with theory establish that data from an array of external magnetic probes are signatures of these destructive plasma instabilities. This work reconciles theory and experiments and suggests that grossly stable FRCs are restricted to very kinetic and elongated plasmas. Self-consistent three-dimensional numerical simulations demonstrate tilt stabilization by the addition of a beam ion component. High-power compression heating experiments with stable equilibrium FRCs are also reported. Plasmas formed in a tapered theta-pinch coil have been translated along a guide magnetic field into a new single-turn compression coil where the external field is increased up to 7 times the initial value in 55 μs. Substantial heating is observed accompanied by a decrease in confinement time. 17 refs

  7. Interleaved EPI diffusion imaging using SPIRiT-based reconstruction with virtual coil compression.

    Science.gov (United States)

    Dong, Zijing; Wang, Fuyixue; Ma, Xiaodong; Zhang, Zhe; Dai, Erpeng; Yuan, Chun; Guo, Hua

    2018-03-01

    To develop a novel diffusion imaging reconstruction framework based on iterative self-consistent parallel imaging reconstruction (SPIRiT) for multishot interleaved echo planar imaging (iEPI), with computation acceleration by virtual coil compression. As a general approach for autocalibrating parallel imaging, SPIRiT improves the performance of traditional generalized autocalibrating partially parallel acquisitions (GRAPPA) methods in that the formulation with self-consistency is better conditioned, suggesting SPIRiT to be a better candidate in k-space-based reconstruction. In this study, a general SPIRiT framework is adopted to incorporate both coil sensitivity and phase variation information as virtual coils and then is applied to 2D navigated iEPI diffusion imaging. To reduce the reconstruction time when using a large number of coils and shots, a novel shot-coil compression method is proposed for computation acceleration in Cartesian sampling. Simulations and in vivo experiments were conducted to evaluate the performance of the proposed method. Compared with the conventional coil compression, the shot-coil compression achieved higher compression rates with reduced errors. The simulation and in vivo experiments demonstrate that the SPIRiT-based reconstruction outperformed the existing method, realigned GRAPPA, and provided superior images with reduced artifacts. The SPIRiT-based reconstruction with virtual coil compression is a reliable method for high-resolution iEPI diffusion imaging. Magn Reson Med 79:1525-1531, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Green's function of compressible Petschek-type magnetic reconnection

    International Nuclear Information System (INIS)

    Penz, Thomas; Semenov, V.S.; Ivanova, V.V.; Heyn, M.F.; Ivanov, I.B.; Biernat, H.K.

    2006-01-01

    We present a method to analyze the wave and shock structures arising from Petschek-type magnetic reconnection. Based on a time-dependent analytical approach developed by Heyn and Semenov [Phys. Plasmas 3, 2725 (1996)] and Semenov et al. [Phys. Plasmas 11, 62 (2004)], we calculate the perturbations caused by a delta function-shaped reconnection electric field, which allows us to achieve a representation of the plasma variables in the form of Green's functions. Different configurations for the initial conditions are considered. In the case of symmetric, antiparallel magnetic fields and symmetric plasma density, the well-known structure of an Alfven discontinuity, a fast body wave, a slow shock, a slow wave, and a tube wave occurs. In the case of asymmetric, antiparallel magnetic fields, additionally surface waves are found. We also discuss the case of symmetric, antiparallel magnetic fields and asymmetric densities, which leads to a faster propagation in the lower half plane, causing side waves forming a Mach cone in the upper half plane. Complex effects like anisotropic propagation characteristics, intrinsic wave coupling, and the generation of different nonlinear and linear wave modes in a finite β plasma are retained. The temporal evolution of these wave and shock structures is shown

  9. Comparison of mechanical concepts for $Nb_3Sn$ high field accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2084469; Peter, Schmolz

    Several magnets using Nb$_{3}$Sn as conductor are currently developed at CERN; these magnets are either slated for future updates of the LHC or for research purposes relating to future accelerators. The mechanical structure is one of the challenging aspects of superconducting high-field magnets. The main purpose of the mechanical structure is to keep the coils in compression till the emergence of the highest electromagnetic forces that are developed in the ultimate field of the magnet. Any loss of pre-compression during the magnet’s excitation would cause too large deformation of the coil and possibly a quench in the conductor owing to relative movements of strands in contact associated with excessive local heat release. However, too high pre-compression would overstrain the conductor and thereby limit the performance of the magnet. This thesis focuses on the mechanical behaviour of three of these magnets. All of them are based on different mechanical designs, “bladder and key” and “collar-based”, ...

  10. Antiproton compression and radial measurements

    CERN Document Server

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  11. Medullar compression caused by vertebral hemangioma

    International Nuclear Information System (INIS)

    Jaramillo Catling, Eduardo

    2005-01-01

    This is case of a 41 years old feminine patient in whom a unique primary bone tumor injury was demonstrated, diagnosed as a bone hemangioma, located at T-7, with grew and compressed the spinal cord. These bone vascular and frequently observed in the radiological studies and autopsies, in a sporadic form are only symptomatic, growing and affecting the nervous roots and the spinal cord. The clinical history of the patient is described with the preoperative studies and magnetic resonance 6 years after the surgery: The medical literature of these primary bony injuries is reviewed and as they are treated. Objectives: to present the clinical history of a patient who consults having medullar compression syndrome caused by an unusual extra-medullar tumor injury, of bony origin, primary and benign, with clinical controls 8 years after the operation and without evidence of tumor recurrences. The medical literature of this bone pathology is reviewed. Methodology: the clinical history of the patient is described, who was treated surgically successfully, because spinal cord was decompressed without neurological sequels. Vertebral instability was not observed and nor diagnosed. The patient was periodically taken care of with last control of magnetic resonance 6 years after the surgery and last medical control 8 years later. Medical publications are extensively reviewed

  12. DNABIT Compress – Genome compression algorithm

    OpenAIRE

    Rajarajeswari, Pothuraju; Apparao, Allam

    2011-01-01

    Data compression is concerned with how information is organized in data. Efficient storage means removal of redundancy from the data being stored in the DNA molecule. Data compression algorithms remove redundancy and are used to understand biologically important molecules. We present a compression algorithm, “DNABIT Compress” for DNA sequences based on a novel algorithm of assigning binary bits for smaller segments of DNA bases to compress both repetitive and non repetitive DNA sequence. Our ...

  13. Correlation of MR tomographic findings and microvascular decompression treatment of the neurovascular compressions of the cranial nerves

    International Nuclear Information System (INIS)

    Liu Zengsheng; Chen Xiangmin; Sun Yiyan; Fang Ming; Wang Ping; Guan Yong; Sun Miao

    2010-01-01

    Objective: To explore the correlation of the operation effects of the miorovascular decompression (MVD) and the findings on magnetic resonance tomographie angiography (MRTA) in patients of neurovascular compression of the cranial nerves. Methods: Two hundred and twenty three patients treated with the microvascular decompression were analyzed retrospectively. They were grouped and graded according to the vessel compression on the cranial nerves. The compression were grouped as none, moderate and severe, and the operation effects were graded as I (complete relief), II (partial relief) and III ( no relief). The operation effects grades were correlated according to the compression groups by Kruskal-Wallis test and the operation effects between each two of the groups were compared using Nemenyi test. P 2 =16.84 and P<0.05. The mean rank of the non-compression, the moderate and the severe group was 134.21,102.37 and 110.4, respectively. The difference of the mean ranks between the non-compression group and the moderate group was 31.84, and between the non-compression and the severe group was 24.17, respectively, where P<0.05 both. Conclusions: There was close relationship between the findings on magnetic resonance tomographic angiography and the operation effects of the MVD. The operation effects of patients with moderate and severe vessel compression were much better than the non-compression group. MRTA is helpful for MVD surgical indication and its prognosis. (authors)

  14. Evolution of the Orszag-Tang vortex system in a compressible medium. I - Initial average subsonic flow

    Science.gov (United States)

    Dahlburg, R. B.; Picone, J. M.

    1989-01-01

    The results of fully compressible, Fourier collocation, numerical simulations of the Orszag-Tang vortex system are presented. The initial conditions for this system consist of a nonrandom, periodic field in which the magnetic and velocity field contain X points but differ in modal structure along one spatial direction. The velocity field is initially solenoidal, with the total initial pressure field consisting of the superposition of the appropriate incompressible pressure distribution upon a flat pressure field corresponding to the initial, average Mach number of the flow. In these numerical simulations, this initial Mach number is varied from 0.2-0.6. These values correspond to average plasma beta values ranging from 30.0 to 3.3, respectively. It is found that compressible effects develop within one or two Alfven transit times, as manifested in the spectra of compressible quantities such as the mass density and the nonsolenoidal flow field. These effects include (1) a retardation of growth of correlation between the magnetic field and the velocity field, (2) the emergence of compressible small-scale structure such as massive jets, and (3) bifurcation of eddies in the compressible flow field. Differences between the incompressible and compressible results tend to increase with increasing initial average Mach number.

  15. Method of controlling coherent synchroton radiation-driven degradation of beam quality during bunch length compression

    Science.gov (United States)

    Douglas, David R [Newport News, VA; Tennant, Christopher D [Williamsburg, VA

    2012-07-10

    A method of avoiding CSR induced beam quality defects in free electron laser operation by a) controlling the rate of compression and b) using a novel means of integrating the compression with the remainder of the transport system: both are accomplished by means of dispersion modulation. A large dispersion is created in the penultimate dipole magnet of the compression region leading to rapid compression; this large dispersion is demagnified and dispersion suppression performed in a final small dipole. As a result, the bunch is short for only a small angular extent of the transport, and the resulting CSR excitation is small.

  16. Interplay between electric and magnetic effect in adiabatic polaritonic systems

    KAUST Repository

    Alabastri, Alessandro; Toma, Andrea; Liberale, Carlo; Chirumamilla, Manohar; Giugni, Andrea; De Angelis, Francesco De; Das, Gobind; Di Fabrizio, Enzo M.; Proietti Zaccaria, Remo

    2013-01-01

    We report on the possibility of realizing adiabatic compression of polaritonic wave on a metallic conical nano-structure through an oscillating electric potential (quasi dynamic regime). By comparing this result with an electromagnetic wave excitation, we were able to relate the classical lighting-rod effect to adiabatic compression. Furthermore, we show that while the magnetic contribution plays a marginal role in the formation of adiabatic compression, it provides a blue shift in the spectral region. In particular, magnetic permeability can be used as a free parameter for tuning the polaritonic resonances. The peculiar form of adiabatic compression is instead dictated by both the source and the metal permittivity. The analysis is performed by starting from a simple electrostatic system to end with the complete electromagnetic one through intermediate situations such as the quasi-electrostatic and quasi-dynamic regimes. Each configuration is defined by a particular set of equations which allows to clearly determine the individual role played by the electric and magnetic contribution in the generation of adiabatic compression. We notice that these findings can be applied for the realization of a THz nano-metric generator. © 2013 Optical Society of America.

  17. [Neurovascular compression of the medulla oblongata: a rare cause of secondary hypertension].

    Science.gov (United States)

    Nádas, Judit; Czirják, Sándor; Igaz, Péter; Vörös, Erika; Jermendy, György; Rácz, Károly; Tóth, Miklós

    2014-05-25

    Compression of the rostral ventrolateral medulla oblongata is one of the rarely identified causes of refractory hypertension. In patients with severe, intractable hypertension caused by neurovascular compression, neurosurgical decompression should be considered. The authors present the history of a 20-year-old man with severe hypertension. After excluding other possible causes of secondary hypertension, the underlying cause of his high blood pressure was identified by the demonstration of neurovascular compression shown by magnetic resonance angiography and an increased sympathetic activity (sinus tachycardia) during the high blood pressure episodes. Due to frequent episodes of hypertensive crises, surgical decompression was recommended, which was performed with the placement of an isograft between the brainstem and the left vertebral artery. In the first six months after the operation, the patient's blood pressure could be kept in the normal range with significantly reduced doses of antihypertensive medication. Repeat magnetic resonance angiography confirmed the cessation of brainstem compression. After six months, increased blood pressure returned periodically, but to a smaller extent and less frequently. Based on the result of magnetic resonance angiography performed 22 months after surgery, re-operation was considered. According to previous literature data long-term success can only be achieved in one third of patients after surgical decompression. In the majority of patients surgery results in a significant decrease of blood pressure, an increased efficiency of antihypertensive therapy as well as a decrease in the frequency of highly increased blood pressure episodes. Thus, a significant improvement of the patient's quality of life can be achieved. The case of this patient is an example of the latter scenario.

  18. Tuning of Transport and Magnetic Properties in Epitaxial LaMnO3+δ Thin Films

    Directory of Open Access Journals (Sweden)

    J. Chen

    2014-01-01

    Full Text Available The effect of compressive strain on the transport and magnetic properties of epitaxial LaMnO3+δ thin films has been investigated. It is found that the transport and magnetic properties of the LaMnO3+δ thin films grown on the LaAlO3 substrates can be tuned by the compressive strain through varying film thickness. And the insulator-metal transition, charge/orbital ordering transition, and paramagnetic-ferromagnetic transition are suppressed by the compressive strain. Consequently, the related electronic and magnetic transition temperatures decrease with an increase in the compressive strain. The present results can be explained by the strain-controlled lattice deformation and the consequent orbital occupation. It indicates that the lattice degree of freedom is crucial for understanding the transport and magnetic properties of the strongly correlated LaMnO3+δ.

  19. Performance of the 10-kV, 5-MA pulsed-power system for the FRX-C compression experiment

    International Nuclear Information System (INIS)

    Rej, D.J.; Waganaar, W.J.

    1991-01-01

    Performance data are presented for the 10-kV, 5-MA, 1.5-MJ pulsed-power system developed for the Los Alamos magnetic fusion facility FRX-C. This system energizes a low-inductance magnet for the high-power, compression heating of compact toroid plasmas. An ignitron-switched, 20-mF, 10-kV, 4-MA capacitor bank is discharged to produce the main compression field, while an inductively-isolated, 10-mF, 10-kV, 1-MA bank generates an initial magnetic field to accept the translated plasma. To date, the complete system has successfully operated for two years and approximately 2000 high-power discharges. Component performance during typical and fault-mode operation is reviewed. 5 refs., 5 figs

  20. A semi-analytic model of magnetized liner inertial fusion

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Ryan D.; Slutz, Stephen A. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  1. MR imaging of medullary compression due to vertebral metastases

    International Nuclear Information System (INIS)

    Dooms, G.C.; Mathurin, P.; Maldague, B.; Cornelis, G.; Malghem, J.; Demeure, R.

    1987-01-01

    A prospective study was performed to assess the value of MR imaging for demonstrating medullary compression due to vertebral metastases in cancer patients clinically suspected of presenting with that complication. Twenty-five consecutive unselected patients were studied, and the MR imaging findings were confirmed by myelography, CT, and/or surgical and autopsy findings for each patient. The MR examinations were performed with a superconducting magnet (Philips Gyroscan S15) operating at 0.5-T. MR imaging demonstrated the metastases (single or multiple) mainly on T1- weighted images (TR = 0.45 sec and TE = 20 msec). Soft-tissue tumoral mass and/or deformity of a vertebral body secondary to metastasis, compressing the spinal cord, was equally demonstrated on T1- and heavily T2-weighted images (TR = 1.65 sec and TE = 100 msec). In the sagittal plane, MR imaging demonstrated the exact level of the compression (one or multiple levels) and its full extent. In conclusion, MR is the first imaging modality for studying cancer patients with clinically suspected medullary compression and obviates the need for more invasive procedures

  2. The relationship between central motor conduction time and spinal cord compression in patients with cervical spondylotic myelopathy.

    Science.gov (United States)

    Rikita, T; Tanaka, N; Nakanishi, K; Kamei, N; Sumiyoshi, N; Kotaka, S; Adachi, N; Ochi, M

    2017-04-01

    Retrospective study. Few studies have reported a relationship between central motor conduction time (CMCT), which evaluates corticospinal function, and degree of spinal cord compression in patients with myelopathy. Thus, there is no consensus on predicting the degree of prolonged CMCT on the basis of the degree of spinal cord compression. If a correlation exists between CMCT and spinal cord compression, then spinal cord compression may be a useful noninvasive clinical indicator of corticospinal function. Therefore, this study evaluated the relationship between CMCT and cervical spinal cord compression measured by magnetic resonance imaging (MRI) in patients with cervical spondylotic myelopathy (CSM). Hiroshima University Hospital in Japan. We studied 33 patients undergoing laminoplasty. Patients exhibited significant cervical spinal cord compression on both MRI and intraoperative electrophysiological examination. We assessed transcranial magnetic stimulation measurement of CMCT; spinal cord compression parameters such as area, lateral diameter, anteroposterior diameter and flattening of the spinal cord at the lesion site and C2/3 levels on MRI; and pre- versus postoperative Japanese Orthopaedic Association (JOA) scores. Correlations between CMCT and flattening as well as anteroposterior diameter of the spinal cord at the lesion level were observed. Strong correlations between CMCT and the ratio of the flattening and anteroposterior diameter parameters at the lesion level to that at the C2/3 level were also observed. Measurement of spinal cord compression may be useful for the evaluation of corticospinal function as a proxy for CMCT in patients with CSM.

  3. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas.

    Science.gov (United States)

    Lynn, Alan G; Gilmore, Mark

    2014-11-01

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10(4) T (100 Megagauss) over small volumes (∼10(-10)m(3)) at high plasma densities (∼10(28)m(-3)) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  4. Compressive myelopathy of the cervical spine in Komodo dragons (Varanus komodoensis).

    Science.gov (United States)

    Zimmerman, Dawn M; Douglass, Michael; Sutherland-Smith, Meg; Aguilar, Roberto; Schaftenaar, Willem; Shores, Andy

    2009-03-01

    Cervical subluxation and compressive myelopathy appears to be a cause of morbidity and mortality in captive Komodo dragons (Varanus komodoensis). Four cases of cervical subluxation resulting in nerve root compression or spinal cord compression were identified. Three were presumptively induced by trauma, and one had an unknown inciting cause. Two dragons exhibited signs of chronic instability. Cervical vertebrae affected included C1-C4. Clinical signs on presentation included ataxia, ambulatory paraparesis or tetraparesis to tetraplegia, depression to stupor, cervical scoliosis, and anorexia. Antemortem diagnosis of compression was only confirmed with magnetic resonance imaging or computed tomography. Treatment ranged from supportive care to attempted surgical decompression. All dragons died or were euthanatized, at 4 days to 12 mo postpresentation. Studies to define normal vertebral anatomy in the species are necessary to determine whether the pathology is linked to cervical malformation, resulting in ligament laxity, subsequent instability, and subluxation.

  5. Medical image compression by using three-dimensional wavelet transformation

    International Nuclear Information System (INIS)

    Wang, J.; Huang, H.K.

    1996-01-01

    This paper proposes a three-dimensional (3-D) medical image compression method for computed tomography (CT) and magnetic resonance (MR) that uses a separable nonuniform 3-D wavelet transform. The separable wavelet transform employs one filter bank within two-dimensional (2-D) slices and then a second filter bank on the slice direction. CT and MR image sets normally have different resolutions within a slice and between slices. The pixel distances within a slice are normally less than 1 mm and the distance between slices can vary from 1 mm to 10 mm. To find the best filter bank in the slice direction, the authors use the various filter banks in the slice direction and compare the compression results. The results from the 12 selected MR and CT image sets at various slice thickness show that the Haar transform in the slice direction gives the optimum performance for most image sets, except for a CT image set which has 1 mm slice distance. Compared with 2-D wavelet compression, compression ratios of the 3-D method are about 70% higher for CT and 35% higher for MR image sets at a peak signal to noise ratio (PSNR) of 50 dB. In general, the smaller the slice distance, the better the 3-D compression performance

  6. Dynamic alteration of regional cerebral blood flow during carotid compression and proof of reversibility

    International Nuclear Information System (INIS)

    Asahi, Kouichi; Hori, M; Hamasaki, N; Sato, S; Nakanishi, H; Kuwatsuru, R; Sasai, K; Aoki, S

    2012-01-01

    It is difficult to non-invasively visualize changes in regional cerebral blood flow caused by manual compression of the carotid artery. To visualize dynamic changes in regional cerebral blood flow during and after manual compression of the carotid artery. Two healthy volunteers were recruited. Anatomic features and flow directions in the circle of Willis were evaluated with time-of-flight magnetic resonance angiography (MRA) and two-dimensional phase-contrast (2DPC) MRA, respectively. Regional cerebral blood flow was visualized with territorial arterial spin-labeling magnetic resonance imaging (TASL-MRI). TASL-MRI and 2DPC-MRA were performed in three states: at rest, during manual compression of the right carotid artery, and after decompression. In one volunteer, time-space labeling inversion pulse (Time-SLIP) MRA was performed to confirm collateral flow. During manual carotid compression, in one volunteer, the right thalamus changed to be fed only by the vertebrobasilar system, and the right basal ganglia changed to be fed by the left internal carotid artery. In the other volunteer, the right basal ganglia changed to be fed by the vertebrobasilar system. 2DPC-MRA showed that the flow direction changed in the right A1 segment of the anterior cerebral artery and the right posterior communicating artery. Perfusion patterns and flow directions recovered after decompression. Time-SLIP MRA showed pial vessels and dural collateral circulation when the right carotid artery was manually compressed. Use of TASL-MRI and 2DPC-MRA was successful for non-invasive visualization of the dynamic changes in regional cerebral blood flow during and after manual carotid compression

  7. Isentropic compression with the SPHINX machine

    International Nuclear Information System (INIS)

    D'almeida, T; Lasalle, F.; Morell, A.; Grunenwald, J.; Zucchini, F.; Loyen, A.

    2013-01-01

    The SPHINX machine is a generator of pulsed high power (Class 6 MA, 1 μs) that can be used in the framework of inertial fusion for achieving isentropic compression experiments. The magnetic field created by the current impulse generates a quasi-isentropic compression of a metallic liner. In order to optimize this mode of operation, the current impulse is shaped through a device called DLCM (Dynamic Load Current Multiplier). The DLCM device allows both the increase of the amplitude of the current injected into the liner and its shaping. Some preliminary results concerning an aluminium liner are reported. The measurement of the speed of the internal surface of the liner during its implosion and over a quite long trajectory has been possible by interferometry and the results agree well with simulations based on the experimental value of the current delivered to the liner

  8. Magnetic resonance imaging in cervical spinal cord compression

    Directory of Open Access Journals (Sweden)

    Giovanni Giammona

    1993-09-01

    Full Text Available In patients with cervical spondylotic myelopathy MRI sometimes shows increased signal intensity zones on the T2-weighted images. It has been suggested that these findings carry prognostic significance. We studied 56 subjects with cervical spinal cord compression. Twelve patients showed an increased signal intensity (21.4% and a prevalence of narrowing of the AP-diameter (62% vs 24%. Furthemore, in this group, there was evidence of a longer mean duration of the symptoms and, in most of the patients, of more serious clinical conditions. The importance of these predisposing factors remains, however, to be clarified since they are also present in some patients without the increased signal intensity.

  9. The Longitudinal Effective CSR Force at Mild Compression

    International Nuclear Information System (INIS)

    Rui Li

    2005-01-01

    In the scheme of magnetic bunch compression, an electron bunch with linear energy chirp (energy-bunch length correlation), imposed by an upstream RF cavity, is sent to a magnetic chicane. The bunch length at the exit of the chicane can thus be manipulated via the pathlength-energy dependence due to chicane dispersion. As a linear energy-chirped bunch ((delta)-z correlation) being transported through a dispersive region (x-(delta) correlation), the bunch will have a linear horizontal-longitudinal (x-z) correlation in the configuration space (bunch tilt). Comparing to the case of a nontilted bunch, this x-z correlation modifies the geometry of particle interaction with respect to the direction of particle motion, which consequently modifies the retardation solution and the effective CSR forces. The simulation result of the CSR field for a tilted thin beam was presented earlier by Dohlus [1]. In this paper, we first give an example of the bunch x-z correlation, or bunch tilt, in a bunch compression chicane. The effect of this x-z correlation on the retardation solution and the longitudinal effective force are then analyzed for a line bunch with linear energy chirp transported by design optics

  10. Comparative data compression techniques and multi-compression results

    International Nuclear Information System (INIS)

    Hasan, M R; Ibrahimy, M I; Motakabber, S M A; Ferdaus, M M; Khan, M N H

    2013-01-01

    Data compression is very necessary in business data processing, because of the cost savings that it offers and the large volume of data manipulated in many business applications. It is a method or system for transmitting a digital image (i.e., an array of pixels) from a digital data source to a digital data receiver. More the size of the data be smaller, it provides better transmission speed and saves time. In this communication, we always want to transmit data efficiently and noise freely. This paper will provide some compression techniques for lossless text type data compression and comparative result of multiple and single compression, that will help to find out better compression output and to develop compression algorithms

  11. Study of the microstructural evolution and rheological behavior by semisolid compression between parallel plate of the alloy A356 solidified under a continuously rotating magnetic field

    International Nuclear Information System (INIS)

    Leiva L, Ricardo; Sanchez V, Cristian; Mannheim C, Rodolfo; Bustos C, Oscar

    2004-01-01

    This work presents a study of the rheological behavior of the alloy A356, with and without continuous magnetic agitation during its solidification, in semisolid state. The evaluation was performed using a parallel plate compression rheometer with the digital recording of position and time data. The microstructural evolution was also studied at the start and end of the semisolid compression test. The procedure involved tests of short cylinders extracted from billets with a non dendritic microstructure cast under a continuously rotating magnetic field. These pieces were tested in different solid fractions, at constant charges and at constant deformation velocities. When the test is carried out at a constant charge the equation can be determined that governs the rheological behavior of the material in semisolid state following a power grade of two Ostwald-de-Waele parameters. But when the test is done at a constant deformation speed the flow behavior of the material can be described in the semisolid shaping process. The results obtained show that the morphology of the phases present in the microstructure is highly relevant to its rheological behavior. A globular coalesced rosette to rosette type microstructure was found to have the typical behavior of a fluid when shaped in a semisolid state but a cast dendritic structure did not behave this way. Also the Arrhenius type dependence of viscosity with temperature was established (CW)

  12. Data compression with applications to digital radiology

    International Nuclear Information System (INIS)

    Elnahas, S.E.

    1985-01-01

    The structure of arithmetic codes is defined in terms of source parsing trees. The theoretical derivations of algorithms for the construction of optimal and sub-optimal structures are presented. The software simulation results demonstrate how arithmetic coding out performs variable-length to variable-length coding. Linear predictive coding is presented for the compression of digital diagnostic images from several imaging modalities including computed tomography, nuclear medicine, ultrasound, and magnetic resonance imaging. The problem of designing optimal predictors is formulated and alternative solutions are discussed. The results indicate that noiseless compression factors between 1.7 and 7.4 can be achieved. With nonlinear predictive coding, noisy and noiseless compression techniques are combined in a novel way that may have a potential impact on picture archiving and communication systems in radiology. Adaptive fast discrete cosine transform coding systems are used as nonlinear block predictors, and optimal delta modulation systems are used as nonlinear sequential predictors. The off-line storage requirements for archiving diagnostic images are reasonably reduced by the nonlinear block predictive coding. The online performance, however, seems to be bounded by that of the linear systems. The subjective quality of image imperfect reproductions from the cosine transform coding is promising and prompts future research on the compression of diagnostic images by transform coding systems and the clinical evaluation of these systems

  13. Detection of compression vessels in trigeminal neuralgia by surface-rendering three-dimensional reconstruction of 1.5- and 3.0-T magnetic resonance imaging.

    Science.gov (United States)

    Shimizu, Masahiro; Imai, Hideaki; Kagoshima, Kaiei; Umezawa, Eriko; Shimizu, Tsuneo; Yoshimoto, Yuhei

    2013-01-01

    Surface-rendered three-dimensional (3D) 1.5-T magnetic resonance (MR) imaging is useful for presurgical simulation of microvascular decompression. This study compared the sensitivity and specificity of 1.5- and 3.0-T surface-rendered 3D MR imaging for preoperative identification of the compression vessels of trigeminal neuralgia. One hundred consecutive patients underwent microvascular decompression for trigeminal neuralgia. Forty and 60 patients were evaluated by 1.5- and 3.0-T MR imaging, respectively. Three-dimensional MR images were constructed on the basis of MR imaging, angiography, and venography data and evaluated to determine the compression vessel before surgery. MR imaging findings were compared with the microsurgical findings to compare the sensitivity and specificity of 1.5- and 3.0-T MR imaging. The agreement between MR imaging and surgical findings depended on the compression vessels. For superior cerebellar artery, 1.5- and 3.0-T MR imaging had 84.4% and 82.7% sensitivity and 100% and 100% specificity, respectively. For anterior inferior cerebellar artery, 1.5- and 3.0-T MR imaging had 33.3% and 50% sensitivity and 92.9% and 95% specificity, respectively. For the petrosal vein, 1.5- and 3.0-T MR imaging had 75% and 64.3% sensitivity and 79.2% and 78.1% specificity, respectively. Complete pain relief was obtained in 36 of 40 and 55 of 60 patients undergoing 1.5- and 3.0-T MR imaging, respectively. The present study showed that both 1.5- and 3.0-T MR imaging provided high sensitivity and specificity for preoperative assessment of the compression vessels of trigeminal neuralgia. Preoperative 3D imaging provided very high quality presurgical simulation, resulting in excellent clinical outcomes. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Effects of particle exhaust on neutral compression ratios in DIII-D

    International Nuclear Information System (INIS)

    Colchin, R.J.; Maingi, R.; Wade, M.R.; Allen, S.L.; Greenfield, C.M.

    1998-08-01

    In this paper, neutral particles in DIII-D are studied via their compression in the plenum and via particle exhaust. The compression of gas in the plena is examined in terms of the magnetic field configuration and wall conditions. DIII-D compression ratios are observed in the range from 1 to ≥ 1,000. Particle control ultimately depends on the exhaust of neutrals via plenum or wall pumping. Wall pumping or outgassing is calculated by means of a detailed particle balance throughout individual discharges, and its effect on particle control is discussed. It is demonstrated that particle control through wall conditioning leads to lower normalized densities. A two-region model shows that the gas compression ratio (C div = divertor plenum neutral pressure/torus neutral pressure) can be interpreted in relation to gas flows in the torus and divertor including the pumping speed of the plenum cryopumps, plasma pumping, and the pumping or outgassing of the walls

  15. A Novel Compressed Sensing Method for Magnetic Resonance Imaging: Exponential Wavelet Iterative Shrinkage-Thresholding Algorithm with Random Shift

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2016-01-01

    Full Text Available Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS. It is composed of three successful components: (i exponential wavelet transform, (ii iterative shrinkage-thresholding algorithm, and (iii random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches.

  16. A Novel Compressed Sensing Method for Magnetic Resonance Imaging: Exponential Wavelet Iterative Shrinkage-Thresholding Algorithm with Random Shift

    Science.gov (United States)

    Zhang, Yudong; Yang, Jiquan; Yang, Jianfei; Liu, Aijun; Sun, Ping

    2016-01-01

    Aim. It can help improve the hospital throughput to accelerate magnetic resonance imaging (MRI) scanning. Patients will benefit from less waiting time. Task. In the last decade, various rapid MRI techniques on the basis of compressed sensing (CS) were proposed. However, both computation time and reconstruction quality of traditional CS-MRI did not meet the requirement of clinical use. Method. In this study, a novel method was proposed with the name of exponential wavelet iterative shrinkage-thresholding algorithm with random shift (abbreviated as EWISTARS). It is composed of three successful components: (i) exponential wavelet transform, (ii) iterative shrinkage-thresholding algorithm, and (iii) random shift. Results. Experimental results validated that, compared to state-of-the-art approaches, EWISTARS obtained the least mean absolute error, the least mean-squared error, and the highest peak signal-to-noise ratio. Conclusion. EWISTARS is superior to state-of-the-art approaches. PMID:27066068

  17. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in a Background Plasma

    International Nuclear Information System (INIS)

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.; Startsev, E.A.; Barnard, J.J.; Friedman, A.; Lee, E.P.; Lidia, S.M.; Logan, B.G.; Roy, P.K.; Seidl, P.A.; Welch, D.R.; Sefkow, A.B.

    2009-01-01

    Neutralized drift compression offers an effective method for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the drift-compression section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, resulting in more than 10,000 times increase in the beam number density during this process. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present theoretical understanding of the drift compression process and plasma neutralization of intense particle beams. The optimal configuration of focusing and neutralizing elements is discussed in this paper.

  18. Cervical myelopathy: magnetic imaging findings

    International Nuclear Information System (INIS)

    Kholin, A.V.; Makarov, A.Yu.; Gurevich, D.V.

    1996-01-01

    69 patients with clinical signs of cervical myelopathy were examined using magnetic imaging (T1- and T2-suspended tomograms of the sagittal and transverse section using a device with 0.04 T field intensity). Vertebral disk hernias were revealed in 35 patients, compression of the spinal cord with metastases into vertebral body in 2, extramedullary tumor in 11, intramedullary tumor in 9, and syringomyelia in 12 patients. T2-suspended tomograms proved to be more informative due to their higher sensitivity to aqueous content. T1-suspended tomograms help assess the degree of spinal cord compression and the direction of the disk protrusion. Magnetic imaging is an informative method used for objective identification of the cases of myelopathy of cervical localization [ru

  19. Self-organization in three-dimensional compressible magnetohydrodynamic flow

    International Nuclear Information System (INIS)

    Horiuchi, Ritoku; Sato, Tetsuya.

    1987-07-01

    A three-dimensional self-organization process of a compressible dissipative plasma with a velocity-magnetic field correlation is investigated in detail by means of a variational method and a magnetohydrodynamic simulation. There are two types of relaxation, i.e., fast relaxation in which the cross helicity is not conserved, and slow relaxation in which the cross helicity is approximately conserved. In the slow relaxation case the cross helicity consists of two components with opposite sign which have almost the same amplitude in the large wavenumber region. In both cases the system approaches a high correlation state, dependent on the initial condition. These results are consistent with an observational data of the solar wind. Selective dissipation of magnetic energy, normal cascade of magnetic energy spectrum and inverse cascade of magnetic helicity spectrum are observed for the sub-Alfvenic flow case as was previously observed for the zero flow case. When the flow velocity is super-Alfvenic, the relaxation process is significantly altered from the zero flow case. (author)

  20. Effect of magnetic water on strength and workability of high performance concrete

    Directory of Open Access Journals (Sweden)

    Moosa Mazloom

    2016-09-01

    Full Text Available Nowadays, concrete is one of the most important and widely used human product. Improving concrete characteristics have always been one of the fundamental subjects for engineers. Improve the physical properties of water, as one of the main elements of concrete, is one way to improve the characteristics of the concrete. When water passes through the magnetic field, its physical quality has changed, it is called Magnetic water. This study examines the effect of the use of magnetized water (MW with a solenoid current-carrying, on the compressive strength and workability of high performance concrete. The variables of this study were the intensity of magnetic field, the silica fume replacement level and water to cement ratio in different mixes. The results show that using MW increases the workability of concrete about 36% in average.MW in combination with superplasticizer is more effective than MW on workability and compressive strength of concrete. MW had more positive effects on the samples without silica fume. Increasing the intensity of magnetic field improved the workability, 28 and 90 days compressive strength concrete.

  1. Efficient Lossy Compression for Compressive Sensing Acquisition of Images in Compressive Sensing Imaging Systems

    Directory of Open Access Journals (Sweden)

    Xiangwei Li

    2014-12-01

    Full Text Available Compressive Sensing Imaging (CSI is a new framework for image acquisition, which enables the simultaneous acquisition and compression of a scene. Since the characteristics of Compressive Sensing (CS acquisition are very different from traditional image acquisition, the general image compression solution may not work well. In this paper, we propose an efficient lossy compression solution for CS acquisition of images by considering the distinctive features of the CSI. First, we design an adaptive compressive sensing acquisition method for images according to the sampling rate, which could achieve better CS reconstruction quality for the acquired image. Second, we develop a universal quantization for the obtained CS measurements from CS acquisition without knowing any a priori information about the captured image. Finally, we apply these two methods in the CSI system for efficient lossy compression of CS acquisition. Simulation results demonstrate that the proposed solution improves the rate-distortion performance by 0.4~2 dB comparing with current state-of-the-art, while maintaining a low computational complexity.

  2. Optimization of current waveform tailoring for magnetically driven isentropic compression experiments

    Energy Technology Data Exchange (ETDEWEB)

    Waisman, E. M.; Reisman, D. B.; Stoltzfus, B. S.; Stygar, W. A.; Cuneo, M. E.; Haill, T. A.; Davis, J.-P.; Brown, J. L.; Seagle, C. T. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Spielman, R. B. [Idaho State University, Pocatello, Idaho 83201 (United States)

    2016-06-15

    The Thor pulsed power generator is being developed at Sandia National Laboratories. The design consists of up to 288 decoupled and transit time isolated capacitor-switch units, called “bricks,” that can be individually triggered to achieve a high degree of pulse tailoring for magnetically driven isentropic compression experiments (ICE) [D. B. Reisman et al., Phys. Rev. Spec. Top.–Accel. Beams 18, 090401 (2015)]. The connecting transmission lines are impedance matched to the bricks, allowing the capacitor energy to be efficiently delivered to an ICE strip-line load with peak pressures of over 100 GPa. Thor will drive experiments to explore equation of state, material strength, and phase transition properties of a wide variety of materials. We present an optimization process for producing tailored current pulses, a requirement for many material studies, on the Thor generator. This technique, which is unique to the novel “current-adder” architecture used by Thor, entirely avoids the iterative use of complex circuit models to converge to the desired electrical pulse. We begin with magnetohydrodynamic simulations for a given material to determine its time dependent pressure and thus the desired strip-line load current and voltage. Because the bricks are connected to a central power flow section through transit-time isolated coaxial cables of constant impedance, the brick forward-going pulses are independent of each other. We observe that the desired equivalent forward-going current driving the pulse must be equal to the sum of the individual brick forward-going currents. We find a set of optimal brick delay times by requiring that the L{sub 2} norm of the difference between the brick-sum current and the desired forward-going current be a minimum. We describe the optimization procedure for the Thor design and show results for various materials of interest.

  3. Micromagnetic modeling of the effects of stress on magnetic properties

    International Nuclear Information System (INIS)

    Zhu, B.; Lo, C. C. H.; Lee, S. J.; Jiles, D. C.

    2001-01-01

    A micromagnetic model has been developed for investigating the effect of stress on the magnetic properties of thin films. This effect has been implemented by including the magnetoelastic energy term into the Landau - Lifshitz - Gilbert equation. Magnetization curves of a nickel film were calculated under both tensile and compressive stresses of various magnitudes applied along the field direction. The modeling results show that coercivity increased with increasing compressive stress while remanence decreased with increasing tensile stress. The results are in agreement with the experimental data in the literature and can be interpreted in terms of the effects of the applied stress on the irreversible rotation of magnetic moments during magnetization reversal under an applied field. [copyright] 2001 American Institute of Physics

  4. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped with...

  5. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  6. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1979-01-01

    A lateral restraint and control systemm for a nuclear reactor core provides an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit is composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased by an amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  7. Magnetic Diagnostics on the Magnetized Shock Experiment (MSX)

    Science.gov (United States)

    Hutchinson, T. M.; Weber, T. E.; Boguski, J. C.; Intrator, T. P.; Smith, R. J.; Dunn, J. P.

    2013-10-01

    The Magnetized Shock Experiment (MSX) at Los Alamos National Laboratory was built to investigate the physics of high-Alfvénic, supercritical, magnetized shocks through the acceleration and subsequent stagnation of a Field Reversed Configuration (FRC) plasmoid against a magnetic mirror and/or plasma target. An array of high-bandwidth, multi-axis, robust, internal magnetic probes has been constructed to characterize flux compression ratios, instability formation, and turbulent macro-scale features of the post-shock plasma. The mirror magnet is mounted on a linear translation stage, providing a capability to axially move the shock layer through the probe field of view. An independent, external probe array also provides conventional information on the FRC shape, velocity, and total pressure during the formation and acceleration phases. Probe design, characterization, configuration, and initial results are presented. This work is supported by the DOE OFES and NNSA under LANS contract DE-AC52-06NA25369. LA-UR-13-25189.

  8. Modeling two-stage bunch compression with wakefields: Macroscopic properties and microbunching instability

    Directory of Open Access Journals (Sweden)

    R. A. Bosch

    2008-09-01

    Full Text Available In a two-stage compression and acceleration system, where each stage compresses a chirped bunch in a magnetic chicane, wakefields affect high-current bunches. The longitudinal wakes affect the macroscopic energy and current profiles of the compressed bunch and cause microbunching at short wavelengths. For macroscopic wavelengths, impedance formulas and tracking simulations show that the wakefields can be dominated by the resistive impedance of coherent edge radiation. For this case, we calculate the minimum initial bunch length that can be compressed without producing an upright tail in phase space and associated current spike. Formulas are also obtained for the jitter in the bunch arrival time downstream of the compressors that results from the bunch-to-bunch variation of current, energy, and chirp. Microbunching may occur at short wavelengths where the longitudinal space-charge wakes dominate or at longer wavelengths dominated by edge radiation. We model this range of wavelengths with frequency-dependent impedance before and after each stage of compression. The growth of current and energy modulations is described by analytic gain formulas that agree with simulations.

  9. Optimization of Multi-layer Active Magnetic Regenerator towards Compact and Efficient Refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2016-01-01

    Magnetic refrigerators can theoretically be more efficient than current vapor compression systems and use no vapor refrigerants with global warming potential. The core component, the active magnetic regenerator (AMR) operates based on the magnetocaloric effect of magnetic materials and the heat r....... In addition, simulations are carried out to investigate the potential of applying nanofluid in future magnetic refrigerators.......Magnetic refrigerators can theoretically be more efficient than current vapor compression systems and use no vapor refrigerants with global warming potential. The core component, the active magnetic regenerator (AMR) operates based on the magnetocaloric effect of magnetic materials and the heat...... their Curie temperature. Simulations are implemented to investigate how to layer the FOPT materials for obtaining higher cooling capacity. Moreover, based on entropy generation minimization, optimization of the regenerator geometry and related operating parameters is presented for improving the AMR efficiency...

  10. Pituitary stalk compression by the dorsum sellae: possible cause for late childhood onset growth disorders.

    Science.gov (United States)

    Taoka, Toshiaki; Iwasaki, Satoru; Okamoto, Shingo; Sakamoto, Masahiko; Nakagawa, Hiroyuki; Otake, Shoichiro; Fujioka, Masayuki; Hirohashi, Shinji; Kichikawa, Kimihiko

    2006-06-01

    The purpose of this study was to evaluate the relationship between pituitary stalk compression by the dorsum sellae and clinical or laboratory findings in short stature children. We retrospectively reviewed magnetic resonance images of the pituitary gland and pituitary stalk for 34 short stature children with growth hormone (GH) deficiency and 24 age-matched control cases. We evaluated the degree of pituitary stalk compression caused by the dorsum sellae. Body height, GH level, pituitary height and onset age of the short stature were statistically compared between cases of pituitary stalk compression with associated stalk deformity and cases without compression. Compression of the pituitary stalk with associated stalk deformity was seen in nine cases within the short stature group. There were no cases observed in the control group. There were no significant differences found for body height, GH level and pituitary height between the cases of pituitary stalk compression with associated stalk deformity and cases without compression. However, a significant difference was seen in the onset age between cases with and without stalk compression. Pituitary stalk compression with stalk deformity caused by the dorsum sellae was significantly correlated with late childhood onset of short stature.

  11. Acoustically Driven Magnetized Target Fusion At General Fusion: An Overview

    Science.gov (United States)

    O'Shea, Peter; Laberge, M.; Donaldson, M.; Delage, M.; the Fusion Team, General

    2016-10-01

    Magnetized Target Fusion (MTF) involves compressing an initial magnetically confined plasma of about 1e23 m-3, 100eV, 7 Tesla, 20 cm radius, >100 μsec life with a 1000x volume compression in 100 microseconds. If near adiabatic compression is achieved, the final plasma of 1e26 m-3, 10keV, 700 Tesla, 2 cm radius, confined for 10 μsec would produce interesting fusion energy gain. General Fusion (GF) is developing an acoustic compression system using pneumatic pistons focusing a shock wave on the CT plasma in the center of a 3 m diameter sphere filled with liquid lead-lithium. Low cost driver, straightforward heat extraction, good tritium breeding ratio and excellent neutron protection could lead to a practical power plant. GF (65 employees) has an active plasma R&D program including both full scale and reduced scale plasma experiments and simulation of both. Although acoustic driven compression of full scale plasmas is the end goal, present compression studies use reduced scale plasmas and chemically accelerated Aluminum liners. We will review results from our plasma target development, motivate and review the results of dynamic compression field tests and briefly describe the work to date on the acoustic driver front.

  12. Magnetic cushioning and pressure applying means

    International Nuclear Information System (INIS)

    Turner, G.F.A.M.

    1981-01-01

    This invention relates to a novel cushioning and pressure applying means for compressing sheets of film in an X-ray cassette. The cushioning means is provided by two sheets of rubber or plastics material each of which contains an array of magnets, the sheets being held together so that like magnetic poles are in opposition. (author)

  13. Effects of JPEG data compression on magnetic resonance imaging evaluation of small vessels ischemic lesions of the brain; Efeitos da compressao de dados JPEG na avaliacao de lesoes vasculares cerebrais isquemicas de pequenos vasos em ressonancia magnetica

    Energy Technology Data Exchange (ETDEWEB)

    Kuriki, Paulo Eduardo de Aguiar; Abdala, Nitamar; Nogueira, Roberto Gomes; Carrete Junior, Henrique; Szejnfeld, Jacob [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Dept. de Diagnostico por Imagem]. E-mail: paulokuriki@gmail.com

    2006-01-15

    Objective: to establish the maximum achievable JPEG compression ratio without affecting quantitative and qualitative magnetic resonance imaging analysis of ischemic lesion in small vessels of the brain. Material and method: fifteen DICOM images were converted to JPEG with a compression ratio of 1:10 to 1:60 and were assessed together with the original images by three neuro radiologists. The number, morphology and signal intensity of the lesions were analyzed. Results: lesions were properly identified up to a 1:30 ratio. More lesions were identified with a 1:10 ratio then in the original images. Morphology and edges were properly evaluated up toa 1:40 ratio. Compression did not affect signal. Conclusion: small lesions were identified ( < 2 mm ) and in all compression ratios the JPEG algorithm generated image noise that misled observers to identify more lesions in JPEG images then in DICOM images, thus generating false-positive results.(author)

  14. Rapid reconnection in compressible plasma

    International Nuclear Information System (INIS)

    Heyn, M.F.; Semenov, V.S.

    1996-01-01

    A study of set-up, propagation, and interaction of non-linear and linear magnetohydrodynamic waves driven by magnetic reconnection is presented. The source term of the waves generated by magnetic reconnection is obtained explicitly in terms of the initial background conditions and the local reconnection electric field. The non-linear solution of the problem found earlier, serves as a basis for formulation and extensive investigation of the corresponding linear initial-boundary value problem of compressible magnetohydrodynamics. In plane geometry, the Green close-quote s function of the problem is obtained and its properties are discussed. For the numerical evaluation it turns out that a specific choice of the integration contour in the complex plane of phase velocities is much more effective than the convolution with the real Green close-quote s function. Many complex effects like intrinsic wave coupling, anisotropic propagation characteristics, generation of surface and side wave modes in a finite beta plasma are retained in this analysis. copyright 1996 American Institute of Physics

  15. Spin quenching assisted by a strongly anisotropic compression behavior in MnP

    Energy Technology Data Exchange (ETDEWEB)

    Han, Fei; Wang, Di; Wang, Yonggang; Li, Nana; Bao, Jin-Ke; Li, Bing; Botana, Antia S.; Xiao, Yuming; Chow, Paul; Chung, Duck Young; Chen, Jiuhua; Wan, Xiangang; Kanatzidis, Mercouri G.; Yang, Wenge; Mao, Ho-Kwang

    2018-02-01

    We studied the crystal structure and spin state of MnP under high pressure with synchrotron X-ray diffraction and X-ray emission spectroscopy. MnP has an exceedingly strong anisotropy in compressibility, with the primary compressible direction along the b axis of the Pnma structure. X-ray emission spectroscopy reveals a pressure-driven quenching of the spin state in MnP. First-principles calculations suggest that the strongly anisotropic compression behavior significantly enhances the dispersion of the Mn d-orbitals and the splitting of the d-orbital levels compared to the hypothetical isotropic compression behavior. Thus, we propose spin quenching results mainly from the significant enhancement of the itinerancy of d electrons and partly from spin rearrangement occurring in the split d-orbital levels near the Fermi level. This explains the fast suppression of magnetic ordering in MnP under high pressure. The spin quenching lags behind the occurrence of superconductivity at ~8 GPa implying that spin fluctuations govern the electron pairing for superconductivity.

  16. Dynamics of self-generated magnetic fields in stagnation phase and their effects on hot spark formation

    International Nuclear Information System (INIS)

    Hata, Akiro; Mima, Kunioki; Nagatomo, Hideo; Sunahara, Atsushi; Nishiguchi, Akio

    2006-01-01

    The generalized temporal evolution equation of a magnetic field is derived for high density laser-fusion plasmas. Magnetic field generation and convection are simulated by using the 2D hydrodynamic code together with the magnetic field equation. It is found that magnetic fields are generated and compressed in association with the Rayleigh-Taylor instability of an imploding shell. In particular, the magnetic field convection by the Nernst effect is found to play an important role in the amplification of magnetic fields. The maximum magnetic field reaches 30 MG at maximum compression. This magnetic field may reduce the electron heat conduction around the hot spark. Therefore, it is concluded that the ignition condition for non-uniform implosion is influenced by self-generated magnetic fields. (author)

  17. SeqCompress: an algorithm for biological sequence compression.

    Science.gov (United States)

    Sardaraz, Muhammad; Tahir, Muhammad; Ikram, Ataul Aziz; Bajwa, Hassan

    2014-10-01

    The growth of Next Generation Sequencing technologies presents significant research challenges, specifically to design bioinformatics tools that handle massive amount of data efficiently. Biological sequence data storage cost has become a noticeable proportion of total cost in the generation and analysis. Particularly increase in DNA sequencing rate is significantly outstripping the rate of increase in disk storage capacity, which may go beyond the limit of storage capacity. It is essential to develop algorithms that handle large data sets via better memory management. This article presents a DNA sequence compression algorithm SeqCompress that copes with the space complexity of biological sequences. The algorithm is based on lossless data compression and uses statistical model as well as arithmetic coding to compress DNA sequences. The proposed algorithm is compared with recent specialized compression tools for biological sequences. Experimental results show that proposed algorithm has better compression gain as compared to other existing algorithms. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Great magnetic storms

    International Nuclear Information System (INIS)

    Tsurutani, B.T.; Yen Te Lee; Tang, F.; Gonzalez, W.D.

    1992-01-01

    The five largest magnetic storms that occurred between 1971 and 1986 are studied to determine their solar and interplanetary causes. All of the events are found to be associated with high speed solar wind streams led by collisionless shocks. The high speed streams are clearly related to identifiable solar flares. It is found that (1) it is the extreme values of the southward interplanetary magnetic fields rather than solar wind speeds that are the primary causes of great magnetic storms, (2) shocked and draped sheath fields preceding the driver gas (magnetic cloud) are at least as effective in causing the onset of great magnetic storms (3 of 5 events ) as the strong fields within the driver gas itself, and (3) precursor southward fields ahead of the high speed streams allow the shock compression mechanism (item 2) to be particularly geoeffective

  19. On the continuum limit of a classical compressible Heisenberg chain

    International Nuclear Information System (INIS)

    Fivez, J.

    1982-01-01

    The equations of motion are derived for the classical compressible Heisenberg chain in the continuum limit to lowest non-trivial order in the derivatives. It is possible to eliminate the translations from the equation for the spins. The resulting equation does not admit of simple magnetic solitary wave solutions, in contradiction to the results of other authors. (author)

  20. Acute Thoracolumbar Spinal Cord Injury: Relationship of Cord Compression to Neurological Outcome.

    Science.gov (United States)

    Skeers, Peta; Battistuzzo, Camila R; Clark, Jillian M; Bernard, Stephen; Freeman, Brian J C; Batchelor, Peter E

    2018-02-21

    Spinal cord injury in the cervical spine is commonly accompanied by cord compression and urgent surgical decompression may improve neurological recovery. However, the extent of spinal cord compression and its relationship to neurological recovery following traumatic thoracolumbar spinal cord injury is unclear. The purpose of this study was to quantify maximum cord compression following thoracolumbar spinal cord injury and to assess the relationship among cord compression, cord swelling, and eventual clinical outcome. The medical records of patients who were 15 to 70 years of age, were admitted with a traumatic thoracolumbar spinal cord injury (T1 to L1), and underwent a spinal surgical procedure were examined. Patients with penetrating injuries and multitrauma were excluded. Maximal osseous canal compromise and maximal spinal cord compression were measured on preoperative mid-sagittal computed tomography (CT) scans and T2-weighted magnetic resonance imaging (MRI) by observers blinded to patient outcome. The American Spinal Injury Association (ASIA) Impairment Scale (AIS) grades from acute hospital admission (≤24 hours of injury) and rehabilitation discharge were used to measure clinical outcome. Relationships among spinal cord compression, canal compromise, and initial and final AIS grades were assessed via univariate and multivariate analyses. Fifty-three patients with thoracolumbar spinal cord injury were included in this study. The overall mean maximal spinal cord compression (and standard deviation) was 40% ± 21%. There was a significant relationship between median spinal cord compression and final AIS grade, with grade-A patients (complete injury) exhibiting greater compression than grade-C and D patients (incomplete injury) (p compression as independently influencing the likelihood of complete spinal cord injury (p compression. Greater cord compression is associated with an increased likelihood of severe neurological deficits (complete injury) following

  1. Electron bunch compression and coherent effects at the SDL

    International Nuclear Information System (INIS)

    Loos, Henrik; Carr, G. Lawrence; Doyuran, Adnan; Graves, William S.; Johnson, Eric D.; Krinsky, Samuel; Rose, James; Sheehy, Brian; Shaftan, Timur V.; Skaritka, John; Yu Lihua

    2002-01-01

    The DUVFEL accelerator in the Source Development Lab of NSLS/BNL generates a high brightness electron beam from a laser driven electron source and a magnetic bunch compressor. This beam is used for different FEL experiments in SASE and future HGHG configurations. The compression of the electron beam to high peak current while preserving the transverse properties is of great importance to the performance goals of these FELs. In this paper we report on the experimental methods to characterize the longitudinal properties of the electron beam and the measured results for various settings of the DUVFEL accelerator. The observed effects on the electron beam spectra and time profiles during compression are most likely due to coherent effects while their exact origin is still subject of ongoing investigation

  2. VELOCITY FIELD OF COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE: WAVELET DECOMPOSITION AND MODE SCALINGS

    International Nuclear Information System (INIS)

    Kowal, Grzegorz; Lazarian, A.

    2010-01-01

    We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.

  3. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1978-01-01

    Disclosed is a lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  4. Strong magnetization and Chern insulators in compressed graphene/CrI 3 van der Waals heterostructures

    Science.gov (United States)

    Zhang, Jiayong; Zhao, Bao; Zhou, Tong; Xue, Yang; Ma, Chunlan; Yang, Zhongqin

    2018-02-01

    Graphene-based heterostructures are a promising material system for designing the topologically nontrivial Chern insulating devices. Recently, a two-dimensional monolayer ferromagnetic insulator CrI3 was successfully synthesized in experiments [B. Huang et al., Nature (London) 546, 270 (2017), 10.1038/nature22391]. Here, these two interesting materials are proposed to build a heterostructure (Gr /CrI3). Our first-principles calculations show that the system forms a van der Waals (vdW) heterostructure, which is relatively facilely fabricated in experiments. A Chern insulating state is acquired in the Gr /CrI3 heterostructure if the vdW gap is compressed to a distance between about 3.3 and 2.4 Å, corresponding to a required external pressure between about 1.4 and 18.3 GPa. Amazingly, very strong magnetization (about 150 meV) is found in graphene, induced by the substrate CrI3, despite the vdW interactions between them. A low-energy effective model is employed to understand the mechanism. The work functions, contact types, and band alignments of the Gr /CrI3 heterostructure system are also studied. Our work demonstrates that the Gr /CrI3 heterostructure is a promising system to observe the quantum anomalous Hall effect at high temperatures (up to 45 K) in experiments.

  5. Evaluation of compression ratio using JPEG 2000 on diagnostic images in dentistry

    International Nuclear Information System (INIS)

    Jung, Gi Hun; Han, Won Jeong; Yoo, Dong Soo; Kim, Eun Kyung; Choi, Soon Chul

    2005-01-01

    To find out the proper compression ratios without degrading image quality and affecting lesion detectability on diagnostic images used in dentistry compressed with JPEG 2000 algorithm. Sixty Digora peri apical images, sixty panoramic computed radiographic (CR) images, sixty computed tomography (CT) images, and sixty magnetic resonance (MR) images were compressed into JPEG 2000 with ratios of 10 levels from 5:1 to 50:1. To evaluate the lesion detectability, the images were graded with 5 levels (1 : definitely absent ; 2 : probably absent ; 3 : equivocal ; 4 : probably present ; 5 : definitely present), and then receiver operating characteristic analysis was performed using the original image as a gold standard. Also to evaluate subjectively the image quality, the images were graded with 5 levels (1 : definitely unacceptable ; 2 : probably unacceptable ; 3 : equivocal ; 4 : probably acceptable ; 5 : definitely acceptable), and then paired t-test was performed. In Digora, CR panoramic and CT images, compressed images up to ratios of 15:1 showed nearly the same lesion detectability as original images, and in MR images, compressed images did up to ratios of 25:1. In Digora and CR panoramic images, compressed images up to ratios of 5:1 showed little difference between the original and reconstructed images in subjective assessment of image quality. In CT images, compressed images did up to ratios of 10:1 and in MR images up to ratios of 15:1. We considered compression ratios up to 5:1 in Digora and CR panoramic images, up to 10:1 in CT images, up to 15:1 in MR images as clinically applicable compression ratios.

  6. [A case of medulla oblongata compression by tortuous vertebral arteries presenting with spastic quadriplegia].

    Science.gov (United States)

    Kamada, Takashi; Tateishi, Takahisa; Yamashita, Tamayo; Nagata, Shinji; Ohyagi, Yasumasa; Kira, Jun-Ichi

    2013-01-01

    We report a 58-year-old man showing spastic paraparesis due to medulla oblongata compression by tortuous vertebral arteries. He noticed weakness of both legs and gait disturbance at the age of 58 years and his symptoms progressively worsened during the following several months. General physical findings were normal. Blood pressure was normal and there were no signs of arteriosclerosis. Neurological examination on admission revealed lower-limb-dominant spasticity in all four extremities, lower-limb weakness, hyperreflexia in all extremities with positive Wartenberg's, Babinski's and Chaddock's signs, mild hypesthesia and hypopallesthesia in both lower limbs, and spastic gait. Cranial nerves were all normal. Serum was negative for antibodies against human T-cell lymphotropic virus-1 antibody. Nerve conduction and needle electromyographic studies of all four limbs revealed normal findings. Cervical, thoracic and lumbo-sacral magnetic resonance imaging (MRI) findings were all normal. Brain MRI and magnetic resonance angiography demonstrated bilateral tortuous vertebral arteries compressing the medulla oblongata. Neurovascular decompression of the right vertebral artery was performed because compression of the right side was more severe than that of the left side. Post-operative MRI revealed outward translocation of the right vertebral artery and relieved compression of the medulla oblongata on the right side. The patient's symptoms and neurological findings improved gradually after the operation. Bilateral pyramidal tract signs without cranial nerve dysfunction due to compression of the medulla oblongata by tortuous vertebral arteries are extremely rare and clinically indistinguishable from hereditary spastic paraplegia (HSP). Although we did not perform a genetic test for HSP, we consider that the spastic paraparesis and mild lower-limb hypesthesia were caused by compression of the medulla oblongata by bilateral tortuous vertebral arteries based on the post

  7. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  8. Rayleigh Taylor instability of two superposed compressible fluids in un-magnetized plasma

    International Nuclear Information System (INIS)

    Sharma, P K; Tiwari, A; Argal, S; Chhajlani, R K

    2014-01-01

    The linear Rayleigh Taylor instability of two superposed compressible Newtonian fluids is discussed with the effect of surface tension which can play important roles in space plasma. As in both the superposed Newtonian fluids, the system is stable for potentially stable case and unstable for potentially unstable case in the present problem also. The equations of the problem are solved by normal mode method and a dispersion relation is obtained for such a system. The behaviour of growth rate is examined in the presence of surface tension and it is found that the surface tension has stabilizing influence on the Rayleigh Taylor instability of two superposed compressible fluids. Numerical analysis is performed to show the effect of sound velocity and surface tension on the growth rate of Rayleigh Taylor instability. It is found that both parameters have stabilizing influence on the growth rate of Rayleigh Taylor instability.

  9. Compression-induced deep tissue injury examined with magnetic resonance imaging and histology

    NARCIS (Netherlands)

    Stekelenburg, A.; Oomens, C. W. J.; Strijkers, G. J.; Nicolay, K.; Bader, D. L.

    2006-01-01

    The underlying mechanisms leading to deep tissue injury after sustained compressive loading are not well understood. It is hypothesized that initial damage to muscle fibers is induced mechanically by local excessive deformation. Therefore, in this study, an animal model was used to study early

  10. The role of Z-pinches and related configurations in magnetized target fusion

    International Nuclear Information System (INIS)

    Lindemuth, I.R.

    1997-01-01

    The use of a magnetic field within a fusion target is now known as Magnetized Target Fusion in the US and as MAGO (Magnitnoye Obzhatiye, or magnetic compression) in Russia. In contrast to direct, hydrodynamic compression of initially ambient-temperature fuel (e.g., ICF), MTF involves two steps: (a) formation of a warm, magnetized, wall-confined plasma of intermediate density within a fusion target prior to implosion; (b) subsequent quasi-adiabatic compression and heating of the plasma by imploding the confining wall, or pusher. In many ways, MTF can be considered a marriage between the more mature MFE and ICF approaches, and this marriage potentially eliminates some of the hurdles encountered in the other approaches. When compared to ICF, MTF requires lower implosion velocity, lower initial density, significantly lower radial convergence, and larger targets, all of which lead to substantially reduced driver intensity, power, and symmetry requirements. When compared to MFE, MTF does not require a vacuum separating the plasma from the wall, and, in fact, complete magnetic confinement, even if possible, may not be desirable. The higher density of MTF and much shorter confinement times should make magnetized plasma formation a much less difficult step than in MFE. The substantially lower driver requirements and implosion velocity of MTF make z-pinch magnetically driven liners, magnetically imploded by existing modern pulsed power electrical current sources, a leading candidate for the target pusher of an MTF system

  11. Some Properties of Carbon Fiber Reinforced Magnetic Reactive Powder Concrete Containing Nano Silica

    Directory of Open Access Journals (Sweden)

    Zain El-Abdin Raouf

    2016-08-01

    Full Text Available This study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS with ratios (1, 1.5, 2, 2.5 and 3 % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS had higher compressive strength, modulus of rupture, splitting tension, stress in compression and strain in compression than the corresponding values for the carbon fiber reinforced nonmagnetic reactive powder concrete containing the same ratio of NS (CFRNRPCCNS. The percentage increase in these values for CFRMRPCCNS were (22.37, 17.96, 19.44, 6.44 and 25.8 % at 28 days respectively, as compared with the corresponding CFRNRPCCNS mixtures.

  12. Radiological Image Compression

    Science.gov (United States)

    Lo, Shih-Chung Benedict

    The movement toward digital images in radiology presents the problem of how to conveniently and economically store, retrieve, and transmit the volume of digital images. Basic research into image data compression is necessary in order to move from a film-based department to an efficient digital -based department. Digital data compression technology consists of two types of compression technique: error-free and irreversible. Error -free image compression is desired; however, present techniques can only achieve compression ratio of from 1.5:1 to 3:1, depending upon the image characteristics. Irreversible image compression can achieve a much higher compression ratio; however, the image reconstructed from the compressed data shows some difference from the original image. This dissertation studies both error-free and irreversible image compression techniques. In particular, some modified error-free techniques have been tested and the recommended strategies for various radiological images are discussed. A full-frame bit-allocation irreversible compression technique has been derived. A total of 76 images which include CT head and body, and radiographs digitized to 2048 x 2048, 1024 x 1024, and 512 x 512 have been used to test this algorithm. The normalized mean -square-error (NMSE) on the difference image, defined as the difference between the original and the reconstructed image from a given compression ratio, is used as a global measurement on the quality of the reconstructed image. The NMSE's of total of 380 reconstructed and 380 difference images are measured and the results tabulated. Three complex compression methods are also suggested to compress images with special characteristics. Finally, various parameters which would effect the quality of the reconstructed images are discussed. A proposed hardware compression module is given in the last chapter.

  13. Regulation and drive system for high rep-rate magnetic-pulse compressors

    International Nuclear Information System (INIS)

    Birx, D.L.; Cook, E.G.; Hawkins, S.; Meyers, A.; Reginato, L.L.; Schmidt, J.A.; Smith, M.W.

    1982-01-01

    The essentially unlimited rep-rate capability of non-linear magnetic systems has imposed strict requirements on the drive system which initiates the pulse compression. An order of magnitude increase in the rep-rates achieved by the Advanced Test Accelerator (ATA) gas blown system is not difficult to achieve in the magnetic compressor. The added requirement of having a high degree of regulation at the higher rep-rates places strict requirements on the triggerable switch for charging and de-Queing. A novel feedback technique which applies the proper bias to a magnetic core by comparing a reference voltage to the charging voltage eases considerably the regulation required to achieve low jitter in magnetic compression. The performance of the high rep-rate charging and regulation systems will be described in the following pages

  14. Fast modeling of flux trapping cascaded explosively driven magnetic flux compression generators.

    Science.gov (United States)

    Wang, Yuwei; Zhang, Jiande; Chen, Dongqun; Cao, Shengguang; Li, Da; Liu, Chebo

    2013-01-01

    To predict the performance of flux trapping cascaded flux compression generators, a calculation model based on an equivalent circuit is investigated. The system circuit is analyzed according to its operation characteristics in different steps. Flux conservation coefficients are added to the driving terms of circuit differential equations to account for intrinsic flux losses. To calculate the currents in the circuit by solving the circuit equations, a simple zero-dimensional model is used to calculate the time-varying inductance and dc resistance of the generator. Then a fast computer code is programmed based on this calculation model. As an example, a two-staged flux trapping generator is simulated by using this computer code. Good agreements are achieved by comparing the simulation results with the measurements. Furthermore, it is obvious that this fast calculation model can be easily applied to predict performances of other flux trapping cascaded flux compression generators with complex structures such as conical stator or conical armature sections and so on for design purpose.

  15. Injection, compression and stability of intense ion-rings

    International Nuclear Information System (INIS)

    Sudan, R.N.

    1975-01-01

    Recent advances in pulsed high power ion beam technology make possible the creation of intense ion-rings with strong self-magnetic fields by single pulse injection. Such ion rings have several uses in controlled fusion e.g., to produce a min parallel B parallel magnetic geometry with a mirror ratio much higher than is possible with external conductors. For even stronger ion rings a min parallel B parallel with closed lines of force (ASTRON type) can be created. For this purpose, since the ion energies required are much higher than are available from high power sources, magnetic compression can be utilized to increase the ion energy. The success of this scheme depends critically on the stability of the ion ring. The low frequency perturbations of the ring-plasma system is examined by means of a generalization of the energy principle which established sufficient conditions for stability. The high-frequency micro-instabilities and their nonlinear consequences are discussed in terms of conventional techniques

  16. Interplay of magnetism and superconductivity in the compressed Fe-ladder compound BaFe2Se3

    Energy Technology Data Exchange (ETDEWEB)

    Ying, Jianjun; Lei, Hechang; Petrovic, Cedomir; Xiao, Yuming; Struzhkin, Viktor V. (BNL); (CIW)

    2017-06-01

    High pressure resistance, susceptibility, and Fe K β x-ray emission spectroscopy measurements were performed on Fe-ladder compound BaFe 2 Se 3 . Pressure-induced superconductivity was observed which is similar to the previously reported superconductivity in the BaFe 2 S 3 samples. The slope of local magnetic moment versus pressure shows an anomaly across the insulator-metal transition pressure in the BaFe 2 Se 3 samples. The local magnetic moment is continuously decreasing with increasing pressure, and the superconductivity appears only when the local magnetic moment value is comparable to the one in the iron-pnictide superconductors. Our results indicate that the compressed BaFe 2 C h 3 ( C h = S , Se) is a new family of iron-based superconductors. Despite the crystal structures completely different from the known iron-based superconducting materials, the magnetism in this Fe-ladder material plays a critical role in superconductivity. This behavior is similar to the other members of iron-based superconducting materials.

  17. Transport properties of magnetic atom bridges controlled by a scanning tunneling microscope

    International Nuclear Information System (INIS)

    Nakanishi, H.; Kishi, T.; Kasai, H.; Komori, F.; Okiji, A.

    2003-01-01

    We have investigated the transport and magnetic properties of the atom bridge made from magnetic materials, which is the atom-scale wire constructed between a scanning tunneling microscope (STM) tip and a solid surface, by the use of ab initio calculations. In the case of the twisted ladder structure atom bridge made of Fe, we have found that the magnetic state of the bridge changes from ferromagnetic to paramagnetic, as we compress the bridge in length. We report the spin dependent quantized conductance of the bridge. And we discuss the origin of a change in transport properties as we compress the bridge in length

  18. Pulsed energy conversion with a dc superconducting magnet

    International Nuclear Information System (INIS)

    Cowan, M.; Cnare, E.C.; Leisher, W.B.; Tucker, W.K.; Wessenberg, D.L.

    1976-01-01

    A generator system for pulsed power is described which employs a dc superconducting magnet in a magnetic flux compression scheme. Experience with a small-scale generator together with projections of numerical models indicate potential applications to fusion research and commercial power generation. When the system is large enough pulse energy can exceed that stored in the magnet and pulse rise time can range from several microseconds to tens of milliseconds. (author)

  19. WSNs Microseismic Signal Subsection Compression Algorithm Based on Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Zhouzhou Liu

    2015-01-01

    Full Text Available For wireless network microseismic monitoring and the problems of low compression ratio and high energy consumption of communication, this paper proposes a segmentation compression algorithm according to the characteristics of the microseismic signals and the compression perception theory (CS used in the transmission process. The algorithm will be collected as a number of nonzero elements of data segmented basis, by reducing the number of combinations of nonzero elements within the segment to improve the accuracy of signal reconstruction, while taking advantage of the characteristics of compressive sensing theory to achieve a high compression ratio of the signal. Experimental results show that, in the quantum chaos immune clone refactoring (Q-CSDR algorithm for reconstruction algorithm, under the condition of signal sparse degree higher than 40, to be more than 0.4 of the compression ratio to compress the signal, the mean square error is less than 0.01, prolonging the network life by 2 times.

  20. Claw-pole Synchronous Generator for Compressed Air Energy Storage

    Directory of Open Access Journals (Sweden)

    PAVEL Valentina

    2013-05-01

    Full Text Available This paper presents a claw-poles generator for compressed air energy storage systems. It is presented the structure of such a system used for compensating of the intermittency of a small wind energy system. For equipping of this system it is chosen the permanent magnet claw pole synchronous generator obtained by using ring NdFeB permanentmagnets instead of excitation coil. In such a way the complexity of the scheme is reduced and the generator become maintenance free. The new magnetic flux density in the air-gap is calculated by magneticreluctance method and by FEM method and the results are compared with measured values in the old and new generator.

  1. Magnetic Resonance Enhancement Patterns at the Different Ages of Symptomatic Osteoporotic Vertebral Compression Fractures

    Energy Technology Data Exchange (ETDEWEB)

    You, Ja Yeon; Lee, Joon Woo; Kim, Jung Eun; Kang, Heung Sik [Dept. of Radiology, Seoul National University Bundang Hospital, Seongnam (Korea, Republic of)

    2013-06-15

    To investigate the magnetic resonance (MR) enhancement patterns of symptomatic osteoporotic vertebral compression fracture (VCF) according to the fracture age, based on the successful single-level percutaneous vertebroplasty (PVP) cases. The study included 135 patients who underwent contrast-enhanced MR imaging and successful PVP from 2005 to 2010 due to a single- level osteoporotic VCF. Two radiologists blinded to the fracture age evaluated the MR enhancement patterns in consensus. The MR enhancement patterns were classified according to the enhancing proportion to the vertebral height and the presence or extent of a non-enhancing cleft within the enhancing area on sagittal plane. The Fisher' exact test, Kruskal-Wallis test and Mann-Whitney U test were performed to assess the differences in the MR enhancement patterns according to the fracture age. Symptomatic VCFs show variable MR enhancement patterns in all fracture ages. A diffuse enhancing area can be seen in not only the hyperacute and acute VCFs but also the chronic symptomatic VCFs. Symptomatic VCFs having a segmental enhancing area were all included in the hyperacute or acute stage. Most symptomatic osteoporotic VCFs had a non-enhancing cleft in the enhanced vertebral body (128/135, 94.8%). There was no statistical difference of the enhancement pattern according to the fracture age. Symptomatic VCFs show variable MR enhancement patterns in all fracture ages. The most common pattern is a non-enhancing cleft within a diffuse enhanced vertebra.

  2. Magnetic Resonance Enhancement Patterns at the Different Ages of Symptomatic Osteoporotic Vertebral Compression Fractures

    International Nuclear Information System (INIS)

    You, Ja Yeon; Lee, Joon Woo; Kim, Jung Eun; Kang, Heung Sik

    2013-01-01

    To investigate the magnetic resonance (MR) enhancement patterns of symptomatic osteoporotic vertebral compression fracture (VCF) according to the fracture age, based on the successful single-level percutaneous vertebroplasty (PVP) cases. The study included 135 patients who underwent contrast-enhanced MR imaging and successful PVP from 2005 to 2010 due to a single- level osteoporotic VCF. Two radiologists blinded to the fracture age evaluated the MR enhancement patterns in consensus. The MR enhancement patterns were classified according to the enhancing proportion to the vertebral height and the presence or extent of a non-enhancing cleft within the enhancing area on sagittal plane. The Fisher' exact test, Kruskal-Wallis test and Mann-Whitney U test were performed to assess the differences in the MR enhancement patterns according to the fracture age. Symptomatic VCFs show variable MR enhancement patterns in all fracture ages. A diffuse enhancing area can be seen in not only the hyperacute and acute VCFs but also the chronic symptomatic VCFs. Symptomatic VCFs having a segmental enhancing area were all included in the hyperacute or acute stage. Most symptomatic osteoporotic VCFs had a non-enhancing cleft in the enhanced vertebral body (128/135, 94.8%). There was no statistical difference of the enhancement pattern according to the fracture age. Symptomatic VCFs show variable MR enhancement patterns in all fracture ages. The most common pattern is a non-enhancing cleft within a diffuse enhanced vertebra.

  3. Zinc and resin bonded NdFeB magnets

    International Nuclear Information System (INIS)

    Leonowicz, M.; Kaszuwara, W.

    2002-01-01

    Zinc and resin bonded NdFeB magnets were processed. Basic magnetic parameters as well as compressive strength were evaluated versus annealing temperature and volume fraction of the bonding agent. For the zinc bonded magnets phase composition was investigated. The additional NdZn 5 phase was found in the Zn bonded magnets after annealing. Comparison of the Zn and resin bonded magnets reveals higher remanence for the former and higher coercivity for the latter. For the Zn and resin bonded magnets, 15 wt.% Zn / 370 o C and 7-10 wt.% resin were chosen as the optimal processing parameters. (author)

  4. Visualization of Magnetic Flux Distribution at Soft Magnetic Composite(Special Issue to the Asia-Pacific Symposium on Applied Electromagnetics and Mechanics (APSAEM06))

    OpenAIRE

    Z. W., Lin; J. G., Zhu; Y. G., Guo; J. J., Zhong; W. Y., Yu; Centre for Electrical Machines and Power Electronics, Faculty of Engineering, University of Technology; Centre for Electrical Machines and Power Electronics, Faculty of Engineering, University of Technology; Centre for Electrical Machines and Power Electronics, Faculty of Engineering, University of Technology; Centre for Electrical Machines and Power Electronics, Faculty of Engineering, University of Technology; Baosteel Group Shanghai Iron and Steel Research Institute

    2007-01-01

    Soft magnetic composite (SMC), as one of soft magnetic materials, is being used increasingly in electromagnetic devices due to its magnetic isotropy, high electrical resistivity and easy formation. This paper presents the magnetic field distribution at the compressing surface of SMC by means of magneto-optical imaging technique. It is found that the flux density is non-uniform inside the sample, even within one particle region. Although there are interactions between neighbouring particles, t...

  5. Tuning stress-induced magnetic anisotropy and high frequency properties of FeCo films deposited on different curvature substrates

    International Nuclear Information System (INIS)

    Wang, Z.K.; Feng, E.X.; Liu, Q.F.; Wang, J.B.; Xue, D.S.

    2012-01-01

    It is important to control magnetic anisotropy of ferromagnetic materials. In this work, FeCo thin films are deposited on the curving substrates by electrochemical deposition to adjust the stress-induced magnetic anisotropy. The compressive stress is produced in the as-deposited films after the substrates are flattened. A simplified theoretical model of ferromagnetic resonance is utilized to measure the intrinsic magnetic anisotropy field and saturation magnetization. The results show that the stress-induced magnetic anisotropy and the resonance frequency increase with the increase of substrate curvature. The induced easy axis is perpendicular to the compressive stress direction.

  6. Condensed argon isentropic compression with ultrahigh magnetic field pressure: Experimental design. Post-shot report

    Energy Technology Data Exchange (ETDEWEB)

    Bykov, A.I.; Boriskov, G.V.; Dolotenko, M.I. [All-Russian Research Inst. of Experimental Physics, Sarov (Russian Federation)] [and others

    1996-12-31

    This report continues the series of work devoted to experimental study of a high-dense condensed argon state. Remember that according to work of Kwon et. al., hexagonal close-packed structure is profitable in terms of energy rather than face-centered argon structure (stable with zero pressure). What is most interesting and intriguing here is the issue of possible argon metallization, when it is compressed up to the densities more than 9.17 g/cm{sup 3}. In the experiment of 1995 (the arrangement and data are described in a cited reference) the authors recorded appearance of conductivity in argon, which is non-conductive in the initial state, when it is compressed more than a factor of four. The peak value of argon specific conductivity recorded in this experiment did not exceed 10 (Ohm x cm){sup {minus}1}. This value of conductivity is characteristic of semiconductors, but not metals, which have 10{sup 4} (Ohm x cm){sup {minus}1}. At this stage of the work the main attention is paid to recording of argon conductive state and studying the possibilities of multiframed radiography of the sample in the compressed state.

  7. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, M. J., E-mail: mros@lle.rochester.edu; Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Fox, W. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Igumenshchev, I.; Stoeckl, C.; Glebov, V. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Town, R. P. J. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  8. Contributions in compression of 3D medical images and 2D images; Contributions en compression d'images medicales 3D et d'images naturelles 2D

    Energy Technology Data Exchange (ETDEWEB)

    Gaudeau, Y

    2006-12-15

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  9. Magnetic Fluxtube Tunneling

    Science.gov (United States)

    Dahlburg, Russell B.; Antiochos,, Spiro K.; Norton, D.

    1996-01-01

    We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.

  10. Dual compression is not an uncommon type of iliac vein compression syndrome.

    Science.gov (United States)

    Shi, Wan-Yin; Gu, Jian-Ping; Liu, Chang-Jian; Lou, Wen-Sheng; He, Xu

    2017-09-01

    Typical iliac vein compression syndrome (IVCS) is characterized by compression of left common iliac vein (LCIV) by the overlying right common iliac artery (RCIA). We described an underestimated type of IVCS with dual compression by right and left common iliac arteries (LCIA) simultaneously. Thirty-one patients with IVCS were retrospectively included. All patients received trans-catheter venography and computed tomography (CT) examinations for diagnosing and evaluating IVCS. Late venography and reconstructed CT were used for evaluating the anatomical relationship among LCIV, RCIA and LCIA. Imaging manifestations as well as demographic data were collected and evaluated by two experienced radiologists. Sole and dual compression were found in 32.3% (n = 10) and 67.7% (n = 21) of 31 patients respectively. No statistical differences existed between them in terms of age, gender, LCIV diameter at the maximum compression point, pressure gradient across stenosis, and the percentage of compression level. On CT and venography, sole compression was commonly presented with a longitudinal compression at the orifice of LCIV while dual compression was usually presented as two types: one had a lengthy stenosis along the upper side of LCIV and the other was manifested by a longitudinal compression near to the orifice of external iliac vein. The presence of dual compression seemed significantly correlated with the tortuous LCIA (p = 0.006). Left common iliac vein can be presented by dual compression. This type of compression has typical manifestations on late venography and CT.

  11. Construction of an ultra low temperature cryostat and transverse acoustic spectroscopy in superfluid helium-3 in compressed aerogels

    Science.gov (United States)

    Bhupathi, Pradeep

    An ultra low temperature cryostat is designed and implemented in this work to perform experiments at sub-millikelvin temperatures, specifically aimed at understanding the superfluid phases of 3He in various scenarios. The cryostat is a combination of a dilution refrigerator (Oxford Kelvinox 400) with a base temperature of 5.2 mK and a 48 mole copper block as the adiabatic nuclear demagnetization stage with a lowest temperature of ≈ 200 muK. With the various techniques implemented for limiting the ambient heat leak to the cryostat, we were able to stay below 1 mK for longer than 5 weeks. The details of design, construction and performance of the cryostat are presented. We measured high frequency shear acoustic impedance in superfluid 3He in 98% porosity aerogel at pressures of 29 bar and 32 bar in magnetic fields upto 3 kG with the aerogel cylinder compressed along the symmetry axis to generate global anisotropy. With 5% compression, there is an indication of a supercooled A-like to B-like transition in aerogel in a wider temperature width than the A phase in the bulk, while at 10% axial compression, the A-like to B-like transition is absent on cooling down to ≈ 300 muK in zero magnetic field and in magnetic fields up to 3 kG. This behavior is in contrast to that in 3He in uncompressed aerogels, in which the supercooled A-like to B-like transitions have been identified by various experimental techniques. Our result is consistent with theoretical predictions. To characterize the anisotropy in compressed aerogels, optical birefringence is measured in 98% porosity silica aerogel samples subjected to various degrees of uniaxial compression up to 15% strain, with wavelengths between 200 to 800 nm. Uncompressed aerogels exhibit no or a minimal degree of birefringence, indicating the isotropic nature of the material over the length scale of the wavelength. Uniaxial compression of aerogel introduces global anisotropy, which produces birefringence in the material. We

  12. Contributions in compression of 3D medical images and 2D images

    International Nuclear Information System (INIS)

    Gaudeau, Y.

    2006-12-01

    The huge amounts of volumetric data generated by current medical imaging techniques in the context of an increasing demand for long term archiving solutions, as well as the rapid development of distant radiology make the use of compression inevitable. Indeed, if the medical community has sided until now with compression without losses, most of applications suffer from compression ratios which are too low with this kind of compression. In this context, compression with acceptable losses could be the most appropriate answer. So, we propose a new loss coding scheme based on 3D (3 dimensional) Wavelet Transform and Dead Zone Lattice Vector Quantization 3D (DZLVQ) for medical images. Our algorithm has been evaluated on several computerized tomography (CT) and magnetic resonance image volumes. The main contribution of this work is the design of a multidimensional dead zone which enables to take into account correlations between neighbouring elementary volumes. At high compression ratios, we show that it can out-perform visually and numerically the best existing methods. These promising results are confirmed on head CT by two medical patricians. The second contribution of this document assesses the effect with-loss image compression on CAD (Computer-Aided Decision) detection performance of solid lung nodules. This work on 120 significant lungs images shows that detection did not suffer until 48:1 compression and still was robust at 96:1. The last contribution consists in the complexity reduction of our compression scheme. The first allocation dedicated to 2D DZLVQ uses an exponential of the rate-distortion (R-D) functions. The second allocation for 2D and 3D medical images is based on block statistical model to estimate the R-D curves. These R-D models are based on the joint distribution of wavelet vectors using a multidimensional mixture of generalized Gaussian (MMGG) densities. (author)

  13. Compression dynamics of quasi-spherical wire arrays with different linear mass profiles

    International Nuclear Information System (INIS)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Grabovski, E. V.; Frolov, I. N.; Laukhin, Ya. N.; Oleinik, G. M.; Ol’khovskaya, O. G.

    2016-01-01

    Results of experimental studies of the implosion of quasi-spherical wire (or metalized fiber) arrays are presented. The goal of the experiments was to achieve synchronous three-dimensional compression of the plasma produced in different regions of a quasi-spherical array into its geometrical center. To search for optimal synchronization conditions, quasi-spherical arrays with different initial profiles of the linear mass were used. The following dependences of the linear mass on the poloidal angle were used: m_l(θ) ∝ sin"–"1θ and m_l(θ) ∝ sin"–"2θ. The compression dynamics of such arrays was compared with that of quasi-spherical arrays without linear mass profiling, m_l(θ) = const. To verify the experimental data, the spatiotemporal dynamics of plasma compression in quasi-spherical arrays was studied using various diagnostics. The experiments on three-dimensional implosion of quasi-spherical arrays made it possible to study how the frozen-in magnetic field of the discharge current penetrates into the array. By measuring the magnetic field in the plasma of a quasi-spherical array, information is obtained on the processes of plasma production and formation of plasma flows from the wire/fiber regions with and without an additionally deposited mass. It is found that penetration of the magnetic flux depends on the initial linear mass profile m_l(θ) of the quasi-spherical array. From space-resolved spectral measurements and frame imaging of plasma X-ray emission, information is obtained on the dimensions and shape of the X-ray source formed during the implosion of a quasi-spherical array. The intensity of this source is estimated and compared with that of the Z-pinch formed during the implosion of a cylindrical array.

  14. On the phase transition nature in compressible Ising models

    International Nuclear Information System (INIS)

    Ota, A.T.

    1985-01-01

    The phase transition phenomenon is analysed in a compressible ferromagnetic Ising model at null field, through the mean-field approximation. The model studied is d-dimensional under the magnetic point of view and one-dimensional under the elastic point of view. This is achieved keeping the compressive interactions among the ions and rejecting annealing forces completely. The exchange parameter J is linear and the elastic potential quadratic in relation to the microscopic shifts of the lattice. In the one-dimensional case, this model shows no phase transition. In the two-dimensional case, the role of the S i spin of the i-the ion is crucial: a) for spin 1/2 the transitions are of second order; b) for spin 1, desides the second order transitions there is a three-critical point and a first-order transitions line. (L.C.) [pt

  15. Compressive fatigue tests on a unidirectional glass/polyester composite at cryogenic temperatures

    International Nuclear Information System (INIS)

    Stone, E.L.; El-Marazki, L.O.; Young, W.C.

    1979-01-01

    The fatigue testing of a unidirectional glass-reinforced polyester composite at cryogenic temperatures to simulate the cyclic compressive loads of the magnet support struts in a superconductive magnetic energy storage unit is reported. Right circular cylindrical specimens were tested at 77, 4.2 K and room temperature at different stress levels using a 1-Hz haversine waveform imposed upon a constant baseload in a load-controlled closed-loop electrohydraulic test machine. Two failure modes, uniform mushrooming near one end and a 45 deg fracture line through the middle of the specimen, are observed, with no systematic difference in fatigue life between the modes. Fatigue lives obtained at 77 and 4.2 K are found to be similar, with fatigue failure at 100,000 cycles occurring at stress levels of 70 and 75% of the ultimate compressive strengths of specimens at room temperature and 77 K, respectively. The room temperature fatigue lives of the glass/polyester specimens are found to be intermediate between those reported for glass/epoxy composites with different glass contents costing over twice as much

  16. Large breast compressions: Observations and evaluation of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Christine; White, Mark; Guarino, Salvatore; Hall-Craggs, Margaret A.; Douek, Michael; Hawkes, David J. [Centre of Medical Image Computing, UCL, London WC1E 6BT, United Kingdom and Computer Vision Laboratory, ETH Zuerich, 8092 Zuerich (Switzerland); Centre of Medical Image Computing, UCL, London WC1E 6BT (United Kingdom); Department of Surgery, UCL, London W1P 7LD (United Kingdom); Department of Imaging, UCL Hospital, London NW1 2BU (United Kingdom); Department of Surgery, UCL, London W1P 7LD (United Kingdom); Centre of Medical Image Computing, UCL, London WC1E 6BT (United Kingdom)

    2011-02-15

    Purpose: Several methods have been proposed to simulate large breast compressions such as those occurring during x-ray mammography. However, the evaluation of these methods against real data is rare. The aim of this study is to learn more about the deformation behavior of breasts and to assess a simulation method. Methods: Magnetic resonance (MR) images of 11 breasts before and after applying a relatively large in vivo compression in the medial direction were acquired. Nonrigid registration was employed to study the deformation behavior. Optimal material properties for finite element modeling were determined and their prediction performance was assessed. The realism of simulated compressions was evaluated by comparing the breast shapes on simulated and real mammograms. Results: Following image registration, 19 breast compressions from 8 women were studied. An anisotropic deformation behavior, with a reduced elongation in the anterior-posterior direction and an increased stretch in the inferior-superior direction was observed. Using finite element simulations, the performance of isotropic and transverse isotropic material models to predict the displacement of internal landmarks was compared. Isotropic materials reduced the mean displacement error of the landmarks from 23.3 to 4.7 mm, on average, after optimizing material properties with respect to breast surface alignment and image similarity. Statistically significantly smaller errors were achieved with transverse isotropic materials (4.1 mm, P=0.0045). Homogeneous material models performed substantially worse (transverse isotropic: 5.5 mm; isotropic: 6.7 mm). Of the parameters varied, the amount of anisotropy had the greatest influence on the results. Optimal material properties varied less when grouped by patient rather than by compression magnitude (mean: 0.72 vs 1.44). Employing these optimal materials for simulating mammograms from ten MR breast images of a different cohort resulted in more realistic breast

  17. Large breast compressions: observations and evaluation of simulations.

    Science.gov (United States)

    Tanner, Christine; White, Mark; Guarino, Salvatore; Hall-Craggs, Margaret A; Douek, Michael; Hawkes, David J

    2011-02-01

    Several methods have been proposed to simulate large breast compressions such as those occurring during x-ray mammography. However, the evaluation of these methods against real data is rare. The aim of this study is to learn more about the deformation behavior of breasts and to assess a simulation method. Magnetic resonance (MR) images of 11 breasts before and after applying a relatively large in vivo compression in the medial direction were acquired. Nonrigid registration was employed to study the deformation behavior. Optimal material properties for finite element modeling were determined and their prediction performance was assessed. The realism of simulated compressions was evaluated by comparing the breast shapes on simulated and real mammograms. Following image registration, 19 breast compressions from 8 women were studied. An anisotropic deformation behavior, with a reduced elongation in the anterior-posterior direction and an increased stretch in the inferior-superior direction was observed. Using finite element simulations, the performance of isotropic and transverse isotropic material models to predict the displacement of internal landmarks was compared. Isotropic materials reduced the mean displacement error of the landmarks from 23.3 to 4.7 mm, on average, after optimizing material properties with respect to breast surface alignment and image similarity. Statistically significantly smaller errors were achieved with transverse isotropic materials (4.1 mm, P=0.0045). Homogeneous material models performed substantially worse (transverse isotropic: 5.5 mm; isotropic: 6.7 mm). Of the parameters varied, the amount of anisotropy had the greatest influence on the results. Optimal material properties varied less when grouped by patient rather than by compression magnitude (mean: 0.72 vs. 1.44). Employing these optimal materials for simulating mammograms from ten MR breast images of a different cohort resulted in more realistic breast shapes than when using

  18. Large breast compressions: Observations and evaluation of simulations

    International Nuclear Information System (INIS)

    Tanner, Christine; White, Mark; Guarino, Salvatore; Hall-Craggs, Margaret A.; Douek, Michael; Hawkes, David J.

    2011-01-01

    Purpose: Several methods have been proposed to simulate large breast compressions such as those occurring during x-ray mammography. However, the evaluation of these methods against real data is rare. The aim of this study is to learn more about the deformation behavior of breasts and to assess a simulation method. Methods: Magnetic resonance (MR) images of 11 breasts before and after applying a relatively large in vivo compression in the medial direction were acquired. Nonrigid registration was employed to study the deformation behavior. Optimal material properties for finite element modeling were determined and their prediction performance was assessed. The realism of simulated compressions was evaluated by comparing the breast shapes on simulated and real mammograms. Results: Following image registration, 19 breast compressions from 8 women were studied. An anisotropic deformation behavior, with a reduced elongation in the anterior-posterior direction and an increased stretch in the inferior-superior direction was observed. Using finite element simulations, the performance of isotropic and transverse isotropic material models to predict the displacement of internal landmarks was compared. Isotropic materials reduced the mean displacement error of the landmarks from 23.3 to 4.7 mm, on average, after optimizing material properties with respect to breast surface alignment and image similarity. Statistically significantly smaller errors were achieved with transverse isotropic materials (4.1 mm, P=0.0045). Homogeneous material models performed substantially worse (transverse isotropic: 5.5 mm; isotropic: 6.7 mm). Of the parameters varied, the amount of anisotropy had the greatest influence on the results. Optimal material properties varied less when grouped by patient rather than by compression magnitude (mean: 0.72 vs 1.44). Employing these optimal materials for simulating mammograms from ten MR breast images of a different cohort resulted in more realistic breast

  19. Diagnostic value of MRI for nerve root compression due to lumbar canal stenosis. Clinical and anatomic study

    International Nuclear Information System (INIS)

    Seki, Michihiro; Kikuchi, Shinichi; Kageyama, Kazuhiro; Katakura, Toshihiko; Suzuki, Kenji

    1995-01-01

    Magnetic resonance imaging (MRI) was undertaken in 26 patients with surgically proven nerve root compression due to lumbar canal stenosis. The findings on coronary images were compared with those of selective radiculography to assess the diagnostic ability of MRI to determine the site of nerve root compression. Intermission and partial defect, which reflect nerve root compression, were seen in only 5 (19.2%) of 26 nerve roots on MRI, as compared with 20 (76.9%) on radiculography. Thus MRI alone was difficult to diagnose nerve root compression due to lumbar canal stenosis. Furthermore, the optimum angle of coronary views was determined in 13 cadavers. Para-sagittal views were found to be optimal for the observation of the whole running of the nerve root. Three-dimensional MRI was found to have a potential to diagnose nerve root compression in the intervertebral foramen and the distal part of the intervertebral foramen. (N.K.)

  20. Prediction of particle orientation in simple upsetting process of NdFeB magnets

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chao-Cheng; Hsiao, Po-Jen [Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Sanmin District, Kaohsiung 80778, Taiwan (China); You, Jr-Shiang; Chen, Yen-Ju; Chang, Can-Xun [Metal Forming Technology Section, Metal Processing R and D Department, Metal Industries Research and Development Centre, 1001 Kaonan Highway, Kaohsiung 81160, Taiwan (China)

    2013-12-16

    The magnetic properties of NdFeB magnets are strongly affected by crystallographic texture which is highly associated with particle orientation. This study proposed a method for predicting the particle orientation in the simple upsetting process of NdFeB magnets. The method is based on finite element simulation with flow net analysis. The magnets in a cylindrical form were compressed by two flat dies in a chamber filled with argon at 750°C. Three forming speeds were taken into account in order to obtain flow stress curves used in simulations. The micrographs of the cross sections of the deformed magnets show that the particle deformation significantly increases with the compression. The phenomenon was also predicted by the proposed method. Both simulated and experimental results show that the inhomogeneity of the texture of the NdFeB magnets can be increased by the simple upsetting process. The predicted particle orientations were in a good agreement with those examined in the deformed magnets. The proposed method for predicting particle orientations can also be used in other forming processes of NdFeB magnets.

  1. Prediction of particle orientation in simple upsetting process of NdFeB magnets

    International Nuclear Information System (INIS)

    Chang, Chao-Cheng; Hsiao, Po-Jen; You, Jr-Shiang; Chen, Yen-Ju; Chang, Can-Xun

    2013-01-01

    The magnetic properties of NdFeB magnets are strongly affected by crystallographic texture which is highly associated with particle orientation. This study proposed a method for predicting the particle orientation in the simple upsetting process of NdFeB magnets. The method is based on finite element simulation with flow net analysis. The magnets in a cylindrical form were compressed by two flat dies in a chamber filled with argon at 750°C. Three forming speeds were taken into account in order to obtain flow stress curves used in simulations. The micrographs of the cross sections of the deformed magnets show that the particle deformation significantly increases with the compression. The phenomenon was also predicted by the proposed method. Both simulated and experimental results show that the inhomogeneity of the texture of the NdFeB magnets can be increased by the simple upsetting process. The predicted particle orientations were in a good agreement with those examined in the deformed magnets. The proposed method for predicting particle orientations can also be used in other forming processes of NdFeB magnets

  2. Computer model of copper resistivity will improve the efficiency of field-compression devices

    International Nuclear Information System (INIS)

    Burgess, T.J.

    1977-01-01

    By detonating a ring of high explosive around an existing magnetic field, we can, under certain conditions, compress the field and multiply its strength tremendously. In this way, we can duplicate for a fraction of a second the extreme pressures that normally exist only in the interior of stars and planets. Under such pressures, materials may exhibit behavior that will confirm or alter current notions about the fundamental structure of matter and the ongoing processes in planetary interiors. However, we cannot design an efficient field-compression device unless we can calculate the electrical resistivity of certain basic metal components, which interact with the field. To aid in the design effort, we have developed a computer code that calculates the resistivity of copper and other metals over the wide range of temperatures and pressures found in a field-compression device

  3. Z a Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

    Science.gov (United States)

    Spielman, R. B.; Stygar, W. A.; Struve, K. W.; Asay, J. R.; Hall, C. A.; Bernard, M. A.; Bailey, J. E.; McDaniel, D. H.

    2004-11-01

    Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times ~100 ns. The largest such pulsed power driver today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z can deliver more than 20 MA with a time-to-peak of 105 ns to low inductance (~1 nH) loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 cm3 volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression schemes are not new and are, in fact, the basis of all explosive flux-compression generators, but we propose the use of plasma armatures rather than solid, conducting armatures. We present experimental results from the Z accelerator in which magnetic fields of ~2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields are reviewed in context with Z experiments. We describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

  4. A Delay Line for Compression of Electromagnetic Pulses

    International Nuclear Information System (INIS)

    Pchelnikov, Yuriy N.; Nyce, David S.

    2003-01-01

    A novel method to obtain an electromagnetic signal delay is described. It is shown that the positive magnetic and electric coupling between impedance conductors produces an increase in the time delay. It is also shown that the increase in delay time is obtained without additional attenuation. This allows a reduction in electromagnetic losses, by a factor of several times, for a delay time. An approximate analysis of electromagnetic delay lines based on coupled impedance conductors with 'spiral' and 'meander' patterns allowed obtaining very simple expressions for the wave deceleration factor, wave impedance, and attenuation factor. The results of the analysis are confirmed by the results of measurements. It is shown that a delay line based on counter-wound radial spirals can be successfully used for compression of electromagnetic pulses. Although the offered delay line was designed to operate with a relatively small signal, the analysis of the 'coupling effect', taking place in this delay line, might be useful in devices for compression of high-power microwave pulses

  5. New developments in pulsed fields at the US National High Magnetic Field Laboratory

    International Nuclear Information System (INIS)

    Campbell, L.J.; Parkin, D.M.; Rickel, D.G.; Pernambuco-Wise, P.

    1996-01-01

    Los Alamos National Laboratory is a member of a consortium (with Florida State University and the University of Florida) to operate the National High Magnetic Field Laboratory (NHMFL), with funding from the National Science Foundation and the State of Florida. Los Alamos provides unique resources for its component of NHMFL in the form of a 1.4 GW inertial storage motor-generator for high field pulsed magnets and infrastructure for fields generated by flux compression. The NHMFL provides a user facility open to all qualified users, develops magnet technology in association with the private sector, and advances science and technology opportunities. The magnets in service at Los Alamos are of three types. Starting with the pre-existing explosive flux compression capability in 1991, NHMFL added capacitor-driven magnets in December, 1992, and a 20 tesla superconducting magnet in January, 1993. The capacitor-driven magnets continue to grow in diversity and accessibility, with four magnet stations now available for several different magnet types. Two magnets of unprecedented size and strength are nearing completion of assembly and design, respectively. Under final assembly is a quasi-continuous magnet that contains 90 MJ of magnetic energy at full field, and being designed is a non-destructive 100 T magnet containing 140 MJ

  6. MRI analysis of vascular compressive trigeminal neuralgia

    International Nuclear Information System (INIS)

    Tang Ling; Chai Weimin; Song Qi; Ling Huawei; Miao Fei; Chen Kemin

    2006-01-01

    Objective: To analyze the offending vessels of vascular compressive trigeminal neuralgia by magnetic resonance tomographic angiography (MRTA). Methods: MRTA images of 235 asymptomatic trigeminal nerves and 147 symptomatic trigeminal nerves were analyzed by two radiologists who were blinded to the clinical findings. Judgment was made on if there were some vessels close to the trigeminal nerve. The diameter of the offending vessel, the distance from the offending vessel's contact point to the pons and the direction of the vessel toward the nerve were also recorded at the same time. Group t-test and Chi-Square test were used for statistics. Results: Two hundred and forty-two trigeminal nerves of all 382 nerves can be detected offending vessels on MRTA images, 111 of 242 trigeminal nerves were asymptomatic, the rest 131 were symptomatic. Statistical analysis indicated that the distance from the offending vessel's contact point to the pons in symptomatic group (the median is 2 mm) was shorter than that in the asymptomatic group (the median is 4 mm) (P<0.01). In 89.3% cases (117/131) of the symptomatic group the angle between the vessel and the nerve is larger than 45 degree, but only in 67.6% cases (75/111) in the asymptomatic group the angle is larger than 45 degree. That means significant difference is between the two groups (P<0.01). Vessel-nerve compression can be seen in 1 case of asymptomatic group (0.4%, 1/235) and 45 eases in symptomatic group (30.6%, 45/147). The vessel-nerve compression rate of the symptomatic group was much higher than that of the asymptomatic group (P<0.01). Conclusion: MR is a useful tool to evaluate the offending vessels of vascular compressive trigeminal neuralgia. The distance from the offending vessel's contact point to the pons and the direction of the vessel toward the nerve are related to the onset of vascular compressive trigeminal neuralgia. (authors)

  7. CHROMOSPHERIC AND CORONAL WAVE GENERATION IN A MAGNETIC FLUX SHEATH

    International Nuclear Information System (INIS)

    Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats; Steiner, Oskar

    2016-01-01

    Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.

  8. CHROMOSPHERIC AND CORONAL WAVE GENERATION IN A MAGNETIC FLUX SHEATH

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Yoshiaki; Hansteen, Viggo; Gudiksen, Boris; Wedemeyer, Sven; Carlsson, Mats [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo (Norway); Steiner, Oskar, E-mail: yoshiaki.kato@astro.uio.no [Kiepenheuer-Institut für Sonnenphysik, Schöneckstrasse 6, D-79104 Freiburg (Germany)

    2016-08-10

    Using radiation magnetohydrodynamic simulations of the solar atmospheric layers from the upper convection zone to the lower corona, we investigate the self-consistent excitation of slow magneto-acoustic body waves (slow modes) in a magnetic flux concentration. We find that the convective downdrafts in the close surroundings of a two-dimensional flux slab “pump” the plasma inside it in the downward direction. This action produces a downflow inside the flux slab, which encompasses ever higher layers, causing an upwardly propagating rarefaction wave. The slow mode, excited by the adiabatic compression of the downflow near the optical surface, travels along the magnetic field in the upward direction at the tube speed. It develops into a shock wave at chromospheric heights, where it dissipates, lifts the transition region, and produces an offspring in the form of a compressive wave that propagates further into the corona. In the wake of downflows and propagating shock waves, the atmosphere inside the flux slab in the chromosphere and higher tends to oscillate with a period of ν ≈ 4 mHz. We conclude that this process of “magnetic pumping” is a most plausible mechanism for the direct generation of longitudinal chromospheric and coronal compressive waves within magnetic flux concentrations, and it may provide an important heat source in the chromosphere. It may also be responsible for certain types of dynamic fibrils.

  9. Matchgate circuits and compressed quantum computation

    International Nuclear Information System (INIS)

    Boyajian, W.L.

    2015-01-01

    exact diagonal- ization. In Part II, we deal with the compressed way of quantum computation mentioned above, used to simulate physically interesting behaviours of large systems. To give an example, consider an experimental set–up, where up to 8 qubits can be well controlled. Such a set–up can be used to simulate certain interactions of 2 8 = 256 qubits. In [Boyajian et al. (2013)], we generalised the results from [Kraus (2011)], and demonstrated how the adiabatic evolution of the 1D XY-model can be simulated via an exponentially smaller quantum system. More precisely, it is shown there, how the phase transition of such a model of a spin chain consisting out of n qubits can be observed via a compressed algorithm processing only log( n ) qubits. The feasibility of such a compressed quantum simulation is due to the fact that the adiabatic evolution and the measurement of the magnetization employed to observe the phase transition can be described by a matchgate circuit. Remarkably, the number of elementary gates, i.e. the number of single and two-qubit gates which are required to implement the compressed simulation can be even smaller than required to implement the original matchgate circuit. This compressed algorithm has already been experimentally realized using NMR quantum computing [Li et al. (2014)]. In [Boyajian et al. (2013)] we showed that not only the quantum phase transition can be observed in this way, but that various other interesting processes, such as quantum quenching, where the evolution is non–adiabatic, and general time evolutions can be simulated with an exponentially smaller system. In Part II, we also recall the results from [Boyajian and Kraus (2015)] where we extend the notion of compressed quantum simulation even further. We consider the XY-model and derive compressed circuits to simulate the behavior of the thermal and any excited state of the system. To this end, we use the diagonalization of the XY-Hamiltonian presented in[ Verstraete et al

  10. Materials for Room Temperature Magnetic Refrigeration

    DEFF Research Database (Denmark)

    Hansen, Britt Rosendahl

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered...... candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material...... to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 – 310 K. A magnetic refrigerant...

  11. Optimization of Error-Bounded Lossy Compression for Hard-to-Compress HPC Data

    Energy Technology Data Exchange (ETDEWEB)

    Di, Sheng; Cappello, Franck

    2018-01-01

    Since today’s scientific applications are producing vast amounts of data, compressing them before storage/transmission is critical. Results of existing compressors show two types of HPC data sets: highly compressible and hard to compress. In this work, we carefully design and optimize the error-bounded lossy compression for hard-tocompress scientific data. We propose an optimized algorithm that can adaptively partition the HPC data into best-fit consecutive segments each having mutually close data values, such that the compression condition can be optimized. Another significant contribution is the optimization of shifting offset such that the XOR-leading-zero length between two consecutive unpredictable data points can be maximized. We finally devise an adaptive method to select the best-fit compressor at runtime for maximizing the compression factor. We evaluate our solution using 13 benchmarks based on real-world scientific problems, and we compare it with 9 other state-of-the-art compressors. Experiments show that our compressor can always guarantee the compression errors within the user-specified error bounds. Most importantly, our optimization can improve the compression factor effectively, by up to 49% for hard-tocompress data sets with similar compression/decompression time cost.

  12. The impact of chest compression rates on quality of chest compressions - a manikin study.

    Science.gov (United States)

    Field, Richard A; Soar, Jasmeet; Davies, Robin P; Akhtar, Naheed; Perkins, Gavin D

    2012-03-01

    Chest compressions are often performed at a variable rate during cardiopulmonary resuscitation (CPR). The effect of compression rate on other chest compression quality variables (compression depth, duty-cycle, leaning, performance decay over time) is unknown. This randomised controlled cross-over manikin study examined the effect of different compression rates on the other chest compression quality variables. Twenty healthcare professionals performed 2 min of continuous compressions on an instrumented manikin at rates of 80, 100, 120, 140 and 160 min(-1) in a random order. An electronic metronome was used to guide compression rate. Compression data were analysed by repeated measures ANOVA and are presented as mean (SD). Non-parametric data was analysed by Friedman test. At faster compression rates there were significant improvements in the number of compressions delivered (160(2) at 80 min(-1) vs. 312(13) compressions at 160 min(-1), P<0.001); and compression duty-cycle (43(6)% at 80 min(-1) vs. 50(7)% at 160 min(-1), P<0.001). This was at the cost of a significant reduction in compression depth (39.5(10)mm at 80 min(-1) vs. 34.5(11)mm at 160 min(-1), P<0.001); and earlier decay in compression quality (median decay point 120 s at 80 min(-1) vs. 40s at 160 min(-1), P<0.001). Additionally not all participants achieved the target rate (100% at 80 min(-1) vs. 70% at 160 min(-1)). Rates above 120 min(-1) had the greatest impact on reducing chest compression quality. For Guidelines 2005 trained rescuers, a chest compression rate of 100-120 min(-1) for 2 min is feasible whilst maintaining adequate chest compression quality in terms of depth, duty-cycle, leaning, and decay in compression performance. Further studies are needed to assess the impact of the Guidelines 2010 recommendation for deeper and faster chest compressions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Stability analysis and numerical simulation of a hard-core diffuse z pinch during compression with Atlas facility liner parameters

    Science.gov (United States)

    Siemon, R. E.; Atchison, W. L.; Awe, T.; Bauer, B. S.; Buyko, A. M.; Chernyshev, V. K.; Cowan, T. E.; Degnan, J. H.; Faehl, R. J.; Fuelling, S.; Garanin, S. F.; Goodrich, T.; Ivanovsky, A. V.; Lindemuth, I. R.; Makhin, V.; Mokhov, V. N.; Reinovsky, R. E.; Ryutov, D. D.; Scudder, D. W.; Taylor, T.; Yakubov, V. B.

    2005-09-01

    In the 'metal liner' approach to magnetized target fusion (MTF), a preheated magnetized plasma target is compressed to thermonuclear temperature and high density by externally driving the implosion of a flux conserving metal enclosure, or liner, which contains the plasma target. As in inertial confinement fusion, the principal fusion fuel heating mechanism is pdV work by the imploding enclosure, called a pusher in ICF. One possible MTF target, the hard-core diffuse z pinch, has been studied in MAGO experiments at VNIIEF and is one possible target being considered for experiments on the Atlas pulsed power facility. Numerical MHD simulations show two intriguing and helpful features of the diffuse z pinch with respect to compressional heating. First, in two-dimensional simulations the m = 0 interchange modes, arising from an unstable pressure profile, result in turbulent motions and self-organization into a stable pressure profile. The turbulence also gives rise to convective thermal transport, but the level of turbulence saturates at a finite level, and simulations show substantial heating during liner compression despite the turbulence. The second helpful feature is that pressure profile evolution during compression tends towards improved stability rather than instability when analysed according to the Kadomtsev criteria. A liner experiment is planned for Atlas to study compression of magnetic flux without plasma, as a first step. The Atlas geometry is compatible with a diffuse z pinch, and simulations of possible future experiments show that kiloelectronvolt temperatures and useful neutron production for diagnostic purposes should be possible if a suitable plasma injector is added to the Atlas facility.

  14. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dileep, E-mail: dkumar@csr.res.in [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Singh, Sadhana [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Vishawakarma, Pramod [School of Nanotechnology, RGPV, Bhopal 462036 (India); Dev, Arun Singh; Reddy, V.R. [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201303 (India)

    2016-11-15

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress. - Highlights: • Tensile and compressive stresses were induced in Co films by removing the bending force from the substrates after film deposition. • Controlled external mechanical stress is found to be responsible for magnetic anisotropies in amorphous and polycrystalline thin films, where crystalline anisotropy is absent. • Tensile stress leads to surface smoothening of the polycrystalline Co films.

  15. Accelerated whole-brain multi-parameter mapping using blind compressed sensing.

    Science.gov (United States)

    Bhave, Sampada; Lingala, Sajan Goud; Johnson, Casey P; Magnotta, Vincent A; Jacob, Mathews

    2016-03-01

    To introduce a blind compressed sensing (BCS) framework to accelerate multi-parameter MR mapping, and demonstrate its feasibility in high-resolution, whole-brain T1ρ and T2 mapping. BCS models the evolution of magnetization at every pixel as a sparse linear combination of bases in a dictionary. Unlike compressed sensing, the dictionary and the sparse coefficients are jointly estimated from undersampled data. Large number of non-orthogonal bases in BCS accounts for more complex signals than low rank representations. The low degree of freedom of BCS, attributed to sparse coefficients, translates to fewer artifacts at high acceleration factors (R). From 2D retrospective undersampling experiments, the mean square errors in T1ρ and T2 maps were observed to be within 0.1% up to R = 10. BCS was observed to be more robust to patient-specific motion as compared to other compressed sensing schemes and resulted in minimal degradation of parameter maps in the presence of motion. Our results suggested that BCS can provide an acceleration factor of 8 in prospective 3D imaging with reasonable reconstructions. BCS considerably reduces scan time for multiparameter mapping of the whole brain with minimal artifacts, and is more robust to motion-induced signal changes compared to current compressed sensing and principal component analysis-based techniques. © 2015 Wiley Periodicals, Inc.

  16. Magnetic and structural investigation of growth induced magnetic anisotropies in Fe50Co50 thin films

    Directory of Open Access Journals (Sweden)

    Neri I.

    2013-01-01

    Full Text Available In this paper, we investigate the magnetic properties of Fe50 Co50 polycrystalline thin films, grown by dc-magnetron sputtering, with thickness (t ranging from 2.5 nm up to 100 nm. We focused on the magnetic properties of the samples to highlight the effects of possible intrinsic stress that may develop during growth, and their dependence on film thickness. Indeed, during film deposition, due to the growth technique and growth conditions, a metallic film may display an intrinsic compressive or tensile stress. In our case, due to the Fe50Co50 magnetolastic properties, this stress may in its turn promote the development of magnetic anisotropies. Samples magnetic properties were monitored with a SQUID magnetometer and a magneto–optic Kerr effect apparatus, using both an in–plane and an out–of–plane magnetic field. Magnetoresistance measurements were collected, as well, to further investigate the magnetic behavior of the samples. Indications about the presence of intrinsic stress were obtained accessing samples curvature with an optical profilometer. For t ≤ 20 nm, the shape of the in-plane magnetization loops is squared and coercivity increases with t, possibly due to fact that, for small t values, the grain size grows with t. The magnetoresistive response is anisotropic in character. For t > 20 nm, coercivity smoothly decreases, the approach to saturation gets slower and the shape of the whole loop gets less and less squared. The magnetoresistive effect becomes almost isotropic and its intensity increases of about one order of magnitude. These results suggest that the magnetization reorientation process changes for t > 20 nm, and are in agreement with the progressive development of an out-of-plane easy axis. This hypothesis is substantiated by profilometric analysis that reveals the presence of an in-plane compressive stress.

  17. Steady fall of isothermal, resistive-viscous, compressible fluid across magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Low, B. C., E-mail: low@ucar.edu [High Altitude Observatory, National Center for Atmospheric Research, Boulder, Colorado 80301 (United States); Egan, A. K., E-mail: andrea.egan@colorado.edu [Barnard College, New York, New York 10027, USA and Department of Physics, Colorado University, Boulder, Colorado 80309 (United States)

    2014-06-15

    This is a basic MHD study of the steady fall of an infinite, vertical slab of isothermal, resistive-viscous, compressible fluid across a dipped magnetic field in uniform gravity. This double-diffusion steady flow in unbounded space poses a nonlinear but numerically tractable, one-dimensional (1D) free-boundary problem, assuming constant coefficients of resistivity and viscosity. The steady flow is determined by a dimensionless number μ{sub 1} proportional to the triple product of the two diffusion coefficients and the square of the linear total mass. For a sufficiently large μ{sub 1}, the Lorentz, viscous, fluid-pressure, and gravitational forces pack and collimate the fluid into a steady flow of a finite width defined by the two zero-pressure free-boundaries of the slab with vacuum. The viscous force is essential in this collimation effect. The study conjectures that in the regime μ{sub 1}→0, the 1D steady state exists only for μ{sub 1}∈Ω, a spectrum of an infinite number of discrete values, including μ{sub 1} = 0 that corresponds to two steady states, the classical zero-resistivity static slab of Kippenhahn and Schlüter [R. Kippenhahn and A. Schlüter, Z. Astrophys. 43, 36 (1957)] and its recent generalization [B. C. Low et al., Astrophys. J. 755, 34 (2012)] to admit an inviscid resistive flow. The pair of zero-pressure boundaries of each of the μ{sub 1}→0 steady-state slabs are located at infinity. Computational evidence suggests that the Ω steady-states are densely distributed around μ{sub 1} = 0, as an accumulation point, but are sparsely separated by open intervals of μ{sub 1}-values for which the slab must be either time-dependent or spatially multi-dimensional. The widths of these intervals are vanishingly small as μ{sub 1}→0. This topological structure of physical states is similar to that described by Landau and Liftshitz [L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-Wesley, Reading, MA, 1959)] to explain the onset

  18. The Contribution of Compressional Magnetic Pumping to the Energization of the Earth's Outer Electron Radiation Belt During High-Speed Stream-Driven Storms

    Science.gov (United States)

    Borovsky, Joseph E.; Horne, Richard B.; Meredith, Nigel P.

    2017-12-01

    Compressional magnetic pumping is an interaction between cyclic magnetic compressions and pitch angle scattering with the scattering acting as a catalyst to allow the cyclic compressions to energize particles. Compressional magnetic pumping of the outer electron radiation belt at geosynchronous orbit in the dayside magnetosphere is analyzed by means of computer simulations, wherein solar wind compressions of the dayside magnetosphere energize electrons with electron pitch angle scattering by chorus waves and by electromagnetic ion cyclotron (EMIC) waves. The magnetic pumping is found to produce a weak bulk heating of the electron radiation belt, and it also produces an energetic tail on the electron energy distribution. The amount of energization depends on the robustness of the solar wind compressions and on the amplitude of the chorus and/or EMIC waves. Chorus-catalyzed pumping is better at energizing medium-energy (50-200 keV) electrons than it is at energizing higher-energy electrons; at high energies (500 keV-2 MeV) EMIC-catalyzed pumping is a stronger energizer. The magnetic pumping simulation results are compared with energy diffusion calculations for chorus waves in the dayside magnetosphere; in general, compressional magnetic pumping is found to be weaker at accelerating electrons than is chorus-driven energy diffusion. In circumstances when solar wind compressions are robust and when EMIC waves are present in the dayside magnetosphere without the presence of chorus, EMIC-catalyzed magnetic pumping could be the dominant energization mechanism in the dayside magnetosphere, but at such times loss cone losses will be strong.

  19. Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain

    International Nuclear Information System (INIS)

    Yang, Bingxin; Yuan, Min; Ma, Yide; Zhang, Jiuwen; Zhan, Kun

    2015-01-01

    Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images. In this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l 1 sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm. Experimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods. The proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented

  20. Excessive chest compression rate is associated with insufficient compression depth in prehospital cardiac arrest.

    Science.gov (United States)

    Monsieurs, Koenraad G; De Regge, Melissa; Vansteelandt, Kristof; De Smet, Jeroen; Annaert, Emmanuel; Lemoyne, Sabine; Kalmar, Alain F; Calle, Paul A

    2012-11-01

    BACKGROUND AND GOAL OF STUDY: The relationship between chest compression rate and compression depth is unknown. In order to characterise this relationship, we performed an observational study in prehospital cardiac arrest patients. We hypothesised that faster compressions are associated with decreased depth. In patients undergoing prehospital cardiopulmonary resuscitation by health care professionals, chest compression rate and depth were recorded using an accelerometer (E-series monitor-defibrillator, Zoll, U.S.A.). Compression depth was compared for rates 120/min. A difference in compression depth ≥0.5 cm was considered clinically significant. Mixed models with repeated measurements of chest compression depth and rate (level 1) nested within patients (level 2) were used with compression rate as a continuous and as a categorical predictor of depth. Results are reported as means and standard error (SE). One hundred and thirty-three consecutive patients were analysed (213,409 compressions). Of all compressions 2% were 120/min, 36% were 5 cm. In 77 out of 133 (58%) patients a statistically significant lower depth was observed for rates >120/min compared to rates 80-120/min, in 40 out of 133 (30%) this difference was also clinically significant. The mixed models predicted that the deepest compression (4.5 cm) occurred at a rate of 86/min, with progressively lower compression depths at higher rates. Rates >145/min would result in a depth compression depth for rates 80-120/min was on average 4.5 cm (SE 0.06) compared to 4.1 cm (SE 0.06) for compressions >120/min (mean difference 0.4 cm, Pcompression rates and lower compression depths. Avoiding excessive compression rates may lead to more compressions of sufficient depth. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  1. RADIO POLARIMETRY SIGNATURES OF STRONG MAGNETIC TURBULENCE IN SUPERNOVA REMNANTS

    International Nuclear Information System (INIS)

    Stroman, Wendy; Pohl, Martin

    2009-01-01

    We discuss the emission and transport of polarized radio-band synchrotron radiation near the forward shocks of young shell-type supernova remnants, for which X-ray data indicate a strong amplification of turbulent magnetic field. Modeling the magnetic turbulence through the superposition of waves, we calculate the degree of polarization and the magnetic polarization direction which is at 90 deg. to the conventional electric polarization direction. We find that isotropic strong turbulence will produce weakly polarized radio emission even in the absence of internal Faraday rotation. If anisotropy is imposed on the magnetic-field structure, the degree of polarization can be significantly increased, provided internal Faraday rotation is inefficient. Both for shock compression and a mixture with a homogeneous field, the increase in polarization degree goes along with a fairly precise alignment of the magnetic-polarization angle with the direction of the dominant magnetic-field component, implying tangential magnetic polarization at the rims in the case of shock compression. We compare our model with high-resolution radio polarimetry data of Tycho's remnant. Using the absence of internal Faraday rotation we find a soft limit for the amplitude of magnetic turbulence, δB ∼ 0 . An alternative viable scenario involves anisotropic turbulence with stronger amplitudes in the radial direction, as was observed in recent Magnetohydrodynamics simulations of shocks propagating through a medium with significant density fluctuations.

  2. Strain-dependent magnetic anisotropy in GaMnAs on InGaAs templates

    Energy Technology Data Exchange (ETDEWEB)

    Daeubler, Joachim; Glunk, Michael; Schwaiger, Stephan; Dreher, Lukas; Schoch, Wladimir; Sauer, Rolf; Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm, 89069 Ulm (Germany)

    2008-07-01

    We have systematically studied the influence of strain on the magnetic anisotropy of GaMnAs by means of HRXRD reciprocal space mapping and angle-dependent magnetotransport. For this purpose, a series of GaMnAs layers with Mn contents of {proportional_to}5% was grown by low-temperature MBE on relaxed InGaAs/GaAs templates with different In concentrations, enabling us to vary the strain in the GaMnAs layers continuously from tensile to compressive, including the unstrained state. Considering both, as-grown and annealed samples, the anisotropy parameter describing the uniaxial out-of-plane magnetic anisotropy has been found to vary linearly with hole density and strain. As a consequence, the out-of-plane direction gradually undergoes a transition from a magnetic hard axis to a magnetic easy axis from compressive to tensile strain.

  3. The impact of chest compression rates on quality of chest compressions : a manikin study

    OpenAIRE

    Field, Richard A.; Soar, Jasmeet; Davies, Robin P.; Akhtar, Naheed; Perkins, Gavin D.

    2012-01-01

    Purpose\\ud Chest compressions are often performed at a variable rate during cardiopulmonary resuscitation (CPR). The effect of compression rate on other chest compression quality variables (compression depth, duty-cycle, leaning, performance decay over time) is unknown. This randomised controlled cross-over manikin study examined the effect of different compression rates on the other chest compression quality variables.\\ud Methods\\ud Twenty healthcare professionals performed two minutes of co...

  4. Short Large-Amplitude Magnetic Structures (SLAMS) at Venus

    Science.gov (United States)

    Collinson, G. A.; Wilson, L. B.; Sibeck, D. G.; Shane, N.; Zhang, T. L.; Moore, T. E.; Coates, A. J.; Barabash, S.

    2012-01-01

    We present the first observation of magnetic fluctuations consistent with Short Large-Amplitude Magnetic Structures (SLAMS) in the foreshock of the planet Venus. Three monolithic magnetic field spikes were observed by the Venus Express on the 11th of April 2009. The structures were approx.1.5->11s in duration, had magnetic compression ratios between approx.3->6, and exhibited elliptical polarization. These characteristics are consistent with the SLAMS observed at Earth, Jupiter, and Comet Giacobini-Zinner, and thus we hypothesize that it is possible SLAMS may be found at any celestial body with a foreshock.

  5. Planetary magnetism

    International Nuclear Information System (INIS)

    Dolginov, Sh.Sh.

    1977-01-01

    Experimental data on magnetic fields of planets are surveyed. The magnetic fields of the Earth, Jupiter, Mars, Mercury, Venus, and the Moon are considered in detail. A similarity of the physical models of both the planets of the Earth group and the giant planets was revealed. The fields of the planets and of the Earth are compared in the scheme of the precession dynamo and in the kinematic scheme. Proceeding from the assumption that the Poincare forces and their ratio to other forces are model-similar in the cores of all the planets, the values of Hsub(i)/Hsub(E) are calculated, where Hsub(i) and Hsub(E) are the field strengths of the i-th planet and that of the Earth. The experimental data on the dynamic compression of the Mercury confirm the calculations made. It is concluded that the problem of the origin and moving forces of the terrestrial magnetic field may be resolved only within the framework of comparative planetology

  6. Compression stockings

    Science.gov (United States)

    Call your health insurance or prescription plan: Find out if they pay for compression stockings. Ask if your durable medical equipment benefit pays for compression stockings. Get a prescription from your doctor. Find a medical equipment store where they can ...

  7. Compression for radiological images

    Science.gov (United States)

    Wilson, Dennis L.

    1992-07-01

    The viewing of radiological images has peculiarities that must be taken into account in the design of a compression technique. The images may be manipulated on a workstation to change the contrast, to change the center of the brightness levels that are viewed, and even to invert the images. Because of the possible consequences of losing information in a medical application, bit preserving compression is used for the images used for diagnosis. However, for archiving the images may be compressed to 10 of their original size. A compression technique based on the Discrete Cosine Transform (DCT) takes the viewing factors into account by compressing the changes in the local brightness levels. The compression technique is a variation of the CCITT JPEG compression that suppresses the blocking of the DCT except in areas of very high contrast.

  8. The Role of Shabansky Orbits in Compression-Related Electromagnetic Ion Cyclotron Wave Growth (Postprint)

    Science.gov (United States)

    2012-03-15

    compressing the field. Equation (5) uses a geocentric spherical coordinate system with units of length in Earth radii. It is clear that setting b1 = 0...in a complementary approach to the one used by McCollough et al. [2009]. 3. Anisotropy Arising From Magnetic Field Configuration [21] McCollough et al

  9. Generation of large-scale vortives in compressible helical turbulence

    International Nuclear Information System (INIS)

    Chkhetiani, O.G.; Gvaramadze, V.V.

    1989-01-01

    We consider generation of large-scale vortices in compressible self-gravitating turbulent medium. The closed equation describing evolution of the large-scale vortices in helical turbulence with finite correlation time is obtained. This equation has the form similar to the hydromagnetic dynamo equation, which allows us to call the vortx genertation effect the vortex dynamo. It is possible that principally the same mechanism is responsible both for amplification and maintenance of density waves and magnetic fields in gaseous disks of spiral galaxies. (author). 29 refs

  10. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  11. Acute vertebral fracture: differentiation of malignant and benign causes by diffusion weighted magnetic resonance imaging

    International Nuclear Information System (INIS)

    Mubarak, F.; Akhtar, W.

    2011-01-01

    Objective: To evaluate the sensitivity, specificity and accuracy of diffusion weighted (DWI) magnetic resonance imaging (MRI) in the diagnosis and differentiation between benign (osteoporotic/infectious) and malignant vertebral compression fractures in comparison with histology findings and clinical follow up. Methods: The study was conducted at the Radiology Department, Aga Khan University Hospital (AKUH) Karachi. It was a one year cross-sectional study from 01/01/2009 to 01/01/2010. Forty patients with sixty three vertebral compression fractures were included. Diffusion-weighted sequences and apparent diffusion coefficient (ADC) images on a 1.5 T MR scanner were obtained in all patients to identify the vertebral compression fracture along with benign and malignant causes. Imaging findings were compared with histopathologic results and clinical follow-up. Results: Diffusion-weighted MR imaging found to have, 92% sensitivity, 90% specificity and accuracy of 85% in differentiation of benign and malignant vertebral compression fracture while PPV and NPV were 78 % and 90% respectively. Conclusion: Diffusion weighted magnetic resonance imaging offers a safe, accurate and non invasive modality to differentiate between the benign and malignant vertebral compression fracture. (author)

  12. Stiff, porous scaffolds from magnetized alumina particles aligned by magnetic freeze casting.

    Science.gov (United States)

    Frank, Michael B; Naleway, Steven E; Haroush, Tsuk; Liu, Chin-Hung; Siu, Sze Hei; Ng, Jerry; Torres, Ivan; Ismail, Ali; Karandikar, Keyur; Porter, Michael M; Graeve, Olivia A; McKittrick, Joanna

    2017-08-01

    Bone consists of a hard mineral phase and a compliant biopolymer phase resulting in a composite material that is both lightweight and strong. Osteoporosis that degrades spongy bone preferentially over time leads to bone brittleness in the elderly. A porous ceramic material that can mimic spongy bone for a one-time implant provides a potential solution for the future needs of an aging population. Scaffolds made by magnetic freeze casting resemble the aligned porosity of spongy bone. A magnetic field applied throughout freezing induces particle chaining and alignment of lamellae structures between growing ice crystals. After freeze drying to extract the ice and sintering to strengthen the scaffold, cubes from the scaffold center are mechanically compressed along longitudinal (z-axis, ice growth direction) and transverse (y-axis, magnetic field direction) axes. The best alignment of lamellar walls in the scaffold center occurs when applying magnetic freeze casting with the largest particles (350nm) at an intermediate magnetic field strength (75mT), which also agrees with stiffness enhancement results in both z and y-axes. Magnetic moments of different sized magnetized alumina particles help determine the ideal magnetic field strength needed to induce alignment in the scaffold center rather than just at the poles. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Electron-electron interactions in graphene field-induced quantum dots in a high magnetic field

    DEFF Research Database (Denmark)

    Orlof, A.; Shylau, Artsem; Zozoulenko, I. V.

    2015-01-01

    We study the effect of electron-electron interaction in graphene quantum dots defined by an external electrostatic potential and a high magnetic field. To account for the electron-electron interaction, we use the Thomas-Fermi approximation and find that electron screening causes the formation...... of compressible strips in the potential profile and the electron density. We numerically solve the Dirac equations describing the electron dynamics in quantum dots, and we demonstrate that compressible strips lead to the appearance of plateaus in the electron energies as a function of the magnetic field. Finally...

  14. Laser-plasma interactions in magnetized environment

    Science.gov (United States)

    Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.

    2018-05-01

    Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interaction enters a relativistic-quantum regime. Using quantum electrodynamics, we compute a modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.

  15. Saturation of superstorms and finite compressibility of the magnetosphere: Results of the magnetogram inversion technique and global PPMLR-MHD model

    Science.gov (United States)

    Mishin, V. V.; Mishin, V. M.; Karavaev, Yu.; Han, J. P.; Wang, C.

    2016-07-01

    We report on novel features of the saturation process of the polar cap magnetic flux and Poynting flux into the magnetosphere from the solar wind during three superstorms. In addition to the well-known effect of the interplanetary electric (Esw) and southward magnetic (interplanetary magnetic field (IMF) Bz) fields, we found that the saturation depends also on the solar wind ram pressure Pd. By means of the magnetogram inversion technique and a global MHD numerical model Piecewise Parabolic Method with a Lagrangian Remap, we explore the dependence of the magnetopause standoff distance on ram pressure and the southward IMF. Unlike earlier studies, in the considered superstorms both Pd and Bz achieve extreme values. As a result, we show that the compression rate of the dayside magnetosphere decreases with increasing Pd and the southward Bz, approaching very small values for extreme Pd ≥ 15 nPa and Bz ≤ -40 nT. This dependence suggests that finite compressibility of the magnetosphere controls saturation of superstorms.

  16. Extreme compression for extreme conditions: pilot study to identify optimal compression of CT images using MPEG-4 video compression.

    Science.gov (United States)

    Peterson, P Gabriel; Pak, Sung K; Nguyen, Binh; Jacobs, Genevieve; Folio, Les

    2012-12-01

    This study aims to evaluate the utility of compressed computed tomography (CT) studies (to expedite transmission) using Motion Pictures Experts Group, Layer 4 (MPEG-4) movie formatting in combat hospitals when guiding major treatment regimens. This retrospective analysis was approved by Walter Reed Army Medical Center institutional review board with a waiver for the informed consent requirement. Twenty-five CT chest, abdomen, and pelvis exams were converted from Digital Imaging and Communications in Medicine to MPEG-4 movie format at various compression ratios. Three board-certified radiologists reviewed various levels of compression on emergent CT findings on 25 combat casualties and compared with the interpretation of the original series. A Universal Trauma Window was selected at -200 HU level and 1,500 HU width, then compressed at three lossy levels. Sensitivities and specificities for each reviewer were calculated along with 95 % confidence intervals using the method of general estimating equations. The compression ratios compared were 171:1, 86:1, and 41:1 with combined sensitivities of 90 % (95 % confidence interval, 79-95), 94 % (87-97), and 100 % (93-100), respectively. Combined specificities were 100 % (85-100), 100 % (85-100), and 96 % (78-99), respectively. The introduction of CT in combat hospitals with increasing detectors and image data in recent military operations has increased the need for effective teleradiology; mandating compression technology. Image compression is currently used to transmit images from combat hospital to tertiary care centers with subspecialists and our study demonstrates MPEG-4 technology as a reasonable means of achieving such compression.

  17. Optimization of wavelet decomposition for image compression and feature preservation.

    Science.gov (United States)

    Lo, Shih-Chung B; Li, Huai; Freedman, Matthew T

    2003-09-01

    A neural-network-based framework has been developed to search for an optimal wavelet kernel that can be used for a specific image processing task. In this paper, a linear convolution neural network was employed to seek a wavelet that minimizes errors and maximizes compression efficiency for an image or a defined image pattern such as microcalcifications in mammograms and bone in computed tomography (CT) head images. We have used this method to evaluate the performance of tap-4 wavelets on mammograms, CTs, magnetic resonance images, and Lena images. We found that the Daubechies wavelet or those wavelets with similar filtering characteristics can produce the highest compression efficiency with the smallest mean-square-error for many image patterns including general image textures as well as microcalcifications in digital mammograms. However, the Haar wavelet produces the best results on sharp edges and low-noise smooth areas. We also found that a special wavelet whose low-pass filter coefficients are 0.32252136, 0.85258927, 1.38458542, and -0.14548269) produces the best preservation outcomes in all tested microcalcification features including the peak signal-to-noise ratio, the contrast and the figure of merit in the wavelet lossy compression scheme. Having analyzed the spectrum of the wavelet filters, we can find the compression outcomes and feature preservation characteristics as a function of wavelets. This newly developed optimization approach can be generalized to other image analysis applications where a wavelet decomposition is employed.

  18. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    Energy Technology Data Exchange (ETDEWEB)

    Alatawneh, Natheer, E-mail: natheer80@yahoo.com [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada); Rahman, Tanvir; Lowther, David A. [Department of Electrical and Computer Engineering, McGill University, QC H3A 0E9 (Canada); Chromik, Richard [Department of Mining and Materials Engineering, McGill University, QC H3A 0G4 (Canada)

    2017-06-15

    Highlights: • Develop a toroidal tester for magnetic measurements under compressive axial stress. • The shape of the toroidal ring has been verified using 3D stress analysis. • The developed design has been prototyped, and measurements were carried out. • Physical explanations for the core loss trend due to stress are provided. - Abstract: Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  19. Particle reflection along the magnetic field in nonlinear magnetosonic pulses

    Science.gov (United States)

    Ohsawa, Yukiharu

    2017-11-01

    Reflection of electrons and positrons in oblique, nonlinear magnetosonic pulses is theoretically analyzed. With the use of the parallel pseudo potential F, which is the integral of the parallel electric field along the magnetic field, a simple equation for reflection conditions is derived, which shows that reflection along the magnetic field is caused by two forces: one arising from the parallel pseudo potential multiplied by the particle charge and the other from the magnetic mirror effect. The two forces push electrons in the opposite directions. In compressive solitons, in which the magnetic field is intensified, electrons with large magnetic moments can be reflected by the magnetic mirror effect, whereas in rarefactive solitons, in which the magnetic field is weaker than outside, electrons with small magnetic moments can be reflected by the parallel pseudo potential. Although F is basically positive and large in shock waves, it occasionally becomes negative in some regions behind the shock front in nonstationary wave evolution. These negative spikes of F can reflect electrons. In contrast to the case of electrons, the two forces push positrons in the same direction. For this reason, compressive solitons in an electron-positron-ion plasma reflect a large fraction of positrons compared with electrons, whereas rarefactive solitons will reflect no positrons. A shock wave can reflect a majority of positrons with its large F. However, in a pure electron-positron plasma, in which F becomes zero, positron reflection will rarely occur.

  20. Pregnancy Associated Osteoporosis Leading to Vertebral Compression Fracture

    Directory of Open Access Journals (Sweden)

    Berke Aras

    2016-08-01

    Full Text Available To describe a patient with low back pain developed in the postpartum period and diagnosed as having vertebral compression fracture due to pregnancy and lactation associated osteoporosis. A 28-year old woman presented with complaints of low back pain started two months after her first delivery. Laboratory tests including bone mineral density (BMD, biochemical evaluation and lomber spinal magnetic resonance imaging (MRI was evaluated. Lomber spine BMD was extremely decreased: L2-4: 0,685 g/cm2, T-score -3.9, Z-score -3.9. MRI revealed a compression fracture of T12 vertebra. The patient was investigated in terms of all possible risk factors and hormonal pathology causing osteoporosis and no abnormality was found. So she was diagnosed as having pregnancy and associated osteoporosis. Cease of the lactation and the treatment with teriparatide were recommended to the patient but she refused both of them. Clinicians should take into account of pregnancy and lactation associated osteoporosis, when evaluating patients with low back pain in early postpartum period.

  1. How should we grade lumbar disc herniation and nerve root compression? A systematic review.

    Science.gov (United States)

    Li, Yiping; Fredrickson, Vance; Resnick, Daniel K

    2015-06-01

    MRI is the gold standard for evaluating the relationship of disc material to soft tissue and neural structures. However, terminologies used to describe lumbar disc herniation and nerve root compression have always been a source of confusion. A clear understanding of lumbar disc terminology among clinicians, radiologists, and researchers is vital for patient care and future research. Through a systematic review of the literature, the purpose of this article is to describe lumbar disc terminology and comment on the reliability of various nomenclature systems and their application to clinical practice. PubMed was used for our literature search using the following MeSH headings: "Magnetic Resonance Imaging and Intervertebral Disc Displacement" and "Lumbar Vertebrae" and terms "nomenclature" or "grading" or "classification". Ten papers evaluating lumbar disc herniation/nerve root compression using different grading criteria and providing information regarding intraobserver and interobserver agreement were identified. To date, the Combined Task Force (CTF) and van Rijn classification systems are the most reliable methods for describing lumbar disc herniation and nerve root compression, respectively. van Rijn dichotomized nerve roots from "definitely no root compression, possibly no root compression, indeterminate root compression, possible root compression, and definite root compression" into no root compression (first three categories) and root compression (last two categories). The CTF classification defines lumbar discs as normal, focal protrusion, broad-based protrusion, or extrusion. The CTF classification system excludes "disc bulges," which is a source of confusion and disagreement among many practitioners. This potentially accounts for its improved reliability compared with other proposed nomenclature systems. The main issue in the management of patients with lumbar disc disease and nerve root compression is correlation of imaging findings with clinical

  2. Non-Destructive Detection of Wire Rope Discontinuities from Residual Magnetic Field Images Using the Hilbert-Huang Transform and Compressed Sensing

    Directory of Open Access Journals (Sweden)

    Juwei Zhang

    2017-03-01

    Full Text Available Electromagnetic methods are commonly employed to detect wire rope discontinuities. However, determining the residual strength of wire rope based on the quantitative recognition of discontinuities remains problematic. We have designed a prototype device based on the residual magnetic field (RMF of ferromagnetic materials, which overcomes the disadvantages associated with in-service inspections, such as large volume, inconvenient operation, low precision, and poor portability by providing a relatively small and lightweight device with improved detection precision. A novel filtering system consisting of the Hilbert-Huang transform and compressed sensing wavelet filtering is presented. Digital image processing was applied to achieve the localization and segmentation of defect RMF images. The statistical texture and invariant moment characteristics of the defect images were extracted as the input of a radial basis function neural network. Experimental results show that the RMF device can detect defects in various types of wire rope and prolong the service life of test equipment by reducing the friction between the detection device and the wire rope by accommodating a high lift-off distance.

  3. Compliant Buckled Foam Actuators and Application in Patient-Specific Direct Cardiac Compression.

    Science.gov (United States)

    Mac Murray, Benjamin C; Futran, Chaim C; Lee, Jeanne; O'Brien, Kevin W; Amiri Moghadam, Amir A; Mosadegh, Bobak; Silberstein, Meredith N; Min, James K; Shepherd, Robert F

    2018-02-01

    We introduce the use of buckled foam for soft pneumatic actuators. A moderate amount of residual compressive strain within elastomer foam increases the applied force ∼1.4 × or stroke ∼2 × compared with actuators without residual strain. The origin of these improved characteristics is explained analytically. These actuators are applied in a direct cardiac compression (DCC) device design, a type of implanted mechanical circulatory support that avoids direct blood contact, mitigating risks of clot formation and stroke. This article describes a first step toward a pneumatically powered, patient-specific DCC design by employing elastomer foam as the mechanism for cardiac compression. To form the device, a mold of a patient's heart was obtained by 3D printing a digitized X-ray computed tomography or magnetic resonance imaging scan into a solid model. From this model, a soft, robotic foam DCC device was molded. The DCC device is compliant and uses compressed air to inflate foam chambers that in turn apply compression to the exterior of a heart. The device is demonstrated on a porcine heart and is capable of assisting heart pumping at physiologically relevant durations (∼200 ms for systole and ∼400 ms for diastole) and stroke volumes (∼70 mL). Although further development is necessary to produce a fully implantable device, the material and processing insights presented here are essential to the implementation of a foam-based, patient-specific DCC design.

  4. Relating speech production to tongue muscle compressions using tagged and high-resolution magnetic resonance imaging

    Science.gov (United States)

    Xing, Fangxu; Ye, Chuyang; Woo, Jonghye; Stone, Maureen; Prince, Jerry

    2015-03-01

    The human tongue is composed of multiple internal muscles that work collaboratively during the production of speech. Assessment of muscle mechanics can help understand the creation of tongue motion, interpret clinical observations, and predict surgical outcomes. Although various methods have been proposed for computing the tongue's motion, associating motion with muscle activity in an interdigitated fiber framework has not been studied. In this work, we aim to develop a method that reveals different tongue muscles' activities in different time phases during speech. We use fourdimensional tagged magnetic resonance (MR) images and static high-resolution MR images to obtain tongue motion and muscle anatomy, respectively. Then we compute strain tensors and local tissue compression along the muscle fiber directions in order to reveal their shortening pattern. This process relies on the support from multiple image analysis methods, including super-resolution volume reconstruction from MR image slices, segmentation of internal muscles, tracking the incompressible motion of tissue points using tagged images, propagation of muscle fiber directions over time, and calculation of strain in the line of action, etc. We evaluated the method on a control subject and two postglossectomy patients in a controlled speech task. The normal subject's tongue muscle activity shows high correspondence with the production of speech in different time instants, while both patients' muscle activities show different patterns from the control due to their resected tongues. This method shows potential for relating overall tongue motion to particular muscle activity, which may provide novel information for future clinical and scientific studies.

  5. Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope

    Science.gov (United States)

    Burgess, Jacob A. J.; Malavolti, Luigi; Lanzilotto, Valeria; Mannini, Matteo; Yan, Shichao; Ninova, Silviya; Totti, Federico; Rolf-Pissarczyk, Steffen; Cornia, Andrea; Sessoli, Roberta; Loth, Sebastian

    2015-09-01

    Single-molecule magnets (SMMs) present a promising avenue to develop spintronic technologies. Addressing individual molecules with electrical leads in SMM-based spintronic devices remains a ubiquitous challenge: interactions with metallic electrodes can drastically modify the SMM's properties by charge transfer or through changes in the molecular structure. Here, we probe electrical transport through individual Fe4 SMMs using a scanning tunnelling microscope at 0.5 K. Correlation of topographic and spectroscopic information permits identification of the spin excitation fingerprint of intact Fe4 molecules. Building from this, we find that the exchange coupling strength within the molecule's magnetic core is significantly enhanced. First-principles calculations support the conclusion that this is the result of confinement of the molecule in the two-contact junction formed by the microscope tip and the sample surface.

  6. Advanced plasma flow simulations of cathodic-arc and ferroelectric plasma sources for neutralized drift compression experiments

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2008-07-01

    Full Text Available Large-space-scale and long-time-scale plasma flow simulations are executed in order to study the spatial and temporal evolution of plasma parameters for two types of plasma sources used in the neutralized drift compression experiment (NDCX. The results help assess the charge neutralization conditions for ion beam compression experiments and can be employed in more sophisticated simulations, which previously neglected the dynamical evolution of the plasma. Three-dimensional simulations of a filtered cathodic-arc plasma source show the coupling efficiency of the plasma flow from the source to the drift region depends on geometrical factors. The nonuniform magnetic topology complicates the well-known general analytical considerations for evaluating guiding-center drifts, and particle-in-cell simulations provide a self-consistent evaluation of the physics in an otherwise challenging scenario. Plasma flow profiles of a ferroelectric plasma source demonstrate that the densities required for longitudinal compression experiments involving ion beams are provided over the drift length, and are in good agreement with measurements. Simulations involving azimuthally asymmetric plasma creation conditions show that symmetric profiles are nevertheless achieved at the time of peak on-axis plasma density. Also, the ferroelectric plasma expands upstream on the thermal expansion time scale, and therefore avoids the possibility of penetration into the acceleration gap and transport sections, where partial neutralization would increase the beam emittance. Future experiments on NDCX will investigate the transverse focusing of an axially compressing intense charge bunch to a sub-mm spot size with coincident focal planes using a strong final-focus solenoid. In order to fill a multi-tesla solenoid with the necessary high-density plasma for beam charge neutralization, the simulations predict that supersonically injected plasma from the low-field region will penetrate and

  7. Vortex and characteristics of prestrained type-II deformable superconductors under magnetic fields

    International Nuclear Information System (INIS)

    Ma, Zeling; Wang, Xingzhe; Zhou, Youhe

    2016-01-01

    Highlights: • A numerical investigation of magnetic vortex dynamics of a deformable superconductor with prestrains is presented. • The prestrain has a remarkable influence on the magnetic vortex distribution and dynamics. • The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics. • The energy density and spectrum in the deformable superconductor are demonstrated. - Abstract: Based on the time-dependent Ginzburg–Landau (TDGL) theory and the linear deformation theory, we present a numerical investigation of magnetic vortex characteristics of a type-II deformable superconductor with prestrain. The effect of prestrain on the wave function, vortex dynamics and energy density of a superconducting film is analyzed by solving the nonlinear TDGL equations in the presence of magnetic field. The results show that the prestrain has a remarkable influence on the magnetic vortex distribution and the vortex dynamics, as well as value of wave function of the superconductor. The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics on a half-plane of deformable superconductor in an applied magnetic field, and the vortex distribution and entrance in a two dimensional superconducting film. The studies demonstrated that the compression prestrain may speed up the vortexes entering into the region of the superconducting film and increases the vortex number in comparison with those of free-prestrain case, while the tension prestrain shows the reversal features. The energy density and spectrum in the superconductor are further demonstrated numerically and discussed. The present investigation is an attempt to give insight into the superconductivity and electromagnetic characteristics taking into account the elastic deformation in superconductors.

  8. The magnetic, structure and mechanical properties of rapidly solidified (Nd{sub 7}Y{sub 2.5})-(Fe{sub 64.5}Nb{sub 3})-B{sub 23} nanocomposite permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Zubair; Tao Shan; Ma Tianyu; Zhao Guoliang [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 312007 (China); Yan Mi, E-mail: mse_yanmi@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 312007 (China)

    2011-09-08

    The Nd{sub 7}Y{sub 2.5}Fe{sub 64.5}Nb{sub 3}B{sub 23} nanocomposite permanent magnets in the form of rods with 2 mm in diameter have been developed by annealing the amorphous precursors produced by copper mold casting technique. The phase evolution, structure, magnetic and mechanical properties were investigated with X-ray diffractometry, differential scanning calorimetry, electron microscopy, magnetometry and universal uniaxial compression strength techniques. The heat treatment conditions under which the magnets attained maximum magnetic and mechanical properties have been established. The results indicate that magnet properties are sensitive to grain size and volume content of the magnetic phases present in the microstructure. The composite microstructure was mainly composed of soft {alpha}-Fe (20-30 nm) and hard Nd{sub 2}Fe{sub 14}B (45-65 nm) magnetic phase grains. The maximum coercivity of 959.18 kA/m was achieved with the magnets annealed at 760 deg. C whereas the highest remanence of 0.57 T was obtained with the magnets treated at 710 deg. C. The optimally annealed magnets possessed promising magnetic properties such as {sub j}H{sub c} of 891.52 kA/m, B{sub r} of 0.57 T, M{sub r}/M{sub s} = 0.68, (BH){sub max} of 56.8 kJ/m{sup 3} as well as the micro-Vickers hardness (H{sub v}) of 1138 {+-} 20 and compressive stress ({sigma}{sub f}) of 239 {+-} 10 MPa.

  9. Magnetic Alignment of Pulsed Solenoids Using the Pulsed Wire Method

    International Nuclear Information System (INIS)

    Arbelaez, D.; Madur, A.; Lipton, T.M.; Waldron, W.L.; Kwan, J.W.

    2011-01-01

    A unique application of the pulsed-wire measurement method has been implemented for alignment of 2.5 T pulsed solenoid magnets. The magnetic axis measurement has been shown to have a resolution of better than 25 (micro)m. The accuracy of the technique allows for the identification of inherent field errors due to, for example, the winding layer transitions and the current leads. The alignment system is developed for the induction accelerator NDCX-II under construction at LBNL, an upgraded Neutralized Drift Compression experiment for research on warm dense matter and heavy ion fusion. Precise alignment is essential for NDCX-II, since the ion beam has a large energy spread associated with the rapid pulse compression such that misalignments lead to corkscrew deformation of the beam and reduced intensity at focus. The ability to align the magnetic axis of the pulsed solenoids to within 100 pm of the induction cell axis has been demonstrated.

  10. Magnetic engineering in 3d transition metals on phosphorene by strain

    International Nuclear Information System (INIS)

    Cai, Xiaolin; Niu, Chunyao; Wang, Jianjun; Yu, Weiyang; Ren, XiaoYan; Zhu, Zhili

    2017-01-01

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.

  11. Magnetic engineering in 3d transition metals on phosphorene by strain

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xiaolin [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Niu, Chunyao, E-mail: niuchunyao@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); Wang, Jianjun [College of Science, Zhongyuan University of Technology, Zhengzhou 450007 (China); Yu, Weiyang [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Ren, XiaoYan; Zhu, Zhili [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China)

    2017-04-11

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.

  12. Stress state evaluation in low carbon and TRIP steels by magnetic permeability

    International Nuclear Information System (INIS)

    Kouli, M.-E.; Giannakis, M

    2016-01-01

    Magnetic permeability is an indicative factor for the steel health monitoring. The measurements of magnetic permeability lead to the evaluation of the stress state of any ferromagnetic steel. The magnetic permeability measurements were conducted on low carbon and TRIP steel samples, which were subjected to both tensile and compressive stresses. The results indicated a direct correlation of the magnetic permeability with the mechanical properties, the stress state and the microstructural features of the examined samples. (paper)

  13. From a magnet to a heat pump

    DEFF Research Database (Denmark)

    Navickaité, Kristina; Neves Bez, Henrique; Engelbrecht, Kurt

    2016-01-01

    The magnetocaloric effect (MCE) is the thermal response of a magnetic material to an applied magnetic field. Magnetic cooling is a promising alternative to conventional vapor compression technology in near room temperature applications and has experienced significant developments over the last five...... years. Although further improvements are necessary before the technology can be commercialized. Researchers were mainly focused on the development of materials and optimization of a flow system in order to increase the efficiency of magnetic heat pumps. The project, presented in this paper, is devoted...... to the improvement of heat pump and cooling technologies through simple tests of prospective regenerator designs. A brief literature review and expected results are presented in the paper. It is mainly focused on MCE technologies and provides a brief introduction to the magnetic cooling as an alternative...

  14. Drift Compression and Final Focus for Intense Heavy Ion Beams with Non-periodic, Time-dependent Lattice

    International Nuclear Information System (INIS)

    Hong Qin; Davidson, Ronald C.; Barnard, John J.; Lee, Edward P.

    2005-01-01

    In the currently envisioned configurations for heavy ion fusion, it is necessary to longitudinally compress the beam bunches by a large factor after the acceleration phase. Because the space-charge force increases as the beam is compressed, the beam size in the transverse direction will increase in a periodic quadrupole lattice. If an active control of the beam size is desired, a larger focusing force is needed to confine the beam in the transverse direction, and a non-periodic quadrupole lattice along the beam path is necessary. In this paper, we describe the design of such a focusing lattice using the transverse envelope equations. A drift compression and final focus lattice should focus the entire beam pulse onto the same focal spot on the target. This is difficult with a fixed lattice, because different slices of the beam may have different perveance and emittance. Four time-dependent magnets are introduced in the upstream of drift compression to focus the entire pulse onto the sam e focal spot. Drift compression and final focusing schemes are developed for a typical heavy ion fusion driver and for the Integrated Beam Experiment (IBX) being designed by the Heavy Ion Fusion Virtual National Laboratory

  15. Alternatives to the discrete cosine transform for irreversible tomographic image compression

    International Nuclear Information System (INIS)

    Villasenor, J.D.

    1993-01-01

    Full-frame irreversible compression of medical images is currently being performed using the discrete cosine transform (DCT). Although the DCT is the optimum fast transform for video compression applications, the authors show here that it is out-performed by the discrete Fourier transform (DFT) and discrete Hartley transform (DHT) for images obtained using positron emission tomography (PET) and magnetic resonance imaging (MRI), and possibly for certain types of digitized radiographs. The difference occurs because PET and MRI images are characterized by a roughly circular region D of non-zero intensity bounded by a region R in which the Image intensity is essentially zero. Clipping R to its minimum extent can reduce the number of low-intensity pixels but the practical requirement that images be stored on a rectangular grid means that a significant region of zero intensity must remain an integral part of the image to be compressed. With this constraint imposed, the DCT loses its advantage over the DFT because neither transform introduces significant artificial discontinuities. The DFT and DHT have the further important advantage of requiring less computation time than the DCT

  16. Mammographic compression in Asian women.

    Science.gov (United States)

    Lau, Susie; Abdul Aziz, Yang Faridah; Ng, Kwan Hoong

    2017-01-01

    To investigate: (1) the variability of mammographic compression parameters amongst Asian women; and (2) the effects of reducing compression force on image quality and mean glandular dose (MGD) in Asian women based on phantom study. We retrospectively collected 15818 raw digital mammograms from 3772 Asian women aged 35-80 years who underwent screening or diagnostic mammography between Jan 2012 and Dec 2014 at our center. The mammograms were processed using a volumetric breast density (VBD) measurement software (Volpara) to assess compression force, compression pressure, compressed breast thickness (CBT), breast volume, VBD and MGD against breast contact area. The effects of reducing compression force on image quality and MGD were also evaluated based on measurement obtained from 105 Asian women, as well as using the RMI156 Mammographic Accreditation Phantom and polymethyl methacrylate (PMMA) slabs. Compression force, compression pressure, CBT, breast volume, VBD and MGD correlated significantly with breast contact area (pAsian women. The median compression force should be about 8.1 daN compared to the current 12.0 daN. Decreasing compression force from 12.0 daN to 9.0 daN increased CBT by 3.3±1.4 mm, MGD by 6.2-11.0%, and caused no significant effects on image quality (p>0.05). Force-standardized protocol led to widely variable compression parameters in Asian women. Based on phantom study, it is feasible to reduce compression force up to 32.5% with minimal effects on image quality and MGD.

  17. Wave turbulence in magnetized plasmas

    Directory of Open Access Journals (Sweden)

    S. Galtier

    2009-02-01

    Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.

  18. Radiation-induced myelopathy in long-term surviving metastatic spinal cord compression patients after hypofractionated radiotherapy: a clinical and magnetic resonance imaging analysis

    International Nuclear Information System (INIS)

    Maranzano, Ernesto; Bellavita, Rita; Floridi, Piero; Celani, Grazia; Righetti, Enrico; Lupattelli, Marco; Panizza, Bianca Moira; Frattegiani, Alessandro; Pelliccioli, Gian Piero; Latini, Paolo

    2001-01-01

    Background and purpose: Hypofractionated radiotherapy is often administered in metastatic spinal cord compression (MSCC), but no studies have been published on the incidence of radiation-induced myelopathy (RIM) in long-term surviving patients. Our report addresses this topic. Patients and methods: Of 465 consecutive MSCC patients submitted to radiotherapy between 1988 and 1997, 13 live patients (seven females, six males, median age 69 years, median follow-up 69 months) surviving for 2 years or more were retrospectively reviewed to evaluate RIM. All patients underwent radiotherapy. Eight patients underwent a short-course regimen of 8 Gy, with 7 days rest, and then another 8 Gy. Five patients underwent a split-course regimen of 5 Gy x3, 4 days rest, and then 3 Gy x5. Only one patient also underwent laminectomy. Full neurological examination and magnetic resonance imaging (MRI) were performed. Results: Of 12 patients submitted to radiotherapy alone, 11 were ambulant (eight without support and three with support) with good bladder function. In nine of these 11 patients, MRI was negative; in one case MRI evidenced an in-field relapse 30 months after the end of radiotherapy, and in the other, two new MSCC foci outside the irradiated spine. In the remaining patient RIM was suspected at 18 months after radiotherapy when the patient became paraplegic and cystoplegic, and magnetic resonance images evidenced an ischemic injury in the irradiated area. The only patient treated with surgery plus postoperative radiotherapy worsened and remained paraparetic. Magnetic resonance images showed cord atrophy at the surgical level, explained as an ischemic necrosis due to surgery injury. Conclusions: On the grounds of our data regarding RIM in long-term surviving MSCC patients, we believe that a hypofractionated radiotherapy regimen can be used for the majority of patients. For a minority of patients, more protracted radiation regimens could be considered

  19. Neurovascular compression syndrome of the eighth cranial nerve

    International Nuclear Information System (INIS)

    Itoh, Akinori

    2010-01-01

    Neurovascular compression syndrome (NVCS) involves neuropathy due to intracranial blood vessels compressing the cranial nerves. NVCS of the eighth cranial nerve is less reportedly established as a clinical entity than that of the fifth and seventh cranial nerves. We report 17 cases of NVCS of the eighth cranial nerve and their clinical features. Clinical symptoms and test findings among our subjects indicated that most were aged more than 65 years, were unilateral, had intermittent tinnitus, suffered attacks lasting a few seconds dozens of times a day, experienced dizziness concomitantly with tinnitus, aggravated tinnitus and dizziness when tilting the head toward the affected side and looking downward (positional tinnitus, positional dizziness), heard specific tinnitus sounds such as crackling differing from those in cochlear tinnitus, had mild or no hearing loss, were diagnosed with retrocochlear hearing disturbance due to an interpeak latency delay between waves I and III of the auditory brainstem response (ABR), often had no nystagmus or canal paresis (CP), were found in constructive interference steady state magnetic resonance imaging (CISS MRI) to have compression of the eighth cranial nerve by the vertebral artery (VA) or the anterior inferior cerebellar artery (AICA), rarely had concomitant facial spasms, and had tinnitus and dizziness markedly suppressed by carbamazepine. With the number of elderly individuals continuing to increase, cases of NVCS due to arteriosclerotic changes in cerebral blood vessels are expected to increase, making it necessary to consider NVCS in elderly subjects with dizziness, tinnitus, and hearing loss. (author)

  20. Neurovascular compression syndrome of the eighth cranial nerve

    Energy Technology Data Exchange (ETDEWEB)

    Itoh, Akinori [Saitama Medical Univ., Faculty of Medicine, Moroyama, Saitama (Japan)

    2010-04-15

    Neurovascular compression syndrome (NVCS) involves neuropathy due to intracranial blood vessels compressing the cranial nerves. NVCS of the eighth cranial nerve is less reportedly established as a clinical entity than that of the fifth and seventh cranial nerves. We report 17 cases of NVCS of the eighth cranial nerve and their clinical features. Clinical symptoms and test findings among our subjects indicated that most were aged more than 65 years, were unilateral, had intermittent tinnitus, suffered attacks lasting a few seconds dozens of times a day, experienced dizziness concomitantly with tinnitus, aggravated tinnitus and dizziness when tilting the head toward the affected side and looking downward (positional tinnitus, positional dizziness), heard specific tinnitus sounds such as crackling differing from those in cochlear tinnitus, had mild or no hearing loss, were diagnosed with retrocochlear hearing disturbance due to an interpeak latency delay between waves I and III of the auditory brainstem response (ABR), often had no nystagmus or canal paresis (CP), were found in constructive interference steady state magnetic resonance imaging (CISS MRI) to have compression of the eighth cranial nerve by the vertebral artery (VA) or the anterior inferior cerebellar artery (AICA), rarely had concomitant facial spasms, and had tinnitus and dizziness markedly suppressed by carbamazepine. With the number of elderly individuals continuing to increase, cases of NVCS due to arteriosclerotic changes in cerebral blood vessels are expected to increase, making it necessary to consider NVCS in elderly subjects with dizziness, tinnitus, and hearing loss. (author)

  1. MESSENGER observations of magnetic reconnection in Mercury's magnetosphere.

    Science.gov (United States)

    Slavin, James A; Acuña, Mario H; Anderson, Brian J; Baker, Daniel N; Benna, Mehdi; Boardsen, Scott A; Gloeckler, George; Gold, Robert E; Ho, George C; Korth, Haje; Krimigis, Stamatios M; McNutt, Ralph L; Raines, Jim M; Sarantos, Menelaos; Schriver, David; Solomon, Sean C; Trávnícek, Pavel; Zurbuchen, Thomas H

    2009-05-01

    Solar wind energy transfer to planetary magnetospheres and ionospheres is controlled by magnetic reconnection, a process that determines the degree of connectivity between the interplanetary magnetic field (IMF) and a planet's magnetic field. During MESSENGER's second flyby of Mercury, a steady southward IMF was observed and the magnetopause was threaded by a strong magnetic field, indicating a reconnection rate ~10 times that typical at Earth. Moreover, a large flux transfer event was observed in the magnetosheath, and a plasmoid and multiple traveling compression regions were observed in Mercury's magnetotail, all products of reconnection. These observations indicate that Mercury's magnetosphere is much more responsive to IMF direction and dominated by the effects of reconnection than that of Earth or the other magnetized planets.

  2. Thermofluidic compression effects to achieve combustion in a low-compression scramjet engine

    Science.gov (United States)

    Moura, A. F.; Wheatley, V.; Jahn, I.

    2017-12-01

    The compression provided by a scramjet inlet is an important parameter in its design. It must be low enough to limit thermal and structural loads and stagnation pressure losses, but high enough to provide the conditions favourable for combustion. Inlets are typically designed to achieve sufficient compression without accounting for the fluidic, and subsequently thermal, compression provided by the fuel injection, which can enable robust combustion in a low-compression engine. This is investigated using Reynolds-averaged Navier-Stokes numerical simulations of a simplified scramjet engine designed to have insufficient compression to auto-ignite fuel in the absence of thermofluidic compression. The engine was designed with a wide rectangular combustor and a single centrally located injector, in order to reduce three-dimensional effects of the walls on the fuel plume. By varying the injected mass flow rate of hydrogen fuel (equivalence ratios of 0.22, 0.17, and 0.13), it is demonstrated that higher equivalence ratios lead to earlier ignition and more rapid combustion, even though mean conditions in the combustor change by no more than 5% for pressure and 3% for temperature with higher equivalence ratio. By supplementing the lower equivalence ratio with helium to achieve a higher mass flow rate, it is confirmed that these benefits are primarily due to the local compression provided by the extra injected mass. Investigation of the conditions around the fuel plume indicated two connected mechanisms. The higher mass flow rate for higher equivalence ratios generated a stronger injector bow shock that compresses the free-stream gas, increasing OH radical production and promoting ignition. This was observed both in the higher equivalence ratio case and in the case with helium. This earlier ignition led to increased temperature and pressure downstream and, consequently, stronger combustion. The heat release from combustion provided thermal compression in the combustor, further

  3. Compressive laser ranging.

    Science.gov (United States)

    Babbitt, Wm Randall; Barber, Zeb W; Renner, Christoffer

    2011-12-15

    Compressive sampling has been previously proposed as a technique for sampling radar returns and determining sparse range profiles with a reduced number of measurements compared to conventional techniques. By employing modulation on both transmission and reception, compressive sensing in ranging is extended to the direct measurement of range profiles without intermediate measurement of the return waveform. This compressive ranging approach enables the use of pseudorandom binary transmit waveforms and return modulation, along with low-bandwidth optical detectors to yield high-resolution ranging information. A proof-of-concept experiment is presented. With currently available compact, off-the-shelf electronics and photonics, such as high data rate binary pattern generators and high-bandwidth digital optical modulators, compressive laser ranging can readily achieve subcentimeter resolution in a compact, lightweight package.

  4. Mining compressing sequential problems

    NARCIS (Netherlands)

    Hoang, T.L.; Mörchen, F.; Fradkin, D.; Calders, T.G.K.

    2012-01-01

    Compression based pattern mining has been successfully applied to many data mining tasks. We propose an approach based on the minimum description length principle to extract sequential patterns that compress a database of sequences well. We show that mining compressing patterns is NP-Hard and

  5. THE FORMATION OF ROTATIONAL DISCONTINUITIES IN COMPRESSIVE THREE-DIMENSIONAL MHD TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, 100190, Beijing (China); Zhang, Lei; He, Jiansen; Tu, Chuanyi; Wang, Linghua; Wang, Xin [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Zhang, Shaohua, E-mail: jshept@gmail.com [Center of Spacecraft Assembly Integration and Test, China Academy of Space Technology, Beijing 100094 (China)

    2015-08-20

    Measurements of solar wind turbulence reveal the ubiquity of discontinuities. In this study we investigate how the discontinuities, especially rotational discontinuities (RDs), are formed in MHD turbulence. In a simulation of the decaying compressive three-dimensional (3D) MHD turbulence with an imposed uniform background magnetic field, we detect RDs with sharp field rotations and little variations of magnetic field intensity, as well as mass density. At the same time, in the de Hoffman–Teller frame, the plasma velocity is nearly in agreement with the Alfvén speed, and is field-aligned on both sides of the discontinuity. We take one of the identified RDs to analyze its 3D structure and temporal evolution in detail. By checking the magnetic field and plasma parameters, we find that the identified RD evolves from the steepening of the Alfvén wave with moderate amplitude, and that steepening is caused by the nonuniformity of the Alfvén speed in the ambient turbulence.

  6. Magnetically suspended railway

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, C

    1977-07-28

    The invention concerns the emergency support of a magnetically suspended railway. On failure of the magnetic suspension/tracking system, the vehicles touch down on the rail configuration by means of emergency gliding elements like sliding shoes, skids, or the like. In doing this, the touch-down shock of the emergency gliding elements has to be limited to a force maximum as small as possible. According to the invention a spring-attenuator combination is used for this purpose, the spring characteristic being linear while the attenuator has a square-law characteristic for the compressing and a linear characteristic for the yielding motion. The force maximum thus achieved is exactly half the size of the physically smallest possible force maximum for an emergency gliding element springed without damping.

  7. Optical pulse compression

    International Nuclear Information System (INIS)

    Glass, A.J.

    1975-01-01

    The interest in using large lasers to achieve a very short and intense pulse for generating fusion plasma has provided a strong impetus to reexamine the possibilities of optical pulse compression at high energy. Pulse compression allows one to generate pulses of long duration (minimizing damage problems) and subsequently compress optical pulses to achieve the short pulse duration required for specific applications. The ideal device for carrying out this program has not been developed. Of the two approaches considered, the Gires--Tournois approach is limited by the fact that the bandwidth and compression are intimately related, so that the group delay dispersion times the square of the bandwidth is about unity for all simple Gires--Tournois interferometers. The Treacy grating pair does not suffer from this limitation, but is inefficient because diffraction generally occurs in several orders and is limited by the problem of optical damage to the grating surfaces themselves. Nonlinear and parametric processes were explored. Some pulse compression was achieved by these techniques; however, they are generally difficult to control and are not very efficient. (U.S.)

  8. 2D magnetization of grain-oriented 3%-Si steel under uniaxial stress

    International Nuclear Information System (INIS)

    Permiakov, V.; Dupre, L.; Pulnikov, A.; Melkebeek, J.

    2005-01-01

    Magnetization in electrical steels is strongly affected by mechanical stress. The stress dependence of magnetic properties of non-oriented steels has been studied at one- and two-dimensional magnetization. This paper deals with the stress effect on one- and two-dimensional magnetization in grain-oriented 3%-Si steel. The special magnetic measurements system is applied to combine uniaxial stress and 2D magnetic measurements. The uniaxial stress ranges from 10 MPa compressive stress to 100 MPa tensile stress. A domain theory is a suitable tool for prediction and a physical explanation of stress dependency in grain-oriented steel

  9. Revision surgery due to magnet dislocation in cochlear implant patients: an emerging complication.

    Science.gov (United States)

    Hassepass, Frederike; Stabenau, Vanessa; Maier, Wolfgang; Arndt, Susan; Laszig, Roland; Beck, Rainer; Aschendorff, Antje

    2014-01-01

    To analyze the cause and effect of magnet dislocation in cochlear implant (CI) recipients requiring magnet revision surgery for treatment. Retrospective study. Tertiary referral center. Case reports from 1,706 CI recipients consecutively implanted from January 2000 to December 2011 were reviewed. The number of cases requiring magnet revision surgery was assessed. Revision surgery involving magnet removal or replacement was indicated in 1.23% (21/1,706), of all CI recipients. Magnet dislocation occurring during magnetic resonance tomography (MRI), at 1.5 Tesla (T), with the magnet in place and with the application of compression bandaging around the head, was the main cause for revision surgery in 47.62% (10/21) of the affected cases. All 10 cases were implanted with Cochlear Nucleus cochlear implants. These events occurred, despite adherence to current recommendations of the manufacturer. The present study underlines that MRI examination is the main cause of magnet dislocation. The use of compressive bandaging when using 1.5-T MRI does not eliminate the risk of magnet dislocation. Additional cautionary measures are for required for conditional MRI. We recommend X-ray examination after MRI to determine magnet dislocation and avoid major complications in all cases reporting pain during or after MRI. Additional research regarding silicon magnet pocket design for added retention is needed. Effective communication of guidelines for precautionary measures during MRI examination in CI patients is mandatory for all clinicians involved. MRI in CI recipients should be indicated with caution.

  10. MR imaging of spinal factors and compression of the spinal cord in cervical myelopathy

    International Nuclear Information System (INIS)

    Kokubun, Shoichi; Ozawa, Hiroshi; Sakurai, Minoru; Ishii, Sukenobu; Tani, Shotaro; Sato, Tetsuaki.

    1992-01-01

    Magnetic resonance (MR) images of surgical 109 patients with cervical spondylotic myelopathy were retrospectively reviewed to examine whether MR imaging would replace conventional radiological procedures in determining spinal factors and spinal cord compression in this disease. MR imaging was useful in determining spondylotic herniation, continuous type of ossification of posterior longitudinal ligament, and calcification of yellow ligament, probably replacing CT myelography, discography, and CT discography. When total defect of the subarachnoid space on T2-weighted images and block on myelograms were compared in determining spinal cord compression, the spinal cord was affected more extensively by 1.3 intervertebral distance (IVD) on T2-weighted images. When indentation of one third or more in anterior and posterior diameter of the spinal cord was used as spinal cord compression, the difference in the affected extension between myelography and MR imaging was 0.2 IVD on T1-weighted images and 0.6 IVD on T2-weighted images. However, when block was seen in 3 or more IVD on myelograms, the range of spinal cord compression tended to be larger on T1-weighted images. For a small range of spinal cord compression, T1-weighted imaging seems to be helpful in determining the range of decompression. When using T2-weighted imaging, the range of decompression becomes large, frequently including posterior decompression. (N.K.)

  11. Fusion Yield Enhancement in Magnetized Laser-Driven Implosions

    International Nuclear Information System (INIS)

    Chang, P. Y.; Fiksel, G.; Hohenberger, M.; Knauer, J. P.; Marshall, F. J.; Betti, R.; Meyerhofer, D. D.; Seguin, F. H.; Petrasso, R. D.

    2011-01-01

    Enhancement of the ion temperature and fusion yield has been observed in magnetized laser-driven inertial confinement fusion implosions on the OMEGA Laser Facility. A spherical CH target with a 10 atm D 2 gas fill was imploded in a polar-drive configuration. A magnetic field of 80 kG was embedded in the target and was subsequently trapped and compressed by the imploding conductive plasma. As a result of the hot-spot magnetization, the electron radial heat losses were suppressed and the observed ion temperature and neutron yield were enhanced by 15% and 30%, respectively.

  12. Effect of elastic deformation and the magnetic field on the electrical conductivity of p-Si crystals

    Science.gov (United States)

    Lys, R.; Pavlyk, B.; Didyk, R.; Shykorjak, J.; Karbovnyk, I.

    2018-03-01

    It is shown that at a deformation rate of 0.41 kg/min, the characteristic feature of the dependence of the surface resistance of the p-Si sample on the magnitude of its elastic deformation (R(σ)) is the reduction of the resistance during compression and unclamping. With the increase in the number of "compression-unclamping" cycles, the difference between the positions of the compression and unclamping curves decreases. The transformation of two types of magnetically sensitive defects occurs under the impact of a magnetic field on p-Si crystals. The defects are interrelated with two factors that cause the mutually opposite influence on the conductivity of the crystal. The first factor is that the action of the magnetic field decreases the activation energy of the dislocation holders, which leads to an increase in the electrical conductivity of the sample. The second factor is that due to the decay of molecules of oxygen-containing impurities in the magnetic field, the stable chemisorption bonds appear in the crystal that leads to a decrease in its conductivity. If the sample stays in the magnetic field for a long time, the one or the other mechanism predominates, causing a slow growth or decrease in resistance around a certain (averaged) value. Moreover, the frequency of such changes is greater in the deformed sample. The value of the surface resistance of p-Si samples does not change for a long time without the influence of the magnetic field.

  13. Investigations into the design of multi-terawatt magnetic switches

    International Nuclear Information System (INIS)

    Harjes, H.C.; Penn, K.J.; Mann, G.A.; Neau, E.L.

    1987-01-01

    Magnetic switches were successfully used for pulse compression in the CometII pulsed power module to deliver 2.7 MV and 3.7 TW to a 2 Ω matched load. However, the Comet switches suffered interwinding dielectric breakdowns and failed in <100 shots. Initial results from experiments on magnetic switch core insulations indicate that the insulation scheme used in the Comet switches was not optimal and better configurations exist. The Comet magnetic switch failures have been duplicated and studied on the Magnetic Switch Test Module (MSTM), a coaxial, 2 Ω PFL driven by a 600 kV Marx generator. The results of these experiments are discussed in detail

  14. Emittance control and RF bunch compression in the NSRRC photoinjector

    International Nuclear Information System (INIS)

    Lau, W.K.; Hung, S.B.; Lee, A.P.; Chou, C.S.; Huang, N.Y.

    2011-01-01

    The high-brightness photoinjector being constructed at the National Synchrotron Radiation Research Center is for testing new accelerator and light-source concepts. It is the so-called split photoinjector configuration in which a short solenoid magnet is used for emittance compensation. The UV-drive laser pulses are also shaped to produce uniform cylindrical bunches for further reduction of beam emittance. However, limited by the available power from our microwave power system, the nominal accelerating gradient in the S-band booster linac is set at 18 MV/m. A simulation study with PARMELA shows that the linac operating at this gradient fails to freeze the electron beam emittance at low value. A background solenoid magnetic field is applied for beam emittance control in the linac during acceleration. A satisfactory result that meets our preliminary goal has been achieved with the solenoid magnetic field strength at 0.1 T. RF bunch compression as a means to achieve the required beam brightness for high-gain free-electron laser experiments is also examined. The reduction of bunch length to a few hundred femtoseconds can be obtained.

  15. Magnetically-tunable rebound property for variable elastic devices made of magnetic elastomer and polyurethane foam

    Science.gov (United States)

    Oguro, Tsubasa; Endo, Hiroyuki; Kawai, Mika; Mitsumata, Tetsu

    2017-12-01

    A device consisting of a phase of magnetic elastomer, a phase of polyurethane foam (PUF), and permanent magnet was fabricated and the stress-strain curves for the two-phase magnetic elastomer were measured by a uniaxial compression measurement. A disk of magnetic elastomer was adhered on a disk of PUF by an adhesive agent. The PUF thickness was varied from 1 mm to 5 mm while the thickness of magnetic elastomers was constant at 5 mm. The stress at a strain of 0.15 for the two-phase magnetic elastomers was evaluated in the absence and in the presence of a magnetic field of 410 mT. The stress at 0 mT decreased remarkably with the PUF thickness due to the deformation of the PUF phase. On the other hand, the stress at 410 mT slightly decreased with the thickness; however, it kept high values even at high thickness. When the PUF thickness was 5 mm, the maximum stress increment with 45 times to the off-field stress was observed. An experiment using ping-pong balls demonstrated that the coefficient of restitution for the two-phase magnetic elastomers can be dramatically altered by the magnetic field.

  16. Macron Formed Liner Compression as a Practical Method for Enabling Magneto-Inertial Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Slough, John

    2011-12-10

    The entry of fusion as a viable, competitive source of power has been stymied by the challenge of finding an economical way to provide for the confinement and heating of the plasma fuel. The main impediment for current nuclear fusion concepts is the complexity and large mass associated with the confinement systems. To take advantage of the smaller scale, higher density regime of magnetic fusion, an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. The very compact, high energy density plasmoid commonly referred to as a Field Reversed Configuration (FRC) provides for an ideal target for this purpose. To make fusion with the FRC practical, an efficient method for repetitively compressing the FRC to fusion gain conditions is required. A novel approach to be explored in this endeavor is to remotely launch a converging array of small macro-particles (macrons) that merge and form a more massive liner inside the reactor which then radially compresses and heats the FRC plasmoid to fusion conditions. The closed magnetic field in the target FRC plasmoid suppresses the thermal transport to the confining liner significantly lowering the imploding power needed to compress the target. With the momentum flux being delivered by an assemblage of low mass, but high velocity macrons, many of the difficulties encountered with the liner implosion power technology are eliminated. The undertaking to be described in this proposal is to evaluate the feasibility achieving fusion conditions from this simple and low cost approach to fusion. During phase I the design and testing of the key components for the creation of the macron formed liner have been successfully carried out. Detailed numerical calculations of the merging, formation and radial implosion of the Macron Formed Liner (MFL) were also performed. The phase II effort will focus on an experimental demonstration of the macron launcher at full power, and the demonstration

  17. Competing magnetic interactions and low temperature magnetic phase transitions in composite multiferroics

    International Nuclear Information System (INIS)

    Borkar, Hitesh; Singh, V N; Kumar, Ashok; Choudhary, R J; Tomar, M; Gupta, Vinay

    2015-01-01

    Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr 0.52 Ti 0.48 ) 0.60 (Fe 0.67 W 0.33 ) .40 ]O 3 ] 0.80 –[CoFe 2 O 4 ] 0.20 (PZTFW–CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4–350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (∼0.4–0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (T B ). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite. (paper)

  18. Compressed sensing & sparse filtering

    CERN Document Server

    Carmi, Avishy Y; Godsill, Simon J

    2013-01-01

    This book is aimed at presenting concepts, methods and algorithms ableto cope with undersampled and limited data. One such trend that recently gained popularity and to some extent revolutionised signal processing is compressed sensing. Compressed sensing builds upon the observation that many signals in nature are nearly sparse (or compressible, as they are normally referred to) in some domain, and consequently they can be reconstructed to within high accuracy from far fewer observations than traditionally held to be necessary. Apart from compressed sensing this book contains other related app

  19. Laser driven single shock compression of fluid deuterium from 45 to 220 GPa

    Energy Technology Data Exchange (ETDEWEB)

    Hicks, D; Boehly, T; Celliers, P; Eggert, J; Moon, S; Meyerhofer, D; Collins, G

    2008-03-23

    The compression {eta} of liquid deuterium between 45 and 220 GPa under laser-driven shock loading has been measured using impedance matching to an aluminum (Al) standard. An Al impedance match model derived from a best fit to absolute Hugoniot data has been used to quantify and minimize the systematic errors caused by uncertainties in the high-pressure Al equation of state. In deuterium below 100 GPa results show that {eta} {approx_equal} 4.2, in agreement with previous impedance match data from magnetically-driven flyer and convergent-explosive shock wave experiments; between 100 and 220 GPa {eta} reaches a maximum of {approx}5.0, less than the 6-fold compression observed on the earliest laser-shock experiments but greater than expected from simple extrapolations of lower pressure data. Previous laser-driven double-shock results are found to be in good agreement with these single-shock measurements over the entire range under study. Both sets of laser-shock data indicate that deuterium undergoes an abrupt increase in compression at around 110 GPa.

  20. LZ-Compressed String Dictionaries

    OpenAIRE

    Arz, Julian; Fischer, Johannes

    2013-01-01

    We show how to compress string dictionaries using the Lempel-Ziv (LZ78) data compression algorithm. Our approach is validated experimentally on dictionaries of up to 1.5 GB of uncompressed text. We achieve compression ratios often outperforming the existing alternatives, especially on dictionaries containing many repeated substrings. Our query times remain competitive.

  1. A MAGNETIC RIBBON MODEL FOR STAR-FORMING FILAMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Auddy, Sayantan; Basu, Shantanu [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Kudoh, Takahiro, E-mail: sauddy3@uwo.ca, E-mail: basu@uwo.ca, E-mail: kudoh@nagasaki-u.ac.jp [Faculty of Education, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521 (Japan)

    2016-11-01

    We develop a magnetic ribbon model for molecular cloud filaments. These result from turbulent compression in a molecular cloud in which the background magnetic field sets a preferred direction. We argue that this is a natural model for filaments and is based on the interplay between turbulence, strong magnetic fields, and gravitationally driven ambipolar diffusion, rather than pure gravity and thermal pressure. An analytic model for the formation of magnetic ribbons that is based on numerical simulations is used to derive a lateral width of a magnetic ribbon. This differs from the thickness along the magnetic field direction, which is essentially the Jeans scale. We use our model to calculate a synthetic observed relation between apparent width in projection versus observed column density. The relationship is relatively flat, similar to observations, and unlike the simple expectation based on a Jeans length argument.

  2. Preparation and properties of isotropic Nd-Fe-B bonded magnets with sodium silicate binder

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.Q.; Hu, R.J.; Yue, M., E-mail: yueming@bjut.edu.cn; Yin, Y.X.; Zhang, D.T.

    2017-08-01

    Graphical abstract: To improve the working temperature of bonded Nd-Fe-B magnets, the heat-resistant binder, sodium silicate, was used to prepare new type bonded Nd-Fe-B magnets. The three-dimensional Si-O-Si structure formed in the curing process has excellent strength; it can ensure that the bonded magnets have a certain shape and usable magnetic properties when working at 200 °C. - Highlights: • Sodium silicate enables bonded Nd-Fe-B magnets to be used for higher operation temperatures. • The sodium silicate bonded magnets exhibit usable maximum energy product of 4.057 MGOe at 200 °C. • The compressive strength of sodium silicate bonded magnets is twice bigger than that of epoxy resin bonded magnets. - Abstract: In present study, sodium silicate, a kind of heat-resistant binder, was used to prepare bonded Nd-Fe-B magnets with improved thermal stability and mechanical strength. Effect of curing temperature and curing time of the new binder to the magnetic properties, microstructure, and mechanical strength of the magnets was systematically investigated. Fracture surface morphology observation show that sodium silicate in bonded magnets could completely be cured at 175 °C for 40 min, and the magnets prepared under this condition exhibit optimal properties. They exhibit usable magnetic properties of B{sub r} of 4.66 kGs, H{sub cj} of 4.84 kOe, and (BH){sub max} of 4.06 MGOe at 200 °C. Moreover, the magnets possess high compressive strength of 63 MPa.

  3. Convective instability of internal modes in accelerated compressible plasmas

    International Nuclear Information System (INIS)

    Gratton, Julio; Gratton, F.T.; Gonzalez, A.G.; Buenos Aires Univ.

    1988-01-01

    A compact second order differential equation for small amplitude magnetohydrodynamic modes of a plasma stratification in a uniform effective gravity field is derived. The steady state includes non uniform density, mass motion, magnetic shear and non isotropic pressure, given by arbitrary profiles. The perturbation treatment is of the magnetohydrodynamic class, with two closure equations for the time evolution of the pressure, in order to encompass ideal MHD, the Chew, Goldberger and Low, and other non isotropic models. As an application a detailed study of the compressible, convective-gravity modes in the ideal isotropic MHD case is presented. Local criteria for the convective instability are first obtained by means of physically intuitive arguments for unidirectional and for sheared magnetic field. In both instances a rigorous variational energy treatment is then provided. In the second case, a criterion analogous to that of Suydam for the pinch is shown to hold for plasma atmospheres. Global internal modes for an isothermal equilibrium with unidirectional magnetic field are then analysed. Stability criteria and growth rates of the unstable modes are studied. Areas of application of the reported results are indicated. (author)

  4. Atlantoaxial subluxation. Radiography and magnetic resonance imaging correlated to myelopathy

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, Y.; Takahashi, M.; Sakamoto, Y.; Kojima, R.

    Twenty-nine patients with atlantoaxial subluxation (18 with rheumatoid arthritis, 2 due to trauma, 4 with os odontoideum, and one each with polyarteritis nodosa, rheumatic fever, Klippel-Feil syndrome, achondroplasia, and cause unknown) were evaluated using a 0.22 tesla resistive MRI unit. Cord compression was classified into four grades according to the degree on magnetic resonance imaging. There were 7 patients with no thecal sac compression (grade 0), 10 with a minimal degree of subarachnoid space compression without cord compression (grade 1), 7 with mild cord compression (grade 2), and 5 with severe cord compression or cord atrophy (grade 3). Although the severity of myelopathy showed poor correlation with the atlantodental interval on conventional radiography, high correlation was observed between MR grading and the degree of myelopathy. The high signal intensity foci were observed in 7 or 12 patients with cord compression (grades 2 and 3) on T2 weighted images. Other frequently observed findings in rheumatoid arthritis included soft tissue masses of low to intermediate signal intensity in the paraodontoid space, erosions of the odontoid processes, and atlanto-axial impaction on T1 and T2 weighted images.

  5. Myofibroma in the Palm Presenting with Median Nerve Compression Symptoms

    Directory of Open Access Journals (Sweden)

    Heidi Sarkozy, PA-C, BS

    2014-08-01

    Full Text Available Summary: A myofibroma is a benign proliferation of myofibroblasts in the connective tissue. Solitary myofibromas are a rare finding especially in an adult. We report a case of a 23-year-old man presenting with an enlarging mass over his right palm. The patient is an active weight lifter. He reported numbness and tingling in the median nerve distribution. Nerve conduction studies and magnetic resonance imaging scans suggested a tumor involving or compressing the median nerve. The final diagnosis of myofibroma was made only after the histopathological diagnosis.

  6. Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression

    Science.gov (United States)

    Guerette, Michael; Ackerson, Michael R.; Thomas, Jay; Yuan, Fenglin; Bruce Watson, E.; Walker, David; Huang, Liping

    2015-10-01

    Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.

  7. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  8. Compressed air tunneling and caisson work decompression procedures: development, problems, and solutions.

    Science.gov (United States)

    Kindwall, E P

    1997-01-01

    Multinational experience over many years indicates that all current air decompression schedules for caisson and compressed air tunnel workers are inadequate. All of them, including the Occupational Safety and Health Administration tables, produce dysbaric osteonecrosis. The problem is compounded because decompression sickness (DCS) tends to be underreported. Permanent damage in the form of central nervous system or brain damage may occur in compressed air tunnel workers, as seen on magnetic resonance imaging, in addition to dysbaric osteonecrosis. Oxygen decompression seems to be the only viable method for safely decompressing tunnel workers. Oxygen decompression of tunnel workers has been successfully used in Germany, France, and Brazil. In Germany, only oxygen decompression of compressed air workers is permitted. In our experience, U.S. Navy tables 5 and 6 usually prove adequate to treat DCS in caisson workers despite extremely long exposure times, allowing patients to return to work following treatment for DCS. Tables based on empirical data and not on mathematical formulas seem to be reasonably safe. U.S. Navy Exceptional Exposure Air Decompression tables are compared with caisson tables from the United States and Great Britain.

  9. Optic nerve compression as a late complication of a hydrogel explant with silicone encircling band.

    Science.gov (United States)

    Crama, Niels; Kluijtmans, Leo; Klevering, B Jeroen

    2018-06-01

    To present a complication of compressive optic neuropathy caused by a swollen hydrogel explant and posteriorly displaced silicone encircling band. A 72-year-old female patient presented with progressive visual loss and a tilted optic disc. Her medical history included a retinal detachment in 1993 that was treated with a hydrogel explant under a solid silicone encircling band. Visual acuity had decreased from 6/10 to 6/20 and perimetry showed a scotoma in the temporal superior quadrant. On Magnetic Resonance Imaging (MRI), compression of the optic nerve by a displaced silicone encircling band inferior nasally in combination with a swollen episcleral hydrogel explant was observed. Surgical removal of the hydrogel explant and silicone encircling band was uneventful and resulted in improvement of visual acuity and visual field loss. This is the first report on compressive optic neuropathy caused by swelling of a hydrogel explant resulting in a dislocated silicone encircling band. The loss of visual function resolved upon removal of the explant and encircling band.

  10. Excessive chest compression rate is associated with insufficient compression depth in prehospital cardiac arrest

    NARCIS (Netherlands)

    Monsieurs, Koenraad G.; De Regge, Melissa; Vansteelandt, Kristof; De Smet, Jeroen; Annaert, Emmanuel; Lemoyne, Sabine; Kalmar, Alain F.; Calle, Paul A.

    2012-01-01

    Background and goal of study: The relationship between chest compression rate and compression depth is unknown. In order to characterise this relationship, we performed an observational study in prehospital cardiac arrest patients. We hypothesised that faster compressions are associated with

  11. Magnetization reversal processes in bonded magnets made from a mixture of Nd-(Fe,Co)-B and strontium ferrite powders

    Science.gov (United States)

    Dospial, M.; Plusa, D.

    2013-03-01

    Isotropic epoxy-resin bonded magnets composed of different amounts of Magnequench MQP-B and strontium ferrite powders have been prepared using a compression molding technique. The magnetic parameters for magnets with different amounts of strontium ferrite and magnetization reversal processes have been studied by the measurement of the initial magnetization curves, the major hysteresis loops measured at a field up to 14 T and sets of recoil loops. The enhancement of μ0MR and μ0HC is observed in comparison with the calculated values. From the recoil loops the field dependences of the reversible, irreversible and total magnetization components and the differential susceptibilities were derived. From the dependence of the irreversible magnetization component versus an applied field it was deduced that the main mechanism of magnetization reversal process is the pinning of domain walls in MQP-B and strontium ferrite grains. The interactions between the magnetic particles and grains have been examined by the analysis of the δM plot. The δM behavior of magnets with ferrite has been interpreted as being composed of magnetizing exchange coupling and demagnetizing dipolar interactions.

  12. Magnetic refrigeration--towards room-temperature applications

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Li, X.W.; Boer, F.R. de; Buschow, K.H.J.

    2003-01-01

    Modern society relies very much on readily available cooling. Magnetic refrigeration based on the magneto-caloric effect (MCE) has become a promising competitive technology for the conventional gas-compression/expansion technique in use today. Recently, there have been two breakthroughs in magnetic-refrigeration research: one is that American scientists demonstrated the world's first room-temperature, permanent-magnet, magnetic refrigerator; the other one is that we discovered a new class of magnetic refrigerant materials for room-temperature applications. The new materials are manganese-iron-phosphorus-arsenic (MnFe(P,As)) compounds. This new material has important advantages over existing magnetic coolants: it exhibits a huge MCE, which is larger than that of Gd metal; and its operating temperature can be tuned from about 150 to about 335 K by adjusting the P/As ratio. Here we report on further improvement of the materials by increasing the Mn content. The large entropy change is attributed to a field-induced first-order phase transition enhancing the effect of the applied magnetic field. Addition of Mn reduces the thermal hysteresis, which is intrinsic to the first-order transition. This implies that already moderate applied magnetic fields of below 2 T may suffice

  13. Coating possibilities for magnetic switches

    International Nuclear Information System (INIS)

    Sharp, D.J.; Harjes, H.C.; Mann, G.A.; Morgan, F.A.

    1990-01-01

    High average power magnetic pulse compression systems are now being considered for use in several applications such as the High Power Radiation Source (HiPoRS) project. Such systems will require high reliability magnetic switches (saturable inductors) that are very efficient and have long lifetimes. One of the weakest components in magnetic switches is their interlaminar insulation. Considerations related to dielectric breakdown, thermal management of compact designs, and economical approaches for achieving these needs must be addressed. Various dielectric insulation and coating materials have been applied to Metglas foil in an attempt to solve the complex technical and practical problems associated with large magnetic switch structures. This work reports various needs, studies, results, and proposals in selecting and evaluating continuous coating approaches for magnetic foil. Techniques such as electrophoretic polymer deposition and surface chemical oxidation are discussed. We also propose continuous photofabrication processes for applying dielectric ribs or spacers to the foil which permit circulation of dielectric liquids for cooling during repetitive operation. 10 refs., 8 figs., 11 tabs

  14. Magnetic response of certain curved graphitic geometries

    International Nuclear Information System (INIS)

    Wang, L.; Davids, P.S.; Saxena, A.; Bishop, A.R.

    1992-01-01

    The quasi-particle energy spectra associated with some members of buckyfamily (curved graphitic geometries), in particular C 50 , C 60 , C 70 and related fullerenes as well as coaxial helical microtubules of graphite, are obtained analytically within the mean-field approximation. These energy spectra are then used to calculate various response functions. Specifically, we calculate the specific heat, magnetization and magnetic susceptibility in the presence of an external magnetic field at low temperatures. For a single microtubule an extra peak superimposed on the first de Haas van Alphen (dHvA) oscillation in magnetic susceptibility is found in the 50--170 Tesla range depending on the radius which is possibly accessible in special (explosive flux compression) experiments. Finally, we point to important potential applications of these novel mesoscopic structures in nanotechnology

  15. Mammography image compression using Wavelet

    International Nuclear Information System (INIS)

    Azuhar Ripin; Md Saion Salikin; Wan Hazlinda Ismail; Asmaliza Hashim; Norriza Md Isa

    2004-01-01

    Image compression plays an important role in many applications like medical imaging, televideo conferencing, remote sensing, document and facsimile transmission, which depend on the efficient manipulation, storage, and transmission of binary, gray scale, or color images. In Medical imaging application such Picture Archiving and Communication System (PACs), the image size or image stream size is too large and requires a large amount of storage space or high bandwidth for communication. Image compression techniques are divided into two categories namely lossy and lossless data compression. Wavelet method used in this project is a lossless compression method. In this method, the exact original mammography image data can be recovered. In this project, mammography images are digitized by using Vider Sierra Plus digitizer. The digitized images are compressed by using this wavelet image compression technique. Interactive Data Language (IDLs) numerical and visualization software is used to perform all of the calculations, to generate and display all of the compressed images. Results of this project are presented in this paper. (Author)

  16. Streaming Compression of Hexahedral Meshes

    Energy Technology Data Exchange (ETDEWEB)

    Isenburg, M; Courbet, C

    2010-02-03

    We describe a method for streaming compression of hexahedral meshes. Given an interleaved stream of vertices and hexahedral our coder incrementally compresses the mesh in the presented order. Our coder is extremely memory efficient when the input stream documents when vertices are referenced for the last time (i.e. when it contains topological finalization tags). Our coder then continuously releases and reuses data structures that no longer contribute to compressing the remainder of the stream. This means in practice that our coder has only a small fraction of the whole mesh in memory at any time. We can therefore compress very large meshes - even meshes that do not file in memory. Compared to traditional, non-streaming approaches that load the entire mesh and globally reorder it during compression, our algorithm trades a less compact compressed representation for significant gains in speed, memory, and I/O efficiency. For example, on the 456k hexahedra 'blade' mesh, our coder is twice as fast and uses 88 times less memory (only 3.1 MB) with the compressed file increasing about 3% in size. We also present the first scheme for predictive compression of properties associated with hexahedral cells.

  17. Superconducting magnetic energy storage apparatus structural support system

    Science.gov (United States)

    Withers, Gregory J.; Meier, Stephen W.; Walter, Robert J.; Child, Michael D.; DeGraaf, Douglas W.

    1992-01-01

    A superconducting magnetic energy storage apparatus comprising a cylindrical superconducting coil; a cylindrical coil containment vessel enclosing the coil and adapted to hold a liquid, such as liquefied helium; and a cylindrical vacuum vessel enclosing the coil containment vessel and located in a restraining structure having inner and outer circumferential walls and a floor; the apparatus being provided with horizontal compression members between (1) the coil and the coil containment vessel and (2) between the coil containment vessel and the vacuum vessel, compression bearing members between the vacuum vessel and the restraining structure inner and outer walls, vertical support members (1) between the coil bottom and the coil containment vessel bottom and (2) between the coil containment vessel bottom and the vacuum vessel bottom, and external supports between the vacuum vessel bottom and the restraining structure floor, whereby the loads developed by thermal and magnetic energy changes in the apparatus can be accommodated and the structural integrity of the apparatus be maintained.

  18. High pressure structural and magnetic studies of LaFe.sub.12./sub.B.sub.6./sub.

    Czech Academy of Sciences Publication Activity Database

    Diop, L.V.B.; Isnard, O.; Arnold, Zdeněk; Itié, J.P.; Kaštil, Jiří; Kamarád, Jiří

    2017-01-01

    Roč. 252, Feb (2017), s. 29-32 ISSN 0038-1098 R&D Projects: GA ČR GA15-03777S Institutional support: RVO:68378271 Keywords : itinerant-electron magnetism * magnetization * high pressure * compressibility Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.554, year: 2016

  19. Rock magnetism and magnetic fabric of the Triassic rocks from the West Spitsbergen Fold-and-Thrust Belt and its foreland

    Science.gov (United States)

    Dudzisz, Katarzyna; Szaniawski, Rafał; Michalski, Krzysztof; Chadima, Martin

    2018-03-01

    Magnetic fabric and magnetomineralogy of the Early Triassic sedimentary rocks, collected along the length of the West Spitsbergen Fold-and-Thrust Belt (WSFTB) and from subhorizontal beds on its foreland, is presented with the aim to compare magnetic mineralogy of these areas, determine the carriers of magnetic fabric and identify tectonic deformation reflected in the magnetic fabric. Magnetic mineralogy varies and only in part depends on the lithology. The magnetic fabric at all sampling sites is controlled by paramagnetic minerals (phyllosilicates and Fe-carbonates). In the fold belt, it reflects the low degree of deformation in a compressional setting with magnetic lineation parallel to fold axis (NW-SE). This is consistent with pure orthogonal compression model of the WSFTB formation, but it also agrees with decoupling model. Inverse fabric, observed in few sites, is carried by Fe-rich carbonates. In the WSFTB foreland, magnetic lineation reflects the Triassic paleocurrent direction (NE-SW). The alternation between normal and inverse magnetic fabric within the stratigraphic profile could be related to sedimentary cycles.

  20. Experimental results for a novel rotary active magnetic regenerator

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Eriksen, Dan; Bahl, Christian

    2012-01-01

    Active magnetic regenerator (AMR) refrigerators represent an alternative to vapor compression technology and have great potential in realizing cooling devices with high efficiency, which are highly desirable for a broad range of applications. The technology relies on the magnetocaloric effect...... in a solid refrigerant rather than the temperature change that occurs when a gas is compressed/expanded. This paper presents the general considerations for the design and construction of a high frequency rotary AMR device. Experimental results are presented at various cooling powers for a range of operating...

  1. Evaluation of mammogram compression efficiency

    International Nuclear Information System (INIS)

    Przelaskowski, A.; Surowski, P.; Kukula, A.

    2005-01-01

    Lossy image coding significantly improves performance over lossless methods, but a reliable control of diagnostic accuracy regarding compressed images is necessary. The acceptable range of compression ratios must be safe with respect to as many objective criteria as possible. This study evaluates the compression efficiency of digital mammograms in both numerically lossless (reversible) and lossy (irreversible) manner. Effective compression methods and concepts were examined to increase archiving and telediagnosis performance. Lossless compression as a primary applicable tool for medical applications was verified on a set 131 mammograms. Moreover, nine radiologists participated in the evaluation of lossy compression of mammograms. Subjective rating of diagnostically important features brought a set of mean rates given for each test image. The lesion detection test resulted in binary decision data analyzed statistically. The radiologists rated and interpreted malignant and benign lesions, representative pathology symptoms, and other structures susceptible to compression distortions contained in 22 original and 62 reconstructed mammograms. Test mammograms were collected in two radiology centers for three years and then selected according to diagnostic content suitable for an evaluation of compression effects. Lossless compression efficiency of the tested coders varied, but CALIC, JPEG-LS, and SPIHT performed the best. The evaluation of lossy compression effects affecting detection ability was based on ROC-like analysis. Assuming a two-sided significance level of p=0.05, the null hypothesis that lower bit rate reconstructions are as useful for diagnosis as the originals was false in sensitivity tests with 0.04 bpp mammograms. However, verification of the same hypothesis with 0.1 bpp reconstructions suggested their acceptance. Moreover, the 1 bpp reconstructions were rated very similarly to the original mammograms in the diagnostic quality evaluation test, but the

  2. Sparse BLIP: BLind Iterative Parallel imaging reconstruction using compressed sensing.

    Science.gov (United States)

    She, Huajun; Chen, Rong-Rong; Liang, Dong; DiBella, Edward V R; Ying, Leslie

    2014-02-01

    To develop a sensitivity-based parallel imaging reconstruction method to reconstruct iteratively both the coil sensitivities and MR image simultaneously based on their prior information. Parallel magnetic resonance imaging reconstruction problem can be formulated as a multichannel sampling problem where solutions are sought analytically. However, the channel functions given by the coil sensitivities in parallel imaging are not known exactly and the estimation error usually leads to artifacts. In this study, we propose a new reconstruction algorithm, termed Sparse BLind Iterative Parallel, for blind iterative parallel imaging reconstruction using compressed sensing. The proposed algorithm reconstructs both the sensitivity functions and the image simultaneously from undersampled data. It enforces the sparseness constraint in the image as done in compressed sensing, but is different from compressed sensing in that the sensing matrix is unknown and additional constraint is enforced on the sensitivities as well. Both phantom and in vivo imaging experiments were carried out with retrospective undersampling to evaluate the performance of the proposed method. Experiments show improvement in Sparse BLind Iterative Parallel reconstruction when compared with Sparse SENSE, JSENSE, IRGN-TV, and L1-SPIRiT reconstructions with the same number of measurements. The proposed Sparse BLind Iterative Parallel algorithm reduces the reconstruction errors when compared to the state-of-the-art parallel imaging methods. Copyright © 2013 Wiley Periodicals, Inc.

  3. Nanocrystalline iron nitride films with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Gupta, Ajay; Dubey, Ranu; Leitenberger, W.; Pietsch, U.

    2008-01-01

    Nanocrystalline α-iron nitride films have been prepared using reactive ion-beam sputtering. Films develop significant perpendicualr magnetic anisotropy (PMA) with increasing thickness. A comparison of x-ray diffraction patterns taken with scattering vectors in the film plane and out of the film plane provides a clear evidence for development of compressive strain in the film plane with thickness. Thermal annealing results in relaxation of the strain, which correlates very well with the relaxation of PMA. This suggests that the observed PMA is a consequence of the breaking of the symmetry of the crystal structure due to the compressive strain

  4. Watermark Compression in Medical Image Watermarking Using Lempel-Ziv-Welch (LZW) Lossless Compression Technique.

    Science.gov (United States)

    Badshah, Gran; Liew, Siau-Chuin; Zain, Jasni Mohd; Ali, Mushtaq

    2016-04-01

    In teleradiology, image contents may be altered due to noisy communication channels and hacker manipulation. Medical image data is very sensitive and can not tolerate any illegal change. Illegally changed image-based analysis could result in wrong medical decision. Digital watermarking technique can be used to authenticate images and detect as well as recover illegal changes made to teleradiology images. Watermarking of medical images with heavy payload watermarks causes image perceptual degradation. The image perceptual degradation directly affects medical diagnosis. To maintain the image perceptual and diagnostic qualities standard during watermarking, the watermark should be lossless compressed. This paper focuses on watermarking of ultrasound medical images with Lempel-Ziv-Welch (LZW) lossless-compressed watermarks. The watermark lossless compression reduces watermark payload without data loss. In this research work, watermark is the combination of defined region of interest (ROI) and image watermarking secret key. The performance of the LZW compression technique was compared with other conventional compression methods based on compression ratio. LZW was found better and used for watermark lossless compression in ultrasound medical images watermarking. Tabulated results show the watermark bits reduction, image watermarking with effective tamper detection and lossless recovery.

  5. Strain effect on the magnetic and transport properties of LaCoO3 thin films

    Science.gov (United States)

    Li, Y.; Peng, S. J.; Wang, D. J.; Wu, K. M.; Wang, S. H.

    2018-05-01

    LaCoO3 (LCO) has attracted much attention due to the unique magnetic transition and spin transition of Co3+ ions. Epitaxial LCO film exhibits an unexpected ferromagnetism, in contrast to the non-magnetism of bulk LCO. An in-depth study on the property of strained LCO film is of great importance. We have fabricated 30 nm LCO films on various substrates and studied the magnetic and transport properties of films in different strain states (compressed strain for LCO/LaAlO3, tensile strain for LCO/(LaAlO3)0.3(Sr2TaAlO6)0.35, SrTiO3). The in-plane tensiled LCO films exhibit ferromagnetic ground state at 5K and magnetic transition with TC around 85K, while compressed LCO/LaAlO3 film has a negligibly small moment signal. Our results reveal that in-plane tensile strain and tetragonal distortion are much more favorable for stabilizing the FM order in LCO films.

  6. Comparison of the effectiveness of compression stockings and layer compression systems in venous ulceration treatment

    Science.gov (United States)

    Jawień, Arkadiusz; Cierzniakowska, Katarzyna; Cwajda-Białasik, Justyna; Mościcka, Paulina

    2010-01-01

    Introduction The aim of the research was to compare the dynamics of venous ulcer healing when treated with the use of compression stockings as well as original two- and four-layer bandage systems. Material and methods A group of 46 patients suffering from venous ulcers was studied. This group consisted of 36 (78.3%) women and 10 (21.70%) men aged between 41 and 88 years (the average age was 66.6 years and the median was 67). Patients were randomized into three groups, for treatment with the ProGuide two-layer system, Profore four-layer compression, and with the use of compression stockings class II. In the case of multi-layer compression, compression ensuring 40 mmHg blood pressure at ankle level was used. Results In all patients, independently of the type of compression therapy, a few significant statistical changes of ulceration area in time were observed (Student’s t test for matched pairs, p ulceration area in each of the successive measurements was observed in patients treated with the four-layer system – on average 0.63 cm2/per week. The smallest loss of ulceration area was observed in patients using compression stockings – on average 0.44 cm2/per week. However, the observed differences were not statistically significant (Kruskal-Wallis test H = 4.45, p > 0.05). Conclusions A systematic compression therapy, applied with preliminary blood pressure of 40 mmHg, is an effective method of conservative treatment of venous ulcers. Compression stockings and prepared systems of multi-layer compression were characterized by similar clinical effectiveness. PMID:22419941

  7. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    International Nuclear Information System (INIS)

    Matsuoka, Seikichi; Satake, Shinsuke; Kanno, Ryutaro; Sugama, Hideo

    2015-01-01

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E r . The peaked behavior of the neoclassical radial fluxes around E r  =   0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account

  8. Effects of magnetic drift tangential to magnetic surfaces on neoclassical transport in non-axisymmetric plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Seikichi, E-mail: matsuoka@rist.or.jp [Research Organization for Information Science and Technology, 6F Kimec-Center Build., 1-5-2 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047 (Japan); Satake, Shinsuke; Kanno, Ryutaro [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan); Department of Fusion Science, SOKENDAI (The Graduate University for Advanced Studies), 322-6 Oroshi-cho, Toki 509-5292 (Japan); Sugama, Hideo [National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292 (Japan)

    2015-07-15

    In evaluating neoclassical transport by radially local simulations, the magnetic drift tangential to a flux surface is usually ignored in order to keep the phase-space volume conservation. In this paper, effect of the tangential magnetic drift on the local neoclassical transport is investigated. To retain the effect of the tangential magnetic drift in the local treatment of neoclassical transport, a new local formulation for the drift kinetic simulation is developed. The compressibility of the phase-space volume caused by the tangential magnetic drift is regarded as a source term for the drift kinetic equation, which is solved by using a two-weight δf Monte Carlo method for non-Hamiltonian system [G. Hu and J. A. Krommes, Phys. Plasmas 1, 863 (1994)]. It is demonstrated that the effect of the drift is negligible for the neoclassical transport in tokamaks. In non-axisymmetric systems, however, the tangential magnetic drift substantially changes the dependence of the neoclassical transport on the radial electric field E{sub r}. The peaked behavior of the neoclassical radial fluxes around E{sub r }={sub  }0 observed in conventional local neoclassical transport simulations is removed by taking the tangential magnetic drift into account.

  9. Correlations between quality indexes of chest compression.

    Science.gov (United States)

    Zhang, Feng-Ling; Yan, Li; Huang, Su-Fang; Bai, Xiang-Jun

    2013-01-01

    Cardiopulmonary resuscitation (CPR) is a kind of emergency treatment for cardiopulmonary arrest, and chest compression is the most important and necessary part of CPR. The American Heart Association published the new Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care in 2010 and demanded for better performance of chest compression practice, especially in compression depth and rate. The current study was to explore the relationship of quality indexes of chest compression and to identify the key points in chest compression training and practice. Totally 219 healthcare workers accepted chest compression training by using Laerdal ACLS advanced life support resuscitation model. The quality indexes of chest compression, including compression hands placement, compression rate, compression depth, and chest wall recoil as well as self-reported fatigue time were monitored by the Laerdal Computer Skills and Reporting System. The quality of chest compression was related to the gender of the compressor. The indexes in males, including self-reported fatigue time, the accuracy of compression depth and the compression rate, the accuracy of compression rate, were higher than those in females. However, the accuracy of chest recoil was higher in females than in males. The quality indexes of chest compression were correlated with each other. The self-reported fatigue time was related to all the indexes except the compression rate. It is necessary to offer CPR training courses regularly. In clinical practice, it might be better to change the practitioner before fatigue, especially for females or weak practitioners. In training projects, more attention should be paid to the control of compression rate, in order to delay the fatigue, guarantee enough compression depth and improve the quality of chest compression.

  10. Does the quality of chest compressions deteriorate when the chest compression rate is above 120/min?

    Science.gov (United States)

    Lee, Soo Hoon; Kim, Kyuseok; Lee, Jae Hyuk; Kim, Taeyun; Kang, Changwoo; Park, Chanjong; Kim, Joonghee; Jo, You Hwan; Rhee, Joong Eui; Kim, Dong Hoon

    2014-08-01

    The quality of chest compressions along with defibrillation is the cornerstone of cardiopulmonary resuscitation (CPR), which is known to improve the outcome of cardiac arrest. We aimed to investigate the relationship between the compression rate and other CPR quality parameters including compression depth and recoil. A conventional CPR training for lay rescuers was performed 2 weeks before the 'CPR contest'. CPR anytime training kits were distributed to respective participants for self-training on their own in their own time. The participants were tested for two-person CPR in pairs. The quantitative and qualitative data regarding the quality of CPR were collected from a standardised check list and SkillReporter, and compared by the compression rate. A total of 161 teams consisting of 322 students, which includes 116 men and 206 women, participated in the CPR contest. The mean depth and rate for chest compression were 49.0±8.2 mm and 110.2±10.2/min. Significantly deeper chest compression depths were noted at rates over 120/min than those at any other rates (47.0±7.4, 48.8±8.4, 52.3±6.7, p=0.008). Chest compression depth was proportional to chest compression rate (r=0.206, pcompression including chest compression depth and chest recoil by chest compression rate. Further evaluation regarding the upper limit of the chest compression rate is needed to ensure complete full chest wall recoil while maintaining an adequate chest compression depth. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  11. Subjective evaluation of compressed image quality

    Science.gov (United States)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  12. Magnets for the 21st century

    International Nuclear Information System (INIS)

    Herlach, F.

    1998-01-01

    Based on a review of the development of laboratory electromagnets, perspectives for the next generation of pulsed magnets are discussed. Record fields are now approaching the 75T mark, and large efforts are made on an international scale in order to move into the region between 75 and 100T. Simple scaling laws indicate that these magnets will have a small bore and a short pulse duration of order 10ms. Fields above 100T are obtained by destructive methods, using high explosives (up to 2000T) and capacitor banks (up to 300T with the single turn coil and up to 600T with flux compression by implosion). The pulse duration is governed by shock waves, and therefore, restricted to the microsecond range. Efficient use of all these magnets calls for miniaturisation of both magnets and experiments, and the development of experimental techniques that are adapted to these conditions

  13. Synthesis and characterization of CoFe2O4 magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe2O4 nanorods

    International Nuclear Information System (INIS)

    Antonel, P. Soledad; Oliveira, Cristiano L. P.; Jorge, Guillermo A.; Perez, Oscar E.; Leyva, A. Gabriela; Negri, R. Martín

    2015-01-01

    Magnetic CoFe 2 O 4 nanotubes, nanorods and nanowires were synthesized by the template method. The materials are highly crystalline and formed by compactly packed ceramic particles whose equivalent size diameter depends on the nanostructure type. Nanotubes and nanorods present the remarkable characteristic of having very large coercive fields (1000–1100 Oe) in comparison with nanoparticles of the same crystallite size (400 Oe) while keeping similar saturation magnetization (53–55 emu/g). Nanorods were used as filler material in polydimethylsiloxane elastomer composites, which were structured by curing in the presence of uniform magnetic field, H curing . In that way the nanorods agglomerate in the cured elastomer, forming needles-like structures (pseudo-chains) oriented in the direction of H curing . SEM analysis show that pseudo-chains are formed by bunches of nanorods oriented in that direction. At the considered filler concentration (1 % w/w), the structured elastomers conserve the magnetic properties of the fillers, that is, high coercive fields without observing magnetic anisotropy. The elastomer composites present strong elastic anisotropy, with compression constants about ten times larger in the direction parallel to the pseudo-chains than in the perpendicular direction, as determined by compression stress–strain curves. That anisotropic factor is about three-four times higher than that observed when using spherical CoFe 2 O 4 nanoparticles or elongated Ni nanochains. Hence, the use of morphological anisotropic structures (nanorods) results in composites with enhanced elastic anisotropy. It is also remarkable that the large elastic anisotropy was obtained at lower filler concentration compared with the above-mentioned systems (1 % w/w vs. 5–10 % w/w)

  14. A general nonlinear magnetomechanical model for ferromagnetic materials under a constant weak magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Pengpeng; Zheng, Xiaojing, E-mail: xjzheng@xidian.edu.cn [School of Mechano-Electronic Engineering, Xidian University, Xi' an 710071, Shaanxi (China); Jin, Ke [School of Aerospace Science and Technology, Xidian University, Xi' an 710071, Shaanxi (China)

    2016-04-14

    Weak magnetic nondestructive testing (e.g., metal magnetic memory method) concerns the magnetization variation of ferromagnetic materials due to its applied load and a weak magnetic surrounding them. One key issue on these nondestructive technologies is the magnetomechanical effect for quantitative evaluation of magnetization state from stress–strain condition. A representative phenomenological model has been proposed to explain the magnetomechanical effect by Jiles in 1995. However, the Jiles' model has some deficiencies in quantification, for instance, there is a visible difference between theoretical prediction and experimental measurements on stress–magnetization curve, especially in the compression case. Based on the thermodynamic relations and the approach law of irreversible magnetization, a nonlinear coupled model is proposed to improve the quantitative evaluation of the magnetomechanical effect. Excellent agreement has been achieved between the predictions from the present model and previous experimental results. In comparison with Jiles' model, the prediction accuracy is improved greatly by the present model, particularly for the compression case. A detailed study has also been performed to reveal the effects of initial magnetization status, cyclic loading, and demagnetization factor on the magnetomechanical effect. Our theoretical model reveals that the stable weak magnetic signals of nondestructive testing after multiple cyclic loads are attributed to the first few cycles eliminating most of the irreversible magnetization. Remarkably, the existence of demagnetization field can weaken magnetomechanical effect, therefore, significantly reduces the testing capability. This theoretical model can be adopted to quantitatively analyze magnetic memory signals, and then can be applied in weak magnetic nondestructive testing.

  15. Magnetic activity in the Galactic Centre region - fast downflows along rising magnetic loops

    Science.gov (United States)

    Kakiuchi, Kensuke; Suzuki, Takeru K.; Fukui, Yasuo; Torii, Kazufumi; Enokiya, Rei; Machida, Mami; Matsumoto, Ryoji

    2018-06-01

    We studied roles of the magnetic field on the gas dynamics in the Galactic bulge by a three-dimensional global magnetohydrodynamical simulation data, particularly focusing on vertical flows that are ubiquitously excited by magnetic activity. In local regions where the magnetic field is stronger, it is frequently seen that fast downflows slide along inclined magnetic field lines that are associated with buoyantly rising magnetic loops. The vertical velocity of these downflows reaches ˜100 km s-1 near the footpoint of the loops by the gravitational acceleration towards the Galactic plane. The two footpoints of rising magnetic loops are generally located at different radial locations and the field lines are deformed by the differential rotation. The angular momentum is transported along the field lines, and the radial force balance breaks down. As a result, a fast downflow is often observed only at the one footpoint located at the inner radial position. The fast downflow compresses the gas to form a dense region near the footpoint, which will be important in star formation afterwards. Furthermore, the horizontal components of the velocity are also fast near the footpoint because the downflow is accelerated along the magnetic sliding slope. As a result, the high-velocity flow creates various characteristic features in a simulated position-velocity diagram, depending on the viewing angle.

  16. MA-core loaded untuned RF compression cavity for HIRFL-CSR

    International Nuclear Information System (INIS)

    Mei Lirong; Xu Zhe; Yuan Youjin; Jin Peng; Bian Zhibin; Zhao Hongwei; Xia Jiawen

    2012-01-01

    To meet the requirements of high energy density physics and plasma physics research at HIRFL-CSR the goal of achieving a higher accelerating gap voltage was proposed. Therefore, a magnetic alloy (MA)-core loaded radio frequency (RF) cavity that can provide a higher accelerating gap voltage compared to standard ferrite loaded cavities has been studied at IMP. In order to select the proper magnetic alloy material to load the RF compression cavity, measurements of four different kinds of sample MA-cores have been carried out. By testing the small cores, the core composition was selected to obtain the desired performance. According to the theoretical calculation and simulation, which show reasonable consistency for the MA-core loaded cavity, the desired performance can be achieved. Finally about 1000 kW power will be needed to meet the requirements of 50 kV accelerating gap voltage by calculation.

  17. COMPRESSIBLE 'TURBULENCE' OBSERVED IN THE HELIOSHEATH BY VOYAGER 2

    International Nuclear Information System (INIS)

    Burlaga, L. F.; Ness, N. F.

    2009-01-01

    This paper describes the multiscale structure of the compressible 'turbulence' observed in the high-resolution (48 s) observations of the magnetic field strength B made by Voyager 2 (V2) in the heliosheath behind the termination shock from 2007 DOY 245.0-300.8 and in a unipolar region from 2008 DOY 2.9-75.6. The magnetic field strength is highly variable on scales from 48 s to several hours in both intervals. The distributions of daily averages and 48 s averages of B are lognormal in the post-termination shock (TS) region and Gaussian in the unipolar region, respectively. The amplitudes of the fluctuations were greater in the post-TS region than in the unipolar region, at scales less than several hours. The multiscale structure of the increments of B is described by the q-Gaussian distribution of nonextensive statistical mechanics on all scales from 48 s to 3.4 hr in the unipolar region and from 48 s to 6.8 hr in the post-TS region, respectively. The amplitudes of the fluctuations of increments of B are larger in the post-TS region than in the unipolar region at all scales. The probability density functions of the increments of B are non-Gaussian at all scales in the unipolar region, but they are Gaussian at the largest scales in the post-TS region. Time series of the magnitude and direction of B show that the fluctuations are highly compressive. The small-scale fluctuations are a mixture of coherent structures (semi-deterministic structures) and random structures, which vary significantly from day to day. Several types of coherent structures were identified in both regions.

  18. Comparison of chest compression quality between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method during CPR.

    Science.gov (United States)

    Park, Sang-Sub

    2014-01-01

    The purpose of this study is to grasp difference in quality of chest compression accuracy between the modified chest compression method with the use of smartphone application and the standardized traditional chest compression method. Participants were progressed 64 people except 6 absentees among 70 people who agreed to participation with completing the CPR curriculum. In the classification of group in participants, the modified chest compression method was called as smartphone group (33 people). The standardized chest compression method was called as traditional group (31 people). The common equipments in both groups were used Manikin for practice and Manikin for evaluation. In the meantime, the smartphone group for application was utilized Android and iOS Operating System (OS) of 2 smartphone products (G, i). The measurement period was conducted from September 25th to 26th, 2012. Data analysis was used SPSS WIN 12.0 program. As a result of research, the proper compression depth (mm) was shown the proper compression depth (p< 0.01) in traditional group (53.77 mm) compared to smartphone group (48.35 mm). Even the proper chest compression (%) was formed suitably (p< 0.05) in traditional group (73.96%) more than smartphone group (60.51%). As for the awareness of chest compression accuracy, the traditional group (3.83 points) had the higher awareness of chest compression accuracy (p< 0.001) than the smartphone group (2.32 points). In the questionnaire that was additionally carried out 1 question only in smartphone group, the modified chest compression method with the use of smartphone had the high negative reason in rescuer for occurrence of hand back pain (48.5%) and unstable posture (21.2%).

  19. Current singularities at finitely compressible three-dimensional magnetic null points

    International Nuclear Information System (INIS)

    Pontin, D.I.; Craig, I.J.D.

    2005-01-01

    The formation of current singularities at line-tied two- and three-dimensional (2D and 3D, respectively) magnetic null points in a nonresistive magnetohydrodynamic environment is explored. It is shown that, despite the different separatrix structures of 2D and 3D null points, current singularities may be initiated in a formally equivalent manner. This is true no matter whether the collapse is triggered by flux imbalance within closed, line-tied null points or driven by externally imposed velocity fields in open, incompressible geometries. A Lagrangian numerical code is used to investigate the finite amplitude perturbations that lead to singular current sheets in collapsing 2D and 3D null points. The form of the singular current distribution is analyzed as a function of the spatial anisotropy of the null point, and the effects of finite gas pressure are quantified. It is pointed out that the pressure force, while never stopping the formation of the singularity, significantly alters the morphology of the current distribution as well as dramatically weakening its strength. The impact of these findings on 2D and 3D magnetic reconnection models is discussed

  20. Wellhead compression

    Energy Technology Data Exchange (ETDEWEB)

    Harrington, Joe [Sertco Industries, Inc., Okemah, OK (United States); Vazquez, Daniel [Hoerbiger Service Latin America Inc., Deerfield Beach, FL (United States); Jacobs, Denis Richard [Hoerbiger do Brasil Industria de Equipamentos, Cajamar, SP (Brazil)

    2012-07-01

    Over time, all wells experience a natural decline in oil and gas production. In gas wells, the major problems are liquid loading and low downhole differential pressures which negatively impact total gas production. As a form of artificial lift, wellhead compressors help reduce the tubing pressure resulting in gas velocities above the critical velocity needed to surface water, oil and condensate regaining lost production and increasing recoverable reserves. Best results come from reservoirs with high porosity, high permeability, high initial flow rates, low decline rates and high total cumulative production. In oil wells, excessive annulus gas pressure tends to inhibit both oil and gas production. Wellhead compression packages can provide a cost effective solution to these problems by reducing the system pressure in the tubing or annulus, allowing for an immediate increase in production rates. Wells furthest from the gathering compressor typically benefit the most from wellhead compression due to system pressure drops. Downstream compressors also benefit from higher suction pressures reducing overall compression horsepower requirements. Special care must be taken in selecting the best equipment for these applications. The successful implementation of wellhead compression from an economical standpoint hinges on the testing, installation and operation of the equipment. Key challenges and suggested equipment features designed to combat those challenges and successful case histories throughout Latin America are discussed below.(author)

  1. Spherical Magnetic Vortex in an External Potential Field: A Dissipative Contraction

    Science.gov (United States)

    Solov'ev, A. A.

    2013-09-01

    We consider the dissipative evolution of a spherical magnetic vortex with a force-free internal structure, located in a resistive medium and held in equilibrium by the potential external field. The magnetic field inside the sphere is force-free (the model of Chandrasekhar in Proc. Natl. Acad. Sci. 42, 1, 1956). Topologically, it is a set of magnetic toroids enclosed in spherical layers. A new exact MHD solution has been derived, describing a slow, uniform, radial compression of a magnetic spheroid under the pressure of an ambient field, when the plasma density and pressure are growing inside it. There is no dissipation in the potential field outside the sphere, but inside the sphere, where the current density can be high enough, the magnetic energy is continuously converted into heat. Joule dissipation lowers the magnetic pressure inside the sphere, which balances the pressure of the ambient field. This results in radial contraction of the magnetic sphere with a speed defined by the conductivity of the plasma and the characteristic spatial scale of the magnetic field inside the sphere. Formally, the sphere shrinks to zero within a finite time interval (magnetic collapse). The time of compression can be relatively small, within a day, even for a sphere with a radius of about 1 Mm, if the magnetic helicity trapped initially in the sphere (which is proportional to the number of magnetic toroids in the sphere) is quite large. The magnetic system is open along its axis of symmetry. On this axis, the magnetic and electric fields are strictly radial and sign-variable along the radius, so the plasma will be ejected along the axis of magnetic sphere outwards in both directions (as jets) at a rate much higher than the diffusive one, and the charged particles will be accelerated unevenly, in spurts, creating quasi-regular X-ray spikes. The applications of the solution to solar flares are discussed.

  2. Three-dimensional nonlinear ideal MHD equilibria with field-aligned incompressible and compressible flows

    International Nuclear Information System (INIS)

    Moawad, S. M.; Ibrahim, D. A.

    2016-01-01

    The equilibrium properties of three-dimensional ideal magnetohydrodynamics (MHD) are investigated. Incompressible and compressible flows are considered. The governing equations are taken in a steady state such that the magnetic field is parallel to the plasma flow. Equations of stationary equilibrium for both of incompressible and compressible MHD flows are derived and described in a mathematical mode. For incompressible MHD flows, Alfvénic and non-Alfvénic flows with constant and variable magnetofluid density are investigated. For Alfvénic incompressible flows, the general three-dimensional solutions are determined with the aid of two potential functions of the velocity field. For non-Alfvénic incompressible flows, the stationary equilibrium equations are reduced to two differential constraints on the potential functions, flow velocity, magnetofluid density, and the static pressure. Some examples which may be of some relevance to axisymmetric confinement systems are presented. For compressible MHD flows, equations of the stationary equilibrium are derived with the aid of a single potential function of the velocity field. The existence of three-dimensional solutions for these MHD flows is investigated. Several classes of three-dimensional exact solutions for several cases of nonlinear equilibrium equations are presented.

  3. Compressed sensing of ECG signal for wireless system with new fast iterative method.

    Science.gov (United States)

    Tawfic, Israa; Kayhan, Sema

    2015-12-01

    Recent experiments in wireless body area network (WBAN) show that compressive sensing (CS) is a promising tool to compress the Electrocardiogram signal ECG signal. The performance of CS is based on algorithms use to reconstruct exactly or approximately the original signal. In this paper, we present two methods work with absence and presence of noise, these methods are Least Support Orthogonal Matching Pursuit (LS-OMP) and Least Support Denoising-Orthogonal Matching Pursuit (LSD-OMP). The algorithms achieve correct support recovery without requiring sparsity knowledge. We derive an improved restricted isometry property (RIP) based conditions over the best known results. The basic procedures are done by observational and analytical of a different Electrocardiogram signal downloaded them from PhysioBankATM. Experimental results show that significant performance in term of reconstruction quality and compression rate can be obtained by these two new proposed algorithms, and help the specialist gathering the necessary information from the patient in less time if we use Magnetic Resonance Imaging (MRI) application, or reconstructed the patient data after sending it through the network. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Extraction Compression and Acceleration of High Line Charge Density Ion Beams

    CERN Document Server

    Henestroza, Enrique; Grote, D P; Peters, Craig; Yu, Simon

    2005-01-01

    HEDP applications require high line charge density ion beams. An efficient method to obtain this type of beams is to extract a long pulse, high current beam from a gun at high energy, and let the beam pass through a decelerating field to compress it. The low energy beam bunch is loaded into a solenoid and matched to a Brillouin flow. The Brillouin equilibrium is independent of the energy if the relationship between the beam size (a), solenoid magnetic field strength (B) and line charge density is such that (Ba)2

  5. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2013-01-01

    We introduce a new compression scheme for labeled trees based on top trees [3]. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  6. Tree compression with top trees

    DEFF Research Database (Denmark)

    Bille, Philip; Gørtz, Inge Li; Landau, Gad M.

    2015-01-01

    We introduce a new compression scheme for labeled trees based on top trees. Our compression scheme is the first to simultaneously take advantage of internal repeats in the tree (as opposed to the classical DAG compression that only exploits rooted subtree repeats) while also supporting fast...

  7. Generalized massive optimal data compression

    Science.gov (United States)

    Alsing, Justin; Wandelt, Benjamin

    2018-05-01

    In this paper, we provide a general procedure for optimally compressing N data down to n summary statistics, where n is equal to the number of parameters of interest. We show that compression to the score function - the gradient of the log-likelihood with respect to the parameters - yields n compressed statistics that are optimal in the sense that they preserve the Fisher information content of the data. Our method generalizes earlier work on linear Karhunen-Loéve compression for Gaussian data whilst recovering both lossless linear compression and quadratic estimation as special cases when they are optimal. We give a unified treatment that also includes the general non-Gaussian case as long as mild regularity conditions are satisfied, producing optimal non-linear summary statistics when appropriate. As a worked example, we derive explicitly the n optimal compressed statistics for Gaussian data in the general case where both the mean and covariance depend on the parameters.

  8. Study of magnetic, structural and magnetocaloric properties of La.sub.0.6./sub.Pr.sub.0.4./sub.Mn.sub.2./sub.Si.sub.2./sub. under high pressures and magnetic field

    Czech Academy of Sciences Publication Activity Database

    Kaštil, Jiří; Arnold, Zdeněk; Isnard, O.; Skourski, Y.; Kamarád, Jiří; Itié, J.P.

    2017-01-01

    Roč. 424, Feb (2017), s. 416-420 ISSN 0304-8853 R&D Projects: GA ČR GA15-03777S Institutional support: RVO:68378271 Keywords : magnetization * compressibility * magnetocaloric effect * high pressure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  9. Compression of Fe-Si-H alloys

    Science.gov (United States)

    Tagawa, S.; Ohta, K.; Hirose, K.

    2014-12-01

    The light elements in the Earth's core have not been fully identified yet, but hydrogen is now collecting more attention in part because recent planet formation theory suggests that large amount of water should have been brought to the Earth during its formation (giant-impact stage). Nevertheless, the effect of hydrogen on the property of iron alloys is little known so far. The earlier experimental study by Hirao et al. [2004 GRL] examined the compression behavior of dhcp FeHx (x ≈ 1) and found that it becomes much stiffer than pure iron above 50 GPa, where magnetization disappears. Here we examined the solubility of hydrogen into iron-rich Fe-Si alloys and the compression behavior of dhcp Fe-Si-H alloy at room temperature. Fe+6.5wt.%Si or Fe+9wt.%Si foil was loaded into a diamond-anvil cell (DAC), and then liquid hydrogen was introduced at temperatures below 20 K. X-ray diffraction measurements at SPring-8 revealed the formation of a dhcp phase with or without thermal annealing by laser above 8.4 GPa. The concentration of hydrogen in such dhcp lattice was calculated following the formula reported by Fukai [1992]; y = 0.5 and 0.2 for Fe-6.5wt.%Si-H or Fe-9wt.%Si-H alloys, respectively when y is defined as Fe(1-x)SixHy. Unlike Fe-H alloy, hydrogen didn't fully occupy the octahedral sites even under hydrogen-saturated conditions in the case of Fe-Si-H system. Anomaly was observed in obtained pressure-volume curve around 44 Å3 of unit-cell volume for both Fe-6.5wt.%Si-H and Fe-9wt.%Si-H alloys, which may be related to the spin transition in the dhcp phase. They became slightly stiffer at higher pressures, but their compressibility was still similar to that of pure iron.

  10. 29 CFR 1917.154 - Compressed air.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Compressed air. 1917.154 Section 1917.154 Labor Regulations...) MARINE TERMINALS Related Terminal Operations and Equipment § 1917.154 Compressed air. Employees shall be... this part during cleaning with compressed air. Compressed air used for cleaning shall not exceed a...

  11. Image quality (IQ) guided multispectral image compression

    Science.gov (United States)

    Zheng, Yufeng; Chen, Genshe; Wang, Zhonghai; Blasch, Erik

    2016-05-01

    Image compression is necessary for data transportation, which saves both transferring time and storage space. In this paper, we focus on our discussion on lossy compression. There are many standard image formats and corresponding compression algorithms, for examples, JPEG (DCT -- discrete cosine transform), JPEG 2000 (DWT -- discrete wavelet transform), BPG (better portable graphics) and TIFF (LZW -- Lempel-Ziv-Welch). The image quality (IQ) of decompressed image will be measured by numerical metrics such as root mean square error (RMSE), peak signal-to-noise ratio (PSNR), and structural Similarity (SSIM) Index. Given an image and a specified IQ, we will investigate how to select a compression method and its parameters to achieve an expected compression. Our scenario consists of 3 steps. The first step is to compress a set of interested images by varying parameters and compute their IQs for each compression method. The second step is to create several regression models per compression method after analyzing the IQ-measurement versus compression-parameter from a number of compressed images. The third step is to compress the given image with the specified IQ using the selected compression method (JPEG, JPEG2000, BPG, or TIFF) according to the regressed models. The IQ may be specified by a compression ratio (e.g., 100), then we will select the compression method of the highest IQ (SSIM, or PSNR). Or the IQ may be specified by a IQ metric (e.g., SSIM = 0.8, or PSNR = 50), then we will select the compression method of the highest compression ratio. Our experiments tested on thermal (long-wave infrared) images (in gray scales) showed very promising results.

  12. Mass ablation and magnetic flux losses through a magnetized plasma-liner wall interface

    Science.gov (United States)

    García-Rubio, F.; Sanz, J.

    2017-07-01

    The understanding of energy and magnetic flux losses in a magnetized plasma medium confined by a cold wall is of great interest in the success of magnetized liner inertial fusion (MagLIF). In a MagLIF scheme, the fuel is magnetized and subsonically compressed by a cylindrical liner. Magnetic flux conservation is degraded by the presence of gradient-driven transport processes such as thermoelectric effects (Nernst) and magnetic field diffusion. In previous publications [Velikovich et al., Phys. Plasmas 22, 042702 (2015)], the evolution of a hot magnetized plasma in contact with a cold solid wall (liner) was studied using the classical collisional Braginskii's plasma transport equations in one dimension. The Nernst term degraded the magnetic flux conservation, while both thermal energy and magnetic flux losses were reduced with the electron Hall parameter ωeτe with a power-law asymptotic scaling (ωeτe)-1/2. In the analysis made in the present paper, we consider a similar situation, but with the liner being treated differently. Instead of a cold solid wall acting as a heat sink, we model the liner as a cold dense plasma with low thermal conduction (that could represent the cryogenic fuel layer added on the inner surface of the liner in a high-gain MagLIF configuration). Mass ablation comes into play, which adds notably differences to the previous analysis. The direction of the plasma motion is inverted, but the Nernst term still convects the magnetic field towards the liner. Magnetization suppresses the Nernst velocity and improves the magnetic flux conservation. Thermal energy in the hot plasma is lost in heating the ablated material. When the electron Hall parameter is large, mass ablation scales as (ωeτe)-3/10, while both the energy and magnetic flux losses are reduced with a power-law asymptotic scaling (ωeτe)-7/10.

  13. Clinical Feasibility of Free-Breathing Dynamic T1-Weighted Imaging With Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging Using a Combination of Variable Density Sampling and Compressed Sensing.

    Science.gov (United States)

    Yoon, Jeong Hee; Yu, Mi Hye; Chang, Won; Park, Jin-Young; Nickel, Marcel Dominik; Son, Yohan; Kiefer, Berthold; Lee, Jeong Min

    2017-10-01

    The purpose of the study was to investigate the clinical feasibility of free-breathing dynamic T1-weighted imaging (T1WI) using Cartesian sampling, compressed sensing, and iterative reconstruction in gadoxetic acid-enhanced liver magnetic resonance imaging (MRI). This retrospective study was approved by our institutional review board, and the requirement for informed consent was waived. A total of 51 patients at high risk of breath-holding failure underwent dynamic T1WI in a free-breathing manner using volumetric interpolated breath-hold (BH) examination with compressed sensing reconstruction (CS-VIBE) and hard gating. Timing, motion artifacts, and image quality were evaluated by 4 radiologists on a 4-point scale. For patients with low image quality scores (XD]) reconstruction was additionally performed and reviewed in the same manner. In addition, in 68.6% (35/51) patients who had previously undergone liver MRI, image quality and motion artifacts on dynamic phases using CS-VIBE were compared with previous BH-T1WIs. In all patients, adequate arterial-phase timing was obtained at least once. Overall image quality of free-breathing T1WI was 3.30 ± 0.59 on precontrast and 2.68 ± 0.70, 2.93 ± 0.65, and 3.30 ± 0.49 on early arterial, late arterial, and portal venous phases, respectively. In 13 patients with lower than average image quality (XD-reconstructed CS-VIBE) significantly reduced motion artifacts (P XD reconstruction showed less motion artifacts and better image quality on precontrast, arterial, and portal venous phases (P < 0.0001-0.013). Volumetric interpolated breath-hold examination with compressed sensing has the potential to provide consistent, motion-corrected free-breathing dynamic T1WI for liver MRI in patients at high risk of breath-holding failure.

  14. Superconducting dipole magnet for the CBM experiment at FAIR

    Directory of Open Access Journals (Sweden)

    Kurilkin P.

    2017-01-01

    Full Text Available The scientific goal of the CBM (Compressed Baryonic Matter experiment at FAIR (Darmstadt is to explore the phase diagram of strongly interacting matter at highest baryon densities. The physics program of the CBM experiment is complimentary to the programs to be realized at MPD and BMN facilities at NICA and will start with beam derived by the SIS100 synchrotron. The 5.15 MJ superconducting dipole magnet will be used in the silicon tracking system of the CBM detector. The magnet will provide a magnetic field integral of 1 Tm which is required to obtain a momentum resolution of 1% for the track reconstruction. The results of the development of dipole magnet of the CBM experiment are presented.

  15. Application specific compression : final report.

    Energy Technology Data Exchange (ETDEWEB)

    Melgaard, David Kennett; Byrne, Raymond Harry; Myers, Daniel S.; Harrison, Carol D.; Lee, David S.; Lewis, Phillip J.; Carlson, Jeffrey J.

    2008-12-01

    With the continuing development of more capable data gathering sensors, comes an increased demand on the bandwidth for transmitting larger quantities of data. To help counteract that trend, a study was undertaken to determine appropriate lossy data compression strategies for minimizing their impact on target detection and characterization. The survey of current compression techniques led us to the conclusion that wavelet compression was well suited for this purpose. Wavelet analysis essentially applies a low-pass and high-pass filter to the data, converting the data into the related coefficients that maintain spatial information as well as frequency information. Wavelet compression is achieved by zeroing the coefficients that pertain to the noise in the signal, i.e. the high frequency, low amplitude portion. This approach is well suited for our goal because it reduces the noise in the signal with only minimal impact on the larger, lower frequency target signatures. The resulting coefficients can then be encoded using lossless techniques with higher compression levels because of the lower entropy and significant number of zeros. No significant signal degradation or difficulties in target characterization or detection were observed or measured when wavelet compression was applied to simulated and real data, even when over 80% of the coefficients were zeroed. While the exact level of compression will be data set dependent, for the data sets we studied, compression factors over 10 were found to be satisfactory where conventional lossless techniques achieved levels of less than 3.

  16. Analysis of spastic gait in cervical myelopathy: Linking compression ratio to spatiotemporal and pedobarographic parameters.

    Science.gov (United States)

    Nagai, Taro; Takahashi, Yasuhito; Endo, Kenji; Ikegami, Ryo; Ueno, Ryuichi; Yamamoto, Kengo

    2018-01-01

    Gait dysfunction associated with spasticity and hyperreflexia is a primary symptom in patients with compression of cervical spinal cord. The objective of this study was to link maximum compression ratio (CR) to spatiotemporal/pedobarographic parameters. Quantitative gait analysis was performed by using a pedobarograph in 75 elderly males with a wide range of cervical compression severity. CR values were characterized on T1-weighted magnetic resonance imaging (MRI). Statistical significances in gait analysis parameters (speed, cadence, stride length, step with, and toe-out angle) were evaluated among different CR groups by the non-parametric Kruskal-Wallis test followed by the Mann-Whitney U test using Bonferroni correction. The Spearman test was performed to verify correlations between CR and gait parameters. The Kruskal-Wallis test revealed significant decline in gait speed and stride length and significant increase in toe-out angle with progression of cervical compression myelopathy. The post-hoc Mann-Whitney U test showed significant differences in these parameters between the control group (0.45test revealed that CR was significantly correlated with speed, cadence, stride length, and toe-out angle. Gait speed, stride length, and toe-out angle can serve as useful indexes for evaluating progressive gait abnormality in cervical myelopathy. Our findings suggest that CR≤0.25 is associated with significantly poorer gait performance. Nevertheless, future prospective studies are needed to determine a potential benefit from decompressive surgery in such severe compression patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Magnetic anisotropies of (Ga,Mn)As films and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Frank

    2011-02-02

    In this work the magnetic anisotropies of the diluted magnetic semiconductor (Ga,Mn)As were investigated experimentally. (Ga,Mn)As films show a superposition of various magnetic anisotropies which depend sensitively on various parameters such as temperature, carrier concentration or lattice strain. However, the anisotropies of lithographically prepared (Ga,Mn)As elements differ significantly from an unpatterned (Ga,Mn)As film. In stripe-shaped structures this behaviour is caused by anisotropic relaxation of the compressive lattice strain. In order to determine the magnetic anisotropies of individual (Ga,Mn)As nanostructures a combination of ferromagnetic resonance and time-resolved scanning Kerr microscopy was employed in this thesis. In addition, local changes of the magnetic anisotropy in circular and rectangular structures were visualized by making use of spatially resolved measurements. Finally, also the influence of the laterally inhomogeneous magnetic anisotropies on the static magnetic properties, such as coercive fields, was investigated employing spatially resolved static MOKE measurements on individual (Ga,Mn)As elements. (orig.)

  18. Compressibility of the protein-water interface

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2018-06-01

    The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (˜0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ˜45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than in

  19. Compressibility of the protein-water interface.

    Science.gov (United States)

    Persson, Filip; Halle, Bertil

    2018-06-07

    The compressibility of a protein relates to its stability, flexibility, and hydrophobic interactions, but the measurement, interpretation, and computation of this important thermodynamic parameter present technical and conceptual challenges. Here, we present a theoretical analysis of protein compressibility and apply it to molecular dynamics simulations of four globular proteins. Using additively weighted Voronoi tessellation, we decompose the solution compressibility into contributions from the protein and its hydration shells. We find that positively cross-correlated protein-water volume fluctuations account for more than half of the protein compressibility that governs the protein's pressure response, while the self correlations correspond to small (∼0.7%) fluctuations of the protein volume. The self compressibility is nearly the same as for ice, whereas the total protein compressibility, including cross correlations, is ∼45% of the bulk-water value. Taking the inhomogeneous solvent density into account, we decompose the experimentally accessible protein partial compressibility into intrinsic, hydration, and molecular exchange contributions and show how they can be computed with good statistical accuracy despite the dominant bulk-water contribution. The exchange contribution describes how the protein solution responds to an applied pressure by redistributing water molecules from lower to higher density; it is negligibly small for native proteins, but potentially important for non-native states. Because the hydration shell is an open system, the conventional closed-system compressibility definitions yield a pseudo-compressibility. We define an intrinsic shell compressibility, unaffected by occupation number fluctuations, and show that it approaches the bulk-water value exponentially with a decay "length" of one shell, less than the bulk-water compressibility correlation length. In the first hydration shell, the intrinsic compressibility is 25%-30% lower than

  20. Cosmological Particle Data Compression in Practice

    Science.gov (United States)

    Zeyen, M.; Ahrens, J.; Hagen, H.; Heitmann, K.; Habib, S.

    2017-12-01

    In cosmological simulations trillions of particles are handled and several terabytes of unstructured particle data are generated in each time step. Transferring this data directly from memory to disk in an uncompressed way results in a massive load on I/O and storage systems. Hence, one goal of domain scientists is to compress the data before storing it to disk while minimizing the loss of information. To prevent reading back uncompressed data from disk, this can be done in an in-situ process. Since the simulation continuously generates data, the available time for the compression of one time step is limited. Therefore, the evaluation of compression techniques has shifted from only focusing on compression rates to include run-times and scalability.In recent years several compression techniques for cosmological data have become available. These techniques can be either lossy or lossless, depending on the technique. For both cases, this study aims to evaluate and compare the state of the art compression techniques for unstructured particle data. This study focuses on the techniques available in the Blosc framework with its multi-threading support, the XZ Utils toolkit with the LZMA algorithm that achieves high compression rates, and the widespread FPZIP and ZFP methods for lossy compressions.For the investigated compression techniques, quantitative performance indicators such as compression rates, run-time/throughput, and reconstruction errors are measured. Based on these factors, this study offers a comprehensive analysis of the individual techniques and discusses their applicability for in-situ compression. In addition, domain specific measures are evaluated on the reconstructed data sets, and the relative error rates and statistical properties are analyzed and compared. Based on this study future challenges and directions in the compression of unstructured cosmological particle data were identified.

  1. EFFECTIVENESS OF ADJUVANT USE OF POSTERIOR MANUAL COMPRESSION WITH GRADED COMPRESSION IN THE SONOGRAPHIC DIAGNOSIS OF ACUTE APPENDICITIS

    Directory of Open Access Journals (Sweden)

    Senthilnathan V

    2018-01-01

    Full Text Available BACKGROUND Diagnosing appendicitis by Graded Compression Ultrasonogram is a difficult task because of limiting factors such as operator– dependent technique, retrocaecal location of the appendix and patient obesity. Posterior manual compression technique visualizes the appendix better in the Grey-scale Ultrasonogram. The Aim of this study is to determine the accuracy of ultrasound in detecting or excluding acute appendicitis and to evaluate the usefulness of the adjuvant use of posterior manual compression technique in visualization of the appendix and in the diagnosis of acute appendicitis MATERIALS AND METHODS This prospective study involved a total of 240 patients in all age groups and both sexes. All these patients underwent USG for suspected appendicitis. Ultrasonography was performed with transverse and longitudinal graded compression sonography. If the appendix is not visualized on graded compression sonography, posterior manual compression technique was used to further improve the detection of appendix. RESULTS The vermiform appendix was visualized in 185 patients (77.1% out of 240 patients with graded compression alone. 55 out of 240 patients whose appendix could not be visualized by graded compression alone were subjected to both graded followed by posterior manual compression technique among that Appendix was visualized in 43 patients on posterior manual compression technique amounting to 78.2% of cases, Appendix could not be visualized in the remaining 12 patients (21.8% out of 55. CONCLUSION Combined method of graded compression with posterior manual compression technique is better than the graded compression technique alone in diagnostic accuracy and detection rate of the vermiform appendix.

  2. Kinetic modeling of Nernst effect in magnetized hohlraums.

    Science.gov (United States)

    Joglekar, A S; Ridgers, C P; Kingham, R J; Thomas, A G R

    2016-04-01

    We present nanosecond time-scale Vlasov-Fokker-Planck-Maxwell modeling of magnetized plasma transport and dynamics in a hohlraum with an applied external magnetic field, under conditions similar to recent experiments. Self-consistent modeling of the kinetic electron momentum equation allows for a complete treatment of the heat flow equation and Ohm's law, including Nernst advection of magnetic fields. In addition to showing the prevalence of nonlocal behavior, we demonstrate that effects such as anomalous heat flow are induced by inverse bremsstrahlung heating. We show magnetic field amplification up to a factor of 3 from Nernst compression into the hohlraum wall. The magnetic field is also expelled towards the hohlraum axis due to Nernst advection faster than frozen-in flux would suggest. Nonlocality contributes to the heat flow towards the hohlraum axis and results in an augmented Nernst advection mechanism that is included self-consistently through kinetic modeling.

  3. Interplanetary sources of magnetic storms: A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed T......-p/T-exp, together with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more...

  4. Interplanetary sources to magnetic storms - A statistical study

    DEFF Research Database (Denmark)

    Vennerstrøm, Susanne

    2001-01-01

    Magnetic storms are mainly caused by the occurrence of intense southward magnetic fields in the interplanetary medium. These fields can be formed directly either by ejection of magnetic structures from the Sun or by stream interaction processes during solar wind propagation. In the present study we...... examine 30 years of satellite measurement of the solar wind during magnetic storms, with the aim of estimating the relative importance of these two processes. We use the solar wind proton temperature relative to the temperature expected from the empirical relation to the solar wind speed Tp/Texp, together...... with the speed gradient, and the interplanetary magnetic field azimuth in the ecliptic, in order to distinguish between the two processes statistically. We find that compression due to stream interaction is at least as important as the direct effect of ejection of intense fields, and probably more so. Only...

  5. A statistical–mechanical view on source coding: physical compression and data compression

    International Nuclear Information System (INIS)

    Merhav, Neri

    2011-01-01

    We draw a certain analogy between the classical information-theoretic problem of lossy data compression (source coding) of memoryless information sources and the statistical–mechanical behavior of a certain model of a chain of connected particles (e.g. a polymer) that is subjected to a contracting force. The free energy difference pertaining to such a contraction turns out to be proportional to the rate-distortion function in the analogous data compression model, and the contracting force is proportional to the derivative of this function. Beyond the fact that this analogy may be interesting in its own right, it may provide a physical perspective on the behavior of optimum schemes for lossy data compression (and perhaps also an information-theoretic perspective on certain physical system models). Moreover, it triggers the derivation of lossy compression performance for systems with memory, using analysis tools and insights from statistical mechanics

  6. Nonlinear viscoelasticity of pre-compressed layered polymeric composite under oscillatory compression

    KAUST Repository

    Xu, Yangguang

    2018-05-03

    Describing nonlinear viscoelastic properties of polymeric composites when subjected to dynamic loading is essential for development of practical applications of such materials. An efficient and easy method to analyze nonlinear viscoelasticity remains elusive because the dynamic moduli (storage modulus and loss modulus) are not very convenient when the material falls into nonlinear viscoelastic range. In this study, we utilize two methods, Fourier transform and geometrical nonlinear analysis, to quantitatively characterize the nonlinear viscoelasticity of a pre-compressed layered polymeric composite under oscillatory compression. We discuss the influences of pre-compression, dynamic loading, and the inner structure of polymeric composite on the nonlinear viscoelasticity. Furthermore, we reveal the nonlinear viscoelastic mechanism by combining with other experimental results from quasi-static compressive tests and microstructural analysis. From a methodology standpoint, it is proved that both Fourier transform and geometrical nonlinear analysis are efficient tools for analyzing the nonlinear viscoelasticity of a layered polymeric composite. From a material standpoint, we consequently posit that the dynamic nonlinear viscoelasticity of polymeric composites with complicated inner structures can also be well characterized using these methods.

  7. Effect of compressibility on the hypervelocity penetration

    Science.gov (United States)

    Song, W. J.; Chen, X. W.; Chen, P.

    2018-02-01

    We further consider the effect of rod strength by employing the compressible penetration model to study the effect of compressibility on hypervelocity penetration. Meanwhile, we define different instances of penetration efficiency in various modified models and compare these penetration efficiencies to identify the effects of different factors in the compressible model. To systematically discuss the effect of compressibility in different metallic rod-target combinations, we construct three cases, i.e., the penetrations by the more compressible rod into the less compressible target, rod into the analogously compressible target, and the less compressible rod into the more compressible target. The effects of volumetric strain, internal energy, and strength on the penetration efficiency are analyzed simultaneously. It indicates that the compressibility of the rod and target increases the pressure at the rod/target interface. The more compressible rod/target has larger volumetric strain and higher internal energy. Both the larger volumetric strain and higher strength enhance the penetration or anti-penetration ability. On the other hand, the higher internal energy weakens the penetration or anti-penetration ability. The two trends conflict, but the volumetric strain dominates in the variation of the penetration efficiency, which would not approach the hydrodynamic limit if the rod and target are not analogously compressible. However, if the compressibility of the rod and target is analogous, it has little effect on the penetration efficiency.

  8. On-Chip Neural Data Compression Based On Compressed Sensing With Sparse Sensing Matrices.

    Science.gov (United States)

    Zhao, Wenfeng; Sun, Biao; Wu, Tong; Yang, Zhi

    2018-02-01

    On-chip neural data compression is an enabling technique for wireless neural interfaces that suffer from insufficient bandwidth and power budgets to transmit the raw data. The data compression algorithm and its implementation should be power and area efficient and functionally reliable over different datasets. Compressed sensing is an emerging technique that has been applied to compress various neurophysiological data. However, the state-of-the-art compressed sensing (CS) encoders leverage random but dense binary measurement matrices, which incur substantial implementation costs on both power and area that could offset the benefits from the reduced wireless data rate. In this paper, we propose two CS encoder designs based on sparse measurement matrices that could lead to efficient hardware implementation. Specifically, two different approaches for the construction of sparse measurement matrices, i.e., the deterministic quasi-cyclic array code (QCAC) matrix and -sparse random binary matrix [-SRBM] are exploited. We demonstrate that the proposed CS encoders lead to comparable recovery performance. And efficient VLSI architecture designs are proposed for QCAC-CS and -SRBM encoders with reduced area and total power consumption.

  9. FRESCO: Referential compression of highly similar sequences.

    Science.gov (United States)

    Wandelt, Sebastian; Leser, Ulf

    2013-01-01

    In many applications, sets of similar texts or sequences are of high importance. Prominent examples are revision histories of documents or genomic sequences. Modern high-throughput sequencing technologies are able to generate DNA sequences at an ever-increasing rate. In parallel to the decreasing experimental time and cost necessary to produce DNA sequences, computational requirements for analysis and storage of the sequences are steeply increasing. Compression is a key technology to deal with this challenge. Recently, referential compression schemes, storing only the differences between a to-be-compressed input and a known reference sequence, gained a lot of interest in this field. In this paper, we propose a general open-source framework to compress large amounts of biological sequence data called Framework for REferential Sequence COmpression (FRESCO). Our basic compression algorithm is shown to be one to two orders of magnitudes faster than comparable related work, while achieving similar compression ratios. We also propose several techniques to further increase compression ratios, while still retaining the advantage in speed: 1) selecting a good reference sequence; and 2) rewriting a reference sequence to allow for better compression. In addition,we propose a new way of further boosting the compression ratios by applying referential compression to already referentially compressed files (second-order compression). This technique allows for compression ratios way beyond state of the art, for instance,4,000:1 and higher for human genomes. We evaluate our algorithms on a large data set from three different species (more than 1,000 genomes, more than 3 TB) and on a collection of versions of Wikipedia pages. Our results show that real-time compression of highly similar sequences at high compression ratios is possible on modern hardware.

  10. Comparing biological networks via graph compression

    Directory of Open Access Journals (Sweden)

    Hayashida Morihiro

    2010-09-01

    Full Text Available Abstract Background Comparison of various kinds of biological data is one of the main problems in bioinformatics and systems biology. Data compression methods have been applied to comparison of large sequence data and protein structure data. Since it is still difficult to compare global structures of large biological networks, it is reasonable to try to apply data compression methods to comparison of biological networks. In existing compression methods, the uniqueness of compression results is not guaranteed because there is some ambiguity in selection of overlapping edges. Results This paper proposes novel efficient methods, CompressEdge and CompressVertices, for comparing large biological networks. In the proposed methods, an original network structure is compressed by iteratively contracting identical edges and sets of connected edges. Then, the similarity of two networks is measured by a compression ratio of the concatenated networks. The proposed methods are applied to comparison of metabolic networks of several organisms, H. sapiens, M. musculus, A. thaliana, D. melanogaster, C. elegans, E. coli, S. cerevisiae, and B. subtilis, and are compared with an existing method. These results suggest that our methods can efficiently measure the similarities between metabolic networks. Conclusions Our proposed algorithms, which compress node-labeled networks, are useful for measuring the similarity of large biological networks.

  11. Fixed-Rate Compressed Floating-Point Arrays.

    Science.gov (United States)

    Lindstrom, Peter

    2014-12-01

    Current compression schemes for floating-point data commonly take fixed-precision values and compress them to a variable-length bit stream, complicating memory management and random access. We present a fixed-rate, near-lossless compression scheme that maps small blocks of 4(d) values in d dimensions to a fixed, user-specified number of bits per block, thereby allowing read and write random access to compressed floating-point data at block granularity. Our approach is inspired by fixed-rate texture compression methods widely adopted in graphics hardware, but has been tailored to the high dynamic range and precision demands of scientific applications. Our compressor is based on a new, lifted, orthogonal block transform and embedded coding, allowing each per-block bit stream to be truncated at any point if desired, thus facilitating bit rate selection using a single compression scheme. To avoid compression or decompression upon every data access, we employ a software write-back cache of uncompressed blocks. Our compressor has been designed with computational simplicity and speed in mind to allow for the possibility of a hardware implementation, and uses only a small number of fixed-point arithmetic operations per compressed value. We demonstrate the viability and benefits of lossy compression in several applications, including visualization, quantitative data analysis, and numerical simulation.

  12. Magnetic fields of Jupiter and Saturn

    International Nuclear Information System (INIS)

    Ness, N.F.

    1981-01-01

    The magnetic fields of Jupiter and Saturn and the characteristics of their magnetospheres, formed by interaction with the solar wind, are discussed. The origins of both magnetic fields are associated with a dynamo process deep in the planetary interior. The Jovian magnetosphere is analogous to that of a pulsar magnetosphere: a massive central body with a rapid rotation and an associated intense magnetic field. Its most distinctive feature is its magnetodisk of concentrated plasma and particle flux, and reduced magnetic field intensity. The magnetopause near the subsolar point has been observed at radial distances ranging over 50 to 100 Jovian radii, implying a relatively compressible obstacle to solar wind flow. The composition of an embedded current sheet within the magnetic tail is believed to be influenced by volcanic eruptions and emissions from Io. Spectral troughs of the Jovian radiation belts have been interpreted as possible ring particles. The Saturnian magnetosphere appears to be more like the earth in its topology. It is mainly characterized by a dipole axis parallel to the rotational axis of the planet and a magnetic field intensity much less than expected

  13. Thermal and magnetic hysteresis associated with martensitic and magnetic phase transformations in Ni52Mn25In16Co7 Heusler alloy

    Science.gov (United States)

    Madiligama, A. S. B.; Ari-Gur, P.; Ren, Y.; Koledov, V. V.; Dilmieva, E. T.; Kamantsev, A. P.; Mashirov, A. V.; Shavrov, V. G.; Gonzalez-Legarreta, L.; Grande, B. H.

    2017-11-01

    Ni-Mn-In-Co Heusler alloys demonstrate promising magnetocaloric performance for use as refrigerants in magnetic cooling systems with the goal of replacing the lower efficiency, eco-adverse fluid-compression technology. The largest change in entropy occurs when the applied magnetic field causes a merged structural and magnetic transformation and the associated entropy changes of the two transformations works constructively. In this study, magnetic and crystalline phase transformations were each treated separately and the effects of the application of magnetic field on thermal hystereses associated with both structural and magnetic transformations of the Ni52Mn25In16Co7 were studied. From the analysis of synchrotron diffraction data and thermomagnetic measurements, it was revealed that the alloy undergoes both structural (from cubic austenite to a mixture of 7M &5M modulated martensite) and magnetic (ferromagnetic to a low-magnetization phase) phase transformations. Thermal hysteresis is associated with both transformations, and the variation of the thermal hystereses of the magnetic and structural transformations with applied magnetic field is significantly different. Because of the differences between the hystereses loops of the two transformations, they merge only upon heating under a certain magnetic field.

  14. Simple motion correction strategy reduces respiratory-induced motion artifacts for k-t accelerated and compressed-sensing cardiovascular magnetic resonance perfusion imaging.

    Science.gov (United States)

    Zhou, Ruixi; Huang, Wei; Yang, Yang; Chen, Xiao; Weller, Daniel S; Kramer, Christopher M; Kozerke, Sebastian; Salerno, Michael

    2018-02-01

    Cardiovascular magnetic resonance (CMR) stress perfusion imaging provides important diagnostic and prognostic information in coronary artery disease (CAD). Current clinical sequences have limited temporal and/or spatial resolution, and incomplete heart coverage. Techniques such as k-t principal component analysis (PCA) or k-t sparcity and low rank structure (SLR), which rely on the high degree of spatiotemporal correlation in first-pass perfusion data, can significantly accelerate image acquisition mitigating these problems. However, in the presence of respiratory motion, these techniques can suffer from significant degradation of image quality. A number of techniques based on non-rigid registration have been developed. However, to first approximation, breathing motion predominantly results in rigid motion of the heart. To this end, a simple robust motion correction strategy is proposed for k-t accelerated and compressed sensing (CS) perfusion imaging. A simple respiratory motion compensation (MC) strategy for k-t accelerated and compressed-sensing CMR perfusion imaging to selectively correct respiratory motion of the heart was implemented based on linear k-space phase shifts derived from rigid motion registration of a region-of-interest (ROI) encompassing the heart. A variable density Poisson disk acquisition strategy was used to minimize coherent aliasing in the presence of respiratory motion, and images were reconstructed using k-t PCA and k-t SLR with or without motion correction. The strategy was evaluated in a CMR-extended cardiac torso digital (XCAT) phantom and in prospectively acquired first-pass perfusion studies in 12 subjects undergoing clinically ordered CMR studies. Phantom studies were assessed using the Structural Similarity Index (SSIM) and Root Mean Square Error (RMSE). In patient studies, image quality was scored in a blinded fashion by two experienced cardiologists. In the phantom experiments, images reconstructed with the MC strategy had higher

  15. JPEG and wavelet compression of ophthalmic images

    Science.gov (United States)

    Eikelboom, Robert H.; Yogesan, Kanagasingam; Constable, Ian J.; Barry, Christopher J.

    1999-05-01

    This study was designed to determine the degree and methods of digital image compression to produce ophthalmic imags of sufficient quality for transmission and diagnosis. The photographs of 15 subjects, which inclined eyes with normal, subtle and distinct pathologies, were digitized to produce 1.54MB images and compressed to five different methods: (i) objectively by calculating the RMS error between the uncompressed and compressed images, (ii) semi-subjectively by assessing the visibility of blood vessels, and (iii) subjectively by asking a number of experienced observers to assess the images for quality and clinical interpretation. Results showed that as a function of compressed image size, wavelet compressed images produced less RMS error than JPEG compressed images. Blood vessel branching could be observed to a greater extent after Wavelet compression compared to JPEG compression produced better images then a JPEG compression for a given image size. Overall, it was shown that images had to be compressed to below 2.5 percent for JPEG and 1.7 percent for Wavelet compression before fine detail was lost, or when image quality was too poor to make a reliable diagnosis.

  16. Charge-exchange and fusion reaction measurements during compression experiments with neutral beam heating in the Tokamak Fusion Test Reactor

    International Nuclear Information System (INIS)

    Kaita, R.; Heidbrink, W.W.; Hammett, G.W.

    1986-04-01

    Adiabatic toroidal compression experiments were performed in conjunction with high power neutral beam injection in the Tokamak Fusion Test Reactor (TFTR). Acceleration of beam ions to energies nearly twice the injection energy was measured with a charge-exchange neutral particle analyzer. Measurements were also made of 2.5 MeV neutrons and 15 MeV protons produced in fusion reactions between the deuterium beam ions and the thermal deuterium and 3 He ions, respectively. When the plasma was compressed, the d(d,n) 3 He fusion reaction rate increased a factor of five, and the 3 He(d,p) 4 He rate by a factor of twenty. These data were simulated with a bounce-averaged Fokker-Planck program, which assumed conservation of angular momentum and magnetic moment during compression. The results indicate that the beam ion acceleration was consistent with adiabatic scaling

  17. Instabilities responsible for magnetic turbulence in laboratory rotating plasma

    International Nuclear Information System (INIS)

    Mikhailovskii, A.B.; Lominadze, J.G.; Churikov, A.P.; Erokhin, N.N.; Pustovitov, V.D.; Konovalov, S.V.

    2008-01-01

    Instabilities responsible for magnetic turbulence in laboratory rotating plasma are investigated. It is shown that the plasma compressibility gives a new driving mechanism in addition to the known Velikhov effect due to the negative rotation frequency gradient. This new mechanism is related to the perpendicular plasma pressure gradient, while the density gradient gives an additional drive depending also on the pressure gradient. It is shown that these new effects can manifest themselves even in the absence of the equilibrium magnetic field, which corresponds to nonmagnetic instabilities

  18. Double-compression method for biomedical images

    Science.gov (United States)

    Antonenko, Yevhenii A.; Mustetsov, Timofey N.; Hamdi, Rami R.; Małecka-Massalska, Teresa; Orshubekov, Nurbek; DzierŻak, RóŻa; Uvaysova, Svetlana

    2017-08-01

    This paper describes a double compression method (DCM) of biomedical images. A comparison of image compression factors in size JPEG, PNG and developed DCM was carried out. The main purpose of the DCM - compression of medical images while maintaining the key points that carry diagnostic information. To estimate the minimum compression factor an analysis of the coding of random noise image is presented.

  19. Glossopharyngeal neuralgia secondary to vascular compression in a patient with multiple sclerosis: a case report

    Directory of Open Access Journals (Sweden)

    Gaitour Emil

    2012-07-01

    Full Text Available Abstract Introduction Glossopharyngeal neuralgia is an uncommon, painful syndrome, characterized by paroxysms of pain in the sensory distribution of the 9th cranial nerve. Idiopathic glossopharyngeal neuralgia may be due to compression of the glossopharyngeal nerve by adjacent vessels, while secondary glossopharyngeal neuralgia is associated with identifiable lesions affecting the glossopharyngeal nerve at different levels of its neuroanatomic pathway. Glossopharyngeal neuralgia is rare in the general population, but is more common in patients with multiple sclerosis. Case presentation A 56-year-old Caucasian woman with multiple sclerosis and migraine presented to our facility with intermittent lancinating pain to the right of her throat, tongue, and the floor of her mouth that had been occurring for the past year. The pain was intense, sharp, and stabbing, which lasted two to six seconds with radiation to the right ear. Initially, the attacks were infrequent, however, they had become more intense and frequent over time. Our patient reported weight loss, headache, painful swallowing, and the inability to maintain sleep due to painful attacks. A neurological examination revealed a right-handed woman with trigger points in the back of the tongue and throat on the right side. She also had dysphagia, hoarseness, and pain in the distribution of the right glossopharyngeal nerve. Mild right hemiparesis, hyperreflexia, dysmetria, and an ataxic gait were present. A magnetic resonance imaging scan of the brain was consistent with multiple sclerosis and magnetic resonance angiography demonstrated a loop of the posterior inferior cerebellar artery compressing the right glossopharyngeal nerve. She responded satisfactorily to carbamazepine. Microvascular decompression and Gamma Knife® radiosurgery were discussed in case of failure of the medical treatment; however, she declined these options. Conclusions Glossopharyngeal neuralgia in multiple sclerosis may

  20. Effect of magnetic field on ablatively driven Richtmyer-Meshkov instability induced by interfacial nonlinear structure

    International Nuclear Information System (INIS)

    Labakanta Mandal; Banerjee, R.; Roy, S.; Khan, M.; Gupta, M.R.

    2010-01-01

    Complete text of publication follows. In an Inertial Confinement Fusion (ICF) situation, laser driven ablation front of an imploding capsule is subjected to the fluid instabilities like Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM) and Kelvin-Helmholtz (KH) instability. In this case dense core is compressed and accelerated by low density ablating plasma. During this process laser driven shocks interact the interface and hence it becomes unstable due to the formation of nonlinear structure like bubble and spike. The nonlinear structure is called bubble if the lighter fluid pushes inside the heavier fluid and spike, if opposite takes place. R-M instability causes non-uniform compression of ICF fuel pellets and needs to be mitigated. Scientists and researchers are much more interested on RM instability both from theoretical and experimental points of view. In this article, we have presented the analytical expression for the growth rate and velocity for the nonlinear structures due to the effect of magnetic field of fluid using potential flow model. The magnetic field is assumed to be parallel to the plane of two fluid interfaces. If the magnetic field is restricted only to either side of interface the R-M instability can be stabilized or destabilized depending on whether the magnetic pressure on the interface opposes the instability driving shock pressure or acts in the same direction. An interesting result is that if both the fluids are magnetized, interface as well as velocity of bubble and spike will show oscillating stabilization and R-M instability is mitigated. All analytical results are also supported by numerical results. Numerically it is seen that magnetic field above certain minimum value reduces the instability for compression the target in ICF.

  1. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix; Gregson, James; Wetzstein, Gordon; Raskar, Ramesh; Heidrich, Wolfgang

    2014-01-01

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  2. A Compressive Superresolution Display

    KAUST Repository

    Heide, Felix

    2014-06-22

    In this paper, we introduce a new compressive display architecture for superresolution image presentation that exploits co-design of the optical device configuration and compressive computation. Our display allows for superresolution, HDR, or glasses-free 3D presentation.

  3. Magnetic domain pattern asymmetry in (Ga, Mn)As/(Ga,In)As with in-plane anisotropy

    Science.gov (United States)

    Herrera Diez, L.; Rapp, C.; Schoch, W.; Limmer, W.; Gourdon, C.; Jeudy, V.; Honolka, J.; Kern, K.

    2012-04-01

    Appropriate adjustment of the tensile strain in (Ga, Mn)As/(Ga,In)As films allows for the coexistence of in-plane magnetic anisotropy, typical of compressively strained (Ga, Mn)As/GaAs films, and the so-called cross-hatch dislocation pattern seeded at the (Ga,In)As/GaAs interface. Kerr microscopy reveals a close correlation between the in-plane magnetic domain and dislocation patterns, absent in compressively strained materials. Moreover, the magnetic domain pattern presents a strong asymmetry in the size and number of domains for applied fields along the easy [11¯0] and hard [110] directions which is attributed to different domain wall nucleation/propagation energies. This strong influence of the dislocation lines in the domain wall propagation/nucleation provides a lithography-free route to the effective trapping of domain walls in magneto-transport devices based on (Ga, Mn)As with in-plane anisotropy.

  4. Compression evaluation of surgery video recordings retaining diagnostic credibility (compression evaluation of surgery video)

    Science.gov (United States)

    Duplaga, M.; Leszczuk, M. I.; Papir, Z.; Przelaskowski, A.

    2008-12-01

    Wider dissemination of medical digital video libraries is affected by two correlated factors, resource effective content compression that directly influences its diagnostic credibility. It has been proved that it is possible to meet these contradictory requirements halfway for long-lasting and low motion surgery recordings at compression ratios close to 100 (bronchoscopic procedures were a case study investigated). As the main supporting assumption, it has been accepted that the content can be compressed as far as clinicians are not able to sense a loss of video diagnostic fidelity (a visually lossless compression). Different market codecs were inspected by means of the combined subjective and objective tests toward their usability in medical video libraries. Subjective tests involved a panel of clinicians who had to classify compressed bronchoscopic video content according to its quality under the bubble sort algorithm. For objective tests, two metrics (hybrid vector measure and hosaka Plots) were calculated frame by frame and averaged over a whole sequence.

  5. Materials for room temperature magnetic refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Rosendahl Hansen, B.

    2010-07-15

    Magnetic refrigeration is a cooling method, which holds the promise of being cleaner and more efficient than conventional vapor-compression cooling. Much research has been done during the last two decades on various magnetic materials for this purpose and today a number of materials are considered candidates as they fulfill many of the requirements for a magnetic refrigerant. However, no one material stands out and the field is still active with improving the known materials and in the search for a better one. Magnetic cooling is based on the magnetocaloric effect, which causes a magnetic material to change its temperature when a magnetic field is applied or removed. For room temperature cooling, one utilizes that the magnetocaloric effect peaks near magnetic phase transitions and so the materials of interest all have a critical temperature within the range of 250 - 310 K. A magnetic refrigerant should fulfill a number of criteria, among these a large magnetic entropy change, a large adiabatic temperature change, preferably little to no thermal or magnetic hysteresis and the material should have the stability required for long term use. As the temperature range required for room temperature cooling is some 40 - 50 K, the magnetic refrigerant should also be able to cover this temperature span either by exhibiting a very broad peak in magnetocaloric effect or by providing the opportunity for creating a materials series with varying transition temperatures. (Author)

  6. Context-Aware Image Compression.

    Directory of Open Access Journals (Sweden)

    Jacky C K Chan

    Full Text Available We describe a physics-based data compression method inspired by the photonic time stretch wherein information-rich portions of the data are dilated in a process that emulates the effect of group velocity dispersion on temporal signals. With this coding operation, the data can be downsampled at a lower rate than without it. In contrast to previous implementation of the warped stretch compression, here the decoding can be performed without the need of phase recovery. We present rate-distortion analysis and show improvement in PSNR compared to compression via uniform downsampling.

  7. Compressive Sensing in Communication Systems

    DEFF Research Database (Denmark)

    Fyhn, Karsten

    2013-01-01

    . The need for cheaper, smarter and more energy efficient wireless devices is greater now than ever. This thesis addresses this problem and concerns the application of the recently developed sampling theory of compressive sensing in communication systems. Compressive sensing is the merging of signal...... acquisition and compression. It allows for sampling a signal with a rate below the bound dictated by the celebrated Shannon-Nyquist sampling theorem. In some communication systems this necessary minimum sample rate, dictated by the Shannon-Nyquist sampling theorem, is so high it is at the limit of what...... with using compressive sensing in communication systems. The main contribution of this thesis is two-fold: 1) a new compressive sensing hardware structure for spread spectrum signals, which is simpler than the current state-of-the-art, and 2) a range of algorithms for parameter estimation for the class...

  8. Numerical modeling of accelerated, pre-compressed CTs in RACE

    International Nuclear Information System (INIS)

    Eddleman, J.L.; Hammer, J.H.; Hartman, C.W.; Logan, B.G.; McLean, H.S.; Molvik, A.W.

    1990-01-01

    Numerical modeling of accelerated compact toroids in the RACE experiment has motivated the development and application of a wide range of computational tools. These tools have included the zero-dimensional RAC code for fast parameter and design studies, and the two-dimensional, Eulerian, axisymmetric, magneto-hydrodynamic code, HAM, used to model plasma ring formation in magnetized plasma guns and acceleration in straight cylindrical electrodes. Extension of the RACE geometry to include converging conical electrodes motivated the development of a new two-dimensional, Lagrangian, axisymmetric, magnetohydrodynamic code, TRAC. The code includes optional initialization of the ring magnetic fields to a Taylor-equilibrium profile as well as self-consistent external capacitor bank driving circuit. Stability of initial field configurations with toroidal mode number > 0 may also be determined. The new code is particularly suited for predicting the behavior of accelerated plasma rings in arbitrarily shaped conical electrodes, since the restriction to a rectilinear mesh is removed. In particular, application of the code to the new pre-compression geometry in the RACE experiment is discussed and compared with experimental results

  9. Building indifferentiable compression functions from the PGV compression functions

    DEFF Research Database (Denmark)

    Gauravaram, P.; Bagheri, Nasour; Knudsen, Lars Ramkilde

    2016-01-01

    Preneel, Govaerts and Vandewalle (PGV) analysed the security of single-block-length block cipher based compression functions assuming that the underlying block cipher has no weaknesses. They showed that 12 out of 64 possible compression functions are collision and (second) preimage resistant. Black......, Rogaway and Shrimpton formally proved this result in the ideal cipher model. However, in the indifferentiability security framework introduced by Maurer, Renner and Holenstein, all these 12 schemes are easily differentiable from a fixed input-length random oracle (FIL-RO) even when their underlying block...

  10. CEPRAM: Compression for Endurance in PCM RAM

    OpenAIRE

    González Alberquilla, Rodrigo; Castro Rodríguez, Fernando; Piñuel Moreno, Luis; Tirado Fernández, Francisco

    2017-01-01

    We deal with the endurance problem of Phase Change Memories (PCM) by proposing Compression for Endurance in PCM RAM (CEPRAM), a technique to elongate the lifespan of PCM-based main memory through compression. We introduce a total of three compression schemes based on already existent schemes, but targeting compression for PCM-based systems. We do a two-level evaluation. First, we quantify the performance of the compression, in terms of compressed size, bit-flips and how they are affected by e...

  11. Evaluation of a new image compression technique

    International Nuclear Information System (INIS)

    Algra, P.R.; Kroon, H.M.; Noordveld, R.B.; DeValk, J.P.J.; Seeley, G.W.; Westerink, P.H.

    1988-01-01

    The authors present the evaluation of a new image compression technique, subband coding using vector quantization, on 44 CT examinations of the upper abdomen. Three independent radiologists reviewed the original images and compressed versions. The compression ratios used were 16:1 and 20:1. Receiver operating characteristic analysis showed no difference in the diagnostic contents between originals and their compressed versions. Subjective visibility of anatomic structures was equal. Except for a few 20:1 compressed images, the observers could not distinguish compressed versions from original images. They conclude that subband coding using vector quantization is a valuable method for data compression in CT scans of the abdomen

  12. The Distinction of Hot Herbal Compress, Hot Compress, and Topical Diclofenac as Myofascial Pain Syndrome Treatment.

    Science.gov (United States)

    Boonruab, Jurairat; Nimpitakpong, Netraya; Damjuti, Watchara

    2018-01-01

    This randomized controlled trial aimed to investigate the distinctness after treatment among hot herbal compress, hot compress, and topical diclofenac. The registrants were equally divided into groups and received the different treatments including hot herbal compress, hot compress, and topical diclofenac group, which served as the control group. After treatment courses, Visual Analog Scale and 36-Item Short Form Health survey were, respectively, used to establish the level of pain intensity and quality of life. In addition, cervical range of motion and pressure pain threshold were also examined to identify the motional effects. All treatments showed significantly decreased level of pain intensity and increased cervical range of motion, while the intervention groups exhibited extraordinary capability compared with the topical diclofenac group in pressure pain threshold and quality of life. In summary, hot herbal compress holds promise to be an efficacious treatment parallel to hot compress and topical diclofenac.

  13. Magnetically Attached Multifunction Maintenance Rover

    Science.gov (United States)

    Bar-Cohen, Yoseph; Joffe, Benjamin

    2005-01-01

    A versatile mobile telerobot, denoted the magnetically attached multifunction maintenance rover (MAGMER), has been proposed for use in the inspection and maintenance of the surfaces of ships, tanks containing petrochemicals, and other large ferromagnetic structures. As its name suggests, this robot would utilize magnetic attraction to adhere to a structure. As it moved along the surface of the structure, the MAGMER would perform tasks that could include close-up visual inspection by use of video cameras, various sensors, and/or removal of paint by water-jet blasting, laser heating, or induction heating. The water-jet nozzles would be mounted coaxially within compressed-air-powered venturi nozzles that would collect the paint debris dislodged by the jets. The MAGMER would be deployed, powered, and controlled from a truck, to which it would be connected by hoses for water, compressed air, and collection of debris and by cables for electric power and communication (see Figure 1). The operation of the MAGMER on a typical large structure would necessitate the use of long cables and hoses, which can be heavy. To reduce the load of the hoses and cables on the MAGMER and thereby ensure its ability to adhere to vertical and overhanging surfaces, the hoses and cables would be paid out through telescopic booms that would be parts of a MAGMER support system. The MAGMER would move by use of four motorized, steerable wheels, each of which would be mounted in an assembly that would include permanent magnets and four pole pieces (see Figure 2). The wheels would protrude from between the pole pieces by only about 3 mm, so that the gap between the pole pieces and the ferromagnetic surface would be just large enough to permit motion along the surface but not so large as to reduce the magnetic attraction excessively. In addition to the wheel assemblies, the MAGMER would include magnetic adherence enhancement fixtures, which would comprise arrays of permanent magnets and pole pieces

  14. Compression of the digitized X-ray images

    International Nuclear Information System (INIS)

    Terae, Satoshi; Miyasaka, Kazuo; Fujita, Nobuyuki; Takamura, Akio; Irie, Goro; Inamura, Kiyonari.

    1987-01-01

    Medical images are using an increased amount of space in the hospitals, while they are not accessed easily. Thus, suitable data filing system and precise data compression will be necessitated. Image quality was evaluated before and after image data compression, using local filing system (MediFile 1000, NEC Co.) and forty-seven modes of compression parameter. For this study X-ray images of 10 plain radiographs and 7 contrast examinations were digitized using a film reader of CCD sensor in MediFile 1000. Those images were compressed into forty-seven kinds of image data to save in an optical disc and then the compressed images were reconstructed. Each reconstructed image was compared with non-compressed images in respect to several regions of our interest by four radiologists. Compression and extension of radiological images were promptly made by employing the local filing system. Image quality was much more affected by the ratio of data compression than by the mode of parameter itself. In another word, the higher compression ratio became, the worse the image quality were. However, image quality was not significantly degraded until the compression ratio was about 15: 1 on plain radiographs and about 8: 1 on contrast studies. Image compression by this technique will be admitted by diagnostic radiology. (author)

  15. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  16. Synthesis and characterization of CoFe{sub 2}O{sub 4} magnetic nanotubes, nanorods and nanowires. Formation of magnetic structured elastomers by magnetic field-induced alignment of CoFe{sub 2}O{sub 4} nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Antonel, P. Soledad [Universidad de Buenos Aires, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE) (Argentina); Oliveira, Cristiano L. P. [Universidade de São Paulo, Grupo de Fluidos Complexos, Instituto de Física (Brazil); Jorge, Guillermo A. [Universidad Nacional de General Sarmiento, Instituto de Ciencias (Argentina); Perez, Oscar E. [Universidad de Buenos Aires, Departamento de Industrias, Facultad de Ciencias Exactas y Naturales (Argentina); Leyva, A. Gabriela, E-mail: leyva@tandar.cnea.gov.ar [Universidad Nacional de San Martín, Grupo de Materia Condensada, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica (Argentina); Escuela de Ciencia y Tecnología (Argentina); Negri, R. Martín, E-mail: rmn@qi.fcen.uba.ar [Universidad de Buenos Aires, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Instituto de Química Física de Materiales, Ambiente y Energía (INQUIMAE) (Argentina)

    2015-07-15

    Magnetic CoFe{sub 2}O{sub 4} nanotubes, nanorods and nanowires were synthesized by the template method. The materials are highly crystalline and formed by compactly packed ceramic particles whose equivalent size diameter depends on the nanostructure type. Nanotubes and nanorods present the remarkable characteristic of having very large coercive fields (1000–1100 Oe) in comparison with nanoparticles of the same crystallite size (400 Oe) while keeping similar saturation magnetization (53–55 emu/g). Nanorods were used as filler material in polydimethylsiloxane elastomer composites, which were structured by curing in the presence of uniform magnetic field, H{sub curing}. In that way the nanorods agglomerate in the cured elastomer, forming needles-like structures (pseudo-chains) oriented in the direction of H{sub curing}. SEM analysis show that pseudo-chains are formed by bunches of nanorods oriented in that direction. At the considered filler concentration (1 % w/w), the structured elastomers conserve the magnetic properties of the fillers, that is, high coercive fields without observing magnetic anisotropy. The elastomer composites present strong elastic anisotropy, with compression constants about ten times larger in the direction parallel to the pseudo-chains than in the perpendicular direction, as determined by compression stress–strain curves. That anisotropic factor is about three-four times higher than that observed when using spherical CoFe{sub 2}O{sub 4} nanoparticles or elongated Ni nanochains. Hence, the use of morphological anisotropic structures (nanorods) results in composites with enhanced elastic anisotropy. It is also remarkable that the large elastic anisotropy was obtained at lower filler concentration compared with the above-mentioned systems (1 % w/w vs. 5–10 % w/w)

  17. Role of magnetic flux perturbations in confinement bifurcations in TUMAN-3M

    International Nuclear Information System (INIS)

    Lebedev, S.V.; Andreiko, M.V.; Askinazi, L.G.

    2003-01-01

    Poloidal magnetic flux variations in the small tokamak TUMAN-3M allowed observation of transitions between different confinement modes. The possibility of switching on/off the ohmic H-mode by edge poloidal magnetic flux perturbations has been found. The flux perturbations were created by fast current ramp up/down or by magnetic compression/decompression produced by fast increase/decrease in the toroidal magnetic field. It was found that positive flux perturbations (current ramp-up and magnetic compression scenarios) are useful means of H-mode triggering. If a negative flux perturbation (current ramp-down or magnetic decompression) is applied, the H-mode terminated. Various mechanisms involved in the L-H and H-L transition physics in the flux perturbation experiments were analyzed. The experimental observations of the transitions between confinement modes might be understood in terms of the model of a sheared radial electric field generation, which takes into account the electron Ware drift in a perturbed longitudinal electric field. Another scenario of improved confinement was observed in the initial phase of an ohmic discharge, when change in the poloidal flux is associated with current ramp-up. Variation of the rates of current ramp-up and working gas puffing in the beginning of a discharge resulted in a fast increase in the electron temperature near the axis. The increase correlates with low m/n MHD mode growth. The observed core electron confinement improvement is apparently connected with the rate of current ramp. Deviation from the optimal rate results in disappearance of the improvement. The role of magnetic shear profile and rational magnetic surfaces in the core electron confinement improvement in the initial phase of ohmic discharges is discussed. (author)

  18. 3-D branching of magnetic domains on compressed si-fe steel with goss texture

    Czech Academy of Sciences Publication Activity Database

    Perevertov, Oleksiy; Schaefer, R.; Stupakov, Oleksandr

    2014-01-01

    Roč. 50, č. 11 (2014), s. 2007804 ISSN 0018-9464 R&D Projects: GA ČR GB14-36566G; GA ČR GA13-18993S Institutional support: RVO:68378271 Keywords : grain-oriented silicon steel * Kerr microscopy * magnetic domains * stress Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  19. Development and assessment of compression technique for medical images using neural network. I. Assessment of lossless compression

    International Nuclear Information System (INIS)

    Fukatsu, Hiroshi

    2007-01-01

    This paper describes assessment of the lossless compression of a new efficient compression technique (JIS system) using neural network that the author and co-workers have recently developed. At first, theory is explained for encoding and decoding the data. Assessment is done on 55 images each of chest digital roentgenography, digital mammography, 64-row multi-slice CT, 1.5 Tesla MRI, positron emission tomography (PET) and digital subtraction angiography, which are lossless-compressed by the present JIS system to see the compression rate and loss. For comparison, those data are also JPEG lossless-compressed. Personal computer (PC) is an Apple MacBook Pro with configuration of Boot Camp for Windows environment. The present JIS system is found to have a more than 4 times higher efficiency than the usual compressions which compressing the file volume to only 1/11 in average, and thus to be importantly responsible to the increasing medical imaging data. (R.T.)

  20. Quantitative Inspection of Remanence of Broken Wire Rope Based on Compressed Sensing.

    Science.gov (United States)

    Zhang, Juwei; Tan, Xiaojiang

    2016-08-25

    Most traditional strong magnetic inspection equipment has disadvantages such as big excitation devices, high weight, low detection precision, and inconvenient operation. This paper presents the design of a giant magneto-resistance (GMR) sensor array collection system. The remanence signal is collected to acquire two-dimensional magnetic flux leakage (MFL) data on the surface of wire ropes. Through the use of compressed sensing wavelet filtering (CSWF), the image expression of wire ropes MFL on the surface was obtained. Then this was taken as the input of the designed back propagation (BP) neural network to extract three kinds of MFL image geometry features and seven invariant moments of defect images. Good results were obtained. The experimental results show that nondestructive inspection through the use of remanence has higher accuracy and reliability compared with traditional inspection devices, along with smaller volume, lighter weight and higher precision.

  1. A comparative experimental study on engine operating on premixed charge compression ignition and compression ignition mode

    Directory of Open Access Journals (Sweden)

    Bhiogade Girish E.

    2017-01-01

    Full Text Available New combustion concepts have been recently developed with the purpose to tackle the problem of high emissions level of traditional direct injection Diesel engines. A good example is the premixed charge compression ignition combustion. A strategy in which early injection is used causing a burning process in which the fuel burns in the premixed condition. In compression ignition engines, soot (particulate matter and NOx emissions are an extremely unsolved issue. Premixed charge compression ignition is one of the most promising solutions that combine the advantages of both spark ignition and compression ignition combustion modes. It gives thermal efficiency close to the compression ignition engines and resolves the associated issues of high NOx and particulate matter, simultaneously. Premixing of air and fuel preparation is the challenging part to achieve premixed charge compression ignition combustion. In the present experimental study a diesel vaporizer is used to achieve premixed charge compression ignition combustion. A vaporized diesel fuel was mixed with the air to form premixed charge and inducted into the cylinder during the intake stroke. Low diesel volatility remains the main obstacle in preparing premixed air-fuel mixture. Exhaust gas re-circulation can be used to control the rate of heat release. The objective of this study is to reduce exhaust emission levels with maintaining thermal efficiency close to compression ignition engine.

  2. Pulsed Compression Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Roestenberg, T. [University of Twente, Enschede (Netherlands)

    2012-06-07

    The advantages of the Pulsed Compression Reactor (PCR) over the internal combustion engine-type chemical reactors are briefly discussed. Over the last four years a project concerning the fundamentals of the PCR technology has been performed by the University of Twente, Enschede, Netherlands. In order to assess the feasibility of the application of the PCR principle for the conversion methane to syngas, several fundamental questions needed to be answered. Two important questions that relate to the applicability of the PCR for any process are: how large is the heat transfer rate from a rapidly compressed and expanded volume of gas, and how does this heat transfer rate compare to energy contained in the compressed gas? And: can stable operation with a completely free piston as it is intended with the PCR be achieved?.

  3. Modeling of Hybrid Permanent Magnetic-Gas Bearings

    DEFF Research Database (Denmark)

    Morosi, Stefano; Santos, Ilmar

    2009-01-01

    Modern turbomachinery applications require nowadays ever-growing rotational speeds and high degree of reliability. It then becomes natural to focus the attention of the research to contact-free bearings elements. The present alternatives focus on gas lubricated journal bearings or magnetic bearings....... In the present paper, a detailed mathematical modeling of the gas bearing based on the compressible form of the Reynolds equation is presented. Perturbation theory is applied in order to identify the dynamic characteristic of the bearing. Due to the simple design of the magnetic bearings elements - being...... the rotor equilibrium position can be made independent on the rotational speed and applied load; it becomes function of the passive magnetic bearing offset. By adjusting the offset it is possible to significantly influence the dynamic coefficients of the hybrid bearing....

  4. Hydromagnetic thermosolutal instability of compressible walters' (model B' rotating fluid permeated with suspended particles in porous medium

    Directory of Open Access Journals (Sweden)

    G Rana

    2016-09-01

    Full Text Available The thermosolutal instability of compressible Walters' (model B' elastico-viscous rotating fluid permeated with suspended particles (fine dust in the presence of vertical magnetic field in porous medium is considered. By applying normal mode analysis method, the dispersion relation has been derived and solved analytically. It is observed that the rotation, magnetic field, suspended particles and viscoelasticity introduce oscillatory modes. For stationary convection the Walters' (model B' fluid behaves like an ordinary Newtonian fluid and it is observed that the rotation and stable solute gradient has stabilizing effects and suspended particles are found to have destabilizing effect on the system, whereas the medium permeability has stabilizing or destabilizing effect on the system under certain conditions. The magnetic field has destabilizing effect in the absence of rotation, whereas in the presence of rotation, magnetic field has stabilizing or destabilizing effect under certain conditions.

  5. Accurate feedback of chest compression depth on a manikin on a soft surface with correction for total body displacement

    NARCIS (Netherlands)

    Beesems, Stefanie G.; Koster, Rudolph W.

    2014-01-01

    TrueCPR is a new real-time compression depth feedback device that measures changes in magnetic field strength between a back pad and a chest pad. We determined its accuracy with a manikin on a test bench and on various surfaces. First, calibration and accuracy of the manikin and TrueCPR was verified

  6. Magnetically Assisted Fast Ignition

    OpenAIRE

    Wang, W.-M.; Gibbon, P.; Sheng, Z.-M.; Li, Y.-T.

    2015-01-01

    Fast ignition (FI) is investigated via integrated particle-in-cell simulation including both generation andtransport of fast electrons, where petawatt ignition lasers of 2 ps and compressed targets of a peak density of300 g cm−3 and areal density of 0.49 g cm−2 at the core are taken. When a 20 MG static magnetic field isimposed across a conventional cone-free target, the energy coupling from the laser to the core is enhancedby sevenfold and reaches 14%. This value even exceeds that obtained u...

  7. Compressing Data Cube in Parallel OLAP Systems

    Directory of Open Access Journals (Sweden)

    Frank Dehne

    2007-03-01

    Full Text Available This paper proposes an efficient algorithm to compress the cubes in the progress of the parallel data cube generation. This low overhead compression mechanism provides block-by-block and record-by-record compression by using tuple difference coding techniques, thereby maximizing the compression ratio and minimizing the decompression penalty at run-time. The experimental results demonstrate that the typical compression ratio is about 30:1 without sacrificing running time. This paper also demonstrates that the compression method is suitable for Hilbert Space Filling Curve, a mechanism widely used in multi-dimensional indexing.

  8. Composite Techniques Based Color Image Compression

    Directory of Open Access Journals (Sweden)

    Zainab Ibrahim Abood

    2017-03-01

    Full Text Available Compression for color image is now necessary for transmission and storage in the data bases since the color gives a pleasing nature and natural for any object, so three composite techniques based color image compression is implemented to achieve image with high compression, no loss in original image, better performance and good image quality. These techniques are composite stationary wavelet technique (S, composite wavelet technique (W and composite multi-wavelet technique (M. For the high energy sub-band of the 3rd level of each composite transform in each composite technique, the compression parameters are calculated. The best composite transform among the 27 types is the three levels of multi-wavelet transform (MMM in M technique which has the highest values of energy (En and compression ratio (CR and least values of bit per pixel (bpp, time (T and rate distortion R(D. Also the values of the compression parameters of the color image are nearly the same as the average values of the compression parameters of the three bands of the same image.

  9. Atomic effect algebras with compression bases

    International Nuclear Information System (INIS)

    Caragheorgheopol, Dan; Tkadlec, Josef

    2011-01-01

    Compression base effect algebras were recently introduced by Gudder [Demonstr. Math. 39, 43 (2006)]. They generalize sequential effect algebras [Rep. Math. Phys. 49, 87 (2002)] and compressible effect algebras [Rep. Math. Phys. 54, 93 (2004)]. The present paper focuses on atomic compression base effect algebras and the consequences of atoms being foci (so-called projections) of the compressions in the compression base. Part of our work generalizes results obtained in atomic sequential effect algebras by Tkadlec [Int. J. Theor. Phys. 47, 185 (2008)]. The notion of projection-atomicity is introduced and studied, and several conditions that force a compression base effect algebra or the set of its projections to be Boolean are found. Finally, we apply some of these results to sequential effect algebras and strengthen a previously established result concerning a sufficient condition for them to be Boolean.

  10. Speech Data Compression using Vector Quantization

    OpenAIRE

    H. B. Kekre; Tanuja K. Sarode

    2008-01-01

    Mostly transforms are used for speech data compressions which are lossy algorithms. Such algorithms are tolerable for speech data compression since the loss in quality is not perceived by the human ear. However the vector quantization (VQ) has a potential to give more data compression maintaining the same quality. In this paper we propose speech data compression algorithm using vector quantization technique. We have used VQ algorithms LBG, KPE and FCG. The results table s...

  11. Advances in compressible turbulent mixing

    International Nuclear Information System (INIS)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately

  12. Advances in compressible turbulent mixing

    Energy Technology Data Exchange (ETDEWEB)

    Dannevik, W.P.; Buckingham, A.C.; Leith, C.E. [eds.

    1992-01-01

    This volume includes some recent additions to original material prepared for the Princeton International Workshop on the Physics of Compressible Turbulent Mixing, held in 1988. Workshop participants were asked to emphasize the physics of the compressible mixing process rather than measurement techniques or computational methods. Actual experimental results and their meaning were given precedence over discussions of new diagnostic developments. Theoretical interpretations and understanding were stressed rather than the exposition of new analytical model developments or advances in numerical procedures. By design, compressibility influences on turbulent mixing were discussed--almost exclusively--from the perspective of supersonic flow field studies. The papers are arranged in three topical categories: Foundations, Vortical Domination, and Strongly Coupled Compressibility. The Foundations category is a collection of seminal studies that connect current study in compressible turbulent mixing with compressible, high-speed turbulent flow research that almost vanished about two decades ago. A number of contributions are included on flow instability initiation, evolution, and transition between the states of unstable flow onset through those descriptive of fully developed turbulence. The Vortical Domination category includes theoretical and experimental studies of coherent structures, vortex pairing, vortex-dynamics-influenced pressure focusing. In the Strongly Coupled Compressibility category the organizers included the high-speed turbulent flow investigations in which the interaction of shock waves could be considered an important source for production of new turbulence or for the enhancement of pre-existing turbulence. Individual papers are processed separately.

  13. Study of CSR longitudinal bunch compression cavity

    International Nuclear Information System (INIS)

    Yin Dayu; Li Peng; Liu Yong; Xie Qingchun

    2009-01-01

    The scheme of longitudinal bunch compression cavity for the Cooling Storage Ring (CSR)is an important issue. Plasma physics experiments require high density heavy ion beam and short pulsed bunch,which can be produced by non-adiabatic compression of bunch implemented by a fast compression with 90 degree rotation in the longitudinal phase space. The phase space rotation in fast compression is initiated by a fast jump of the RF-voltage amplitude. For this purpose, the CSR longitudinal bunch compression cavity, loaded with FINEMET-FT-1M is studied and simulated with MAFIA code. In this paper, the CSR longitudinal bunch compression cavity is simulated and the initial bunch length of 238 U 72+ with 250 MeV/u will be compressed from 200 ns to 50 ns.The construction and RF properties of the CSR longitudinal bunch compression cavity are simulated and calculated also with MAFIA code. The operation frequency of the cavity is 1.15 MHz with peak voltage of 80 kV, and the cavity can be used to compress heavy ions in the CSR. (authors)

  14. Epidural fat image in lumbar magnetic resonance image

    International Nuclear Information System (INIS)

    Nishijima, Yuichiro; Yamasaki, Yasuo; Higashida, Norihiko; Okada, Masato

    1993-01-01

    To examine epidural fat images, lumbar magnetic resonance (MR) images were retrospectively reviewed in a total of 103 patients with surgically proven lumbar disc herniation (DH, n=57) and lumbar canal stenosis (LCS, n=46). Epidural fat images consisted of middorsal epidural fat (MDF), paramedian ventral fat (PVF) and intervertebral foraminal fat (IFF) ones. In the group of DH, the thickness of MDF image did not correlate with that of subcutaneous fat, suggesting that epidural fat was not affected by body fat. From the pathophysiological point of view, decrease and disappearance of MDF images correlated with compression of the epidural canal. Decrease and disappearance of PVF images lead to suspicious compression of the traversing root. In addition, asymmetrical PVF images were useful for the bilateral diagnosis of herniation. Abnormal findings of IFF images were suggestive of compression of the exiting nerve root at the intervertebral foramen. This was also seen frequently at the non-responsible level in patients over the age of 50. Degenerative and sequentrated spondylolistheses in the group of LCS were more frequently associated with a higher incidence of abnormal findings of IFF images, suggesting the presence of existing nerve root compression. (N.K.)

  15. Orbital apex cyst: a rare cause of compressive optic neuropathy post-functional endoscopic sinus surgery

    Directory of Open Access Journals (Sweden)

    Koh YN

    2017-07-01

    Full Text Available Yi Ni Koh,1,2 Shu Fen Ho,2 Letchumanan Pathma,3 Harvinder Singh,3 Embong Zunaina1 1Department of Ophthalmology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; 2Department of Ophthalmology, 3Department of Otorhinolaryngology, Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia Abstract: There are various causes that can lead to compressive optic neuropathy. We present here orbital apex cyst as an unusual cause of compressive optic neuropathy in a 49-year-old male. He presented with 2 weeks painless loss of vision in the left eye with left-sided headache. He had had left functional endoscopic sinus surgery for left nasal polyps 4 years earlier. Magnetic resonance imaging of brain and orbit revealed a left discrete orbital nodule, possibly orbital cyst or mucocele, which was compressing on the left optic nerve. Left eye vision improved markedly from hand movement to 6/36 pinhole 6/18 after initiation of intravenous dexamethasone. A subsequent endoscopic endonasal left optic nerve decompression found the orbital nodule lesion to be an orbital cyst. Marsupialization was performed instead of excision, as the cyst ruptured intraoperatively. Postoperative vision improved to 6/7.5 with normal optic nerve function postoperatively. Possible cause of orbital apex cyst is discussed. Keywords: orbital cyst, compressive optic neuropathy, functional endoscopic sinus surgery

  16. Magnetic field induced random pulse trains of magnetic and acoustic noises in martensitic single-crystal Ni2MnGa

    Science.gov (United States)

    Daróczi, Lajos; Piros, Eszter; Tóth, László Z.; Beke, Dezső L.

    2017-07-01

    Jerky magnetic and acoustic noises were evoked in a single variant martensitic Ni2MnGa single crystal (produced by uniaxial compression) by application of an external magnetic field along the hard magnetization direction. It is shown that after reaching the detwinning threshold, spontaneous reorientation of martensite variants (twins) leads not only to acoustic emission but magnetic two-directional noises as well. At small magnetic fields, below the above threshold, unidirectional magnetic emission is also observed and attributed to a Barkhausen-type noise due to magnetic domain wall motions during magnetization along the hard direction. After the above first run, in cycles of decreasing and increasing magnetic field, at low-field values, weak, unidirectional Barkhausen noise is detected and attributed to the discontinuous motion of domain walls during magnetization along the easy magnetization direction. The magnetic noise is also measured by constraining the sample in the same initial variant state along the hard direction and, after the unidirectional noise (as obtained also in the first run), a two-directional noise package is developed and it is attributed to domain rotations. From the statistical analysis of the above noises, the critical exponents, characterizing the power-law behavior, are calculated and compared with each other and with the literature data. Time correlations within the magnetic as well as acoustic signals lead to a common scaled power function (with β =-1.25 exponent) for both types of signals.

  17. Accuracy of Clinical Tests in Detecting Disk Herniation and Nerve Root Compression in Subjects With Lumbar Radicular Symptoms.

    Science.gov (United States)

    Ekedahl, Harald; Jönsson, Bo; Annertz, Mårten; Frobell, Richard B

    2018-04-01

    To investigate the accuracy of 3 commonly used neurodynamic tests (slump test, straight-leg raise [SLR] test, femoral neurodynamic test) and 2 clinical assessments to determine radiculopathy (radiculopathy I, 1 neurologic sign; radiculopathy II, 2 neurologic signs corresponding to 1 specific nerve root) in detecting magnetic resonance imaging (MRI) findings (extrusion, subarticular nerve root compression, and foraminal nerve root compression). Validity study. Secondary care. We included subjects (N=99; mean age, 58y; 54% women) referred for epidural steroid injection because of lumbar radicular symptoms who had positive clinical and MRI findings. Positive clinical findings included the slump test (n=67), SLR test (n=50), femoral neurodynamic test (n=7), radiculopathy I (n=70), and radiculopathy II (n=33). Positive MRI findings included extrusion (n=27), subarticular nerve compression (n=14), and foraminal nerve compression (n=25). Not applicable. Accuracy of clinical tests in detecting MRI findings was evaluated using sensitivity, specificity, and receiver operating characteristics analysis with area under the curve (AUC). The slump test had the highest sensitivity in detecting extrusion (.78) and subarticular nerve compression (1.00), but the respective specificity was low (.36 and .38). Radiculopathy I was most sensitive in detecting foraminal nerve compression (.80) but with low specificity (.34). Only 1 assessment had a concurrent high sensitivity and specificity (ie, radiculopathy II) in detecting subarticular nerve compression (.71 and .73, respectively). The AUC for all tests in detecting extrusion, subarticular nerve compression, and foraminal nerve compression showed ranges of .48 to .60, .63 to .82, and .33 to .57, respectively. In general, the investigated neurodynamic tests or assessments for radiculopathy lacked diagnostic accuracy. The slump test was the most sensitive test, while radiculopathy II was the most specific test. Most interestingly, no

  18. Compression of Probabilistic XML Documents

    Science.gov (United States)

    Veldman, Irma; de Keijzer, Ander; van Keulen, Maurice

    Database techniques to store, query and manipulate data that contains uncertainty receives increasing research interest. Such UDBMSs can be classified according to their underlying data model: relational, XML, or RDF. We focus on uncertain XML DBMS with as representative example the Probabilistic XML model (PXML) of [10,9]. The size of a PXML document is obviously a factor in performance. There are PXML-specific techniques to reduce the size, such as a push down mechanism, that produces equivalent but more compact PXML documents. It can only be applied, however, where possibilities are dependent. For normal XML documents there also exist several techniques for compressing a document. Since Probabilistic XML is (a special form of) normal XML, it might benefit from these methods even more. In this paper, we show that existing compression mechanisms can be combined with PXML-specific compression techniques. We also show that best compression rates are obtained with a combination of PXML-specific technique with a rather simple generic DAG-compression technique.

  19. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  20. Experiments with automata compression

    NARCIS (Netherlands)

    Daciuk, J.; Yu, S; Daley, M; Eramian, M G

    2001-01-01

    Several compression methods of finite-state automata are presented and evaluated. Most compression methods used here are already described in the literature. However, their impact on the size of automata has not been described yet. We fill that gap, presenting results of experiments carried out on

  1. Limiting density ratios in piston-driven compressions

    International Nuclear Information System (INIS)

    Lee, S.

    1985-07-01

    By using global energy and pressure balance applied to a shock model it is shown that for a piston-driven fast compression, the maximum compression ratio is not dependent on the absolute magnitude of the piston power, but rather on the power pulse shape. Specific cases are considered and a maximum density compression ratio of 27 is obtained for a square-pulse power compressing a spherical pellet with specific heat ratio of 5/3. Double pulsing enhances the density compression ratio to 1750 in the case of linearly rising compression pulses. Using this method further enhancement by multiple pulsing becomes obvious. (author)

  2. Evaluation of mechanical properties for spherical magnetic regenerator materials fabricated by rapid solidification process

    International Nuclear Information System (INIS)

    Okamura, M.; Sori, N.; Saito, A.

    1997-01-01

    Various magnetic regenerator materials, such as Er 3 Ni, Er 3 Co and ErNi, are fabricated in the form of a spherical particle by a rapid solidification process. 4 K level refrigeration has been obtained by a GM refrigerator using these materials. However, the magnetic regenerator materials are considered brittle, as they are intermetallic compounds. It is important to evaluate the mechanical properties of these materials to confirm reliability as a regenerator material. In this paper, experimental results of compression and vibration tests for magnetic regenerator materials are described. The technical point of this study is to use spherical particles as test samples. The compressive stress of 20 MPa was applied to these spherical particles and no fractured spheres were observed. Similarly, no fractured spheres were found after the vibration test, in which the maximum acceleration was 30 X 9.8 m/s 2 and the number of vibration times was 1 X 10 6 , insofar as there was no room to stir spherical particles in a regenerator. In practice, the reliability of magnetic regenerator materials has been confirmed by a long-run test of 7,000 h in a usual GM refrigerator

  3. Compressibility, turbulence and high speed flow

    CERN Document Server

    Gatski, Thomas B

    2013-01-01

    Compressibility, Turbulence and High Speed Flow introduces the reader to the field of compressible turbulence and compressible turbulent flows across a broad speed range, through a unique complimentary treatment of both the theoretical foundations and the measurement and analysis tools currently used. The book provides the reader with the necessary background and current trends in the theoretical and experimental aspects of compressible turbulent flows and compressible turbulence. Detailed derivations of the pertinent equations describing the motion of such turbulent flows is provided and an extensive discussion of the various approaches used in predicting both free shear and wall bounded flows is presented. Experimental measurement techniques common to the compressible flow regime are introduced with particular emphasis on the unique challenges presented by high speed flows. Both experimental and numerical simulation work is supplied throughout to provide the reader with an overall perspective of current tre...

  4. Compressed normalized block difference for object tracking

    Science.gov (United States)

    Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge

    2018-04-01

    Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.

  5. MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma

    Science.gov (United States)

    Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.; hide

    2016-01-01

    In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..

  6. 30 CFR 77.412 - Compressed air systems.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not be...

  7. Two divergent paths: compression vs. non-compression in deep venous thrombosis and post thrombotic syndrome

    Directory of Open Access Journals (Sweden)

    Eduardo Simões Da Matta

    Full Text Available Abstract Use of compression therapy to reduce the incidence of postthrombotic syndrome among patients with deep venous thrombosis is a controversial subject and there is no consensus on use of elastic versus inelastic compression, or on the levels and duration of compression. Inelastic devices with a higher static stiffness index, combine relatively small and comfortable pressure at rest with pressure while standing strong enough to restore the “valve mechanism” generated by plantar flexion and dorsiflexion of the foot. Since the static stiffness index is dependent on the rigidity of the compression system and the muscle strength within the bandaged area, improvement of muscle mass with muscle-strengthening programs and endurance training should be encouraged. Therefore, in the acute phase of deep venous thrombosis events, anticoagulation combined with inelastic compression therapy can reduce the extension of the thrombus. Notwithstanding, prospective studies evaluating the effectiveness of inelastic therapy in deep venous thrombosis and post-thrombotic syndrome are needed.

  8. Application of content-based image compression to telepathology

    Science.gov (United States)

    Varga, Margaret J.; Ducksbury, Paul G.; Callagy, Grace

    2002-05-01

    Telepathology is a means of practicing pathology at a distance, viewing images on a computer display rather than directly through a microscope. Without compression, images take too long to transmit to a remote location and are very expensive to store for future examination. However, to date the use of compressed images in pathology remains controversial. This is because commercial image compression algorithms such as JPEG achieve data compression without knowledge of the diagnostic content. Often images are lossily compressed at the expense of corrupting informative content. None of the currently available lossy compression techniques are concerned with what information has been preserved and what data has been discarded. Their sole objective is to compress and transmit the images as fast as possible. By contrast, this paper presents a novel image compression technique, which exploits knowledge of the slide diagnostic content. This 'content based' approach combines visually lossless and lossy compression techniques, judiciously applying each in the appropriate context across an image so as to maintain 'diagnostic' information while still maximising the possible compression. Standard compression algorithms, e.g. wavelets, can still be used, but their use in a context sensitive manner can offer high compression ratios and preservation of diagnostically important information. When compared with lossless compression the novel content-based approach can potentially provide the same degree of information with a smaller amount of data. When compared with lossy compression it can provide more information for a given amount of compression. The precise gain in the compression performance depends on the application (e.g. database archive or second opinion consultation) and the diagnostic content of the images.

  9. Magnetic field exposure stiffens regenerating plant protoplast cell walls.

    Science.gov (United States)

    Haneda, Toshihiko; Fujimura, Yuu; Iino, Masaaki

    2006-02-01

    Single suspension-cultured plant cells (Catharanthus roseus) and their protoplasts were anchored to a glass plate and exposed to a magnetic field of 302 +/- 8 mT for several hours. Compression forces required to produce constant cell deformation were measured parallel to the magnetic field by means of a cantilever-type force sensor. Exposure of intact cells to the magnetic field did not result in any changes within experimental error, while exposure of regenerating protoplasts significantly increased the measured forces and stiffened regenerating protoplasts. The diameters of intact cells or regenerating protoplasts were not changed after exposure to the magnetic field. Measured forces for regenerating protoplasts with and without exposure to the magnetic field increased linearly with incubation time, with these forces being divided into components based on the elasticity of synthesized cell walls and cytoplasm. Cell wall synthesis was also measured using a cell wall-specific fluorescent dye, and no changes were noted after exposure to the magnetic field. Analysis suggested that exposure to the magnetic field roughly tripled the Young's modulus of the newly synthesized cell wall without any lag.

  10. Disc pathology after whiplash injury. A prospective magnetic resonance imaging and clinical investigation

    International Nuclear Information System (INIS)

    Pettersson, K.; Hildingsson, C.; Toolanen, G.; Fagerlund, M.; Bjornebrink, J.

    1997-01-01

    Although disc pathology seems to be one contributing factor in the development of chronic symptoms after whiplash injury, it may be unnecessary to examine these patients in the acute phase with magnetic resonance imaging ; correlating initial symptoms and signs to magnetic resonance imaging findings is difficult because of the relatively high proportion of false-positive results. Magnetic resonance imaging is indicated later in the course of treatment in patients with persistent arm pain, neurologic deficits, or clinical signs of nerve root compression to diagnose disc herniations requiring surgery. (authors)

  11. Effect of glenohumeral elevation on subacromial supraspinatus compression risk during simulated reaching.

    Science.gov (United States)

    Lawrence, Rebekah L; Schlangen, Dustin M; Schneider, Katelyn A; Schoenecker, Jonathan; Senger, Andrea L; Starr, William C; Staker, Justin L; Ellermann, Jutta M; Braman, Jonathan P; Ludewig, Paula M

    2017-10-01

    Mechanical subacromial rotator cuff compression is one theoretical mechanism in the pathogenesis of rotator cuff disease. However, the relationship between shoulder kinematics and mechanical subacromial rotator cuff compression across the range of humeral elevation motion is not well understood. The purpose of this study was to investigate the effect of humeral elevation on subacromial compression risk of the supraspinatus during a simulated functional reaching task. Three-dimensional anatomical models were reconstructed from shoulder magnetic resonance images acquired from 20 subjects (10 asymptomatic, 10 symptomatic). Standardized glenohumeral kinematics from a simulated reaching task were imposed on the anatomic models and analyzed at 0, 30, 60, and 90° humerothoracic elevation. Five magnitudes of humeral retroversion were also imposed on the models at each angle of humerothoracic elevation to investigate the impact of retroversion on subacromial proximities. The minimum distance between the coracoacromial arch and supraspinatus tendon and footprint were quantified. When contact occurred, the magnitude of the intersecting volume between the supraspinatus tendon and coracoacromial arch was also quantified. The smallest minimum distance from the coracoacromial arch to the supraspinatus footprint occurred between 30 and 90°, while the smallest minimum distance to the supraspinatus tendon occurred between 0 and 60°. The magnitude of humeral retroversion did not significantly affect minimum distance to the supraspinatus tendon except at 60 or 90° humerothoracic elevation. The results of this study provide support for mechanical rotator cuff compression as a potential mechanism for the development of rotator cuff disease. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2329-2337, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  12. Theoretical models for describing longitudinal bunch compression in the neutralized drift compression experiment

    Directory of Open Access Journals (Sweden)

    Adam B. Sefkow

    2006-09-01

    Full Text Available Heavy ion drivers for warm dense matter and heavy ion fusion applications use intense charge bunches which must undergo transverse and longitudinal compression in order to meet the requisite high current densities and short pulse durations desired at the target. The neutralized drift compression experiment (NDCX at the Lawrence Berkeley National Laboratory is used to study the longitudinal neutralized drift compression of a space-charge-dominated ion beam, which occurs due to an imposed longitudinal velocity tilt and subsequent neutralization of the beam’s space charge by background plasma. Reduced theoretical models have been used in order to describe the realistic propagation of an intense charge bunch through the NDCX device. A warm-fluid model is presented as a tractable computational tool for investigating the nonideal effects associated with the experimental acceleration gap geometry and voltage waveform of the induction module, which acts as a means to pulse shape both the velocity and line density profiles. Self-similar drift compression solutions can be realized in order to transversely focus the entire charge bunch to the same focal plane in upcoming simultaneous transverse and longitudinal focusing experiments. A kinetic formalism based on the Vlasov equation has been employed in order to show that the peaks in the experimental current profiles are a result of the fact that only the central portion of the beam contributes effectively to the main compressed pulse. Significant portions of the charge bunch reside in the nonlinearly compressing part of the ion beam because of deviations between the experimental and ideal velocity tilts. Those regions form a pedestal of current around the central peak, thereby decreasing the amount of achievable longitudinal compression and increasing the pulse durations achieved at the focal plane. A hybrid fluid-Vlasov model which retains the advantages of both the fluid and kinetic approaches has been

  13. Poor chest compression quality with mechanical compressions in simulated cardiopulmonary resuscitation: a randomized, cross-over manikin study.

    Science.gov (United States)

    Blomberg, Hans; Gedeborg, Rolf; Berglund, Lars; Karlsten, Rolf; Johansson, Jakob

    2011-10-01

    Mechanical chest compression devices are being implemented as an aid in cardiopulmonary resuscitation (CPR), despite lack of evidence of improved outcome. This manikin study evaluates the CPR-performance of ambulance crews, who had a mechanical chest compression device implemented in their routine clinical practice 8 months previously. The objectives were to evaluate time to first defibrillation, no-flow time, and estimate the quality of compressions. The performance of 21 ambulance crews (ambulance nurse and emergency medical technician) with the authorization to perform advanced life support was studied in an experimental, randomized cross-over study in a manikin setup. Each crew performed two identical CPR scenarios, with and without the aid of the mechanical compression device LUCAS. A computerized manikin was used for data sampling. There were no substantial differences in time to first defibrillation or no-flow time until first defibrillation. However, the fraction of adequate compressions in relation to total compressions was remarkably low in LUCAS-CPR (58%) compared to manual CPR (88%) (95% confidence interval for the difference: 13-50%). Only 12 out of the 21 ambulance crews (57%) applied the mandatory stabilization strap on the LUCAS device. The use of a mechanical compression aid was not associated with substantial differences in time to first defibrillation or no-flow time in the early phase of CPR. However, constant but poor chest compressions due to failure in recognizing and correcting a malposition of the device may counteract a potential benefit of mechanical chest compressions. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Efficient predictive algorithms for image compression

    CERN Document Server

    Rosário Lucas, Luís Filipe; Maciel de Faria, Sérgio Manuel; Morais Rodrigues, Nuno Miguel; Liberal Pagliari, Carla

    2017-01-01

    This book discusses efficient prediction techniques for the current state-of-the-art High Efficiency Video Coding (HEVC) standard, focusing on the compression of a wide range of video signals, such as 3D video, Light Fields and natural images. The authors begin with a review of the state-of-the-art predictive coding methods and compression technologies for both 2D and 3D multimedia contents, which provides a good starting point for new researchers in the field of image and video compression. New prediction techniques that go beyond the standardized compression technologies are then presented and discussed. In the context of 3D video, the authors describe a new predictive algorithm for the compression of depth maps, which combines intra-directional prediction, with flexible block partitioning and linear residue fitting. New approaches are described for the compression of Light Field and still images, which enforce sparsity constraints on linear models. The Locally Linear Embedding-based prediction method is in...

  15. A high gradient quadrupole magnet for the SSC

    International Nuclear Information System (INIS)

    Taylor, C.; Caspi, S.; Helm, M.; Mirk, K.; Peters, C.; Wandesforde, A.

    1987-01-01

    A quadrupole magnet for the SSC has been designed with a gradient of 234 T/m at 6500 A. Coil I.D. is 40 mm. The two-layer windings have 9 inner turns and 13 outer turns per pole with a wedge-shaped space in each layer. The 30-strand cable is identical to that used in the outer layer of the SSC dipole magnet. Interlocking aluminum alloy collars are compressed around the coil using a four-way press and are locked with four keys. The collared coil is supported and centered in a cold split iron yoke. A one-meter model was constructed and tested. Design details including quench behavior are presented. The quadrupole magnets proposed for the main SSC rings have a design gradient of 230 T/m. For one proposed 60 degree lattice cell, each 3-m long quad is separated by five 17-m long dipole magnets

  16. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    International Nuclear Information System (INIS)

    Parvazian, A.; Javani, A.

    2010-01-01

    Fast ignition is a new method for inertial confinement fusion in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel. More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0.25 and 0.5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. Magnetized target fusion in dual hot spot can be considered as an appropriate substitution for the current inertial confinement fusion techniques.

  17. Analysis of physical and magnetic properties of composite NdFeB bind with polyvinyl alcohol

    Science.gov (United States)

    Ramlan; Sardjono, P.; Muljadi; Setiabudidaya, D.; Gulo, F.

    2018-03-01

    The composite magnet NdFeB has been made using magnetic powder MQP-B and polyvinyl alcohol (PVA) as the binder. The mixing compositions of raw materials used are: 95 wt% NdFeB - 5 wt% PVA, 92.5 wt% NdFeB - 7.5 wt% PVA, 90 wt.% NdFeB - 10 wt% PVA, and 87.5 wt% NdFeB - 12.5 wt% PVA. Both raw materials are weighed according to the composition, and then mixed until homogeneous. Furthermore, pellet forming was made using dry pressing at 50 kgf/cm2 pressures and continued with drying at 100 °C and 10 mmbar for 4 hours. The characterization includes bulk density, hardness, compressive strength measurements, and magnetic properties testing. The characterization results show that the optimal composition of binder PVA is achieved at 5–7.5 wt% NdFeB composite magnet with following properties: bulk density = 5.21–5.25 g/cm3, hardness = 302.17 - 304.32 Hv, compressive strength = 25.17–3.17 kgf/cm2, magnetic flux = 1150-1170 Gauss, remanence = 70.90–74.97 emu/g or 4.7–5.0 kGauss, coercivity = 8.68–8.76 kOe, and energy product = 2.89–3.04 MgOe.

  18. A flexible numerical model to study an active magnetic refrigerator for near room temperature applications

    Energy Technology Data Exchange (ETDEWEB)

    Aprea, Ciro; Maiorino, Angelo [Department of Mechanical Engineering, University of Salerno, Via Ponte Don Melillo 1, 84084 Fisciano (Salerno) (Italy)

    2010-08-15

    Magnetic refrigeration is an emerging technology based on the magnetocaloric effect in solid-state refrigerants. This technology offers a smaller global environmental impact than the refrigeration obtained by means of the classical vapor compression machines operating with fluids such as HFCs. The Active Magnetic Regenerative Refrigeration (AMRR) is currently the most studied ant tested magnetic cycle. It combines the regenerative properties of a high specific heat solid porous matrix with the ability of performing thermo-magnetic cycles thanks to the magnetocaloric property of the refrigerant; while a fluid pulsing through the regenerator works as a heat transfer medium. An active magnetic regenerator can provide larger temperature spans making up for the local small temperature variation of the refrigerant. In the present paper, a practical model for predicting the performance and efficiency of an AMRR cycle has been developed. The model evaluates both the refrigerant properties and the entire cycle of an AMR operating in conformity with a Brayton regenerative cycle. The magnetocaloric material of choice is gadolinium, while the heat transfer medium is liquid water. With this model can be predicted the refrigeration capacity, the power consumption and consequently the Coefficient of Performance. The results show a greater COP when compared to a classical vapor compression plant working between the same temperature levels. (author)

  19. A flexible numerical model to study an active magnetic refrigerator for near room temperature applications

    International Nuclear Information System (INIS)

    Aprea, Ciro; Maiorino, Angelo

    2010-01-01

    Magnetic refrigeration is an emerging technology based on the magnetocaloric effect in solid-state refrigerants. This technology offers a smaller global environmental impact than the refrigeration obtained by means of the classical vapor compression machines operating with fluids such as HFCs. The Active Magnetic Regenerative Refrigeration (AMRR) is currently the most studied ant tested magnetic cycle. It combines the regenerative properties of a high specific heat solid porous matrix with the ability of performing thermo-magnetic cycles thanks to the magnetocaloric property of the refrigerant; while a fluid pulsing through the regenerator works as a heat transfer medium. An active magnetic regenerator can provide larger temperature spans making up for the local small temperature variation of the refrigerant. In the present paper, a practical model for predicting the performance and efficiency of an AMRR cycle has been developed. The model evaluates both the refrigerant properties and the entire cycle of an AMR operating in conformity with a Brayton regenerative cycle. The magnetocaloric material of choice is gadolinium, while the heat transfer medium is liquid water. With this model can be predicted the refrigeration capacity, the power consumption and consequently the Coefficient of Performance. The results show a greater COP when compared to a classical vapor compression plant working between the same temperature levels.

  20. Effect of deformation ratios on grain alignment and magnetic properties of hot pressing/hot deformation Nd-Fe-B magnets

    Science.gov (United States)

    Guo, Zhaohui; Li, Mengyu; Wang, Junming; Jing, Zheng; Yue, Ming; Zhu, Minggang; Li, Wei

    2018-05-01

    The magnetic properties, microstructure and orientation degrees of hot pressing magnet and hot deformation Nd-Fe-B magnets with different deformation ratios have been investigated in this paper. The remanence (Br) and maximum magnetic energy product ((BH)max) were enhanced gradually with the deformation ratio increasing from 0% to 70%, whereas the coercivity (HCj) decreased. The scanning electron microscopy (SEM) images of fractured surfaces parallel to the pressure direction during hot deformation show that the grains tend to extend perpendicularly to the c-axes of Nd2Fe14B grains under the pressure, and the aspect ratios of the grains increase with the increase of deformation ratio. Besides, the compression stress induces the long axis of grains to rotate and the angle (θ) between c-axis and pressure direction decreases. The X-ray diffraction (XRD) patterns reveal that orientation degree improves with the increase of deformation ratio, agreeing well with the SEM results. The hot deformation magnet with a deformation ratio of 70% has the best Br and (BH)max, and the magnetic properties are as followed: Br=1.40 T, HCj=10.73 kOe, (BH)max=42.30 MGOe.