WorldWideScience

Sample records for magnet reluctance machine

  1. DESIGN EVALUATIONS OF DOUBLE ROTOR SWITCHED RELUCTANCE MACHINE

    Directory of Open Access Journals (Sweden)

    C.V. ARAVIND

    2016-02-01

    Full Text Available The absence of magnets makes the reluctance machine typical for low cogging operations with the torque depending on the stator rotor interaction area. The air gap between stator pole and rotor pole gives a huge effect on the reluctance variation. The primitive double rotor switched reluctance machine lags to improvise the effect of the ripple value though the torque density is higher compared to conventional machines. An optimised circular hole position and dimensioned in the stator pole of lowers the torque ripple and reduce the acoustic noise as presented in this paper. A comparative evaluation of the conventional double rotor machine with this improved structure is done through numerical design and evaluations for the same sizing. It is found that the motor constant square density. It is found that the double rotor switched reluctance machine is improved by 140% to conventional machine.

  2. A new application and experimental validation of moulding technology for ferrite magnet assisted synchronous reluctance machine

    DEFF Research Database (Denmark)

    Wu, Qian; Lu, Kaiyuan; Rasmussen, Peter Omand

    2016-01-01

    This paper introduces a new application of moulding technology to the installation of ferrite magnet material into the rotor flux barriers of Ferrite Magnet Assisted Synchronous Reluctance Machine (FASynRM). The feasibility of this application with respect to manufacturing process and motor...

  3. Determination of 3D magnetic reluctivity tensor of soft magnetic composite material

    International Nuclear Information System (INIS)

    Guo Youguang; Zhu Jianguo; Lin Zhiwei; Zhong Jinjiang; Lu Haiyan; Wang Shuhong

    2007-01-01

    Soft magnetic composite (SMC) materials are especially suitable for construction of electrical machines with complex structures and three-dimensional (3D) magnetic fluxes. In the design and optimization of such 3D flux machines, the 3D vector magnetic properties of magnetic materials should be properly determined, modeled, and applied for accurate calculation of the magnetic field distribution, parameters, and performance. This paper presents the measurement of 3D vector magnetic properties and determination of 3D reluctivity tensor of SMC. The reluctivity tensor is a key factor for accurate numerical analysis of magnetic field in a 3D flux SMC motor

  4. The rediscovery of synchronous reluctance and ferrite permanent magnet motors tutorial course notes

    CERN Document Server

    Pellegrino, Gianmario; Bianchi, Nicola; Soong, Wen; Cupertino, Francesco

    2016-01-01

    This book offers an essential compendium on the analysis and design of synchronous motors for variable-speed applications. Focusing on synchronous reluctance and ferrite permanent-magnet (PM) synchronous reluctance machines, it provides a broad perspective on three-phase machines for variable speed applications, a field currently dominated by asynchronous machines and rare-earth PM synchronous machines. It also describes synchronous reluctance machines and PM machines without rare-earth materials, comparing them to state-of-the-art solutions. The book provides readers with extensive information on and finite element models of PM synchronous machines, including all relevant equations and with an emphasis on synchronous-reluctance and PM-assisted synchronous-reluctance machines. It covers ferrite-assisted machines, modeled as a subcase of PM-assistance, fractional slot combinations solutions, and a quantitative, normalized comparison of torque capability with benchmark PM machines. The book discusses a wealth o...

  5. Operational utilization of the reluctance torque of permanent magnet synchronous machines; Betriebliche Nutzung eines Reluktanzmoments bei permanentmagneterregten Synchronmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, C.; Spaeth, H. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (Germany). Elektrotechnisches Inst.

    2011-07-01

    For electric drives high torque over a wide speed range is needed to realise a traction system with a fixed transmission ration. Permanent magnet synchronous machines with burried magnets and a high reluctance are most convenient for this application. For this purpose a per unit description is developed and completed with measured data of a realised drive system. (orig.)

  6. Analysis and minimization of Torque Ripple for variable Flux reluctance machines

    NARCIS (Netherlands)

    Bao, J.; Gysen, B.L.J.; Boynov, K.; Paulides, J.J.H.; Lomonova, E.A.

    2017-01-01

    Variable flux reluctance machines (VFRMs) are permanent-magnet-free three-phase machines and are promising candidates for applications requiring low cost and robustness. This paper studies the torque ripple and minimization methods for 12-stator VFRMs. Starting with the analysis of harmonics in the

  7. Torque ripple minimization for 12-stator/10-rotor-pole variable flux reluctance machines by rotor skewing

    NARCIS (Netherlands)

    Bao, J.; Gysen, B.L.J.; Paulides, J.J.H.; Boynov, K.; Lomonova, E.

    2017-01-01

    Variable flux reluctance machines (VFRM) are an interesting candidate to substitute permanent-magnet synchronous machines in many applications, mainly owing to the absence of rare-earth permanent magnets and improved field weakening capability.

  8. Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles

    Directory of Open Access Journals (Sweden)

    Liu Xiping

    2017-06-01

    Full Text Available This paper proposes a permanent magnet (PM-assisted synchronous reluctance machine (PMASynRM using ferrite magnets with the same power density as rareearth PM synchronous motors employed in Toyota Prius 2010. A suitable rotor structure for high torque density and high power density is discussed with respect to the demagnetization of ferrite magnets, mechanical strength and torque ripple. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2-D finite element analysis (FEA. The analysis results show that a high power density and high efficiency of PMASynRM are obtained by using ferrite magnets.

  9. Performance analysis of a composite dual-winding reluctance machine

    International Nuclear Information System (INIS)

    Anih, Linus U.; Obe, Emeka S.

    2009-01-01

    The electromagnetic energy conversion process of a composite dual-winding asynchronous reluctance machine is presented. The mechanism of torque production is explained using the magnetic fields distributions. The dynamic model developed in dq-rotor reference frame from first principles depicts the machine operation and response to sudden load change. The device is self-starting in the absence of rotor conductors and its starting current is lower than that of a conventional induction machine. Although the machine possesses salient pole rotors, it is clearly shown that its performance is that of an induction motor operating at half the synchronous speed. Hence the device produces synchronous torque while operating asynchronously. Simple tests were conducted on a prototype demonstration machine and the results obtained are seen to be in tune with the theory and the steady-state calculations.

  10. Effect of Machine Geometry on Higher Harmonics Content in Air-Gap Magnetic Field of Synchronous Reluctance Machine

    Czech Academy of Sciences Publication Activity Database

    Schreier, Luděk; Chomát, Miroslav; Doležel, Ivo

    2001-01-01

    Roč. 176, č. 1500 (2001), s. 259-266 ISSN 0072-4688 R&D Projects: GA ČR GA102/01/0181 Keywords : synchronous reluctance machine * torque pulsation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  11. Control system of mutually coupled switched reluctance motor drive of mining machines in generator mode

    Science.gov (United States)

    Ivanov, A. S.; Kalanchin, I. Yu; Pugacheva, E. E.

    2017-09-01

    One of the first electric motors, based on the use of electromagnets, was a reluctance motor in the XIX century. Due to the complexities in the implementation of control system the development of switched reluctance electric machines was repeatedly initiated only in 1960 thanks to the development of computers and power electronic devices. The main feature of these machines is the capacity to work both in engine mode and in generator mode. Thanks to a simple and reliable design in which there is no winding of the rotor, commutator, permanent magnets, a reactive gate-inductor electric drive operating in the engine mode is actively being introduced into various areas such as car industry, production of household appliances, wind power engineering, as well as responsible production processes in the oil and mining industries. However, the existing shortcomings of switched reluctance electric machines, such as nonlinear pulsations of electromagnetic moment, the presence of three or four phase supply system and sensor of rotor position prevent wide distribution of this kind of electric machines.

  12. 3D Magnetic field modeling of a new superconducting synchronous machine using reluctance network method

    Science.gov (United States)

    Kelouaz, Moussa; Ouazir, Youcef; Hadjout, Larbi; Mezani, Smail; Lubin, Thiery; Berger, Kévin; Lévêque, Jean

    2018-05-01

    In this paper a new superconducting inductor topology intended for synchronous machine is presented. The studied machine has a standard 3-phase armature and a new kind of 2-poles inductor (claw-pole structure) excited by two coaxial superconducting coils. The air-gap spatial variation of the radial flux density is obtained by inserting a superconducting bulk, which deviates the magnetic field due to the coils. The complex geometry of this inductor usually needs 3D finite elements (FEM) for its analysis. However, to avoid a long computational time inherent to 3D FEM, we propose in this work an alternative modeling, which uses a 3D meshed reluctance network. The results obtained with the developed model are compared to 3D FEM computations as well as to measurements carried out on a laboratory prototype. Finally, a 3D FEM study of the shielding properties of the superconducting screen demonstrates the suitability of using a diamagnetic-like model of the superconducting screen.

  13. Electromagnetic Analysis and Design of Switched Reluctance Double-Rotor Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Shouliang Han

    2014-10-01

    Full Text Available The double-rotor machine is a kind of multiple input and output electromechanical energy transducer with two electrical ports and two mechanical ports, which is an ideal transmission system for hybrid electric vehicles and has a series of advantages such as integration of power and energy, high efficiency and compaction. In this paper, a switched reluctance double-rotor machine (SRDRM is proposed for hybrid electric vehicles, while no conductor or PM in the middle rotor. This machine not only inherits the merits of switched reluctance machine, such as simple salient rotor structure, high reliability and wide speed range, but also can avoid the outer rotor’s cooling problem effectively. By using an equivalent magnetic circuit model, the function of middle rotor yoke is analyzed. Electromagnetic analyses of the SRDRM are performed with analytical calculations and 2-D finite element methods, including the effects of main parameters on performance. Finally, a 4.4 kW prototype machine is designed and manufactured, and the tests are performed, which validate the proposed design method.

  14. AC/DC current ratio in a current superimposition variable flux reluctance machine

    Science.gov (United States)

    Kohara, Akira; Hirata, Katsuhiro; Niguchi, Noboru; Takahara, Kazuaki

    2018-05-01

    We have proposed a current superimposition variable flux reluctance machine for traction motors. The torque-speed characteristics of this machine can be controlled by increasing or decreasing the DC current. In this paper, we discuss an AC/DC current ratio in the current superimposition variable flux reluctance machine. The structure and control method are described, and the characteristics are computed using FEA in several AC/DC ratios.

  15. A tubular flux-switching permanent magnet machine

    Science.gov (United States)

    Wang, J.; Wang, W.; Clark, R.; Atallah, K.; Howe, D.

    2008-04-01

    The paper describes a novel tubular, three-phase permanent magnet brushless machine, which combines salient features from both switched reluctance and permanent magnet machine technologies. It has no end windings and zero net radial force and offers a high power density and peak force capability, as well as the potential for low manufacturing cost. It is, therefore, eminently suitable for a variety of applications, ranging from free-piston energy converters to active vehicle suspensions.

  16. Development and analysis of U-core switched reluctance machine

    DEFF Research Database (Denmark)

    Jæger, Rasmus; Nielsen, Simon Staal; Rasmussen, Peter Omand

    2016-01-01

    Switched reluctance machines (SRMs) have seen a lot of interest due to their rugged and fault tolerant construction as well as their high efficiency over a wide speed range. The technology however suffers from torque ripple, acoustic noise and low torque density. Many concepts to address these di......Switched reluctance machines (SRMs) have seen a lot of interest due to their rugged and fault tolerant construction as well as their high efficiency over a wide speed range. The technology however suffers from torque ripple, acoustic noise and low torque density. Many concepts to address...... and reduced flux reversal, reducing core losses. Due to an increased number of poles, torque density is increased and torque ripple reduced. A prototype is built and through a number of tests, the machine is mapped and all loss components are analysed. As a result of the analysis, an assessment is presented...

  17. Permanent magnet machine and method with reluctance poles and non-identical PM poles for high density operation

    Science.gov (United States)

    Hsu, John S.

    2010-05-18

    A method and apparatus in which a stator (11) and a rotor (12) define a primary air gap (20) for receiving AC flux and at least one source (23, 40), and preferably two sources (23, 24, 40) of DC excitation are positioned for inducing DC flux at opposite ends of the rotor (12). Portions of PM material (17, 17a) are provided as boundaries separating PM rotor pole portions from each other and from reluctance poles. The PM poles (18) and the reluctance poles (19) can be formed with poles of one polarity having enlarged flux paths in relation to flux paths for pole portions of an opposite polarity, the enlarged flux paths communicating with a core of the rotor (12) so as to increase reluctance torque produced by the electric machine. Reluctance torque is increased by providing asymmetrical pole faces. The DC excitation can also use asymmetric poles and asymmetric excitation sources. Several embodiments are disclosed with additional variations.

  18. Contribution to the study, modelling and optimisation of a variable reluctance machine excited by permanent magnets; Contribution a l'etude, la modelisation et l'optimisation d'une machine a reluctance variable excitee par des aimants permanents

    Energy Technology Data Exchange (ETDEWEB)

    Haouara, I.

    1998-07-01

    Variable reluctance machines (VRM) with double cogs are interesting solutions for gearing mechanisms requiring a strong torque and a low speed. In the case of wind to electricity power conversion they can represent an improvement with the removal of the speed multiplier. A brief classification of VRMs has been made first and then, a double cogs synchronous structure with an excitation system made of permanent magnets included in the rotor has been chosen for this application. Then, using the dimensioning principles of synchronous machines, an approach is proposed to perform its pre-dimensioning. A finite-elements modeling of the machine and a model of equivalent electrical circuit have been used to evaluate its performances. An analytical approach based on the calculation of the air-gap permeation and of the magnetic scalar potential is proposed to identify the parameters of the equivalent electrical circuit (inductances and electromotive force). After validation, this model has been retained for the study of the performances of the generator-rectifier system in real conditions of operation (converter with a high frequency). Finally the optimization of the geometrical and magnetic parameters of the structure is analyzed in order to maximize its power. A conjugate experiment plans and fields calculation method has been used. It allows to take into consideration the real conditions of operation (saturation and dynamical functioning of magnets) and the interaction between the different parameters. The study of an optimized prototype has shown an improvement for all operation modes. (J.S.)

  19. Optimal Pole Number and Winding Designs for Low Speed–High Torque Synchronous Reluctance Machines

    Directory of Open Access Journals (Sweden)

    Gurutz Artetxe

    2018-01-01

    Full Text Available This paper studies the feasibility of using synchronous reluctance machines (SynRM for low speed–high torque applications. The challenge lies in obtaining low torque ripple values, high power factor, and, especially, high torque density values, comparable to those of permanent magnet synchronous machines (PMSMs, but without resorting to use permanent magnets. A design and calculation procedure based on multistatic finite element analysis is developed and experimentally validated via a 200 Nm, 160 rpm prototype SynRM. After that, machine designs with different rotor pole and stator slot number combinations are studied, together with different winding types: integral-slot distributed-windings (ISDW, fractional-slot distributed-windings (FSDW and fractional-slot concentrated-windings (FSCW. Some design criteria for low-speed SynRM are drawn from the results of the study. Finally, a performance comparison between a PMSM and a SynRM is performed for the same application and the conclusions of the study are summarized.

  20. Variable-Speed, Robust Synchronous Reluctance Machine Drive Systems

    DEFF Research Database (Denmark)

    Wang, Dong

    The synchronous reluctance machine drive is getting more and more interests from the industrial side, since it can provide higher system energy efficiency than traditional inverter-fed induction machine drive systems with similar production cost. It is considered as a good candidate for super...... is recommended. In recent years, there is an increasing trend to replace the electrolytic capacitor in the frequency converter with film capacitor, which has a longer expected service lifetime and no explosion risk. Furthermore, it is possible to achieve a compact converter design by using film capacitor, since...

  1. Investigation study of geometric dimensions of the magnetic system of the switched-reluctance machine influence on magnetic moment

    Science.gov (United States)

    Petrushin, A.; Shevkunova, A.

    2018-02-01

    The article deals with the investigation concentrated to optimizing the active part of the switched-reluctance motor with the aim of increasing the value of the average electromagnetic torque. Susceptibility of the average value of the electromagnetic torque to changes of the geometric dimensions of the magnetic system found in the optimization process was set.

  2. A novel design and driving strategy for a hybrid electric machine with torque performance enhancement both taking reluctance and electromagnetic attraction effects into account

    International Nuclear Information System (INIS)

    Huang, W.-N.; Chen, W.-P.; Teng, C.-C.; Chen, M.-P.

    2006-01-01

    A novel design, the hybrid electric machine, that owns improved competence for the output torque regulation as well as enlarged power density comparing to the conventional brushless machines by making use of the simultaneous performance overlapping concept based on magnetism is proposed in this paper. The developed design concept is focused on electric machine structure and its counterpart drive for applying two main magnetic-power transmitting paths by combination of both features of magnetic tendencies of flux generation that may flow in the path with minimum reluctance and direction owning the electromagnetic motive attraction. The verifications demonstrate that the outputted torque owns effective improvement by the presented concept of the electric machine based on the equivalent 3-hp frame than the conventional brushless motors

  3. Experimental determination of magnetization curves of switched reluctance motors

    Energy Technology Data Exchange (ETDEWEB)

    Andrada, P.; Martinez, E.; Perat, J.I.; Sanchez, J.A.; Torrent, M. [Universitat Politecnica de Catalunya, UPC, Dept. of Enginyeria Electrica, Vilanova i la Geltru (Spain)

    2000-08-01

    Knowledge of magnetic characteristics or magnetization curves of switched reluctance motors is very important for their design and performance evaluation. A test equipment for determination of magnetisation curves of switched reluctance motors is presented. This test equipment is based on a method of measurement of inductance by means of DC current proposed by C.V. Jones, in which a bridge arrangement is used in order to eliminate resistance effects. The main advantage of this setup is that it is an automatic system controlled by P.C., providing easy and user friendly presentation of test results and reducing measurement time and manual errors. Several switched reluctance motors with different structures have been tested using the proposed equipment, giving a good agreement with other experimental and numerical methods. (orig.)

  4. Design and electronic power supply of double salience variable reluctance machines; Conception et alimentation electronique des machines a reluctance variable a double saillance

    Energy Technology Data Exchange (ETDEWEB)

    Multon, B

    1994-05-15

    This work deals with the optimization of double salience variable reluctance motors with electronic switching. It includes the control laws, the electromagnetic structure and the direct and indirect self-driving sensors. The first chapter presents the state-of-the-art of double salience reluctance machines, their characteristics, their inverters and the evolutions of their electromagnetic structure. Chapters 2 and 3 treat of the optimization of power supplies and of the electromagnetic structure, respectively. Finally, the last chapter treats of original solutions of position measurement for the self-control, one using a variable reluctance sensor, and the other using an indirect sensor. The impact of the motor characteristics on the power supply has been analyzed with the optimization of the control laws in permanent regime and low torque undulation regime. The influence of the motor structure geometry on the electromagnetic characteristics has been studied using analytic methods coupled with punctual finite-element calculations. Using a particular example, a self-oscillating power supply mode has been implemented in order to reduce the losses and the electromagnetic pollution. (J.S.)

  5. The complex initial reluctivity, permeability and susceptibility spectra of magnetic materials

    Science.gov (United States)

    Hamilton, N. C.

    2015-03-01

    The HF complex permeability spectrum of a magnetic material is deduced from the measured impedance spectrum, which is then normalized to a series permeability spectrum. However, this series permeability spectrum has previously been shown to correspond to a parallel magnetic circuit, which is not appropriate. Some of the implications of this truth are examined. This electric/magnetic duality has frustrated efforts to interpret the shape of the complex magnetic permeability spectra of materials, and has hindered the application of impedance spectroscopy to magnetic materials. In the presence of magnetic loss, the relationship between the relative magnetic permeability and the magnetic susceptibility is called into question. The use of reluctivity spectra for expressing magnetic material properties is advocated. The relative loss factor, tanδm/μi is shown to be an approximation for the imaginary part of the reluctivity. A single relaxation model for the initial reluctivity spectra of magnetic materials is presented, and its principles are applied to measurements of a high permeability ferrite. The results are presented as contour plots of the spectra as a function of temperature.

  6. A Sensor-less Method for Online Thermal Monitoring of Switched Reluctance Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Hui; Liu, Xiao

    2015-01-01

    Stator winding is one of the most vulnerable parts in Switched Reluctance Machine (SRM), especially under thermal stresses during frequently changing operation circumstances and susceptible heat dissipation conditions. Thus real-time online thermal monitoring of the stator winding is of great sig...

  7. Nonlinear chaos control in a permanent magnet reluctance machine

    International Nuclear Information System (INIS)

    Harb, Ahmad M.

    2004-01-01

    The dynamics of a permanent magnet synchronous machine (PMSM) is analyzed. The study shows that under certain conditions the PMSM is experiencing chaotic behavior. To control these unwanted chaotic oscillations, a nonlinear controller based on the backstepping nonlinear control theory is designed. The objective of the designed control is to stabilize the output chaotic trajectory by forcing it to the nearest constant solution in the basin of attraction. The result is compared with a nonlinear sliding mode controller. The designed controller that based on backstepping nonlinear control was able to eliminate the chaotic oscillations. Also the study shows that the designed controller is mush better than the sliding mode control

  8. Performance Comparison of Conventional Synchronous Reluctance Machines and PM-Assisted Types with Combined Star–Delta Winding

    Directory of Open Access Journals (Sweden)

    Mohamed Nabil Fathy Ibrahim

    2017-09-01

    Full Text Available This paper compares four prototype Synchronous Reluctance Motors (SynRMs having an identical geometry of iron lamination stacks in the stator and rotor. Two different stator winding layouts are employed: a conventional three-phase star connection and a combined star–delta winding. In addition, two rotors are considered: a conventional rotor without magnets and a rotor with ferrite magnets. The performance of the four SynRMs is evaluated using a two-dimensional (2D Finite Element Model (FEM. For the same copper volume and current, the combined star–delta-connected stator with Permanent Magnets (PMs in the rotor corresponds to an approximately 22% increase in the output torque at rated current and speed compared to the conventional machine. This improvement is mainly thanks to adding ferrite PMs in the rotor as well as to the improved winding factor of the combined star–delta winding. The torque gain increases up to 150% for low current. Moreover, the rated efficiency is 93.60% compared to 92.10% for the conventional machine. On the other hand, the impact on the power factor and losses of SynRM when using the star–delta windings instead of the star windings is merely negligible. The theoretical results are experimentally validated using four identical prototype machines with identical lamination stacks but different rotors and winding layouts.

  9. Shark, new motor design concept for energy saving applied to switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Tataru Kjaer, A.M.

    2005-07-01

    The aim of this thesis is to document and promote a relatively new concept of designing electrical machine with improved efficiency, without using more or better material. The concept, called Shark, consists in replacing the cylindrical air gap by a non-linear shape obtained by translating specific geometrical pattern on the longitudinal axis of the electrical machine. This shape modification increases the air gap area and thus the energy conversion, taking place in the machine. Whilst other methods of improving the efficiency consider the use of more and/or better magnetic material and/or optimisation of the magnetic circuit of the radial cross-section of the machine, the proposed method makes use of the longitudinal cross-section of the machine. In spite of a few reports claiming the improvement of the efficiency by applying the optimisation of the longitudinal cross-section, none analysis of various air gap shapes and of their influence on the magnetic performance has been reported. Due to a simple geometry, the Switched Reluctance Machine has been selected for demonstration of the Shark principle. Initially, linear and finite element analyses are considered. They provide the basic knowledge of the manner in which various Shark air gap, having different dimensions, influence the energy conversion in the machine. The saturation mechanisms, specific to each Shark profile are analysed and optimum Shark profile and its dimensions are selected for implementation in a demonstration machine. Due to the lack of quick analysis tools, an analytical model of the Shark Switched Reluctance Machine is also proposed in this thesis. This model is conceived by modifying one of the existing models of cylindrical air gap Switched Reluctance Machines, such as to account for the presence of the Shark profiles in the air gap. The calculations are verified by measurement on two demonstration machines, having cylindrical and Shark air gaps. The measurement proved the theory right and

  10. Single bus star connected reluctance drive and method

    Science.gov (United States)

    Fahimi, Babak; Shamsi, Pourya

    2016-05-10

    A system and methods for operating a switched reluctance machine includes a controller, an inverter connected to the controller and to the switched reluctance machine, a hysteresis control connected to the controller and to the inverter, a set of sensors connected to the switched reluctance machine and to the controller, the switched reluctance machine further including a set of phases the controller further comprising a processor and a memory connected to the processor, wherein the processor programmed to execute a control process and a generation process.

  11. Investigation and Calculation of Magnetic Field in Tubular Linear Reluctance Motor Using FEM

    Directory of Open Access Journals (Sweden)

    MOSALLANEJAD, A.

    2010-11-01

    Full Text Available In this paper the magnetic flux density of tubular linear reluctance motor (TLRM in open type magnetic circuit is studied. Also, all magnetic flux density calculation methods in winding of tubular linear reluctance motor are described. The effect of structure parameters on magnetic flux density is also discussed. Electromagnetic finite-element analysis is used for simulation of magnetic field, and simulation results of the magnetic field analysis with DC voltage excitation are compared with results obtained from calculation methods. The comparison yields a good agreement.

  12. Single-Phase Hybrid Switched Reluctance Motor for Low-Power Low-Cost Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Jakobsen, Uffe

    2011-01-01

    This paper presents a new single-phase, Hybrid Switched Reluctance (HSR) motor for low-cost, low-power, pump or fan drive systems. Its single-phase configuration allows use of a simple converter to reduce the system cost. Cheap ferrite magnets are used and arranged in a special flux concentration...... manner to increase effectively the torque density and efficiency of this machine. The efficiency of this machine is comparable to the efficiency of a traditional permanent magnet machine in the similar power range. The cogging torque, due to the existence of the permanent magnetic field, is beneficially...

  13. Wireless Energy Transfer Through Magnetic Reluctance Coupling

    International Nuclear Information System (INIS)

    Pillatsch, P

    2014-01-01

    Energy harvesting from human motion for body worn or implanted devices faces the problem of the wearer being still, e.g. while asleep. Especially for medical devices this can become an issue if a patient is bed-bound for prolonged periods of time and the internal battery of a harvesting system is not recharged. This article introduces a mechanism for wireless energy transfer based on a previously presented energy harvesting device. The internal rotor of the energy harvester is made of mild steel and can be actuated through a magnetic reluctance coupling to an external motor. The internal piezoelectric transducer is consequently actuated and generates electricity. This paper successfully demonstrates energy transfer over a distance of 16 mm in air and an achieved power output of 85 μW at 25 Hz. The device functional volume is 1.85 cm 3 . Furthermore, it was demonstrated that increasing the driving frequency beyond 25 Hz did not yield a further increase in power output. Future research will focus on improving the reluctance coupling, e.g. by investigating the use of multiple or stronger magnets, in order to increase transmission distance

  14. Hysteresis and reluctance electric machines with bulk HTS elements. Recent results and future development

    International Nuclear Information System (INIS)

    Kovalev, L.K.; Ilushin, K.V.; Penkin, V.T.; Kovalev, K.L.; Koneev, S.M.-A.; Poltavets, V.N.; Larionoff, A.E.; Modestov, K.A.; Larionoff, S.A.; Gawalek, W.; Habisreuther, T.; Oswald, B.; Best, K.-J.; Strasser, T.

    2000-01-01

    Two new types of HTS electric machine are considered. The first type is hysteresis motors and generators with cylindrical and disc rotors containing bulk HTS elements. The second type is reluctance motors with compound HTS-ferromagnetic rotors. The compound HTS-ferromagnetic rotors, consisting of joined alternating bulk HTS (YBCO) and ferromagnetic (iron) plates, provide a new active material for electromechanical purposes. Such rotors have anisotropic properties (ferromagnetic in one direction and diamagnetic in the perpendicular one). Theoretical and experimental results for HTS hysteresis and reluctance motors are presented. A series of hysteresis HTS motors with output power rating from 1 kW (at 50 Hz) up to 4 kW (at 400 Hz) and a series of reluctance HTS motors with output power 2-18.5 kW (at 50 Hz) were constructed and successfully tested. It was shown that HTS reluctance motors could reach two to five times better overall dimensions and specific power than conventional asynchronous motors of the same size and will have higher values of power factor (cos φ≥0.7 to 0.8). (author)

  15. Control of a high-speed switched reluctance machine using only the DC-link measurements

    NARCIS (Netherlands)

    Marinkov, Sava; De Jager, Bram

    2015-01-01

    In this paper we present a novel speed control strategy for a high-speed Switched Reluctance Machine that uses only the DC-link voltage and current measurements. This eliminates a number of hardware components such as position, speed, phase current and phase voltage sensors. It further lowers the

  16. Study and implementation high speed operating of induced magnetization machines; Etude et mise en oeuvre de machines a aimantation induite fonctionnant a haute vitesse

    Energy Technology Data Exchange (ETDEWEB)

    Alhassoun, Y.

    2005-05-15

    Actually, electromechanical machines are characterized by their low cost and reduced maintenance. Therefore, new types of magnetic materials such as soft magnetic composites (SMC), have to be considered not only for multiple applications (small motors for automotive) for cost reduction, but also when considering other special requirements such as high speed drive (aircraft and space applications). Our report of thesis is articulated around four chapters: The first chapter show the various types of magnetic interactions used in the electromagnetic actuators. The second chapter is devoted to the modelling of the induced magnetic machines by analytical resolution of equations of the field in two dimensions. The third chapter presents the four configurations prototypes of switched reluctance machine which mix the exploitation of laminated materials and the soft magnetic powders. The fourth chapter discusses the critical conditions of this machines operating at high speed. We conclude, insisting on the efforts carried out in term of analytical modelling of the induced magnetization machines for their dimensions and exploited in this same structure, the soft magnetic composite materials. The results show the potential of soft magnetic powders when considering in particular the high frequency losses and their ability to favour the heat dissipation in this structure. (author)

  17. Reluctance motor employing superconducting magnetic flux switches

    International Nuclear Information System (INIS)

    Spyker, R.L.; Ruckstadter, E.J.

    1992-01-01

    This paper reports that superconducting flux switches controlling the magnetic flux in the poles of a motor will enable the implementation of a reluctance motor using one central single phase winding. A superconducting flux switch consists of a ring of superconducting material surrounding a ferromagnetic pole of the motor. When in the superconducting state the switch will block all magnetic flux attempting to flow in the ferromagnetic core. When switched to the normal state the superconducting switch will allow the magnetic flux to flow freely in that pole. By using one high turns-count coil as a flux generator, and selectively channeling flux among the various poles using the superconducting flux switch, 3-phase operation can be emulated with a single-hase central AC source. The motor will also operate when the flux generating coil is driven by a DC current, provided the magnetic flux switches see a continuously varying magnetic flux. Rotor rotation provides this varying flux due to the change in stator pole inductance it produces

  18. Measurement method for determining the magnetic hysteresis effects of reluctance actuators by evaluation of the force and flux variation

    NARCIS (Netherlands)

    Vrijsen, N.H.; Jansen, J.W.; Compter, J.C.; Lomonova, E.

    2013-01-01

    A measurement method is presented which identifies the magnetic hysteresis effects present in the force of linear reluctance actuators. The measurement method is applied to determine the magnetic hysteresis in the force of an E-core reluctance actuator, with and without pre-biasing permanent magnet.

  19. Design of rotating electrical machines

    CERN Document Server

    Pyrhonen , Juha; Hrabovcova , Valeria

    2013-01-01

    In one complete volume, this essential reference presents an in-depth overview of the theoretical principles and techniques of electrical machine design. This timely new edition offers up-to-date theory and guidelines for the design of electrical machines, taking into account recent advances in permanent magnet machines as well as synchronous reluctance machines. New coverage includes: Brand new material on the ecological impact of the motors, covering the eco-design principles of rotating electrical machinesAn expanded section on the design of permanent magnet synchronous machines, now repo

  20. EXPERIMENTATION OF THREE PHASE OUTER ROTATING SWITCHED RELUCTANCE MOTOR WITH SOFT MAGNETIC COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    N. C. LENIN

    2017-01-01

    Full Text Available This paper presents the application of Soft Magnetic Composite (SMC material in Outer Rotating Switched Reluctance Motor (ORSRM. The presented stator core of the Switched Reluctance Motor was made of two types of material, the classical laminated silicon steel sheet and the soft magnetic composite material. First, the stator core made of laminated steel has been analysed. The next step is to analyse the identical geometry SRM with the soft magnetic composite material, SOMALOY for its stator core. The comparisons of both cores include the calculated torque and torque ripple, magnetic conditions, simplicity of fabrication and cost. The finite element method has been used to analyse the magnetic conditions and the calculated torque. Finally, tested results shows that SMC is a better choice for SRM in terms of torque ripple and power density.

  1. Shark - new motor design concept for energy saving-applied to Switched Reluctance Motor

    DEFF Research Database (Denmark)

    Tataru, Ana Mari

    with respect to a corresponding cylindrical air gap machine. Furthermore, the two Switched Reluctance Machines are compared with other motor technologies such as Induction Motor and Brushless DC Motor. Analysis of the forces produced in the Shark SRM reveals particular aspects, adding some difficulties...... geometrical pattern on the longitudinal axis of the electrical machine. This shape modification increases the air gap area and thus the energy conversion, taking place in the machine. Whilst other methods of improving the efficiency consider the use of more and/or better magnetic material and/or optimisation...... of the magnetic circuit of the radial cross-section of the machine, the proposed method makes use of the longitudinal cross-section of the machine. In spite of a few reports claiming the improvement of the efficiency by applying the optimisation of the longitudinal cross-section, none analysis of various air gap...

  2. Modeling of static characteristics of switched reluctance motor

    International Nuclear Information System (INIS)

    Asgharmemon, A.; Hussain, I.; Daudpoto, J.

    2013-01-01

    To investigate the running characteristics of a switched reluctance motor, the static characteristics and related input data tables are required. The static characteristics comprise of flux linkage, co-energy and static torque characteristics. The co-energy and static torque are calculated once data of magnetization characteristics is available. The data of co-energy is required for the calculation of static torque characteristics. The simulation model includes the data of static characteristics for prediction of the instantaneous and steady state performance of the motor. In this research a computer based procedure of experiments is carried out for measurement of the magnetization characteristics. For every set of measurements, the removal of eddy current is carefully addressed. The experiments are carried out on an existing 8/6 pole rotary switched reluctance motor. Additionally, the instantaneous phase current, instantaneous torque and flux waveforms are produced by using linear, which is by default and spline data interpolation separately. The information obtained from theses simulation results will help in an improved simulation model for predicting the performance of the machine. (author)

  3. Fault tolerant operation of switched reluctance machine

    Science.gov (United States)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  4. Reluctance network modelling of surface permanent magnet motor considering iron nonlinearities

    International Nuclear Information System (INIS)

    Raminosoa, T.; Farooq, J.A.; Djerdir, A.; Miraoui, A.

    2009-01-01

    This paper presents a simple, quick and precise nonlinear reluctance network modelling of an in-wheel surface permanent magnet motor. The saturation of the ferromagnetic materials is considered and a simple air-gap length function is used to take the slotting effect into account. The topology and the reluctance values of the air-gap network are automatically computed for any rotor position. Thus, the proposed technique allows a steady state time stepping simulation. For any saturation level, there is a good accordance with the finite element method for the torque and back EMF. Moreover, the model accurately predicts the effect of the demagnetization. The proposed model can be advantageously used for a geometry optimization as well as for the diagnosis of demagnetization.

  5. Design and Advanced Control of Switched Reluctance Motors

    DEFF Research Database (Denmark)

    Rasmussen, Peter Omand

    The introduction of mainly power electronics and cheap micro computers have made the Switched Reluctance Machine (SRM), which is in focus in this thesis, a feasible alternative to traditional electrical machines like the induction- and DC-motor which have been the dominating electrical machines...... to a standard induction motor, and from the test it is seen that the nominal efficiency of the SRM is 83 % compared to only 72 % for the induction motor. During the work with this thesis some follow-ups are done which were not specified in the main-goals. But these is very important contributions in the SR...... and a static characterization system developed. To simulate and analyze the electromagnetic performance of different variations of SRMs, in for instance SRDaS, is a general dynamical model derived, which also takes into account SRMs having permanent magnets. The parameters for the models are obtained with 2D...

  6. Theoretical evaluation of the double U-core switched reluctance machine

    DEFF Research Database (Denmark)

    Jæger, Rasmus; Nielsen, Simon Staal; Rasmussen, Peter Omand

    2017-01-01

    The switched reluctance machine (SRM) has seen a lot of interest due to its simplicity and ruggedness. Much attention have been paid in academia to improve on some of the disadvantages of the technology such as torque ripple, acoustic noise and low torque density. In this paper a topology, namely...... the double U-core SRM, is reviewed. This topology improves on some of the disadvantages of the regular SRM. Torque ripple is reduced and the torque density is increased for the same amount of material, by reconfiguring the topology of the regular SRM and increasing the number of poles. The result...... is a segmented stator structure where each segment can be wound individually and assembled afterwards. Several similar technologies have been demonstrated, and the claimed advantages have been proven in comparison with regular SRMs with a lower pole count. In this paper, the technology will be compared...

  7. Position error compensation via a variable reluctance sensor applied to a Hybrid Vehicle Electric machine.

    Science.gov (United States)

    Bucak, Ihsan Ömür

    2010-01-01

    In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  8. Position Error Compensation via a Variable Reluctance Sensor Applied to a Hybrid Vehicle Electric Machine

    Directory of Open Access Journals (Sweden)

    İhsan Ömür Bucak

    2010-03-01

    Full Text Available In the automotive industry, electromagnetic variable reluctance (VR sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  9. Electromagnetic processes during phase commutation in field regulated reluctance machine

    Science.gov (United States)

    Shishkov, A. N.; Sychev, D. A.; Zemlyansky, A. A.; Krupnova, M. N.; Funk, T. A.; Ishmet'eva, V. D.

    2018-03-01

    The processes of currents switching in stator windings have been explained by the existence of the electromagnetic torque ripples in the electric drive with the field-regulated reluctance machine. The maximum value of ripples in the open loop control system for the six-phase machine can reach 20 percent from the developed electromagnetic torque. This method allows one to make calculation of ripple spike towards average torque developed by the electromotor for the different number of phases. Application of a trapezoidal form of current at six phases became the solution. In case of a less number of phases than six, a ripple spike considerably increases, which is inadmissible. On the other hand, increasing the number of phases tends to the increase of the semiconductor inverter external dimensions based on the inconspicuous decreasing of a ripple spike. The creation and usage of high-speed control loops of current (HCLC) have been recommended for a reduction of the electromagnetic torque’s ripple level, as well as the appliance of positive current feedback in switching phase currents. This decision allowed one to receive a mean value of the torque more than 10%, compared to system without change, to reduce greatly ripple spike of the electromagnetic torque. The possibility of the electric drive effective operation with FRRM in emergency operation has been shown.

  10. High output power reluctance electric motors with bulk high-temperature superconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Kovalev, L.K. [Moscow State Aviation Institute (Technical University) (MAI), Moscow (Russian Federation)]. E-mail: kovalev@mail.sitek.net; Ilushin, K.V.; Penkin, V.T. [Moscow State Aviation Institute (Technical University) (MAI), Moscow (RU)] [and others

    2002-05-01

    We present new types of electric machines with the rotors containing bulk high-temperature superconductor (HTS)-YBCO and Bi-Ag-elements. We discuss different schematics of hysteresis, reluctance, 'trapped field' and composed synchronous HTS machines. The two-dimensional mathematical models describing the processes in such types of HTS machines were developed on the basis of the theoretical analysis of the electrodynamic and hysteresis processes in the single-domain and polycrystal YBCO ceramic samples and plate shape Bi-Ag elements. We give the test results of the series of hysteresis, reluctance, 'trapped field' and composed with permanent magnets HTS motors with an output power rating of 0.1-18 kW and current frequencies 50 Hz and 400 Hz. These results show that in the media of liquid nitrogen the specific output power per one unit weight of the HTS motor is four to seven times better than for conventional electric machines. A comparison of the theoretical and experimental characteristics of the developed HTS motors show that they are in good agreement. We discuss the test results for a liquid nitrogen cryogenic pump system with a hysteresis 500 W HTS motor. We describe several designs of new HTS motors operating in the media of liquid nitrogen with an output power 125 kW (and more) and a power factor of more than 0.8. We discuss future applications of new types of HTS motors for aerospace technology, on-land industry and transport systems. (author)

  11. Viscoelastic property tuning for reducing noise radiated by switched-reluctance machines

    Science.gov (United States)

    Millithaler, Pierre; Dupont, Jean-Baptiste; Ouisse, Morvan; Sadoulet-Reboul, Émeline; Bouhaddi, Noureddine

    2017-10-01

    Switched-reluctance motors (SRM) present major acoustic drawbacks that hinder their use for electric vehicles in spite of widely-acknowledged robustness and low manufacturing costs. Unlike other types of electric machines, a SRM stator is completely encapsulated/potted with a viscoelastic resin. By taking advantage of the high damping capacity that a viscoelastic material has in certain temperature and frequency ranges, this article proposes a tuning methodology for reducing the noise emitted by a SRM in operation. After introducing the aspects the tuning process will focus on, the article details a concrete application consisting in computing representative electromagnetic excitations and then the structural response of the stator including equivalent radiated power levels. An optimised viscoelastic material is determined, with which the peak radiated levels are reduced up to 10 dB in comparison to the initial state. This methodology is implementable for concrete industrial applications as it only relies on common commercial finite-element solvers.

  12. Investigation of Flux-Linkage Profile Measurement Methods for Switched-Reluctance Motors and Permanent-Magnet Motors

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2009-01-01

    Knowledge of actual flux linkage versus current profiles plays an important role in design verification and performance prediction for switched reluctance motors (SRM's) and permanent magnet motors (PMM's). Various measurement methods have been proposed and discussed so far but each method has its...

  13. Analytical Method of Malculation of the Current and Torque a Reluctance Stepper Motor via Fourier Series

    Directory of Open Access Journals (Sweden)

    Pavel Zaskalicky

    2008-01-01

    Full Text Available Reluctance stepper motors are becoming to be very attractive transducer to conversion of electric signal to the mechanical position. Due to its simple construction is reluctance machine considered a very reliable machine which not requiring any maintenance. Present paper proposes a mathematical method of an analytical calculus of a phase current and electromagnetic torque of the motor via Fourier series. Saturation effect and winding reluctance are neglected.

  14. Transient thermal analysis of flux switching PM machines

    NARCIS (Netherlands)

    Ilhan, E.; Kremers, M.F.J.; Motoasca, T.E.; Paulides, J.J.H.; Lomonova, E.

    2013-01-01

    Flux switching permanent magnet (FSPM) machines bring together the merits of switched reluctance and PM synchronous motors. FSPM employs armature windings and PMs together in the stator region, therefore the proximity of the windings PMs makes a thermal model mandatory. In literature, thermal

  15. Apparatus for efficient sidewall containment of molten metal with horizontal alternating magnetic fields utilizing low reluctance rims

    Science.gov (United States)

    Praeg, Walter F.

    1999-01-01

    A method and apparatus for casting sheets of metal from molten metal. The apparatus includes a containment structure having an open side, a horizontal alternating magnetic field generating structure and rollers including low reluctance rim structures. The magnetic field and the rollers help contain the molten metal from leaking out of the containment structure.

  16. Characterization of a variable reluctance harvester

    International Nuclear Information System (INIS)

    Kroener, M; Moll, N; Ravindran, S K T; Mehne, P; Woias, P

    2014-01-01

    In our last year's PowerMEMS contribution we presented a proof-of-concept of a variable reluctance harvester for the application in a railroad surveillance system. It was shown that intermittently closing a magnetic circuit could supply power output in the range of mW's. The test setup used showed unwanted energy pickup from the electro motor used. In this paper we present thorough measurements of the reluctance circuit with a compressed air motor to exclude the effects of the above mentioned magnetic stray fields. The effects of eddy currents and moment of inertia on the output power, the optimal coil position on the stators, and effects of different magnetic field strengths are studied. The gap width is set to a fixed value of 14 mm, representing a realistic scenario

  17. Hybrid Switch Reluctance Drives For Pump Applications

    DEFF Research Database (Denmark)

    Jakobsen, Uffe

    be the single phase hybrid switched reluctance motor (HSRM). Due to the simple construction of the single phase HSRM, manufacturing may be simplified compared to a three phase permanent magnet motor and consumption of copper may be lowered when compared to both the induction motor and some three phase permanent...... magnet synchronous motor (PMSM), the HSRM needs information about rotor position to be properly controlled. For BLDC, PMSM, induction motors, and the normal SRM position sensorless methods are relatively well established and have been used for some time. For the single phase switched reluctance motor......The initial research problem is to investigate an alternative motor drive to the existing permanent magnet synchronous and brushless DC-motor drives for pump applications. A review of different motor types showed that a possible candidate for another low cost permanent magnet motor may...

  18. Electrical machines and assemblies including a yokeless stator with modular lamination stacks

    Science.gov (United States)

    Qu, Ronghai; Jansen, Patrick Lee; Bagepalli, Bharat Sampathkumar; Carl, Jr., Ralph James; Gadre, Aniruddha Dattatraya; Lopez, Fulton Jose

    2010-04-06

    An electrical machine includes a rotor with an inner rotor portion and an outer rotor portion, and a double-sided yokeless stator. The yokeless stator includes modular lamination stacks and is configured for radial magnetic flux flow. The double-sided yokeless stator is concentrically disposed between the inner rotor portion and the outer rotor portion of the electrical machine. Examples of particularly useful embodiments for the electrical machine include wind turbine generators, ship propulsion motors, switch reluctance machines and double-sided synchronous machines.

  19. Torque ripple reduction in electric machines

    Science.gov (United States)

    Reddy, Patel Bhageerath; Huh, Kum-Kang; El-Refaie, Ayman Mohamed Fawzi; Galioto, Steven Joseph

    2017-08-22

    An electric machine, such as an Internal Permanent magnet or Synchronous Reluctance machine, having X phases, that includes a stator assembly, having M slots, with a stator core and stator teeth, that is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface that defines a cavity; and a rotor assembly, having N poles, disposed within the cavity which is configured to rotate about the longitudinal axis, wherein the rotor assembly includes a shaft, a rotor core located circumferentially around the shaft. The machine is configured such that a value k=M/(X*N) wherein k is a non-integer greater than about 1.3. The electric machine may alternatively, or additionally, include a non-uniformed gap between the exterior surface of the rotor spokes and the interior stator surface of the stator.

  20. Complimentary Force Allocation Control for a Dual-Mover Linear Switched Reluctance Machine

    Directory of Open Access Journals (Sweden)

    J. F. Pan

    2017-12-01

    Full Text Available This paper inspects the complementary force allocation control schemes for an integrated, dual-mover linear switched reluctance machine (LSRM. The performance of the total force is realized by the coordination of the two movers. First, the structure and characteristics of the LSRM are investigated. Then, a complimentary force allocation control scheme for the two movers is proposed. Next, three force allocation methods—constant proportion, constant proportion with a saturation interval and error compensation, and the variable proportion allocation strategies—are proposed and analyzed, respectively. Experimental results demonstrate that the complimentary force interaction between the two movers can effectively reduce the total amount of force ripples from each method. The results under the variable proportion method also show that dynamic error values falling into 0.044 mm and −0.04 mm under the unit ramp force reference can be achieved. With the sinusoidal force reference with an amplitude of 60 N and a frequency of 0.5 Hz, a dynamic force control precision of 0.062 N and 0.091 N can also be obtained.

  1. Magnet management in electric machines

    Science.gov (United States)

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum Kang

    2017-03-21

    A magnet management method of controlling a ferrite-type permanent magnet electrical machine includes receiving and/or estimating the temperature permanent magnets; determining if that temperature is below a predetermined temperature; and if so, then: selectively heating the magnets in order to prevent demagnetization and/or derating the machine. A similar method provides for controlling magnetization level by analyzing flux or magnetization level. Controllers that employ various methods are disclosed. The present invention has been described in terms of specific embodiment(s), and it is recognized that equivalents, alternatives, and modifications, aside from those expressly stated, are possible and within the scope of the appending claims.

  2. Electric machines with axial magnetic flux

    Science.gov (United States)

    Nuca, I.; Ambros, T.; Burduniuc, M.; Deaconu, S. I.; Turcanu, A.

    2018-01-01

    The paper contains information on the performance of axial machines compared to cylindrical ones. At the same time, various constructive schemes of synchronous electromechanical converters with permanent magnets and asynchronous with short-circuited rotor are presented. In the developed constructions, the aim is to maximize the usage of the material of the stator windings. The design elements of the axial machine magnetic system are presented. The FEMM application depicted the array of the magnetic field of an axial machine.

  3. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Directory of Open Access Journals (Sweden)

    Yi Sui

    2017-05-01

    Full Text Available A single-phase tubular permanent-magnet linear machine (PMLM with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA. The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  4. A tubular hybrid Halbach/axially-magnetized permanent-magnet linear machine

    Science.gov (United States)

    Sui, Yi; Liu, Yong; Cheng, Luming; Liu, Jiaqi; Zheng, Ping

    2017-05-01

    A single-phase tubular permanent-magnet linear machine (PMLM) with hybrid Halbach/axially-magnetized PM arrays is proposed for free-piston Stirling power generation system. Machine topology and operating principle are elaborately illustrated. With the sinusoidal speed characteristic of the free-piston Stirling engine considered, the proposed machine is designed and calculated by finite-element analysis (FEA). The main structural parameters, such as outer radius of the mover, radial length of both the axially-magnetized PMs and ferromagnetic poles, axial length of both the middle and end radially-magnetized PMs, etc., are optimized to improve both the force capability and power density. Compared with the conventional PMLMs, the proposed machine features high mass and volume power density, and has the advantages of simple control and low converter cost. The proposed machine topology is applicable to tubular PMLMs with any phases.

  5. Practical Wide-speed-range Sensorless Control System for Permanent Magnet Reluctance Synchronous Motor Drives via Active Flux Model

    DEFF Research Database (Denmark)

    Ancuti, Mihaela Codruta; Tutelea, Lucian; Andreescu, Gheorghe-Daniel

    2014-01-01

    This article introduces a control strategy to obtain near-maximum available torque in a wide speed range with sensorless operation via the active flux concept for permanent magnet-reluctance synchronous motor drives. A new torque dq current reference calculator is proposed, with reference torque...

  6. Superconducting magnetic systems and electrical machines

    International Nuclear Information System (INIS)

    Glebov, I.A.

    1975-01-01

    The use of superconductors for magnets and electrical machines attracts close attention of designers and scientists. A description is given of an ongoing research program to create superconductive magnetic systems, commutator motors, homopolar machines, topological generators and turbogenerators with superconductive field windings. All the machines are tentative experimental models and serve as a basis for further developments

  7. A variable-mode stator consequent pole memory machine

    Science.gov (United States)

    Yang, Hui; Lyu, Shukang; Lin, Heyun; Zhu, Z. Q.

    2018-05-01

    In this paper, a variable-mode concept is proposed for the speed range extension of a stator-consequent-pole memory machine (SCPMM). An integrated permanent magnet (PM) and electrically excited control scheme is utilized to simplify the flux-weakening control instead of relatively complicated continuous PM magnetization control. Due to the nature of memory machine, the magnetization state of low coercive force (LCF) magnets can be easily changed by applying either a positive or negative current pulse. Therefore, the number of PM poles may be changed to satisfy the specific performance requirement under different speed ranges, i.e. the machine with all PM poles can offer high torque output while that with half PM poles provides wide constant power range. In addition, the SCPMM with non-magnetized PMs can be considered as a dual-three phase electrically excited reluctance machine, which can be fed by an open-winding based dual inverters that provide direct current (DC) bias excitation to further extend the speed range. The effectiveness of the proposed variable-mode operation for extending its operating region and improving the system reliability is verified by both finite element analysis (FEA) and experiments.

  8. Efficiency Characteristics of Low Power Hybrid Switched Reluctance Motor

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Ahn, Jin-Woo

    2009-01-01

    Switched reluctance motors (SRM) are usually considered inferior in terms of efficiency as compared to permanent magnet synchronous motors (PMSM) and brushless DC-motors (BLDC), but less costly. This article presents a test of a 70W hybrid switched reluctance motor (HSRM), that archieves a peak...... efficiency for the motor drive of more than 74%, and an efficiency for the motor of almost 80%....

  9. Technology of magnetic abrasive finishing in machining of difficult-to-machine alloy complex surface

    Directory of Open Access Journals (Sweden)

    Fujian MA

    2016-10-01

    Full Text Available The technology of magnetic abrasive finishing is one of the important finishing technologies. Combining with low-frequency vibration and ultrasonic vibration, it can attain higher precision, quality and efficiency. The characteristics and the related current research of magnetic abrasive finishing, vibration assisted magnetic abrasive finishing and ultrasonic assisted magnetic abrasive finishing are introduced. According to the characteristics of the difficult-to-machine alloy's complex surface, the important problems for further study are presented to realize the finishing of complex surface with the technology of magnetic abrasive finishing, such as increasing the machining efficiency by enhancing the magnetic flux density of machining gap and compounding of magnetic energy and others, establishing of the control function during machining and the process planning method for magnetic abrasive finishing of complex surface under the space geometry restraint of complex surface on magnetic pole, etc.

  10. VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... VERY SLOW SPEED AXIAL MOTION RELUCTANCE MOTOR by. L. A. Agu ... order as that of the screw-thread motor can be obtained. LIST OF .... The n stator have equal non- magnetic spacers .... induction motor. An.

  11. Design of salient pole PM synchronous machines for a vehicle traction application. Analysis and implementation

    Energy Technology Data Exchange (ETDEWEB)

    Rilla, M.

    2012-07-01

    This doctoral thesis presents a study on the development of a liquid-cooled frame salient pole permanent-magnet-exited traction machine for a four-wheel-driven electric car. The emphasis of the thesis is put on a radial flux machine design in order to achieve a light-weight machine structure for traction applications. The design features combine electromagnetic and thermal design methods, because traction machine operation does not have a strict operating point. Arbitrary load cycles and the flexible supply require special attention in the design process. It is shown that accurate modelling of the machine magnetic state is essential for high-performance operation. The saturation effect related to the cross-saturation has to be taken carefully into account in order to achieve the desired operation. Two prototype machines have been designed and built for testing: one totally enclosed machine with a special magnet module pole arrangement and another through-ventilated machine with a more traditional embedded magnet structure. Both structures are built with magnetically salient structures in order to increase the torque production capability with the reluctance torque component. Both machine structures show potential for traction usage. However, the traditional embedded magnet design turns out to be mechanically the more secure one of these two machine options. (orig.)

  12. Dovetail spoke internal permanent magnet machine

    Science.gov (United States)

    Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY

    2011-08-23

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a stator magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple pair of permanent magnets for generating a magnetic field, which magnetic field interacts with the stator magnetic field to produce a torque. The multiple pair of permanent magnets are disposed between the stacks. The rotor assembly also includes multiple middle wedges mounted between each pair of the multiple permanent magnets.

  13. Double U-Core Switched Reluctance Machine

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention relates to an electrical machine stator comprising a plurality of stator segments (131,132,133), each segment comprises a first U-core and a second U-core wound with a winding, where the winding being arranged with at least one coil turn, each coil turn comprises a first axial......(s), wherein the first U-core and the second U-core are located adjacent to each other, whereby the winding spans the first and second U-cores. The invention also relates to a SRM machine with a stator mentioned above and a rotor....

  14. Velocity Regulation in Switched Reluctance Motors under Magnetic Flux Saturation Conditions

    Directory of Open Access Journals (Sweden)

    Victor M. Hernández-Guzmán

    2018-01-01

    Full Text Available We propose a controller for velocity regulation in switched reluctance motors under magnetic flux saturation conditions. Both hysteresis and proportional control are employed in the internal electric current loops. A classical PI velocity controller is employed in the external loop. Our control law is the simplest one proposed in the literature but provided with a formal stability proof. We prove that the state is bounded having an ultimate bound which can be rendered arbitrarily small by a suitable selection of controller gains. Furthermore, this result stands when starting from any initial condition within a radius which can be arbitrarily enlarged using suitable controller gains. We present a simulation study where even convergence to zero of velocity error is observed as well as a good performance when regulating velocity in the presence of unknown step changes in external torque disturbances.

  15. High speed operation of permanent magnet machines

    Science.gov (United States)

    El-Refaie, Ayman M.

    This work proposes methods to extend the high-speed operating capabilities of both the interior PM (IPM) and surface PM (SPM) machines. For interior PM machines, this research has developed and presented the first thorough analysis of how a new bi-state magnetic material can be usefully applied to the design of IPM machines. Key elements of this contribution include identifying how the unique properties of the bi-state magnetic material can be applied most effectively in the rotor design of an IPM machine by "unmagnetizing" the magnet cavity center posts rather than the outer bridges. The importance of elevated rotor speed in making the best use of the bi-state magnetic material while recognizing its limitations has been identified. For surface PM machines, this research has provided, for the first time, a clear explanation of how fractional-slot concentrated windings can be applied to SPM machines in order to achieve the necessary conditions for optimal flux weakening. A closed-form analytical procedure for analyzing SPM machines designed with concentrated windings has been developed. Guidelines for designing SPM machines using concentrated windings in order to achieve optimum flux weakening are provided. Analytical and numerical finite element analysis (FEA) results have provided promising evidence of the scalability of the concentrated winding technique with respect to the number of poles, machine aspect ratio, and output power rating. Useful comparisons between the predicted performance characteristics of SPM machines equipped with concentrated windings and both SPM and IPM machines designed with distributed windings are included. Analytical techniques have been used to evaluate the impact of the high pole number on various converter performance metrics. Both analytical techniques and FEA have been used for evaluating the eddy-current losses in the surface magnets due to the stator winding subharmonics. Techniques for reducing these losses have been

  16. On-line efficiency optimization of a synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Lubin, Thierry; Razik, Hubert; Rezzoug, Abderrezak [Groupe de Recherche en Electrotechnique et Electronique de Nancy, GREEN, CNRS-UMR 7037, Universite Henri Poincare, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2007-04-15

    This paper deals with an on-line optimum-efficiency control of a synchronous reluctance motor drive. The input power minimization control is implemented with a search controller using Fibonacci search algorithm. It searches the optimal reference value of the d-axis stator current for which the input power is minimum. The input power is calculated from the measured dc-bus current and dc-bus voltage of the inverter. A rotor-oriented vector control of the synchronous reluctance machine with the optimization efficiency controller is achieved with a DSP board (TMS302C31). Experimental results are presented to validate the proposed control methods. It is shown that stability problems can appear during the search process. (author)

  17. Correction magnet power supplies for APS machine

    International Nuclear Information System (INIS)

    Kang, Y.G.

    1991-01-01

    The Advanced Photon Source machine requires a number of correction magnets; five kinds for the storage ring, two for the injector synchrotron, and two for the positron accumulator ring. Three types of bipolar power supply will be used for all the correction magnets. This paper describes the design aspects and considerations for correction magnet power supplies for the APS machine. 3 refs., 3 figs., 1 tab

  18. A fuzzy expert system for predicting the performance of switched reluctance motor

    International Nuclear Information System (INIS)

    Mirzaeian, B.; Moallem, M.; Lucas, Caro

    2001-01-01

    In this paper a fuzzy expert system for predicting the performance of a switched reluctance motor has been developed. The design vector consists of design parameters, and output performance variables are efficiency and torque ripple. An accurate analysis program based on Improved Magnetic Equivalent Circuit method has been used to generate the input-output data. These input-output data is used to produce the initial fuzzy rules for predicting the performance of Switched Reluctance Motor. The initial set of fuzzy rules with triangular membership functions has been devised using a table look-up scheme. The initial fuzzy rules have been optimized to a set of fuzzy rules with Gaussian membership functions using gradient descent training scheme. The performance prediction results for a 6/8, 4 kw, Switched Reluctance Motor shows good agreement with the results obtained from Improved Magnetic Equivalent Circuit method or Finite Element analysis. The developed fuzzy expert system can be used for fast prediction of motor performance in the optimal design process or on-line control schemes of Switched Reluctance motor

  19. Reluctance device

    International Nuclear Information System (INIS)

    Claridge, A.N.; Smith, A.J.

    1983-01-01

    A reluctance device comprises two or more phases, each of which has a rotor mounted for rotation within a tubular member and an annular stator positioned externally of the tubular member. The rotor and the internal surface of the tubular member are each provided with aligned, axially spaced apart annular arrays of teeth, the teeth on the rotor confronting those on the tubular member in radially spaced apart relationship. The stator encloses a coil which, when electrically energised, creates a plurality of magnetic flux paths each of which extends radially between the rotor and stator via the confronting teeth and the tubular member, and axially along both the rotor and the portion of the stator located radially outwardly of the coil. The portion of the tubular member intermediate the teeth thereon is provided with a non-magnetic insert in order to resist the axial passage of magnetic flux therethrough. In one of the claims, the tubular member comprises a portion of a nuclear reactor which is adapted to contain a reactor control rod, the rotor constituting a portion of the drive mechanism for the control rod contained in operation within the tubular member. (author)

  20. Magnetic field-assisted electrochemical discharge machining

    International Nuclear Information System (INIS)

    Cheng, Chih-Ping; Mai, Chao-Chuang; Wu, Kun-Ling; Hsu, Yu-Shan; Yan, Biing-Hwa

    2010-01-01

    Electrochemical discharge machining (ECDM) is an effective unconventional method for micromachining in non-conducting materials, such as glass, quartz and some ceramics. However, since the spark discharge performance becomes unpredictable as the machining depth increases, it is hard to achieve precision geometry and efficient machining rate in ECDM drilling. One of the main factors for this is the lack of sufficient electrolyte flow in the narrow gap between the tool and the workpiece. In this study a magnetohydrodynamic (MHD) convection, which enhances electrolyte circulation has been applied to the ECDM process in order to upgrade the machining accuracy and efficiency. During electrolysis in the presence of a magnetic field, the Lorenz force induces the charged ions to form a MHD convection. The MHD convection then forces the electrolyte into movement, thus enhancing circulation of electrolyte. Experimental results show that the MHD convection induced by the magnetic field can effectively enhance electrolyte circulation in the micro-hole, which contributes to higher machining efficiency. Micro-holes in glass with a depth of 450 µm are drilled in less than 20 s. At the same time, better electrolyte circulation can prevent deterioration of gas film quality with increasing machining depth, while ensuring stable electrochemical discharge. The improvement in the entrance diameter thus achieved was 23.8% while that in machining time reached 57.4%. The magnetic field-assisted approach proposed in the research does not require changes in the machining setup or electrolyte but has proved to achieve significant enhancement in both accuracy and efficiency of ECDM.

  1. Exact analytical modeling of magnetic vector potential in surface inset permanent magnet DC machines considering magnet segmentation

    Science.gov (United States)

    Jabbari, Ali

    2018-01-01

    Surface inset permanent magnet DC machine can be used as an alternative in automation systems due to their high efficiency and robustness. Magnet segmentation is a common technique in order to mitigate pulsating torque components in permanent magnet machines. An accurate computation of air-gap magnetic field distribution is necessary in order to calculate machine performance. An exact analytical method for magnetic vector potential calculation in surface inset permanent magnet machines considering magnet segmentation has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in polar coordinate by using sub-domain method. One of the main contributions of the paper is to derive an expression for the magnetic vector potential in the segmented PM region by using hyperbolic functions. The developed method is applied on the performance computation of two prototype surface inset magnet segmented motors with open circuit and on load conditions. The results of these models are validated through FEM method.

  2. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    Directory of Open Access Journals (Sweden)

    Yi Sui

    2017-05-01

    Full Text Available A single-phase axially-magnetized permanent-magnet (PM oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA, and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  3. A single-phase axially-magnetized permanent-magnet oscillating machine for miniature aerospace power sources

    Science.gov (United States)

    Sui, Yi; Zheng, Ping; Cheng, Luming; Wang, Weinan; Liu, Jiaqi

    2017-05-01

    A single-phase axially-magnetized permanent-magnet (PM) oscillating machine which can be integrated with a free-piston Stirling engine to generate electric power, is investigated for miniature aerospace power sources. Machine structure, operating principle and detent force characteristic are elaborately studied. With the sinusoidal speed characteristic of the mover considered, the proposed machine is designed by 2D finite-element analysis (FEA), and some main structural parameters such as air gap diameter, dimensions of PMs, pole pitches of both stator and mover, and the pole-pitch combinations, etc., are optimized to improve both the power density and force capability. Compared with the three-phase PM linear machines, the proposed single-phase machine features less PM use, simple control and low controller cost. The power density of the proposed machine is higher than that of the three-phase radially-magnetized PM linear machine, but lower than the three-phase axially-magnetized PM linear machine.

  4. Design and advanced control of switched reluctance motor; Design og avanceret styring af switched reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Blaabjerg, F.; Jensen, F.; Kierkegaard, P.; Pedersen, J.K.; Rasmussen, P.O.; Simonsen, L.

    1999-03-01

    The aim of the project is to design, construct and optimise the control of Switched Reluctance Motors with and without permanent magnets. The expectation was an increased efficiency and a decreased material consumption. The project included originally three types of SR-motors, two with a nominal number of revolutions of 3.000 rpm and one motor with a nominal number of revolutions of 50.000 rpm. The project was changed to focus on one motor with a nominal number of revolutions of 6.000 rpm, one with a nominal number of revolutions of 50.000 rpm and one two-phased low-voltage motor with a nominal number of revolutions of 2.000 rpm. The motors had different outputs of 2,7 kW, 0,9 kW and 3 kW, respectively. For this purpose an advanced simulation programme for Switched Reluctance Motors is developed. The programme differs from other programmes by being able to simulate multi-disciplinary such as vibrations and acoustic noise. It is even possible to play the sound. In this connection completely new models are developed. It is also possible to simulate different grid connected converters. Input to the simulation programme is finite element calculations, geometry of the motor and calculations or data from an advanced characterisation system for Switched Reluctance Motors. New methods to control the current in Switched Reluctance Motors are developed, which particularly make quick dynamics possible in a digitally controlled current without use of special noise filters. The method will soon have industrial use. Other new methods have emerged, which secure that the system all the time works with the maximum efficiency irrespective of load. In some cases an efficiency improvement of 10 % is obtained compared to a classic control of the Switched Reluctance Motor. (EHS) EFP-94; EFP-95; EFP-98. 16 refs.

  5. Sensorless Control of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Matzen, Torben N.

    Permanent magnet machines, with either surface mounted or embedded magnets on the rotor, are becoming more common due to the key advantages of higher energy conversion efficiency and higher torque density compared to the classical induction machine. Besides energy efficiency the permanent magnet...... the synchronous machine requires knowledge of the rotor shaft position due to the synchronous and undamped nature of the machine. The rotor position may be measured using a mechanical sensor, but the sensor reduces reliability and adds cost to the system and for this reason sensorless control methods started...... are dependent on the phase currents and rotor position. Based on the flux linkages the differential inductances are determined and used to establish the inductance saliency in terms of ratio and orientation. The orientation and its dependence on the current and rotor position are used to analyse the behaviour...

  6. A switched-reluctance motor for aerospace application: Design, analysis and results

    NARCIS (Netherlands)

    Tursini, M.; Villani, M.; Fabri, G.; Di Leonardo, L.

    2017-01-01

    This paper presents a five-phase switched reluctance motor designed to satisfy the requirements of flap actuators in medium size aircrafts, a real example of the more electric aircraft trend. In normal conditions the machine operates with two phases conducting simultaneously but it is designed to

  7. Development and validation of a general-purpose ASIC chip for the control of switched reluctance machines

    International Nuclear Information System (INIS)

    Chen Haijin; Lu Shengli; Shi Longxing

    2009-01-01

    A general-purpose application specific integrated circuit (ASIC) chip for the control of switched reluctance machines (SRMs) was designed and validated to fill the gap between the microcontroller capability and the controller requirements of high performance switched reluctance drive (SRD) systems. It can be used for the control of SRM running either in low speed or in high-speed, i.e., either in chopped current control (CCC) mode or in angular position control (APC) mode. Main functions of the chip include filtering and cycle calculation of rotor angular position signals, commutation logic according to rotor cycle and turn-on/turn-off angles (θ on /θ off ), controllable pulse width modulation (PWM) waveforms generation, chopping control with adjustable delay time, and commutation control with adjustable delay time. All the control parameters of the chip are set online by the microcontroller through a serial peripheral interface (SPI). The chip has been designed with the standard cell based design methodology, and implemented in the central semiconductor manufacturing corporation (CSMC) 0.5 μm complementary metal-oxide-semiconductor (CMOS) process technology. After a successful automatic test equipment (ATE) test using the Nextest's Maverick test system, the chip was further validated through an experimental three-phase 6/2-pole SRD system. Both the ATE test and experimental validation results show that the chip can meet the control requirements of high performance SRD systems, and simplify the controller construction. For a resolution of 0.36 deg. (electrical degree), the chip's maximum processable frequency of the rotor angular position signals is 10 kHz, which is 300,000 rev/min when a three-phase 6/2-pole SRM is concerned

  8. Design and analysis of a transversal-flux switched-reluctance-linear-machine pole-pair

    Energy Technology Data Exchange (ETDEWEB)

    Salo, J.

    1999-07-01

    The Switched Reluctance technology is probably best suited for industrial low-speed or zerospeed applications where the power can be small but the torque or the force in linear movement cases might be relatively high. Because of its simple structure the Sit-motor is an interesting alternative for low power applications where pneumatic or hydraulic linear drives are to be avoided. This study analyses the basic parts of an LSR-motor which are the two mover poles and one stator pole and which form the 'basic pole pair' in linear-movement transversal-flux switched-reluctance motors. The static properties of the basic pole pair are modelled and the basic design rules are derived. The models developed are validated with experiments. A one-sided one-polepair transversal-flux switched-reluctance-linear-motor prototype is demonstrated and its static properties are measured. The modelling of the static properties is performed with FEM-calculations. Two-dimensional models are accurate enough to model the static key features for the basic dimensioning of LSRmotors. Three-dimensional models must be used in order to get the most accurate calculation results of the static traction force production. The developed dimensioning and modelling methods, which could be systematically validated by laboratory measurements, are the most significant contributions of this thesis. (orig.)

  9. Design and analysis of a transversal-flux switched-reluctance-linear-machine pole-pair

    Energy Technology Data Exchange (ETDEWEB)

    Salo, J

    1999-07-01

    The Switched Reluctance technology is probably best suited for industrial low-speed or zerospeed applications where the power can be small but the torque or the force in linear movement cases might be relatively high. Because of its simple structure the Sit-motor is an interesting alternative for low power applications where pneumatic or hydraulic linear drives are to be avoided. This study analyses the basic parts of an LSR-motor which are the two mover poles and one stator pole and which form the 'basic pole pair' in linear-movement transversal-flux switched-reluctance motors. The static properties of the basic pole pair are modelled and the basic design rules are derived. The models developed are validated with experiments. A one-sided one-polepair transversal-flux switched-reluctance-linear-motor prototype is demonstrated and its static properties are measured. The modelling of the static properties is performed with FEM-calculations. Two-dimensional models are accurate enough to model the static key features for the basic dimensioning of LSRmotors. Three-dimensional models must be used in order to get the most accurate calculation results of the static traction force production. The developed dimensioning and modelling methods, which could be systematically validated by laboratory measurements, are the most significant contributions of this thesis. (orig.)

  10. Investigation of permanent magnet machines for downhole applications: Design, prototype and testing of a flux-switching permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Anyuan

    2011-01-15

    The current standard electrical downhole machine is the induction machine which is relatively inefficient. Permanent magnet (PM) machines, having higher efficiencies, higher torque densities and smaller volumes, have widely employed in industrial applications to replace conventional machines, but few have been developed for downhole applications due to the high ambient temperatures in deep wells and the low temperature stability of PM materials over time. Today, with the development of variable speed drives and the applications of high temperature magnet materials, it is increasingly interesting for oil and gas industries to develop PM machines for downhole applications. Recently, some PM machines applications have been presented for downhole applications, which are normally addressed on certain specific downhole case. In this thesis the focus has been put on the performance investigation of different PM machines for general downhole cases, in which the machine outer diameter is limited to be small by well size, while the machine axial length may be relatively long. The machine reliability is the most critical requirement while high torque density and high efficiency are also desirable. The purpose is to understand how the special constraints in downhole condition affect the performances of different machines. First of all, three basic machine concepts, which are the radial, axial and transverse flux machines, are studied in details by analytical method. Their torque density, efficiency, power factor and power capability are investigated with respect to the machine axial length and pole number. The presented critical performance comparisons of the machines provide an indication of machines best suitable with respect to performance and size for downhole applications. Conventional radial flux permanent magnet (RFPM) machines with the PMs on the rotor can provide high torque density and high efficiency. This type of machine has been suggested for several different

  11. Experimental Investigation – Magnetic Assisted Electro Discharge Machining

    Science.gov (United States)

    Kesava Reddy, Chirra; Manzoor Hussain, M.; Satyanarayana, S.; Krishna, M. V. S. Murali

    2018-04-01

    Emerging technology needs advanced machined parts with high strength and temperature resistance, high fatigue life at low production cost with good surface quality to fit into various industrial applications. Electro discharge machine is one of the extensively used machines to manufacture advanced machined parts which cannot be machined by other traditional machine with high precision and accuracy. Machining of DIN 17350-1.2080 (High Carbon High Chromium steel), using electro discharge machining has been discussed in this paper. In the present investigation an effort is made to use permanent magnet at various positions near the spark zone to improve surface quality of the machined surface. Taguchi methodology is used to obtain optimal choice for each machining parameter such as peak current, pulse duration, gap voltage and Servo reference voltage etc. Process parameters have significant influence on machining characteristics and surface finish. Improvement in surface finish is observed when process parameters are set at optimum condition under the influence of magnetic field at various positions.

  12. Planar rotational magnetic micromotors with integrated shaft encoder and magnetic rotor levitation

    Science.gov (United States)

    Guckel, Henry; Christenson, T. R.; Skrobis, K. J.; Klein, J.; Karnowsky, M.

    1994-01-01

    Deep x-ray lithography and electroplating may be combined to form a fabrication tool for micromechanical devices with large structural heights, to 500 micron, and extreme edge acuities, less than 0.1 micron-run-out per 100 micron of height. This process concept which originated in Germany as LIGA may be further extended by adding surface micromachining. This extension permits the fabrication of precision metal and plastic parts which may be assembled into three-dimensional micromechanical components and systems. The processing tool may be used to fabricate devices from ferromagnetic material such as nickel and nickel-iron alloys. These materials when properly heat treated exhibit acceptable magnetic behavior for current to flux conversion and marginal behavior for permanent magnet applications. The tool and materials have been tested via planar, magnetic, rotational micromotor fabrication. Three phase reluctance machines of the 6:4 configuration with 280 micron diameter rotors have been tested and analyzed. Stable rotational speeds to 34,000 rpm with output torques above 10 x 10(exp -9) N-m have been obtained. The behavior is monitored with integrated shaft encoders which are photodiodes which measure the rotor response. Magnetic levitation of the rotor via reluctance forces has been achieved and has reduced frictional torque losses to less than 1 percent of the available torque. The results indicate that high speed limits of these actuators are related to torque ripple. Hysteresis motors with magnetic bearings are under consideration and will produce high speed rotational machines with excellent sensor application potential.

  13. Experimental verification and analytical calculation of unbalanced magnetic force in permanent magnet machines

    Directory of Open Access Journals (Sweden)

    Kyung-Hun Shin

    2017-05-01

    Full Text Available In this study, an exact analytical solution based on Fourier analysis is proposed to compute the unbalanced magnetic force in a permanent magnet machine. The magnetic field solutions are obtained by using a magnetic vector potential and by selecting the appropriate boundary conditions. Based on these field solutions, the force characteristics are also determined analytically. All analytical results were extensively validated with nonlinear two-dimensional finite element analysis and experimental results. Using proposed method, we investigated the influence on the UMF according to machine parameters. Therefore, the proposed method should be very useful in initial design and optimization process of PM machines for UMF analysis.

  14. Theoretical and Experimental Research of Synchronous Reluctance Motor

    Science.gov (United States)

    Dobriyan, R.; Vitolina, S.; Lavrinovicha, L.; Dirba, J.

    2017-10-01

    The paper presents the research on evaluation of accuracy of magnetic field calculations of synchronous reluctance motor in comparison with the results obtained in experiments. Magnetic field calculations are performed with the finite element method to determine values of the magnetic flux and electromagnetic torque according to the current value in motor stator and load angle between the rotor direct-axis and axis of stator magnetomotive force (MMF). Experimental values of magnetic flux and electromagnetic torque are obtained on motor with locked rotor while equivalent direct current is applied to the stator windings. The research shows that the results obtained from the magnetic field calculations coincide well with the experimental data.

  15. Variable reluctance switch avoids contact corrosion and contact bounce

    Science.gov (United States)

    Watson, P. C.

    1967-01-01

    Variable reluctance switch avoids contact corrosion and bounce in a hostile environment. It consists of a wire-wound magnetic core and moveable bridge piece that alters the core flux pattern to produce an electrical output useful for switching control media.

  16. Rotor Position Estimation for Switched Reluctance Wind Generator Using Extreme Learning Machine

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Chen, Zhe

    2014-01-01

    Switched reluctance generator (SRG) is becoming more and more attractive in wind energy applications mainly because of its high fault tolerant ability and high reliability. The position sensor is one of the vulnerable points of the SRG when exposed to harsh environments such as offshore where man...

  17. In-situ magnetization of NdFeB magnets for permanent magnet machines

    International Nuclear Information System (INIS)

    Chang, L.; Eastham, T.R.; Dawson, G.E.

    1991-01-01

    In-situ magnetizers are needed to facilitate the assembly of permanent magnet machines and to remagnetize the magnets after weakening due to a fault condition. The air-core magnetizer in association with the silicon steel lamination structure of the rotor has advantages over its iron-core counterpart. This novel method has been used to magnetize the NdFeB magnets in a 30-hp permanent magnet synchronous motor. The magnetizing capability for different magnetizer geometries was investigated for the magnetization of NdFeB material. The design, testing, and operation of this magnetizer are reported in this paper

  18. Energy-based ferromagnetic material model with magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Steentjes, Simon, E-mail: simon.steentjes@iem.rwth-aachen.de [Institute of Electrical Machines - RWTH Aachen University, Schinkelstr. 4, D-52056 Aachen (Germany); Henrotte, François, E-mail: francois.henrotte@uclouvain.be [Institute of Mechanics Materials and Civil Engineering - UCL, Av. G. Lemaître 4-6, B-1348 Louvain-la-Neuve (Belgium); Hameyer, Kay [Institute of Electrical Machines - RWTH Aachen University, Schinkelstr. 4, D-52056 Aachen (Germany)

    2017-03-01

    Non-oriented soft magnetic materials are commonly assumed to be magnetically isotropic. However, due to the rolling process a preferred direction exists along the rolling direction. This uniaxial magnetic anisotropy, and the related magnetostriction effect, are critical to the accurate calculation of iron losses and magnetic forces in rotating electrical machines. This paper proposes an extension of an isotropic energy-based vector hysteresis model to account for these two effects. - Highlights: • Energy-based vector hysteresis model with magnetic anisotropy. • Two-scale model to account for pinning field distribution. • Pinning force and reluctivity are extended to anisotropic case.

  19. Speed control of switched reluctance motors taking into account mutual inductances and magnetic saturation effects

    International Nuclear Information System (INIS)

    Alrifai, M.; Zribi, M.; Rayan, M.; Krishnan, R.

    2010-01-01

    This paper deals with the speed control of switched reluctance motor (SRM) drives taking into account the effects of the mutual inductances between two adjacent phases and the effects of the magnetic saturation of the core. To overcome the problems commonly associated with single-phase excitation, a nonlinear SRM model, which is suitable for two-phase excitation and which takes into account the effects of mutual inductances between two adjacent phases and the magnetic saturation effects, is considered in the design of the proposed controllers. A feedback linearization control scheme and a sliding mode control scheme are designed for this motor drive. The proposed controllers guarantee the convergence of the phase currents and the rotor speed of the motor to their desired values. Simulation results indicate that the proposed controllers work well and that they are robust to changes in the parameters of the system and to changes in the load torque.

  20. Speed control of switched reluctance motors taking into account mutual inductances and magnetic saturation effects

    Energy Technology Data Exchange (ETDEWEB)

    Alrifai, M., E-mail: alrifm@eng.kuniv.edu.k [Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Zribi, M.; Rayan, M. [Electrical Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Krishnan, R. [Center for Rapid Transit Systems, Electrical and Computer Engineering Department, Virginia Tech University, 461 Durham Hall, Blacksburg, VA 24061-011 (United States)

    2010-06-15

    This paper deals with the speed control of switched reluctance motor (SRM) drives taking into account the effects of the mutual inductances between two adjacent phases and the effects of the magnetic saturation of the core. To overcome the problems commonly associated with single-phase excitation, a nonlinear SRM model, which is suitable for two-phase excitation and which takes into account the effects of mutual inductances between two adjacent phases and the magnetic saturation effects, is considered in the design of the proposed controllers. A feedback linearization control scheme and a sliding mode control scheme are designed for this motor drive. The proposed controllers guarantee the convergence of the phase currents and the rotor speed of the motor to their desired values. Simulation results indicate that the proposed controllers work well and that they are robust to changes in the parameters of the system and to changes in the load torque.

  1. Design Considerations of Permanent Magnet Transverse Flux Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    electrical machines. This paper addresses two important design considerations for PMTFM—the influence of permanent magnet leakage flux, which plays an important role in the determination of machine output torque, and the leakage inductance. A new simple method to provide a quick estimation of the armature......Permanent magnet transverse flux machine (PMTFM) is well known for its high torque density and is interested in various direct-drive applications. Due to its complicated 3-D flux components, design and design optimization of a PMTFM is more difficult and time consuming than for radial flux...

  2. Permanent magnet machines with air gap windings and integrated teeth windings

    Energy Technology Data Exchange (ETDEWEB)

    Alatalo, M [Chalmers Univ. of Technology, Goeteborg (Sweden). School of Electrical and Computer Engineering

    1996-06-01

    The Thesis deals with axial and radial flux permanent magnet machines with air gap windings and an integrated teeth winding. The aim is to develop a machine that produces a high torque per unit volume with as low losses as possible. The hypothesis is that an advanced three-phase winding, magnetized by a permanent magnet rotor should be better than other machine topologies. The finite element method is used to find favourable dimensions of the slotless winding, the integrated teeth winding and the permanent magnet rotor. Three machines were built and tested in order to verify calculations. It can be concluded that the analysis method shows good agreement with the calculated and the measured values of induced voltage and torque. The experiments showed that the slotless machine with NdFeB-magnets performs approximately like the slotted machine. A theoretical comparison of axial flux topology to radial flux topology showed that the torque production of the inner rotor radial flux machine is superior to that of the axial flux machine. An integrated teeth winding based on iron powder teeth glued to the winding was studied. The force density of a pole with integrated teeth is around three times the force density of a slotless pole. A direct drive wind power generator of 6.4 kW with integrated teeth can have the same power losses and magnet weight as a transversal flux machine. Compared to a standard induction machine the integrated teeth machine had approximately 2.5 times the power capacity of the induction machine with the same power losses and outer volume. 39 refs

  3. Optimum geometry for torque ripple minimization of switched reluctance motors

    NARCIS (Netherlands)

    Sahin, F.; Ertan, H.B.; Leblebicioglu, K.

    2000-01-01

    For switched reluctance motors, one of the major problems is torque ripple which causes increased undesirable acoustic noise and possibly speed ripple. This paper describes an approach to determine optimum magnetic circuit parameters to minimize low speed torque ripple for such motors. The

  4. Controller for the Machine-Side Power Converter of a 2kW Switched Reluctance Motor; Controlador del Convertidor Electronico de Potencia Lado Maquina de un Motor de Reluctancia Variable de 2kW

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, C.

    2006-07-01

    The ACE2 project deals with the development of a kynetic energy storage (KES) system for power peak shaving in high speed railway substations. This KES system consists in a double power converter which drives a switched reluctance machine (SRM) along with a flywheel operating in a wide speed range. This document presents from a technical point of view the features of the controller for the machine-side power converter of a 2kW SRM prototype. Hardware and software issues are treated in detail. (Author)

  5. Controller for the Machine-Side Power Converter of a 2kW Switched Reluctance Motor; Controlador del Convertidor Electronico de Potencia Lado Red de un Motor de Reluctancia Variable de 2kW

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, C.

    2006-12-19

    The ACE2 project deals with the development of a kynetic energy storage (KES) system for power peak shaving in high speed railway substations. This KES system consists in a double power converter which drives a switched reluctance machine (SRM) along with a flywheel operating in a wide speed range. This document presents from a technical point of view the features of the controller for the machine-side power converter of a 2kW SRM prototype. Hardware and software issues are treated in detail. (Author)

  6. Method of Relative Magnitudes for Calculating Magnetic Fluxes in Electrical Machine

    Directory of Open Access Journals (Sweden)

    Oleg A.

    2018-03-01

    Full Text Available Introduction: The article presents the study results of the model of an asynchronous electric motor carried out by the author within the framework of the Priorities Research Program “Research and development in the priority areas of development of Russia’s scientific and technical complex for 2014–2020”. Materials and Methods: A model of an idealized asynchronous machine (with sinusoidal distribution of magnetic induction in air gap is used in vector control systems. It is impossible to create windings for this machine. The basis of the new calculation approach was the Conductivity of Teeth Contours Method, developed at the Electrical Machines Chair of the Moscow Power Engineering Institute (MPEI. Unlike this method, the author used not absolute values, but relative magnitudes of magnetic fluxes. This solution fundamentally improved the method’s capabilities. The relative magnitudes of the magnetic fluxes of the teeth contours do not required the additional consideration for exact structure of magnetic field of tooth and adjacent slots. These structures are identical for all the teeth of the machine and differ only in magnitude. The purpose of the calculations was not traditional harmonic analysis of magnetic induction distribution in air gap of machine, but a refinement of the equations of electric machine model. The vector control researchers used only the cos(θ function as a value of mutual magnetic coupling coefficient between the windings. Results: The author has developed a way to take into account the design of the windings of a real machine by using imaginary measuring winding with the same winding design as a real phase winding. The imaginary winding can be placed in the position of any machine windings. The calculation of the relative magnetic fluxes of this winding helped to estimate the real values of the magnetic coupling coefficients between the windings, and find the correction functions for the model of an idealized

  7. Design and analysis of linear fault-tolerant permanent-magnet vernier machines.

    Science.gov (United States)

    Xu, Liang; Ji, Jinghua; Liu, Guohai; Du, Yi; Liu, Hu

    2014-01-01

    This paper proposes a new linear fault-tolerant permanent-magnet (PM) vernier (LFTPMV) machine, which can offer high thrust by using the magnetic gear effect. Both PMs and windings of the proposed machine are on short mover, while the long stator is only manufactured from iron. Hence, the proposed machine is very suitable for long stroke system applications. The key of this machine is that the magnetizer splits the two movers with modular and complementary structures. Hence, the proposed machine offers improved symmetrical and sinusoidal back electromotive force waveform and reduced detent force. Furthermore, owing to the complementary structure, the proposed machine possesses favorable fault-tolerant capability, namely, independent phases. In particular, differing from the existing fault-tolerant machines, the proposed machine offers fault tolerance without sacrificing thrust density. This is because neither fault-tolerant teeth nor the flux-barriers are adopted. The electromagnetic characteristics of the proposed machine are analyzed using the time-stepping finite-element method, which verifies the effectiveness of the theoretical analysis.

  8. Large-scale Ising-machines composed of magnetic neurons

    Science.gov (United States)

    Mizushima, Koichi; Goto, Hayato; Sato, Rie

    2017-10-01

    We propose Ising-machines composed of magnetic neurons, that is, magnetic bits in a recording track. In large-scale machines, the sizes of both neurons and synapses need to be reduced, and neat and smart connections among neurons are also required to achieve all-to-all connectivity among them. These requirements can be fulfilled by adopting magnetic recording technologies such as race-track memories and skyrmion tracks because the area of a magnetic bit is almost two orders of magnitude smaller than that of static random access memory, which has normally been used as a semiconductor neuron, and the smart connections among neurons are realized by using the read and write methods of these technologies.

  9. Design of large permanent magnetized synchronous electric machines: Low speed, high torque machines - generator for direct driven wind turbine - motor for rim driven thruster

    Energy Technology Data Exchange (ETDEWEB)

    Kroevel, Oeystein

    2011-02-15

    This work presents the design of two prototype permanent magnetized electric machines for two different applications where large permanent magnet machines might be used. Existing technology have been used as the fundament for new design and adapted to new applications, contributing, hopefully, to the development of better and more environmental friendly energy conversion. The first application presented is represented with a prototype made in cooperation with the industry in which a PM-motor is integrated into a propeller unit. Both because of the industrial connection, and the integration between the PM-motor and the propeller, the choices made for the PM-motor are conservative trying to reduce the risk. The direct rim driven thruster prototype includes a surface mounted radial flux permanent magnet machine (SM RFPM) with fractional slot winding with a q around 1. Other engineering features were introduced to make the integration of propeller and motor feasible, but without the PM-machine the thruster would not have reached the performance demand. An important part of the project was to show that the SM RFPM enables this solution, providing high performance with a large air gap. The prototype has been tested in sea, under harsh conditions, and even though the magnets have been exposed directly to sea water and been visible corroded, the electric motor still performs well within the specifications. The second application is represented with a prototype PM-generator for wind turbines. This is an example of a new, very low speed high torque machine. The generator is built to test phenomena regarding concentrated coils, and as opposed to the first application, being a pure academic university project, its success is not connected to its performance, but with the prototype's ability to expose the phenomena in question. The prototype, or laboratory model, of the generator for direct driven wind turbines features SM RFPM with concentrated coils (CC). An opportunity

  10. Filter Influence on Rotor Losses in Coreless Axial Flux Permanent Magnet Machines

    Directory of Open Access Journals (Sweden)

    SANTIAGO, J.

    2013-02-01

    Full Text Available This paper investigates the eddy current losses induced in the rotor of coreless Axial-Flux machines. The calculation of eddy currents in the magnets requires the simulation of the inverter and the filter to obtain the harmonic content of the stator currents and FEM analysis of the magnets in the rotor. Due to the low inductance in coreless machines, the induced eddy current losses in the rotor remain lower than in traditional slotted machines. If only machine losses are considered, filters in DC/AC converters are not required in machines with wide airgaps as time harmonic losses in the rotor are very low.The harmonic content both from simulations and experimental results of a DC/AC converter are used to calculate the eddy currents in the rotor magnets. The properties of coreless machine topologies are investigated and some simplifications are proposed for time efficient 3D-FEM analysis. The time varying magnetic field can be considered constant over the magnets when the pole is divided in several magnets.The simplified FEM method to calculate eddy current losses is applicable to coreless machines with poles split into several magnets, although the conclusions are applicable to all coreless and slotless motors and generators.

  11. Influence of magnet eddy current on magnetization characteristics of variable flux memory machine

    Science.gov (United States)

    Yang, Hui; Lin, Heyun; Zhu, Z. Q.; Lyu, Shukang

    2018-05-01

    In this paper, the magnet eddy current characteristics of a newly developed variable flux memory machine (VFMM) is investigated. Firstly, the machine structure, non-linear hysteresis characteristics and eddy current modeling of low coercive force magnet are described, respectively. Besides, the PM eddy current behaviors when applying the demagnetizing current pulses are unveiled and investigated. The mismatch of the required demagnetization currents between the cases with or without considering the magnet eddy current is identified. In addition, the influences of the magnet eddy current on the demagnetization effect of VFMM are analyzed. Finally, a prototype is manufactured and tested to verify the theoretical analyses.

  12. Torque characteristics of double-stator permanent magnet synchronous machines

    Directory of Open Access Journals (Sweden)

    Awah Chukwuemeka Chijioke

    2017-12-01

    Full Text Available The torque profile of a double-stator permanent magnet (PM synchronous machine of 90 mm stator diameter having different rotor pole numbers as well as dual excitation is investigated in this paper. The analysis includes a comparative study of the machine’s torque and power-speed curves, static torque and inductance characteristics, losses and unbalanced magnetic force. The most promising flux-weakening potential is revealed in 13- and 7-rotor pole machines. Moreover, the machines having different rotor/stator (Nr/Ns pole combinations of the form Nr = Ns ± 1 have balanced and symmetric static torque waveforms variation with the rotor position in contrast to the machines having Nr = Ns ± 2. Further, the inductance results of the analyzed machines reveal that the machines with odd rotor pole numbers have better fault-tolerant capability than their even rotor pole equivalents. A prototype of the developed double-stator machine having a 13-pole rotor is manufactured and tested for verification.

  13. Modeling demagnetization effects in permanent magnet synchronous machines

    NARCIS (Netherlands)

    Kral, C.; Sprangers, R.L.J.; Waarma, J.; Haumer, A.; Winter, O.; Lomonova, E.

    2010-01-01

    This paper presents a permanent magnet model which takes temperature dependencies and demagnetization effects into account. The proposed model is integrated into a magnetic fundamental wave machine model using the model- ing language Modelica. For different rotor types permanent magnet models are

  14. Hybrid-secondary uncluttered permanent magnet machine and method

    Science.gov (United States)

    Hsu, John S.

    2005-12-20

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  15. Rotating magnetizations in electrical machines: Measurements and modeling

    Science.gov (United States)

    Thul, Andreas; Steentjes, Simon; Schauerte, Benedikt; Klimczyk, Piotr; Denke, Patrick; Hameyer, Kay

    2018-05-01

    This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  16. I-f Starting and Active Flux Based Sensorless Vector Control of Reluctance Synchronous Motors, with Experiments

    DEFF Research Database (Denmark)

    Agarlita, Sorin-Christian; Fatu, M.; Tutelea, L. N.

    2010-01-01

    This paper presents a novel, hybrid, motion sensorless control of an axially laminated anisotropic (ALA) reluctance synchronous machine (RSM). By separately controlling Id and Iq currents with the reference currents Id*, Iq* being held constant, and ramping the reference frequency, the motor starts...

  17. OPTIMIZATION OF MAGNETIZATION AND MAGNATION REGIMES OF STOPPED THREE-PHASE SYNCHRONOUS MACHINE

    Directory of Open Access Journals (Sweden)

    V. A. VOLKOV

    2018-05-01

    Full Text Available Purpose. Investigation and optimization (minimization of electric energy losses in a stopped synchronous machine with a thyristor exciter under conditions of its magnetization and demagnetization. Methodology. Operator and variational calculus, mathematical analysis and simulation computer simulation. Findings. The mathematical description of the system under study is developed: "thyristor exciter – stopped synchronous machine", which represents the analytical dependencies for electromagnetic processes, as well as the total power and energy losses in the system under magnetization and demagnetization regimes of the synchronous machine. The optimal time functions for changing the flux linkages of the damper winding and the excitation current of the stopped synchronous machine, in which they are minimized by energy in the system under investigation when the machine is magnetized and demagnetized. The dependences of the total energy losses in the system under study on the durations of the magnetization and demagnetization times of the machine are calculated, and their comparison is compared for different types (linear, parabolic and proposed optimal of the trajectories of the change of the linkage, as well as for a linear and exponential change in the excitation current of the machine. Analytic dependencies are obtained using the calculations of electromagnetic and energy transient processes in the "thyristor exciter – stopped synchronous machine" system under the considered types of variation of flux linkage and excitation current of the machine. Originality. It consists in finding the optimal trajectories of the time variation of the excitation current of a stopped synchronous machine and the optimal durations of its magnetization and demagnetization times, which ensure minimization of energy losses in the system "thyristor exciter – stopped synchronous machine". Practical value. It consists in reducing unproductive energy losses in

  18. Fourier decomposition of segmented magnets with radial magnetization in surface-mounted PM machines

    Science.gov (United States)

    Tiang, Tow Leong; Ishak, Dahaman; Lim, Chee Peng

    2017-11-01

    This paper presents a generic field model of radial magnetization (RM) pattern produced by multiple segmented magnets per rotor pole in surface-mounted permanent magnet (PM) machines. The magnetization vectors from either odd- or even-number of magnet blocks per pole are described. Fourier decomposition is first employed to derive the field model, and later integrated with the exact 2D analytical subdomain method to predict the magnetic field distributions and other motor global quantities. For the assessment purpose, a 12-slot/8-pole surface-mounted PM motor with two segmented magnets per pole is investigated by using the proposed field model. The electromagnetic performances of the PM machines are intensively predicted by the proposed magnet field model which include the magnetic field distributions, airgap flux density, phase back-EMF, cogging torque, and output torque during either open-circuit or on-load operating conditions. The analytical results are evaluated and compared with those obtained from both 2D and 3D finite element analyses (FEA) where an excellent agreement has been achieved.

  19. Axial flux permanent magnet brushless machines

    CERN Document Server

    Gieras, Jacek F; Kamper, Maarten J

    2008-01-01

    Axial Flux Permanent Magnet (AFPM) brushless machines are modern electrical machines with a lot of advantages over their conventional counterparts. They are being increasingly used in consumer electronics, public life, instrumentation and automation system, clinical engineering, industrial electromechanical drives, automobile manufacturing industry, electric and hybrid electric vehicles, marine vessels and toys. They are also used in more electric aircrafts and many other applications on larger scale. New applications have also emerged in distributed generation systems (wind turbine generators

  20. Rotating magnetizations in electrical machines: Measurements and modeling

    Directory of Open Access Journals (Sweden)

    Andreas Thul

    2018-05-01

    Full Text Available This paper studies the magnetization process in electrical steel sheets for rotational magnetizations as they occur in the magnetic circuit of electrical machines. A four-pole rotational single sheet tester is used to generate the rotating magnetic flux inside the sample. A field-oriented control scheme is implemented to improve the control performance. The magnetization process of different non-oriented materials is analyzed and compared.

  1. Numerical approach for optimum electromagnetic parameters of electrical machines used in vehicle traction applications

    International Nuclear Information System (INIS)

    Fodorean, D.; Giurgea, S.; Djerdir, A.; Miraoui, A.

    2009-01-01

    A large speed variation is an essential request in the automobile industry. In order to compete with diesel engines, the flux weakening technique has to be employed on the electrical machines. In this way, appropriate electromagnetic and geometrical parameters can give the desired speed. Using the inverse problem method coupled with numerical analysis by finite element method (FEM), the authors propose an optimum parameters configuration that maximizes the speed domain operation. Several types of electrical machines are under study: induction, synchronous permanent magnet, variable reluctance and transverse flux machines, respectively. With a proper non-linear model, by using analytical and numerical calculation, the authors propose an optimum solution for the speed variation of the studied drives, which will be standing for a final comparison.

  2. Magnetic Decoupling Design and Experimental Validation of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine for HEVs

    Directory of Open Access Journals (Sweden)

    Zhiyi Song

    2012-10-01

    Full Text Available The radial-radial flux compound-structure permanent-magnet synchronous machine (CS-PMSM, integrated by two concentrically arranged permanent-magnet electric machines, is an electromagnetic power-splitting device for hybrid electric vehicles (HEVs. As the two electric machines share a rotor as structural and magnetic common part, their magnetic paths are coupled, leading to possible mutual magnetic-field interference and complex control. In this paper, a design method to ensure magnetic decoupling with minimum yoke thickness of the common rotor is investigated. A prototype machine is designed based on the proposed method, and the feasibility of magnetic decoupling and independent control is validated by experimental tests of mutual influence. The CS-PMSM is tested by a designed driving cycle, and functions to act as starter motor, generator and to help the internal combustion engine (ICE operate at optimum efficiency are validated.

  3. An automated coil winding machine for the SSC dipole magnets

    International Nuclear Information System (INIS)

    Kamiya, S.; Iwase, T.; Inoue, I.; Fukui, I.; Ishida, K.; Kashiwagi, S.; Sato, Y.; Yoshihara, T.; Yamamoto, S.; Johnson, E.; Gibson, C.

    1990-01-01

    The authors have finished the preliminary design of a fully automated coil winding machine that can be used to manufacture the large number of SSC dipole magnets. The machine aims to perform all coil winding operations including coil parts inserting without human operators at a high productive rate. The machine is composed of five industrial robots. In order to verify the design, they built a small winding machine using an industrial robot and successfully wound a 1 meter long coil using SSC dipole magnet wire. The basic design for the full length coil and the robot winding technique are described in this paper. A fully automated coil winding machine using standard industrial components would be very useful if duplicate production lines are used. 5 figs., 1 tab

  4. A Review on Parametric Analysis of Magnetic Abrasive Machining Process

    Science.gov (United States)

    Khattri, Krishna; Choudhary, Gulshan; Bhuyan, B. K.; Selokar, Ashish

    2018-03-01

    The magnetic abrasive machining (MAM) process is a highly developed unconventional machining process. It is frequently used in manufacturing industries for nanometer range surface finishing of workpiece with the help of Magnetic abrasive particles (MAPs) and magnetic force applied in the machining zone. It is precise and faster than conventional methods and able to produce defect free finished components. This paper provides a comprehensive review on the recent advancement of MAM process carried out by different researcher till date. The effect of different input parameters such as rotational speed of electromagnet, voltage, magnetic flux density, abrasive particles size and working gap on the performances of Material Removal Rate (MRR) and surface roughness (Ra) have been discussed. On the basis of review, it is observed that the rotational speed of electromagnet, voltage and mesh size of abrasive particles have significant impact on MAM process.

  5. Switched reluctance motor drives

    Indian Academy of Sciences (India)

    Davis RM, Ray WF, Blake RJ 1981 Inverter drive for switched reluctance: circuits and component ratings. Inst. Elec. Eng. Proc. B128: 126-136. Ehsani M. 1991 Position Sensor elimination technique for the switched reluctance motor drive. US Patent No. 5,072,166. Ehsani M, Ramani K R 1993 Direct control strategies based ...

  6. Comparitive study of the influence of harmonic voltage distortion on the efficiency of induction machines versus line start permanent magnet machines

    OpenAIRE

    Debruyne, Colin; Derammelaere, Stijn; Desmet, Jan; Vandevelde, Lieven

    2012-01-01

    Induction machines have nearly reached their maximal efficiency. In order to further increase the efficiency the use of permanent magnets in combination with the robust design of the induction machine is being extensively researched. These so-called line start permanent magnet machines have an increased efficiency in sine wave conditions in respect to standard induction machines, however the efficiency of these machines is less researched under distorted voltage conditions. This paper compare...

  7. A novel excitation assistance switched reluctance wind power generator

    DEFF Research Database (Denmark)

    Liu, Xiao; Park, Kiwoo; Chen, Zhe

    2014-01-01

    The high inductance of a general switched reluctance generator (SRG) may prevent the excitation of the magnetic field from being quickly established enough, which may further limit the output power of the SRG. A novel excitation assistance SRG (EASRG) for wind power generation is proposed...... in this paper to solve the above problem. C-shape stator cores are employed in a modular design concept for quick maintenance or replacement, and a ring-shape excitation assistant coil is sandwiched in the space between the modular stator cores. The magnetization and torque characteristics are simulated by 3-D...

  8. Detection of Eccentricity Faults in Five-Phase Ferrite-PM Assisted Synchronous Reluctance Machines

    Directory of Open Access Journals (Sweden)

    Carlos López-Torres

    2017-05-01

    Full Text Available Air gap eccentricity faults in five-phase ferrite-assisted synchronous reluctance motors (fPMa-SynRMs tend to distort the magnetic flux in the air gap, which in turn affects the spectral content of both the stator currents and the ZSVC (zero-sequence voltage component. However, there is a lack of research dealing with the topic of fault diagnosis in multi-phase PMa-SynRMs, and in particular, those focused on detecting eccentricity faults. An analysis of the spectral components of the line currents and the ZSVC allows the development of fault diagnosis algorithms to detect eccentricity faults. The effect of the operating conditions is also analyzed, since this paper shows that it has a non-negligible impact on the effectivity and sensitivity of the diagnosis based on an analysis of the stator currents and the ZSVC. To this end, different operating conditions are analyzed. The paper also evaluates the influence of the operating conditions on the harmonic content of the line currents and the ZSVC, and determines the most suitable operating conditions to enhance the sensitivity of the analyzed methods. Finally, fault indicators employed to detect eccentricity faults, which are based on the spectral content of the stator currents and the ZSVC, are derived and their performance is assessed. The approach presented in this work may be useful for developing fault diagnosis strategies based on the acquisition and subsequent analysis and interpretation of the spectral content of the line currents and the ZSVC.

  9. Correction magnet power supplies for APS machine

    International Nuclear Information System (INIS)

    Kang, Y.G.

    1991-04-01

    A number of correction magnets are required for the advanced photon source (APS) machine to correct the beam. There are five kinds of correction magnets for the storage ring, two for the injector synchrotron, and two for the positron accumulator ring (PAR). Table I shoes a summary of the correction magnet power supplies for the APS machine. For the storage ring, the displacement of the quadrupole magnets due to the low frequency vibration below 25 Hz has the most significant effect on the stability of the positron closed orbit. The primary external source of the low frequency vibration is the ground motion of approximately 20 μm amplitude, with frequency components concentrated below 10 Hz. These low frequency vibrations can be corrected by using the correction magnets, whose field strengths are controlled individually through the feedback loop comprising the beam position monitoring system. The correction field require could be either positive or negative. Thus for all the correction magnets, bipolar power supplies (BPSs) are required to produce both polarities of correction fields. Three different types of BPS are used for all the correction magnets. Type I BPSs cover all the correction magnets for the storage ring, except for the trim dipoles. The maximum output current of the Type I BPS is 140 Adc. A Type II BPS powers a trim dipole, and its maximum output current is 60 Adc. The injector synchrotron and PAR correction magnets are powered form Type III BPSs, whose maximum output current is 25 Adc

  10. Magnetic Flux Distribution of Linear Machines with Novel Three-Dimensional Hybrid Magnet Arrays

    Directory of Open Access Journals (Sweden)

    Nan Yao

    2017-11-01

    Full Text Available The objective of this paper is to propose a novel tubular linear machine with hybrid permanent magnet arrays and multiple movers, which could be employed for either actuation or sensing technology. The hybrid magnet array produces flux distribution on both sides of windings, and thus helps to increase the signal strength in the windings. The multiple movers are important for airspace technology, because they can improve the system’s redundancy and reliability. The proposed design concept is presented, and the governing equations are obtained based on source free property and Maxwell equations. The magnetic field distribution in the linear machine is thus analytically formulated by using Bessel functions and harmonic expansion of magnetization vector. Numerical simulation is then conducted to validate the analytical solutions of the magnetic flux field. It is proved that the analytical model agrees with the numerical results well. Therefore, it can be utilized for the formulation of signal or force output subsequently, depending on its particular implementation.

  11. Preisach hysteresis implementation in reluctance network method, comparison with finite element method

    OpenAIRE

    Allag , Hicham; Kedous-Lebouc , Afef; Latreche , Mohamed E. H.

    2008-01-01

    International audience; In this work, an implementation of static magnetic hysteresis in the reluctance network method is presented and its effectiveness is demonstrated. This implementation is achieved by a succession of iterative steps in the form of algorithm explained and developed for simple examples. However it remains valid for any magnetic circuit. The results obtained are compared to those given by finite element method simulation and essentially the effect of relaxation is discussed...

  12. Electrical Machines Laminations Magnetic Properties: A Virtual Instrument Laboratory

    Science.gov (United States)

    Martinez-Roman, Javier; Perez-Cruz, Juan; Pineda-Sanchez, Manuel; Puche-Panadero, Ruben; Roger-Folch, Jose; Riera-Guasp, Martin; Sapena-Baño, Angel

    2015-01-01

    Undergraduate courses in electrical machines often include an introduction to their magnetic circuits and to the various magnetic materials used in their construction and their properties. The students must learn to be able to recognize and compare the permeability, saturation, and losses of these magnetic materials, relate each material to its…

  13. A Novel Cogging Torque Simulation Method for Permanent-Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Chun-Yu Hsiao

    2011-12-01

    Full Text Available Cogging torque exists between rotor mounted permanent magnets and stator teeth due to magnetic attraction and this is an undesired phenomenon which produces output ripple, vibration and noise in machines. The purpose of this paper is to study the existence and effects of cogging torque, and to present a novel, rapid, half magnet pole pair technique for forecasting and evaluating cogging torque. The technique uses the finite element method as well as Matlab research and development oriented software tools to reduce numerous computing jobs and simulation time. An example of a rotor-skewed structure used to reduce cogging torque of permanent magnet synchronous machines is evaluated and compared with a conventional analysis method for the same motor to verify the effectiveness of the proposed approach. The novel method is proved valuable and suitable for large-capacity machine design.

  14. Permanent-magnet motor with two-part rotor for wide speed range

    International Nuclear Information System (INIS)

    Baines, G.D.; Chalmers, B.J.; Akmese, R.

    1998-01-01

    The paper describes a synchronous motor with a two-part rotor comprising a surface-magnet part and a reluctance part mounted adjacent to each other on the same axis. Machine parameters and physical design details are selected in order to obtain constant-power characteristics over a 3:1 speed range by field-weakening. Test results demonstrate the achievement of the desired characteristics, in good agreement with computed predictions. (orig.)

  15. Finite element analysis and performance study of switched reluctance generator

    Science.gov (United States)

    Zhang, Qianhan; Guo, Yingjun; Xu, Qi; Yu, Xiaoying; Guo, Yajie

    2017-03-01

    Analyses a three-phase 12/8 switched reluctance generator (SRG) which is based on its structure and performance principle. The initial size data were calculated by MathCAD, and the simulation model was set up in the ANSOFT software environment with the maximum efficiency and the maximum output power as the main reference parameters. The outer diameter of the stator and the inner diameter of the rotor were parameterized. The static magnetic field distribution, magnetic flux, magnetic energy, torque, inductance characteristics, back electromotive force and phase current waveform of SRG is obtained by analyzing the static magnetic field and the steady state motion of two-dimensional transient magnetic field in ANSOFT environment. Finally, the experimental data of the prototype are compared with the simulation results, which provide a reliable basis for the design and research of SRG wind turbine system.

  16. Fault detection of a Five-Phase Permanent-Magnet Machine

    DEFF Research Database (Denmark)

    Bianchini, Claudio; Matzen, Torben N.; Bianchi, Nicola

    2008-01-01

    The paper focuses on the fault detection of a five-phase Permanent-Magnet (PM) machine. This machine has been de-signed for fault tolerant applications, and it is characterised by a mutual inductance equal to zero and a high self inductance, with the purpose to limit the short circuit current...

  17. Design Analysis of a Dual Rotor Permanent Magnet Machine driven Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Izzat Bin Zainuddin Mohd

    2018-01-01

    Full Text Available Electric bike in urban countries such as Europe and China commonly used the brushless direct current machine (BLDC as it able to produce high torque to transport the user from one place to another. However, BLDC torque density can’t be improving due to limitation magnetic flux generated by the permanent magnet. Therefore, the performance of electric bike can’t be improved. Outer rotor BLDC machine design able to improve the torque density of the motor due to increase radius of the motor which can be explained by simple physics equation (Torque = Force x radius. However, an outer rotor machine only generates constant speed, which is not suitable for operating under tractive load condition, especially electric bike. The proposed model is a new novel of double layer outer rotor BLDCPM machine which able to amplify the magnetic flux density and improve the torque density of the machine. The mutual magnetic coupling between the inner and outer rotor of the proposed model increase the magnetic flux intensity as both of them acts as individual parts. Thus, the magnetic flux generated by both rotors are double which resulted in improving the performance of the E-bike. Designing parameters and analysing the performance of the proposed 2D model is done using FEA tools. Evaluation of the conventional and proposed model by comparing torque performance, magnetic flux density and motor constant square density. Other than that, speed torque graph also is evaluated to justify either it can operate similarly to ICE engine with gears. Two model is designed which is Single Outer Rotor Brushless Direct Current (SORBLDC and Double Outer Rotor Brushless Direct Current (DORBLDC operated with the same cases of 27 Amp current supplied to it and operate under various speed from 500 rpm to 2000 rpm. The average torque produce by the conventional and proposed model are 2.045439 Nm and 3.102648 Nm. Furthermore, improvement of the proposed model to conventional model in

  18. Machine grading of lumber : practical concerns for lumber producers

    Science.gov (United States)

    William L. Galligan; Kent A. McDonald

    2000-01-01

    Machine lumber grading has been applied in commercial operations in North America since 1963, and research has shown that machine grading can improve the efficient use of wood. However, industry has been reluctant to apply research findings without clear evidence that the change from visual to machine grading will be a profitable one. For instance, mill managers need...

  19. FreedomCAR Advanced Traction Drive Motor Development Phase I

    Energy Technology Data Exchange (ETDEWEB)

    Ley, Josh (UQM Technologies, Inc.); Lutz, Jon (UQM Technologies, Inc.)

    2006-09-01

    The overall objective of this program is to design and develop an advanced traction motor that will meet the FreedomCAR and Vehicle Technologies (FCVT) 2010 goals and the traction motor technical targets. The motor specifications are given in Section 1.3. Other goals of the program include providing a cost study to ensure the motor can be developed within the cost targets needed for the automotive industry. The program has focused on using materials that are both high performance and low costs such that the performance can be met and cost targets are achieved. In addition, the motor technologies and machine design features must be compatible with high volume manufacturing and able to provide high reliability, efficiency, and ruggedness while simultaneously reducing weight and volume. Weight and volume reduction will become a major factor in reducing cost, material cost being the most significant part of manufacturing cost at high volume. Many motor technology categories have been considered in the past and present for traction drive applications, including: brushed direct current (DC), PM (PM) brushless dc (BLDC), alternating current (AC) induction, switched reluctance and synchronous reluctance machines. Of these machine technologies, PM BLDC has consistently demonstrated an advantage in terms of power density and efficiency. As rare earth magnet cost has declined, total cost may also be reduced over the other technologies. Of the many different configurations of PM BLDC machines, those which incorporate power production utilizing both magnetic torque as well as reluctance torque appear to have the most promise for traction applications. There are many different PM BLDC machine configurations which employ both of these torque producing mechanisms; however, most would fall into one of two categories--some use weaker magnets and rely more heavily on reluctance torque (reluctance-dominant PM machines), others use strong PMs and supplement with reluctance torque

  20. Tooth-coil permanent magnet synchronous machine design for special applications

    Energy Technology Data Exchange (ETDEWEB)

    Ponomarev, P.

    2013-11-01

    This doctoral thesis presents a study on the design of tooth-coil permanent magnet synchronous machines. The electromagnetic properties of concentrated non-overlapping winding permanent magnet synchronous machines, or simply tooth-coil permanent magnet synchronous machines (TC-PMSMs), are studied in details. It is shown that current linkage harmonics play the deterministic role in the behavior of this type of machines. Important contributions are presented as regards of calculation of parameters of TC-PMSMs,particularly the estimation of inductances. The current linkage harmonics essentially define the air-gap harmonic leakage inductance, rotor losses and localized temporal inductance variation. It is proven by FEM analysis that inductance variation caused by the local temporal harmonic saturation results in considerable torque ripple, and can influence on sensorless control capabilities. Example case studies an integrated application of TC-IPMSMs in hybrid off-highway working vehicles. A methodology for increasing the efficiency of working vehicles is introduced. It comprises several approaches - hybridization, working operations optimization, component optimization and integration. As a result of component optimization and integration, a novel integrated electro-hydraulic energy converter (IEHEC) for off-highway working vehicles is designed. The IEHEC can considerably increase the operational efficiency of a hybrid working vehicle. The energy converter consists of an axial-piston hydraulic machine and an integrated TCIPMSM being built on the same shaft. The compact assembly of the electrical and hydraulic machines enhances the ability to find applications for such a device in the mobile environment of working vehicles.Usage of hydraulic fluid, typically used in working actuators, enables direct-immersion oil cooling of designed electrical machine, and further increases the torque- and power- densities of the whole device. (orig.)

  1. Sixth international conference on electrical machines and drives

    International Nuclear Information System (INIS)

    1993-01-01

    This volume contains 111 papers presented at the Sixth International Conference on Electrical Machines and Drives. The topics covered include: miniature and micro motors; induction motors; DC machines; reluctance motors; condition monitoring; synchronous machines and drives; induction machines; induction generators; simulation; design; and operating experience; linear machines; noise and vibration; special machines. Separate abstracts have been prepared for a paper on linear step motors for control rod drives and for a paper on a motor drive for gas filtration in gas-cooled reactors. (UK)

  2. Análisis por medio de la simulación de un accionamiento con motor de reluctancia conmutada; Analysis by Means of Simulation of a Switched Reluctance Machines Drive

    Directory of Open Access Journals (Sweden)

    Javier Muñoz Álvarez

    2011-02-01

    Full Text Available Se presentan los fundamentos teóricos que modelan el comportamiento de los motores de reluctancia conmutaday sus accionamientos. Se exponen las características constructivas generales, las ecuaciones diferencialesque constituyen el modelo matemático del motor y se describen los bloques en Simulink utilizados para lasimulación. El sistema modular se valida comparando el comportamiento de las variables de salida con señalesobtenidas experimentalmente. Es empleado, además, para realizar diversos estudios sobre la instalación. Losresultados obtenidos en cada corrida son reflejados y se exponen las condiciones de operación y la explicaciónteórica de lo obtenido.  This paper presents the theoretical basis that models the behavior of The switched reluctance machines andtheir drives. The general characteristics, the differential equation system that constitutes the mathematicalmodel of the motor and the Simulink's blocks, which have been built for running the simulation, are outlined. Theresults of the simulation have been shown and compared with those obtained experimentally. The Simulinkmodel is used for studying the Switched Reluctance motor drive behavior under some operation conditions andtheoretical explanations for the simulation's results are given in every case.

  3. Comparison of stator-mounted permanent-magnet machines based on a general power equation

    DEFF Research Database (Denmark)

    Chen, Zhe; Hua, Wei; Cheng, Ming

    2009-01-01

    The stator-mounted permanent-magnet (SMPM) machines have some advantages compared with its counterparts, such as simple rotor, short winding terminals, and good thermal dissipation conditions for magnets. In this paper, a general power equation for three types of SMPM machine is introduced first...

  4. Comparison of capabilities of reluctance synchronous motor and induction motor

    International Nuclear Information System (INIS)

    Stumberger, Gorazd; Hadziselimovic, Miralem; Stumberger, Bojan; Miljavec, Damijan; Dolinar, Drago; Zagradisnik, Ivan

    2006-01-01

    This paper compares the capabilities of a reluctance synchronous motor (RSM) with those of an induction motor (IM). An RSM and IM were designed and made, with the same rated power and speed. They differ only in the rotor portion while their stators, housings and cooling systems are identical. The capabilities of both motors in a variable speed drive are evaluated by comparison of the results obtained by magnetically nonlinear models and by measurements

  5. High speed internal permanent magnet machine and method of manufacturing the same

    Science.gov (United States)

    Alexander, James Pellegrino [Ballston Lake, NY; EL-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Lokhandwalla, Murtuza [Clifton Park, NY; Shah, Manoj Ramprasad [Latham, NY; VanDam, Jeremy Daniel [West Coxsackie, NY

    2011-09-13

    An internal permanent magnet (IPM) machine is provided. The IPM machine includes a stator assembly and a stator core. The stator core also includes multiple stator teeth. The stator assembly is further configured with stator windings to generate a magnetic field when excited with alternating currents and extends along a longitudinal axis with an inner surface defining a cavity. The IPM machine also includes a rotor assembly and a rotor core. The rotor core is disposed inside the cavity and configured to rotate about the longitudinal axis. The rotor assembly further includes a shaft. The shaft further includes multiple protrusions alternately arranged relative to multiple bottom structures provided on the shaft. The rotor assembly also includes multiple stacks of laminations disposed on the protrusions and dovetailed circumferentially around the shaft. The rotor assembly further includes multiple permanent magnets for generating a magnetic field, which interacts with the stator magnetic field to produce torque. The permanent magnets are disposed between the stacks. The rotor assembly also includes multiple bottom wedges disposed on the bottom structures of the shaft and configured to hold the multiple stacks and the multiple permanent magnets.

  6. Magnet losses in inverter-fed two-pole PM machines

    DEFF Research Database (Denmark)

    Gonzalez, Adolfo Garcia; Millinger, J.; Soulard, J.

    2016-01-01

    This article deals with the estimation of magnet losses in a permanent-magnet motor inserted in a nut-runner. This type of machine has interesting features such as being two-pole, slot-less and running at a high speed (30000 rpm). Two analytical models were chosen from the literature. A numerical...

  7. Permanent Magnet Flux-Switching Machine, Optimal Design and Performance Analysis

    Directory of Open Access Journals (Sweden)

    Liviu Emilian Somesan

    2013-01-01

    Full Text Available In this paper an analytical sizing-design procedure for a typical permanent magnet flux-switching machine (PMFSM with 12 stator and respectively 10 rotor poles is presented. An optimal design, based on Hooke-Jeeves method with the objective functions of maximum torque density, is performed. The results were validated via two dimensions finite element analysis (2D-FEA applied on the optimized structure. The influence of the permanent magnet (PM dimensions and type, respectively of the rotor poles' shape on the machine performance were also studied via 2D-FEA.

  8. A Novel 100 kW Power Hardware-in-the-Loop Emulation Test Bench for Permanent Magnet Synchronous Machines with Nonlinear Magnetics

    OpenAIRE

    Schmitt, Alexander; Richter, Jan; Gommeringer, Mario; Wersal, Thomas; Braun, Michael

    2016-01-01

    This paper presents a high dynamic power hardware-inthe-loop (PHIL) emulation test bench to mimic arbitrary permanent magnet synchronous machines with nonlinear magnetics. The proposed PHIL test bench is composed of a high performance real-time simulation system to calculate the machine behaviour and a seven level modular multiphase multilevel converter to emulate the power flow of the virtual machine. The PHIL test bench is parametrized for an automotive synchronous machine and controlled by...

  9. Permanent-magnet-less synchronous reluctance system

    Science.gov (United States)

    Hsu, John S

    2012-09-11

    A permanent magnet-less synchronous system includes a stator that generates a magnetic revolving field when sourced by an alternating current. An uncluttered rotor is disposed within the magnetic revolving field and spaced apart from the stator to form an air gap relative to an axis of rotation. The rotor includes a plurality of rotor pole stacks having an inner periphery biased by single polarity of a north-pole field and a south-pole field, respectively. The outer periphery of each of the rotor pole stacks are biased by an alternating polarity.

  10. Application of rare-earth magnets in high-performance electric machines

    International Nuclear Information System (INIS)

    Ramsden, V.S.

    1998-01-01

    Some state of the art developments of high-performance machines using rare-earth magnets are reviewed with particular examples drawn from a number of novel machine designs developed jointly by the Faculty of Engineering, University of Technology, Sydney (UTS) and CSIRO Telecommunications and Industrial Physics. These designs include an 1800 W, 1060 rev/min, 98% efficient solar car in-wheel motor using a Halbach magnet array, axial flux, and ironless winding; a 1200 W, 3000 rev/min, 91% efficient solar-powered, water-filled, submersible, bore-hole pump motor using a surface magnet rotor; a 500 W, 10000 rev/min, 87% efficient, oil-filled, oil-well tractor motor using a 2-pole cylindrical magnet rotor and slotless winding; a 75 kW, 48000 rev/min, 97% efficient, high-speed compressor drive with 2-pole cylindrical magnet rotor, slotted stator, and refrigerant cooling; and a 20 kW, 211 rev/min, 87% efficient, direct-drive generator for wind turbines with very low starting torque using an outer rotor with surface magnets and a slotted stator. (orig.)

  11. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Guendogdu, Tayfun, E-mail: tgundogdu@itu.edu.tr [Istanbul Technical University, Department of Electrical Engineering, Ayazaga Campus, 34469 Maslak/Istanbul (Turkey); Koemuergoez, Gueven, E-mail: komurgoz@itu.edu.tr [Istanbul Technical University, Department of Electrical Engineering, Ayazaga Campus, 34469 Maslak/Istanbul (Turkey)

    2012-08-15

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted. - Highlights: Black-Right-Pointing-Pointer Importance of the design of electrical machines and the determination of criteria are emphasized. Black-Right-Pointing-Pointer Machines were investigated in terms of

  12. Technological and economical analysis of salient pole and permanent magnet synchronous machines designed for wind turbines

    International Nuclear Information System (INIS)

    Gündoğdu, Tayfun; Kömürgöz, Güven

    2012-01-01

    Chinese export restrictions already reduced the planning reliability for investments in permanent magnet wind turbines. Today the production of permanent magnets consumes the largest proportion of rare earth elements, with 40% of the rare earth-based magnets used for generators and other electrical machines. The cost and availability of NdFeB magnets will likely determine the production rate of permanent magnet generators. The high volatility of rare earth metals makes it very difficult to quote a price. Prices may also vary from supplier to supplier to an extent of up to 50% for the same size, shape and quantity with a minor difference in quality. The paper presents the analysis and the comparison of salient pole with field winding and of peripheral winding synchronous electrical machines, presenting important advantages. A neodymium alloy magnet rotor structure has been considered and compared to the salient rotor case. The Salient Pole Synchronous Machine and the Permanent Magnet Synchronous Machine were designed so that the plate values remain constant. The Eddy current effect on the windings is taken into account during the design, and the efficiency, output power and the air-gap flux density obtained after the simulation were compared. The analysis results clearly indicate that Salient Pole Synchronous Machine designs would be attractive to wind power companies. Furthermore, the importance of the design of electrical machines and the determination of criteria are emphasized. This paper will be a helpful resource in terms of examination and comparison of the basic structure and magnetic features of the Salient Pole Synchronous Machine and Permanent Magnet Synchronous Machine. Furthermore, an economic analysis of the designed machines was conducted. - Highlights: ► Importance of the design of electrical machines and the determination of criteria are emphasized. ► Machines were investigated in terms of efficiency, weight and maintenance requirements. ► An

  13. Investigation of Anisotropic Bonded Magnets in Permanent Magnet Machine Applications

    Science.gov (United States)

    Khazdozian, H. A.; McCall, S. K.; Kramer, M. J.; Paranthaman, M. P.; Nlebedim, I. C.

    Rare earth elements (REE) provide the high energy product necessary for permanent magnets, such as sintered Nd2Fe14B, in many applications like wind energy generators. However, REEs are considered critical materials due to risk in their supply. To reduce the use of critical materials in permanent magnet machines, the performance of anisotropic bonded NdFeB magnets, aligned under varying magnetic field strength, was simulated using 3D finite element analysis in a 3MW direct-drive permanent magnet generator (DDPMG), with sintered N42 magnets used as a baseline for comparison. For direct substitution of the anisotropic bonded magnets, approximately 85% of the efficiency of the baseline model was achieved, irrespective of the alignment field. The torque and power generation of the DDPMG was not found to vary significantly with increase in the alignment field. Finally, design changes were studied to allow for the achievement of rated torque and power with the use of anisotropic bonded magnets, demonstrating the potential for reduction of critical materials in permanent magnets for renewable energy applications. This work was supported by the Critical Materials Institute, an Energy Innovation Hub funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Advanced Manufacturing Office.

  14. A double-sided linear primary permanent magnet vernier machine.

    Science.gov (United States)

    Du, Yi; Zou, Chunhua; Liu, Xianxing

    2015-01-01

    The purpose of this paper is to present a new double-sided linear primary permanent magnet (PM) vernier (DSLPPMV) machine, which can offer high thrust force, low detent force, and improved power factor. Both PMs and windings of the proposed machine are on the short translator, while the long stator is designed as a double-sided simple iron core with salient teeth so that it is very robust to transmit high thrust force. The key of this new machine is the introduction of double stator and the elimination of translator yoke, so that the inductance and the volume of the machine can be reduced. Hence, the proposed machine offers improved power factor and thrust force density. The electromagnetic performances of the proposed machine are analyzed including flux, no-load EMF, thrust force density, and inductance. Based on using the finite element analysis, the characteristics and performances of the proposed machine are assessed.

  15. Method for providing slip energy control in permanent magnet electrical machines

    Science.gov (United States)

    Hsu, John S.

    2006-11-14

    An electric machine (40) has a stator (43), a permanent magnet rotor (38) with permanent magnets (39) and a magnetic coupling uncluttered rotor (46) for inducing a slip energy current in secondary coils (47). A dc flux can be produced in the uncluttered rotor when the secondary coils are fed with dc currents. The magnetic coupling uncluttered rotor (46) has magnetic brushes (A, B, C, D) which couple flux in through the rotor (46) to the secondary coils (47c, 47d) without inducing a current in the rotor (46) and without coupling a stator rotational energy component to the secondary coils (47c, 47d). The machine can be operated as a motor or a generator in multi-phase or single-phase embodiments and is applicable to the hybrid electric vehicle. A method of providing a slip energy controller is also disclosed.

  16. System and method for preventing stator permanent magnet demagnetization during vacuum pressure impregnation

    Science.gov (United States)

    Raminosoa, Tsarafidy; Alexander, James Pellegrino; EL-Refaie, Ayman Mohamed Fawzi

    2017-06-06

    A permanent magnet electrical machine includes a stator having conductive windings wound thereon and one or more permanent magnets embedded in the stator. A magnetic keeper element is positioned on the stator so as to form a magnetic flux path with the permanent magnets, with the magnetic keeper element closing the magnetic flux path of the permanent magnets by providing a low reluctance flux path to magnetic flux generated by the permanent magnets. A vacuum pressure impregnation (VPI) process is performed on the stator to increase a thermal conductivity of the windings, with the VPI process including a curing step that is performed at a selected temperature. The magnetic keeper element sets an operating point of the permanent magnets to an internal flux density level above a demagnetization threshold associated with the selected temperature at which the curing step is performed.

  17. Research on an Axial Magnetic-Field-Modulated Brushless Double Rotor Machine

    Directory of Open Access Journals (Sweden)

    Bin Yu

    2013-09-01

    Full Text Available Double rotor machine, an electronic continuously variable transmission, has great potential in application of hybrid electric vehicles (HEVs, wind power and marine propulsion. In this paper, an axial magnetic-field-modulated brushless double rotor machine (MFM-BDRM, which can realize the speed decoupling between the shaft of the modulating ring rotor and that of the permanent magnet rotor is proposed. Without brushes and slip rings, the axial MFM-BDRM offers significant advantages such as excellent reliability and high efficiency. Since the number of pole pairs of the stator is not equal to that of the permanent magnet rotor, which differs from the traditional permanent magnet synchronous machine, the operating principle of the MFM-BDRM is deduced. The relations of corresponding speed and toque transmission are analytically discussed. The cogging toque characteristics, especially the order of the cogging torque are mathematically formulated. Matching principle of the number of pole pairs of the stator, that of the permanent magnet rotor and the number of ferromagnetic pole pieces is inferred since it affects MFM-BDRM’s performance greatly, especially in the respect of the cogging torque and electromagnetic torque ripple. The above analyses are assessed with the three-dimensional (3D finite-element method (FEM.

  18. Energy-Based Adaptive Sliding Mode Speed Control for Switched Reluctance Motor Drive

    Directory of Open Access Journals (Sweden)

    M. M. Namazi Isfahani

    2012-03-01

    Full Text Available Torque ripple minimization of switched reluctance motor drives is a major subject based on these drives’ extensive use in the industry. In this paper, by using a well-known cascaded torque control structure and taking the machine physical structure characteristics into account, the proposed energy-based (passivity-based adaptive sliding algorithm derived from the view point of energy dissipation, control stability and algorithm robustness. First, a nonlinear dynamic model is developed and decomposed into separate slow and fast passive subsystems which are interconnected by negative feedbacks. Then, an outer loop speed control is employed by adaptive sliding controller to determine the appropriate torque command. Finally, to reduce torque ripple in switched reluctance motor a high-performance passivity-based current controller is proposed. It can overcome the inherent nonlinear characteristics of the system and make the whole system robust to uncertainties and bounded disturbances. The performance of the proposed controller algorithm has been demonstrated in simulation, and experimental using a 4KW, four-phase, 8/6 pole SRM DSP-based drive system.

  19. Advanced drive package saves energy. Synchronous reluctance motor with frequency converter; Energiesparpaket der Zukunft. Synchronreluktanzmotor und Frequenzumrichter

    Energy Technology Data Exchange (ETDEWEB)

    Donabauer, Fred [ABB Automation Products GmbH, Ladenburg (Germany); Lendenmann, Heinz [ABB AB, Vaesteras (Sweden)

    2011-07-01

    The drive package consisting of a synchronous reluctance motor and a frequency converters with Direct Torque Control (DTC) reaches a high level of efficiency and can make a substantial contribution to energy saving in many drive applications. The motor needs no permanent magnets or excitation system. The synchronous reluctance motor is up to two sizes smaller than an induction motor with a similar output and its power density is up to 40% higher than that of an induction motor. A frequency converter with DTC enables exact speed control without requiring an encoder. (orig.)

  20. Monocoil reciprocating permanent magnet electric machine with self-centering force

    Science.gov (United States)

    Bhate, Suresh K. (Inventor); Vitale, Nicholas G. (Inventor)

    1989-01-01

    A linear reciprocating machine has a tubular outer stator housing a coil, a plunger and an inner stator. The plunger has four axially spaced rings of radially magnetized permanent magnets which cooperate two at a time with the stator to complete first or second opposite magnetic paths. The four rings of magnets and the stators are arranged so that the stroke of the plunger is independent of the axial length of the coil.

  1. Dynamic identification of plasma magnetic contour in fusion machines

    International Nuclear Information System (INIS)

    Bettini, P.; Trevisan, F.; Cavinato, M.

    2005-01-01

    The paper presents a method to identify the plasma magnetic contour in fusion machines, when eddy currents are present in the conducting structures surrounding the plasma. The approach presented is based on the integration of an electromagnetic model of the plasma with a lumped parameters model of the conducting structures around the plasma. This approach has been validated against experimental data from RFX, a reversed field pinch machine. (author)

  2. Performance analysis of a new radial-axial flux machine with SMC cores and ferrite magnets

    Science.gov (United States)

    Liu, Chengcheng; Wang, Youhua; Lei, Gang; Guo, Youguang; Zhu, Jianguo

    2017-05-01

    Soft magnetic composite (SMC) is a popular material in designing of new 3D flux electrical machines nowadays for it has the merits of isotropic magnetic characteristic, low eddy current loss and high design flexibility over the electric steel. The axial flux machine (AFM) with the extended stator tooth tip both in the radial and circumferential direction is a good example, which has been investigated in the last years. Based on the 3D flux AFM and radial flux machine, this paper proposes a new radial-axial flux machine (RAFM) with SMC cores and ferrite magnets, which has very high torque density though the low cost low magnetic energy ferrite magnet is utilized. Moreover, the cost of RAFM is quite low since the manufacturing cost can be reduced by using the SMC cores and the material cost will be decreased due to the adoption of the ferrite magnets. The 3D finite element method (FEM) is used to calculate the magnetic flux density distribution and electromagnetic parameters. For the core loss calculation, the rotational core loss computation method is used based on the experiment results from previous 3D magnetic tester.

  3. Torque Analysis With Saturation Effects for Non-Salient Single-Phase Permanent-Magnet Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Ritchie, Ewen

    2011-01-01

    The effects of saturation on torque production for non-salient, single-phase, permanent-magnet machines are studied in this paper. An analytical torque equation is proposed to predict the instantaneous torque with saturation effects. Compared to the existing methods, it is computationally faster......-element results, and experimental results obtained on a prototype single-phase permanent-magnet machine....

  4. Improved equivalent magnetic network modeling for analyzing working points of PMs in interior permanent magnet machine

    Science.gov (United States)

    Guo, Liyan; Xia, Changliang; Wang, Huimin; Wang, Zhiqiang; Shi, Tingna

    2018-05-01

    As is well known, the armature current will be ahead of the back electromotive force (back-EMF) under load condition of the interior permanent magnet (PM) machine. This kind of advanced armature current will produce a demagnetizing field, which may make irreversible demagnetization appeared in PMs easily. To estimate the working points of PMs more accurately and take demagnetization under consideration in the early design stage of a machine, an improved equivalent magnetic network model is established in this paper. Each PM under each magnetic pole is segmented, and the networks in the rotor pole shoe are refined, which makes a more precise model of the flux path in the rotor pole shoe possible. The working point of each PM under each magnetic pole can be calculated accurately by the established improved equivalent magnetic network model. Meanwhile, the calculated results are compared with those calculated by FEM. And the effects of d-axis component and q-axis component of armature current, air-gap length and flux barrier size on working points of PMs are analyzed by the improved equivalent magnetic network model.

  5. Investigation of Unbalanced Magnetic Force in Magnetic Geared Machine Using Analytical Methods

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe

    2016-01-01

    The electromagnetic structure of the magnetic geared machine (MGM) may induce a significant unbalanced magnetic force (UMF). However, few methods have been developed to theoretically reveal the essential reasons for this issue in the MGM. In this paper, an analytical method based on an air....... Second, the magnetic field distribution in the MGM is modeled by an exact subdomain method, which allows the magnetic forces to be calculated quantitatively. The magnetic forces in two MGMs are then studied under no-load and full-load conditions. Finally, the finite-element calculation confirms......-gap relative permeance theory is first developed to qualitatively study the origins of the UMF in the MGM. By means of formula derivations, three kinds of magnetic field behaviors in the air gaps are found to be the potential sources of UMF. It is also proved that the UMF is possible to avoid by design choices...

  6. A Novel Dual-Permanent-Magnet-Excited Machine with Flux Strengthening Effect for Low-Speed Large-Torque Applications

    Directory of Open Access Journals (Sweden)

    Yujun Shi

    2018-01-01

    Full Text Available This paper proposes a novel dual-permanent-magnet-excited (DPME machine. It employs two sets of permanent magnets (PMs. One is on the rotor, the other is on the stator with PM arrays. When compared with the existing DPME machines, not all of the PMs are located in the slots formed by the iron teeth. Specifically, the radially magnetized PMs in the arrays are located under the short iron teeth, while the tangentially magnetized PMs are located in the slots formed by the long stator iron teeth and the radially magnetized PMs. Each long stator iron tooth is sandwiched by two tangentially magnetized PMs with opposite directions, thus resulting in the flux strengthening effect. The simulation analysis indicates that the proposed machine can offer large back EMF with low THD and large torque density with low torque ripple when compared with Machine I from a literature. Meanwhile, by comparison, the proposed machine has great potential in improving the power factor and efficiency.

  7. Performance evaluation of fractional-slot tubular permanent magnet machines with low space harmonics

    Directory of Open Access Journals (Sweden)

    Wang Jiabin

    2015-12-01

    Full Text Available This paper evaluates the perforamnce of fractional-slot per pole winding configurations for tubular permanent magnet (PM machines that can effectively eliminate the most undesirable space harmonics in a simple and cost-effective manner. The benefits of the proposed machine topology winding configurations are illustrated through comparison with 9-slot, 10-pole tubular PM machine developed for a free piston energy converter under the same specification and volumetric constraints. It has been shown that the proposed machine topology results in more than 7 times reduction in the eddy current loss in the mover magnets and supporting tube, and hence avoids potential problem of excessive mover temperature and risk of demagnetization.

  8. New Cogging Torque Reduction Methods for Permanent Magnet Machine

    Science.gov (United States)

    Bahrim, F. S.; Sulaiman, E.; Kumar, R.; Jusoh, L. I.

    2017-08-01

    Permanent magnet type motors (PMs) especially permanent magnet synchronous motor (PMSM) are expanding its limbs in industrial application system and widely used in various applications. The key features of this machine include high power and torque density, extending speed range, high efficiency, better dynamic performance and good flux-weakening capability. Nevertheless, high in cogging torque, which may cause noise and vibration, is one of the threat of the machine performance. Therefore, with the aid of 3-D finite element analysis (FEA) and simulation using JMAG Designer, this paper proposed new method for cogging torque reduction. Based on the simulation, methods of combining the skewing with radial pole pairing method and skewing with axial pole pairing method reduces the cogging torque effect up to 71.86% and 65.69% simultaneously.

  9. High-Temperature Switched-Reluctance Electric Motor

    Science.gov (United States)

    Montague, Gerald; Brown, Gerald; Morrison, Carlos; Provenza, Andy; Kascak, Albert; Palazzolo, Alan

    2003-01-01

    An eight-pole radial magnetic bearing has been modified into a switched-reluctance electric motor capable of operating at a speed as high as 8,000 rpm at a temperature as high as 1,000 F (=540 C). The motor (see figure) is an experimental prototype of starter-motor/generator units that have been proposed to be incorporated into advanced gas turbine engines and that could operate without need for lubrication or active cooling. The unique features of this motor are its electromagnet coils and, to some extent, its control software. Heretofore, there has been no commercial-off-the-shelf wire capable of satisfying all of the requirements for fabrication of electromagnet coils capable of operation at temperatures up to 1,000 F (=540 C). The issues addressed in the development of these electromagnet coils included thermal expansion, oxidation, pliability to small bend radii, micro-fretting, dielectric breakdown, tensile strength, potting compound, thermal conduction, and packing factor. For a test, the motor was supported, along with a rotor of 18 lb (.8-kg) mass, 3-in. (.7.6-cm) diameter, 21-in. (.53-cm) length, on bearings packed with high-temperature grease. The motor was located at the mid span of the rotor and wrapped with heaters. The motor stator was instrumented with thermocouples. At the time of reporting the information for this article, the motor had undergone 14 thermal cycles between room temperature and 1,000 F (.540 C) and had accumulated operating time >27.5 hours at 1,000 F (=540 C). The motor-controller hardware includes a personal computer equipped with analog-to-digital input and digital-to-analog output cards. The controller software is a C-language code that implements a switched-reluctance motor-control principle: that is, it causes the coils to be energized in a sequence timed to generate a rotating magnetic flux that creates a torque on a scalloped rotor. The controller can operate in an open- or closed-loop mode. In addition, the software has

  10. Residual magnetic field in rotary machines; Campo magnetico residual en maquinas rotatorias

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez V, Esteban A; Apanco R, Marcelino [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    The residual magnetism is a phenomenon in which the magnetic dipoles of a substance are oriented in a certain degree. On the other hand, when internal forces exist capable of aligning elementary magnetic dipoles of a material, a permanent magnet is obtained. Just as in a conductor or in a material, in the elements of a rotary electrical machine magnetic fields can be induced that produce a residual magnetism or magnetization. In the rotary electrical machines, the magnetization phenomenon causes serious problems, such as the generation of induced currents that propitiate the mechanical wear in bearings, collars, trunnions and inclusive in the shaft, by effects known as pitting, frosting and spark tracks, as well as erroneous readings in vibration and temperature sensors, that in some cases can cause the shut down of the machine. In this article are presented the general concepts on the residual magnetism in rotary electrical machines, the causes that originate it and the problems that arises, as well as the demagnetization of the components that have residual magnetic field. The results obtained by the area of Electrical Equipment of the Instituto de Investigaciones Electricas are revised, during the execution of activities related to the measurement and elimination of the residual magnetic field in rotary electrical machines. [Spanish] El magnetismo residual es un fenomeno en el que los dipolos magneticos de una sustancia se encuentran orientados en un grado determinado. Por otro lado, cuando existen fuerzas internas capaces de alinear los dipolos magneticos elementales de un material, se tiene un iman permanente. Al igual que en un conductor o un material, en los elementos de una maquina electrica rotatoria se pueden inducir campos magneticos que producen un magnetismo residual o magnetizacion. En las maquinas electricas rotatorias, el fenomeno de magnetizacion causa graves problemas, como la generacion de corrientes inducidas que propician el desgaste mecanico

  11. Design and experimental validation for direct-drive fault-tolerant permanent-magnet vernier machines.

    Science.gov (United States)

    Liu, Guohai; Yang, Junqin; Chen, Ming; Chen, Qian

    2014-01-01

    A fault-tolerant permanent-magnet vernier (FT-PMV) machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs). This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM), the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  12. Design and Experimental Validation for Direct-Drive Fault-Tolerant Permanent-Magnet Vernier Machines

    Directory of Open Access Journals (Sweden)

    Guohai Liu

    2014-01-01

    Full Text Available A fault-tolerant permanent-magnet vernier (FT-PMV machine is designed for direct-drive applications, incorporating the merits of high torque density and high reliability. Based on the so-called magnetic gearing effect, PMV machines have the ability of high torque density by introducing the flux-modulation poles (FMPs. This paper investigates the fault-tolerant characteristic of PMV machines and provides a design method, which is able to not only meet the fault-tolerant requirements but also keep the ability of high torque density. The operation principle of the proposed machine has been analyzed. The design process and optimization are presented specifically, such as the combination of slots and poles, the winding distribution, and the dimensions of PMs and teeth. By using the time-stepping finite element method (TS-FEM, the machine performances are evaluated. Finally, the FT-PMV machine is manufactured, and the experimental results are presented to validate the theoretical analysis.

  13. Direct-phase-variable model of a synchronous reluctance motor including all slot and winding harmonics

    International Nuclear Information System (INIS)

    Obe, Emeka S.; Binder, A.

    2011-01-01

    A detailed model in direct-phase variables of a synchronous reluctance motor operating at mains voltage and frequency is presented. The model includes the stator and rotor slot openings, the actual winding layout and the reluctance rotor geometry. Hence, all mmf and permeance harmonics are taken into account. It is seen that non-negligible harmonics introduced by slots are present in the inductances computed by the winding function procedure. These harmonics are usually ignored in d-q models. The machine performance is simulated in the stator reference frame to depict the difference between this new direct-phase model including all harmonics and the conventional rotor reference frame d-q model. Saturation is included by using a polynomial fitting the variation of d-axis inductance with stator current obtained by finite-element software FEMAG DC (registered) . The detailed phase-variable model can yield torque pulsations comparable to those obtained from finite elements while the d-q model cannot.

  14. Superconducting magnet and fabrication method

    Science.gov (United States)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1994-01-01

    A method of trapping a field in a block of superconductor material, includes providing (i) a block of material defining a bore, (ii) a high permeability core within the bore that defines a low reluctance path through the bore, (iii) a high permeability external structure on the exterior of the block of material that defines a low reluctance path between opposite ends of the core, and (iv) an electromagnet configured to apply a magnetic field around the high permeability core. The method proceeds by energizing the electromagnet to produce an applied magnetic field around the high permeability core, cooling the block of material sufficiently to render the block of material superconducting, de-energizing the electromagnet to result in a trapped magnetic field, and at least partially removing the low reluctance path defined by the core and the external structure in order to increase the magnetic flux density of the trapped magnetic field.

  15. Improvement of the dynamic performance of an AC linear permanent magnet machine

    NARCIS (Netherlands)

    Jansen, J.W.; Lomonova, E.; Vandenput, A.J.A.; Compter, J.C.; Verweij, A.H.

    2003-01-01

    This paper discusses the controller design and test approaches leading to the performance improvement of a brushless 3-phase AC synchronous permanent magnet linear machine. The feasible controller design concept for the linear machine is presented and further implemented in Simulink and dSPACE. Two

  16. Prediction of chaos in non-salient permanent-magnet synchronous machines

    Energy Technology Data Exchange (ETDEWEB)

    Rasoolzadeh, Arsalan [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Tavazoei, Mohammad Saleh, E-mail: tavazoei@sharif.edu [Department of Electrical Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2012-12-03

    This Letter tries to find the area in parameter space of a non-salient Permanent-Magnet Synchronous Machine (PMSM) in which chaos can occur. This area is briefly named as chaotic area. The predicted chaotic area is obtained by checking some conditions which are necessary for existence of chaos in a dynamical system. In this Letter, it is assumed that this machine is in the generator mode, and its model is based on direct and quadrature axis of stator voltages and currents. The information of the predicted area is used in non-chaotic maximum power control of torque in the machine.

  17. Applications and modelling of bulk HTSs in brushless ac machines

    International Nuclear Information System (INIS)

    Barnes, G.J.

    2000-01-01

    The use of high temperature superconducting material in its bulk form for engineering applications is attractive due to the large power densities that can be achieved. In brushless electrical machines, there are essentially four properties that can be exploited; their hysteretic nature, their flux shielding properties, their ability to trap large flux densities and their ability to produce levitation. These properties translate to hysteresis machines, reluctance machines, trapped-field synchronous machines and linear motors respectively. Each one of these machines is addressed separately and computer simulations that reveal the current and field distributions within the machines are used to explain their operation. (author)

  18. Investigation of a less rare-earth permanent-magnet machine with the consequent pole rotor

    Science.gov (United States)

    Bai, Jingang; Liu, Jiaqi; Wang, Mingqiao; Zheng, Ping; Liu, Yong; Gao, Haibo; Xiao, Lijun

    2018-05-01

    Due to the rising price of rare-earth materials, permanent-magnet (PM) machines in different applications have a trend of reducing the use of rare-earth materials. Since iron-core poles replace half of PM poles in the consequent pole (CP) rotor, the PM machine with CP rotor can be a promising candidate for less rare-earth PM machine. Additionally, the investigation of CP rotor in special electrical machines, like hybrid excitation permanent-magnet PM machine, bearingless motor, etc., has verified the application feasibility of CP rotor. Therefore, this paper focuses on design and performance of PM machines when traditional PM machine uses the CP rotor. In the CP rotor, all the PMs are of the same polarity and they are inserted into the rotor core. Since the fundamental PM flux density depends on the ratio of PM pole to iron-core pole, the combination rule between them is investigated by analytical and finite-element methods. On this basis, to comprehensively analyze and evaluate PM machine with CP rotor, four typical schemes, i.e., integer-slot machines with CP rotor and surface-mounted PM (SPM) rotor, fractional-slot machines with CP rotor and SPM rotor, are designed to investigate the performance of PM machine with CP rotor, including electromagnetic performance, anti-demagnetization capacity and cost.

  19. Characteristics of switched reluctance motor operating in continuous and discontinuous conduction mode

    Directory of Open Access Journals (Sweden)

    Ćalasan Martin P.

    2013-01-01

    Full Text Available This paper presents mechanical characteristics of Switched Reluctance Motor (SRM when it operates in Discontinuous Conduction Mode (DCM or in Continuous Conduction Mode (CCM, i.e. when the current through the phase coils (windings flows discontinuously or continuously. Firstly, in order to maximize the output power of SRM optimization of its control parameters was performed, such that the peak and RMS values of the current do not exceed the predefined values. The optimal control parameters vs. rotation speed, as well as the corresponding characteristics of torque, power and efficiency. It is shown that with CCM the machine torque (power, at high speed, can be increased.

  20. Induced Voltage Self-Excitation for a Switched-Reluctance Generator. Experimental Verification of Concept

    National Research Council Canada - National Science Library

    Lipo, Thomas

    2000-01-01

    .... One means to excite the machine in a "self-starting" mode is to attach permanent magnets to the machine stator, so that rotor rotation will cause the magnet's field to induce electric current within...

  1. Development of Correlations for Windage Power Losses Modeling in an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Features of the Magnets

    Directory of Open Access Journals (Sweden)

    Alireza Rasekh

    2016-11-01

    Full Text Available In this paper, a set of correlations for the windage power losses in a 4 kW axial flux permanent magnet synchronous machine (AFPMSM is presented. In order to have an efficient machine, it is necessary to optimize the total electromagnetic and mechanical losses. Therefore, fast equations are needed to estimate the windage power losses of the machine. The geometry consists of an open rotor–stator with sixteen magnets at the periphery of the rotor with an annular opening in the entire disk. Air can flow in a channel being formed between the magnets and in a small gap region between the magnets and the stator surface. To construct the correlations, computational fluid dynamics (CFD simulations through the frozen rotor (FR method are performed at the practical ranges of the geometrical parameters, namely the gap size distance, the rotational speed of the rotor, the magnet thickness and the magnet angle. Thereafter, two categories of formulations are defined to make the windage losses dimensionless based on whether the losses are mainly due to the viscous forces or the pressure forces. At the end, the correlations can be achieved via curve fittings from the numerical data. The results reveal that the pressure forces are responsible for the windage losses for the side surfaces in the air-channel, whereas for the surfaces facing the stator surface in the gap, the viscous forces mainly contribute to the windage losses. Additionally, the results of the parametric study demonstrate that the overall windage losses in the machine escalate with an increase in either the rotational Reynolds number or the magnet thickness ratio. By contrast, the windage losses decrease once the magnet angle ratio enlarges. Moreover, it can be concluded that the proposed correlations are very useful tools in the design and optimizations of this type of electrical machine.

  2. Development of High-Speed Switched Reluctance Motor for Electric Power Tools

    Science.gov (United States)

    Nakamura, Kenji; Kumasaka, Yuya; Ichinokura, Osamu

    2017-10-01

    This paper presents design and experimental evaluation of a switched reluctance (SR) motor used for electric power tools. First, characteristics of a previous designed 6/4-pole SR motor is shown and compared to a permanent magnet (PM) motor used in present electric power tools. Next, to further improve characteristics, a 12/8-pole SR motor is designed and evaluated in experiment. It is proved that the performance of the prototype 12/8-pole SR motor is almost comparable or superior to the present PM motor.

  3. Modeling of a Switched Reluctance Motor under Stator Winding Fault Condition

    DEFF Research Database (Denmark)

    Chen, Hao; Han, G.; Yan, Wei

    2016-01-01

    A new method for modeling stator winding fault with one shorted coil in a switched reluctance motor (SRM) is presented in this paper. The method is based on artificial neural network (ANN), incorporated with a simple analytical model in electromagnetic analysis to estimate the flux-linkage charac......A new method for modeling stator winding fault with one shorted coil in a switched reluctance motor (SRM) is presented in this paper. The method is based on artificial neural network (ANN), incorporated with a simple analytical model in electromagnetic analysis to estimate the flux......-linkage characteristics of SRM under the stator winding fault. The magnetic equivalent circuit method with ANN is applied to calculate the nonlinear flux-linkage characteristics under stator winding fault condition. A stator winding fault 12/8 SRM prototype system is developed to verify the effectiveness of the proposed...... method. The results for a stator winding fault with one shorted coil are obtained from the proposed method and from the experimental work on a developed prototype. It is shown that the simulation results are close to the test results....

  4. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Xia, Changliang [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Yan, Yan, E-mail: yanyan@tju.edu.cn [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Geng, Qiang [Tianjin Engineering Center of Electric Machine System Design and Control, Tianjin 300387 (China); Shi, Tingna [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2017-08-01

    Highlights: • A hybrid analytical model is developed for field calculation of multilayer IPM machines. • The rotor magnetic field is calculated by the magnetic equivalent circuit method. • The field in the stator and air-gap is calculated by subdomain technique. • The magnetic scalar potential on rotor surface is modeled as trapezoidal distribution. - Abstract: Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff’s law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell’s equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  5. Design and Performance Improvement of AC Machines Sharing a Common Stator

    Science.gov (United States)

    Guo, Lusu

    With the increasing demand on electric motors in various industrial applications, especially electric powered vehicles (electric cars, more electric aircrafts and future electric ships and submarines), both synchronous reluctance machines (SynRMs) and interior permanent magnet (IPM) machines are recognized as good candidates for high performance variable speed applications. Developing a single stator design which can be used for both SynRM and IPM motors is a good way to reduce manufacturing and maintenance cost. SynRM can be used as a low cost solution for many electric driving applications and IPM machines can be used in power density crucial circumstances or work as generators to meet the increasing demand for electrical power on board. In this research, SynRM and IPM machines are designed sharing a common stator structure. The prototype motors are designed with the aid of finite element analysis (FEA). Machine performances with different stator slot and rotor pole numbers are compared by FEA. An 18-slot, 4-pole structure is selected based on the comparison for this prototype design. Sometimes, torque pulsation is the major drawback of permanent magnet synchronous machines. There are several sources of torque pulsations, such as back-EMF distortion, inductance variation and cogging torque due to presence of permanent magnets. To reduce torque pulsations in permanent magnet machines, all the efforts can be classified into two categories: one is from the design stage, the structure of permanent magnet machines can be optimized with the aid of finite element analysis. The other category of reducing torque pulsation is after the permanent magnet machine has been manufactured or the machine structure cannot be changed because of other reasons. The currents fed into the permanent magnet machine can be controlled to follow a certain profile which will make the machine generate a smoother torque waveform. Torque pulsation reduction methods in both categories will be

  6. Electric machine

    Science.gov (United States)

    El-Refaie, Ayman Mohamed Fawzi [Niskayuna, NY; Reddy, Patel Bhageerath [Madison, WI

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  7. Optimal Design Solutions for Permanent Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    POPESCU, M.

    2011-11-01

    Full Text Available This paper presents optimal design solutions for reducing the cogging torque of permanent magnets synchronous machines. A first solution proposed in the paper consists in using closed stator slots that determines a nearly isotropic magnetic structure of the stator core, reducing the mutual attraction between permanent magnets and the slotted armature. To avoid complications in the windings manufacture technology the stator slots are closed using wedges made of soft magnetic composite materials. The second solution consists in properly choosing the combination of pole number and stator slots number that typically leads to a winding with fractional number of slots/pole/phase. The proposed measures for cogging torque reduction are analyzed by means of 2D/3D finite element models developed using the professional Flux software package. Numerical results are discussed and compared with experimental ones obtained by testing a PMSM prototype.

  8. A Bearingless Switched-Reluctance Motor for High Specific Power Applications

    Science.gov (United States)

    Choi, Benjamin B.; Siebert, Mark

    2006-01-01

    A 12-8 switched-reluctance motor (SRM) is studied in bearingless (or self-levitated) operation with coil currents limited to the linear region to avoid magnetic saturation. The required motoring and levitating currents are summed and go into a single motor coil per pole to obtain the highest power output of the motor by having more space for motor coil winding. Two controllers are investigated for the bearingless SRM operation. First, a model-based controller using the radial force, which is adjusted by a factor derived from finite element analysis, is presented. Then a simple and practical observation-based controller using a PD (proportional-derivative) control algorithm is presented. Both controllers were experimentally demonstrated to 6500 rpm. This paper reports the initial efforts toward eventual self levitation of a SRM operating into strong magnetic core saturation at liquid nitrogen temperature.

  9. Design of an Electric Commutated Frog-Leg Winding Permanent-Magnet DC Machine

    Directory of Open Access Journals (Sweden)

    Hang Zhang

    2014-03-01

    Full Text Available An electric commutated frog-leg winding permanent-magnet (PM DC machine is proposed in this paper. It has a semi-closed slotted stator with a classical type of mesh winding introduced from the conventional brushed DC machine and a polyphase electric commutation besides a PM excitation rotor and a circular arrayed Hall position sensor. Under the cooperation between the position sensor and the electric commutation, the proposed machine is basically operated on the same principle of the brushed one. Because of its simplex frog-leg winding, the combination between poles and slots is designed as 4/22, and the number of phases is set as 11. By applying an exact analytical method, which is verified comparable with the finite element analyses (FEA, to the prediction of its instantaneous magnetic field, electromotive force (EMF, cogging torque and output torque, it is well designed with a series of parameters in dimension aiming at the lowest cogging torque. A 230 W, 4-pole, and 22-slot new machine is prototyped and tested to verify the analysis.

  10. Investigation of Permanent Magnet Demagnetization in Synchronous Machines during Multiple Short-Circuit Fault Conditions

    Directory of Open Access Journals (Sweden)

    Stefan Sjökvist

    2017-10-01

    Full Text Available Faults in electrical machines can vary in severity and affect different parts of the machine. This study focuses on various kinds of short-circuits on the terminal side of a generic 20 kW surface mounted permanent magnet synchronous generator and how successive faults affect the performance of the machine. The study was conducted with the commercially available finite element method software COMSOL Multiphysics ® , and two time-dependent models for demagnetization of permanent magnets were compared, one using only internal models and the other using a proprietary external function. The study is simulation based and the two models were compared to a previously experimentally verified stationary model. Results showed that the power output decreased by more than 30% after five successive faults. In addition, the no-load voltage had become unsymmetrical, which was explained by the uneven demagnetization of the permanent magnets. The permanent magnet with the lowest reduction in average remanence was decreased by 0.8%, while the highest average reduction was 23.8% in another permanent magnet. The internal simulation model was about four times faster than the external model, but slightly overestimated the demagnetization.

  11. Design and analysis of a 3D-flux flux-switching permanent magnet machine with SMC cores and ferrite magnets

    Directory of Open Access Journals (Sweden)

    Chengcheng Liu

    2017-05-01

    Full Text Available Since permanent magnets (PM are stacked between the adjacent stator teeth and there are no windings or PMs on the rotor, flux-switching permanent magnet machine (FSPMM owns the merits of good flux concentrating and robust rotor structure. Compared with the traditional PM machines, FSPMM can provide higher torque density and better thermal dissipation ability. Combined with the soft magnetic composite (SMC material and ferrite magnets, this paper proposes a new 3D-flux FSPMM (3DFFSPMM. The topology and operation principle are introduced. It can be found that the designed new 3DFFSPMM has many merits over than the traditional FSPMM for it can utilize the advantages of SMC material. Moreover, the PM flux of this new motor can be regulated by using the mechanical method. 3D finite element method (FEM is used to calculate the magnetic field and parameters of the motor, such as flux density, inductance, PM flux linkage and efficiency map. The demagnetization analysis of the ferrite magnet is also addressed to ensure the safety operation of the proposed motor.

  12. 2D analytical modeling of a wholly superconducting synchronous reluctance motor

    International Nuclear Information System (INIS)

    Male, G; Lubin, T; Mezani, S; Leveque, J

    2011-01-01

    An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.

  13. 2D analytical modeling of a wholly superconducting synchronous reluctance motor

    Energy Technology Data Exchange (ETDEWEB)

    Male, G; Lubin, T; Mezani, S; Leveque, J, E-mail: gael.male@green.uhp-nancy.fr [Groupe de Recherche en Electrotechnique et Electronique de Nancy, Universite Henri Poincare, Faculte des Sciences et Technologies BP 70239, 54506 Vandoeuvre les Nancy CEDEX (France)

    2011-03-15

    An analytical computation of the magnetic field distribution in a wholly superconducting synchronous reluctance motor is proposed. The stator of the studied motor consists of three-phase HTS armature windings fed by AC currents. The rotor is made with HTS bulks which have a nearly diamagnetic behavior under zero field cooling. The electromagnetic torque is obtained by the interaction between the rotating magnetic field created by the HTS windings and the HTS bulks. The proposed analytical model is based on the resolution of Laplace's and Poisson's equations (by the separation-of-variables technique) for each sub-domain, i.e. stator windings, air-gap, holes between HTS bulks and exterior iron shield. For the study, the HTS bulks are considered as perfect diamagnetic materials. The boundary and continuity conditions between the sub-domains yield to the global solution. Magnetic field distributions and electromagnetic torque obtained by the analytical method are compared with those obtained from finite element analyses.

  14. gβ iy )xR

    African Journals Online (AJOL)

    Dr Obe

    from considering the flux due to a single stator conductor carrying current. 1. INTRODUCTION. A feature of the analysis of segmental rotor reluctance machines is the necessity to determine the magnetic potential as zero, because the rotor, unlike that of the segmental machine is one integral piece. The magnetic potential ...

  15. Controller for the Power Converters of the O/OMOTOR Prototype Switched Reluctance Machine of the ACE2 Project; Controlador de los Convertidores Electronicos de Potencia de la Maquina Variable Prototipo O/OMOTOR del Proyecto ACE2

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, C

    2006-12-19

    The ACE2 project deals with the development of a kynetic energy storage (KES) system for power peak shaving in high speed railway substations. This KES system consists in a double power converter which drives a switched reluctance machine (SRM) along with a flywheel operating in a wide speed range. This document presents from a technical point of view the features of the controller of the power converters for the U and UMOTOR SRM prototypes of that project. Hardware and software issues are treated in detail and the guide for the final user managing the KES module is introduced. (Author) 3 refs.

  16. Accelerating the discovery of hidden two-dimensional magnets using machine learning and first principle calculations

    Science.gov (United States)

    Miyazato, Itsuki; Tanaka, Yuzuru; Takahashi, Keisuke

    2018-02-01

    Two-dimensional (2D) magnets are explored in terms of data science and first principle calculations. Machine learning determines four descriptors for predicting the magnetic moments of 2D materials within reported 216 2D materials data. With the trained machine, 254 2D materials are predicted to have high magnetic moments. First principle calculations are performed to evaluate the predicted 254 2D materials where eight undiscovered stable 2D materials with high magnetic moments are revealed. The approach taken in this work indicates that undiscovered materials can be surfaced by utilizing data science and materials data, leading to an innovative way of discovering hidden materials.

  17. Comparative analysis of various methods for modelling permanent magnet machines

    NARCIS (Netherlands)

    Ramakrishnan, K.; Curti, M.; Zarko, D.; Mastinu, G.; Paulides, J.J.H.; Lomonova, E.A.

    2017-01-01

    In this paper, six different modelling methods for permanent magnet (PM) electric machines are compared in terms of their computational complexity and accuracy. The methods are based primarily on conformal mapping, mode matching, and harmonic modelling. In the case of conformal mapping, slotted air

  18. 2D Analytical Modeling of Magnetic Vector Potential in Surface Mounted and Surface Inset Permanent Magnet Machines

    Directory of Open Access Journals (Sweden)

    A. Jabbari

    2017-12-01

    Full Text Available A 2D analytical method for magnetic vector potential calculation in inner rotor surface mounted and surface inset permanent magnet machines considering slotting effects, magnetization orientation and winding layout has been proposed in this paper. The analytical method is based on the resolution of Laplace and Poisson equations as well as Maxwell equation in quasi- Cartesian coordinate by using sub-domain method and hyperbolic functions. The developed method is applied on the performance computation of two prototypes surface mounted permanent magnet motors and two prototypes surface inset permanent magnet motors. A radial and a parallel magnetization orientation is considered for each type of motor. The results of these models are validated through FEM method.

  19. Sensorless control of low-cost single-phase hybrid switched reluctance motor drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2013-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special Hybrid Switched Reluctance Motor (HSRM). The proposed sensorless control method utilizes beneficially the stator side permanent magnet field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive...

  20. Intelligent simulated annealing algorithm applied to the optimization of the main magnet for magnetic resonance imaging machine

    International Nuclear Information System (INIS)

    Sanchez Lopez, Hector

    2001-01-01

    This work describes an alternative algorithm of Simulated Annealing applied to the design of the main magnet for a Magnetic Resonance Imaging machine. The algorithm uses a probabilistic radial base neuronal network to classify the possible solutions, before the objective function evaluation. This procedure allows reducing up to 50% the number of iterations required by simulated annealing to achieve the global maximum, when compared with the SA algorithm. The algorithm was applied to design a 0.1050 Tesla four coil resistive magnet, which produces a magnetic field 2.13 times more uniform than the solution given by SA. (author)

  1. Case study of a magnetic system for low-energy machines

    Directory of Open Access Journals (Sweden)

    Daniel Schoerling

    2016-08-01

    Full Text Available The extra low-energy antiproton ring (ELENA is a CERN particle decelerator with the purpose to deliver antiprotons at lowest energies aiming to enhance the study of antimatter. The hexagonal shaped ring with a circumference of about 30 m will decelerate antiprotons from momenta of 100 to 13.7  MeV/c. In this paper, the design approach for a magnet system for such a machine is presented. Due to the extra-low beam rigidity, the design of the magnet system is especially challenging because even small fields, arising for example from residual magnetization and hysteresis, have a major impact on beam dynamics. In total, seven prototype magnets of three different magnet types have been built and tested. This paper outlines challenges, describes solutions for the design of the magnet system and discusses the results of the prototypes.

  2. Switched reluctance drive for mass application

    Energy Technology Data Exchange (ETDEWEB)

    Bitchkov, M.G.; Ilinski, N.F.; Sementchuk, V.A. [Moscow Power Engineering Inst. (Russian Federation)

    2000-07-01

    Variable speed drives (VSDs) are the most effective means for energy saving in many practical applications particularly in pumps, fans, compressors, conveyors, etc. Up to now the only wide used VSD is a frequency controlled electric drive with AC induction motor. A switched reluctance drive (SRD) having noticeable advantages such as simple construction, low cost, high reliability, high efficiency, etc. still does not compete with traditional AC drives mainly because of the following unsolved problems: complexity of proper control, necessity of a rotor position sensor, poor acoustic characteristics. Results of R and D project realised in Moscow Power Engineering Institute in co-operation with Jaroslavl electric machine-building plant allowed to overcome the above mentioned problems and to obtain reliable low cost sensorless SRD with high efficiency and acceptable acoustic characteristics. The original sensorless SRD version is based on current measuring and exploiting a specially organized observer that provides a stable drive operation within broad speed-torque ranges. Acoustic SRD characteristics were improved by means of proper current pulses shape control. Small increasing the time of current pulse trailing edge allowed to decrease the noise level to 70 dB(A) and brought the SRD to a vary smooth operation even at a low speed. (orig.)

  3. Analytical Investigation on the Power Factor of a Flux-Modulated Permanent-Magnet Synchronous Machine

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Liu, Jinglin

    2015-01-01

    Flux-modulated permanent-magnet synchronous machine (FM-PMSM) is characterized as a high-torque direct-drive electrical machine, but may suffer from the low power factor. This paper aims to investigate the issue of the low power factor in theory and explore the possibilities for improvement...

  4. Design and analysis of an unconventional permanent magnet linear machine for energy harvesting

    Science.gov (United States)

    Zeng, Peng

    This Ph.D. dissertation proposes an unconventional high power density linear electromagnetic kinetic energy harvester, and a high-performance two-stage interface power electronics to maintain maximum power abstraction from the energy source and charge the Li-ion battery load with constant current. The proposed machine architecture is composed of a double-sided flat type silicon steel stator with winding slots, a permanent magnet mover, coil windings, a linear motion guide and an adjustable spring bearing. The unconventional design of the machine is that NdFeB magnet bars in the mover are placed with magnetic fields in horizontal direction instead of vertical direction and the same magnetic poles are facing each other. The derived magnetic equivalent circuit model proves the average air-gap flux density of the novel topology is as high as 0.73 T with 17.7% improvement over that of the conventional topology at the given geometric dimensions of the proof-of-concept machine. Subsequently, the improved output voltage and power are achieved. The dynamic model of the linear generator is also developed, and the analytical equations of output maximum power are derived for the case of driving vibration with amplitude that is equal, smaller and larger than the relative displacement between the mover and the stator of the machine respectively. Furthermore, the finite element analysis (FEA) model has been simulated to prove the derived analytical results and the improved power generation capability. Also, an optimization framework is explored to extend to the multi-Degree-of-Freedom (n-DOF) vibration based linear energy harvesting devices. Moreover, a boost-buck cascaded switch mode converter with current controller is designed to extract the maximum power from the harvester and charge the Li-ion battery with trickle current. Meanwhile, a maximum power point tracking (MPPT) algorithm is proposed and optimized for low frequency driving vibrations. Finally, a proof

  5. A Machine Approach for Field Weakening of Permanent-Magnet Motors

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.S.

    2000-04-02

    The commonly known technology of field weakening for permanent-magnet (PM) motors is achieved by controlling the direct-axis current component through an inverter, without using mechanical variation of the air gap, a new machine approach for field weakening of PM machines by direct control of air-gap fluxes is introduced. The demagnetization situation due to field weakening is not an issue with this new method. In fact, the PMs are strengthened at field weakening. The field-weakening ratio can reach 1O:1 or higher. This technology is particularly useful for the PM generators and electric vehicle drives.

  6. A Hybrid Excited Machine with Flux Barriers and Magnetic Bridges

    Directory of Open Access Journals (Sweden)

    Marcin Wardach

    2018-03-01

    Full Text Available In this paper, an U-shape flux barrier rotor concept for a hybrid excited synchronous machine with flux magnetic bridges fixed on the rotor is presented. Using 3D finite element analysis, the influence of axial flux bridges on the field-weakening and -strengthening characteristics, electromagnetic torque, no-load magnetic flux linkage, rotor iron losses and back electromotive force is shown. Three different rotor designs are analyzed. Furthermore, the field control characteristics depending on additional DC control coil currents are shown.

  7. Design of an axial-flux permanent magnet machine for a solar-powered electric vehicle

    NARCIS (Netherlands)

    Friedrich, L.A.J.; Bastiaens, K.; Gysen, B.L.J.; Krop, D.C.J.; Lomonova, E.A.

    2018-01-01

    This paper concerns the design optimization of two axial-flux permanent magnet (AFPM) machines, aimed to be used as a direct drive in-wheel motor for the propulsion of a solar-powered electric vehicle. The internal stator twin external rotor AFPM machine topology having either a distributed or

  8. Preliminary Design of Reluctance Motors for Light Electric Vehicles Driving

    Directory of Open Access Journals (Sweden)

    TRIFA, V.

    2009-02-01

    Full Text Available The paper presents the aspects regarding FEM analysis of a reluctant motor for direct driving of the light electric vehicles. The reluctant motor take into study is of special construction suitable for direct drive of a light electric vehicle. It is an inverse radial reluctant motor, with a fixed stator mounted on front wheel shaft and an external toothed rotor fixed on the front wheel itself. A short presentation of preliminary design is continued with the FEM analysis in order to provide the optimal geometry of the motor and adequate windings.

  9. Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications

    Directory of Open Access Journals (Sweden)

    Weiwei Gu

    2015-12-01

    Full Text Available In this paper, by considering and establishing the relationship between the maximum operating speed and d-axis inductance, a new design and optimization method is proposed. Thus, a more extended constant power speed range, as well as reduced losses and increased efficiency, especially in the high-speed region, can be obtained, which is essential for electric vehicles (EVs. In the first step, the initial permanent magnet (PM brushless machine is designed based on the consideration of the maximum speed and performance specifications in the entire operation region. Then, on the basis of increasing d-axis inductance, and meanwhile maintaining constant permanent magnet flux linkage, the PM brushless machine is optimized. The corresponding performance of the initial and optimal PM brushless machines are analyzed and compared by the finite-element method (FEM. Several tests are carried out in an EV simulation model based on the urban dynamometer driving schedule (UDDS for evaluation. Both theoretical analysis and simulation results verify the validity of the proposed design and optimization method.

  10. A hybrid analytical model for open-circuit field calculation of multilayer interior permanent magnet machines

    Science.gov (United States)

    Zhang, Zhen; Xia, Changliang; Yan, Yan; Geng, Qiang; Shi, Tingna

    2017-08-01

    Due to the complicated rotor structure and nonlinear saturation of rotor bridges, it is difficult to build a fast and accurate analytical field calculation model for multilayer interior permanent magnet (IPM) machines. In this paper, a hybrid analytical model suitable for the open-circuit field calculation of multilayer IPM machines is proposed by coupling the magnetic equivalent circuit (MEC) method and the subdomain technique. In the proposed analytical model, the rotor magnetic field is calculated by the MEC method based on the Kirchhoff's law, while the field in the stator slot, slot opening and air-gap is calculated by subdomain technique based on the Maxwell's equation. To solve the whole field distribution of the multilayer IPM machines, the coupled boundary conditions on the rotor surface are deduced for the coupling of the rotor MEC and the analytical field distribution of the stator slot, slot opening and air-gap. The hybrid analytical model can be used to calculate the open-circuit air-gap field distribution, back electromotive force (EMF) and cogging torque of multilayer IPM machines. Compared with finite element analysis (FEA), it has the advantages of faster modeling, less computation source occupying and shorter time consuming, and meanwhile achieves the approximate accuracy. The analytical model is helpful and applicable for the open-circuit field calculation of multilayer IPM machines with any size and pole/slot number combination.

  11. A Novel Approach to the Design of Axial-Flux Switched-Reluctance Motors

    Directory of Open Access Journals (Sweden)

    Tim Lambert

    2015-03-01

    Full Text Available This paper presents the design of a new axial-flux switched-reluctance motor (AFSRM topology for in-wheel drive vehicle applications. The features of the topology include a short flux path and an outer-rotor configuration. The proposed topology also uses a sintered-lamellar soft magnetic composite core material, and permits displacement of the rotor along the suspension axis, which reduces damage to the stator caused by impacts and vibrations. The combination of these features makes this new topology competitive with other in-wheel motors in regard to torque density, durability, and cost. To describe the behaviour of the topology, a model of the topology is developed using a new integral inductance function. That model is used to select the design parameters of an 8/6 AFSRM, for which a fuzzy controller is also developed to control the phase current. Several simulations of the 8/6 AFSRM are performed to calculate its energy conversion efficiency, thermal performance, and torque density, and results indicate that the new AFSRM has a higher energy conversion efficiency, and can produce more torque/kg than other switched-reluctance motors used for in-wheel drive vehicle applications.

  12. PROCESSING OF SOFT MAGNETIC MATERIALS BY POWDER METALLURGY AND ANALYSIS OF THEIR PERFORMANCE IN ELECTRICAL MACHINES

    Directory of Open Access Journals (Sweden)

    W. H. D. Luna

    2017-12-01

    Full Text Available This article presents the use of finite elements to analyze the yield of electric machines based on the use of different soft magnetic materials for the rotor and the stator, in order to verify the performance in electric machine using powder metallurgy. Traditionally, the cores of electric machines are built from rolled steel plates, thus the cores developed in this work are obtained from an alternative process known as powder metallurgy, where powders of soft magnetic materials are compacted and sintered. The properties of interest were analyzed (magnetic, electric and mechanical properties and they were introduced into the software database. The topology of the rotor used was 400 W three-phase synchronous motor manufactured by WEG Motors. The results show the feasibility to replace the metal sheets of the electric machines by solid blocks obtained by powder metallurgy process with only 0.37% yield losses. In addition, the powder metallurgical process reduces the use of raw materials and energy consumption per kg of raw material processed.

  13. Co-Simulation of an Inverter Fed Permanent Magnet Synchronous Machine

    Directory of Open Access Journals (Sweden)

    Kiss Gergely Máté

    2014-10-01

    Full Text Available Co-simulation is a method which makes it possible to study the electric machine and its drive at once, as one system. By taking into account the actual inverter voltage waveforms in a finite element model instead of using only the fundamental, we are able to study the electrical machine's behavior in more realistic scenario. The recent increase in the use of variable speed drives justifies the research on such simulation techniques. In this paper we present the co-simulation of an inverter fed permanent magnet synchronous machine. The modelling method employs an analytical variable speed drive model and a finite element electrical machine model. By linking the analytical variable speed drive model together with a finite element model the complex simulation model enables the investigation of the electrical machine during actual operation. The methods are coupled via the results. This means that output of the finite element model serves as an input to the analytical model, and the output of the analytical model provides the input of the finite element model for a different simulation, thus enabling the finite element simulation of an inverter fed machine. The resulting speed and torque characteristics from the analytical model and the finite element model show a good agreement. The experiences with the co-simulation technique encourage further research and effort to improve the method.

  14. Permanent magnet machine with windings having strand transposition

    Science.gov (United States)

    Qu, Ronghai; Jansen, Patrick Lee

    2009-04-21

    This document discusses, among other things, a stator with transposition between the windings or coils. The coils are free from transposition to increase the fill factor of the stator slots. The transposition at the end connections between an inner coil and an outer coil provide transposition to reduce circulating current loss. The increased fill factor reduces further current losses. Such a stator is used in a dual rotor, permanent magnet machine, for example, in a compressor pump, wind turbine gearbox, wind turbine rotor.

  15. Cultural Journalism Publications for Reluctant Readers.

    Science.gov (United States)

    Hatcher, Barbara

    1980-01-01

    Provides a list of cultural journalism publications (based on oral history interviews) written, edited, and produced by students around the country that provide good easy reading for older reluctant readers. (MKM)

  16. A new approach to the solution of the vacuum magnetic problem in fusion machines

    International Nuclear Information System (INIS)

    Zabeo, L.; Artaserse, G.; Cenedese, A.; Piccolo, F.; Sartori, F.

    2007-01-01

    The magnetic vacuum topology reconstruction using magnetic measurements is essential in controlling and understanding plasmas produced in magnetic confinement fusion devices. In a wide range of cases, the instruments used to approach the problem have been designed for a specific machine and to solve a specific plasma model. Recently, a new approach has been used for developing new magnetic software called FELIX. The adopted solution in the design allows the use of the software not only at JET but also at other machines. In order to reduce the analysis and debugging time the software has been designed with modularity and platform independence in mind. This results in a large portability and in particular it allows using the same code both offline and in real-time. One of the main aspects of the tool is its capability to solve different plasma models of current distribution. Thanks to this feature, in order to improve the plasma magnetic reconstruction in real-time, a set of different models has been run using FELIX. FELIX is presently running at JET in different real-time analysis and control systems that need vacuum magnetic topology

  17. Design of an Axial-Flux permanent magnet machine for an in-wheel direct drive application

    NARCIS (Netherlands)

    Bastiaens, K.; Jansen, J.W.; Jumayev, S.; Lomonova, E.A.

    2017-01-01

    This paper concerns the optimization and comparison of six different axial-flux permanent magnet (AFPM) machine topologies for an in-wheel direct drive application. The objective of the optimization is to reach maximum power density, which is of essence for an in-wheel motor. The machine topologies

  18. Comparison of 48V rare-earth-free reluctance traction motor drives for mild hybrid powertrain

    NARCIS (Netherlands)

    Bao, J.; Boynov, K.; Paulides, J.J.H.; Wijnands, C.G.E. (Korneel); Lomonova, E.

    2016-01-01

    This paper provides a comparative analysis of three types of electrical drives with rare-earth- free reluctance motors for next-generation 48V mild hybrid automotive applications. The drives with switched reluctance motors (SRM), variable flux reluctance motors (VFRM) and synchronous reluctance

  19. Method and means for detecting magnetic deposits in tubular plant

    Energy Technology Data Exchange (ETDEWEB)

    Lord, W

    1981-03-04

    Deposits of magnetite on tubes in a heat exchanger, e.g., a steam generator, are detected by measuring the magnetic reluctance within the tubes. A probe for measuring the reluctance includes a permanent magnet (or a magnetic core and an excitation coil wound on the core) and a magnetic flux detector such as a Hall generator mounted for example on one of the non-magnetic rings. Changes in flux density as the probe is pushed through the tubes are detected by the Hall generator, thus indicating the presence of magnetite deposits. The probe includes a non-magnetic tube for pushing it through the heat exchanger tubes.

  20. Self-commissioning of permanent magnet synchronous machine drives using hybrid approach

    DEFF Research Database (Denmark)

    Basar, Mehmet Sertug

    2016-01-01

    Self-commissioning of permanent-magnet (PM) synchronous machines (PMSMs) is of prime importance in an industrial drive system because control performance and system stability depend heavily on the accurate machine parameter information. This article focuses on a combination of offline and online...... parameter estimation for a non-salient pole PMSM which eliminates the need for any prior knowledge on machine parameters. Stator resistance and inductance are first identified at standstill utilising fundamental and high-frequency excitation signals, respectively. A novel method has been developed...... and employed for inductance estimation. Then, stator resistance, inductance and PM flux are updated online using a recursive least-squares (RLS) algorithm. The proposed controllers are designed using MATLAB/Simulink® and implemented on d-Space® real-time system incorporating a commercially available PMSM drive....

  1. Harmonic wave model of a permanent magnet synchronous machine for modeling partial demagnetization under short circuit conditions

    NARCIS (Netherlands)

    Kral, C.; Haumer, A.; Bogomolov, M.D.; Lomonova, E.

    2012-01-01

    This paper proposes a multi domain physical model of permanent magnet synchronous machines, considering electrical, magnetic, thermal and mechanical effects. For each component of the model, the main wave as well as lower and higher harmonic wave components of the magnetic flux and the magnetic

  2. Evaluation of parameter sensitivities for flux-switching permanent magnet machines based on simplified equivalent magnetic circuit

    Directory of Open Access Journals (Sweden)

    Gan Zhang

    2017-05-01

    Full Text Available Most of the published papers regarding the design of flux-switching permanent magnet machines are focused on the analysis and optimization of electromagnetic or mechanical behaviors, however, the evaluate of the parameter sensitivities have not been covered, which contrarily, is the main contribution of this paper. Based on the finite element analysis (FEA and simplified equivalent magnetic circuit, the method proposed in this paper enables the influences of parameters on the electromagnetic performances, i.e. the parameter sensitivities, to be given by equations. The FEA results are also validated by experimental measurements.

  3. Current superimposition variable flux reluctance motor with 8 salient poles

    Science.gov (United States)

    Takahara, Kazuaki; Hirata, Katsuhiro; Niguchi, Noboru; Kohara, Akira

    2017-12-01

    We propose a current superimposition variable flux reluctance motor for a traction motor of electric vehicles and hybrid electric vehicles, which consists of 10 salient poles in the rotor and 12 slots in the stator. However, iron losses of this motor in high rotation speed ranges is large because the number of salient poles is large. In this paper, we propose a current superimposition variable flux reluctance motor that consists of 8 salient poles and 12 slots. The characteristics of the 10-pole-12-slot and 8-pole-12-slot current superimposition variable flux reluctance motors are compared using finite element analysis under vector control.

  4. Current superimposition variable flux reluctance motor with 8 salient poles

    Directory of Open Access Journals (Sweden)

    Takahara Kazuaki

    2017-12-01

    Full Text Available We propose a current superimposition variable flux reluctance motor for a traction motor of electric vehicles and hybrid electric vehicles, which consists of 10 salient poles in the rotor and 12 slots in the stator. However, iron losses of this motor in high rotation speed ranges is large because the number of salient poles is large. In this paper, we propose a current superimposition variable flux reluctance motor that consists of 8 salient poles and 12 slots. The characteristics of the 10-pole-12-slot and 8-pole-12-slot current superimposition variable flux reluctance motors are compared using finite element analysis under vector control.

  5. Investigation of a Co-Axial Dual-Mechanical Ports Flux-Switching Permanent Magnet Machine for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Wei Hua

    2015-12-01

    Full Text Available In this paper, a co-axial dual-mechanical ports flux-switching permanent magnet (CADMP-FSPM machine for hybrid electric vehicles (HEVs is proposed and investigated, which is comprised of two conventional co-axial FSPM machines, namely one high-speed inner rotor machine and one low-speed outer rotor machine and a non-magnetic ring sandwiched in between. Firstly, the topology and operation principle of the CADMP-FSPM machine are introduced; secondly, the control system of the proposed electronically-controlled continuously-variable transmission (E-CVT system is given; thirdly, the key design specifications of the CADMP-FSPM machine are determined based on a conventional dual-mechanical ports (DMP machine with a wound inner rotor. Fourthly, the performances of the CADMP-FSPM machine and the normal DMP machine under the same overall volume are compared, and the results indicate that the CADMP-FSPM machine has advantages over the conventional DMP machine in the elimination of brushes and slip rings, improved thermal dissipation conditions for the inner rotor, direct-driven operation, more flexible modes, lower cogging torque and torque ripple, lower total harmonic distortion (THD values of phase PM flux linkage and phase electro-motive force (EMF, higher torque output capability and is suitable for the E-CVT systems. Finally, the pros and cons of the CADMP-FSPM machine are highlighted. This paper lays a theoretical foundation for further research on CADMP-FSPM machines used for HEVs.

  6. Substantially parallel flux uncluttered rotor machines

    Science.gov (United States)

    Hsu, John S.

    2012-12-11

    A permanent magnet-less and brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by polyphase alternating currents. An uncluttered rotor is positioned within the magnetic rotating field and is spaced apart from the stator. An excitation core is spaced apart from the stator and the uncluttered rotor and magnetically couples the uncluttered rotor. The brushless excitation source generates a magnet torque by inducing magnetic poles near an outer peripheral surface of the uncluttered rotor, and the stator currents also generate a reluctance torque by a reaction of the difference between the direct and quadrature magnetic paths of the uncluttered rotor. The system can be used either as a motor or a generator

  7. Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    Ming Cheng

    2015-09-01

    Full Text Available The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs. Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG. Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized.

  8. Eddy current loss analysis of open-slot fault-tolerant permanent-magnet machines based on conformal mapping method

    Science.gov (United States)

    Ji, Jinghua; Luo, Jianhua; Lei, Qian; Bian, Fangfang

    2017-05-01

    This paper proposed an analytical method, based on conformal mapping (CM) method, for the accurate evaluation of magnetic field and eddy current (EC) loss in fault-tolerant permanent-magnet (FTPM) machines. The aim of modulation function, applied in CM method, is to change the open-slot structure into fully closed-slot structure, whose air-gap flux density is easy to calculate analytically. Therefore, with the help of Matlab Schwarz-Christoffel (SC) Toolbox, both the magnetic flux density and EC density of FTPM machine are obtained accurately. Finally, time-stepped transient finite-element method (FEM) is used to verify the theoretical analysis, showing that the proposed method is able to predict the magnetic flux density and EC loss precisely.

  9. Analysis of Unbalanced Magnetic Pull in Wound Rotor Induction Machines using Finite Element Analysis – Transient, Motoring and Generating Modes

    DEFF Research Database (Denmark)

    Dorrell, David G.; Hermann, Alexander Niels August; Jensen, Bogi Bech

    2013-01-01

    eccentricity. The operating conditions are varied so that transient, motoring and doubly-fed induction generator modes are studied. This allows greater understanding of the radial forces involved. Wound rotor induction machines exhibit higher unbalanced magnetic pull than cage induction machines so......There has been much literature on unbalanced magnetic pull in various types of electrical machine. This can lead to bearing wear and additional vibrations in the machine. In this paper a wound rotor induction is studied. Finite element analysis studies are conducted when the rotor has 10 % rotor...

  10. A 3D Dynamic Lumped Parameter Thermal Network of Air-Cooled YASA Axial Flux Permanent Magnet Synchronous Machine

    Directory of Open Access Journals (Sweden)

    Abdalla Hussein Mohamed

    2018-03-01

    Full Text Available To find the temperature rise for high power density yokeless and segmented armature (YASA axial flux permanent magnet synchronous (AFPMSM machines quickly and accurately, a 3D lumped parameter thermal model is developed and validated experimentally and by finite element (FE simulations on a 4 kW YASA machine. Additionally, to get insight in the thermal transient response of the machine, the model accounts for the thermal capacitance of different machine components. The model considers the stator, bearing, and windage losses, as well as eddy current losses in the magnets on the rotors. The new contribution of this work is that the thermal model takes cooling via air channels between the magnets on the rotor discs into account. The model is parametrized with respect to the permanent magnet (PM angle ratio, the PM thickness ratio, the air gap length, and the rotor speed. The effect of the channels is incorporated via convection equations based on many computational fluid dynamics (CFD computations. The model accuracy is validated at different values of parameters by FE simulations in both transient and steady state. The model takes less than 1 s to solve for the temperature distribution.

  11. Modelling and optimization of a permanent-magnet machine in a flywheel

    NARCIS (Netherlands)

    Holm, S.R.

    2003-01-01

    This thesis describes the derivation of an analytical model for the design and optimization of a permanent-magnet machine for use in an energy storage flywheel. A prototype of this flywheel is to be used as the peak-power unit in a hybrid electric city bus. The thesis starts by showing the

  12. A Comprehensive Review of Permanent Magnet Transverse Flux Machines for Direct Drive Applications

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Husain, Tausif [University of Akron; Hasan, Iftekhar [University of Akron; Sozer, Yilmaz [University of Akron; Husain, Iqbal [North Carolina State University

    2017-11-07

    The use of direct drive machines in renewable and industrial applications are increasing at a rapid rate. Transverse flux machines (TFM) are ideally suited for direct drive applications due to their high torque density. In this paper, a comprehensive review of the permanent magnet (PM) TFMs for direct drive applications is presented. The paper introduces TFMs and their operating principle and then reviews the different type of TFMs proposed in the literature. The TFMs are categorized according to the number of stator sides, types of stator cores and magnet arrangement in the rotor. The review covers different design topologies, materials used for manufacturing, structural and thermal analysis, modeling and design optimization and cogging torque minimization in TFMs. The paper also reviews various applications and comparisons for TFMs that have been presented in the literature.

  13. A new approach to the solution of the vacuum magnetic problem in fusion machines

    International Nuclear Information System (INIS)

    Zabeo, L.; Piccolo, F.; Sartori, F.; Albanese, R.; Cenedese, A.

    2006-01-01

    The magnetic vacuum topology reconstruction using the magnetic measurements is essential in controlling and understanding plasmas produced by fusion machines. In a wide range of the cases, the instruments to approach the problem have been designed for a specific machine and to solve a specific plasma model. Recently a new approach has been used by developing new magnetic software called Felix. The adopted solution in the design allows the use of the software not only at JET but also at different machines by simply changing a configuration file. A database describing the tokamak in the magnetic point of view is used to provide different vacuum magnetic models (polynomial, moments, filamentary) that can be solved by Felix without any recompiling or testing. In order to reduce the analysis and debugging time the software has been designed with modularity and platform independence in mind. That results in a large portability and in particular it allows use of the same code both offline and in real-time. One of the main aspects of the tool is its capability to solve different plasma models of current distribution by changing its configuration file. In order to improve the plasma magnetic reconstruction in real time a set of models has been run using Felix. An improved polynomial based model compared with the one presently used and two models using current filaments have been tested and compared. The new system has also been improved the calculation of plasma magnetic parameters. Double null configurations smooth transitions, more accurate gap and strike-point calculations, detailed boundary reconstruction are now systematically available. Felix is presently running at JET in different real-time analysis and control systems that need vacuum magnetic topology such as control of the plasma shape, the wall protection system [F.Piccolo et al.'Upgrade of the protection system for the first wall at JET in the ITER Be and W tiles prespective' this conference], the magnetic

  14. Gate Driver Circuit of Power Electronic Switches with Reduced Number of Isolated DC/DC Converter for a Switched Reluctance Motor

    International Nuclear Information System (INIS)

    Memon, A.A.

    2013-01-01

    This paper presents a gate driver circuit for the switching devices used in the asymmetrical converter for a switched reluctance machine with reduced number of isolated dc/dc converters. Isolation required in the gate driver circuit of switching devices is indispensable. For the purpose of isolation different arrangements may be used such as pulse transformers. The dc/dc converter for isolation and powering the gate drive circuits is suitable, cheaper in cost and simple to implement. It is also significant that required number of isolation converters is much less than the switches used in converter. In addition, a simple logic circuit has been presented for producing the gate signals at correct phase sequence which is compared with the gated signals directly obtained from the encoder of an existing machine. (author)

  15. A linearly-acting variable-reluctance generator for thermoacoustic engines

    International Nuclear Information System (INIS)

    Hail, Claudio U.; Knodel, Philip C.; Lang, Jeffrey H.; Brisson, John G.

    2015-01-01

    Highlights: • A new design for a linear alternator for thermoacoustic power converters is presented. • A theoretical and semi-empirical model of the generator is developed and validated. • The variable-reluctance generator’s performance is experimentally characterized. • Scaling to higher frequency suggests efficient operation with thermoacoustic engines. - Abstract: A crucial element in a thermoacoustic power converter for reliable small-scale power generation applications is an efficient acoustic-to-electric energy converter. In this work, an acoustic-to-electric transducer for application with a back-to-back standing wave thermoacoustic engine, based on a linearly-acting variable-reluctance generator is proposed, built and experimentally tested. Static and dynamic experiments are performed on one side of the generator on a shaker table at 60 Hz with 5 mm peak-to-peak displacement for performance characterization. A theoretical and empirical model of the variable-reluctance generator are presented and validated with experimental data. A frequency scaling based on the empirical model indicates that a maximum power output of 84 W at 78% generator efficiency is feasible at the thermoacoustic engine’s operating frequency of 250 Hz, not considering power electronic losses. This suggests that the linearly-acting variable-reluctance generator can efficiently convert high frequency small amplitude acoustic oscillations to useful electricity and thus enables its integration into a thermoacoustic power converter

  16. Availability of the electric drive systems containing flux switching permanent magnet machines

    NARCIS (Netherlands)

    Wang, L.; Sfakianakis, G.; Paulides, J.J.H.; Lomonova, E.A.

    2016-01-01

    This paper investigates how to improve availability of an electrical drive containing a 3-phase 12/10 (12 stator tooth/10 rotor poles) flux switching permanent magnet machine. In this respect, Field-Oriented Control and Space-Vector Pulse-Width-Modulation strategies will be applied with 3-phase

  17. Electric machines

    CERN Document Server

    Gross, Charles A

    2006-01-01

    BASIC ELECTROMAGNETIC CONCEPTSBasic Magnetic ConceptsMagnetically Linear Systems: Magnetic CircuitsVoltage, Current, and Magnetic Field InteractionsMagnetic Properties of MaterialsNonlinear Magnetic Circuit AnalysisPermanent MagnetsSuperconducting MagnetsThe Fundamental Translational EM MachineThe Fundamental Rotational EM MachineMultiwinding EM SystemsLeakage FluxThe Concept of Ratings in EM SystemsSummaryProblemsTRANSFORMERSThe Ideal n-Winding TransformerTransformer Ratings and Per-Unit ScalingThe Nonideal Three-Winding TransformerThe Nonideal Two-Winding TransformerTransformer Efficiency and Voltage RegulationPractical ConsiderationsThe AutotransformerOperation of Transformers in Three-Phase EnvironmentsSequence Circuit Models for Three-Phase Transformer AnalysisHarmonics in TransformersSummaryProblemsBASIC MECHANICAL CONSIDERATIONSSome General PerspectivesEfficiencyLoad Torque-Speed CharacteristicsMass Polar Moment of InertiaGearingOperating ModesTranslational SystemsA Comprehensive Example: The ElevatorP...

  18. Electromagnetic Comparison of 3-, 5- and 7-phases Permanent-Magnet Synchronous Machines : Mild Hybrid Traction Application

    Directory of Open Access Journals (Sweden)

    D. Ouamara

    2016-09-01

    Full Text Available Authors compare the electromagnetic performances of three multi-phases permanent-magnet (PM synchronous machines (PMSM for Mild Hybridtraction application. This comparison was made using two-dimensional (2-D numerical simulations in transient magnetic with eddy-current reaction field in the PMs. The best machine was determined using an energetic analysis (i.e., losses, torque and efficiency according specifications. In this study, the non-overlapping winding with double layer (i.e. all teeth wound type was used. The winding synthesis is based on the "Star of slots" method as well as the Fourier series decomposition of the magnetomotive force (MMF.

  19. Self-tuning fuzzy logic control of a switched reluctance generator for wind energy applications

    DEFF Research Database (Denmark)

    Park, Kiwoo; Chen, Zhe

    2012-01-01

    determination, self-tuning FLC for speed control, and a current controller. The turn-on and turn-off angle determination, as its name implies, controls the turn-on and turn-off angles of power switches to improve the efficiency and torque regulation of the SRG. The self-tuning FLC is the speed controller which......This paper presents a new self-tuning fuzzy logic control (FLC) based speed controller of a switched reluctance generator (SRG) for wind power applications. Due to its doubly salient structure and magnetic saturation, the SRG possesses an inherent characteristic of strong nonlinearity. In addition...

  20. SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM

    International Nuclear Information System (INIS)

    Bobra, M. G.; Couvidat, S.

    2015-01-01

    We attempt to forecast M- and X-class solar flares using a machine-learning algorithm, called support vector machine (SVM), and four years of data from the Solar Dynamics Observatory's Helioseismic and Magnetic Imager, the first instrument to continuously map the full-disk photospheric vector magnetic field from space. Most flare forecasting efforts described in the literature use either line-of-sight magnetograms or a relatively small number of ground-based vector magnetograms. This is the first time a large data set of vector magnetograms has been used to forecast solar flares. We build a catalog of flaring and non-flaring active regions sampled from a database of 2071 active regions, comprised of 1.5 million active region patches of vector magnetic field data, and characterize each active region by 25 parameters. We then train and test the machine-learning algorithm and we estimate its performances using forecast verification metrics with an emphasis on the true skill statistic (TSS). We obtain relatively high TSS scores and overall predictive abilities. We surmise that this is partly due to fine-tuning the SVM for this purpose and also to an advantageous set of features that can only be calculated from vector magnetic field data. We also apply a feature selection algorithm to determine which of our 25 features are useful for discriminating between flaring and non-flaring active regions and conclude that only a handful are needed for good predictive abilities

  1. Optimal Design of Stator Interior Permanent Magnet Machine with Minimized Cogging Torque for Wind Power Application

    DEFF Research Database (Denmark)

    Chen, Zhe; Zhang, Jianzhong; Cheng, Ming

    2008-01-01

    This paper proposes a new approach to minimize the cogging torque of a stator interior permanent magnet (SIPM) machine. The optimization of stator slot gap and permanent magnet is carried out and the cogging torque ripple is analyzed by using finite element analysis. Experiments on a prototype...

  2. High Frequency Voltage Injection Methods and Observer Design for Initial Position Detection of Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Jin, Xinhai; Ni, Ronggang; Chen, Wei

    2018-01-01

    The information of the initial rotor position is essential for smooth start up and robust control of Permanent Magnet Synchronous Machines (PMSMs). RoTating Voltage Injection (RTVI) methods in the stationary reference frame have been commonly adopted to detect the initial rotor position at stands......The information of the initial rotor position is essential for smooth start up and robust control of Permanent Magnet Synchronous Machines (PMSMs). RoTating Voltage Injection (RTVI) methods in the stationary reference frame have been commonly adopted to detect the initial rotor position...

  3. Non-conventional rule of making a periodically varying different-pole magnetic field in low-power alternating current electrical machines with using ring coils in multiphase armature winding

    Science.gov (United States)

    Plastun, A. T.; Tikhonova, O. V.; Malygin, I. V.

    2018-02-01

    The paper presents methods of making a periodically varying different-pole magnetic field in low-power electrical machines. Authors consider classical designs of electrical machines and machines with ring windings in armature, structural features and calculated parameters of magnetic circuit for these machines.

  4. Comparing of cogging torque reduction methods in permanent magnet machines with fractional slot windings

    Science.gov (United States)

    Pristup, A. G.; Toporkov, D. M.

    2017-10-01

    The results of the investigation of the cogging torque in permanent magnet synchronous machines, which is caused by the stator slotting and the rotor eccentricity, are presented in the paper. A new design of the machine has been developed in the course of the investigation, and the value of the cogging torque in this construction is less considerably compared to other constructions. In contrast to the available methods of the cogging torque reduction, the solution suggested not only decreases the level of the cogging torque but also has negligibly small influence on characteristics of the machine with the rotor eccentricity which is typical of the mass production and long-term usage.

  5. Start-up problem with an induction machine and a permanent magnet gear

    DEFF Research Database (Denmark)

    Frandsen, Tommy; Berg, Nick Ilsø; Holm, Rasmus Koldborg

    2014-01-01

    This paper presents the preliminary work conducted to design a magnetic gear (MG) integrated with a fan and driven by an grid connected induction machine (IM). A start-up problem with a MG, which occurs due to a high oscillating torque and a high breakdown torque of the IM when starting up directly...

  6. Numerical Modal Analysis of Vibrations in a Three-Phase Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    José Salvado

    2017-01-01

    Full Text Available This paper addresses the problem of vibrations produced by switched reluctance actuators, focusing on the linear configuration of this type of machines, aiming at its characterization regarding the structural vibrations. The complexity of the mechanical system and the number of parts used put serious restrictions on the effectiveness of analytical approaches. We build the 3D model of the actuator and use finite element method (FEM to find its natural frequencies. The focus is on frequencies within the range up to nearly 1.2 kHz which is considered relevant, based on preliminary simulations and experiments. Spectral analysis results of audio signals from experimental modal excitation are also shown and discussed. The obtained data support the characterization of the linear actuator regarding the excited modes, its vibration frequencies, and mode shapes, with high potential of excitation due to the regular operation regimes of the machine. The results reveal abundant modes and harmonics and the symmetry characteristics of the actuator, showing that the vibration modes can be excited for different configurations of the actuator. The identification of the most critical modes is of great significance for the actuator’s control strategies. This analysis also provides significant information to adopt solutions to reduce the vibrations at the design.

  7. Superconductor Armature Winding for High Performance Electrical Machines

    Science.gov (United States)

    2016-12-05

    eddy -induced currents used for shielding. 3.1 SOLID SHIELD. The frequency of the induced current for our machines ... eddy   current  shields)   •  SuperSat     •  switch  reluctance  generators   •  AC  Homopolar   • Toroidal  (Gramme...higher than expected, due probably to highly conducting Nb sheath around the MgB2 filaments (the measured losses were coupling or eddy current

  8. Electro-mechanical energy conversion system having a permanent magnet machine with stator, resonant transfer link and energy converter controls

    Science.gov (United States)

    Skeist, S. Merrill; Baker, Richard H.

    2006-01-10

    An electro-mechanical energy conversion system coupled between an energy source and an energy load comprising an energy converter device including a permanent magnet induction machine coupled between the energy source and the energy load to convert the energy from the energy source and to transfer the converted energy to the energy load and an energy transfer multiplexer to control the flow of power or energy through the permanent magnetic induction machine.

  9. Aspects of the engineering design of whole-body nuclear magnetic resonance machines

    International Nuclear Information System (INIS)

    Young, I.R.; Collins, A.G.; Hall, A.S.; Harman, R.R.; Butson, P.C.; Gilderdale, D.J.

    1987-01-01

    The paper on whole-body nuclear magnetic resonance machines reviews the basic physics very briefly, then examines the design requirements and engineering constraints for the major components of such a system. The paper concludes with a brief resume of the techniques used, and a short presentation of the type of results that are achieved. (author)

  10. Direct and quadrature inductances measurement of the permanent magnetic linear synchronous machines

    International Nuclear Information System (INIS)

    Li Liyi; Hong Junjie; Wu Hongxing; Kou Baoquan; Liu Rizhong

    2011-01-01

    Research highlights: → The d- and q-axis inductances are derived theoretically. → The new measurement principle of the d- and q-axis inductances is analyzed. → A corresponding measuring circuit is developed. → Measurement results match those of the FEM well. -- Abstract: Permanent magnetic linear synchronous machines (PMLSMs) are playing a more important role either in transportation systems or magnetic launch systems, for the excellent advantages. It is indispensable to high performance controllers that some machine parameters are known such as the direct axis (d-axis) and quadrature axis (q-axis) inductances. In this paper, self and mutual inductances of the three-phase winding are deduced by basic electric machinery theory, and the measured inductances are analyzed since the mutual inductances and the corresponding terminals among three-phase windings are changing as different phase winding is concerned. The d- and q-axis inductances are measured with the designed circuit, and the experimental measurement method is validated by the comparison between the experimental and finite element method (FEM) results.

  11. Direct and quadrature inductances measurement of the permanent magnetic linear synchronous machines

    Energy Technology Data Exchange (ETDEWEB)

    Li Liyi [Electrical Engineering Dept./Harbin Institute of Technology, Harbin 150000 (China); Hong Junjie, E-mail: wizard0663@126.co [School of Engineering/Sun Yat-Sen University, Guangzhou 510006 (China); Wu Hongxing; Kou Baoquan; Liu Rizhong [Electrical Engineering Dept./Harbin Institute of Technology, Harbin 150000 (China)

    2011-05-15

    Research highlights: {yields} The d- and q-axis inductances are derived theoretically. {yields} The new measurement principle of the d- and q-axis inductances is analyzed. {yields} A corresponding measuring circuit is developed. {yields} Measurement results match those of the FEM well. -- Abstract: Permanent magnetic linear synchronous machines (PMLSMs) are playing a more important role either in transportation systems or magnetic launch systems, for the excellent advantages. It is indispensable to high performance controllers that some machine parameters are known such as the direct axis (d-axis) and quadrature axis (q-axis) inductances. In this paper, self and mutual inductances of the three-phase winding are deduced by basic electric machinery theory, and the measured inductances are analyzed since the mutual inductances and the corresponding terminals among three-phase windings are changing as different phase winding is concerned. The d- and q-axis inductances are measured with the designed circuit, and the experimental measurement method is validated by the comparison between the experimental and finite element method (FEM) results.

  12. Machine-Specific Magnetic Resonance Imaging Quality Control Procedures for Stereotactic Radiosurgery Treatment Planning.

    Science.gov (United States)

    Fatemi, Ali; Taghizadeh, Somayeh; Yang, Claus Chunli; R Kanakamedala, Madhava; Morris, Bart; Vijayakumar, Srinivasan

    2017-12-18

    Purpose Magnetic resonance (MR) images are necessary for accurate contouring of intracranial targets, determination of gross target volume and evaluation of organs at risk during stereotactic radiosurgery (SRS) treatment planning procedures. Many centers use magnetic resonance imaging (MRI) simulators or regular diagnostic MRI machines for SRS treatment planning; while both types of machine require two stages of quality control (QC), both machine- and patient-specific, before use for SRS, no accepted guidelines for such QC currently exist. This article describes appropriate machine-specific QC procedures for SRS applications. Methods and materials We describe the adaptation of American College of Radiology (ACR)-recommended QC tests using an ACR MRI phantom for SRS treatment planning. In addition, commercial Quasar MRID 3D and Quasar GRID 3D phantoms were used to evaluate the effects of static magnetic field (B 0 ) inhomogeneity, gradient nonlinearity, and a Leksell G frame (SRS frame) and its accessories on geometrical distortion in MR images. Results QC procedures found in-plane distortions (Maximum = 3.5 mm, Mean = 0.91 mm, Standard deviation = 0.67 mm, >2.5 mm (%) = 2) in X-direction (Maximum = 2.51 mm, Mean = 0.52 mm, Standard deviation = 0.39 mm, > 2.5 mm (%) = 0) and in Y-direction (Maximum = 13. 1 mm , Mean = 2.38 mm, Standard deviation = 2.45 mm, > 2.5 mm (%) = 34) in Z-direction and < 1 mm distortion at a head-sized region of interest. MR images acquired using a Leksell G frame and localization devices showed a mean absolute deviation of 2.3 mm from isocenter. The results of modified ACR tests were all within recommended limits, and baseline measurements have been defined for regular weekly QC tests. Conclusions With appropriate QC procedures in place, it is possible to routinely obtain clinically useful MR images suitable for SRS treatment planning purposes. MRI examination for SRS planning can benefit from the improved localization and planning

  13. Electrical performance of a string of magnets representing a half-cell of the LHC machine

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Coull, L.; Dahlerup-Petersen, K.; Hagedorn, D.; Krainz, G.; Rijllart, A.; McInturff, A.

    1996-01-01

    Tests have been carried out on a string of prototype superconducting magnets, consisting of one double-quadrupole and two double-dipoles forming the major part of a half-cell of the LHC machine. The magnets are protected individually by cold diodes and quench heaters. The electrical aspects of these tests are described here. The performance during quench of the protection diodes and the associated interconnections was studied. Tests determined the magnet quench performance in training and at different ramp-rates, and investigated the inter-magnet propagation of quenches. Current lead and inter-magnet contact resistances were controlled and the performance of the power converter and the dump switches assessed

  14. Electrical performance of a string of magnets representing a half-cell of the LHC machine

    International Nuclear Information System (INIS)

    Rodriguez-Mateos, F.; Coull, L.; Dahlerup-Petersen, K.; Hagedorn, D.; Krainz, G.; Rijllart, A.; McInturff, A.

    1995-01-01

    Tests have been carried out on a string prototype superconducting magnets, consisting of one double-quadrupole and two double-dipoles forming the major part of a half-cell of the LHC machine. The magnets are protected individually by ''cold diodes'' and quench heaters. The electrical aspects of these tests are described here. The performance during quench of the protection diodes and the associated interconnections was studied. Tests determined the magnet quench performance in training and at different ramp-rates, and investigated the inter-magnet propagation of quenches. Current lead and inter-magnet contact resistances were controlled and the performance of the power converter and the dump switches assessed

  15. An improved iron loss estimation for permanent magnet brushless machines

    CERN Document Server

    Fang, D

    1999-01-01

    This paper presents an improved approach for predicting iron losses in permanent magnet brushless machines. The new approach is based on the fundamental concept that eddy current losses are proportional to the square of the time rate of change of flux density. Expressions are derived for predicting hysteresis and eddy current losses in the stator teeth and yoke. The so-called anomalous or excess losses, caused by the induced eddy current concentration around moving magnetic domain walls and neglected in the conventional core loss calculation, are also included in the proposed approach. In addition, the model is also capable of accounting for the stator skewing, if present. The core losses obtained from the proposed approach are compared with those measured on an existing PM motor at several operating speeds, showing very good agreement. (14 refs).

  16. Base for a remote quality control system for magnetic resonance images machines

    International Nuclear Information System (INIS)

    Gonzalez Dalmau, Evelio R; Cabal Mirabal, Carlos; Noda Guerra, Manuel

    2014-01-01

    The medical images systems convert characteristic of the tissues in gray levels or color, using a physical method and a specific mathematical transformation. In Magnetic Resonance Images (MRI) these levels have a multi-parametric dependence, this a reason of their strong presence in the daily clinical practice. This technological complexity, the high costs and the importance that have these study for the patient's life, confer to the Quality Control (QC) human, technological, economic and juridical implications. Several international groups dedicated to the QC in MRI and diversity of approaches to carry out the tests of acceptance and periodic control of the quality exist. The characterization is habitually carried out, with global methods that don't allow a detailed quantitative parametric study. A novel system of quantitative control was developed based on quantitative describers by slices and temporal. This system is formed for: 1) standard methodology of acquisition of the experimental data, 2) subsystem of functions and programs developed in MatLab, 3) subsystem of graphics and reports, and 4) the expert. It is used successfully in the characterization and the periodic control of MRI machines of several magnetic fields in Cuba and in Venezuela. They were defined and established quantitative descriptors for MRI machines. The software flexibility allows carry out the QC to any machine facilitating the standardization and its use in multi-center studies. The retrospective and predictive value of the system was demonstrated. They feel the bases for the remote realization of the test

  17. Design Enhancement and Performance Examination of External Rotor Switched Flux Permanent Magnet Machine for Downhole Application

    Science.gov (United States)

    Kumar, R.; Sulaiman, E.; Soomro, H. A.; Jusoh, L. I.; Bahrim, F. S.; Omar, M. F.

    2017-08-01

    The recent change in innovation and employments of high-temperature magnets, permanent magnet flux switching machine (PMFSM) has turned out to be one of the suitable contenders for seaward boring, however, less intended for downhole because of high atmospheric temperature. Subsequently, this extensive review manages the design enhancement and performance examination of external rotor PMFSM for the downhole application. Preparatory, the essential design parameters required for machine configuration are computed numerically. At that point, the design enhancement strategy is actualized through deterministic technique. At last, preliminary and refined execution of the machine is contrasted and as a consequence, the yield torque is raised from 16.39Nm to 33.57Nm while depreciating the cogging torque and PM weight up to 1.77Nm and 0.79kg, individually. In this manner, it is inferred that purposed enhanced design of 12slot-22pole with external rotor is convenient for the downhole application.

  18. Design Comparison of Inner and Outer Rotor of Permanent Magnet Flux Switching Machine for Electric Bicycle Application

    Science.gov (United States)

    Jusoh, L. I.; Sulaiman, E.; Bahrim, F. S.; Kumar, R.

    2017-08-01

    Recent advancements have led to the development of flux switching machines (FSMs) with flux sources within the stators. The advantage of being a single-piece machine with a robust rotor structure makes FSM an excellent choice for speed applications. There are three categories of FSM, namely, the permanent magnet (PM) FSM, the field excitation (FE) FSM, and the hybrid excitation (HE) FSM. The PMFSM and the FEFSM have their respective PM and field excitation coil (FEC) as their key flux sources. Meanwhile, as the name suggests, the HEFSM has a combination of PM and FECs as the flux sources. The PMFSM is a simple and cheap machine, and it has the ability to control variable flux, which would be suitable for an electric bicycle. Thus, this paper will present a design comparison between an inner rotor and an outer rotor for a single-phase permanent magnet flux switching machine with 8S-10P, designed specifically for an electric bicycle. The performance of this machine was validated using the 2D- FEA. As conclusion, the outer-rotor has much higher torque approximately at 54.2% of an innerrotor PMFSM. From the comprehensive analysis of both designs it can be conclude that output performance is lower than the SRM and IPMSM design machine. But, it shows that the possibility to increase the design performance by using “deterministic optimization method”.

  19. Central magnetic cooling and refrigeration machines (chiller) and their assessment. A feasibility study - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Egolf, P. W.; Gonin, C. [University of Applied Sciences of Western Switzerland, HEIG-VD, Yverdon-les Bains (Switzerland); Kitanovski, A. [University of Ljubljana, Ljubljana (Slovenia)

    2010-03-15

    This final report for the Swiss Federal Office of Energy (SFOE) presents the results of a feasibility study made concerning magnetic cooling and refrigeration machines. This report presents a comprehensive thermodynamic and economic analysis of applications of rotary magnetic chillers. The study deals with magnetic chillers based on permanent magnets and superconducting magnets, respectively. The numerical design of permanent magnet assemblies with different magnetic flux densities is discussed. The authors note that superconducting magnetic chillers are feasible only in large-scale applications with over 1 MW of cooling power. This report describes new ideas for magnetic refrigeration technologies, which go beyond the state of the art. They show potential for a substantial reduction of costs and further improvements in efficiency. Rotary magnetic liquid chillers with 'wavy' structures and using micro tubes are discussed, as are superconducting magnetic chillers and future magneto-caloric technologies.

  20. The Bearingless Electrical Machine

    Science.gov (United States)

    Bichsel, J.

    1992-01-01

    Electromagnetic bearings allow the suspension of solids. For rotary applications, the most important physical effect is the force of a magnetic circuit to a high permeable armature, called the MAXWELL force. Contrary to the commonly used MAXWELL bearings, the bearingless electrical machine will take advantage of the reaction force of a conductor carrying a current in a magnetic field. This kind of force, called Lorentz force, generates the torque in direct current, asynchronous and synchronous machines. The magnetic field, which already exists in electrical machines and helps to build up the torque, can also be used for the suspension of the rotor. Besides the normal winding of the stator, a special winding was added, which generates forces for levitation. So a radial bearing, which is integrated directly in the active part of the machine, and the motor use the laminated core simultaneously. The winding was constructed for the levitating forces in a special way so that commercially available standard ac inverters for drives can be used. Besides wholly magnetic suspended machines, there is a wide range of applications for normal drives with ball bearings. Resonances of the rotor, especially critical speeds, can be damped actively.

  1. Theoretical and experimental study of trapped particle echoes in a magnetic mirror machine. Application to diffusion study

    International Nuclear Information System (INIS)

    Chatelier, Michel.

    1976-01-01

    A simple mechanical model is used to investigate the various physical mechanisms originating the echoes. The model is applied to nuclear spins and echoes from particles trapped in a magnetostatic well. The theory of echoes from trapped ions in a magnetic machine is developed. The effects that may be observed when two magnetic perturbations are applied to the plasma are described. Diffusion effects in the velocity space are then taken into account when the diffusion is due either to Coulomb collisions or to a microturbulence at the ion cyclotron frequency. The experimental results obtained with the DECA II B machine are described. Emphasis is put upon the effects observed when magnetic perturbations are applied to the plasma and echoes observation independently of the diffusion study, as it is the first time that trapped particle echoes are observed in a hot plasma [fr

  2. Neutron irradiation therapy machine

    International Nuclear Information System (INIS)

    1980-01-01

    Conventional neutron irradiation therapy machines, based on the use of cyclotrons for producing neutron beams, use a superconducting magnet for the cyclotron's magnetic field. This necessitates complex liquid He equipment and presents problems in general hospital use. If conventional magnets are used, the weight of the magnet poles considerably complicates the design of the rotating gantry. Such a therapy machine, gantry and target facilities are described in detail. The use of protons and deuterons to produce the neutron beams is compared and contrasted. (U.K.)

  3. Simulation of linear Switched Reluctance Motor drives

    OpenAIRE

    Garcia Amoros, Jordi; Blanqué Molina, Balduino; Andrada Gascón, Pedro

    2011-01-01

    This paper presents a simulation model of linear switched reluctance motor drives. A Matlab-Simulink environment coupled with finite element analysis is used to perform the simulations. Experimental and simulation results for a double sided linear switched motor drive prototype are reported and compared to verify the simulation model.

  4. A Novel Single Phase Hybrid Switched Reluctance Motor Drive System

    DEFF Research Database (Denmark)

    Liang, Jianing; Xu, Guoqing; Jian, Linni

    2011-01-01

    In this paper, a novel single phase hybrid switched reluctance motor(SRM) drive system is proposed. It integrated a single phase hybrid SRM and a novel single phase boost converter. This motor can reduce the number of phase switch. And the permanent magnet which is used in the motor can improve...... the performance and efficiency of SR motor. However, the inherent characteristic of this motor is that the negative torque is very sensitive with the excitation current near the turn-on angle. The slow excitation current limits the torque generation region and reduces the average torque. Therefore, a novel single...... phase boost converter is applied to improve the performance of this motor. It is easy to generate a double dclink voltage and dc-link voltage and switch both of them. The voltage of boost capacitor is self balance, so the protective circuit is not need to consider. The fast excitation mode helps hybrid...

  5. Reluctance motor of new design with improved efficiency and power factor

    Energy Technology Data Exchange (ETDEWEB)

    Hansen-Goos, P; Pieper, W

    1981-09-01

    Improvement of operating conditions and efficiency by development of new configurations of lamination and production methods for reluctance motors. Investigations during the starting-up period and of the operating behaviour in connection with variable frequency. Reluctance motors are designed in the range from 0,6-4kW with 4-pole winding. They are due to the following identification: 1. The power of motors is in accordance with VDE 42673. 2. The volume of lamination is equal to asynchronous motors of the same IED size. 3. Synchronous pull-out torque is in compliance with VDE 0530: Msub(K)sub(S) > 1,35 Mn (nominal torque). As against standard reluctance motors the following improvements with the new ones have been realized: 4. Increase of nominal power by approx. 100%. 5. Increase of quality factor by approx. 50%. 6. The efficiency is equal to asynchronous motors of the same IEC size.

  6. Design of Parameter Independent, High Performance Sensorless Controllers for Permanent Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Xie, Ge

    . The transient fluctuation of the estimated rotor position error is around 20 degrees with a step load torque change from 0% to 100% of the rated torque. The position error in steady state is within ±2 electrical degrees for the best case. The proposed method may also be used for e.g. online machine parameter......The Permanent Magnet Synchronous Machine (PMSM) has become an attractive candidate for various industrial applications due to its high efficiency and torque density. In the PMSM drive system, simple and robust control methods play an important role in achieving satisfactory drive performances....... For reducing the cost and increasing the reliability of the drive system, eliminating the mechanical sensor brings a lot advantages to the PMSM drive system. Therefore, sensorless control was developed and has been increasingly used in different PMSM drive systems in the last 20 years. However, machine...

  7. Introduction to AC machine design

    CERN Document Server

    Lipo, Thomas A

    2018-01-01

    AC electrical machine design is a key skill set for developing competitive electric motors and generators for applications in industry, aerospace, and defense. This book presents a thorough treatment of AC machine design, starting from basic electromagnetic principles and continuing through the various design aspects of an induction machine. Introduction to AC Machine Design includes one chapter each on the design of permanent magnet machines, synchronous machines, and thermal design. It also offers a basic treatment of the use of finite elements to compute the magnetic field within a machine without interfering with the initial comprehension of the core subject matter. Based on the author's notes, as well as after years of classroom instruction, Introduction to AC Machine Design: * Brings to light more advanced principles of machine design--not just the basic principles of AC and DC machine behavior * Introduces electrical machine design to neophytes while also being a resource for experienced designers * ...

  8. High frequency injection assisted “active flux” based sensorless vector control of reluctance synchronous motors, with experiments from zero speed

    DEFF Research Database (Denmark)

    Agarliţă, Sorin-Cristian; Boldea, I.; Blaabjerg, Frede

    2011-01-01

    This paper presents a hybrid, motion sensorless control of an Axially Laminated Anisotropic (ALA) Reluctance Synchronous Machine (RSM). The zero and low speed sensorless method is a saliency based High Frequency Signal Injection technique (HFSI) that uses the motor itself as a resolver. The second...... method is based on a state observer incorporating the “active flux” concept used to deliver RSM rotor position and speed information for medium and high speed range. Even if both methods perform successfully in separate speed regions, estimation of the two algorithms is combined as a sensor fusion...... to improve performance at zero and very low speeds. Experimental results validate the proposed control strategies....

  9. High frequency injection assisted “active flux” based sensorless vector control of reluctance synchronous motors, with experiments from zero speed

    DEFF Research Database (Denmark)

    Agarlita, Sorin-Cristian; Boldea, Ion; Blaabjerg, Frede

    2012-01-01

    This paper presents a hybrid, motion sensorless control of an Axially Laminated Anisotropic (ALA) Reluctance Synchronous Machine (RSM). The zero and low speed sensorless method is a saliency based High Frequency Signal Injection technique (HFSI) that uses the motor itself as a resolver. The second...... method is based on a state observer incorporating the “active flux” concept used to deliver RSM rotor position and speed information for medium and high speed range. Even if both methods perform successfully in separate speed regions, estimation of the two algorithms is combined as a sensor fusion...... to improve performance at zero and very low speeds. Experimental results validate the proposed control strategies....

  10. Driving and control strategies in alternative current machines of permanent magnet with non-sinusoidal flux; Estrategias de acionamento e controle em maquinas CA de ima permanente com fluxo nao senoidal

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Jose Roberto Boffino de Almeida

    1997-07-01

    The aim of this work is to study and analyze the torque performance of brush less machines with non-sinusoidal distributed magnetic fluxes. The machine type considered is a surface mount permanent magnet brush less machine. Three mathematical models for the machine are considered: the per stator phase, the vectorial and the linear second order speed-voltage models. Machines with different stator windings are compared including the permanent magnet synchronous machines with sinusoidal distributed stator windings. The torque outputs of these machines are obtained considering two kinds of open loop driving systems: one with a six-pulse waveform and other with a sinusoidal waveform. Finally, a vectorial control is proposed for the non-sinusoidal machines. The torque ripple as well the overall performance of non-sinusoidal machines with vectorial control is compared to that of sinusoidal machines. (author)

  11. Detent Force Reduction of a C-Core Linear Flux-Switching Permanent Magnet Machine with Multiple Additional Teeth

    Directory of Open Access Journals (Sweden)

    Yi Du

    2017-03-01

    Full Text Available C-core linear flux-switching permanent magnet (PM machines (LFSPMs are attracting more and more attention due to their advantages of simplicity and robustness of the secondary side, high power density and high torque density, in which both PMs and armature windings are housed in the primary side. The primary salient tooth wound with a concentrated winding consists of C-shaped iron core segments between which PMs are sandwiched and the magnetization directions of these PMs are adjacent and alternant in the horizontal direction. On the other hand, the secondary side is composed of a simple iron core with salient teeth so that it is very suitable for long stroke applications. However, the detent force of the C-core LFSPM machine is relatively high and the magnetic circuit is unbalanced due to the end effect. Thus, a new multiple additional tooth which consists of an active and a traditional passive additional tooth, is employed at each end side of the primary in this paper, so that the asymmetry due to end effect can be depressed and the detent force can be reduced by adjusting the passive additional tooth position. By using the finite element method, the characteristics and performances of the proposed machine are analyzed and verified.

  12. Machine learning in medicine cookbook

    CERN Document Server

    Cleophas, Ton J

    2014-01-01

    The amount of data in medical databases doubles every 20 months, and physicians are at a loss to analyze them. Also, traditional methods of data analysis have difficulty to identify outliers and patterns in big data and data with multiple exposure / outcome variables and analysis-rules for surveys and questionnaires, currently common methods of data collection, are, essentially, missing. Obviously, it is time that medical and health professionals mastered their reluctance to use machine learning and the current 100 page cookbook should be helpful to that aim. It covers in a condensed form the subjects reviewed in the 750 page three volume textbook by the same authors, entitled “Machine Learning in Medicine I-III” (ed. by Springer, Heidelberg, Germany, 2013) and was written as a hand-hold presentation and must-read publication. It was written not only to investigators and students in the fields, but also to jaded clinicians new to the methods and lacking time to read the entire textbooks. General purposes ...

  13. A new nonlinear magnetic circuit model for dynamic analysis of interior permanent magnet synchronous motor

    International Nuclear Information System (INIS)

    Nakamura, Kenji; Saito, Kenichi; Watanabe, Tadaaki; Ichinokura, Osamu

    2005-01-01

    Interior permanent magnet synchronous motors (IPMSMs) have high efficiency and torque, since the motors can utilize reluctance torque in addition to magnet torque. The IPMSMs are widely used for electric household appliances and electric bicycles and vehicles. A quantitative analysis method of dynamic characteristics of the IPMSMs, however, has not been clarified fully. For optimum design, investigation of dynamic characteristics considering magnetic nonlinearity is needed. This paper presents a new nonlinear magnetic circuit model of an IPMSM, and suggests a dynamic analysis method using the proposed magnetic circuit model

  14. Multi-winding homopolar electric machine

    Science.gov (United States)

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  15. Modeling, Simulation, and Experiment of Switched Reluctance Ocean Current Generator System

    Directory of Open Access Journals (Sweden)

    Hao Chen

    2013-01-01

    Full Text Available This paper presents nonlinear simulation model of switched reluctance (SR ocean current generator system on MATLAB/SIMULINK with describing the structure of generator system. The developed model is made up of main model, rotor position calculation module, controller module, gate module, power converter module, phase windings module, flux-linkage module, torque module, and power calculation module. The magnetization curves obtained by two-dimensional finite-element electromagnetic field calculation and the conjugated magnetic energy graphics obtained from the three-dimensional graphics of flux linkage are stored in the “Lookup Table” modules on MATLAB/SIMULINK. The hardware of the developed three-phase 12/8 structure SR ocean current generator system prototype with the experimental platform is presented. The simulation of the prototype is performed by the developed models, and the experiments have been carried out under the same condition with different output power, turn-off angle, and rotor speed. The simulated phase current waveforms agree well with the tested phase current waveforms experimentally. The simulated output voltage curves agree well with the tested output voltage curves experimentally. It is shown that the developed nonlinear simulation model of the three-phase 12/8 structure SR ocean current generator system is valid.

  16. Smooth torque speed characteristic of switched reluctance motors

    DEFF Research Database (Denmark)

    Zeng, Hui; Chen, Zhe; Chen, Hao

    2014-01-01

    The torque ripple of switched reluctance motors (SRMs) is the main disadvantage that limits the industrial application of these motors. Although several methods for smooth-toque operation (STO) have been proposed, STO works well only within a certain torque and speed range because...

  17. Non-conventional electrical machines

    CERN Document Server

    Rezzoug, Abderrezak

    2013-01-01

    The developments of electrical machines are due to the convergence of material progress, improved calculation tools, and new feeding sources. Among the many recent machines, the authors have chosen, in this first book, to relate the progress in slow speed machines, high speed machines, and superconducting machines. The first part of the book is dedicated to materials and an overview of magnetism, mechanic, and heat transfer.

  18. Research on a novel axial-flux magnetic-field-modulated brushless double-rotor machine with low axial force and high efficiency

    Directory of Open Access Journals (Sweden)

    Chengde Tong

    2017-05-01

    Full Text Available The axial-flux magnetic-field-modulated brushless double-rotor machine (MFM-BDRM is a possible alternative as a power-split device for hybrid electric vehicles (HEVs. However, the existence of large axial force may lead to assembly problems and rich inner air-gap harmonics could result in high PM loss and low efficiency. This paper proposes a novel axial-flux MFM-BDRM with improved PM rotor structure. 2-D analytical method to predict the magnetic-field distribution of the proposed MFM-BDRM is developed and the design procedure of the proposed machine is illustrated. The impact of key geometrical parameters on axial force and torque is investigated. To evaluate the advantage of the proposed machine, a comparison is made with a conventional one with respect to electromagnetic performances. Results show that the proposed machine is effective in reducing PM eddy loss and axial force by 60% and 35%, respectively.

  19. A general electromagnetic excitation model for electrical machines considering the magnetic saturation and rub impact

    Science.gov (United States)

    Xu, Xueping; Han, Qinkai; Chu, Fulei

    2018-03-01

    The electromagnetic vibration of electrical machines with an eccentric rotor has been extensively investigated. However, magnetic saturation was often neglected. Moreover, the rub impact between the rotor and stator is inevitable when the amplitude of the rotor vibration exceeds the air-gap. This paper aims to propose a general electromagnetic excitation model for electrical machines. First, a general model which takes the magnetic saturation and rub impact into consideration is proposed and validated by the finite element method and reference. The dynamic equations of a Jeffcott rotor system with electromagnetic excitation and mass imbalance are presented. Then, the effects of pole-pair number and rubbing parameters on vibration amplitude are studied and approaches restraining the amplitude are put forward. Finally, the influences of mass eccentricity, resultant magnetomotive force (MMF), stiffness coefficient, damping coefficient, contact stiffness and friction coefficient on the stability of the rotor system are investigated through the Floquet theory, respectively. The amplitude jumping phenomenon is observed in a synchronous generator for different pole-pair numbers. The changes of design parameters can alter the stability states of the rotor system and the range of parameter values forms the zone of stability, which lays helpful suggestions for the design and application of the electrical machines.

  20. Variable-Reluctance Motor For Electric Vehicles

    Science.gov (United States)

    Lang, Jeffrey H.

    1987-01-01

    Report describes research on variable-reluctance electric-motor drive for eventual use in electric-vehicle propulsion. Primary design and performance criteria were torque and power output per unit mass of motor, cost, and drive efficiency. For each criterion, optimized drive design developed, and designs unified to yield single electric-vehicle drive. Scaled-down motor performed as expected. Prototype of paraplegic lift operated by toggle switch and joystick. Lift plugs into household electrical outlet for recharging when not in use.

  1. Joint punching and frequency effects on practical magnetic characteristics of electrical steels for high-speed machines

    Science.gov (United States)

    Kedous-Lebouc, A.; Messal, O.; Youmssi, A.

    2017-03-01

    Mechanical punching of electrical steels causes a degradation of their magnetic characteristics which can extend several millimeters from the cut edge. So, in the field of industrial applications, particularly that of small electrical machines, the stator core made of rigid and thin teeth would be subject to more losses. Thus, this topic of the effect of punching has to be submitted to further deep characterization and development in order to give some insight into the different mechanisms. In this framework, this paper evaluates the combined effect of punching and frequency on the magnetization curve and iron losses in thin SiFe and CoFe soft magnetic sheets. These alloys are typically suitable for the manufacture of high-speed electrical machines used in on board applications (aircraft power generators, automotive, etc). Two SiFe alloys and a CoFe alloy have been investigated. First, different rectangular samples of variable width (15, 10, 5, 3 mm) have been industrially punched. Then, a dedicated magnetic characterization has been made, using basically a mini-Epstein frame. Measurements have been performed from 50 Hz to 1 kHz and from 0.3 T to near saturation. Both rolling and transverse directions have been considered. Finally, a first attempt to predict the degradation due to the punching is presented. A useful description of the magnetic permeability as a function of B and f is given and the degradation parameters are estimated based on the knowledge of the reference permeability.

  2. Joint punching and frequency effects on practical magnetic characteristics of electrical steels for high-speed machines

    Energy Technology Data Exchange (ETDEWEB)

    Kedous-Lebouc, A. [Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble, France — CNRS, G2Elab, F-38000 Grenoble (France); Messal, O., E-mail: oualid.messal@g2elab.grenoble-inp.fr [Univ. Grenoble Alpes, G2Elab, F-38000 Grenoble, France — CNRS, G2Elab, F-38000 Grenoble (France); Youmssi, A. [Université de N’gaoundéré, BP. 455 N’Gaoundéré (Cameroon)

    2017-03-15

    Mechanical punching of electrical steels causes a degradation of their magnetic characteristics which can extend several millimeters from the cut edge. So, in the field of industrial applications, particularly that of small electrical machines, the stator core made of rigid and thin teeth would be subject to more losses. Thus, this topic of the effect of punching has to be submitted to further deep characterization and development in order to give some insight into the different mechanisms. In this framework, this paper evaluates the combined effect of punching and frequency on the magnetization curve and iron losses in thin SiFe and CoFe soft magnetic sheets. These alloys are typically suitable for the manufacture of high-speed electrical machines used in on board applications (aircraft power generators, automotive, etc). Two SiFe alloys and a CoFe alloy have been investigated. First, different rectangular samples of variable width (15, 10, 5, 3 mm) have been industrially punched. Then, a dedicated magnetic characterization has been made, using basically a mini-Epstein frame. Measurements have been performed from 50 Hz to 1 kHz and from 0.3 T to near saturation. Both rolling and transverse directions have been considered. Finally, a first attempt to predict the degradation due to the punching is presented. A useful description of the magnetic permeability as a function of B and f is given and the degradation parameters are estimated based on the knowledge of the reference permeability.

  3. Determination of High-Frequency d- and q-axis Inductances for Surface-Mounted Permanent-Magnet Synchronous Machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Vetuschi, M.; Rasmussen, Peter Omand

    2010-01-01

    This paper presents a reliable method for the experimental determination of high-frequency d- and q -axis inductances for surface-mounted permanent-magnet synchronous machines (SMPMSMs). Knowledge of the high-frequency d- and q-axis inductances plays an important role in the efficient design...... of sensorless controllers using high-frequency signal injection techniques. The proposed method employs a static locked-rotor test using an ac +dc power supply. By injecting a high-frequency rotating voltage vector into the machine, the d- and q-axis inductances may simultaneously be determined with no need...

  4. Improved dq-axes Model of PMSM Considering Airgap Flux Harmonics and Saturation

    DEFF Research Database (Denmark)

    Fasil, Muhammed; Antaloae, Ciprian; Mijatovic, Nenad

    -saturation on constant torque curves of PMSM. Two interior permanent magnet motor with two different rotor topologies and different specifications are designed to evaluate the effect of saturation on synchronous and harmonic inductances, and operating points of the machines.......The classical dq-axes model of permanent magnet synchronous machines (PMSM) uses linear approximation. This was not an issue in earlier versions of PMSM drives because they mostly used surface magnet motors. With the arrival of interior permanent magnet (IPM) machines, which use reluctance torque...... along with magnet torque, the accuracy of linear models are found to be insufficient. In this work, the effect of air gap flux harmonics is included in the classical model of PMSM using d and q-axes harmonic inductances. Further, a method has been presented to assess the effect of saturation and cross...

  5. Comparison of torque capability of three-phase permanent magnet synchronous motors with different permanent magnet arrangement

    International Nuclear Information System (INIS)

    Stumberger, Bojan; Stumberger, Gorazd; Hadziselimovic, Miralem; Hamler, Anton; Gorican, Viktor; Jesenik, Marko; Trlep, Mladen

    2007-01-01

    The paper presents a comparison of torque capability of three-phase permanent magnet synchronous motors with different permanent magnet arrangement. Motors with the following permanent magnet topologies were accounted for in the comparison: the surface-mounted permanent magnet synchronous motor (SMPMSM), the interior permanent magnet synchronous motor (IPMSM), the permanent magnet-assisted synchronous reluctance motor (PMASRM) and the flux reversal permanent magnet motor (FRPMM). Finite element method analysis is employed to determine the performance of each motor. Calculated performance of four-pole IPMSM determined by finite element method calculation is confirmed with the measurements at nearly constant nominal output power in the range of speed 3000-10,000 rpm

  6. A Torque Error Compensation Algorithm for Surface Mounted Permanent Magnet Synchronous Machines with Respect to Magnet Temperature Variations

    Directory of Open Access Journals (Sweden)

    Chang-Seok Park

    2017-09-01

    Full Text Available This paper presents a torque error compensation algorithm for a surface mounted permanent magnet synchronous machine (SPMSM through real time permanent magnet (PM flux linkage estimation at various temperature conditions from medium to rated speed. As known, the PM flux linkage in SPMSMs varies with the thermal conditions. Since a maximum torque per ampere look up table, a control method used for copper loss minimization, is developed based on estimated PM flux linkage, variation of PM flux linkage results in undesired torque development of SPMSM drives. In this paper, PM flux linkage is estimated through a stator flux linkage observer and the torque error is compensated in real time using the estimated PM flux linkage. In this paper, the proposed torque error compensation algorithm is verified in simulation and experiment.

  7. Synchronous machines. General principles and structures; Machines synchrones. Principes generaux et structures

    Energy Technology Data Exchange (ETDEWEB)

    Ben Ahmed, H.; Feld, G.; Multon, B. [Ecole Normale Superieure de Cachan, Lab. SATIE, Systemes et Applications des Technologies de l' Information et de l' Energie, UMR CNRS 8029, 94 (France); Bernard, N. [Institut Universitaire de Saint-Nazaire, Institut de Recherche en Electrotechnique et Electronique de Nantes Atlantique (IREENA), 44 - Nantes (France)

    2005-10-01

    Power generation is mainly performed by synchronous rotating machines which consume about a third of the world primary energy. Electric motors used in industrial applications convert about two thirds of this electricity. Therefore, synchronous machines are present everywhere at different scales, from micro-actuators of few micro-watts to thermo-mechanical production units of more than 1 GW, and represent a large variety of structures which have in common the synchronism between the frequency of the power supply currents and the relative movement of the fixed part with respect to the mobile part. Since several decades, these machines are more and more used as variable speed motors with permanent magnets. The advances in power electronics have contributed to the widening of their use in various applications with a huge range of powers. This article presents the general principle of operation of electromechanical converters of synchronous type: 1 - electromechanical conversion in electromagnetic systems: basic laws and elementary structures (elementary structure, energy conversion cycle, case of a system working in linear magnetic regime), rotating fields structure (magneto-motive force and Ferraris theorem, superficial air gap permeance, air gap magnetic induction, case of a permanent magnet inductor, magnetic energy and electromagnetic torque, conditions for reaching a non-null average torque, application to common cases); 2 - constitution, operation modes and efficiency: constitution and main types of synchronous machines, efficiency - analysis by similarity laws (other expression of the electromagnetic torque, thermal limitation in permanent regime, scale effects, effect of pole pairs number, examples of efficiencies and domains of use), operation modes. (J.S.)

  8. Reluctant recyclers: Social interaction in responsibility ascription

    OpenAIRE

    Brekke, Kjell Arne; Kipperberg, Gorm; Nyborg, Karine

    2007-01-01

    Several studies have demonstrated that individual contributions to public goods are increasing in others’ contributions. The underlying causes for this, however, are not yet fully understood. We present a model of duty-orientation in which moral responsibility is learned through observations of others’ behavior. Since, in our model, responsibility is a burden, we hypothesize that individuals will be reluctant to accept responsibility based on uncertain information. Econometric analysis of dat...

  9. Estimation of coefficients of multivariable power series approximating magnetic nonlinearity of AC machines*

    Directory of Open Access Journals (Sweden)

    Sobczyk Tadeusz J.

    2015-09-01

    Full Text Available Energy based approach was used in the study to formulate a set of functions approximating the magnetic flux linkages versus independent currents. The simplest power series that approximates field co-energy and linked fluxes for a two winding core of an induction machine are described by a set of common unknown coefficients. The authors tested three algorithms for the coefficient estimation using Weighted Least-Squared Method for two different positions of the coils. The comparison of the approximation accuracy was accomplished in the specified area of the currents. All proposed algorithms of the coefficient estimation have been found to be effective. The algorithm based solely on the magnetic field co-energy values is significantly simpler than the method based on the magnetic flux linkages estimation concept. The algorithm based on the field co-energy and linked fluxes seems to be the most suitable for determining simultaneously the coefficients of power series approximating linked fluxes and field co-energy.

  10. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    Directory of Open Access Journals (Sweden)

    Maria Calado

    2012-06-01

    Full Text Available This paper proposes a distributed system for analysis and monitoring (DSAM of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs. The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  11. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    Science.gov (United States)

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications.

  12. Research on a new magnetic-field-modulated brushless double-rotor machine with sinusoidal-permeance modulating ring

    Directory of Open Access Journals (Sweden)

    Ping Zheng

    2017-05-01

    Full Text Available The magnetic-field-modulated brushless double-rotor machine (MFM-BDRM, composed of a stator, a modulating ring rotor, and a PM rotor, is a kind of power-split device for hybrid electric vehicles (HEVs. In this paper, a new MFM-BDRM with sinusoidal-permeance modulating ring named Sinusoidal-Permeance-Modulating-Ring Brushless Double-Rotor Machine (SPMR-BDRM is proposed to solve the problem of poor mechanical strength and large iron loss. The structure and the operating principle of the MFM-BDRM are introduced. The design principle of the sinusoidal-permeance modulating ring is analyzed and derived. The main idea of that is to minimize the harmonic permeance of air gap, thereby the harmonic magnetic fields can be restrained. There are comparisons between a MFM-BDRM with sinusoidal-permeance modulating ring and a same size MFM-BDRM with traditional modulating ring, including magnetic field distributions and electromagnetic performances. Most importantly, the iron losses are compared under six different conditions. The result indicates that the harmonic magnetic fields in the air gap are restrained; the electromagnetic torque and power factor are almost the same with same armature current; the torque ripples of the modulating ring rotor and the PM rotor are reduced; the stator loss is reduced by 13% at least and the PM loss is reduced by 20% at least compared with the same size traditional MFM-BDRM under the same operating conditions.

  13. State machine operation of the MICE cooling channel

    International Nuclear Information System (INIS)

    Hanlet, Pierrick

    2014-01-01

    The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the feasibility of cooling a beam of muons for use in a Neutrino Factory and/or Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, MICE will measure the beam emittance before and after the cooling channel at the level of 1%, a relative measurement of 0.001. This renders MICE a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, Data monitoring systems, and a configuration database. The cooling channel for MICE has between 12 and 18 superconductnig solenoid coils in 3 to 7 magnets, depending on the staged development of the experiment. The magnets are coaxial and in close proximity which requires coordinated operation of the magnets when ramping, responding to quench conditions, and quench recovery. To reliably manage the operation of the magnets, MICE is implementing state machines for each magnet and an over-arching state machine for the magnets integrated in the cooling channel. The state machine transitions and operating parameters are stored/restored to/from the configuration database and coupled with MICE Run Control. Proper implementation of the state machines will not only ensure safe operation of the magnets, but will help ensure reliable data quality. A description of MICE, details of the state machines, and lessons learned from use of the state machines in recent magnet training tests will be discussed.

  14. Acoustic noise simulation for switched reluctance motors with audible output p

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, P.O.; Blaabjerg, F.; Pedersen, J.K.; Kjaer, P.C. [Aalborg Univ., Inst. of Energy Technology (Denmark); Miller, T.J.E. [Univ. of Glasgow, SPEED Lab., Dep. of Electronics and Electrical Engineering (United Kingdom)

    1999-07-01

    Acoustic noise in switched reluctance motors is one of the last problems which have to be solved before a more widespread use will come. In order to design a low noise Switched Reluctance Motor drive, simulation tools are needed, and this paper describes a design programme where acoustic noise of electromagnetic origin can be estimated and even be heard by the motor-designer. The design program is based on a new, simple developed vibrational and acoustic model where the parameters can be calculated based on the geometry of the motor. The vibrational and acoustic model is verified in both time and frequency domain where vibrations and acoustic noise have been considered. (au)

  15. Leakage Inductance Calculation for Planar Transformers with a Magnetic Shunt

    DEFF Research Database (Denmark)

    Zhang, Jun; Ouyang, Ziwei; Duffy, Maeve C.

    2014-01-01

    with a magnetic shunt by means of the stored magnetic energy in the primary and secondary sides of the transformer using the magnetomotive force (MMF) variation method, as well as the stored energy in the shunt based on the reluctance model. The detailed calculation method is described. Both the FEA simulation...

  16. Electric machine for hybrid motor vehicle

    Science.gov (United States)

    Hsu, John Sheungchun

    2007-09-18

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  17. Application of a permanent magnet biased E-Core reluctance actuator in a magnetically suspended ceiling actuator

    NARCIS (Netherlands)

    Overboom, T.T.; Jansen, J.W.; Lomonova, E.

    2010-01-01

    In the paper a novel actuator is presented for a magnetically suspended ceiling actuator. The actuator consists of several stator segments which contain the coils and the magnets. The armature, therefore, has a totally passive design. Because of its salient structure, a translational force can be

  18. Electrical machines & their applications

    CERN Document Server

    Hindmarsh, J

    1984-01-01

    A self-contained, comprehensive and unified treatment of electrical machines, including consideration of their control characteristics in both conventional and semiconductor switched circuits. This new edition has been expanded and updated to include material which reflects current thinking and practice. All references have been updated to conform to the latest national (BS) and international (IEC) recommendations and a new appendix has been added which deals more fully with the theory of permanent-magnets, recognising the growing importance of permanent-magnet machines. The text is so arra

  19. Budker INP in the LHC Machine (2)

    CERN Multimedia

    2001-01-01

    The main BINP contributions to the LHC machine are magnets for transfer lines (26 MCHF) and bus- bar sets (23 MCHF). Budker INP is also responsible for construction of some other LHC magnets and vacuum parts. In total, the contribution to the LHC machine will reach about 90 MCHF.

  20. A dynamic macromodel for distributed parameter magnetic microactuators

    International Nuclear Information System (INIS)

    Fang Yuming; Huang Qingan; Li Weihua

    2008-01-01

    This paper presents a reduced-order model to describe the mechanical behaviour of microbeam-based magnetic devices. The integration for magnetic force is calculated by dividing the microbeam into several segments, and the nonlinear equation set has been developed based on the magnetic circuit principle. In comparison with previous models, the present macromodel accounts for both the micro-magnetic-core reluctance and the coupling between the beam deflection and magnetic force. This macromodel is validated by comparing with the experimental results available in some papers and finite-element solutions

  1. CHARACTERISTICS OF A 4-PHASE VALVE RELUCTANCE MOTOR WHEN POWERED BY UNCAPACITOR SWITCHBOARD

    Directory of Open Access Journals (Sweden)

    V.B. Finkelshtein

    2016-06-01

    Full Text Available Purpose. Nowadays more and more in a variety of machines and mechanisms applied switched reluctance motor. When designing these engines solve the problem selection switch. While the switch scheme comprises symmetrical bridge and eight transistors, eight diodes; Miller switch comprises six transistors and six diodes; in company Graseby Controls Ltd switch circuit but four transistors and four diodes includes two capacitors. The aim is to develop a mathematical model, calculation program, a numerical analysis of the characteristics and parameters of the WFD and the characteristics of their work. Methodology. It is assumed that the resistance in the open state transistors and diodes for direct current is zero and the resistance of the transistors in the closed state, and diode reverse voltage is infinity. When feeding a single-phase motor and power at the same time two adjacent phases determined by the flow through the tooth. Results. The motor powered by a switch on the circuit symmetrical bridge power, which provides a maximum permissible winding temperature is 1.665 kW. But at the same time the surge up to 38.8%, resulting in high levels of noise and vibration. Through the installation of switching angles, ensuring reduction of torque ripple and reduce engine power to a level below which there is a decrease in the value of torque ripple, received power of 1,066 kW and a torque ripple value of 21.18 %. For engines with improved vibration acoustic characteristics necessary to use a switch of four transistors and four diodes. Practical value. For motors with improved vibration acoustic characteristics appropriate to apply uncapacitor switch on four transistors and four diodes, which allows you to receive half the value of torque ripple than the lowest value of the motor torque ripple, eating from a switch on the circuit asymmetric bridge. The cost of reluctance motor with uncapacitor switch on the circuit with four transistors and four diodes is

  2. Effect of magnetic polarity on surface roughness during magnetic field assisted EDM of tool steel

    Science.gov (United States)

    Efendee, A. M.; Saifuldin, M.; Gebremariam, MA; Azhari, A.

    2018-04-01

    Electrical discharge machining (EDM) is one of the non-traditional machining techniques where the process offers wide range of parameters manipulation and machining applications. However, surface roughness, material removal rate, electrode wear and operation costs were among the topmost issue within this technique. Alteration of magnetic device around machining area offers exciting output to be investigated and the effects of magnetic polarity on EDM remain unacquainted. The aim of this research is to investigate the effect of magnetic polarity on surface roughness during magnetic field assisted electrical discharge machining (MFAEDM) on tool steel material (AISI 420 mod.) using graphite electrode. A Magnet with a force of 18 Tesla was applied to the EDM process at selected parameters. The sparks under magnetic field assisted EDM produced better surface finish than the normal conventional EDM process. At the presence of high magnetic field, the spark produced was squeezed and discharge craters generated on the machined surface was tiny and shallow. Correct magnetic polarity combination of MFAEDM process is highly useful to attain a high efficiency machining and improved quality of surface finish to meet the demand of modern industrial applications.

  3. Accurate torque-sensorless control approach for interior permanent-magnet synchronous machine based on cascaded sliding mode observer

    Directory of Open Access Journals (Sweden)

    Kai-Hui Zhao

    2017-06-01

    Full Text Available To improve the accuracy of torque control for vector control of interior permanent-magnet synchronous machine (IPMSM, this study proposes a torque-sensorless control method based on cascaded sliding mode observer (SMO. First, the active flux model is discussed, which converts the model of IPMSM into the equivalent model of surface-mounted permanent-magnet synchronous machine. Second, to reduce chattering caused by system parameters variations and external disturbances, the cascaded observer is designed, which is composed of a variable gain adaptive SMO and an active flux SMO. The variable gain adaptive SMO is designed to estimate the speed, rotor position and stator resistance in the d–q reference frame. The active flux SMO is designed to estimate the active flux and torque in the α–β reference frame. Global asymptotic stability of the observers is guaranteed by the Lyapunov stability analysis. Finally, simulations and experiments are carried out to verify the effectiveness of the proposed control scheme.

  4. Characteristic analysis of a less-rare-earth hybrid PM-assisted synchronous reluctance motor for EVs application

    Directory of Open Access Journals (Sweden)

    Wenye Wu

    2017-05-01

    Full Text Available Low-energy permanent magnet (PM such as ferrite is usually adopted in a PM-assisted reluctance (PMAREL motor to enhance the output torque and reduce costs. However, the relatively low magnetic energy product and remanence in such PMs may lead to the risk of demagnetization. By using two types of materials of rare-earth NdFeB and non-rare-earth ferrite PM, a new less-rare-earth hybrid PMAREL motor is proposed in this paper, where the output torque and the power factor can be improved obviously, and meanwhile the risk of irreversible demagnetization in ferrite PMs can be reduced significantly due to the existence of NdFeB PMs. To verify the validity of the proposed motor, the operating principles of the motor and the positive interaction influences between the two involved types of PMs are analyzed. Moreover, by using the finite element method, the torque characteristics and anti-demagnetization capabilities are also investigated in details. Both the theoretical analysis and simulated results confirm the advantages of the proposed motor.

  5. Characteristic analysis of a less-rare-earth hybrid PM-assisted synchronous reluctance motor for EVs application

    Science.gov (United States)

    Wu, Wenye; Zhu, Xiaoyong; Quan, Li; Fan, Deyang; Xiang, Zixuan

    2017-05-01

    Low-energy permanent magnet (PM) such as ferrite is usually adopted in a PM-assisted reluctance (PMAREL) motor to enhance the output torque and reduce costs. However, the relatively low magnetic energy product and remanence in such PMs may lead to the risk of demagnetization. By using two types of materials of rare-earth NdFeB and non-rare-earth ferrite PM, a new less-rare-earth hybrid PMAREL motor is proposed in this paper, where the output torque and the power factor can be improved obviously, and meanwhile the risk of irreversible demagnetization in ferrite PMs can be reduced significantly due to the existence of NdFeB PMs. To verify the validity of the proposed motor, the operating principles of the motor and the positive interaction influences between the two involved types of PMs are analyzed. Moreover, by using the finite element method, the torque characteristics and anti-demagnetization capabilities are also investigated in details. Both the theoretical analysis and simulated results confirm the advantages of the proposed motor.

  6. Single pulsed-field magnetization on Gd-Ba-Cu-O Bulk HTS assembled for axial-gap type rotating machines

    International Nuclear Information System (INIS)

    Morita, E; Matsuzaki, H; Kimura, Y; Ohtani, I; Izumi, M; Nonaka, Y; Murakami, M; Ida, T; Sugimoto, H; Miki, M; Kitano, M

    2006-01-01

    We employed Gd-bulk HTS magnets as rotating poles for a smaller and lighter axial-gap type rotating machine. The bulk was placed between two vortex-type armature coils and cooled down to 77 K under zero-field. Pulsed current was applied to the vortex-type magnetizing coils. The trapped field distribution and transient flux behaviour strongly depend on the radial dimension of the armature vortex-type coil. In the present study, we show that there is an optimal radial dimension of magnetizing coils to the given bulk disk size to give a homogeneously conical distribution of the trapped flux

  7. Fault-tolerant electric drive and space-phasor modulation of flux-switching permanent magnet machine for aerospace application

    NARCIS (Netherlands)

    Wang, L.; Aleksandrov, S.; Tang, Y.; Paulides, J.J.H.; Lomonova, E.A.

    2017-01-01

    This study investigates how to improve the fault tolerance or availability of an electrical drive containing a three-phase 12 stator teeth/10 rotor poles (12/10) the flux-switching permanent magnet machine. In this respect, space-vector modulation and space-phasor modulation will be analysed in this

  8. Induction motor for superconducting synchronous/asynchronous motor

    International Nuclear Information System (INIS)

    Litz, D.C.; Haller, H.E. III.

    1975-01-01

    An induction motor structure for use on the outside of a superconducting rotor comprising a cylindrical shell of solid and laminated, magnetic iron with squirrel cage windings embedded in the outer circumference of said shell is described. The sections of the shell between the superconducting windings of the rotor are solid magnetic iron. The sections of the shell over the superconducting windings are made of laminations of magnetic iron. These laminations are parallel to the axis of the machine and are divided in halves with the laminations in each half oriented in diagonal opposition so that the intersection of the laminations forms a V. This structure presents a relatively high reluctance to leakage flux from the superconducting windings in the synchronous operating mode, while presenting a low reluctance path to the stator flux during asynchronous operation

  9. Compound induction electric rotating machine

    Energy Technology Data Exchange (ETDEWEB)

    Decesare, D

    1987-07-28

    The present invention generally relates to dynamo-electric machines cabable of operating in a generator mode or in a motor mode and more specifically, to increased efficiency compound interaction AC and/or DC dynamo-electric machines. This patent describes such a machine having a distributed armature winding in a cylindrical rotor wound to form axial and substantially radial winding portions and including permanent and/or electromagnets to couple magnetic flux into the peripheral or circumferential surface of the rotor, and to provide interaction between a magnetic field formed beyond the rotor axial surfaces and the rotor to thereby enhance the total induction of flux into the rotor for improved, more efficient operation. 28 figs.,

  10. Dynamic and steady state performance comparison of line-start permanent magnet synchronous motors with interior and surface rotor magnets

    Directory of Open Access Journals (Sweden)

    Ogbuka Cosmas

    2016-03-01

    Full Text Available A comprehensive comparison of the dynamic and steady state performance characteristics of permanent magnet synchronous motors (PMSM with interior and surface rotor magnets for line-start operation is presented. The dynamic model equations of the PMSM, with damper windings, are utilized for dynamic studies. Two typical loading scenarios are examined: step and ramp loading. The interior permanent magnet synchronous motor (IPMSM showed superior asynchronous performance under no load, attaining faster synchronism compared to the surface permanent magnet synchronous motor (SPMSM. With step load of 10 Nm at 2 s the combined effect of the excitation and the reluctance torque forced the IPMSM to pull into synchronism faster than the SPMSM which lacks saliency. The ability of the motors to withstand gradual load increase, in the synchronous mode, was examined using ramp loading starting from zero at 2 s. SPMSM lost synchronism at 12 s under 11 Nm load while the IPMSM sustained synchronism until 41 seconds under 40 Nm load. This clearly suggests that the IPMSM has superior load-withstand capability. The superiority is further buttressed with the steady state torque analysis where airgap torque in IPMSM is enhanced by the reluctance torque within 90° to 180° torque angle.

  11. Electrical machines with Matlab

    CERN Document Server

    Gonen, Turan

    2011-01-01

    Basic ConceptsDistribution SystemImpact of Dispersed Storage and GenerationBrief Overview of Basic Electrical MachinesReal and Reactive Powers in Single-Phase AC CircuitsThree-Phase CircuitsThree-Phase SystemsUnbalanced Three-Phase LoadsMeasurement of Average Power in Three-Phase CircuitsPower Factor CorrectionMagnetic CircuitsMagnetic Field of Current-Carrying ConductorsAmpère's Magnetic Circuital LawMagnetic CircuitsMagnetic Circuit with Air GapBrief Review of FerromagnetismMagnetic Core LossesHow to Determine Flux for a Given MMFPermanent MagnetsTransformersTransformer ConstructionBrief Rev

  12. Contribution to the design and the control of synchronous double excitation machines: hybrid vehicle application; Contribution a la conception et a la commande des machines synchrones a double excitation: application au vehicule hybride

    Energy Technology Data Exchange (ETDEWEB)

    Amara, Y

    2001-12-01

    Double excitation machines are synchronous machines where two excitation circuits coexist: one with permanent magnets and the other with windings. This study shows that double excitation allows to combine the advantages of synchronous machines with winded inductor with those of permanent magnet machines. This concept allows a better dimensioning of the converter-machine set and a better energy management. In order to allow the operation of permanent magnet machines over a wide range of speeds, it is necessary to have a magnetic reaction of the induced circuit of the same order than the excitation flux. On the other hand, the power factor is weaker and the power supply converter is over-dimensioned. The double excitation allows the permanent magnet machines to work over a large speed range with a better power factor, even when the magnetic reaction of the induced circuit is relatively weak with respect to the excitation flux. (J.S.)

  13. Power-optimal force decoupling in a hybrid linear reluctance motor

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Jansen, J.W.; Lomonova, E.A.; Mavrudieva, D.

    2015-01-01

    This paper concerns the power-optimal decoupling of the propulsion and normal force created by a hybrid linear reluctance motor. The intrinsic limitations to the decoupling is addressed by the visualizing each force component with a quadric surface in the Euclidean space which is spanned by the

  14. A linear maglev guide for machine tools

    Energy Technology Data Exchange (ETDEWEB)

    Tieste, K D [Inst. of Mechanics, Univ. of Hannover (Germany); Popp, K [Inst. of Mechanics, Univ. of Hannover (Germany)

    1996-12-31

    Machine tools require linear guides with high slide velocity and very high position accuracy. The three tasks of a linear guide - supporting, guiding and driving - shall be realised by means of active magnetic bearings (AMB). The resulting linear magnetically levitated (maglev) guide has to accomplish the following characteristics: High stiffness, good damping and low noise as well as low heat production. First research on a one degree-of-freedom (DOF) support magnet unit aimed at the development of components and efficient control strategies for the linear maglev guide. The actual research is directed to realise a five DOF linear maglev guide for machine tools without drive to answer the question whether the maglev principle can be used for a linear axis in a machine tool. (orig.)

  15. A novel rotor design for a hybrid excited synchronous machine

    Directory of Open Access Journals (Sweden)

    Paplicki Piotr

    2017-03-01

    Full Text Available The paper presents three novel rotor design concepts for a three-phase electric controlled permanent magnet synchronous machine (ECPMS-machine with hybrid excitation. The influence of magnets and flux-barriers arrangement on the magnetic field distribution and field-weakening characteristics of the machine is examined, based on a three-dimensional finite element analysis (3D-FEA. Moreover, a prototype rotor design based on a new rotor concept with a good field-weakening capability is presented in detail. Finally, the experimental results of no-load back electromotive force (back-EMF waveforms and field-weakening characteristics versus a control coil current of the machine are reported.

  16. Determination of Local Magnetic Dipole Moment of the Plasma at the PUPR Cusp-Mirror Machine

    International Nuclear Information System (INIS)

    Leal-Quiros, Edbertho; Prelas, Mark

    2006-01-01

    A novel diagnostic that allows measurement of the magnetic moment μ has been designed. The μ-Analyzer consists of a Directional Energy Analyzer and a Magnetic Hall Probe in the same detector miniature case. The Directional Energy Analyzer measures the ion temperature in the perpendicular direction to the magnetic field. On the other side, the Hall Probe measures the magnetic field. The μ-Analyzer is a miniature analyzer to avoid plasma perturbation. This allows the measurement of the ion temperature and the local magnetic field at the same point at the same time, therefore μ, the first adiabatic invariant is found. From the above parameters, the local Larmor radius also will be calculated. From the analysis of the data simultaneously in time and space, the μ of the Local Plasma has been determined. This result is a very important quantity, among other properties that permit one to know the stability of the magnetic confinement device using the MHD Stability Criterium, and also very important in Space Plasma Research. In addition to the above, a direct measurement of the Larmor radius of each position is also possible. The experiments have been made in a Cusp/Mirror Plasma Machine where plasma parameters such as Density and Temperature are relatively easy to change in a very wide range

  17. Modeling and Performance of a Self-Excited Two-Phase Reluctance ...

    African Journals Online (AJOL)

    A self-excited two-phase reluctance generator (SETPRG) with balanced stator winding is presented. A unique balanced two-phase stator winding was designed with emphasis on obtaining a stator MMF waveform with minimum space harmonics. Then a mathematical model by which the dynamic behavior of the generator ...

  18. DISCRETION MAGNETIQUE DES MACHINES ELECTRIQUES DE PROPULSION NAVALE

    OpenAIRE

    Froidurot , Benoît

    2002-01-01

    For about ten years, electrical machines have been commonly used in naval propulsion systems for civilian applications. This is mainly due to new magnetic materials (magnets...) and power drive electronic, which increase the performances of the machines. This kind of propulsion is planed to be implemented on military ships. However, some constraints of discretion make this propulsion require specific systems for the ship security. This study is then dedicted to the magnetic discretion of nava...

  19. Minimization of torque ripple in ferrite-assisted synchronous reluctance motors by using asymmetric stator

    Science.gov (United States)

    Xu, Meimei; Liu, Guohai; Zhao, Wenxiang; Aamir, Nazir

    2018-05-01

    Torque ripple is one of the important issues for ferrite assisted synchronous reluctance motors (FASRMs). In this paper, an asymmetrical stator is proposed for the FASRM to reduce its torque ripple. In the proposed FASRM, an asymmetrical stator is designed by appropriately choosing the angle of the slot-opening shift. Meanwhile, its analytical torque expressions are derived. The results show that the proposed FASRM has an effective reduction in the cogging torque, reluctance torque ripple and total torque ripple. Moreover, it is easy to implement while the average torque is not sacrificed.

  20. Spoke permanent magnet machine with reduced torque ripple and method of manufacturing thereof

    Science.gov (United States)

    Reddy, Patel Bhageerath; EL-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang; Alexander, James Pellegrino

    2016-03-15

    An internal permanent magnet machine includes a rotor assembly having a shaft comprising a plurality of protrusions extending radially outward from a main shaft body and being formed circumferentially about the main shaft body and along an axial length of the main shaft body. A plurality of stacks of laminations are arranged circumferentially about the shaft to receive the plurality of protrusions therein, with each stack of laminations including a plurality of lamination groups arranged axially along a length of the shaft and with permanent magnets being disposed between the stacks of laminations. Each of the laminations includes a shaft protrusion cut formed therein to receive a respective shaft protrusion and, for each of the stacks of laminations, the shaft protrusion cuts formed in the laminations of a respective lamination group are angularly offset from the shaft protrusion cuts formed in the laminations in an adjacent lamination group.

  1. Magnetic Induction Machines Embedded in Fusion-Bonded Silicon

    National Research Council Canada - National Science Library

    Arnold, David P; Cros, Florent; Zana, Iulica; Allen, Mark G; Das, Sauparna; Lang, Jeffrey H

    2004-01-01

    ...) within etched and fusion-bonded silicon to form the machine structure. The induction machines were characterized in motoring mode using tethered rotors, and exhibited a maximum measured torque...

  2. Unsupervised machine learning account of magnetic transitions in the Hubbard model

    Science.gov (United States)

    Ch'ng, Kelvin; Vazquez, Nick; Khatami, Ehsan

    2018-01-01

    We employ several unsupervised machine learning techniques, including autoencoders, random trees embedding, and t -distributed stochastic neighboring ensemble (t -SNE), to reduce the dimensionality of, and therefore classify, raw (auxiliary) spin configurations generated, through Monte Carlo simulations of small clusters, for the Ising and Fermi-Hubbard models at finite temperatures. Results from a convolutional autoencoder for the three-dimensional Ising model can be shown to produce the magnetization and the susceptibility as a function of temperature with a high degree of accuracy. Quantum fluctuations distort this picture and prevent us from making such connections between the output of the autoencoder and physical observables for the Hubbard model. However, we are able to define an indicator based on the output of the t -SNE algorithm that shows a near perfect agreement with the antiferromagnetic structure factor of the model in two and three spatial dimensions in the weak-coupling regime. t -SNE also predicts a transition to the canted antiferromagnetic phase for the three-dimensional model when a strong magnetic field is present. We show that these techniques cannot be expected to work away from half filling when the "sign problem" in quantum Monte Carlo simulations is present.

  3. Switch Reluctance Motor Control Based on Fuzzy Logic System

    Directory of Open Access Journals (Sweden)

    S. V. Aleksandrovsky

    2012-01-01

    Full Text Available Due to its intrinsic simplicity and reliability, the switched reluctance motor (SRM has now become a promising candidate for variable-speed drive applications as an alternative induction motor in various industrial application. However, the SRM has the disadvantage of nonlinear characteristic and control. It is suggested to use controller based on fuzzy logic system. Design of FLS controller and simulation model presented.

  4. Formation of failure matrix and failure–free control algorithm for multi–sectioned Switched–reluctance drive

    International Nuclear Information System (INIS)

    Odnokopylov, G; Rozayev, I

    2014-01-01

    We review fault-tolerant switched reluctance drive with sectioning of the three–phase stator winding. In the operating process of an electric drive, there will be continuous monitoring of the operating state on the basis of a developed algorithm to analyse drive operability and formation tabulate a failure matrix. The paper introduces a failure–free control algorithm for multi–section switch – reluctance motor with formation the assignment values of amplitude phase currents taking into account the failure matrix. We show that in an emergency such single failure or multiple failure in switched–reluctance drive it is possible to provide reduction of torque fall and pro–gressively stock depletion with providing fault–tolerance of drive system. A method of residual life evaluation is proposed on the basis of calculating the coefficient of operability of the electric drive system that gives possibility to control the endurance of electric drive in real time from operational to completely unusable

  5. Detailed comparative study regarding different formulae of predicting the iron losses in a machine excited by non-sinusoidal supply

    International Nuclear Information System (INIS)

    El-Kharashi, Eyhab

    2014-01-01

    Variable-speed drives in any machine provide an accurate control and high-energy efficiency. More and more often machines are excited by non-sinusoidal voltages. Predicting the amount of iron losses in non-sinusoidal excitation is important. The paper aims to achieve accurate efficiency estimation by presenting a new modified calculation method to predict the iron losses. In a switched reluctance motor, the iron losses can't be ignored, it has considered value. This paper presents conventional and modified Steinmetz formulae for the estimation of the iron losses. The conventional Steinmetz formula consists of three terms: hysteresis, eddy current and anomalous losses. The equations of hysteresis and eddy current losses depend mainly on the value of the peak flux density. The reason to modify the Steinmetz formula is to avoid the need of knowing the peak flux density and the anomalous losses in accurate figures. The paper also explains and clarifies the methods of using both the conventional as well as the modified Steinmetz formulae in accurate calculation of the iron losses in different sections of the magnetic circuit. For both formulae, a comparison is made between the distributions of the iron losses in different parts of the magnetic circuit and the efficiencies. - Highlights: • The paper aims to achieve accurate efficiency estimation. • The predicted iron loss by the conventional Steinmetz formula is inaccurate. • The modified Steinmetz formula is more accurate because it includes the minor loops losses caused by each flux density. • The paper compared the predicted losses obtained by the two different formals to stand on the degree of accuracy

  6. Optimization of a permanent magnet synchronous machine with respect to variable loads; Optimierung einer permanenterregten Synchronmaschine unter Beruecksichtigung von Lastspielen

    Energy Technology Data Exchange (ETDEWEB)

    Kreim, Alexander; Schaefer, Uwe [TU Berlin (Germany). Sek. EM4 Elektrische Antriebstechnik

    2010-10-15

    This article introduces a nonlinear optimization algorithm for mixed integer problems. The proposed algorithm is a trust region algorithm for an exact penalty function. The quadratic subproblem is used for the integration of discrete variables. This is done by a branch-and-bound approach. The application of the algorithm is shown by minimizing the losses of a permanent magnet synchronous machine. The machine is designed for use in hybrid and electric vehicles. It is shown how load cycles can be included into the optimization process. (orig.)

  7. The influence of the inverter switching frequency on rotor losses in high-speed permanent magnet machines : an experimental study

    NARCIS (Netherlands)

    Merdzan, M.; Paulides, J. J H; Borisavljevic, A.; Lomonova, E. A.

    2016-01-01

    Harmonic content of the output voltage of pulse width modulated voltage source inverters (PWM VSI) is determined by the switching frequency. On the other hand, rotor losses in high-speed permanent magnet (PM) machines are caused, among other factors, by harmonics in stator currents. These harmonics

  8. Direct Torque Control System for Permanent Magnet Synchronous Machine with Fuzzy Speed Pi Regulator

    Science.gov (United States)

    Nabti, K.; Abed, K.; Benalla, H.

    2008-06-01

    The Permanent Magnet Synchronous Machine (PMSM) speed regulation with a conventional PI regulator reduces the speed control precision, increase the torque fluctuation, and consequentially low performances of the whole system. With utilisation of fuzzy logic method, this paper presents the self adaptation of conventional PI regulator parameters Kp and Ki (proportional and integral coefficients respectively), using to regulate the speed in Direct Torque Control strategy (DTC). The ripples of both torque and flux are reduced remarkable, small overshooting and good dynamic of the speed and torque. Simulation results verify the proposed method validity.

  9. Reel Teaching = Real Learning: Motivating Reluctant Students through Film Studies

    Science.gov (United States)

    Smilanich, Brad; Lafreniere, Nicole

    2010-01-01

    The authors provide a rationale for the critical study of film texts in the English language arts. For struggling or reluctant students, film offers an accessibility that the printed text may not. Students who are intimidated by, or impeded from, accessing print text are able to discuss film with acuity and insight. The study of visual texts can…

  10. Machine Protection

    CERN Document Server

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an ...

  11. A New Class of Resonant Discharge Drive Topology for Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    M. Asgar

    2009-12-01

    Full Text Available Switched reluctance motor (SRM drive has a remarkable characteristic, high efficiency, and good controllability, which makes it attractive for high-speed applications. In this paper, the basic control strategy for a switched reluctance motor drive circuit is explained and then three different resonant discharge topologies for SRM drive circuit are proposed. Due to resonantly discharging of excess energy, these topologies provide faster rate of fall for the phase current, which permits the motor to operate at higher speeds. In the new circuits a capacitor is charged resonantly by the use of motor phase windings during the phase turn off periods and then discharged via an inductor and a diode during the next working strokes. Three different drive circuits utilizing this process are proposed. A detailed explanation and demonstration of the converter circuits have been presented.

  12. Model predictive control of a high speed switched reluctance generator system

    NARCIS (Netherlands)

    Marinkov, Sava; De Jager, Bram; Steinbuch, Maarten

    2013-01-01

    This paper presents a novel voltage control strategy for the high-speed operation of a Switched Reluctance Generator. It uses a linear Model Predictive Control law based on the average system model. The controller computes the DC-link current needed to achieve the tracking of a desired voltage

  13. Nonlinear Deadbeat Current Control of a Switched Reluctance Motor

    OpenAIRE

    Rudolph, Benjamin

    2009-01-01

    High performance current control is critical to the success of the switched reluctance motor (SRM). Yet high motor phase nonlinearities in the SRM place extra burden on the current controller, rendering it the weakest link in SRM control. In contrast to linear motor control techniques that respond to current error, the deadbeat controller calculates the control voltage by the current command, phase current, rotor position and applied phase voltage. The deadbeat controller has demonstrated sup...

  14. Materials processing and machine applications of bulk HTS

    Science.gov (United States)

    Miki, M.; Felder, B.; Tsuzuki, K.; Xu, Y.; Deng, Z.; Izumi, M.; Hayakawa, H.; Morita, M.; Teshima, H.

    2010-12-01

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa2Cu3O7 - d (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  15. Materials processing and machine applications of bulk HTS

    Energy Technology Data Exchange (ETDEWEB)

    Miki, M; Felder, B; Tsuzuki, K; Xu, Y; Deng, Z; Izumi, M [Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533 (Japan); Hayakawa, H [Kitano Seiki Co. Ltd, 7-17-3, Chuo, Ohta-ku, Tokyo 143-0024 (Japan); Morita, M; Teshima, H, E-mail: d082025@kaiyodai.ac.j [Nippon Steel Co. Ltd, 20-1, Shintomi, Huttsu-shi, Chiba 293-8511 (Japan)

    2010-12-15

    We report a refrigeration system for rotating machines associated with the enhancement of the trapped magnetic flux of bulk high-temperature superconductor (HTS) field poles. A novel cryogenic system was designed and fabricated. It is composed of a low-loss rotary joint connecting the rotor and a closed-cycle thermosiphon under a GM cryocooler using a refrigerant. Condensed neon gas was adopted as a suitable cryogen for the operation of HTS rotating machines with field poles composed of RE-Ba-Cu-O family materials, where RE is a rare-earth metal. Regarding the materials processing of the bulks HTS, thanks to the addition of magnetic particles to GdBa{sub 2}Cu{sub 3}O{sub 7-d} (Gd123) bulk superconductors an increase of more than 20% in the trapped magnetic flux density was achieved at liquid nitrogen temperature. Field-pole Gd123 bulks up to 46 mm in diameter were synthesized with the addition of Fe-B alloy magnetic particles and assembled into the synchronous machine rotor to be tested. Successful cooling of the magnetized rotor field poles down to 35 K and low-output-power rotating operation was achieved up to 720 rpm in the test machine with eight field-pole bulks. The present results show a substantial basis for making a prototype system of rotating machinery of applied HTS bulks.

  16. Vibration Prediction Method of Electric Machines by using Experimental Transfer Function and Magnetostatic Finite Element Analysis

    International Nuclear Information System (INIS)

    Saito, A; Kuroishi, M; Nakai, H

    2016-01-01

    This paper concerns the noise and structural vibration caused by rotating electric machines. Special attention is given to the magnetic-force induced vibration response of interior-permanent magnet machines. In general, to accurately predict and control the vibration response caused by the electric machines, it is inevitable to model not only the magnetic force induced by the fluctuation of magnetic fields, but also the structural dynamic characteristics of the electric machines and surrounding structural components. However, due to complicated boundary conditions and material properties of the components, such as laminated magnetic cores and varnished windings, it has been a challenge to compute accurate vibration response caused by the electric machines even after their physical models are available. In this paper, we propose a highly-accurate vibration prediction method that couples experimentally-obtained discrete structural transfer functions and numerically-obtained distributed magnetic-forces. The proposed vibration synthesis methodology has been applied to predict vibration responses of an interior permanent magnet machine. The results show that the predicted vibration response of the electric machine agrees very well with the measured vibration response for several load conditions, for wide frequency ranges. (paper)

  17. Characteristics Analysis of an Excitation Assistance Switched Reluctance Wind Power Generator

    DEFF Research Database (Denmark)

    Liu, Xiao; Wang, Chao; Chen, Zhe

    2015-01-01

    In order to fully analyze the characteristics of an excitation assistance switched reluctance generator (EASRG) applied in wind power generation, a static model and a dynamic model are proposed. The static model is based on the 3-D finite-element method (FEM), which can be used to obtain the stat...

  18. Steady-State Characteristics Analysis of Hybrid-Excited Flux-Switching Machines with Identical Iron Laminations

    Directory of Open Access Journals (Sweden)

    Gan Zhang

    2015-11-01

    Full Text Available Since the air-gap field of flux-switching permanent magnet (FSPM machines is difficult to regulate as it is produced by the stator-magnets alone, a type of hybrid-excited flux-switching (HEFS machine is obtained by reducing the magnet length of an original FSPM machine and introducing a set of field windings into the saved space. In this paper, the steady-state characteristics, especially for the loaded performances of four prototyped HEFS machines, namely, PM-top, PM-middle-1, PM-middle-2, and PM-bottom, are comprehensively compared and evaluated based on both 2D and 3D finite element analysis. Also, the influences of PM materials including ferrite and NdFeB, respectively, on the characteristics of HEFS machines are covered. Particularly, the impacts of magnet movement in the corresponding slot on flux-regulating performances are studied in depth. The best overall performances employing NdFeB can be obtained when magnets are located near the air-gap. The FEA predictions are validated by experimental measurements on corresponding machine prototypes.

  19. Magnetic imaging and machine vision NDT for the on-line inspection of stainless steel strips

    International Nuclear Information System (INIS)

    Ricci, M; Ficola, A; Fravolini, M L; Battaglini, L; Palazzi, A; Burrascano, P; Valigi, P; Appolloni, L; Cervo, S; Rocchi, C

    2013-01-01

    An on-line inspection system for stainless steel strips has been developed on an annealing and pickling line at the Acciai Speciali Terni S.p.A. steel mill. Besides a machine vision apparatus, the system contextually exploits a magnetic imaging system designed and realized for the specific application. The main goal of the research is represented by the fusion of the information provided by the two apparatuses that can improve the detection and classification tasks by enlarging the set of detectable defects. In this paper, the development, the calibration and the characteristics of the magnetic imaging apparatus are detailed and experimental results obtained both in laboratory and in situ are reported. A comparative analysis of the performances of the two devices is also reported based on preliminary results and some conclusions and perspectives are drawn. (paper)

  20. The Control of Switched Reluctance Motor in Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Zheng Liu

    2014-05-01

    Full Text Available The control of SRM was discussed: current chopping control, angle position control. This paper presents an inverter circuit and a fuzzy sliding mode control method to minimize the torque fluctuation and noise of the SRM. Based on the experimental results, Using the inverter circuit and fuzzy sliding mode control method can effectively minimize the torque fluctuation and noise of the SRM, For the switched reluctance motor applications in electric vehicles to provide a theoretical basis.

  1. Adaptability of optimization concept in the context of cryogenic distribution for superconducting magnets of fusion machine

    Science.gov (United States)

    Sarkar, Biswanath; Bhattacharya, Ritendra Nath; Vaghela, Hitensinh; Shah, Nitin Dineshkumar; Choukekar, Ketan; Badgujar, Satish

    2012-06-01

    Cryogenic distribution system (CDS) plays a vital role for reliable operation of largescale fusion machines in a Tokamak configuration. Managing dynamic heat loads from the superconducting magnets, namely, toroidal field, poloidal field, central solenoid and supporting structure is the most important function of the CDS along with the static heat loads. Two concepts are foreseen for the configuration of the CDS: singular distribution and collective distribution. In the first concept, each magnet is assigned with one distribution box having its own sub-cooler bath. In the collective concept, it is possible to share one common bath for more than one magnet system. The case study has been performed with an identical dynamic heat load profile applied to both concepts in the same time domain. The choices of a combined system from the magnets are also part of the study without compromising the system functionality. Process modeling and detailed simulations have been performed for both the options using Aspen HYSYS®. Multiple plasma pulses per day have been considered to verify the residual energy deposited in the superconducting magnets at the end of the plasma pulse. Preliminary 3D modeling using CATIA® has been performed along with the first level of component sizing.

  2. Converter topologies and dynamical properties of an SR-motor drive

    Energy Technology Data Exchange (ETDEWEB)

    Silventoinen, P.; Tolsa, K.; Salo, J.; Pyrhoenen, J. [Department of Energy Technology, Laboratory of Electrical Engineering Lappeenranta University of Technology, Lappeenranta (Finland)

    1997-12-31

    Starting and reversing times of less than 40 A, torque ripple below 10 % and operational speeds over 5000 rpm can be achieved with 6/4 prototype switched reluctance motor drive. The drive efficiency approaches 80 percent but it is currently limited by high switching frequency. Peak currents of 50 A are needed in a 4.2 kW machine. An introduction to switched reluctance machines and their control is presented and experimental results of the prototype switched reluctance machine are shown. (orig.) 4 refs.

  3. Magnet Fiducialization with Coordinate Measuring Machines

    Energy Technology Data Exchange (ETDEWEB)

    Friedsam, H.; Oren, W.; Pietryka, M.; /SLAC

    2005-08-12

    One of the fundamental alignment problems encountered when building a particle accelerator is the transfer of a component's magnetic centerline position to external fiducials. This operation, dubbed fiducialization, is critical because it can contribute significantly to the alignment error budget. The fiducialization process requires two measurements: (1) from magnetic centerline to mechanical centerline, and (2) from mechanical centerline to external fiducials. This paper will focus on methods for observing the second measurement. Two Stanford Linear Collider (SLC) examples are presented. The object of magnet fiducialization is to relate the magnet-defined beamline position to exterior reference surfaces. To be useful for later component alignment, this relationship must be established in a manner consistent with overall positioning tolerances. The error budget for the SLC's {+-} 100 {micro}m component to component alignment tolerance is as follows: magnetic centerline to mechanical centerline--{sigma} = {+-}30 {micro}m; mechanical centerline to fiducial marks--{sigma} = {+-}50 {micro}m; and fiducial marks to adjacent components--{sigma} = {+-}80 {micro}m; the TOTAL {sigma} = {+-}100 {micro}m. The offset between the mechanical and magnetic centerlines of well-known magnets is generally smaller than the {+-}30 {micro}m measurement tolerance. It is commonly assumed to be zero without measurement. When this tiny value must be measured, extreme care is necessary to avoid obscuring the offset with measurement tool registration errors. In contrast, the mechanical centerline to fiducial measurement must be performed on every magnet. The 50 {micro}m tolerance for this operation is only slightly larger and pushes conventional surveying technology to its limit.

  4. Magnet Fiducialization with Coordinate Measuring Machines

    International Nuclear Information System (INIS)

    Friedsam, H.; Oren, W.; Pietryka, M.; SLAC

    2005-01-01

    One of the fundamental alignment problems encountered when building a particle accelerator is the transfer of a component's magnetic centerline position to external fiducials. This operation, dubbed fiducialization, is critical because it can contribute significantly to the alignment error budget. The fiducialization process requires two measurements: (1) from magnetic centerline to mechanical centerline, and (2) from mechanical centerline to external fiducials. This paper will focus on methods for observing the second measurement. Two Stanford Linear Collider (SLC) examples are presented. The object of magnet fiducialization is to relate the magnet-defined beamline position to exterior reference surfaces. To be useful for later component alignment, this relationship must be established in a manner consistent with overall positioning tolerances. The error budget for the SLC's ± 100 (micro)m component to component alignment tolerance is as follows: magnetic centerline to mechanical centerline--σ = ±30 (micro)m; mechanical centerline to fiducial marks--σ = ±50 (micro)m; and fiducial marks to adjacent components--σ = ±80 (micro)m; the TOTAL σ = ±100 (micro)m. The offset between the mechanical and magnetic centerlines of well-known magnets is generally smaller than the ±30 (micro)m measurement tolerance. It is commonly assumed to be zero without measurement. When this tiny value must be measured, extreme care is necessary to avoid obscuring the offset with measurement tool registration errors. In contrast, the mechanical centerline to fiducial measurement must be performed on every magnet. The 50 (micro)m tolerance for this operation is only slightly larger and pushes conventional surveying technology to its limit

  5. Limits, modeling and design of high-speed permanent magnet machines

    NARCIS (Netherlands)

    Borisavljevic, A.

    2011-01-01

    There is a growing number of applications that require fast-rotating machines; motivation for this thesis comes from a project in which downsized spindles for micro-machining have been researched (TU Delft Microfactory project). The thesis focuses on analysis and design of high-speed PM machines and

  6. Design of a 10 MJ fast discharging homopolar machine

    International Nuclear Information System (INIS)

    Stillwagon, R.E.; Thullen, P.

    1977-01-01

    The design of a fast discharging homopolar machine is described. The machine capacity is 10 MJ with a 30 ms energy delivery time. The salient features of the machine are relatively high terminal voltage, fast discharge time, high power density and high efficiency. The machine integrates several new technologies including high surface speeds, large superconducting magnets and current collection at high density

  7. Novel Transverse Flux Machine for Vehicle Traction Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Z.; Ahmed, A.; Husain, I.; Muljadi, E.

    2015-04-02

    A novel transverse flux machine topology for electric vehicle traction applications using ferrite magnets is presented in this paper. The proposed transverse flux topology utilizes novel magnet arrangements in the rotor that are similar to the Halbach array to boost flux linkage; on the stator side, cores are alternately arranged around a pair of ring windings in each phase to make use of the entire rotor flux that eliminates end windings. Analytical design considerations and finite-element methods are used for an optimized design of a scooter in-wheel motor. Simulation results from finite element analysis (FEA) show that the motor achieved comparable torque density to conventional rare-earth permanent magnet (PM) machines. This machine is a viable candidate for direct-drive applications with low cost and high torque density.

  8. Electromagnetic interference of implantable cardiac devices from a shoulder massage machine.

    Science.gov (United States)

    Yoshida, Saeko; Fujiwara, Kousaku; Kohira, Satoshi; Hirose, Minoru

    2014-09-01

    Shoulder massage machines have two pads that are driven by solenoid coils to perform a per cussive massage on the shoulders. There have been concerns that such machines might create electromagnetic interference (EMI) in implantable cardiac devices because of the time-varying magnetic fields produced by the alternating current in the solenoid coils. The objective of this study was to investigate the potential EMI from one such shoulder massage machine on implantable cardiac devices. We measured the distribution profile of the magnetic field intensity around the massage machine. Furthermore, we performed an inhibition test and an asynchronous test on an implantable cardiac pacemaker using the standardized Irnich human body model. We examined the events on an implantable cardioverter-defibrillator (ICD) using a pacemaker programmer while the massage machine was in operation. The magnetic field distribution profile exhibited a peak intensity of 212 (A/m) in one of the solenoid coils. The maximal interference distance between the massage machine and the implantable cardiac pacemaker was 28 cm. Ventricular fibrillation was induced when the massage machine was brought near the electrode of the ICD and touched the Irnich human body model. It is necessary to provide a "don't use" warning on the box or the exterior of the massage machines or in the user manuals and to caution patients with implanted pacemakers about the dangers and appropriate usage of massage machines.

  9. Characteristics Analysis and Comparison of High-Speed 4/2 and Hybrid 4/4 Poles Switched Reluctance Motor

    Directory of Open Access Journals (Sweden)

    Grace Firsta Lukman

    2018-01-01

    Full Text Available This paper presents a characteristics analysis and performance comparison of high-speed two-phase 4/2 and hybrid single-phase 4/4 switched reluctance motors (SRMs. Although the motors are advantageous as high-speed drives, both conventional structures have high torque ripple as a result of the presence of the torque dead zone. In this paper, solutions to the torque dead zone problem for each motor are discussed. For the 4/2 SRM, a wide-rotor stepper-type is adopted, while for the 4/4 SRM, the structure is changed to a hybrid by adding permanent magnets (PMs. Both motors have a non-uniform air gap to modify their inductance profile, which leads to the elimination of the torque dead zone. A finite-element method was used to analyze the characteristics of each motor. Then, the manufactured motors were tested through experiments, and lastly, their performance was compared.

  10. A Fault Diagnostic Method for Position Sensor of Switched Reluctance Wind Generator

    DEFF Research Database (Denmark)

    Wang, Chao; Liu, Xiao; Liu, Hui

    2016-01-01

    Fast and accurate fault diagnosis of the position sensor is of great significance to ensure the reliability as well as sensor fault tolerant operation of the Switched Reluctance Wind Generator (SRWG). This paper presents a fault diagnostic scheme for a SRWG based on the residual between the estim...

  11. Online Statistics Labs in MSW Research Methods Courses: Reducing Reluctance toward Statistics

    Science.gov (United States)

    Elliott, William; Choi, Eunhee; Friedline, Terri

    2013-01-01

    This article presents results from an evaluation of an online statistics lab as part of a foundations research methods course for master's-level social work students. The article discusses factors that contribute to an environment in social work that fosters attitudes of reluctance toward learning and teaching statistics in research methods…

  12. Electromagnetic linear machines with dual Halbach array design and analysis

    CERN Document Server

    Yan, Liang; Peng, Juanjuan; Zhang, Lei; Jiao, Zongxia

    2017-01-01

    This book extends the conventional two-dimensional (2D) magnet arrangement into 3D pattern for permanent magnet linear machines for the first time, and proposes a novel dual Halbach array. It can not only effectively increase the radial component of magnetic flux density and output force of tubular linear machines, but also significantly reduce the axial flux density, radial force and thus system vibrations and noises. The book is also the first to address the fundamentals and provide a summary of conventional arrays, as well as novel concepts for PM pole design in electric linear machines. It covers theoretical study, numerical simulation, design optimization and experimental works systematically. The design concept and analytical approaches can be implemented to other linear and rotary machines with similar structures. The book will be of interest to academics, researchers, R&D engineers and graduate students in electronic engineering and mechanical engineering who wish to learn the core principles, met...

  13. Analytical Model-Based Design Optimization of a Transverse Flux Machine

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2017-02-16

    This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variables that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.

  14. Operating point resolved loss computation in electrical machines

    Directory of Open Access Journals (Sweden)

    Pfingsten Georg Von

    2016-03-01

    Full Text Available Magnetic circuits of electromagnetic energy converters, such as electrical machines, are nowadays highly utilized. This proposition is intrinsic for the magnetic as well as the electric circuit and depicts that significant enhancements of electrical machines are difficult to achieve in the absence of a detailed understanding of underlying effects. In order to improve the properties of electrical machines the accurate determination of the locally distributed iron losses based on idealized model assumptions solely is not sufficient. Other loss generating effects have to be considered and the possibility being able to distinguish between the causes of particular loss components is indispensable. Parasitic loss mechanisms additionally contributing to the total losses originating from field harmonics, non-linear material behaviour, rotational magnetizations, and detrimental effects caused by the manufacturing process or temperature, are not explicitly considered in the common iron-loss models, probably even not specifically contained in commonly used calibration factors. This paper presents a methodology being able to distinguish between different loss mechanisms and enables to individually consider particular loss mechanisms in the model of the electric machine. A sensitivity analysis of the model parameters can be performed to obtain information about which decisive loss origin for which working point has to be manipulated by the electromagnetic design or the control of the machine.

  15. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    Energy Technology Data Exchange (ETDEWEB)

    Collarin, P.; Piovan, R. [Associazioni EURATOM-ENEA-CNR-Univ. di Padova (Italy). Gruppo di Padova per Ricerche sulla Fusione

    1995-12-31

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper.

  16. Simplified magnetic circuit for the calculation of the stray magnetic flux through the shell gaps

    International Nuclear Information System (INIS)

    Collarin, P.; Piovan, R.

    1995-01-01

    Significant toroidal magnetic field perturbations, stray flux at the shell gaps and current mismatching in the coils of the toroidal field winding are measured during the start-up and the flat-top phases of RFX. These phenomena are consistent with large and wall locked MHD modes: at first some m = 1 modes evolve separately one after the other, afterwards they concur to a wide and localized plasma perturbation that persists during the flat-top. These perturbations are heavily influenced by the stray magnetic flux through the shell gaps. Hence a magnetic circuit that mainly considers the magnetic reluctance of the conducting shell gaps has been developed in order to estimate this stray flux and, therefore, to evaluate the stabilizing capability of the shell. The observation of the MHD modes, the description of the equivalent magnetic network, the estimation of the stray flux and the comparison with the experimental measurements are reported in the paper

  17. Electrotechnics - AC motors. Asynchronous and brush-less motors - Lecture and exercises with solutions; Electrotechnique - Moteurs a courant alternatif. Moteurs asynchrones et brushless - Cours et problemes resolus

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, D.

    2005-07-01

    This book proposes a presentation of AC electric motors essentially based on physics and technology. Its originality consists in avoiding to use mathematical formulations (like Park's transformation). The modeling retained, which only uses magnetic momentum, magnetic fields and reluctance concepts, leads simply and naturally to the vectorial control principle. The book develops some lecture elements which includes some topics rarely considered like the dimensioning of an asynchronous motor or of a single-phase brush-less motor. Experimental results illustrate the physical phenomena described and many original problems are resolved and commented at the end of each chapter. Content: signals and systems in electrotechnics, torque and rotating magnetic fields generation, asynchronous machine in permanent regime, speed variation of the asynchronous motor, special asynchronous motors, synchronous machine in permanent regime, brush-less motor, note about step motors, note about inverters, index. (J.S.)

  18. Machine learning and medical imaging

    CERN Document Server

    Shen, Dinggang; Sabuncu, Mert

    2016-01-01

    Machine Learning and Medical Imaging presents state-of- the-art machine learning methods in medical image analysis. It first summarizes cutting-edge machine learning algorithms in medical imaging, including not only classical probabilistic modeling and learning methods, but also recent breakthroughs in deep learning, sparse representation/coding, and big data hashing. In the second part leading research groups around the world present a wide spectrum of machine learning methods with application to different medical imaging modalities, clinical domains, and organs. The biomedical imaging modalities include ultrasound, magnetic resonance imaging (MRI), computed tomography (CT), histology, and microscopy images. The targeted organs span the lung, liver, brain, and prostate, while there is also a treatment of examining genetic associations. Machine Learning and Medical Imaging is an ideal reference for medical imaging researchers, industry scientists and engineers, advanced undergraduate and graduate students, a...

  19. Reluctance to change and end psychotherapy

    Directory of Open Access Journals (Sweden)

    John E. Berg

    2018-01-01

    Full Text Available Reluctance to change therapy has clinical and economic implications. Therapists are expected to deliver treatment in a oneto- one setting ending up with patient improvement. Such an achievement is difficult to overview. There is great uncertainty as to what works in psychotherapies despite research efforts. Prolonged treatment duration with little positive effect may be caused by factors inherent in therapist and patient and the external environment. Two cases are discussed illustrating the need for better surveillance of what happens in the therapy room. Responsibility for the progress in therapy rests on the shoulders of the therapist. When therapy becomes detrimental to patient and therapist, we do not have a comprehensive system to interfere or help. Delayed recovery emanates as an increase in costs to society and the family. This is the case when return to work after treatment is partly or completely retarded.

  20. Mathematical Tasks without Words and Word Problems: Perceptions of Reluctant Problem Solvers

    Science.gov (United States)

    Holbert, Sydney Margaret

    2013-01-01

    This qualitative research study used a multiple, holistic case study approach (Yin, 2009) to explore the perceptions of reluctant problem solvers related to mathematical tasks without words and word problems. Participants were given a choice of working a mathematical task without words or a word problem during four problem-solving sessions. Data…

  1. Rotor for a line start permanent magnet machine

    Science.gov (United States)

    Melfi, Mike; Schiferl, Rich; Umans, Stephen

    2017-07-11

    A rotor comprises laminations with a plurality of rotor bar slots with an asymmetric arrangement about the rotor. The laminations also have magnet slots equiangularly spaced about the rotor. The magnet slots extend near to the rotor outer diameter and have permanent magnets disposed in the magnet slots creating magnetic poles. The magnet slots may be formed longer than the permanent magnets disposed in the magnets slots and define one or more magnet slot apertures. The permanent magnets define a number of poles and a pole pitch. The rotor bar slots are spaced from adjacent magnet slots by a distance that is at least 4% of the pole pitch. Conductive material is disposed in the rotor bar slots, and in some embodiments, may be disposed in the magnet slot apertures.

  2. Optimization of Moving Coil Actuators for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Nørgård, Christian; Bech, Michael Møller; Roemer, Daniel Beck

    2016-01-01

    This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized for actu......This paper focuses on deriving an optimal moving coil actuator design, used as force pro-ducing element in hydraulic on/off valves for Digital Displacement machines. Different moving coil actuator geometry topologies (permanent magnet placement and magnetiza-tion direction) are optimized...... for actuating annular seat valves in a digital displacement machine. The optimization objectives are to the minimize the actuator power, the valve flow losses and the height of the actuator. Evaluation of the objective function involves static finite element simulation and simulation of an entire operation...... designs requires approximately 20 W on average and may be realized in 20 mm × Ø 22.5 mm (height × diameter) for a 20 kW pressure chamber. The optimization is carried out using the multi-objective Generalized Differential Evolu-tion optimization algorithm GDE3 which successfully handles constrained multi-objective...

  3. Speed control of switched reluctance motor using sliding mode control strategy

    Energy Technology Data Exchange (ETDEWEB)

    John, G. [Kenetech Windpower, Livermore, CA (United States); Eastham, A.R. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Electrical Engineering

    1995-12-31

    A robust speed drive system for a switched reluctance motor (SRM) using sliding mode control strategy (SLMC) is presented. After reviewing the operation of an SRM drive, a SLMC based scheme is formulated to control the drive speed. The scheme is implemented using a micro-controller and a high resolution position sensor. The parameter insensitive characteristics are demonstrated through computer simulations and experimental verification.

  4. Intelligent simulated annealing algorithm applied to the optimization of the main magnet for magnetic resonance imaging machine; Algoritmo simulated annealing inteligente aplicado a la optimizacion del iman principal de una maquina de resonancia magnetica de imagenes

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Lopez, Hector [Universidad de Oriente, Santiago de Cuba (Cuba). Centro de Biofisica Medica]. E-mail: hsanchez@cbm.uo.edu.cu

    2001-08-01

    This work describes an alternative algorithm of Simulated Annealing applied to the design of the main magnet for a Magnetic Resonance Imaging machine. The algorithm uses a probabilistic radial base neuronal network to classify the possible solutions, before the objective function evaluation. This procedure allows reducing up to 50% the number of iterations required by simulated annealing to achieve the global maximum, when compared with the SA algorithm. The algorithm was applied to design a 0.1050 Tesla four coil resistive magnet, which produces a magnetic field 2.13 times more uniform than the solution given by SA. (author)

  5. Torque decomposition and control in an iron core linear permanent magnet motor.

    NARCIS (Netherlands)

    Overboom, T.T.; Smeets, J.P.C.; Stassen, J.M.; Jansen, J.W.; Lomonova, E.

    2012-01-01

    Abstract—This paper concerns the decomposition and control of the torque produced by an iron core linear permanent magnet motor. The proposed method is based on the dq0-decomposition of the three-phase currents using Park’s transformation. The torque is decomposed into a reluctance component and two

  6. Superconducting magnets 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T c at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design

  7. AC Losses and Their Thermal Effect in High Temperature Superconducting Machines

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Zou, Shengnan

    2015-01-01

    In transient operations or fault conditions, high temperature superconducting (HTS) machines suffer AC losses which have an influence on the thermal stability of superconducting windings. In this paper, a method to calculate AC losses and their thermal effect in HTS machines is presented....... The method consists of three sub-models that are coupled only in one direction. The magnetic field distribution is first solved in a machine model, assuming a uniform current distribution in HTS windings. The magnetic fields on the boundaries are then used as inputs for an AC loss model which has...

  8. AC Losses and Their Thermal Effect in High-Temperature Superconducting Machines

    DEFF Research Database (Denmark)

    Song, Xiaowei (Andy); Mijatovic, Nenad; Zou, Shengnan

    2016-01-01

    In transient operations or fault conditions, hightemperature superconducting (HTS) machines suffer ac losses, which have an influence on the thermal stability of superconducting windings. In this paper, a method to calculate ac losses and their thermal effect in HTS machines is presented....... The method consists of three submodels that are coupled only in one direction. The magnetic field distribution is first solved in a machine model, assuming a uniform current distribution in HTS windings. The magnetic fields on the boundaries are then used as inputs for an ac loss model that has a homogeneous...

  9. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    Science.gov (United States)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  10. Coordinate measurement machines as an alignment tool

    International Nuclear Information System (INIS)

    Wand, B.T.

    1991-03-01

    In February of 1990 the Stanford Linear Accelerator Center (SLAC) purchased a LEITZ PM 12-10-6 CMM (Coordinate measurement machine). The machine is shared by the Quality Control Team and the Alignment Team. One of the alignment tasks in positioning beamline components in a particle accelerator is to define the component's magnetic centerline relative to external fiducials. This procedure, called fiducialization, is critical to the overall positioning tolerance of a magnet. It involves the definition of the magnetic center line with respect to the mechanical centerline and the transfer of the mechanical centerline to the external fiducials. To perform the latter a magnet coordinate system has to be established. This means defining an origin and the three rotation angles of the magnet. The datum definition can be done by either optical tooling techniques or with a CMM. As optical tooling measurements are very time consuming, not automated and are prone to errors, it is desirable to use the CMM fiducialization method instead. The establishment of a magnet coordinate system based on the mechanical center and the transfer to external fiducials will be discussed and presented with 2 examples from the Stanford Linear Collider (SLC). 7 figs

  11. A New Low-Cost Hybrid Switched Reluctance Motor for Adjustable-Speed Pump Applications

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Watkins, Steve

    2011-01-01

    with conventional single-phase switched reluctance motors, it has an increased torque density. The cogging torque is beneficially used in this motor for reducing the torque ripple. It is demonstrated that such a motor drive system can be a suitable candidate to advantageously compete with the existing motor drive...

  12. High Torque Density Transverse Flux Machine without the Need to Use SMC Material for 3D Flux Paths

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Wu, Weimin

    2015-01-01

    This paper presents a new transverse flux permanent magnet machine. In a normal transverse flux machine, complicated 3-D flux paths often exist. Such 3-D flux paths would require the use of soft magnetic composites material instead of laminations for construction of the machine stator. In the new...... machine topology proposed in this paper, by advantageously utilizing the magnetic flux path provided by an additional rotor, use of laminations that allow 2-D flux paths only will be sufficient to accomplish the required 3-D flux paths. The machine also has a high torque density and is therefore...

  13. Why are Dutch rheumatologists reluctant to use the COBRA treatment strategy in early rheumatoid arthritis?

    Science.gov (United States)

    van Tuyl, Lilian H D; Plass, Anne Marie C; Lems, Willem F; Voskuyl, Alexandre E; Dijkmans, Ben A C; Boers, Maarten

    2007-01-01

    Background The Combinatietherapie Bij Reumatoide Artritis (COBRA) trial has proved that combination therapy with prednisolone, methotrexate and sulphasalazine is superior to sulphasalazine monotherapy in suppressing disease activity and radiological progression of early rheumatoid arthritis (RA). In addition, 5 years of follow‐up proved that COBRA therapy results in sustained reduction of the rate of radiological progression. Despite this evidence, Dutch rheumatologists seem reluctant to prescribe COBRA therapy. Objective To explore the reasons for the reluctance in Dutch rheumatologists to prescribe COBRA therapy. Methods A short structured questionnaire based on social–psychological theories of behaviour was sent to all Dutch rheumatologists (n = 230). Results The response rate was 50%. COBRA therapy was perceived as both effective and safe, but complex to administer. Furthermore, rheumatologists expressed their concern about the large number of pills that had to be taken, the side effects of high‐dose prednisolone and the low dose of methotrexate. Although the average attitude towards the COBRA therapy was slightly positive (above the neutral point), the majority of responding rheumatologists had a negative intention (below the neutral point) to prescribe COBRA therapy in the near future. Conclusion The reluctance of Dutch rheumatologists to prescribe effective COBRA therapy may be due to perceptions of complexity of the treatment schedule and negative patient‐related consequences of the therapy. PMID:17392349

  14. Adaptive neuro-fuzzy controller of switched reluctance motor

    Directory of Open Access Journals (Sweden)

    Tahour Ahmed

    2007-01-01

    Full Text Available This paper presents an application of adaptive neuro-fuzzy (ANFIS control for switched reluctance motor (SRM speed. The ANFIS has the advantages of expert knowledge of the fuzzy inference system and the learning capability of neural networks. An adaptive neuro-fuzzy controller of the motor speed is then designed and simulated. Digital simulation results show that the designed ANFIS speed controller realizes a good dynamic behaviour of the motor, a perfect speed tracking with no overshoot and a good rejection of impact loads disturbance. The results of applying the adaptive neuro-fuzzy controller to a SRM give better performance and high robustness than those obtained by the application of a conventional controller (PI.

  15. Design of a Modular E-Core Flux Concentrating Axial Flux Machine: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Husain, Tausif; Sozer, Yilmaz; Husain, Iqbal; Muljadi, Eduard

    2015-08-24

    In this paper a novel E-Core axial flux machine is proposed. The machine has a double-stator, single-rotor configuration with flux-concentrating ferrite magnets and pole windings across each leg of an E-Core stator. E-Core stators with the proposed flux-concentrating rotor arrangement result in better magnet utilization and higher torque density. The machine also has a modular structure facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis. facilitating simpler construction. This paper presents a single-phase and a three-phase version of the E-Core machine. Case studies for a 1.1-kW, 400-rpm machine for both the single-phase and three-phase axial flux machines are presented. The results are verified through 3D finite element analysis.

  16. Efficient forced vibration reanalysis method for rotating electric machines

    Science.gov (United States)

    Saito, Akira; Suzuki, Hiromitsu; Kuroishi, Masakatsu; Nakai, Hideo

    2015-01-01

    Rotating electric machines are subject to forced vibration by magnetic force excitation with wide-band frequency spectrum that are dependent on the operating conditions. Therefore, when designing the electric machines, it is inevitable to compute the vibration response of the machines at various operating conditions efficiently and accurately. This paper presents an efficient frequency-domain vibration analysis method for the electric machines. The method enables the efficient re-analysis of the vibration response of electric machines at various operating conditions without the necessity to re-compute the harmonic response by finite element analyses. Theoretical background of the proposed method is provided, which is based on the modal reduction of the magnetic force excitation by a set of amplitude-modulated standing-waves. The method is applied to the forced response vibration of the interior permanent magnet motor at a fixed operating condition. The results computed by the proposed method agree very well with those computed by the conventional harmonic response analysis by the FEA. The proposed method is then applied to the spin-up test condition to demonstrate its applicability to various operating conditions. It is observed that the proposed method can successfully be applied to the spin-up test conditions, and the measured dominant frequency peaks in the frequency response can be well captured by the proposed approach.

  17. Machine Learning Phases of Strongly Correlated Fermions

    Directory of Open Access Journals (Sweden)

    Kelvin Ch’ng

    2017-08-01

    Full Text Available Machine learning offers an unprecedented perspective for the problem of classifying phases in condensed matter physics. We employ neural-network machine learning techniques to distinguish finite-temperature phases of the strongly correlated fermions on cubic lattices. We show that a three-dimensional convolutional network trained on auxiliary field configurations produced by quantum Monte Carlo simulations of the Hubbard model can correctly predict the magnetic phase diagram of the model at the average density of one (half filling. We then use the network, trained at half filling, to explore the trend in the transition temperature as the system is doped away from half filling. This transfer learning approach predicts that the instability to the magnetic phase extends to at least 5% doping in this region. Our results pave the way for other machine learning applications in correlated quantum many-body systems.

  18. Iron Loss Prediction Using Modified IEM-Formula during the Field Weakening for Permanent Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Pedram Asef

    2017-12-01

    Full Text Available During field weakening operation time (FWOT, the total iron loss rises and affects the accuracy of loss prediction and efficiency, especially if a large range of FWOT exists due to a large voltage drop that was rooted from the resistance of the used material. Iron loss prediction is widely employed in investigations for a fast electrical machine analysis using 2D finite element analysis (FEA. This paper proposes harmonic loss analytically by a steady-state equivalent circuit with a novel procedure. Consideration of skin effects and iron saturation are utilized in order to examine the accuracy through the relative error distribution in the frequency domain of each model from 50 to 700 Hz. Additionally, this comparative study presents a torque-frequency-field density calculation over each single term of the modified institute of electrical machines formula (IEM-Formula. The proposed analytical calculation is performed using 2D FEA for a classic and modified IEM-Formula along with experimental verifications on a surface-mounted permanent magnet synchronous generator (PMSG for a wind generation application.

  19. Third harmonic current injection into highly saturated multi-phase machines

    Directory of Open Access Journals (Sweden)

    Klute Felix

    2017-03-01

    Full Text Available One advantage of multi-phase machines is the possibility to use the third harmonic of the rotor flux for additional torque generation. This effect can be maximised for Permanent Magnet Synchronous Machines (PMSM with a high third harmonic content in the magnet flux. This paper discusses the effects of third harmonic current injection (THCI on a five-phase PMSM with a conventional magnet shape depending on saturation. The effects of THCI in five-phase machines are shown in a 2D FEM model in Ansys Maxwell verified by measurement results. The results of the FEM model are analytically analysed using the Park model. It is shown in simulation and measurement that the torque improvement by THCI increases significantly with the saturation level, as the amplitude of the third harmonic flux linkage increases with the saturation level but the phase shift of the rotor flux linkage has to be considered. This paper gives a detailed analysis of saturation mechanisms of PMSM, which can be used for optimizing the efficiency in operating points of high saturations, without using special magnet shapes.

  20. Application brushless machines with combine excitation for a hybrid car and an electric car

    Directory of Open Access Journals (Sweden)

    Gandzha S.A.

    2015-08-01

    Full Text Available This article shows advantages of application the brushless machines with combined excitation (excitation from permanent magnets and excitation winding for the hybrid car and the electric car. This type of electric machine is compared with a typical brushless motor and an induction motor. The main advantage is the decrease of the dimensions of electric machine and the reduction of the price for an electronic control system. It is shown the design and the principle of operation of the electric machine. The machine was modeled using Solidworks program for creating design and Maxwell program for the magnetic field analysis. The result of tests is shown as well.

  1. Introduction to Machine Protection

    CERN Document Server

    Schmidt, R

    2016-01-01

    Protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent, although there was one paper that discussed beam-induced damage for the SLAC linac (Stanford Linear Accelerator Center) as early as in 1967. It is related to the increasing beam power of high-power proton accelerators, to the emission of synchrotron light by electron-positron accelerators and to the increase of energy stored in the beam. Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping ...

  2. A Novel Coaxial Magnetic Gear and Its Integration With Permanent-Magnet Brushless Motor

    DEFF Research Database (Denmark)

    Zhang, Xiaoxu; Liu, Xiao; Chen, Zhe

    2016-01-01

    A magnetic geared machine (MGM) is believed to be a promising candidate for high-torque direct-drive application. One of the key issues for developing MGMs is how to resolve the contradiction between the good performance and the complex structure. This paper aims at proposing a novel coaxial...... magnetic gear (CMG), which will not increase the mechanical complexity after integration with a permanent magnet (PM) brushless machine. The prominent feature of the proposed CMG is the introduction of the stator with modulating teeth, which function as the same as the modulating pole...

  3. Beam impedance of ferrite kicker magnets

    International Nuclear Information System (INIS)

    Voelker, F.; Lambertson, G.

    1989-03-01

    We have measured the longitudinal beam impedance of a typical pulsed magnet that will be used in the Advanced Light Source. The magnets are of a ferrite window-frame design with a single plate conductor on each side. Two separate power supplies are used to drive current in opposite directions in the two conductors. The continuity of the ferrite yoke is interrupted by two copper plates 1 mm thick in the center of the top and bottom of the window frame. This increases the reluctance of the magnetic path, and thus decreases the flux which couples the beam. The measurements were made by exciting a 1/8'' rod along the beam path through the magnet. This makes a 185 ohm transmission line, and it was terminated in a resistive divider at the exit end. A 3 GHz network analyzer was used to measure S 21 through the magnet, and longitudinal beam impedance was calculated from this data. The impedance is dominated by two low frequency resonances in the magnet winding and drive current. 8 figs

  4. Superconducting magnets

    International Nuclear Information System (INIS)

    Willen, E.

    1996-01-01

    Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine

  5. 3C.07: ARE THE PHYSICIANS RELUCTANT TO PRACTICE TELEMEDICINE IN HYPERTENSION?

    Science.gov (United States)

    Sublet, M Lopez; Courand, P Y; Bally, S; Krummel, T; Dimitrov, Y; Brucker, M; Coz, S Regnier-Le; Dourmap-Collas, C; Mourad, J J; Steichen, O; Ott, J; Barone-Rochette, G; Bogetto-Graham, L; Rossignol, P; Barber-Chamoux, N; Le Jeune, S; Vautrin, E; Agnoletti, D; Baguet, S; Sosner, P

    2015-06-01

    The high number of patients with uncontrolled hypertension is still a public health pattern. The e-health contains all electronic health services used in order to improve communication between all the different actors. In arterial hypertension, few data exists on the possibilities: 1/ for patients to easily e-transfer their results of home blood pressure measurement (HBPM); 2/ for practitioners to receive and assess these HBPM results. Furthermore, physician's reluctance is often reported as a constraint for telemedicine development. Thus, we aimed to collect data on technical equipment of physicians, and on their expectations about this new way of relationship. 57 physicians, hypertension specialists (36 ± 8 years old, 56% men, mostly (88%) hospital practitioners) completed a self-administered questionnaire. The prevalence of technical equipment is summarized in Table 1. 77.1% of physicians thought that telemedicine could improve the control of hypertension, 29.8% thought they could provide less frequent consultations to their patients and 24.5 % that HBPM information would contribute to the fight against inertia. 83.2% of physicians would agree that HBPM data be transferred to a non- medical staff, a nurse in most cases (59.5%). Finally, while 89.5% of physicians declared they support the development of telemedicine in their daily practice, 100% of them found 3 kinds of "limits" to this exchange method. The main obstacles were: budget (49%), lack of legal frame (43%), medical reluctance (42%), difficulties in accessing or in mastering informatics tool (38.5%), confidentiality (28%), absence of direct benefit (21%), patient reluctance (21%).(Figure is included in full-text article.) : The equipment of physicians in home or mobile devices appears no longer an obstacle for the development of a program dedicated to telemedicine. The majority of medical practitioners working in specialized hypertension department agreed with Internet e-transfer of HBPM data

  6. Download this PDF file

    African Journals Online (AJOL)

    Dr Obe

    the TF machine can develop a reluctance torque while operating alone. Torque can only be developed when they are mechanically coupled together. The operation of the machine resembles that of two coupled single-phase reluctance motors acting in time quadrature. The auxiliary windings provide a loop in which the (2s ...

  7. A non-unity torque sharing function for torque ripple minimization of switched reluctance generators

    DEFF Research Database (Denmark)

    Park, Kiwoo; Liu, Xiao; Chen, Zhe

    2013-01-01

    This paper presents a new torque ripple minimization technique for a Switched Reluctance Generator (SRG). Although the SRG has many advantageous characteristics as a generator, it has not been widely employed in the industry. One of the most notorious disadvantages of the SRG is its high torque...

  8. Linear switched reluctance motor control with PIC18F452 microcontroller

    OpenAIRE

    DURSUN, Mahir; KOÇ, Fatmagül

    2014-01-01

    This paper presents the simulation, control, and experimental results of the velocity of a double-sided, 6/4-poled, 3-phased, 8 A, 24 V, 250 W, and 250 N pull force linear switched reluctance motor (LSRM). In the simulation and experimental study, the reference velocity is constant depending on the position and time. The velocity versus the position of the translator was controlled with fuzzy logic control (FLC) and proportional-integral (PI) control techniques. The motor was control...

  9. DOE-RCT-0003641 Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Edward [RCT Systems, Inc., Linthicum, MD (United States); Lesster, Ted [RCT Systems, Inc., Linthicum, MD (United States)

    2014-07-30

    This program studied novel concepts for an Axial Flux Reluctance Machine to capture energy from marine hydrokinetic sources and compared their attributes to a Radial Flux Reluctance Machine which was designed under a prior Department of Energy program for the same application. Detailed electromagnetic and mechanical analyses were performed to determine the validity of the concept and to provide a direct comparison with the existing conventional Radial Flux Switched Reluctance Machine designed during the Advanced Wave Energy Conversion Project, DE-EE0003641. The alternate design changed the machine topology so that the flux that is switched flows axially rather than radially and the poles themselves are long radially, as opposed to the radial flux machine that has pole pieces that are long axially. It appeared possible to build an axial flux machine that should be considerably more compact than the radial machine. In an “apples to apples” comparison, the same rules with regard to generating magnetic force and the fundamental limitations of flux density hold, so that at the heart of the machine the same torque equations hold. The differences are in the mechanical configuration that limits or enhances the change of permeance with rotor position, in the amount of permeable iron required to channel the flux via the pole pieces to the air-gaps, and in the sizing and complexity of the electrical winding. Accordingly it was anticipated that the magnetic component weight would be similar but that better use of space would result in a shorter machine with accompanying reduction in housing and support structure. For the comparison the pole count was kept the same at 28 though it was also expected that the radial tapering of the slots between pole pieces would permit a higher pole count machine, enabling the generation of greater power at a given speed in some future design. The baseline Radial Flux Machine design was established during the previous DOE program. Its

  10. Sensorless Suitability Analysis of Hybrid PM Machines for Electric Vehicles

    DEFF Research Database (Denmark)

    Matzen, Torben Nørregaard; Rasmussen, Peter Omand

    2009-01-01

    Electrical machines for traction in electric vehicles are an essential component which attract attention with respect to machine design and control as a part of the emerging renewable industry. For the hybrid electric machine to replace the familiar behaviour of the combustion engine torque......, control seems necessary to implement. For hybrid permanent magnet (PM) machines torque control in an indirect fashion using dq-current control is frequently done. This approach requires knowledge about the machine shaft position which may be obtained sensorless. In this article a method based on accurate...

  11. Magnetic-field considerations in superferric dipole

    International Nuclear Information System (INIS)

    Snowdon, S.C.

    1983-01-01

    Iron dominated magnets are characterized in the limit of infinite permeability by a pole shape that is a magnetic equipotential. Deviations from this ideal because of finite permeability are associated with differences in path length, local saturation, flux concentration in slotted pole if crenellation is used, and sub surface voids. For moderate field levels the variation in flux path length throughout the iron lowers the magnetic potential on the iron surface more for the longer paths. As the excitation increases the permeability is lowered in regions of high flux density. Crenellation in this region offers some degree of control over the permeability by concentrating the flux. To a lesser degree sub surface voids can be used to control the reluctance of a flux path. The net result suggests that the shape of the effective air gap can be adjusted to be a magnetic equipotential sensibly equivalent to the ideal pole shape for infinite permeability

  12. Superconducting magnets

    International Nuclear Information System (INIS)

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature

  13. Quiescent plasma machine for plasma investigation

    International Nuclear Information System (INIS)

    Ferreira, J.L.

    1993-01-01

    A large volume quiescent plasma device is being developed at INPE to study Langmuir waves and turbulence generated by electron beams (E b ≤ 500 e V) interacting with plasma. This new quiescent plasma machine was designed to allow the performance of several experiments specially those related with laboratory space plasma simulation experiments. Current-driven instabilities and related phenomena such as double-layers along magnetic field lines are some of the many experiments planned for this machine. (author)

  14. Flux Concentration and Pole Shaping in a Single Phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan

    2010-01-01

    The single phase hybrid switched reluctance motor (HSRM) may be a good candidate for low-cost drives used for pump applications. This paper presents a new design of the HSRM with improved starting torque achieved by stator pole shaping, and a better arrangement of the embedded stator permanent...

  15. Practical aspects of the use of three-phase alternating current electric machines in electricity storage system

    Science.gov (United States)

    Ciucur, Violeta

    2015-02-01

    Of three-phase alternating current electric machines, it brings into question which of them is more advantageous to be used in electrical energy storage system by pumping water. The two major categories among which are given dispute are synchronous and the asynchronous machine. To consider the synchronous machine with permanent magnet configuration because it brings advantages compared with conventional synchronous machine, first by removing the necessary additional excitation winding. From the point of view of loss of the two types of machines, the optimal adjustment of the magnetic flux density is obtained to minimize the copper loss by hysteresis and eddy currents.

  16. Position Control of Switched Reluctance Motor Using Super Twisting Algorithm

    Directory of Open Access Journals (Sweden)

    Muhammad Rafiq Mufti

    2016-01-01

    Full Text Available The inherent problem of chattering in traditional sliding mode control is harmful for practical application of control system. This paper pays a considerable attention to a chattering-free control method, that is, higher-order sliding mode (super twisting algorithm. The design of a position controller for switched reluctance motor is presented and its stability is assured using Lyapunov stability theorem. In order to highlight the advantages of higher-order sliding mode controller (HOSMC, a classical first-order sliding mode controller (FOSMC is also applied to the same system and compared. The simulation results reflect the effectiveness of the proposed technique.

  17. A novel linear switched reluctance motor for railway transportation systems

    International Nuclear Information System (INIS)

    Daldaban, Ferhat; Ustkoyuncu, Nurettin

    2010-01-01

    This paper presents the design and realization of a new linear switched reluctance motor (LSRM) structure, especially suitable for high-speed railway systems. The new model has a double active stator configuration and provides high force for many applications with low cost. The characteristics of the LSRM are obtained by using finite element analysis (FEA) and analytical calculations. The results of the FEA and analytical calculations are presented, and compared with experimental results. In addition, a classical double-sided LSRM (DSLSRM) is modeled with the same specifications of the new motor structure and the results are compared.

  18. Permanent-magnet switched-flux machine

    Science.gov (United States)

    Trzynadlowski, Andrzej M.; Qin, Ling

    2010-01-12

    A permanent-magnet switched-flux (PMSF) device has a ferromagnetic outer stator mounted to a shaft about a central axis extending axially through the PMSF device. Pluralities of top and bottom stator poles are respectively mounted in first and second circles, radially outwardly in first and second transverse planes extending from first and second sections of the central axis adjacent to an inner surface of the ferromagnetic outer stator. A ferromagnetic inner rotor is coupled to the shaft and has i) a rotor core having a core axis co-axial with the central axis; and ii) first and second discs having respective outer edges with first and second pluralities of permanent magnets (PMs) mounted in first and second circles, radially outwardly from the rotor core axis in the first and second transverse planes. The first and second pluralities of PMs each include PMs of alternating polarity.

  19. Disrupting Communities of Practice? How "Reluctant" Practitioners View Early Years Workforce Reform in England

    Science.gov (United States)

    Payler, Jane K.; Locke, Rachel

    2013-01-01

    This article reports on the views of early years practitioners in England from settings that were identified as "reluctant to engage" with one of the government's key policies, the introduction of Early Years Professional Status (EYPS), to drive forwards workforce reform. Focus groups, interviews and a survey were undertaken in 2009 with…

  20. A new double sided linear switched reluctance motor with low cost

    International Nuclear Information System (INIS)

    Daldaban, Ferhat; Ustkoyuncu, Nurettin

    2006-01-01

    This paper presents the realization and design of a new linear switched reluctance motor (LSRM) structure. The new model has double sided configuration and provides high force for many applications with low cost. The characteristics of the LSRM are obtained by using finite element analysis (FEA) and analytical calculations. The results of the FEA and analytical calculations are presented, and compared with experimental results. A high correlation between experimental and analytical results is obtained, which has been demonstrated in the form of inductance versus position versus current

  1. Homopolar machine for reversible energy storage and transfer systems

    Science.gov (United States)

    Stillwagon, Roy E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine.

  2. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1981-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermo-nuclear reactor. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals. A stator concentrically disposed around the sleeves consists of a hollow cylinder having a number of excitation coils each located radially outward from the ends of adjacent sleeves. Current collected at an end of each sleeve by sleeve slip rings and brushes is transferred through terminals to the magnetic load coil. Thereafter, electrical energy returned from the coil then flows through the machine which causes the sleeves to motor up to the desired speed in preparation for repetition of the cycle. To eliminate drag on the rotor between current pulses, the brush rigging is designed to lift brushes from all slip rings in the machine

  3. Analysis of 3-D effects in segmented cylindrical quasi-Halbach magnet arrays

    NARCIS (Netherlands)

    Meessen, K.J.; Paulides, J.J.H.; Lomonova, E.

    2011-01-01

    To improve the performance of permanent magnet (PM) machines, quasi-Halbach PM arrays are used to increase the magnetic loading in these machines. In tubular PM actuators, these arrays are often approximated using segmented magnets resulting in a 3-D magnetic field effect. This paper describes the

  4. Driving cycle suitable layout of permanent magnet synchronous machines for hybrid vehicles and electric powered vehicles; Fahrzyklusgerechte Auslegung von permanentmagneterregten Synchronmaschinen fuer Hybrid- und Elektrofahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Finken, Thomas

    2011-07-01

    An increasing environmental awareness and the prospect of a shortage of fossil resources will result in a development of efficient vehicles with a lower consumption of fuel. In addition to the hybrid electric vehicle, the electric powered vehicle increasingly is focused in the development of vehicles. A good efficiency is the most important demand on the electrical machine. The author of the book under consideration reports on exemplary operating point distributions for various vehicle concepts and user profiles. After comparing the most common types of machine in terms of the use in electrified powertrains, the permanent magnet synchronous machine is selected and discussed in detail. A table shows the advantages and disadvantages of all considered geometries and variations. Thus, a suitable combination of geometry for a given vehicle concept and its requirements are selected.

  5. Superconducting Coil Winding Machine Control System

    Energy Technology Data Exchange (ETDEWEB)

    Nogiec, J. M. [Fermilab; Kotelnikov, S. [Fermilab; Makulski, A. [Fermilab; Walbridge, D. [Fermilab; Trombly-Freytag, K. [Fermilab

    2016-10-05

    The Spirex coil winding machine is used at Fermilab to build coils for superconducting magnets. Recently this ma-chine was equipped with a new control system, which al-lows operation from both a computer and a portable remote control unit. This control system is distributed between three layers, implemented on a PC, real-time target, and FPGA, providing respectively HMI, operational logic and direct controls. The system controls motion of all mechan-ical components and regulates the cable tension. Safety is ensured by a failsafe, redundant system.

  6. TWO DIMENTIONAL STATIC MAGNETIC ANALYSIS OF RADIAL MAGNETIC BEARING SYSTEMS WITH DIFFERENT STRUCTURES

    Directory of Open Access Journals (Sweden)

    Yusuf ÖNER

    2005-03-01

    Full Text Available The friction loss of electrical machines is an important problem as like in other rotary machines. In addition, the bearings, where the friction losses occur, also require lubrication at periodic intervals and need to be maintained. In this study, to minimize the friction loss of electrical motor, two dimentional static magnetic analysis of radial magnetic bearing systems with different structures are performed and compared with each other; also, magnetic bearing system with four-pole is realized and applied to an induction motor. In simulation, the forces applied to the rotor of induction motor from designed magnetic bearing system are calculated in a computer by using FEMM software package. In application, when comparing designed magnetic bearing system with mechanical bearings up to the revolution of 350 rpm, it was observed that the loss of no-load operating condition of induction motor is decreased about 15 % with magnetic bearing system. In addition to this, mechanical noisy of the motor is also decreased considerably.

  7. Magnetic properties measurement of soft magnetic composite material (SOMALOY 700) by using 3-D tester

    Science.gov (United States)

    Asari, Ashraf; Guo, Youguang; Zhu, Jianguo

    2017-08-01

    Core losses of rotating electrical machine can be predicted by identifying the magnetic properties of the magnetic material. The magnetic properties should be properly measured since there are some variations of vector flux density in the rotating machine. In this paper, the SOMALOY 700 material has been measured under x, y and z- axes flux density penetration by using the 3-D tester. The calibrated sensing coils are used in detecting the flux densities which have been generated by the Labview software. The measured sensing voltages are used in obtaining the magnetic properties of the sample such as magnetic flux density B, magnetic field strength H, hysteresis loop which can be used to calculate the total core loss of the sample. The results of the measurement are analyzed by using the Mathcad software before being compared to another material.

  8. EAST machine assembly and its measurement system

    International Nuclear Information System (INIS)

    Wu, S.T.

    2005-01-01

    The EAST (HT-7U) superconducting tokamak consists of a superconducting poloidal field magnet system, a toroidal field magnet system, a vacuum vessel and in-vessel components, thermal shields and a cryostat vessel. The main parts of the machine have been delivered to ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences) successionally from 2003. For its complicated constitution and precise requirement, a reasonable assembly procedure and measurement technique should be defined carefully. Before the assembly procedure, a reference frame has been set up with reference fiducial targets on the wall of the test hall by an industrial measurement system. After the torus of TF coils is formed, a new reference frame will be set up from the position of the TF torus. The vacuum vessel with all inner parts will be installed with reference of the new reference frame. The big size and mass of components, special configuration of the superconducting machine with tight installation tolerances of the HT-7U (EAST) machine result in complicated assembly procedure. The procedure had begun with the installation of the support frame and the base of cryostat vessel last year. In this paper, the requirements of the assembly precise for some key components of the machine are described. The reference frame for the assembly and maintenance is explained. The assembly procedure is introduced

  9. Reactive power generation in high speed induction machines by continuously occurring space-transients

    Science.gov (United States)

    Laithwaite, E. R.; Kuznetsov, S. B.

    1980-09-01

    A new technique of continuously generating reactive power from the stator of a brushless induction machine is conceived and tested on a 10-kw linear machine and on 35 and 150 rotary cage motors. An auxiliary magnetic wave traveling at rotor speed is artificially created by the space-transient attributable to the asymmetrical stator winding. At least two distinct windings of different pole-pitch must be incorporated. This rotor wave drifts in and out of phase repeatedly with the stator MMF wave proper and the resulting modulation of the airgap flux is used to generate reactive VA apart from that required for magnetization or leakage flux. The VAR generation effect increases with machine size, and leading power factor operation of the entire machine is viable for large industrial motors and power system induction generators.

  10. SCADA for microtron and beam transport line radio therapy machine subsystem

    International Nuclear Information System (INIS)

    Deshpande, Praveen; Palod, Shradha; Bhujle, Ashok

    2003-01-01

    Centre for Advanced Technology is developing a Radio Therapy Machine (RTM) to be used for cancer treatment. The radiotherapy machine has a Microtron consisting of a RF system, main and auxiliary magnets. It has a Beam transport line (BTL) consisting of fourteen magnets. This paper describes a PC based supervisory control and data acquisition system (SCADA) developed for controlling mainly the power supplies for the above sub systems from a remote location. It offers a graphic user interface (GUI) at the control room PC for RTM operation in engineering mode

  11. System and method for heating ferrite magnet motors for low temperatures

    Science.gov (United States)

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang

    2017-07-04

    A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.

  12. System and method for heating ferrite magnet motors for low temperatures

    Science.gov (United States)

    Reddy, Patel Bhageerath; El-Refaie, Ayman Mohamed Fawzi; Huh, Kum-Kang

    2018-05-08

    A system and method for heating ferrite permanent magnets in an electrical machine is disclosed. The permanent magnet machine includes a stator assembly and a rotor assembly, with a plurality of ferrite permanent magnets disposed within the stator assembly or the rotor assembly to generate a magnetic field that interacts with a stator magnetic field to produce a torque. A controller of the electrical machine is programmed to cause a primary field current to be applied to the stator windings to generate the stator magnetic field, so as to cause the rotor assembly to rotate relative to the stator assembly. The controller is further programmed to cause a secondary current to be applied to the stator windings to selectively generate a secondary magnetic field, the secondary magnetic field inducing eddy currents in at least one of the stator assembly and the rotor assembly to heat the ferrite permanent magnets.

  13. Estimation of parameters of interior permanent magnet synchronous motors

    International Nuclear Information System (INIS)

    Hwang, C.C.; Chang, S.M.; Pan, C.T.; Chang, T.Y.

    2002-01-01

    This paper presents a magnetic circuit model to the estimation of machine parameters of an interior permanent magnet synchronous machine. It extends the earlier work of Hwang and Cho that focused mainly on the magnetic aspects of motor design. The proposed model used to calculate EMF, d- and q-axis reactances. These calculations are compared to those from finite element analysis and measurement with good agreement

  14. Estimation of parameters of interior permanent magnet synchronous motors

    CERN Document Server

    Hwang, C C; Pan, C T; Chang, T Y

    2002-01-01

    This paper presents a magnetic circuit model to the estimation of machine parameters of an interior permanent magnet synchronous machine. It extends the earlier work of Hwang and Cho that focused mainly on the magnetic aspects of motor design. The proposed model used to calculate EMF, d- and q-axis reactances. These calculations are compared to those from finite element analysis and measurement with good agreement.

  15. Study of Magnetic Properties on the Corrosion Behavior and Influence of Temperature in Permanent Magnet (Nd-Fe-B) Used in PMSM

    OpenAIRE

    N. Yogal; C. Lehrmann

    2014-01-01

    The use of permanent magnets (PM) is increasing in permanent magnet synchronous machines (PMSM) to fulfill the requirements of high efficiency machines in modern industry. PMSM are widely used in industrial applications, wind power plants and the automotive industry. Since PMSM are used in different environmental conditions, the long-term effect of NdFeB-based magnets at high temperatures and their corrosion behavior have to be studied due to the irreversible loss of magn...

  16. The Reasons for the Reluctance of Princess Alia University College Students' from Practicing Sports Activities

    Science.gov (United States)

    Odat, Jebril

    2015-01-01

    This study aimed at investigating the reasons lying behind the reluctance of participation in sport activities among Alia Princess College female students, using descriptive approach. The population of the study consisted of (2000) female students, whereas the sample was of (200) students. They were randomly selected and a questionnaire of 31…

  17. Machine-roomless elevator, SPACEL{sub TM}; Machine roomless elevator SPACEL{sub TM} `Supesuseru{sub TM}`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    A machine-roomless elevator, SPACEL{sub TM} requiring no machine room, which operates at a rated speed of 45 and 60 m/min, was put on sale in August 1998 with arrangement for passenger use, residential use and bed use. Another elevator operating at a rated speed of 90 and 105 m/min whose travel distance was extended to 75 m was added to the product series and put on sale in February 1999. The control equipment having been installed in a machine room conventionally was modified to a thickness of 100 mm by adopting an inverter device of thin design and densely mounted substrates. The control equipment was installed on the uppermost floor. The winch is a compact and thin type gearless winch incorporating a permanent magnet synchronizing motor, which was installed at the top of the hoistway. These arrangements have realized a machine-roomless elevator. Further system efficiency improvement has achieved energy conservation of about 10% as compared to the conventional rope type and about 80% as compared to the hydraulic type elevators. (translated by NEDO)

  18. Results from Commissioning of the Energy Extraction Facilities of the LHC Machine

    CERN Document Server

    Coelingh, G J; Mess, K H

    2008-01-01

    The risk of damage to the superconducting magnets, bus bars and current leads of the LHC machine in case of a resistive transition (quench) is being minimized by adequate protection. The protection is based on early quench detection, bypassing the quenching magnets by cold diodes, energy density dilution in the quenching magnets using heaters and, eventually, energy extraction. For two hundred and twenty-six LHC circuits (600 A and 13 kA) extraction of the stored magnetic energy to external dump resistors was required. All these systems are now installed in the machine and the final hardware commissioning has been undertaken. After a short description of the topology and definitive features, layouts and parameters of these systems the paper will focus on the results from their successful commissioning and an analysis of the system performance.

  19. Effects of pole flux distribution in a homopolar linear synchronous machine

    Science.gov (United States)

    Balchin, M. J.; Eastham, J. F.; Coles, P. C.

    1994-05-01

    Linear forms of synchronous electrical machine are at present being considered as the propulsion means in high-speed, magnetically levitated (Maglev) ground transportation systems. A homopolar form of machine is considered in which the primary member, which carries both ac and dc windings, is supported on the vehicle. Test results and theoretical predictions are presented for a design of machine intended for driving a 100 passenger vehicle at a top speed of 400 km/h. The layout of the dc magnetic circuit is examined to locate the best position for the dc winding from the point of view of minimum core weight. Measurements of flux build-up under the machine at different operating speeds are given for two types of secondary pole: solid and laminated. The solid pole results, which are confirmed theoretically, show that this form of construction is impractical for high-speed drives. Measured motoring characteristics are presented for a short length of machine which simulates conditions at the leading and trailing ends of the full-sized machine. Combination of the results with those from a cylindrical version of the machine make it possible to infer the performance of the full-sized traction machine. This gives 0.8 pf and 0.9 efficiency at 300 km/h, which is much better than the reported performance of a comparable linear induction motor (0.52 pf and 0.82 efficiency). It is therefore concluded that in any projected high-speed Maglev systems, a linear synchronous machine should be the first choice as the propulsion means.

  20. Supercollider: Magnet update

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The heart of the proposed US Superconducting Supercollider (SSC) is the set of superconducting magnets to hold its beams in orbit. Approximately 8,000 dipoles and 2,000 quadrupoles are needed, as well as many other special magnets. In addition the 2 TeV high energy booster would also be a superconducting machine, using about 1,200 magnets. In all, some 12,000 superconducting magnets would need to be precision built at the lowest possible cost

  1. Supercollider: Magnet update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1990-07-15

    The heart of the proposed US Superconducting Supercollider (SSC) is the set of superconducting magnets to hold its beams in orbit. Approximately 8,000 dipoles and 2,000 quadrupoles are needed, as well as many other special magnets. In addition the 2 TeV high energy booster would also be a superconducting machine, using about 1,200 magnets. In all, some 12,000 superconducting magnets would need to be precision built at the lowest possible cost.

  2. MACHINE-TRANSFORMER UNITS FOR WIND TURBINES

    Directory of Open Access Journals (Sweden)

    V.I. Panchenko

    2016-03-01

    Full Text Available Background. Electric generators of wind turbines must meet the following requirements: they must be multi-pole; to have a minimum size and weight; to be non-contact, but controlled; to ensure the maximum possible output voltage when working on the power supply system. Multipole and contactless are relatively simply realized in the synchronous generator with permanent magnet excitation and synchronous inductor generator with electromagnetic excitation; moreover the first one has a disadvantage that there is no possibility to control the output voltage, and the second one has a low magnetic leakage coefficient with the appropriate consequences. Purpose. To compare machine dimensions and weight of the transformer unit with induction generators and is an opportunity to prove their application for systems with low RMS-growth rotation. Methodology. A new design of the electric inductor machine called in technical literature as machine-transformer unit (MTU is presented. A ratio for estimated capacity determination of such units is obtained. Results. In a specific example it is shown that estimated power of MTU may exceed the same one for traditional synchronous machines at the same dimensions. The MTU design allows placement of stator coil at some distance from the rotating parts of the machine, namely, in a closed container filled with insulating liquid. This will increase capacity by means of more efficient cooling of coil, as well as to increase the output voltage of the MTU as a generator to a level of 35 kV or more. The recommendations on the certain parameters selection of the MTU stator winding are presented. The formulas for copper cost calculating on the MTU field winding and synchronous salient-pole generator are developed. In a specific example it is shown that such costs in synchronous generator exceed 2.5 times the similar ones in the MTU.

  3. Beam Loss Monitoring for LHC Machine Protection

    Science.gov (United States)

    Holzer, Eva Barbara; Dehning, Bernd; Effnger, Ewald; Emery, Jonathan; Grishin, Viatcheslav; Hajdu, Csaba; Jackson, Stephen; Kurfuerst, Christoph; Marsili, Aurelien; Misiowiec, Marek; Nagel, Markus; Busto, Eduardo Nebot Del; Nordt, Annika; Roderick, Chris; Sapinski, Mariusz; Zamantzas, Christos

    The energy stored in the nominal LHC beams is two times 362 MJ, 100 times the energy of the Tevatron. As little as 1 mJ/cm3 deposited energy quenches a magnet at 7 TeV and 1 J/cm3 causes magnet damage. The beam dumps are the only places to safely dispose of this beam. One of the key systems for machine protection is the beam loss monitoring (BLM) system. About 3600 ionization chambers are installed at likely or critical loss locations around the LHC ring. The losses are integrated in 12 time intervals ranging from 40 μs to 84 s and compared to threshold values defined in 32 energy ranges. A beam abort is requested when potentially dangerous losses are detected or when any of the numerous internal system validation tests fails. In addition, loss data are used for machine set-up and operational verifications. The collimation system for example uses the loss data for set-up and regular performance verification. Commissioning and operational experience of the BLM are presented: The machine protection functionality of the BLM system has been fully reliable; the LHC availability has not been compromised by false beam aborts.

  4. Survey of mirror machine reactors

    International Nuclear Information System (INIS)

    Condit, W.C.

    1978-01-01

    The Magnetic Mirror Fusion Program is one of the two main-line fusion efforts in the United States. Starting from the simple axisymmetric mirror concept in the 1950's, the program has successfully overcome gross flute-type instabilities (using minimum-B magnetic fields), and the most serious of the micro-instabilities which plagued it (the drift-cyclotron loss-cone mode). Dense plasmas approaching the temperature range of interest for fusion have been created (n/sub p/ = 10 14 /cc at 10 to 12 keV). At the same time, rather extensive conceptual design studies of possible mirror configurations have led to three principle designs of interest: the standard mirror fission-fusion hybrid, tandem mirror, and the field-reversed mirror. The lectures will discuss these three concepts in turn. There will be no discussion of diagnostics for the mirror machine in these lectures, but typical plasma parameters will be given for each type of machine, and the diagnostic requirements will be apparent. In a working fusion reactor, diagnostics will be required for operational control, and remarks will be made on this subject

  5. Dynamoelectric machine with a superconductive field winding that can operate in either a synchronous or an asynchronous mode

    International Nuclear Information System (INIS)

    Mole, C.J.; Haller, H.E. III.

    1977-01-01

    Two parallel magnetic flux paths are provided in a dynamoelectric machine having a superconductive field winding. A first, or main, magnetic flux path includes at least one area of nonferromagnetic or diamagnetic material. A second, or shunt, magnetic flux path prevents the relatively low frequency ac flux present during starting or asynchronous operation of the machine, when used as an ac motor, from penetrating the superconductive winding

  6. Machine learning based analysis of cardiovascular images

    NARCIS (Netherlands)

    Wolterink, JM

    2017-01-01

    Cardiovascular diseases (CVDs), including coronary artery disease (CAD) and congenital heart disease (CHD) are the global leading cause of death. Computed tomography (CT) and magnetic resonance imaging (MRI) allow non-invasive imaging of cardiovascular structures. This thesis presents machine

  7. Design and analysis of EI core structured transverse flux linear reluctance actuator

    OpenAIRE

    FENERCİOĞLU, AHMET; AVŞAR, YUSUF

    2015-01-01

    In this study, an EI core linear actuator is proposed for horizontal movement systems. It is a transverse flux linear switched reluctance motor designed with an EI core structure geometrically. The actuator is configured into three phases and at a 6/4 pole ratio, and it has a stationary active stator along with a sliding passive translator. The stator consists of E cores and the translator consists of I cores. The actuator has a yokeless design because the stator and translator have no back i...

  8. Effect of magnetic properties of non-oriented electrical steel on torque characteristics of interior-permanent-magnet synchronous motor

    Energy Technology Data Exchange (ETDEWEB)

    Fujimura, Hiroshi [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fuso-cho, Amagasaki 660-0891 (Japan)], E-mail: fujimura-hrs@sumitomometals.co.jp; Nitomi, Hirokatsu; Yashiki, Hiroyoshi [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fuso-cho, Amagasaki 660-0891 (Japan)

    2008-10-15

    The torque characteristics of interior-permanent-magnet synchronous motor (IPMSM), in which core materials were our conventional non-oriented electrical steel 35SX250 and our developed steels 35SXH, 27SXH with high permeability, were measured by a pulse wave modulation (PWM) inverter control. The torque characteristics of the motor with developed steels were superior to that of conventional steel. The advantage of developed steels was remarkable in the high-toque region. Experimental torque separation using current phase control showed that reluctance torque was strongly affected by the magnetic properties of core materials. And we did magnetic field analysis of the motors by finite element method (FEM). The flux density in the teeth of the stator core was higher in the high permeability steels than that in the conventional steel under the same current condition. The developed steels are expected to be suited to the stator material of IPMSM used as drive motors for electric vehicles and compressor motors for air conditioner.

  9. Effect of magnetic properties of non-oriented electrical steel on torque characteristics of interior-permanent-magnet synchronous motor

    International Nuclear Information System (INIS)

    Fujimura, Hiroshi; Nitomi, Hirokatsu; Yashiki, Hiroyoshi

    2008-01-01

    The torque characteristics of interior-permanent-magnet synchronous motor (IPMSM), in which core materials were our conventional non-oriented electrical steel 35SX250 and our developed steels 35SXH, 27SXH with high permeability, were measured by a pulse wave modulation (PWM) inverter control. The torque characteristics of the motor with developed steels were superior to that of conventional steel. The advantage of developed steels was remarkable in the high-toque region. Experimental torque separation using current phase control showed that reluctance torque was strongly affected by the magnetic properties of core materials. And we did magnetic field analysis of the motors by finite element method (FEM). The flux density in the teeth of the stator core was higher in the high permeability steels than that in the conventional steel under the same current condition. The developed steels are expected to be suited to the stator material of IPMSM used as drive motors for electric vehicles and compressor motors for air conditioner

  10. Unipolar Electric Machines with Liquid-Metal Current Pickup,

    Science.gov (United States)

    1984-03-08

    A new homopolar motor , e4ournal of the Franklin Institute*. 1954, v. 258, Ne 1. %4 144093, Bjo.1.leTeJb H3o6peTeHxA. 1962,. 14 1. 30. X oao p o a...VIII. Motor Mode of Unipolar Electrical Machine ............... 301 Chapter IX. Bases of Theory and Calculation of Nonpolar Dynamos without...unipolar electric motors . Are examined questions of the classification of acyclic machines, their electromagnetic field, calculation of magnetic circuit

  11. Machine Protection for the Experiments of the LHC

    CERN Document Server

    Appleby, R B

    2010-01-01

    The LHC stored beam contains 362 MJ of energy at the top beam energy of 7 TeV/c, presenting a significant risk to the components of the machine and the detectors. In response to this threat, a sophisticated system of machine protection has been developed to minimize the danger, and detect potentially dangerous situations. In this paper, the protection of the experiments in the LHC from the machine is considered, focusing on pilot beam strikes on the experiments during injection and on the dynamics of hardware failure with a circulating beam, with detailed time-domain calculations performed for LHC ring power converter failures and magnet quenches. The prospects for further integration of the machine protection and experimental protection systems are considered, along with the risk to nearbeam detectors from closed local bumps.

  12. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Energy Technology Data Exchange (ETDEWEB)

    Chevet, G. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France)], E-mail: gaelle.chevet@cea.fr; Schlosser, J. [Association Euratom-CEA, DSM/DRFC, CEA Cadarache, Saint-Paul-Lez-Durance (France); Martin, E.; Herb, V.; Camus, G. [Universite Bordeaux 1, UMR 5801 (CNRS-SAFRAN-CEA-UB1), Laboratoire des Composites Thermostructuraux, F-33600 Pessac (France)

    2009-03-31

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  13. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    Science.gov (United States)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-03-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load.

  14. Damage of actively cooled plasma facing components of magnetic confinement controlled fusion machines

    International Nuclear Information System (INIS)

    Chevet, G.; Schlosser, J.; Martin, E.; Herb, V.; Camus, G.

    2009-01-01

    Plasma facing components (PFCs) of magnetic fusion machines have high manufactured residual stresses and have to withstand important stress ranges during operation. These actively cooled PFCs have a carbon fibre composite (CFC) armour and a copper alloy heat sink. Cracks mainly appear in the CFC near the composite/copper interface. In order to analyse damage mechanisms, it is important to well simulate the damage mechanisms both of the CFC and the CFC/Cu interface. This study focuses on the mechanical behaviour of the N11 material for which the scalar ONERA damage model was used. The damage parameters of this model were identified by similarity to a neighbour material, which was extensively analysed, according to the few characterization test results available for the N11. The finite elements calculations predict a high level of damage of the CFC at the interface zone explaining the encountered difficulties in the PFCs fabrication. These results suggest that the damage state of the CFC cells is correlated with a conductivity decrease to explain the temperature increase of the armour surface under fatigue heat load

  15. Influence of Different Rotor Teeth Shapes on the Performance of Flux Switching Permanent Magnet Machines Used for Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Jing Zhao

    2014-12-01

    Full Text Available This paper investigated a 12-slot/11-pole flux switching permanent magnet (FSPM machine used for electric vehicles (EVs. Five novel rotor teeth shapes are proposed and researched to reduce the cogging torque and torque ripple of the FSPM machine. These rotor teeth shapes are notched teeth, stepped teeth, eccentric teeth, combination of notched and stepped teeth, and combination of notched and eccentric teeth. They are applied on the rotor and optimized, respectively. The influences of different rotor teeth shapes on cogging torque, torque ripple and electromagnetic torque are analyzed by the 2-D finite-element method (FEM. Then, the performance of FSPMs with different rotor teeth shapes are compared and evaluated comprehensively from the points of view of cogging torque, torque ripple, electromagnetic torque, flux linkage, back electromotive force (EMF, and so on. The results show that the presented rotor teeth shapes, especially the combination of stepped and notched teeth, can greatly reduce the cogging torque and torque ripple with only slight changes in the average electromagnetic torque.

  16. Pediatric magnetic resonance imaging

    International Nuclear Information System (INIS)

    Cohen, M.D.

    1986-01-01

    This book defines the current clinical potential of magnetic resonance imaging and focuses on direct clinical work with pediatric patients. A section dealing with the physics of magnetic resonance imaging provides an introduction to enable clinicians to utilize the machine and interpret the images. Magnetic resonance imaging is presented as an appropriate imaging modality for pediatric patients utilizing no radiation

  17. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch

    Science.gov (United States)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  18. Sensorless Control of Low-cost Single-phase Hybrid Switched Reluctance Motor Drive

    DEFF Research Database (Denmark)

    Jakobsen, Uffe; Lu, Kaiyuan; Rasmussen, Peter Omand

    2015-01-01

    This paper presents a sensorless-controlled, low-cost, low-power, and variable-speed drive system suitable for fan and pump applications. The main advantages of this drive system are the low system cost, simple converter structure, and simple but robust sensorless control technique. The drive motor...... is a special hybrid switched reluctance motor. The proposed sensorless control method beneficially utilizes the stator side PM field and its performance is motor parameter independent. The unique low-cost drive system solution, simple and robust sensorless control features of this drive system, is demonstrated...

  19. A miniature Hopkinson experiment device based on multistage reluctance coil electromagnetic launch.

    Science.gov (United States)

    Huang, Wenkai; Huan, Shi; Xiao, Ying

    2017-09-01

    A set of seven-stage reluctance miniaturized Hopkinson bar electromagnetic launcher has been developed in this paper. With the characteristics of high precision, small size, and little noise pollution, the device complies with the requirements of miniaturized Hopkinson bar for high strain rate. The launcher is a seven-stage accelerating device up to 65.5 m/s. A high performance microcontroller is used to control accurately the discharge of capacitor sets, by means of which the outlet velocity of the projectile can be controlled within a certain velocity range.

  20. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm

    Directory of Open Access Journals (Sweden)

    Ricardo Andres Pizarro

    2016-12-01

    Full Text Available High-resolution three-dimensional magnetic resonance imaging (3D-MRI is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM algorithm in the quality assessment of structural brain images, using global and region of interest (ROI automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  1. Automated Quality Assessment of Structural Magnetic Resonance Brain Images Based on a Supervised Machine Learning Algorithm.

    Science.gov (United States)

    Pizarro, Ricardo A; Cheng, Xi; Barnett, Alan; Lemaitre, Herve; Verchinski, Beth A; Goldman, Aaron L; Xiao, Ena; Luo, Qian; Berman, Karen F; Callicott, Joseph H; Weinberger, Daniel R; Mattay, Venkata S

    2016-01-01

    High-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use. Currently, quality assessment involves slice-wise visual inspection of 3D-MRI volumes, a procedure that is both subjective and time consuming. Automating the quality rating of 3D-MRI could improve the efficiency and reproducibility of the procedure. The present study is one of the first efforts to apply a support vector machine (SVM) algorithm in the quality assessment of structural brain images, using global and region of interest (ROI) automated image quality features developed in-house. SVM is a supervised machine-learning algorithm that can predict the category of test datasets based on the knowledge acquired from a learning dataset. The performance (accuracy) of the automated SVM approach was assessed, by comparing the SVM-predicted quality labels to investigator-determined quality labels. The accuracy for classifying 1457 3D-MRI volumes from our database using the SVM approach is around 80%. These results are promising and illustrate the possibility of using SVM as an automated quality assessment tool for 3D-MRI.

  2. Asynchronous machines. Direct torque control; Machines asynchrones. Commande par controle direct de couple

    Energy Technology Data Exchange (ETDEWEB)

    Fornel, B. de [Institut National Polytechnique, 31 - Toulouse (France)

    2006-05-15

    The asynchronous machine, with its low cost and robustness, is today the most widely used motor to make speed variators. However, its main drawback is that the same current generates both the magnetic flux and the torque, and thus any torque variation creates a flux variation. Such a coupling gives to the asynchronous machine a nonlinear behaviour which makes its control much more complex. The direct self control (DSC) method has been developed to improve the low efficiency of the scalar control method and for the specific railway drive application. The direct torque control (DTC) method is derived from the DSC method but corresponds to other type of applications. The DSC and DTC algorithms for asynchronous motors are presented in this article: 1 - direct control of the stator flux (DSC): principle, flux control, torque control, switching frequency of the inverter, speed estimation; 2 - direct torque control (DTC): principle, electromagnetic torque derivative, signals shape and switching frequency, some results, DTC speed variator without speed sensor, DTC application to multi-machine multi-converter systems; 3 - conclusion. (J.S.)

  3. Machine Protection

    International Nuclear Information System (INIS)

    Schmidt, R

    2014-01-01

    The protection of accelerator equipment is as old as accelerator technology and was for many years related to high-power equipment. Examples are the protection of powering equipment from overheating (magnets, power converters, high-current cables), of superconducting magnets from damage after a quench and of klystrons. The protection of equipment from beam accidents is more recent. It is related to the increasing beam power of high-power proton accelerators such as ISIS, SNS, ESS and the PSI cyclotron, to the emission of synchrotron light by electron–positron accelerators and FELs, and to the increase of energy stored in the beam (in particular for hadron colliders such as LHC). Designing a machine protection system requires an excellent understanding of accelerator physics and operation to anticipate possible failures that could lead to damage. Machine protection includes beam and equipment monitoring, a system to safely stop beam operation (e.g. dumping the beam or stopping the beam at low energy) and an interlock system providing the glue between these systems. The most recent accelerator, the LHC, will operate with about 3 × 10 14 protons per beam, corresponding to an energy stored in each beam of 360 MJ. This energy can cause massive damage to accelerator equipment in case of uncontrolled beam loss, and a single accident damaging vital parts of the accelerator could interrupt operation for years. This article provides an overview of the requirements for protection of accelerator equipment and introduces the various protection systems. Examples are mainly from LHC, SNS and ESS

  4. An overview of rotating machine systems with high-temperature bulk superconductors

    Science.gov (United States)

    Zhou, Difan; Izumi, Mitsuru; Miki, Motohiro; Felder, Brice; Ida, Tetsuya; Kitano, Masahiro

    2012-10-01

    The paper contains a review of recent advancements in rotating machines with bulk high-temperature superconductors (HTS). The high critical current density of bulk HTS enables us to design rotating machines with a compact configuration in a practical scheme. The development of an axial-gap-type trapped flux synchronous rotating machine together with the systematic research works at the Tokyo University of Marine Science and Technology since 2001 are briefly introduced. Developments in bulk HTS rotating machines in other research groups are also summarized. The key issues of bulk HTS machines, including material progress of bulk HTS, in situ magnetization, and cooling together with AC loss at low-temperature operation are discussed.

  5. Magnet pole shape design for reduction of thrust ripple of slotless permanent magnet linear synchronous motor with arc-shaped magnets considering end-effect based on analytical method

    Directory of Open Access Journals (Sweden)

    Kyung-Hun Shin

    2017-05-01

    Full Text Available The shape of the magnet is essential to the performance of a slotless permanent magnet linear synchronous machine (PMLSM because it is directly related to desirable machine performance. This paper presents a reduction in the thrust ripple of a PMLSM through the use of arc-shaped magnets based on electromagnetic field theory. The magnetic field solutions were obtained by considering end effect using a magnetic vector potential and two-dimensional Cartesian coordinate system. The analytical solution of each subdomain (PM, air-gap, coil, and end region is derived, and the field solution is obtained by applying the boundary and interface conditions between the subdomains. In particular, an analytical method was derived for the instantaneous thrust and thrust ripple reduction of a PMLSM with arc-shaped magnets. In order to demonstrate the validity of the analytical results, the back electromotive force results of a finite element analysis and experiment on the manufactured prototype model were compared. The optimal point for thrust ripple minimization is suggested.

  6. Homopolar machine for reversible energy storage and transfer systems

    International Nuclear Information System (INIS)

    Stillwagon, R.E.

    1978-01-01

    A homopolar machine designed to operate as a generator and motor in reversibly storing and transferring energy between the machine and a magnetic load coil for a thermonuclear reactor is described. The machine rotor comprises hollow thin-walled cylinders or sleeves which form the basis of the system by utilizing substantially all of the rotor mass as a conductor thus making it possible to transfer substantially all the rotor kinetic energy electrically to the load coil in a highly economical and efficient manner. The rotor is divided into multiple separate cylinders or sleeves of modular design, connected in series and arranged to rotate in opposite directions but maintain the supply of current in a single direction to the machine terminals

  7. My Bluford High Boys: How a Book Club for Reluctant Readers Proved the Naysayers Wrong

    Science.gov (United States)

    Stevenson, Sara

    2009-01-01

    As a middle school librarian in Austin, Texas, the author has been running weekly book clubs for years, which covered many genres that appeal to a wide cross section of kids. When approached by a group of Latino boys from low-income families, the author was inspired to run a Bluford High book club for reluctant readers. The author shares how she…

  8. Reducing Torque Ripples of the Axial Flux PM Motors by Magnet Stepping and Shifting

    Directory of Open Access Journals (Sweden)

    E. Cetin

    2018-02-01

    Full Text Available Higher efficiency on electric machines is the research goal of many studies. An example is the axial flux permanent magnet machines. These machines have some advantages like their watt/kg efficiency and torque density. This study aims to develop the performance characteristics of the axial flux permanent magnet machines. A new rotor magnet poles design in axial flux machines is suggested to mitigate the torque ripples. The method of stepping and shifting of the magnets is used. Two different designs are compared to verify the proposed approach. 3D finite element analysis is used for simulations. Torque ripple and back electromotive force waveforms are obtained from computer analysis. As a conclusion, the suggested method is found to be useable and mitigates the torque ripples. In addition to that, back EMF waveforms are turned to sinusoidal by the suggested design.

  9. Lactate quantification by proton magnetic resonance spectroscopy using a clinical MRI machine: a basic study

    International Nuclear Information System (INIS)

    Isobe, T.; Muraishi, H.; Matsumura, A.; Kawamura, H.; Shibata, Y.; Anno, I.; Minami, M.

    2007-01-01

    The purpose of this study was to establish quantification method of lactate concentration by proton magnetic resonance spectroscopy (MRS) carried out using a conventional 1.5-T MRI machine. We used a lactate phantom with known concentrations (1, 1.5, 3, 6, 12 and 14 mmol/L). As a clinical example, a patient with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) was evaluated. Proton MRS was carried out using a clinical 1.5-T super-conducting magnetic resonance whole-body system. Data were acquired by point resolved spectroscopy. A coupling constant of J = 7.35 Hz (2/7 = 272 ms) and two long in-phase echo time of 272 ms and 544 ms were used to calculate the T2 relaxation time. The tissue water signal was used as an internal standard to quantify lactate. The correlation coefficient R between the calculated lactate concentrations and the known concentration of lactate was 0.99 with a constant factor of 0.32 (1/3.14). In patients with MELAS, the lactate concentration measured by MRS was 6.2 mmol/kg wet weight, which is similar to the value obtained in previous studies. In the present study, we have established a reliable method for lactate quantification in a phantom study and have shown a sample of clinical case of MELAS

  10. Stator fault detection for multi-phase machines with multiple reference frames transformation

    DEFF Research Database (Denmark)

    Bianchini, Claudio; Fornasiero, Emanuele; Matzen, T.N.

    2009-01-01

    The paper focuses on a new diagnostic index for fault detection of a five-phase permanent-magnet machine. This machine has been designed for fault tolerant applications, and it is characterized by a mutual inductance equal to zero and a high self inductance, in order to limit the short-circuit cu...

  11. Derating of an induction machine under voltage unbalance combined with over or undervoltages

    International Nuclear Information System (INIS)

    Gnacinski, P.

    2009-01-01

    This work deals with the load carrying capacity of an induction cage machine under voltage unbalance combined with over- or undervoltage. The effect of complex voltage unbalance factor (CVUF) angle on the derating factor is taken into consideration. The derating curves obtained with two different methods are compared. The machine efficiency, stator currents and temperature-rise distribution after applying the required derating factor are discussed. The results of experimental investigations and computer calculations are presented for two low-power induction motors of opposite properties. One of them has a comparatively weakly saturated magnetic circuit and is especially exposed to the risk of overheating for undervoltage. The other investigated machine has a comparatively strongly saturated magnetic circuit and is especially exposed to overheating in the conditions of overvoltage

  12. Design and analysis of permanent magnet moving coil type generator used in a micro-CHP generation system

    Science.gov (United States)

    Oros Pop, Susana Teodora; Berinde, Ioan; Vadan, Ioan

    2015-12-01

    This paper presents the design and analysis of a permanent magnet moving coil type generator driven by a free piston Stirling engine. This assemble free piston Stirling engine - permanent magnet moving coil type generator will be used in a combined heat and power (CHP) system for producing heat and power in residential area. The design procedure for moving coil type linear generator starts from the rated power imposed and finally uses the Faraday law of induction. The magneto-static magnetic field generated by permanent magnets is analyzed by means of Reluctance method and Finite Element Method in order to evaluate the magnetic flux density in the air gap, which is a design data imposed in the design stage, and the results are compared.

  13. Introducing Stable Radicals into Molecular Machines.

    Science.gov (United States)

    Wang, Yuping; Frasconi, Marco; Stoddart, J Fraser

    2017-09-27

    Ever since their discovery, stable organic radicals have received considerable attention from chemists because of their unique optical, electronic, and magnetic properties. Currently, one of the most appealing challenges for the chemical community is to develop sophisticated artificial molecular machines that can do work by consuming external energy, after the manner of motor proteins. In this context, radical-pairing interactions are important in addressing the challenge: they not only provide supramolecular assistance in the synthesis of molecular machines but also open the door to developing multifunctional systems relying on the various properties of the radical species. In this Outlook, by taking the radical cationic state of 1,1'-dialkyl-4,4'-bipyridinium (BIPY •+ ) as an example, we highlight our research on the art and science of introducing radical-pairing interactions into functional systems, from prototypical molecular switches to complex molecular machines, followed by a discussion of the (i) limitations of the current systems and (ii) future research directions for designing BIPY •+ -based molecular machines with useful functions.

  14. Active Magnetic Bearings – Magnetic Forces

    DEFF Research Database (Denmark)

    Kjølhede, Klaus

    2006-01-01

    Parameter identification procedures and model validation are major steps towards intelligent machines supported by active magnetic bearings (AMB). The ability of measuring the electromagnetic bearing forces, or deriving them from measuring the magnetic flux, strongly contributes to the model...... of the work is the characterization of magnetic forces by using two experimental different experimental approaches. Such approaches are investigated and described in details. A special test rig is designed where the 4 poles - AMB is able to generate forces up to 1900 N. The high precision characterization...... of the magnetic forces are led by using different experimental tests: (I) by using hall sensors mounted directly on the poles (precise measurements of the magnetic flux) and by an auxiliary system, composed of strain gages and flexible beams attached to the rotor; (II) by measuring the input current and bearing...

  15. Magnet design for a low-emittance storage ring

    International Nuclear Information System (INIS)

    Johansson, Martin; Anderberg, Bengt; Lindgren, Lars-Johan

    2014-01-01

    The magnet design of the MAX IV 3 GeV storage ring replaces the conventional support girder + discrete magnets scheme of previous third-generation light sources with a compact integrated design having several consecutive magnet elements precision-machined out of a common solid iron block. The MAX IV 3 GeV storage ring, currently under construction, pursues the goal of low electron beam emittance by using a multi-bend achromat magnet lattice, which is realised by having several consecutive magnet elements precision-machined out of a common solid iron block, 2.3–3.4 m long. With this magnet design solution, instead of having 1320 individual magnets, the MAX IV 3 GeV storage ring is built up using 140 integrated ‘magnet block’ units, containing all these magnet elements. Major features of this magnet block design are compactness, vibration stability and that the alignment of magnet elements within each unit is given by the mechanical accuracy of the CNC machining rather than individual field measurement and adjustment. This article presents practical engineering details of implementing this magnet design solution, and mechanical + magnetic field measurement results from the magnet production series. At the time of writing (spring 2014), the production series, which is totally outsourced to industry, is roughly half way through, with mechanical/magnetic QA conforming to specifications. It is the conclusion of the authors that the MAX IV magnet block concept, which has sometimes been described as new or innovative, is from a manufacturing point of view simply a collection of known mature production methods and measurement procedures, which can be executed at fixed cost with a low level of risk

  16. Superconducting magnets in the world of energy, especially in fusion power

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Industrial applications of superconducting magnets are only feasible in the near future for superconducting monopolar machines and possible MHD generators. For superconducting synchronous machines, after the successful operation of machines in the MVA range, a new phase of basic investigations has started. Fundamental problems which could not be studied in the MVA machines, but which influence the design of large turbo-alternators, must now be investigated. Fusion power by magnetic confinement will probably be the largest field of application for superconducting magnets in the long run. The present research programmes require large superconducting magnets by the mid-1980s for the experimental reactors envisaged at that time. In addition to dc windings, pulse-operated superconducting windings are required in some systems, such as Tokamak. The high sensitivity of the overall plant efficiency and the active power demand of the pulsed windings require great efficiency from energy storage and transfer systems. Superconducting energy storage systems would be suitable for this, if transfer between inductances could be provided with sufficient efficiency. Basic experiments gave encouraging results. In power plant systems and electric machines an extremely high level of reliability and availability has been achieved. Less reliability will not be accepted for systems with superconducting magnets. This requires great efforts during the development work. (author)

  17. Machine-roomless elevator, SPACEL[sub TM]. Machine roomless elevator SPACEL[sub TM] 'Supesuseru[sub TM]'

    Energy Technology Data Exchange (ETDEWEB)

    1999-03-01

    A machine-roomless elevator, SPACEL[sub TM] requiring no machine room, which operates at a rated speed of 45 and 60 m/min, was put on sale in August 1998 with arrangement for passenger use, residential use and bed use. Another elevator operating at a rated speed of 90 and 105 m/min whose travel distance was extended to 75 m was added to the product series and put on sale in February 1999. The control equipment having been installed in a machine room conventionally was modified to a thickness of 100 mm by adopting an inverter device of thin design and densely mounted substrates. The control equipment was installed on the uppermost floor. The winch is a compact and thin type gearless winch incorporating a permanent magnet synchronizing motor, which was installed at the top of the hoistway. These arrangements have realized a machine-roomless elevator. Further system efficiency improvement has achieved energy conservation of about 10% as compared to the conventional rope type and about 80% as compared to the hydraulic type elevators. (translated by NEDO)

  18. Optimum Performances for Non-Linear Finite Elements Model of 8/6 Switched Reluctance Motor Based on Intelligent Routing Algorithms

    Directory of Open Access Journals (Sweden)

    Chouaib Labiod

    2017-01-01

    Full Text Available This paper presents torque ripple reduction with speed control of 8/6 Switched Reluctance Motor (SRM by the determination of the optimal parameters of the turn on, turn off angles Theta_(on, Theta_(off, and the supply voltage using Particle Swarm Optimization (PSO algorithm and steady state Genetic Algorithm (ssGA. With SRM model, there is difficulty in the control relapsed into highly non-linear static characteristics. For this, the Finite Elements Method (FEM has been used because it is a powerful tool to get a model closer to reality. The mechanism used in this kind of machine control consists of a speed controller in order to determine current reference which must be produced to get the desired speed, hence, hysteresis controller is used to compare current reference with current measured up to achieve switching signals needed in the inverter. Depending on this control, the intelligent routing algorithms get the fitness equation from torque ripple and speed response so as to give the optimal parameters for better results. Obtained results from the proposed strategy based on metaheuristic methods are compared with the basic case without considering the adjustment of specific parameters. Optimized results found clearly confirmed the ability and the efficiency of the proposed strategy based on metaheuristic methods in improving the performances of the SRM control considering different torque loads.

  19. Reluctance to express emotion explains relation between cognitive distortions and social competence in anxious children.

    Science.gov (United States)

    Scott, Brandon G; Pina, Armando A; Parker, Julia H

    2017-12-12

    Guided by social information processing and affective social competence models, the focal objective of this research was to examine the relations among anxious children's cognitive distortions, social skill competence, and reluctance to express emotion. In addition, we explored whether children's attention control played any meaningful role. Using a sample of 111 anxious children (M age  = 9.63, SD = 0.73; 75.7% girls; 56% Hispanic/Latino), we found that cognitive distortions were negatively related to social competence. In addition, tests of moderated mediation showed that the negative association between cognitive distortions and social skill competence was indirect via reluctance to express emotion, but this only was the case for anxious children with high attention control and for distortions in the academic domain. The findings of this study may set the stage for new ways to conceptualize the role of higher attention control among anxious youth. Statement of contribution What is already known on this subject? Cognitive errors are prevalent in anxious youth Anxious children show socio-emotion deficits What does this study add? Cognitive errors are related to socio-emotion deficits in anxious youth Relations depend on attention control. © 2017 The British Psychological Society.

  20. Efficiency improvement and torque ripple minimization of Switched Reluctance Motor using FEM and Seeker Optimization Algorithm

    International Nuclear Information System (INIS)

    Navardi, Mohammad Javad; Babaghorbani, Behnaz; Ketabi, Abbas

    2014-01-01

    Highlights: • This paper proposes a new method to optimize a Switched Reluctance Motor (SRM). • A combination of SOA and GA with Finite Element Method (FEM) analysis is employed to solve the SRM design optimization. • The results show that optimized SRM obtains higher average torque and higher efficiency. - Abstract: In this paper, performance optimization of Switched Reluctance Motor (SRM) was determined using Seeker Optimization Algorithm (SOA). The most efficient aim of the algorithm was found for maximum torque value at a minimum mass of the entire construction, following changing the geometric parameters. The optimization process was carried out using a combination of Seeker Optimization Algorithm and Finite Element Method (FEM). Fitness value was calculated by FEM analysis using COMSOL3.4, and the SOA was realized by MATLAB. The proposed method has been applied for a case study and it has been also compared with Genetic Algorithm (GA). The results show that the optimized motor using SOA had higher torque value and efficiency with lower mass and torque ripple, exhibiting the validity of this methodology for SRM design

  1. Model of the multipolar engine with decreased cogging torque by asymmetrical distribution of the magnets

    Science.gov (United States)

    Goryca, Zbigniew; Paduszyński, Kamil; Pakosz, Artur

    2018-03-01

    This paper presents the results of field calculations of cogging torque for a 12-pole torque motor with an 18-slot stator. A constant angular velocity magnet and the same size gap between n-1 magnets were assumed. In these conditions, the effect of change of the n-th gap between magnets on the cogging torque was tested. Due to considerable length of the machine the calculations were performed using a 2D model. The n-th gap for which the cogging torque assumed the lowest value was evaluated. The cogging torque of the machine with symmetrical magnetic circuit (the same size of gap between magnets) was compared to the one of the asymmetrical machine. With proper choice of asymmetry, the cogging torque for the machine decreased by four times.

  2. Maximum Efficiency per Torque Control of Permanent-Magnet Synchronous Machines

    Directory of Open Access Journals (Sweden)

    Qingbo Guo

    2016-12-01

    Full Text Available High-efficiency permanent-magnet synchronous machine (PMSM drive systems need not only optimally designed motors but also efficiency-oriented control strategies. However, the existing control strategies only focus on partial loss optimization. This paper proposes a novel analytic loss model of PMSM in either sine-wave pulse-width modulation (SPWM or space vector pulse width modulation (SVPWM which can take into account both the fundamental loss and harmonic loss. The fundamental loss is divided into fundamental copper loss and fundamental iron loss which is estimated by the average flux density in the stator tooth and yoke. In addition, the harmonic loss is obtained from the Bertotti iron loss formula by the harmonic voltages of the three-phase inverter in either SPWM or SVPWM which are calculated by double Fourier integral analysis. Based on the analytic loss model, this paper proposes a maximum efficiency per torque (MEPT control strategy which can minimize the electromagnetic loss of PMSM in the whole operation range. As the loss model of PMSM is too complicated to obtain the analytical solution of optimal loss, a golden section method is applied to achieve the optimal operation point accurately, which can make PMSM work at maximum efficiency. The optimized results between SPWM and SVPWM show that the MEPT in SVPWM has a better effect on the optimization performance. Both the theory analysis and experiment results show that the MEPT control can significantly improve the efficiency performance of the PMSM in each operation condition with a satisfied dynamic performance.

  3. The CMS Magnetic Field Map Performance

    CERN Document Server

    Klyukhin, V.I.; Andreev, V.; Ball, A.; Cure, B.; Herve, A.; Gaddi, A.; Gerwig, H.; Karimaki, V.; Loveless, R.; Mulders, M.; Popescu, S.; Sarycheva, L.I.; Virdee, T.

    2010-04-05

    The Compact Muon Solenoid (CMS) is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider (LHC). Its distinctive featuresinclude a 4 T superconducting solenoid with 6 m diameter by 12.5 m long free bore, enclosed inside a 10000-ton return yoke made of construction steel. Accurate characterization of the magnetic field everywhere in the CMS detector is required. During two major tests of the CMS magnet the magnetic flux density was measured inside the coil in a cylinder of 3.448 m diameter and 7 m length with a specially designed field-mapping pneumatic machine as well as in 140 discrete regions of the CMS yoke with NMR probes, 3-D Hall sensors and flux-loops. A TOSCA 3-D model of the CMS magnet has been developed to describe the magnetic field everywhere outside the tracking volume measured with the field-mapping machine. A volume based representation of the magnetic field is used to provide the CMS simulation and reconstruction software with the magnetic field ...

  4. Magnet power supply for ISABELLE

    International Nuclear Information System (INIS)

    Nawrocky, R.J.; Frankel, R.F.; Thomas, M.G.

    1979-01-01

    The power supply system which will energize the superconducting magnets in the ISABELLE machine consists of some 520 computer-programmable power supplies with outputs ranging from 50 A to 4500 A. Most of the power supplies will be used for the correction of field harmonics, orbit correction and adjustment of the machine working line. During acceleration, currents in various magnet correction coils will be controlled in real time to track the main field; all power supplies must be highly stable during the stacking and storage of the beam (in some cases current regulation must be in the order of 0.001%). PS reference programs will be stored in microprocessor based function generators embedded in each power supply. Due to the large amount of stored energy in the system, the magnets must be protected during quenches. Details of the power supply and of the magnet quench protection system are described

  5. Permanent-magnet-less machine having an enclosed air gap

    Science.gov (United States)

    Hsu, John S [Oak Ridge, TN

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  6. An analysis of the optimum operating point for a switched reluctance motor

    International Nuclear Information System (INIS)

    Mao, S.-H.; Tsai, M.-C.

    2004-01-01

    This paper proposes a simple method to determine the optimum exciting current, for high output torque in switched reluctance motors (SRMs). By modelling the flux-linkage with one curve at the unaligned position, and with two curves at the aligned position, the maximum increment of the co-energy and torque can be predicted accurately, and the optimum exciting current can also be determined. This easily implemented method is aimed at providing an index for determining the SRM exciting current. This will be useful for SRM designers in deciding the rated current and in obtaining the maximum motor efficiency

  7. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets

    Science.gov (United States)

    Wardach, Marcin

    2017-12-01

    This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.

  8. High slot utilization systems for electric machines

    Science.gov (United States)

    Hsu, John S

    2009-06-23

    Two new High Slot Utilization (HSU) Systems for electric machines enable the use of form wound coils that have the highest fill factor and the best use of magnetic materials. The epoxy/resin/curing treatment ensures the mechanical strength of the assembly of teeth, core, and coils. In addition, the first HSU system allows the coil layers to be moved inside the slots for the assembly purpose. The second system uses the slided-in teeth instead of the plugged-in teeth. The power density of the electric machine that uses either system can reach its highest limit.

  9. Derating of an induction machine under voltage unbalance combined with over or undervoltages

    Energy Technology Data Exchange (ETDEWEB)

    Gnacinski, P. [Gdynia Maritime University, Department of Ship Electrical Power Engineering, Morska St. 83, 81-225 Gdynia (Poland)

    2009-04-15

    This work deals with the load carrying capacity of an induction cage machine under voltage unbalance combined with over- or undervoltage. The effect of complex voltage unbalance factor (CVUF) angle on the derating factor is taken into consideration. The derating curves obtained with two different methods are compared. The machine efficiency, stator currents and temperature-rise distribution after applying the required derating factor are discussed. The results of experimental investigations and computer calculations are presented for two low-power induction motors of opposite properties. One of them has a comparatively weakly saturated magnetic circuit and is especially exposed to the risk of overheating for undervoltage. The other investigated machine has a comparatively strongly saturated magnetic circuit and is especially exposed to overheating in the conditions of overvoltage. (author)

  10. Radiofrequency (RF) radiation measurement for diathermy machine

    International Nuclear Information System (INIS)

    Rozaimah Abdul Rahim; Roha Tukimin; Mohd Amirul Nizam; Ahmad Fadzli; Mohd Azizi

    2010-01-01

    Full-text: Diathermy machine is one of medical device that use widely in hospital and clinic. During the diathermy treatment, high radiofrequency (RF) currents (shortwave and microwave) are used to heat deep muscular tissues through electromagnetic energy to body tissues. The heat increases blood flow, relieve pain and speeding up recovery. The stray RF radiation from the machine can exposes to unintended tissue of the patient, to the operator (physical therapist) and also can cause electromagnetic interference (EMI) effect to medical devices around the machine. The main objective of this study is to establish a database of the RF radiation exposure levels experienced by the operator and patient during the treatments. RF radiation (electric and magnetic field) produced by the diathermy machines were measured using special RF survey meters. The finding of this study confirms that radiation levels on the surface and near the applicator of the diathermy machine much more elevated due to the much closer distance to the source and they exceeding the occupational and general public exposure limit. The results also shows the field strengths drop very significantly when the distance of measurement increase. (author)

  11. Exfoliated BN shell-based high-frequency magnetic core-shell materials.

    Science.gov (United States)

    Zhang, Wei; Patel, Ketan; Ren, Shenqiang

    2017-09-14

    The miniaturization of electric machines demands high frequency magnetic materials with large magnetic-flux density and low energy loss to achieve a decreased dimension of high rotational speed motors. Herein, we report a solution-processed high frequency magnetic composite (containing a nanometal FeCo core and a boron nitride (BN) shell) that simultaneously exhibits high electrical resistivity and magnetic permeability. The frequency dependent complex initial permeability and the mechanical robustness of nanocomposites are intensely dependent on the content of BN insulating phase. The results shown here suggest that insulating magnetic nanocomposites have potential for application in next-generation high-frequency electric machines with large electrical resistivity and permeability.

  12. Large-scale Machine Learning in High-dimensional Datasets

    DEFF Research Database (Denmark)

    Hansen, Toke Jansen

    Over the last few decades computers have gotten to play an essential role in our daily life, and data is now being collected in various domains at a faster pace than ever before. This dissertation presents research advances in four machine learning fields that all relate to the challenges imposed...... are better at modeling local heterogeneities. In the field of machine learning for neuroimaging, we introduce learning protocols for real-time functional Magnetic Resonance Imaging (fMRI) that allow for dynamic intervention in the human decision process. Specifically, the model exploits the structure of f...

  13. Study on the adjustment capability of the excitation system located inside superconducting machine electromagnetic shield

    Science.gov (United States)

    Xia, D.; Xia, Z.

    2017-12-01

    The ability for the excitation system to adjust quickly plays a very important role in maintaining the normal operation of superconducting machines and power systems. However, the eddy currents in the electromagnetic shield of superconducting machines hinder the exciting magnetic field change and weaken the adjustment capability of the excitation system. To analyze this problem, a finite element calculation model for the transient electromagnetic field with moving parts is established. The effects of three different electromagnetic shields on the exciting magnetic field are analyzed using finite element method. The results show that the electromagnetic shield hinders the field changes significantly, the better its conductivity, the greater the effect on the superconducting machine excitation.

  14. A Simple and General Approach to Determination of Self and Mutual Inductances for AC machines

    DEFF Research Database (Denmark)

    Lu, Kaiyuan; Rasmussen, Peter Omand; Ritchie, Ewen

    2011-01-01

    Modelling of AC electrical machines plays an important role in electrical engineering education related to electrical machine design and control. One of the fundamental requirements in AC machine modelling is to derive the self and mutual inductances, which could be position dependant. Theories...... developed so far for inductance determination are often associated with complicated machine magnetic field analysis, which exhibits a difficulty for most students. This paper describes a simple and general approach to the determination of self and mutual inductances of different types of AC machines. A new...... determination are given for a 3-phase, salient-pole synchronous machine, and an induction machine....

  15. Online MTPA Control Approach for Synchronous Reluctance Motor Drives Based on Emotional Controller

    DEFF Research Database (Denmark)

    Daryabeigi, Ehsan; Zarchi, Hossein Abootorabi; Markadeh, G. R. Arab

    2015-01-01

    In this paper, speed and torque control modes (SCM and TCM) of synchronous reluctance motor (SynRM) drives are proposed based on emotional controllers and space vector modulation under an automatic search of the maximum-torque-per-ampere (MTPA) strategy. Furthermore, in order to achieve an MTPA...... strategy at any operating condition, after recognition of transient state by two new indicators, a search algorithm changes the stator flux magnitude automatically. The indicators operate based on slip effect generated at transient conditions in a SynRM with cage. The performance of the proposed controller...

  16. the impact of machine geometries on the average torque of dual ...

    African Journals Online (AJOL)

    HOD

    Keywords: average torque, dual start, machine geometry, optimal value, PM machines. 1. ... permanent magnet length, back-iron size etc. were ..... e (N m. ) Stator tooth width/stator slot pitch. 4. 5. 7. 8. 10. 11. 13. 14. Number of rotor poles. 0. 1. 2. 3. 4. 5. 6. 0. 2. 4. 6. 8. 10. 12. T orq u e (Nm. ) Back-iron thickness (mm). 4. 5. 7.

  17. Mapping system, magnetic measurement and shimming in CRM cyclotron

    International Nuclear Information System (INIS)

    Zhong Junqing; Lv Yinlong; Yin Zhiguo

    2008-01-01

    The Central Region Model (CRM) is a compact H - cyclotron. Because of the intrinsic asymmetry of the magnet, its machining and assembly are very complicated. To guarantee the magnet field distribution, it is necessary to measure and shim the magnetic field. This paper presents a study on the design and use of the mapping system based on the Hall Effect and the re-machining of shimming bars after analyzing the magnetic field measurement data to achieve the isochronous field and good vertical focusing frequency. The method to effectively reduce the amplitude of the 1st harmonic by shimming bars 1s also introduced. (authors)

  18. The LHC machine Exhibition Lepton-Photon 2001

    CERN Multimedia

    2001-01-01

    The LHC will enable the study of proton-proton and ion-ion collisions. The existing chain of injectors (LINAC, booster, PS, SPS) will provide the necessary particles. The LHC superconducting magnets will generate the highest magnetic fields ever reached in an accelerator of this scale. The dipoles and quadrupoles will be interconnected so as to form a continuous cryogenic "pipe" installed in the 27 km-long LEP/LHC tunnel with its separate cryoline. The superconducting RF accelerating cavities, along with the beam cleaning and beam dump systems, will complete the machine.

  19. Hybrid excited claw pole generator with skewed and non-skewed permanent magnets

    Directory of Open Access Journals (Sweden)

    Wardach Marcin

    2017-12-01

    Full Text Available This article contains simulation results of the Hybrid Excited Claw Pole Generator with skewed and non-skewed permanent magnets on rotor. The experimental machine has claw poles on two rotor sections, between which an excitation control coil is located. The novelty of this machine is existence of non-skewed permanent magnets on claws of one part of the rotor and skewed permanent magnets on the second one. The paper presents the construction of the machine and analysis of the influence of the PM skewing on the cogging torque and back-emf. Simulation studies enabled the determination of the cogging torque and the back-emf rms for both: the strengthening and the weakening of magnetic field. The influence of the magnets skewing on the cogging torque and the back-emf rms have also been analyzed.

  20. Analytical Modeling of a Novel Transverse Flux Machine for Direct Drive Wind Turbine Applications: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hasan, IIftekhar; Husain, Tausif; Uddin, Md Wasi; Sozer, Yilmaz; Husain; Iqbal; Muljadi, Eduard

    2015-08-24

    This paper presents a nonlinear analytical model of a novel double-sided flux concentrating Transverse Flux Machine (TFM) based on the Magnetic Equivalent Circuit (MEC) model. The analytical model uses a series-parallel combination of flux tubes to predict the flux paths through different parts of the machine including air gaps, permanent magnets, stator, and rotor. The two-dimensional MEC model approximates the complex three-dimensional flux paths of the TFM and includes the effects of magnetic saturation. The model is capable of adapting to any geometry that makes it a good alternative for evaluating prospective designs of TFM compared to finite element solvers that are numerically intensive and require more computation time. A single-phase, 1-kW, 400-rpm machine is analytically modeled, and its resulting flux distribution, no-load EMF, and torque are verified with finite element analysis. The results are found to be in agreement, with less than 5% error, while reducing the computation time by 25 times.

  1. Dynamic modeling of an asynchronous squirrel-cage machine; Modelisation dynamique d'une machine asynchrone a cage

    Energy Technology Data Exchange (ETDEWEB)

    Guerette, D.

    2009-07-01

    This document presented a detailed mathematical explanation and validation of the steps leading to the development of an asynchronous squirrel-cage machine. The MatLab/Simulink software was used to model a wind turbine at variable high speeds. The asynchronous squirrel-cage machine is an electromechanical system coupled to a magnetic circuit. The resulting electromagnetic circuit can be represented as a set of resistances, leakage inductances and mutual inductances. Different models were used for a comparison study, including the Munteanu, Boldea, Wind Turbine Blockset, and SimPowerSystem. MatLab/Simulink modeling results were in good agreement with the results from other comparable models. Simulation results were in good agreement with analytical calculations. 6 refs, 2 tabs, 9 figs.

  2. US-LHC Magnet Database and conventions

    CERN Document Server

    Wei, J; Jain, A; Peggs, S; Pilat, F; Bottura, L; Sabbi, G L; MacKay, W W

    1999-01-01

    The US-LHC Magnet Database is designed for production-magnet quality assurance, field and alignment error impact analysis, cryostat assembly assistance, and ring installation assistance. The database consists of tables designed to store magnet field and alignment measurements data and quench data. This information will also be essential for future machine operations including local IR corrections. (7 refs).

  3. US-LHC Magnet Database and Conventions

    International Nuclear Information System (INIS)

    Wei, J.; McChesney, D.; Jain, A.; Peggs, S.; Pilat, F.; Bottura, L.; Sabbi, G.

    1999-01-01

    The US-LHC Magnet Database is designed for production-magnet quality assurance, field and alignment error impact analysis, cryostat assembly assistance, and ring installation assistance. The database consists of tables designed to store magnet field and alignment measurements data and quench data. This information will also be essential for future machine operations including local IR corrections

  4. A new two-phase homopolar switched reluctance motor for electric vehicle applications

    Science.gov (United States)

    Tsai, Mi-Ching; Huang, Chien-Chin; Huang, Zheng-Yi

    2003-12-01

    This paper presents a novel 2-phase homopolar switched reluctance motor (SRM), whose design successfully avoids dead-zone problems that afflict low cost 1- and/or 2-phase SRMs. Unlike conventional radial-winding-radial-gap motors, the proposed SRM has an interior stator that is of the pancake type with axial winding. Such a design allows for a high slot-fill factor and is suitable for implementation as a flat pancake-shaped stator. An efficient, compact prototype was produced with TMS320F240 DSP driving control unit. Experimental results indicate that the present SRM design has the potential to be used for electric bicycles and scooters.

  5. The Reluctant Fundamentalist: The Re-territorialisation of the Encounter between America and its Muslim 'Other(s'

    Directory of Open Access Journals (Sweden)

    Nath Aldalala'a

    2012-11-01

    Full Text Available The Reluctant Fundamentalist, a novel by Mohsin Hamid, explores the encounter between America and its Muslim 'others'. Within the political processes and the intellectual and emotive climate that characterises the 'war on terror', this encounter is readily understood as one of confrontation. From the time of 9/11 to the recent killing of Osama bin Laden by American Special Forces on Pakistani soil, this sense of confrontation is reinforced by the rhetoric of Western governments and media representations. Hamid's novel, however, excavates the imbrications of the personal and political effects of 9/11 coupled with the specificities that place Pakistan at the hub of America's war, while foregrounding the increasing alienation of Muslim people within global discourses. This paper considers the processes of de-territorialisation and re-territorialisation in political and cultural terms through the interaction of literary forms and global realities. The Reluctant Fundamentalist is engaged in a particular form of postcolonial 'writing back' through its depiction of migrant experience that leads to a re-assertion of specific national and cultural boundaries that ultimately re-position the dynamics of the encounter between the West and its Muslim 'other'.

  6. Design Optimization of Moving Magnet Actuated Valves for Digital Displacement Machines

    DEFF Research Database (Denmark)

    Madsen, Esben Lundø; Jørgensen, Janus Martin Thastum; Nørgård, Christian

    2017-01-01

    High-efficiency hydraulic machines using digital valves are presently a topic of great focus. Digital valve performance with respect to pressure loss, closing time as well as electrical power consumption, is key to obtaining high efficiency. A recent digital seat valve design developed at Aalborg...... optimized design closes in 2.1 ms, has a pressure drop of 0.8 bar at 150 l/min and yields a digital displacement machine average chamber efficiency of 98.9%. The design is simple in construction and uses a single coil, positioned outside the pressure chamber, eliminating the need for an electrical interface...

  7. Exterior rotor permanent magnet generator in variable speed applications

    OpenAIRE

    Sattar, Rauf

    2016-01-01

    This thesis explores approaches for converting rotational mechanical power from diesel engines into electrical power of fixed frequency and voltage. Advances in high energy permanent magnets and power electronics are enabling technologies that provide opportunities for electrical machines with increased efficiency and compact size for variable speed power generation. The overall objective was to design a permanent magnet machine with concentrated winding that could be used in variable spe...

  8. Reviews of large superconducting machines: Metallurgy, fabrication, and applications

    International Nuclear Information System (INIS)

    Bogner, G.

    1981-01-01

    This paper reviews large superconducting machines presently in place or in experiment. The ''Cello'' particle detector magnet for the positron-electron colliding beam facility PETRA at DESY in Hamburg is shown, and the Fermi Lab, and the Brookhaven ISABELLE also described. Electrodynamic levitation systems are specified, as researched and developed in Germany and Japan. Of superconducting coils for magnetic separation, a high gradient magnetic separator with superconducting magnet and steel wool, and a Jones type high gradient magnetic separator are schematicized. Turbogenerators with superconductor field winding are studied. Superconducting high power cables include the flexible coaxial cable core consisting of a perforated polyethylene tube and test cables at Siemens and at Brookhaven. Magnet systems for fusion reactors include tokamaks and tandem mirrors, and the toroidal coil experiment at Oak Ridge National Laboratory is described, among others. Superconducting magnets for MHD plants, and superconducting magnet energy storage (SME storage) are also discussed

  9. Characteristics of a large reversed field pinch machine, TPE-RX

    International Nuclear Information System (INIS)

    Yagi, Y.; Shimada, T.; Hirano, Y.; Sekine, S.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Maejima, Y.; Hirota, I.; Hayase, K.; Sato, Y.; Sugisaki, K.; Oyabu, I.; Hasegawa, M.; Yamane, M.; Sato, F.; Kuno, K.; Minato, T.; Kiryu, A.; Takagi, S.; Sako, K.; Kudough, F.; Urata, K.; Orita, J.; Kaguchi, H.; Sago, H.; Ue, K.

    1998-01-01

    Construction of a new, large reversed field pinch (RFP) machine called TPE-RX was complete at the end of 1997 as a successor of the previous TPE-1RM20 machine at the Electrotechnical Laboratory (ETL). RFP configuration has been successfully obtained in March 1998. The optimization of the operating condition and discharge cleaning of the wall are presently undergoing with the first physics experiments. This paper is the first report of TPE-RX especially on the goals, overall machine characteristics and the present status. Other papers accompanying with this one will present specific topics on the magnetic coil system and the vacuum vessel system. (author)

  10. Characteristics of a large reversed field pinch machine, TPE-RX

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Y.; Shimada, T.; Hirano, Y.; Sekine, S.; Sakakita, H.; Koguchi, H.; Kiyama, S.; Maejima, Y.; Hirota, I.; Hayase, K.; Sato, Y.; Sugisaki, K. [Electrotechnical Lab., Tsukuba-shi, Ibaraki (Japan); Oyabu, I.; Hasegawa, M.; Yamane, M.; Sato, F.; Kuno, K.; Minato, T.; Kiryu, A.; Takagi, S.; Sako, K. [Mitsubishi Electric Corp. (Japan); Kudough, F.; Urata, K.; Orita, J.; Kaguchi, H.; Sago, H.; Ue, K. [Mitsubishi Heavy Industries Ltd. (Japan)

    1998-07-01

    Construction of a new, large reversed field pinch (RFP) machine called TPE-RX was complete at the end of 1997 as a successor of the previous TPE-1RM20 machine at the Electrotechnical Laboratory (ETL). RFP configuration has been successfully obtained in March 1998. The optimization of the operating condition and discharge cleaning of the wall are presently undergoing with the first physics experiments. This paper is the first report of TPE-RX especially on the goals, overall machine characteristics and the present status. Other papers accompanying with this one will present specific topics on the magnetic coil system and the vacuum vessel system. (author)

  11. Superconducting magnet activities at CEN Saclay

    International Nuclear Information System (INIS)

    Lesmond, C.

    1981-07-01

    The activities in superconducting magnets at DPhPE/Saclay spread over a wide range from DC magnets mainly for particle and nuclear physics and also for other fields of research, pulsed magnets for particle accelerators and for a controlled fusion tokamak machine. The superconducting magnets designed during recent years involve a variety of conductor types, winding schemes, materials and cooling modes, including the use of superfluid helium. (author)

  12. Investigation of the influence of air gap thickness and eccentricity on the noise of the rotating electrical machine

    Directory of Open Access Journals (Sweden)

    Donát M.

    2013-12-01

    Full Text Available This article deals with the numerical modelling of the dynamic response of the rotating electrical machine on the application of the magnetic forces. The special attention is paid to the modelling of the magnetic forces that act on the stator winding of the machine and the computational model of the modal properties of the stator winding. The created computational model was used to investigation of the influence of the nominal air gap thickness and the air gap eccentricity on the sound power radiated by outer surface of the stator of the machine. The obtained results show that the nominal air gap thickness has slightly greater influence on the sound power of the machine than eccentricity of the air gap.

  13. Interlock system of electron beam machine GJ-2

    International Nuclear Information System (INIS)

    Marnada, Nada

    1999-01-01

    As an irradiation installation facility, the electron beam machine (EBM) irradiation facility which use radionuclide as radiation source. There are three safety aspects to be considered in the facility i.e the safeties for human, machines, and samples to be irradiated. The safety aspect for human is to the radiation hazard and the safety aspect for machine and sample is to the damage as the result of operating failure. In the EBM GJ-2 (made in China) twelve interlock system parameter are installed to keep all of the safety aspects. Each interlock system consist transducer that controls a certain switch, a magnetic relay, and visible and audible interlock indicators to improve the reliability of interlock systems a method called redundancy method is applied to the systems of operation of high voltage. (author)

  14. Magnetic leviation. ; Challenge for control design in mechatronics

    Energy Technology Data Exchange (ETDEWEB)

    Bleuler, H.

    1992-12-01

    The purpose of this paper is to show that development of active magnetic bearing is far from being under closed circumstanses. In this paper, magnetic levitation is classified and it is shown that the industrially applied magnetic levitation is a typical mechatronics system. Control problems for active magnetic bearings are then presented. It is introduced that there are several very interesting control issues to be solved and the potential for industrial applications is vast. Among the application areas, clean-room and vacuum handling, precision optics, scanning, machining, and turbo machines are described. In addition, is introduced the emerging of new fields of research, such as micro-scale active magnetic bearings, in which a project has been started. Furthermore, status of other current research is provided, which includes identification and control methods and the position sensorless bearing. 9 refs., 5 figs.

  15. Magnet production for the LHC is complete!

    CERN Multimedia

    2006-01-01

    On 27 November, the LHC teams celebrated the end of production of the machine's main magnets. Some 1232 main dipole and 392 main quadrupole magnets have been manufactured in an unprecedented collaboration effort between CERN and European industry.

  16. output enhancement in the transfer-field machine using rotor circuit

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... Electrical Engineering Department University of Nigeria, Nsukka. (Manuscript received March 1981). ABSTRACT. The output of a plain transfer-field machine would be much less than that of a .... by non-magnetic barriers: The.

  17. Analysis of machining and machine tools

    CERN Document Server

    Liang, Steven Y

    2016-01-01

    This book delivers the fundamental science and mechanics of machining and machine tools by presenting systematic and quantitative knowledge in the form of process mechanics and physics. It gives readers a solid command of machining science and engineering, and familiarizes them with the geometry and functionality requirements of creating parts and components in today’s markets. The authors address traditional machining topics, such as: single and multiple point cutting processes grinding components accuracy and metrology shear stress in cutting cutting temperature and analysis chatter They also address non-traditional machining, such as: electrical discharge machining electrochemical machining laser and electron beam machining A chapter on biomedical machining is also included. This book is appropriate for advanced undergraduate and graduate mechani cal engineering students, manufacturing engineers, and researchers. Each chapter contains examples, exercises and their solutions, and homework problems that re...

  18. Melt-growth bulk superconductors and application to an axial-gap-type rotating machine

    International Nuclear Information System (INIS)

    Zhang, Yufeng; Zhou, Difan; Ida, Tetsuya; Miki, Motohiro; Izumi, Mitsuru

    2016-01-01

    The present manuscript addresses key issues in the course of our study of materials processing of bulk high-temperature superconductors, trapped flux and its application to a prototype axial-gap-type rotating machine. The TUMSAT group has conducted a series of studies since 2003 on the growth of GdBa 2 Cu 3 O 7−δ bulk material and its application in a compact low-speed high-torque rotating machine. In the stage of material growth, gaining the advantage of a large motive torque density requires large integrated flux in the motor/generators. A large grain surface might be required with sophisticated techniques for the melt-growth texture in the bulk with optimal flux pinning. In the second stage, the in situ magnetization procedure for bulk superconductors in the applied machine is a crucial part of the technology. Pulsed current excitation by using an armature copper winding has magnetized field pole bulks on the rotor. The axial-gap flux synchronous machine studied in the past decade is a condensed technology and indicates that further scientific development is required for a future compact machine to be superior to conventional ones in accordance with the cryogenic periphery and flux stabilization. (paper)

  19. Design and damping force characterization of a new magnetorheological damper activated by permanent magnet flux dispersion

    Science.gov (United States)

    Lee, Tae-Hoon; Han, Chulhee; Choi, Seung-Bok

    2018-01-01

    This work proposes a novel type of tunable magnetorheological (MR) damper operated based solely on the location of a permanent magnet incorporated into the piston. To create a larger damping force variation in comparison with the previous model, a different design configuration of the permanent-magnet-based MR (PMMR) damper is introduced to provide magnetic flux dispersion in two magnetic circuits by utilizing two materials with different magnetic reluctance. After discussing the design configuration and some advantages of the newly designed mechanism, the magnetic dispersion principle is analyzed through both the formulated analytical model of the magnetic circuit and the computer simulation based on the magnetic finite element method. Sequentially, the principal design parameters of the damper are determined and fabricated. Then, experiments are conducted to evaluate the variation in damping force depending on the location of the magnet. It is demonstrated that the new design and magnetic dispersion concept are valid showing higher damping force than the previous model. In addition, a curved structure of the two materials is further fabricated and tested to realize the linearity of the damping force variation.

  20. Magnetic Measurements of Storage Ring Magnets for the APS Upgrade Project

    Energy Technology Data Exchange (ETDEWEB)

    Doose, C.; Dejus, R.; Jaski, M.; Jansma, W.; Collins, J.; Donnelly, A.; Liu, J.; Cease, H.; Decker, G.; Jain, A.; DiMarco, J.

    2017-06-01

    Extensive prototyping of storage ring magnets is ongoing at the Advanced Photon Source (APS) in support of the APS Multi-Bend Achromat (MBA) upgrade project (APS-U) [1]. As part of the R&D activities four quadrupole magnets with slightly different geometries and pole tip materials, and one sextupole magnet with vanadium permendur (VP) pole tips were designed, built and tested. Magnets were measured individually using a rotating coil and a Hall probe for detailed mapping of the magnetic field. Magnets were then assembled and aligned relative to each other on a steel support plate and concrete plinth using precision machined surfaces to gain experience with the alignment method chosen for the APS-U storage ring magnets. The required alignment of magnets on a common support structure is 30 μm rms. Measurements of magnetic field quality, strength and magnet alignment after subjecting the magnets and assemblies to different tests are presented.