WorldWideScience

Sample records for magnet hall thruster

  1. Cylindrical Hall Thrusters with Permanent Magnets

    Raitses, Yevgeny; Merino, Enrique; Fisch, Nathaniel J.

    2010-01-01

    The use of permanent magnets instead of electromagnet coils for low power Hall thrusters can offer a significant reduction of both the total electric power consumption and the thruster mass. Two permanent magnet versions of the miniaturized cylindrical Hall thruster (CHT) of different overall dimensions were operated in the power range of 50W-300 W. The discharge and plasma plume measurements revealed that the CHT thrusters with permanent magnets and electromagnet coils operate rather differently. In particular, the angular ion current density distribution from the permanent magnet thrusters has an unusual halo shape, with a majority of high energy ions flowing at large angles with respect to the thruster centerline. Differences in the magnetic field topology outside the thruster channel and in the vicinity of the channel exit are likely responsible for the differences in the plume characteristics measured for the CHTs with electromagnets and permanent magnets. It is shown that the presence of the reversing-direction or cusp-type magnetic field configuration inside the thruster channel without a strong axial magnetic field outside the thruster channel does not lead to the halo plasma plume from the CHT.

  2. Comparisons in Performance of Electromagnet and Permanent-Magnet Cylindrical Hall-Effect Thrusters

    Polzin, K. A.; Raitses, Y.; Gayoso, J. C.; Fisch, N. J.

    2010-01-01

    Three different low-power cylindrical Hall thrusters, which more readily lend themselves to miniaturization and low-power operation than a conventional (annular) Hall thruster, are compared to evaluate the propulsive performance of each. One thruster uses electromagnet coils to produce the magnetic field within the discharge channel while the others use permanent magnets, promising power reduction relative to the electromagnet thruster. A magnetic screen is added to the permanent magnet thruster to improve performance by keeping the magnetic field from expanding into space beyond the exit of the thruster. The combined dataset spans a power range from 50-350 W. The thrust levels over this range were 1.3-7.3 mN, with thruster efficiencies and specific impulses spanning 3.5-28.7% and 400-1940 s, respectively. The efficiency is generally higher for the permanent magnet thruster with the magnetic screen, while That thruster s specific impulse as a function of discharge voltage is comparable to the electromagnet thruster.

  3. Effect of Anode Magnetic Shield on Magnetic Field and Ion Beam in Cylindrical Hall Thruster

    Zhao Jie; Wang Shiqing; Liu Jian; Xu Li; Tang Deli; Geng Shaofei

    2010-01-01

    Numerical simulation of the effect of the anode magnetic shielding on the magnetic field and ion beam in a cylindrical Hall thruster is presented. The results show that after the anode is shielded by the magnetic shield, the magnetic field lines near the anode surface are obviously convex curved, the ratio of the magnetic mirror is enhanced, the width of the positive magnetic field gradient becomes larger than that without the anode magnetic shielding, the radial magnetic field component is enhanced, and the discharge plasma turbulence is reduced as a result of keeping the original saddle field profile and the important role the other two saddle field profiles play in restricting electrons. The results of the particle in cell (PIC) numerical simulation show that both the ion number and the energy of the ion beam increase after the anode is shielded by the magnetic shield. In other words, the specific impulse of the cylindrical Hall thruster is enhanced.

  4. Performance of a Permanent-Magnet Cylindrical Hall-Effect Thruster

    Polzin, K. A.; Sooby, E. S.; Kimberlin, A. C.; Raites, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    The performance of a low-power cylindrical Hall thruster, which more readily lends itself to miniaturization and low-power operation than a conventional (annular) Hall thruster, was measured using a planar plasma probe and a thrust stand. The field in the cylindrical thruster was produced using permanent magnets, promising a power reduction over previous cylindrical thruster iterations that employed electromagnets to generate the required magnetic field topology. Two sets of ring-shaped permanent magnets are used, and two different field configurations can be produced by reorienting the poles of one magnet relative to the other. A plasma probe measuring ion flux in the plume is used to estimate the current utilization for the two magnetic topologies. The measurements indicate that electron transport is impeded much more effectively in one configuration, implying higher thrust efficiency. Thruster performance measurements on this configuration were obtained over a power range of 70-350 W and with the cathode orifice located at three different axial positions relative to the thruster exit plane. The thrust levels over this power range were 1.25-6.5 mN, with anode efficiencies and specific impulses spanning 4-21% and 400-1950 s, respectively. The anode efficiency of the permanent-magnet thruster compares favorable with the efficiency of the electromagnet thruster when the power consumed by the electromagnets is taken into account.

  5. Low Frequency Plasma Oscillations in a 6-kW Magnetically Shielded Hall Thruster

    Jorns, Benjamin A.; Hofery, Richard R.

    2013-01-01

    The oscillations from 0-100 kHz in a 6-kW magnetically shielded thruster are experimen- tally characterized. Changes in plasma parameters that result from the magnetic shielding of Hall thrusters have the potential to significantly alter thruster transients. A detailed investigation of the resulting oscillations is necessary both for the purpose of determin- ing the underlying physical processes governing time-dependent behavior in magnetically shielded thrusters as well as for improving thruster models. In this investigation, a high speed camera and a translating ion saturation probe are employed to examine the spatial extent and nature of oscillations from 0-100 kHz in the H6MS thruster. Two modes are identified at 8 kHz and 75-90 kHz. The low frequency mode is azimuthally uniform across the thruster face while the high frequency oscillation is concentrated close to the thruster centerline with an m = 1 azimuthal dependence. These experimental results are discussed in the context of wave theory as well as published observations from an unshielded variant of the H6MS thruster.

  6. Performance of a Cylindrical Hall-Effect Thruster Using Permanent Magnets

    Polzin, Kurt A.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    While annular Hall thrusters can operate at high efficiency at kW power levels, it is difficult to construct one that operates over a broad envelope from 1 kW down to 100 W while maintaining an efficiency of 45-55%. Scaling to low power while holding the main dimensionless parameters constant requires a decrease in the thruster channel size and an increase in the magnetic field strength. Increasing the magnetic field becomes technically challenging since the field can saturate the miniaturized inner components of the magnetic circuit and scaling down the magnetic circuit leaves very little room for magnetic pole pieces and heat shields. In addition, the central magnetic pole piece defining the interior wall of the annular channel can experience excessive heat loads in a miniaturized Hall thruster, with the temperature eventually exceeding the Curie temperature of the material and in extreme circumstances leading to accelerated erosion of the channel wall. An alternative approach is to employ a cylindrical Hall thruster (CHT) geometry. Laboratory model CHTs have operated at power levels ranging from 50 W up to 1 kW. These thrusters exhibit performance characteristics that are comparable to conventional, annular Hall thrusters of similar size. Compared to the annular Hall thruster, the CHTs insulator surface area to discharge chamber volume ratio is lower. Consequently, there is the potential for reduced wall losses in the channel of a CHT, and any reduction in wall losses should translate into lower channel heating rates and reduced erosion, making the CHT geometry promising for low-power applications. This potential for high performance in the low-power regime has served as the impetus for research and development efforts aimed at understanding and improving CHT performance. Recently, a 2.6 cm channel diameter permanent magnet CHT (shown in Fig. 1) was tested. This thruster has the promise of reduced power consumption over previous CHT iterations that employed

  7. An experimental investigation of the internal magnetic field topography of an operating Hall thruster

    Peterson, Peter Y.; Gallimore, Alec D.; Haas, James M.

    2002-01-01

    Magnetic field measurements were made in the discharge channel of the 5 kW-class P5 laboratory-model Hall thruster to investigate what effect the Hall current has on the static, applied magnetic field topography. The P5 was operated at 1.6 and 3.0 kW with a discharge voltage of 300 V. A miniature inductive loop probe (B-Dot probe) was employed to measure the radial magnetic field profile inside the discharge channel of the P5 with and without the plasma discharge. These measurements are accomplished with minimal disturbance to thruster operation with the High-speed Axial Reciprocating Probe system. The results of the B-Dot probe measurements indicate a change in the magnetic field topography from that of the vacuum field measurements. The measured magnetic field profiles are then examined to determine the possible nature and source of the difference between the vacuum and plasma magnetic field profiles

  8. Understanding newly discovered oscillation modes in magnetically shielded Hall thrusters utilizing state of the art high speed diagnostics.

    National Aeronautics and Space Administration — I propose to investigate the newly discovered oscillation modes specific to Magnetically Shied (MS) Hall Effect Thrusters (HET). Although HETs are classified as a...

  9. Magnetic field deformation due to electron drift in a Hall thruster

    Han Liang

    2017-01-01

    Full Text Available The strength and shape of the magnetic field are the core factors in the design of the Hall thruster. However, Hall current can affect the distribution of static magnetic field. In this paper, the Particle-In-Cell (PIC method is used to obtain the distribution of Hall current in the discharge channel. The Hall current is separated into a direct and an alternating part to calculate the induced magnetic field using Finite Element Method Magnetics (FEMM. The results show that the direct Hall current decreases the magnetic field strength in the acceleration region and also changes the shape of the magnetic field. The maximum reduction in radial magnetic field strength in the exit plane is 10.8 G for an anode flow rate of 15 mg/s and the maximum angle change of the magnetic field line is close to 3° in the acceleration region. The alternating Hall current induces an oscillating magnetic field in the whole discharge channel. The actual magnetic deformation is shown to contain these two parts.

  10. Enhanced Performance of Cylindrical Hall Thrusters

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2007-01-01

    The cylindrical thruster differs significantly in its underlying physical mechanisms from the conventional annular Hall thruster. It features high ionization efficiency, quiet operation, ion acceleration in a large volume-to-surface ratio channel, and performance comparable with the state-of-the-art conventional Hall thrusters. Very significant plume narrowing, accompanied by the increase of the energetic ion fraction and improvement of ion focusing, led to 50-60% increase of the thruster anode efficiency. These improvements were achieved by overrunning the discharge current in the magnetized thruster plasma

  11. Magnetically filtered Faraday probe for measuring the ion current density profile of a Hall thruster

    Rovey, Joshua L.; Walker, Mitchell L.R.; Gallimore, Alec D.; Peterson, Peter Y.

    2006-01-01

    The ability of a magnetically filtered Faraday probe (MFFP) to obtain the ion current density profile of a Hall thruster is investigated. The MFFP is designed to eliminate the collection of low-energy, charge-exchange (CEX) ions by using a variable magnetic field as an ion filter. In this study, a MFFP, Faraday probe with a reduced acceptance angle (BFP), and nude Faraday probe are used to measure the ion current density profile of a 5 kW Hall thruster operating over the range of 300-500 V and 5-10 mg/s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4x10 -4 Pa Xe (3.3x10 -6 Torr Xe) to 1.1x10 -3 Pa Xe (8.4x10 -6 Torr Xe) in order to study the ability of the Faraday probe designs to filter out CEX ions. Detailed examination of the results shows that the nude probe measures a greater ion current density profile than both the MFFP and BFP over the range of angular positions investigated for each operating condition. The differences between the current density profiles obtained by each probe are attributed to the ion filtering systems employed. Analysis of the results shows that the MFFP, operating at a +5 A solenoid current, provides the best agreement with flight-test data and across operating pressures

  12. Magnesium Hall Thruster

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  13. Optimization of Cylindrical Hall Thrusters

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fisch, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.

  14. Optimization of Cylindrical Hall Thrusters

    Raitses, Yevgeny; Smirnov, Artem; Granstedt, Erik; Fi, Nathaniel J.

    2007-01-01

    The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation

  15. A Small Modular Laboratory Hall Effect Thruster

    Lee, Ty Davis

    Electric propulsion technologies promise to revolutionize access to space, opening the door for mission concepts unfeasible by traditional propulsion methods alone. The Hall effect thruster is a relatively high thrust, moderate specific impulse electric propulsion device that belongs to the class of electrostatic thrusters. Hall effect thrusters benefit from an extensive flight history, and offer significant performance and cost advantages when compared to other forms of electric propulsion. Ongoing research on these devices includes the investigation of mechanisms that tend to decrease overall thruster efficiency, as well as the development of new techniques to extend operational lifetimes. This thesis is primarily concerned with the design and construction of a Small Modular Laboratory Hall Effect Thruster (SMLHET), and its operation on argon propellant gas. Particular attention was addressed at low-cost, modular design principles, that would facilitate simple replacement and modification of key thruster parts such as the magnetic circuit and discharge channel. This capability is intended to facilitate future studies of device physics such as anomalous electron transport and magnetic shielding of the channel walls, that have an impact on thruster performance and life. Preliminary results demonstrate SMLHET running on argon in a manner characteristic of Hall effect thrusters, additionally a power balance method was utilized to estimate thruster performance. It is expected that future thruster studies utilizing heavier though more expensive gases like xenon or krypton, will observe increased efficiency and stability.

  16. Iodine Hall Thruster

    Szabo, James

    2015-01-01

    Iodine enables dramatic mass and cost savings for lunar and Mars cargo missions, including Earth escape and near-Earth space maneuvers. The demonstrated throttling ability of iodine is important for a singular thruster that might be called upon to propel a spacecraft from Earth to Mars or Venus. The ability to throttle efficiently is even more important for missions beyond Mars. In the Phase I project, Busek Company, Inc., tested an existing Hall thruster, the BHT-8000, on iodine propellant. The thruster was fed by a high-flow iodine feed system and supported by an existing Busek hollow cathode flowing xenon gas. The Phase I propellant feed system was evolved from a previously demonstrated laboratory feed system. Throttling of the thruster between 2 and 11 kW at 200 to 600 V was demonstrated. Testing showed that the efficiency of iodine fueled BHT-8000 is the same as with xenon, with iodine delivering a slightly higher thrust-to-power (T/P) ratio. In Phase II, a complete iodine-fueled system was developed, including the thruster, hollow cathode, and iodine propellant feed system. The nominal power of the Phase II system is 8 kW; however, it can be deeply throttled as well as clustered to much higher power levels. The technology also can be scaled to greater than 100 kW per thruster to support megawatt-class missions. The target thruster efficiency for the full-scale system is 65 percent at high specific impulse (Isp) (approximately 3,000 s) and 60 percent at high thrust (Isp approximately 2,000 s).

  17. The effect of magnetic mirror on near wall conductivity in Hall thrusters

    Yu, D.; Liu, H.; Fu, H.; Cao, Y.

    2008-01-01

    The effect of magnetic mirror on near wall conductivity is studied in the acceleration region of Hall thrusters. The electron dynamics process in the plasma is described by test particle method, in which electrons are randomly emitted from the centerline towards the inner wall of the channel. It is found that the effective collision coefficient, i.e. the rate of electrons colliding with the wall, changes dramatically with the magnetic mirror effect being considered; and that it decreases further with the increase of magnetic mirror ratio to enhance the electron mobility accordingly. In particular, under anistropic electron velocity distribution conditions, the magnetic mirror effect becomes even more prominent. Furthermore, due to decrease in magnetic mirror ratio from the exhaust plane to the anode in Hall thrusters, the axial gradient of electron mobility with magnetic mirror effect is greater than without it. The magnetic mirror effects on electron mobility are derived analytically and the results are found in agreement with the simulation. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Performance, Facility Pressure Effects, and Stability Characterization Tests of NASA's Hall Effect Rocket with Magnetic Shielding Thruster

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Peterson, Peter; Hofer, Richard; Mikellides, Ioannis

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for flight system development. Part of the technology maturation effort included experimental evaluation of the TDU-1 thruster with conducting and dielectric front pole cover materials in two different electrical configurations. A graphite front pole cover thruster configuration with the thruster body electrically tied to cathode and an alumina front pole cover thruster configuration with the thruster body floating were evaluated. Both configurations were also evaluated at different facility background pressure conditions to evaluate background pressure effects on thruster operation. Performance characterization tests found that higher thruster performance was attained with the graphite front pole cover configuration with the thruster electrically tied to cathode. A total thrust efficiency of 68 and a total specific impulse of 2,820 s was demonstrated at a discharge voltage of 600 V and a discharge power of 12.5 kW. Thruster stability regimes were characterized with respect to the thruster discharge current oscillations and with maps of the current-voltage-magnetic field (IVB). Analysis of TDU-1 discharge current waveforms found that lower normalized discharge current peak-to-peak and root mean square magnitudes were attained when the thruster was electrically floated with alumina front pole covers. Background pressure effects characterization tests indicated that the thruster performance and stability was mostly invariant to changes in the facility background pressure for vacuum chamber pressure below 110-5 Torr-Xe (for thruster flow rate above 8 mgs). Power spectral density analysis of the discharge current waveform showed that increasing the vacuum chamber background pressure resulted in a higher discharge current dominant frequency. Finally the IVB maps of the TDU-1

  19. Anode sheath in Hall thrusters

    Dorf, L.; Semenov, V.; Raitses, Y.

    2003-01-01

    A set of hydrodynamic equations is used to describe quasineutral plasma in ionization and acceleration regions of a Hall thruster. The electron distribution function and Poisson equation are invoked for description of a near-anode region. Numerical solutions suggest that steady-state operation of a Hall thruster can be achieved at different anode sheath regimes. It is shown that the anode sheath depends on the thruster operating conditions, namely the discharge voltage and the mass flow rate

  20. Study and Developement of Compact Permanent Magnet Hall Thrusters for Future Brazillian Space Missions

    Ferreira, Jose Leonardo; Martins, Alexandre; Cerda, Rodrigo

    2016-07-01

    The Plasma Physics Laboratory of UnB has been developing a Permanent Magnet Hall Thruster (PHALL) for the UNIESPAÇO program, part of the Space Activities Program conducted by AEB- The Brazillian Space Agency since 2004. Electric propulsion is now a very successful method for primary and secondary propulsion systems. It is essential for several existing geostationary satellite station keeping systems and for deep space long duration solar system missions, where the thrusting system can be designed to be used on orbit transfer maneuvering and/or for satellite attitude control in long term space missions. Applications of compact versions of Permanent Magnet Hall Thrusters on future brazillian space missions are needed and foreseen for the coming years beginning with the use of small divergent cusp field (DCFH) Hall Thrusters type on CUBESATS ( 5-10 kg , 1W-5 W power consumption) and on Micro satellites ( 50- 100 kg, 10W-100W). Brazillian (AEB) and German (DLR) space agencies and research institutions are developing a new rocket dedicated to small satellite launching. The VLM- Microsatellite Launch Vehicle. The development of PHALL compact versions can also be important for the recently proposed SBG system, a future brazillian geostationary satellite system that is already been developed by an international consortium of brazillian and foreign space industries. The exploration of small bodies in the Solar System with spacecraft has been done by several countries with increasing frequency in these past twenty five years. Since their historical beginning on the sixties, most of the Solar System missions were based on gravity assisted trajectories very much depended on planet orbit positioning relative to the Sun and the Earth. The consequence was always the narrowing of the mission launch window. Today, the need for Solar System icy bodies in situ exploration requires less dependence on gravity assisted maneuvering and new high precision low thrust navigation methods

  1. Effect of Magnetic Mirror on the Asymmetry of the Radial Profile of Near-Wall Conductivity in Hall Thrusters

    Yu Daren; Liu Hui; Fu Haiyang

    2009-01-01

    Considering the actual magnetic field configuration in a Hall thruster, the effect of magnetic mirror on the radial profile of near-wall conductivity (NWC) is studied in this paper. The plasma electron dynamic process is described by the test particle method. The Monte Carlo scheme is used to solve this model. The radial profile of electron mobility is obtained and the role of magnetic mirror in NWC is analysed both theoretically and numerically. The numerical results show that the electron mobility peak due to NWC is inversely proportional to the magnetic mirror ratio and the asymmetry of electron mobility along the radial direction gets greater when the magnetic mirror is considered. This effect indicates that apart from the disparity in the magnetic field strength, the difference in the magnetic mirror ratio near the inner and outer walls would actually augment the asymmetry of the radial profile of NWC in Hall thrusters.

  2. Experimental test of 200 W Hall thruster with titanium wall

    Ding, Yongjie; Sun, Hezhi; Peng, Wuji; Xu, Yu; Wei, Liqiu; Li, Hong; Li, Peng; Su, Hongbo; Yu, Daren

    2017-05-01

    We designed a 200 W Hall thruster based on the technology of pushing down a magnetic field with two permanent magnetic rings. Boron nitride (BN) is an important insulating wall material for Hall thrusters. The discharge characteristics of the designed Hall thruster were studied by replacing BN with titanium (Ti). Experimental results show that the designed Hall thruster can discharge stably for a long time under a Ti channel. Experiments were performed to determine whether the channel and cathode are electrically connected. When the channel wall and cathode are insulated, the divergence angle of the plume increases, but the performance of the Hall thruster is improved in terms of thrust, specific impulse, anode efficiency, and thrust-to-power ratio. Ti exhibits a powerful antisputtering capability, a low emanation rate of gas, and a large structural strength, making it a potential candidate wall material in the design of low-power Hall thrusters.

  3. Diagnostics Systems for Permanent Hall Thrusters Development

    Ferreira, Jose Leonardo; Soares Ferreira, Ivan; Santos, Jean; Miranda, Rodrigo; Possa, M. Gabriela

    This work describes the development of Permanent Magnet Hall Effect Plasma Thruster (PHALL) and its diagnostic systems at The Plasma Physics Laboratory of University of Brasilia. The project consists on the construction and characterization of plasma propulsion engines based on the Hall Effect. Electric thrusters have been employed in over 220 successful space missions. Two types stand out: the Hall-Effect Thruster (HET) and the Gridded Ion Engine (GIE). The first, which we deal with in this project, has the advantage of greater simplicity of operation, a smaller weight for the propulsion subsystem and a longer shelf life. It can operate in two configurations: magnetic layer and anode layer, the difference between the two lying in the positioning of the anode inside the plasma channel. A Hall-Effect Thruster-HET is a type of plasma thruster in which the propellant gas is ionized and accelerated by a magneto hydrodynamic effect combined with electrostatic ion acceleration. So the essential operating principle of the HET is that it uses a J x B force and an electrostatic potential to accelerate ions up to high speeds. In a HET, the attractive negative charge is provided by electrons at the open end of the Thruster instead of a grid, as in the case of the electrostatic ion thrusters. A strong radial magnetic field is used to hold the electrons in place, with the combination of the magnetic field and the electrostatic potential force generating a fast circulating electron current, the Hall current, around the axis of the Thruster, mainly composed by drifting electrons in an ion plasma background. Only a slow axial drift towards the anode occurs. The main attractive features of the Hall-Effect Thruster are its simple design and operating principles. Most of the Hall-Effect Thrusters use electromagnet coils to produce the main magnetic field responsible for plasma generation and acceleration. In this paper we present a different new concept, a Permanent Magnet Hall

  4. Particle-in-cell numerical simulations of a cylindrical Hall thruster with permanent magnets

    Miranda, Rodrigo A.; Martins, Alexandre A.; Ferreira, José L.

    2017-10-01

    The cylindrical Hall thruster (CHT) is a propulsion device that offers high propellant utilization and performance at smaller dimensions and lower power levels than traditional Hall thrusters. In this paper we present first results of a numerical model of a CHT. This model solves particle and field dynamics self-consistently using a particle-in-cell approach. We describe a number of techniques applied to reduce the execution time of the numerical simulations. The specific impulse and thrust computed from our simulations are in agreement with laboratory experiments. This simplified model will allow for a detailed analysis of different thruster operational parameters and obtain an optimal configuration to be implemented at the Plasma Physics Laboratory at the University of Brasília.

  5. Magnetically Filtered Faraday Probe for Measuring the Ion Current Density Profile of a Hall Thruster

    Rovey, Joshua L; Walker, Mitchell L. R; Gallimore, Alec D; Peterson, Peter Y

    2006-01-01

    .../s. The probes are evaluated on a xenon propellant Hall thruster in the University of Michigan Large Vacuum Test Facility at operating pressures within the range of 4.4 x 10(-4) Pa Xe (3.3 x 10(-6) Torr Xe) to 1.1 10(-3) Pa Xe (8.4 x 10(-6) Torr Xe...

  6. Cathode Effects in Cylindrical Hall Thrusters

    Granstedt, E.M.; Raitses, Y.; Fisch, N. J.

    2008-09-12

    Stable operation of a cylindrical Hall thruster (CHT) has been achieved using a hot wire cathode, which functions as a controllable electron emission source. It is shown that as the electron emission from the cathode increases with wire heating, the discharge current increases, the plasma plume angle reduces, and the ion energy distribution function shifts toward higher energies. The observed effect of cathode electron emission on thruster parameters extends and clarifies performance improvements previously obtained for the overrun discharge current regime of the same type of thruster, but using a hollow cathode-neutralizer. Once thruster discharge current saturates with wire heating, further filament heating does not affect other discharge parameters. The saturated values of thruster discharge parameters can be further enhanced by optimal placement of the cathode wire with respect to the magnetic field.

  7. Experimental study of effect of magnetic field on anode temperature distribution in an ATON-type Hall thruster

    Liu, Jinwen; Li, Hong; Mao, Wei; Ding, Yongjie; Wei, Liqiu; Li, Jianzhi; Yu, Daren; Wang, Xiaogang

    2018-05-01

    The energy deposition caused by the absorption of electrons by the anode is an important cause of power loss in a Hall thruster. The resulting anode heating is dangerous, as it can potentially reduce the thruster lifetime. In this study, by considering the ring shape of the anode of an ATON-type Hall thruster, the effects of the magnetic field strength and gradient on the anode ring temperature distribution are studied via experimental measurement. The results show that the temperature distribution is not affected by changes in the magnetic field strength and that the position of the peak temperature is essentially unchanged; however, the overall temperature does not change monotonically with the increase of the magnetic field strength and is positively correlated with the change in the discharge current. Moreover, as the magnetic field gradient increases, the position of the peak temperature gradually moves toward the channel exit and the temperature tends to decrease as a whole, regardless of the discharge current magnitude; in any case, the position of the peak temperature corresponds exactly to the intersection of the magnetic field cusp with the anode ring. Further theoretical analysis shows that the electrons, coming from the ionization region, travel along two characteristic paths to reach the anode under the guidance of the cusped magnetic field configuration. The change of the magnetic field strength or gradient changes the transfer of momentum and energy of the electrons in these two paths, which is the main reason for the changes in the temperature and distribution. This study is instructive for matching the design of the ring-shaped anode and the cusp magnetic field of an ATON-type Hall thruster.

  8. Performance and Facility Background Pressure Characterization Tests of NASAs 12.5-kW Hall Effect Rocket with Magnetic Shielding Thruster

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Shastry, Rohit; Thomas, Robert; Yim, John; Herman, Daniel; Williams, George; Myers, James; Hofer, Richard; hide

    2015-01-01

    NASA's Space Technology Mission Directorate (STMD) Solar Electric Propulsion Technology Demonstration Mission (SEP/TDM) project is funding the development of a 12.5-kW Hall thruster system to support future NASA missions. The thruster designated Hall Effect Rocket with Magnetic Shielding (HERMeS) is a 12.5-kW Hall thruster with magnetic shielding incorporating a centrally mounted cathode. HERMeS was designed and modeled by a NASA GRC and JPL team and was fabricated and tested in vacuum facility 5 (VF5) at NASA GRC. Tests at NASA GRC were performed with the Technology Development Unit 1 (TDU1) thruster. TDU1's magnetic shielding topology was confirmed by measurement of anode potential and low electron temperature along the discharge chamber walls. Thermal characterization tests indicated that during full power thruster operation at peak magnetic field strength, the various thruster component temperatures were below prescribed maximum allowable limits. Performance characterization tests demonstrated the thruster's wide throttling range and found that the thruster can achieve a peak thruster efficiency of 63% at 12.5 kW 500 V and can attain a specific impulse of 3,000 s at 12.5 kW and a discharge voltage of 800 V. Facility background pressure variation tests revealed that the performance, operational characteristics, and magnetic shielding effectiveness of the TDU1 design were mostly insensitive to increases in background pressure.

  9. Temperature Gradient in Hall Thrusters

    Staack, D.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons

  10. Discharge Oscillations in a Permanent Magnet Cylindrical Hall-Effect Thruster

    Polzin, K. A.; Sooby, E. S.; Raitses, Y.; Merino, E.; Fisch, N. J.

    2009-01-01

    Measurements of the discharge current in a cylindrical Hall thruster are presented to quantify plasma oscillations and instabilities without introducing an intrusive probe into the plasma. The time-varying component of the discharge current is measured using a current monitor that possesses a wide frequency bandwidth and the signal is Fourier transformed to yield the frequency spectra present, allowing for the identification of plasma oscillations. The data show that the discharge current oscillations become generally greater in amplitude and complexity as the voltage is increased, and are reduced in severity with increasing flow rate. The breathing mode ionization instability is identified, with frequency as a function of discharge voltage not increasing with discharge voltage as has been observed in some traditional Hall thruster geometries, but instead following a scaling similar to a large-amplitude, nonlinear oscillation mode recently predicted in for annular Hall thrusters. A transition from lower amplitude oscillations to large relative fluctuations in the oscillating discharge current is observed at low flow rates and is suppressed as the mass flow rate is increased. A second set of peaks in the frequency spectra are observed at the highest propellant flow rate tested. Possible mechanisms that might give rise to these peaks include ionization instabilities and interactions between various oscillatory modes.

  11. Design of a Laboratory Hall Thruster with Magnetically Shielded Channel Walls, Phase III: Comparison of Theory with Experiment

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard R.; Goebel, Dan M.

    2012-01-01

    A proof-of-principle effort to demonstrate a technique by which erosion of the acceleration channel in Hall thrusters of the magnetic-layer type can be eliminated has been completed. The first principles of the technique, now known as "magnetic shielding," were derived based on the findings of numerical simulations in 2-D axisymmetric geometry. The simulations, in turn, guided the modification of an existing 6-kW laboratory Hall thruster. This magnetically shielded (MS) thruster was then built and tested. Because neither theory nor experiment alone can validate fully the first principles of the technique, the objective of the 2-yr effort was twofold: (1) to demonstrate in the laboratory that the erosion rates can be reduced by >order of magnitude, and (2) to demonstrate that the near-wall plasma properties can be altered according to the theoretical predictions. This paper concludes the demonstration of magnetic shielding by reporting on a wide range of comparisons between results from numerical simulations and laboratory diagnostics. Collectively, we find that the comparisons validate the theory. Near the walls of the MS thruster, theory and experiment agree: (1) the plasma potential has been sustained at values near the discharge voltage, and (2) the electron temperature has been lowered by at least 2.5-3 times compared to the unshielded (US) thruster. Also, based on carbon deposition measurements, the erosion rates at the inner and outer walls of the MS thruster are found to be lower by at least 2300 and 1875 times, respectively. Erosion was so low along these walls that the rates were below the resolution of the profilometer. Using a sputtering yield model with an energy threshold of 25 V, the simulations predict a reduction of 600 at the MS inner wall. At the outer wall ion energies are computed to be below 25 V, for which case we set the erosion to zero in the simulations. When a 50-V threshold is used the computed ion energies are below the threshold at both

  12. Low-Cost, High-Performance Hall Thruster Support System

    Hesterman, Bryce

    2015-01-01

    Colorado Power Electronics (CPE) has built an innovative modular PPU for Hall thrusters, including discharge, magnet, heater and keeper supplies, and an interface module. This high-performance PPU offers resonant circuit topologies, magnetics design, modularity, and a stable and sustained operation during severe Hall effect thruster current oscillations. Laboratory testing has demonstrated discharge module efficiency of 96 percent, which is considerably higher than current state of the art.

  13. Hall Thruster Thermal Modeling and Test Data Correlation

    Myers, James; Kamhawi, Hani; Yim, John; Clayman, Lauren

    2016-01-01

    The life of Hall Effect thrusters are primarily limited by plasma erosion and thermal related failures. NASA Glenn Research Center (GRC) in cooperation with the Jet Propulsion Laboratory (JPL) have recently completed development of a Hall thruster with specific emphasis to mitigate these limitations. Extending the operational life of Hall thursters makes them more suitable for some of NASA's longer duration interplanetary missions. This paper documents the thermal model development, refinement and correlation of results with thruster test data. Correlation was achieved by minimizing uncertainties in model input and recognizing the relevant parameters for effective model tuning. Throughout the thruster design phase the model was used to evaluate design options and systematically reduce component temperatures. Hall thrusters are inherently complex assemblies of high temperature components relying on internal conduction and external radiation for heat dispersion and rejection. System solutions are necessary in most cases to fully assess the benefits and/or consequences of any potential design change. Thermal model correlation is critical since thruster operational parameters can push some components/materials beyond their temperature limits. This thruster incorporates a state-of-the-art magnetic shielding system to reduce plasma erosion and to a lesser extend power/heat deposition. Additionally a comprehensive thermal design strategy was employed to reduce temperatures of critical thruster components (primarily the magnet coils and the discharge channel). Long term wear testing is currently underway to assess the effectiveness of these systems and consequently thruster longevity.

  14. Parametric Investigation of Miniaturized Cylindrical and Annular Hall Thrusters

    Smirnov, A.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. An alternative approach, a 2.6-cm miniaturized cylindrical Hall thruster with a cusp-type magnetic field distribution, was developed and studied. Its performance was compared to that of a conventional annular thruster of the same dimensions. The cylindrical thruster exhibits discharge characteristics similar to those of the annular thruster, but it has a much higher propellant ionization efficiency. Significantly, a large fraction of multi-charged xenon ions might be present in the outgoing ion flux generated by the cylindrical thruster. The operation of the cylindrical thruster is quieter than that of the annular thruster. The characteristic peak in the discharge current fluctuation spectrum at 50-60 kHz appears to be due to ionization instabilities. In the power range 50-300 W, the cylindrical and annular thrusters have comparable efficiencies (15-32%) and thrusts (2.5-12 mN). For the annular configuration, a voltage less than 200 V was not sufficient to sustain the discharge at low propellant flow rates. The cylindrical thruster can operate at voltages lower than 200 V, which suggests that a cylindrical thruster can be designed to operate at even smaller power

  15. Effects of Enhanced Eathode Electron Emission on Hall Thruster Operation

    Raitses, Y.; Smirnov, A.; Fisch, N.J.

    2009-01-01

    Interesting discharge phenomena are observed that have to do with the interaction between the magnetized Hall thruster plasma and the neutralizing cathode. The steadystate parameters of a highly ionized thruster discharge are strongly influenced by the electron supply from the cathode. The enhancement of the cathode electron emission above its self-sustained level affects the discharge current and leads to a dramatic reduction of the plasma divergence and a suppression of large amplitude, low frequency discharge current oscillations usually related to an ionization instability. These effects correlate strongly with the reduction of the voltage drop in the region with the fringing magnetic field between the thruster channel and the cathode. The measured changes of the plasma properties suggest that the electron emission affects the electron cross-field transport in the thruster discharge. These trends are generalized for Hall thrusters of various configurations.

  16. NASA HERMeS Hall Thruster Electrical Configuration Characterization

    Peterson, Peter; Kamhawi, Hani; Huang, Wensheng; Yim, John; Herman, Daniel; Williams, George; Gilland, James; Hofer, Richard

    2016-01-01

    NASAs Hall Effect Rocket with Magnetic Shielding (HERMeS) 12.5 kW Technology Demonstration Unit-1 (TDU-1) Hall thruster has been the subject of extensive technology maturation in preparation for development into a flight ready propulsion system. Part of the technology maturation was to test the TDU-1 thruster in several ground based electrical configurations to assess the thruster robustness and suitability to successful in-space operation. The ground based electrical configuration testing has recently been demonstrated as an important step in understanding and assessing how a Hall thruster may operate differently in space compared to ground based testing, and to determine the best configuration to conduct development and qualification testing. This presentation will cover the electrical configuration testing of the TDU-1 HERMeS Hall thruster in NASA Glenn Research Centers Vacuum Facility 5. The three electrical configurations examined are the thruster body tied to facility ground, thruster floating, and finally the thruster body electrically tied to cathode common. The TDU-1 HERMeS was configured with two different exit plane boundary conditions, dielectric and conducting, to examine the influence on the electrical configuration characterization.

  17. Determination of the Hall Thruster Operating Regimes

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-04-01

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible -- with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile

  18. Long Life Miniature Hall Thruster Enabling Low Cost Human Precursor Missions

    National Aeronautics and Space Administration — Key and Central Objectives: This investigation aims to demonstrate that the application of magnetic shielding technology on miniature Hall thrusters will...

  19. Particle-in-cell simulations of Hall plasma thrusters

    Miranda, Rodrigo; Ferreira, Jose Leonardo; Martins, Alexandre

    2016-07-01

    Hall plasma thrusters can be modelled using particle-in-cell (PIC) simulations. In these simulations, the plasma is described by a set of equations which represent a coupled system of charged particles and electromagnetic fields. The fields are computed using a spatial grid (i.e., a discretization in space), whereas the particles can move continuously in space. Briefly, the particle and fields dynamics are computed as follows. First, forces due to electric and magnetic fields are employed to calculate the velocities and positions of particles. Next, the velocities and positions of particles are used to compute the charge and current densities at discrete positions in space. Finally, these densities are used to solve the electromagnetic field equations in the grid, which are interpolated at the position of the particles to obtain the acting forces, and restart this cycle. We will present numerical simulations using software for PIC simulations to study turbulence, wave and instabilities that arise in Hall plasma thrusters. We have sucessfully reproduced a numerical simulation of a SPT-100 Hall thruster using a two-dimensional (2D) model. In addition, we are developing a 2D model of a cylindrical Hall thruster. The results of these simulations will contribute to improve the performance of plasma thrusters to be used in Cubesats satellites currenty in development at the Plasma Laboratory at University of Brasília.

  20. Experimental and theoretical studies of cylindrical Hall thrusters

    Smirnov, Artem; Raitses, Yegeny; Fisch, Nathaniel J.

    2007-01-01

    The Hall thruster is a mature electric propulsion device that holds considerable promise in terms of the propellant saving potential. The annular design of the conventional Hall thruster, however, does not naturally scale to low power. The efficiency tends to be lower and the lifetime issues are more aggravated. Cylindrical geometry Hall thrusters have lower surface-to-volume ratio than conventional thrusters and, thus, seem to be more promising for scaling down. The cylindrical Hall thruster (CHT) is fundamentally different from the conventional design in the way the electrons are confined and the ion space charge is neutralized. The performances of both the large (9-cm channel diameter, 600-1000 W) and miniaturized (2.6-cm channel diameter, 50-300 W) CHTs are comparable with those of the state-of-the-art conventional (annular) design Hall thrusters of similar sizes. A comprehensive experimental and theoretical study of the CHT physics has been conducted, addressing the questions of electron cross-field transport, propellant ionization, plasma-wall interaction, and formation of the electron distribution function. Probe measurements in the harsh plasma environment of the microthruster were performed. Several interesting effects, such as the unusually high ionization efficiency and enhanced electron transport, were observed. Kinetic simulations suggest the existence of the strong fluctuation-enhanced electron diffusion and predict the non-Maxwellian shape of the electron distribution function. Through the acquired understanding of the new physics, ways for further optimization of this means for low-power space propulsion are suggested. Substantial flexibility in the magnetic field configuration of the CHT is the key tool in achieving the high-efficiency operation

  1. An evaluation of krypton propellant in Hall thrusters

    Linnell, Jesse Allen

    Due to its high specific impulse and low price, krypton has long sparked interest as an alternate Hall thruster propellant. Unfortunately at the moment, krypton's relatively poor performance precludes it as a legitimate option. This thesis presents a detailed investigation into krypton operation in Hall thrusters. These findings suggest that the performance gap can be decreased to 4% and krypton can finally become a realistic propellant option. Although krypton has demonstrated superior specific impulse, the xenon-krypton absolute efficiency gap ranges between 2 and 15%. A phenomenological performance model indicates that the main contributors to the efficiency gap are propellant utilization and beam divergence. Propellant utilization and beam divergence have relative efficiency deficits of 5 and 8%, respectively. A detailed characterization of internal phenomena is conducted to better understand the xenon-krypton efficiency gap. Krypton's large beam divergence is found to be related to a defocusing equipotential structure and a weaker magnetic field topology. Ionization processes are shown to be linked to the Hall current, the magnetic mirror topology, and the perpendicular gradient of the magnetic field. Several thruster design and operational suggestions are made to optimize krypton efficiency. Krypton performance is optimized for discharge voltages above 500 V and flow rates corresponding to an a greater than 0.015 mg/(mm-s), where alpha is a function of flow rate and discharge channel dimensions (alpha = m˙alphab/Ach). Performance can be further improved by increasing channel length or decreasing channel width for a given flow rate. Also, several magnetic field design suggestions are made to enhance ionization and beam focusing. Several findings are presented that improve the understanding of general Hall thruster physics. Excellent agreement is shown between equipotential lines and magnetic field lines. The trim coil is shown to enhance beam focusing

  2. Parametric studies of the Hall Thruster at Soreq

    Ashkenazy, J.; Rattses, Y.; Appelbaum, G.

    1997-01-01

    An electric propulsion program was initiated at Soreq a few years ago, aiming at the research and development of advanced Hall thrusters for various space applications. The Hall thruster accelerates a plasma jet by an axial electric field and an applied radial magnetic field in an annular ceramic channel. A relatively large current density (> 0.1 A/cm 2 ) can be obtained, since the acceleration mechanism is not limited by space charge effects. Such a device can be used as a small rocket engine onboard spacecraft with the advantage of a large jet velocity compared with conventional rocket engines (10,000-30,000 m/s vs. 2,000-4,800 m/s). An experimental Hall thruster was constructed at Soreq and operated under a broad range of operating conditions and under various configurational variations. Electrical, magnetic and plasma diagnostics, as well as accurate thrust and gas flow rate measurements, have been used to investigate the dependence of thruster behavior on the applied voltage, gas flow rate, magnetic field, channel geometry and wall material. Representative results highlighting the major findings of the studies conducted so far are presented

  3. Anode Fall Formation in a Hall Thruster

    Dorf, Leonid A.; Raitses, Yevgeny F.; Smirnov, Artem N.; Fisch, Nathaniel J.

    2004-01-01

    As was reported in our previous work, accurate, nondisturbing near-anode measurements of the plasma density, electron temperature, and plasma potential performed with biased and emissive probes allowed the first experimental identification of both electron-repelling (negative anode fall) and electron-attracting (positive anode fall) anode sheaths in Hall thrusters. An interesting new phenomenon revealed by the probe measurements is that the anode fall changes from positive to negative upon removal of the dielectric coating, which appears on the anode surface during the course of Hall thruster operation. As reported in the present work, energy dispersion spectroscopy analysis of the chemical composition of the anode dielectric coating indicates that the coating layer consists essentially of an oxide of the anode material (stainless steel). However, it is still unclear how oxygen gets into the thruster channel. Most importantly, possible mechanisms of anode fall formation in a Hall thruster with a clean and a coated anodes are analyzed in this work; practical implication of understanding the general structure of the electron-attracting anode sheath in the case of a coated anode is also discussed

  4. 50 KW Class Krypton Hall Thruster Performance

    Jacobson, David T.; Manzella, David H.

    2003-01-01

    The performance of a 50-kilowatt-class Hall thruster designed for operation on xenon propellant was measured using kryton propellant. The thruster was operated at discharge power levels ranging from 6.4 to 72.5 kilowatts. The device produced thrust ranging from 0.3 to 2.5 newtons. The thruster was operated at discharge voltages between 250 and 1000 volts. At the highest anode mass flow rate and discharge voltage and assuming a 100 percent singly charged condition, the discharge specific impulse approached the theoretical value. Discharge specific impulse of 4500 seconds was demonstrated at a discharge voltage of 1000 volts. The peak discharge efficiency was 64 percent at 650 volts.

  5. Plasma Characterization of Hall Thruster with Active and Passive Segmented Electrodes

    Raitses, Y.; Staack, D.; Fisch, N.J.

    2002-01-01

    Non-emissive electrodes and ceramic spacers placed along the Hall thruster channel are shown to affect the plasma potential distribution and the thruster operation. These effects are associated with physical properties of the electrode material and depend on the electrode configuration, geometry and the magnetic field distribution. An emissive segmented electrode was able to maintain thruster operation by supplying an additional electron flux to sustain the plasma discharge between the anode and cathode neutralizer. These results indicate the possibility of new configurations for segmented electrode Hall thruster

  6. The influence of magnetic field strength in ionization stage on ion transport between two stages of a double stage Hall thruster

    Yu Daren; Song Maojiang; Li Hong; Liu Hui; Han Ke

    2012-01-01

    It is futile for a double stage Hall thruster to design a special ionization stage if the ionized ions cannot enter the acceleration stage. Based on this viewpoint, the ion transport under different magnetic field strengths in the ionization stage is investigated, and the physical mechanisms affecting the ion transport are analyzed in this paper. With a combined experimental and particle-in-cell simulation study, it is found that the ion transport between two stages is chiefly affected by the potential well, the potential barrier, and the potential drop at the bottom of potential well. With the increase of magnetic field strength in the ionization stage, there is larger plasma density caused by larger potential well. Furthermore, the potential barrier near the intermediate electrode declines first and then rises up while the potential drop at the bottom of potential well rises up first and then declines as the magnetic field strength increases in the ionization stage. Consequently, both the ion current entering the acceleration stage and the total ion current ejected from the thruster rise up first and then decline as the magnetic field strength increases in the ionization stage. Therefore, there is an optimal magnetic field strength in the ionization stage to guide the ion transport between two stages.

  7. Mode transition of a Hall thruster discharge plasma

    Hara, Kentaro; Sekerak, Michael J.; Boyd, Iain D.; Gallimore, Alec D.

    2014-01-01

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  8. Operation of a Segmented Hall Thruster with Low-sputtering Carbon-velvet Electrodes

    Raitses, Y.; Staack, D.; Dunaevsky, A.; Fisch, N.J.

    2005-01-01

    Carbon fiber velvet material provides exceptional sputtering resistance properties exceeding those for graphite and carbon composite materials. A 2 kW Hall thruster with segmented electrodes made of this material was operated in the discharge voltage range of 200-700 V. The arcing between the floating velvet electrodes and the plasma was visually observed, especially, during the initial conditioning time, which lasted for about 1 h. The comparison of voltage versus current and plume characteristics of the Hall thruster with and without segmented electrodes indicates that the magnetic insulation of the segmented thruster improves with the discharge voltage at a fixed magnetic field. The observations reported here also extend the regimes wherein the segmented Hall thruster can have a narrower plume than that of the conventional nonsegmented thruster

  9. Chaotic waves in Hall thruster plasma

    Peradzynski, Zbigniew; Barral, S.; Kurzyna, J.; Makowski, K.; Dudeck, M.

    2006-01-01

    The set of hyperbolic equations of the fluid model describing the acceleration of plasma in a Hall thruster is analyzed. The characteristic feature of the flow is the existence of a trapped characteristic; i.e. there exists a characteristic line, which never intersects the boundary of the flow region in the thruster. To study the propagation of short wave perturbations, the approach of geometrical optics (like WKB) can be applied. This can be done in a linear as well as in a nonlinear version. The nonlinear version describes the waves of small but finite amplitude. As a result of such an approach one obtains so called transport equation, which are governing the wave amplitude. Due to the existence of trapped characteristics this transport equation appears to have chaotic (turbulent) solutions in both, linear and nonlinear versions

  10. Integrated Stirling Convertor and Hall Thruster Test Conducted

    Mason, Lee S.

    2002-01-01

    An important aspect of implementing Stirling Radioisotope Generators on future NASA missions is the integration of the generator and controller with potential spacecraft loads. Some recent studies have indicated that the combination of Stirling Radioisotope Generators and electric propulsion devices offer significant trip time and payload fraction benefits for deep space missions. A test was devised to begin to understand the interactions between Stirling generators and electric thrusters. An electrically heated RG- 350 (350-W output) Stirling convertor, designed and built by Stirling Technology Company of Kennewick, Washington, under a NASA Small Business Innovation Research agreement, was coupled to a 300-W SPT-50 Hall-effect thruster built for NASA by the Moscow Aviation Institute (RIAME). The RG-350 and the SPT-50 shown, were installed in adjacent vacuum chamber ports at NASA Glenn Research Center's Electric Propulsion Laboratory, Vacuum Facility 8. The Stirling electrical controller interfaced directly with the Hall thruster power-processing unit, both of which were located outside of the vacuum chamber. The power-processing unit accepted the 48 Vdc output from the Stirling controller and distributed the power to all the loads of the SPT-50, including the magnets, keeper, heater, and discharge. On February 28, 2001, the Glenn test team successfully operated the Hall-effect thruster with the Stirling convertor. This is the world's first known test of a dynamic power source with electric propulsion. The RG-350 successfully managed the transition from the purely resistive load bank within the Stirling controller to the highly capacitive power-processing unit load. At the time of the demonstration, the Stirling convertor was operating at a hot temperature of 530 C and a cold temperature of -6 C. The linear alternator was producing approximately 250 W at 109 Vac, while the power-processing unit was drawing 175 W at 48 Vdc. The majority of power was delivered to the

  11. Investigations of Probe Induced Perturbations in a Hall Thruster

    D. Staack; Y. Raitses; N.J. Fisch

    2002-01-01

    An electrostatic probe used to measure spatial plasma parameters in a Hall thruster generates perturbations of the plasma. These perturbations are examined by varying the probe material, penetration distance, residence time, and the nominal thruster conditions. The study leads us to recommendations for probe design and thruster operating conditions to reduce discharge perturbations, including metal shielding of the probe insulator and operation of the thruster at lower densities

  12. Transit-time instability in Hall thrusters

    Barral, Serge; Makowski, Karol; Peradzynski, Zbigniew; Dudeck, Michel

    2005-01-01

    Longitudinal waves characterized by a phase velocity of the order of the velocity of ions have been recurrently observed in Hall thruster experiments and simulations. The origin of this so-called ion transit-time instability is investigated with a simple one-dimensional fluid model of a Hall thruster discharge in which cold ions are accelerated between two electrodes within a quasineutral plasma. A short-wave asymptotics applied to linearized equations shows that plasma perturbations in such a device consist of quasineutral ion acoustic waves superimposed on a background standing wave generated by discharge current oscillations. Under adequate circumstances and, in particular, at high ionization levels, acoustic waves are amplified as they propagate, inducing strong perturbation of the ion density and velocity. Responding to the subsequent perturbation of the column resistivity, the discharge current generates a standing wave, the reflection of which sustains the generation of acoustic waves at the inlet boundary. A calculation of the frequency and growth rate of this resonance mechanism for a supersonic ion flow is proposed, which illustrates the influence of the ionization degree on their onset and the approximate scaling of the frequency with the ion transit time. Consistent with experimental reports, the traveling wave can be observed on plasma density and velocity perturbations, while the plasma potential ostensibly oscillates in phase along the discharge

  13. Determination of the Hall Thruster Operating Regimes; TOPICAL

    L. Dorf; V. Semenov; Y. Raitses; N.J. Fisch

    2002-01-01

    A quasi one-dimensional (1-D) steady-state model of the Hall thruster is presented. For the same discharge voltage two operating regimes are possible - with and without the anode sheath. For given mass flow rate, magnetic field profile and discharge voltage a unique solution can be constructed, assuming that the thruster operates in one of the regimes. However, we show that for a given temperature profile the applied discharge voltage uniquely determines the operating regime: for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. It is also shown that a good correlation between the quasi 1-D model and experimental results can be achieved by selecting an appropriate electron mobility and temperature profile

  14. Hall Thruster Modeling with a Given Temperature Profile

    Dorf, L.; Semenov, V.; Raitses, Y.; Fisch, N.J.

    2002-01-01

    A quasi one-dimensional steady-state model of the Hall thruster is presented. For given mass flow rate, magnetic field profile, and discharge voltage the unique solution can be constructed, assuming that the thruster operates in one of the two regimes: with or without the anode sheath. It is shown that for a given temperature profile, the applied discharge voltage uniquely determines the operating regime; for discharge voltages greater than a certain value, the sheath disappears. That result is obtained over a wide range of incoming neutral velocities, channel lengths and widths, and cathode plane locations. A good correlation between the quasi one-dimensional model and experimental results can be achieved by selecting an appropriate temperature profile. We also show how the presented model can be used to obtain a two-dimensional potential distribution

  15. Effect of Anode Dielectric Coating on Hall Thruster Operation

    Dorf, L.; Raitses, Y.; Fisch, N.J.; Semenov, V.

    2003-01-01

    An interesting phenomenon observed in the near-anode region of a Hall thruster is that the anode fall changes from positive to negative upon removal of the dielectric coating, which is produced on the anode surface during the normal course of Hall thruster operation. The anode fall might affect the thruster lifetime and acceleration efficiency. The effect of the anode coating on the anode fall is studied experimentally using both biased and emissive probes. Measurements of discharge current oscillations indicate that thruster operation is more stable with the coated anode

  16. Numerical investigation of a Hall thruster plasma

    Roy, Subrata; Pandey, B.P.

    2002-01-01

    The dynamics of the Hall thruster is investigated numerically in the framework of a one-dimensional, multifluid macroscopic description of a partially ionized xenon plasma using finite element formulation. The model includes neutral dynamics, inelastic processes, and plasma-wall interaction. Owing to disparate temporal scales, ions and neutrals have been described by set of time-dependent equations, while electrons are considered in steady state. Based on the experimental observations, a third order polynomial in electron temperature is used to calculate ionization rate. The results show that in the acceleration channel the increase in the ion number density is related to the decrease in the neutral number density. The electron and ion velocity profiles are consistent with the imposed electric field. The electron temperature remains uniform for nearly two-thirds of the channel; then sharply increases to a peak before dropping slightly at the exit. This is consistent with the predicted electron gyration velocity distribution

  17. Hall Thruster Thermal Modeling and Test Data Correlation

    Myers, James

    2016-01-01

    HERMeS - Hall Effect Rocket with Magnetic Shielding. Developed through a joint effort by NASA/GRC and the Jet Propulsion Laboratory (JPL). Design goals: High power (12.5 kW) high Isp (3000 sec), high efficiency (> 60%), high throughput (10,000 kg), reduced plasma erosion and increased life (5 yrs) to support Asteroid Redirect Robotic Mission (ARRM). Further details see "Performance, Facility Pressure Effects and Stability Characterization Tests of NASAs HERMeS Thruster" by H. Kamhawi and team. Hall Thrusters (HT) inherently operate at elevated temperatures approx. 600 C (or more). Due to electric magnetic (E x B) fields used to ionize and accelerate propellant gas particles (i.e., plasma). Cooling is largely limited to radiation in vacuum environment.Thus the hardware components must withstand large start-up delta-T's. HT's are constructed of multiple materials; assorted metals, non-metals and ceramics for their required electrical and magnetic properties. To mitigate thermal stresses HT design must accommodate the differential thermal growth from a wide range of material Coef. of Thermal Expansion (CTEs). Prohibiting the use of some bolted/torqued interfaces.Commonly use spring loaded interfaces, particularly at the metal-to-ceramic interfaces to allow for slippage.However most component interfaces must also effectively conduct heat to the external surfaces for dissipation by radiation.Thus contact pressure and area are important.

  18. Carbon Back Sputter Modeling for Hall Thruster Testing

    Gilland, James H.; Williams, George J.; Burt, Jonathan M.; Yim, John T.

    2016-01-01

    In support of wear testing for the Hall Effect Rocket with Magnetic Shielding (HERMeS) program, the back sputter from a Hall effect thruster plume has been modeled for the NASA Glenn Research Centers Vacuum Facility 5. The predicted wear at a near-worst case condition of 600 V, 12.5 kW was found to be on the order of 3 4 mkhour in a fully carbon-lined chamber. A more detailed numerical monte carlo code was also modified to estimate back sputter for a detailed facility and pumping configuration. This code demonstrated similar back sputter rate distributions, but is not yet accurately modeling the magnitudes. The modeling has been benchmarked to recent HERMeS wear testing, using multiple microbalance measurements. These recent measurements have yielded values, on the order of 1.5- 2 microns/khour.

  19. Magnesium Hall Thruster for Solar System Exploration, Phase II

    National Aeronautics and Space Administration — The innovation being developed in this program is a Mg Hall Effect Thruster system that would open the door for In-Situ Resource Utilization based solar system...

  20. Dual Mode Low Power Hall Thruster, Phase I

    National Aeronautics and Space Administration — Sample and return missions desire and missions like Saturn Observer require a low power Hall thruster that can operate at high thrust to power as well as high...

  1. High Input Voltage Hall Thruster Discharge Converter, Phase I

    National Aeronautics and Space Administration — The overall scope of this Phase I/II effort is the development of a high efficiency 15kW (nominal) Hall thruster discharge converter. In Phase I, Busek Co. Inc. will...

  2. 2D Electrostatic Potential Solver for Hall Thruster Simulation

    Koo, Justin W

    2006-01-01

    ...) for Hall thruster simulation. It is based on a finite volume discretization of a current conservation equation where the electron current density is described by a Generalized Ohm's law description...

  3. Numerical simulation of SMART-1 Hall-thruster plasma interactions

    Tajmar, Martin; Sedmik, René; Scharlemann, Carsten

    2009-01-01

    SMART-1 has been the first European mission using a Hall thruster to reach the moon. An onboard plasma diagnostic package allowed a detailed characterization of the thruster exhaust plasma and its interactions with the spacecraft. Analysis of in-flight data revealed, amongst others, an unpredicted

  4. Investigation of the Hall Effect Thruster Breathing Mode and Spoke Mode Instabilities in the Very Near Field

    National Aeronautics and Space Administration — One of the most practical forms of electric propulsion is the Hall Effect Thruster (HET), which makes use of electric and magnetic fields to create and eject a...

  5. Empirical electron cross-field mobility in a Hall effect thruster

    Garrigues, L.; Perez-Luna, J.; Lo, J.; Hagelaar, G. J. M.; Boeuf, J. P.; Mazouffre, S.

    2009-01-01

    Electron transport across the magnetic field in Hall effect thrusters is still an open question. Models have so far assumed 1/B 2 or 1/B scaling laws for the 'anomalous' electron mobility, adjusted to reproduce the integrated performance parameters of the thruster. We show that models based on such mobility laws predict very different ion velocity distribution functions (IVDF) than measured by laser induced fluorescence (LIF). A fixed spatial mobility profile, obtained by analysis of improved LIF measurements, leads to much better model predictions of thruster performance and IVDF than 1/B 2 or 1/B mobility laws for discharge voltages in the 500-700 V range.

  6. RHETT2/EPDM Hall Thruster Propulsion System Electromagnetic Compatibility Evaluation

    Sarmiento, Charles J.; Sankovic, John M.; Freitas, Joseph; Lynn, Peter R.

    1997-01-01

    Electromagnetic compatibility measurements were obtained as part of the Electric Propulsion Demonstration Module (EPDM) flight qualification program. Tests were conducted on a Hall thruster system operating at a nominal 66O W discharge power. Measurements of conducted and radiated susceptibility and emissions were obtained and referenced to MEL-STD-461 C. The power processor showed some conducted susceptibility below 4 kHz for the magnet current and discharge voltage. Radiated susceptibility testing yielded a null result. Conducted emissions showed slight violations of the specified limit for MIL-461C CE03. Radiated emissions exceeded the RE02 standard at low frequencies, below 300 MHz, by up to 40 dB RV/m/MHz.

  7. Advanced laboratory for testing plasma thrusters and Hall thruster measurement campaign

    Szelecka Agnieszka

    2016-06-01

    Full Text Available Plasma engines are used for space propulsion as an alternative to chemical thrusters. Due to the high exhaust velocity of the propellant, they are more efficient for long-distance interplanetary space missions than their conventional counterparts. An advanced laboratory of plasma space propulsion (PlaNS at the Institute of Plasma Physics and Laser Microfusion (IPPLM specializes in designing and testing various electric propulsion devices. Inside of a special vacuum chamber with three performance pumps, an environment similar to the one that prevails in space is created. An innovative Micro Pulsed Plasma Thruster (LμPPT with liquid propellant was built at the laboratory. Now it is used to test the second prototype of Hall effect thruster (HET operating on krypton propellant. Meantime, an improved prototype of krypton Hall thruster is constructed.

  8. Magnetically enhanced vacuum arc thruster

    Keidar, Michael; Schein, Jochen; Wilson, Kristi; Gerhan, Andrew; Au, Michael; Tang, Benjamin; Idzkowski, Luke; Krishnan, Mahadevan; Beilis, Isak I

    2005-01-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally

  9. Magnetically enhanced vacuum arc thruster

    Keidar, Michael [University of Michigan, Ann Arbor 48109 MI (United States); Schein, Jochen [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Wilson, Kristi [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Gerhan, Andrew [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Au, Michael [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Tang, Benjamin [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Idzkowski, Luke [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Krishnan, Mahadevan [Alameda Applied Science Corporation, San Leandro, CA 94577 (United States); Beilis, Isak I [Tel Aviv University, Tel Aviv (Israel)

    2005-11-01

    A hydrodynamic model of the vacuum arc thruster and its plume is described. Primarily an effect of the magnetic field on the plume expansion and plasma generation is considered. Two particular examples are investigated, namely the magnetically enhanced co-axial vacuum arc thruster (MVAT) and the vacuum arc thruster with ring electrodes (RVAT). It is found that the magnetic field significantly decreases the plasma plume radial expansion under typical conditions. Predicted plasma density profiles in the plume of the MVAT are compared with experimental profiles, and generally a good agreement is found. In the case of the RVAT the influence of the magnetic field leads to plasma jet deceleration, which explains the non-monotonic dependence of the ion current density, on an axial magnetic field observed experimentally.

  10. Effects of facility backpressure on the performance and plume of a Hall thruster

    Walker, Mitchell Louis Ronald

    2005-07-01

    This dissertation presents research aimed at understanding the relationship between facility background pressure, Hall thruster performance, and plume characteristics. Due to the wide range of facilities used in Hall thruster testing, it is difficult for researchers to make adequate comparisons between data sets because of both dissimilar instrumentation and backpressures. The differences in the data sets are due to the ingestion of background gas into the Hall thruster discharge channel and charge-exchange collisions in the plume. Thus, this research aims to understand facility effects and to develop the tools needed to allow researchers to obtain relevant plume and performance data for a variety of chambers and backpressures. The first portion of this work develops a technique for calibrating a vacuum chamber in terms of pressure to account for elevated backpressures while testing Hall thrusters. Neutral gas background pressure maps of the Large Vacuum Test Facility are created at a series of cold anode flow rates and one hot flow rate at two UM/AFRL P5 5 kW Hall thruster operating conditions. These data show that a cold flow pressure map can be used to approximate the neutral background pressure in the chamber with the thruster in operation. In addition, the data are used to calibrate a numerical model that accurately predicts facility backpressure within a vacuum chamber of specified geometry and pumping speed. The second portion of this work investigates how facility backpressure influences the plume, plume diagnostics, and performance of the P5 Hall thruster. Measurements of the plume and performance characteristics over a wide range of pressures show that ingestion, a decrease in the downstream plasma potential, and broadening of the ion energy distribution function cause the increase in thrust with backpressure. Furthermore, a magnetically-filtered Faraday probe accurately measures ion current density at elevated operating pressures. The third portion of

  11. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  12. Development and characterization of high-efficiency, high-specific impulse xenon Hall thrusters

    Hofer, Richard Robert

    This dissertation presents research aimed at extending the efficient operation of 1600 s specific impulse Hall thruster technology to the 2000--3000 s range. While recent studies of commercially developed Hall thrusters demonstrated greater than 4000 s specific impulse, maximum efficiency occurred at less than 3000 s. It was hypothesized that the efficiency maximum resulted as a consequence of modern magnetic field designs, optimized for 1600 s, which were unsuitable at high-specific impulse. Motivated by the industry efforts and mission studies, the aim of this research was to develop and characterize xenon Hall thrusters capable of both high-specific impulse and high-efficiency operation. The research divided into development and characterization phases. During the development phase, the laboratory-model NASA-173M Hall thrusters were designed with plasma lens magnetic field topographies and their performance and plasma characteristics were evaluated. Experiments with the NASA-173M version 1 (v1) validated the plasma lens design by showing how changing the magnetic field topography at high-specific impulse improved efficiency. Experiments with the NASA-173M version 2 (v2) showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. Between 300--1000 V, total specific impulse and total efficiency of the NASA-173Mv2 operating at 10 mg/s ranged from 1600--3400 s and 51--61%, respectively. Comparison of the thrusters showed that efficiency can be optimized for specific impulse by varying the plasma lens design. During the characterization phase, additional plasma properties of the NASA-173Mv2 were measured and a performance model was derived accounting for a multiply-charged, partially-ionized plasma. Results from the model based on experimental data showed how efficient operation at high-specific impulse was enabled through regulation of the electron current with the magnetic field. The

  13. In-Situ Measurement of Hall Thruster Erosion Using a Fiber Optic Regression Probe

    Polzin, Kurt; Korman, Valentin

    2009-01-01

    the thruster is in operation (i.e. none yield a continuous channel erosion measurement). A recent fundamental sensor development effort has led to a novel regression, erosion, and ablation sensor technology (REAST). The REAST sensor allows for measurement of real-time surface erosion rates at a discrete surface location. The sensor was tested using a linear Hall thruster geometry (see Fig. 1), which served as a means of producing plasma erosion of a ceramic discharge chamber. The mass flow rate, discharge voltage, and applied magnetic field strength could be varied, allowing for erosion measurements over a broad thruster operating envelope. Results are presented demonstrating the ability of the REAST sensor to capture not only the insulator erosion rates but also changes in these rates as a function of the discharge parameters.

  14. Mission and System Advantages of Iodine Hall Thrusters

    Dankanich, John W.; Szabo, James; Pote, Bruce; Oleson, Steve; Kamhawi, Hani

    2014-01-01

    The exploration of alternative propellants for Hall thrusters continues to be of interest to the community. Investments have been made and continue for the maturation of iodine based Hall thrusters. Iodine testing has shown comparable performance to xenon. However, iodine has a higher storage density and resulting higher ?V capability for volume constrained systems. Iodine's vapor pressure is low enough to permit low-pressure storage, but high enough to minimize potential adverse spacecraft-thruster interactions. The low vapor pressure also means that iodine does not condense inside the thruster at ordinary operating temperatures. Iodine is safe, it stores at sub-atmospheric pressure, and can be stored unregulated for years on end; whether on the ground or on orbit. Iodine fills a niche for both low power (10kW) electric propulsion regimes. A range of missions have been evaluated for direct comparison of Iodine and Xenon options. The results show advantages of iodine Hall systems for both small and microsatellite application and for very large exploration class missions.

  15. Modeling of the near field plume of a Hall thruster

    Boyd, Iain D.; Yim, John T.

    2004-01-01

    In this study, a detailed numerical model is developed to simulate the xenon plasma near-field plume from a Hall thruster. The model uses a detailed fluid model to describe the electrons and a particle-based kinetic approach is used to model the heavy xenon ions and atoms. The detailed model is applied to compute the near field plume of a small, 200 W Hall thruster. Results from the detailed model are compared with the standard modeling approach that employs the Boltzmann model. The usefulness of the model detailed is assessed through direct comparisons with a number of different measured data sets. The comparisons illustrate that the detailed model accurately predicts a number of features of the measured data not captured by the simpler Boltzmann approach

  16. Performance Test Results of the NASA-457M v2 Hall Thruster

    Soulas, George C.; Haag, Thomas W.; Herman, Daniel A.; Huang, Wensheng; Kamhawi, Hani; Shastry, Rohit

    2012-01-01

    Performance testing of a second generation, 50 kW-class Hall thruster labeled NASA-457M v2 was conducted at the NASA Glenn Research Center. This NASA-designed thruster is an excellent candidate for a solar electric propulsion system that supports human exploration missions. Thruster discharge power was varied from 5 to 50 kW over discharge voltage and current ranges of 200 to 500 V and 15 to 100 A, respectively. Anode efficiencies varied from 0.56 to 0.71. The peak efficiency was similar to that of other state-of-the-art high power Hall thrusters, but outperformed these thrusters at lower discharge voltages. The 0.05 to 0.18 higher anode efficiencies of this thruster compared to its predecessor were primarily due to which of two stable discharge modes the thruster was operated. One stable mode was at low magnetic field strengths, which produced high anode efficiencies, and the other at high magnetic fields where its predecessor was operated. Cathode keeper voltages were always within 2.1 to 6.2 V and cathode voltages were within 13 V of tank ground during high anode efficiency operation. However, during operation at high magnetic fields, cathode-to-ground voltage magnitudes increased dramatically, exceeding 30 V, due to the high axial magnetic field strengths in the immediate vicinity of the centrally-mounted cathode. The peak thrust was 2.3 N and this occurred at a total thruster input power of 50.0 kW at a 500 V discharge voltage. The thruster demonstrated a thrust-to-power range of 76.4 mN/kW at low power to 46.1 mN/kW at full power, and a specific impulse range of 1420 to 2740 s. For a discharge voltage of 300 V, where specific impulses would be about 2000 s, thrust efficiencies varied from 0.57 to 0.63.

  17. Power Dependence of the Electron Mobility Profile in a Hall Thruster

    Jorns, Benjamin A.; Hofery, Richard H.; Mikellides, Ioannis G.

    2014-01-01

    The electron mobility profile is estimated in a 4.5 kW commercial Hall thruster as a function of discharge power. Internal measurements of plasma potential and electron temperature are made in the thruster channel with a high-speed translating probe. These measurements are presented for a range of throttling conditions from 150 - 400 V and 0.6 - 4.5 kW. The fluid-based solver, Hall2De, is used in conjunction with these internal plasma parameters to estimate the anomalous collision frequency profile at fixed voltage, 300 V, and three power levels. It is found that the anomalous collision frequency profile does not change significantly upstream of the location of the magnetic field peak but that the extent and magnitude of the anomalous collision frequency downstream of the magnetic peak does change with thruster power. These results are discussed in the context of developing phenomenological models for how the collision frequency profile depends on thruster operating conditions.

  18. Measurement of erosion rate by absorption spectroscopy in a Hall thruster

    Yamamoto, Naoji; Yokota, Shigeru; Matsui, Makoto; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2005-01-01

    The erosion rate of a Hall thruster was estimated with the objective of building a real-time erosion rate monitoring system using a 1 kW class anode layer type Hall thruster. This system aids the understanding of the tradeoff between lifetime and performance. To estimate the flux of the sputtered wall material, the number density of the sputtered iron was measured by laser absorption spectroscopy using an absorption line from ground atomic iron at 371.9935 nm. An ultravioletAl x In y Ga (1-x-y) N diode laser was used as the probe. The estimated number density of iron was 1.1x10 16 m -3 , which is reasonable when compared with that measured by duration erosion tests. The relation between estimated erosion rate and magnetic flux density also agreed with that measured by duration erosion tests

  19. Overview of NASA Iodine Hall Thruster Propulsion System Development

    Smith, Timothy D.; Kamhawi, Hani; Hickman, Tyler; Haag, Thomas; Dankanich, John; Polzin, Kurt; Byrne, Lawrence; Szabo, James

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. The most recent focus has been on increasing the power level for large-scale exploration applications. However, there has also been a similar push to examine applications of electric propulsion for small spacecraft in the range of 300 kg or less. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek 200-W BHT-200-I and development of the 600-W BHT-600-I systems. This paper discusses the current status of iodine Hall propulsion system developments along with supporting technology development efforts.

  20. Thermal stability of the krypton Hall effect thruster

    Szelecka Agnieszka

    2017-03-01

    Full Text Available The Krypton Large IMpulse Thruster (KLIMT ESA/PECS project, which has been implemented in the Institute of Plasma Physics and Laser Microfusion (IPPLM and now is approaching its final phase, was aimed at incremental development of a ~500 W class Hall effect thruster (HET. Xenon, predominantly used as a propellant in the state-of-the-art HETs, is extremely expensive. Krypton has been considered as a cheaper alternative since more than fifteen years; however, to the best knowledge of the authors, there has not been a HET model especially designed for this noble gas. To address this issue, KLIMT has been geared towards operation primarily with krypton. During the project, three subsequent prototype versions of the thruster were designed, manufactured and tested, aimed at gradual improvement of each next exemplar. In the current paper, the heat loads in new engine have been discussed. It has been shown that thermal equilibrium of the thruster is gained within the safety limits of the materials used. Extensive testing with both gases was performed to compare KLIMT’s thermal behaviour when supplied with krypton and xenon propellants.

  1. Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant

    Linnell, Jesse A.; Gallimore, Alec D.

    2006-01-01

    For krypton to become a realistic option for Hall thruster operation, it is necessary to understand the performance gap between xenon and krypton and what can be done to reduce it. A floating emissive probe is used with the Plasmadynamics and Electric Propulsion Laboratory's High-speed Axial Reciprocating Probe system to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propulsion Power 22, 721 (2006); and ibid.22, 732 (2006)] using xenon and krypton propellant. Measurements are taken for both propellants at discharge voltages of 500 and 600 V. Electron temperatures and electric fields are also reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic-field lines. The electrostatic plasma lens of the NASA-173Mv1 Hall thruster strongly focuses the xenon ions toward the center of the discharge channel, whereas the krypton ions are defocused. Krypton is also found to have a longer acceleration zone than the xenon cases. These results explain the large beam divergence observed with krypton operation. Krypton and xenon have similar maximum electron temperatures and similar lengths of the high electron temperature zone, although the high electron temperature zone is located farther downstream in the krypton case

  2. Improvement of the low frequency oscillation model for Hall thrusters

    Wang, Chunsheng, E-mail: wangcs@hit.edu.cn; Wang, Huashan [Yanshan University, College of Vehicles and Energy, Qinhuangdao 066004, Hebei (China)

    2016-08-15

    The low frequency oscillation of the discharge current in Hall thrusters is a major aspect of these devices that requires further study. While the existing model captures the ionization mechanism of the low frequency oscillation, it unfortunately fails to express the dynamic characteristics of the ion acceleration. The analysis in this paper shows this is because of the simplification of the electron equation, which affects both the electric field distribution and the ion acceleration process. Additionally, the electron density equation is revised and a new model that is based on the physical properties of ion movement is proposed.

  3. Test Results of a 200 W Class Hall Thruster

    Jacobson, David; Jankovsky, Robert S.

    1999-01-01

    The performance of a 200 W class Hall thruster was evaluated. Performance measurements were taken at power levels between 90 W and 250 W. At the nominal 200 W design point, the measured thrust was 11.3 mN. and the specific impulse was 1170 s excluding cathode flow in the calculation. A laboratory model 3 mm diameter hollow cathode was used for all testing. The engine was operated on laboratory power supplies in addition to a breadboard power processing unit fabricated from commercially available DC to DC converters.

  4. Experimental Studies of Anode Sheath Phenomena in a Hall Thruster Discharge

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2004-01-01

    Both electron-repelling and electron-attracting anode sheaths in a Hall thruster were characterized by measuring the plasma potential with biased and emissive probes [L. Dorf, Y. Raitses, V. Semenov, and N.J. Fisch, Appl. Phys. Let. 84 (2004) 1070]. In the present work, two-dimensional structures of the plasma potential, electron temperature, and plasma density in the near-anode region of a Hall thruster with clean and dielectrically coated anodes are identified. Possible mechanisms of anode sheath formation in a Hall thruster are analyzed. The path for current closure to the anode appears to be the determining factor in the anode sheath formation process. The main conclusion of this work is that the anode sheath formation in Hall thrusters differs essentially from that in the other gas discharge devices, like a glow discharge or a hollow anode, because the Hall thruster utilizes long electron residence times to ionize rather than high neutral pressures

  5. Electron Cross-field Transport in a Miniaturized Cylindrical Hall Thruster

    Smirnov Artem; Raitses Yevgeny; Fisch Nathaniel J

    2005-01-01

    Conventional annular Hall thrusters become inefficient when scaled to low power. Cylindrical Hall thrusters, which have lower surface-to-volume ratio, are more promising for scaling down. They presently exhibit performance comparable with conventional annular Hall thrusters. The present paper gives a review of the experimental and numerical investigations of electron crossfield transport in the 2.6 cm miniaturized cylindrical Hall thruster (100 W power level). We show that, in order to explain the discharge current observed for the typical operating conditions, the electron anomalous collision frequency ν b has to be on the order of the Bohm value, ν B ∼ ω c /16. The contribution of electron-wall collisions to cross-field transport is found to be insignificant. The optimal regimes of thruster operation at low background pressure (below 10 -5 Torr) in the vacuum tank appear to be different from those at higher pressure (∼ 10 -4 Torr)

  6. Hollow Cathode Assembly Development for the HERMeS Hall Thruster

    Sarver-Verhey, Timothy R.; Kamhawi, Hani; Goebel, Dan M.; Polk, James E.; Peterson, Peter Y.; Robinson, Dale A.

    2016-01-01

    To support the operation of the HERMeS 12.5 kW Hall Thruster for NASA's Asteroid Redirect Robotic Mission, hollow cathodes using emitters based on barium oxide impregnate and lanthanum hexaboride are being evaluated through wear-testing, performance characterization, plasma modeling, and review of integration requirements. This presentation will present the development approach used to assess the cathode emitter options. A 2,000-hour wear-test of development model Barium Oxide (BaO) hollow cathode is being performed as part of the development plan. Specifically this test is to identify potential impacts cathode emitter life during operation in the HERMeS thruster. The cathode was operated with a magnetic field-equipped anode that simulates the HERMeS hall thruster operating environment. Cathode discharge performance has been stable with the device accumulating 743 hours at the time of this report. Observed voltage changes are attributed to keeper surface condition changes during testing. Cathode behavior during characterization sweeps exhibited stable behavior, including cathode temperature. The details of the cathode assembly operation of the wear-test will be presented.

  7. Facility Effect Characterization Test of NASA's HERMeS Hall Thruster

    Huang, Wensheng; Kamhawi, Hani; Haag, Thomas W.; Ortega, Alejandro Lopez; Mikellides, Ioannis G.

    2016-01-01

    A test to characterize the effect of varying background pressure on NASA's 12.5-kW Hall Effect Rocket with Magnetic Shielding had being completed. This thruster is the baseline propulsion system for the Solar Electric Propulsion Technology Demonstration Mission (SEP TDM). Potential differences in thruster performance and oscillation characteristics when in ground facilities versus on-orbit are considered a primary risk for the propulsion system of the Asteroid Redirect Robotic Mission, which is a candidate for SEP TDM. The first primary objective of this test was to demonstrate that the tools being developed to predict the zero-background-pressure behavior of the thruster can provide self-consistent results. The second primary objective of this test was to provide data for refining a physics-based model of the thruster plume that will be used in spacecraft interaction studies. Diagnostics deployed included a thrust stand, Faraday probe, Langmuir probe, retarding potential analyzer, Wien filter spectrometer, and high-speed camera. From the data, a physics-based plume model was refined. Comparisons of empirical data to modeling results are shown.

  8. Effect of dust on tilted electrostatic resistive instability in a Hall thruster

    Tyagi, Jasvendra; Singh, Sukhmander; Malik, Hitendra K.

    2018-03-01

    Effect of negatively charged dust on resistive instability corresponding to the electrostatic wave is investigated in a Hall thruster plasma when this purely azimuthal wave is tilted and strong axial component of wave vector is developed. Analytical calculations are done to obtain the relevant dispersion equation, which is solved numerically to investigate the growth rate of the instability. The magnitude of the growth rate in the plasma having dust particles is found to be much smaller than the case of pure plasma. However, the instability grows faster for the increasing dust density and the higher charge on the dust particles. The higher magnetic field is also found to support the instability.

  9. Near-Surface Plasma Characterization of the 12.5-kW NASA TDU1 Hall Thruster

    Shastry, Rohit; Huang, Wensheng; Kamhawi, Hani

    2015-01-01

    To advance the state-of-the-art in Hall thruster technology, NASA is developing a 12.5-kW, high-specific-impulse, high-throughput thruster for the Solar Electric Propulsion Technology Demonstration Mission. In order to meet the demanding lifetime requirements of potential missions such as the Asteroid Redirect Robotic Mission, magnetic shielding was incorporated into the thruster design. Two units of the resulting thruster, called the Hall Effect Rocket with Magnetic Shielding (HERMeS), were fabricated and are presently being characterized. The first of these units, designated the Technology Development Unit 1 (TDU1), has undergone extensive performance and thermal characterization at NASA Glenn Research Center. A preliminary lifetime assessment was conducted by characterizing the degree of magnetic shielding within the thruster. This characterization was accomplished by placing eight flush-mounted Langmuir probes within each discharge channel wall and measuring the local plasma potential and electron temperature at various axial locations. Measured properties indicate a high degree of magnetic shielding across the throttle table, with plasma potential variations along each channel wall being less than or equal to 5 eV and electron temperatures being maintained at less than or equal to 5 eV, even at 800 V discharge voltage near the thruster exit plane. These properties indicate that ion impact energies within the HERMeS will not exceed 26 eV, which is below the expected sputtering threshold energy for boron nitride. Parametric studies that varied the facility backpressure and magnetic field strength at 300 V, 9.4 kW, illustrate that the plasma potential and electron temperature are insensitive to these parameters, with shielding being maintained at facility pressures 3X higher and magnetic field strengths 2.5X higher than nominal conditions. Overall, the preliminary lifetime assessment indicates a high degree of shielding within the HERMeS TDU1, effectively

  10. Ultra-Compact Center-Mounted Hollow Cathodes for Hall Effect Thrusters, Phase I

    National Aeronautics and Space Administration — The proposed innovation is a long lifetime, compact hollow cathode that can be mounted along the axis of a 600 W-class Hall effect thruster. Testing at kilowatt...

  11. Laser-Induced Fluorescence Measurements within a Laboratory Hall Thruster (Postprint)

    Hargus, Jr., W. A; Cappelli, M. A

    1999-01-01

    In this paper, we describe the results of a study of laser induced fluorescence velocimetry of ionic xenon in the plume and interior acceleration channel of a laboratory Hall type thruster operating...

  12. ExB Measurements of a 200 W Xenon Hall Thruster (Preprint)

    Ekholm, Jared M; Hargus, Jr, William A

    2007-01-01

    Angularly resolved ion species fractions of Xe+1, Xe+2, and Xe+3 in a low power xenon Hall thruster Busek BHT-200 plume were measured using an ExB probe under a variety of thruster operating conditions and background pressures...

  13. Design and Testing of a Hall Effect Thruster with Additively Manufactured Components

    Hopping, Ethan

    The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville to study the application of low-cost additive manufacturing in the design and fabrication of Hall thrusters. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. The thruster features channel walls and a propellant distributor that were manufactured using 3D printing with a variety of materials including ABS, ULTEM, and glazed ceramic. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. The design of the thruster and the transient performance measurements are presented here. Measured thrust ranged from 17.2 mN to 30.4 mN over a discharge power of 280 W to 520 W with an anode Isp range of 870 s to 1450 s. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state. While the current thruster design is not yet ready for continuous operation, revisions to the device that could enable longer duration tests are discussed.

  14. Hall effect thruster with an AlN chamber

    Barral, S.; Jayet, Y.; Mazouffre, S.; Veron, E.; Echegut, P.; Dudeck, M.

    2005-01-01

    The plasma discharge of a Hall-effect thruster (SPT) is strongly depending of the plasma-insulated wall interactions. These interactions are mainly related to the energy deposition, potential sheath effect and electron secondary emission rate (e.s.e.). In usual SPT, the annular channel is made of BN-SiO 2 . The SPT100-ML (laboratory model will be tested with an AlN chamber in the French test facility Pivoine in the laboratoire d'Aerothermique (Orleans-France). The different parameters such as discharge current, thrust, plasma oscillations and wall temperature will studied for several operating conditions. The results will be compared with a fluid model developed in IPPT (Warsaw-Poland) taking into account electron emission from the internal and external walls and using previous experimental measurements of e.s.e. for AlN from ONERA (Toulouse-France). The surface state of AlN will be analysed before and after experiments by an Environmental Scanning Electron Microscope and by a Strength Electron Microscope. (author)

  15. 1000 Hours of Testing Completed on 10-kW Hall Thruster

    Mason, Lee S.

    2001-01-01

    Between the months of April and August 2000, a 10-kW Hall effect thruster, designated T- 220, was subjected to a 1000-hr life test evaluation. Hall effect thrusters are propulsion devices that electrostatically accelerate xenon ions to produce thrust. Hall effect propulsion has been in development for many years, and low-power devices (1.35 kW) have been used in space for satellite orbit maintenance. The T-220, shown in the photo, produces sufficient thrust to enable efficient orbital transfers, saving hundreds of kilograms in propellant over conventional chemical propulsion systems. This test is the longest operation ever achieved on a high-power Hall thruster (greater than 4.5 kW) and is a key milestone leading to the use of this technology for future NASA, commercial, and military missions.

  16. Overview of Iodine Propellant Hall Thruster Development Activities at NASA Glenn Research Center

    Kamhawi, Hani; Benavides, Gabriel; Haag, Thomas; Hickman, Tyler; Smith, Timothy; Williams, George; Myers, James; Polzin, Kurt; Dankanich, John; Byrne, Larry; hide

    2016-01-01

    NASA is continuing to invest in advancing Hall thruster technologies for implementation in commercial and government missions. There have been several recent iodine Hall propulsion system development activities performed by the team of the NASA Glenn Research Center, the NASA Marshall Space Flight Center, and Busek Co. Inc. In particular, the work focused on qualification of the Busek BHT-200-I, 200 W and the continued development of the BHT-600-I Hall thruster propulsion systems. This presentation presents an overview of these development activities and also reports on the results of short duration tests that were performed on the engineering model BHT-200-I and the development model BHT-600-I Hall thrusters.

  17. E × B electron drift instability in Hall thrusters: Particle-in-cell simulations vs. theory

    Boeuf, J. P.; Garrigues, L.

    2018-06-01

    The E × B Electron Drift Instability (E × B EDI), also called Electron Cyclotron Drift Instability, has been observed in recent particle simulations of Hall thrusters and is a possible candidate to explain anomalous electron transport across the magnetic field in these devices. This instability is characterized by the development of an azimuthal wave with wavelength in the mm range and velocity on the order of the ion acoustic velocity, which enhances electron transport across the magnetic field. In this paper, we study the development and convection of the E × B EDI in the acceleration and near plume regions of a Hall thruster using a simplified 2D axial-azimuthal Particle-In-Cell simulation. The simulation is collisionless and the ionization profile is not-self-consistent but rather is given as an input parameter of the model. The aim is to study the development and properties of the instability for different values of the ionization rate (i.e., of the total ion production rate or current) and to compare the results with the theory. An important result is that the wavelength of the simulated azimuthal wave scales as the electron Debye length and that its frequency is on the order of the ion plasma frequency. This is consistent with the theory predicting destruction of electron cyclotron resonance of the E × B EDI in the non-linear regime resulting in the transition to an ion acoustic instability. The simulations also show that for plasma densities smaller than under nominal conditions of Hall thrusters the field fluctuations induced by the E × B EDI are no longer sufficient to significantly enhance electron transport across the magnetic field, and transit time instabilities develop in the axial direction. The conditions and results of the simulations are described in detail in this paper and they can serve as benchmarks for comparisons between different simulation codes. Such benchmarks would be very useful to study the role of numerical noise (numerical

  18. Laser Induced Fluorescence Measurements in a Hall Thruster Plume as a Function of Background Pressure

    Spektor, R.; Tighe, W. G.; Kamhawi, H.

    2016-01-01

    A set of Laser Induced Fluorescence (LIF) measurements in the near-field region of the NASA- 173M Hall thruster plume is presented at four background pressure conditions varying from 9.4 x 10(exp -6) torr to 3.3 x 10(exp -5) torr. The xenon ion velocity distribution function was measured simultaneously along the axial and radial directions. An ultimate exhaust velocity of 19.6+/-0.25 km/s achieved at a distance of 20 mm was measured, and that value was not sensitive to pressure. On the other hand, the ion axial velocity at the thruster exit was strongly influenced by pressure, indicating that the accelerating electric field moved inward with increased pressure. The shift in electric field corresponded to an increase in measured thrust. Pressure had a minor effect on the radial component of ion velocity, mainly affecting ions exiting close to the channel inner wall. At that radial location the radial component of ion velocity was approximately 1000 m/s greater at the lowest pressure than at the highest pressure. A reduction of the inner magnet coil current by 0.6 A resulted in a lower axial ion velocity at the channel exit while the radial component of ion velocity at the channel inner wall location increased by 1300 m/s, and at the channel outer wall location the radial ion velocity remained unaffected. The ultimate exhaust velocity was not significantly affected by the inner magnet current.

  19. Hybrid-Particle-In-Cell Simulation of Backsputtered Carbon Transport in the Near-Field Plume of a Hall Thruster

    Choi, Maria; Yim, John T.; Williams, George J.; Herman, Daniel A.; Gilland, James H.

    2018-01-01

    Magnetic shielding has eliminated boron nitride erosion as the life limiting mechanism in a Hall thruster but has resulted in erosion of the front magnetic field pole pieces. Recent experiments show that the erosion of graphite pole covers, which are added to protect the magnetic field pole pieces, causes carbon to redeposit on other surfaces, such as boron nitride discharge channel and cathode keeper surfaces. As a part of the risk-reduction activities for Advanced Electric Propulsion System thruster development, this study models transport of backsputtered carbon from the graphite front pole covers and vacuum facility walls. Fluxes, energy distributions, and redeposition rates of backsputtered carbon on the anode, discharge channel, and graphite cathode keeper surfaces are predicted.

  20. Characterization of Hall effect thruster propellant distributors with flame visualization

    Langendorf, S.; Walker, M. L. R.

    2013-01-01

    A novel method for the characterization and qualification of Hall effect thruster propellant distributors is presented. A quantitative measurement of the azimuthal number density uniformity, a metric which impacts propellant utilization, is obtained from photographs of a premixed flame anchored on the exit plane of the propellant distributor. The technique is demonstrated for three propellant distributors using a propane-air mixture at reservoir pressure of 40 psi (gauge) (377 kPa) exhausting to atmosphere, with volumetric flow rates ranging from 15-145 cfh (7.2-68 l/min) with equivalence ratios from 1.2 to 2.1. The visualization is compared with in-vacuum pressure measurements 1 mm downstream of the distributor exit plane (chamber pressure held below 2.7 × 10-5 Torr-Xe at all flow rates). Both methods indicate a non-uniformity in line with the propellant inlet, supporting the validity of the technique of flow visualization with flame luminosity for propellant distributor characterization. The technique is applied to a propellant distributor with a manufacturing defect in a known location and is able to identify the defect and characterize its impact. The technique is also applied to a distributor with numerous small orifices at the exit plane and is able to resolve the resulting non-uniformity. Luminosity data are collected with a spatial resolution of 48.2-76.1 μm (pixel width). The azimuthal uniformity is characterized in the form of standard deviation of azimuthal luminosities, normalized by the mean azimuthal luminosity. The distributors investigated achieve standard deviations of 0.346 ± 0.0212, 0.108 ± 0.0178, and 0.708 ± 0.0230 mean-normalized luminosity units respectively, where a value of 0 corresponds to perfect uniformity and a value of 1 represents a standard deviation equivalent to the mean.

  1. Space Charge Saturated Sheath Regime and Electron Temperature Saturation in Hall Thrusters

    Raitses, Y.; Staack, D.; Smirnov, A.; Fisch, N.J.

    2005-01-01

    Secondary electron emission in Hall thrusters is predicted to lead to space charge saturated wall sheaths resulting in enhanced power losses in the thruster channel. Analysis of experimentally obtained electron-wall collision frequency suggests that the electron temperature saturation, which occurs at high discharge voltages, appears to be caused by a decrease of the Joule heating rather than by the enhancement of the electron energy loss at the walls due to a strong secondary electron emission

  2. Overview of the Development of the Solar Electric Propulsion Technology Demonstration Mission 12.5-kW Hall Thruster

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Yim, John; Chang, Li; Clayman, Lauren; Herman, Daniel; Shastry, Rohit; Thomas, Robert; Verhey, Timothy; hide

    2014-01-01

    NASA is developing mission concepts for a solar electric propulsion technology demonstration mission. A number of mission concepts are being evaluated including ambitious missions to near Earth objects. The demonstration of a high-power solar electric propulsion capability is one of the objectives of the candidate missions under consideration. In support of NASA's exploration goals, a number of projects are developing extensible technologies to support NASA's near and long term mission needs. Specifically, the Space Technology Mission Directorate Solar Electric Propulsion Technology Demonstration Mission project is funding the development of a 12.5-kilowatt magnetically shielded Hall thruster system to support future NASA missions. This paper presents the design attributes of the thruster that was collaboratively developed by the NASA Glenn Research Center and the Jet Propulsion Laboratory. The paper provides an overview of the magnetic, plasma, thermal, and structural modeling activities that were carried out in support of the thruster design. The paper also summarizes the results of the functional tests that have been carried out to date. The planned thruster performance, plasma diagnostics (internal and in the plume), thermal, wear, and mechanical tests are outlined.

  3. Long Life Cold Cathodes for Hall effect Thrusters, Phase I

    National Aeronautics and Space Administration — An electron source incorporating long life, high current density cold cathodes inside a microchannel plate for use with ion thrusters is proposed. Cathode lifetime...

  4. Optical Diagnostic Characterization of High-Power Hall Thruster Wear and Operation

    Williams, George J., Jr.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power Hall thruster operation. Specifically, actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, and discharge current. In addition, the technique is demonstrated on metallic coupons embedded in the walls of the HiVHAc EM thruster. The OES technique captured the overall trend in the erosion of the coupons which boosts credibility in the method since there are no data to which to calibrate the erosion rates of high-power Hall thrusters. The boron signals are shown to trend linearly with discharge voltage for a fixed discharge current as expected. However, the boron signals of the higher-power NASA 300M and NASA 457Mv2 trend with discharge current and show an unexpectedly weak to inverse dependence on discharge voltage. Electron temperatures measured optically in the near-field plume of the thruster agree well with Langmuir probe data. However, the optical technique used to determine Te showed unacceptable sensitivity to the emission intensities. Near-field, single-frequency imaging of the xenon neutrals is also presented as a function of operating condition for the NASA 457 Mv2.

  5. Design and Testing of a Hall Effect Thruster with 3D Printed Channel and Propellant Distributor

    Hopping, Ethan P.; Xu, Kunning G.

    2017-01-01

    The UAH-78AM is a low-power Hall effect thruster developed at the University of Alabama in Huntsville with channel walls and a propellant distributor manufactured using 3D printing. The goal of this project is to assess the feasibility of using unconventional materials to produce a low-cost functioning Hall effect thruster and consider how additive manufacturing can expand the design space and provide other benefits. A version of the thruster was tested at NASA Glenn Research Center to obtain performance metrics and to validate the ability of the thruster to produce thrust and sustain a discharge. An overview of the thruster design and transient performance measurements are presented here. Measured thrust ranged from 17.2 millinewtons to 30.4 millinewtons over a discharge power of 280 watts to 520 watts with an anode I (sub SP)(Specific Impulse) range of 870 seconds to 1450 seconds. Temperature limitations of materials used for the channel walls and propellant distributor limit the ability to run the thruster at thermal steady-state.

  6. Iodine Hall Thruster Propellant Feed System for a CubeSat

    Polzin, Kurt A.

    2014-01-01

    There has been significant work recently in the development of iodine-fed Hall thrusters for in-space propulsion applications.1 The use of iodine as a propellant provides many advantages over present xenon-gas-fed Hall thruster systems. Iodine is a solid at ambient temperature (no pressurization required) and has no special handling requirements, making it safe for secondary flight opportunities. It has exceptionally high ?I sp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing system level advantages over mid-term high power electric propulsion options. Iodine provides thrust and efficiency that are comparable to xenonfed Hall thrusters while operating in the same discharge current and voltage regime, making it possible to leverage the development of flight-qualified xenon Hall thruster power processing units for the iodine application. Work at MSFC is presently aimed at designing, integrating, and demonstrating a flight-like iodine feed system suitable for the Hall thruster application. This effort represents a significant advancement in state-of-the-art. Though Iodine thrusters have demonstrated high performance with mission enabling potential, a flight-like feed system has never been demonstrated and iodine compatible components do not yet exist. Presented in this paper is the end-to-end integrated feed system demonstration. The system includes a propellant tank with active feedback-control heating, fill and drain interfaces, latching and proportional flow control valves (PFCV), flow resistors, and flight-like CubeSat power and control electronics. Hardware is integrated into a CubeSat-sized structure, calibrated and tested under vacuum conditions, and operated under under hot-fire conditions using a Busek BHT-200 thruster designed for iodine. Performance of the system is evaluated thorugh accurate measurement of thrust and a calibrated of mass flow rate measurement, which is a function of

  7. An axially propagating two-stream instability in the Hall thruster plasma

    Tsikata, S.; Cavalier, Jordan; Héron, A.; Honore, C.; Lemoine, N.; Gresillon, D.; Coulette, D.

    2014-01-01

    Roč. 21, č. 7 (2014), 072116-072116 ISSN 1070-664X Institutional support: RVO:61389021 Keywords : Collective Thomson scattering * Hall thruster * kinetic theory * electrostatic modes Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.142, year: 2014 http://dx.doi.org/10.1063/1.4890025

  8. Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters

    Dorf, L.; Raitses, Y.; Fisch, N.J.

    2003-01-01

    A diagnostic setup for characterization of near-anode processes in Hall-current plasma thrusters consisting of biased and emissive electrostatic probes, high-precision positioning system and low-noise electronic circuitry was developed and tested. Experimental results show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for accurate near-anode measurements

  9. Electron energy distribution function in a low-power Hall thruster discharge and near-field plume

    Tichý, M.; Pétin, A.; Kudrna, P.; Horký, M.; Mazouffre, S.

    2018-06-01

    Electron temperature and plasma density, as well as the electron energy distribution function (EEDF), have been obtained inside and outside the dielectric channel of a 200 W permanent magnet Hall thruster. Measurements were carried out by means of a cylindrical Langmuir probe mounted onto a compact fast moving translation stage. The 3D particle-in cell numerical simulations complement experiments. The model accounts for the crossed electric and magnetic field configuration in a weakly collisional regime where only electrons are magnetized. Since only the electron dynamics is of interest in this study, an artificial mass of ions corresponding to mi = 30 000me was used to ensure ions could be assumed at rest. The simulation domain is located at the thruster exit plane and does not include the cathode. The measured EEDF evidences a high-energy electron population that is superimposed onto the low energy bulk population outside the channel. Inside the channel, the EEDF is close to Maxwellian. Both the experimental and numerical EEDF depart from an equilibrium distribution at the channel exit plane, a region of high magnetic field. We therefore conclude that the fast electron group found in the experiment corresponds to the electrons emitted by the external cathode that reach the thruster discharge without experiencing collision events.

  10. Plasma-Sheath Instability in Hall Thrusters Due to Periodic Modulation of the Energy of Secondary Electrons in Cyclotron Motion

    Sydorenko, D.; Smolyakov, A.; Kaganovich, I.; Raitses, Y.

    2008-01-01

    Particle-in-cell simulation of Hall thruster plasmas reveals a plasma-sheath instability manifesting itself as a rearrangement of the plasma sheath near the thruster channel walls accompanied by a sudden change of many discharge parameters. The instability develops when the sheath current as a function of the sheath voltage is in the negative conductivity regime. The major part of the sheath current is produced by beams of secondary electrons counter-streaming between the walls. The negative conductivity is the result of nonlinear dependence of beam-induced secondary electron emission on the plasma potential. The intensity of such emission is defined by the beam energy. The energy of the beam in crossed axial electric and radial magnetic fields is a quasi-periodical function of the phase of cyclotron rotation, which depends on the radial profile of the potential and the thruster channel width. There is a discrete set of stability intervals determined by the final phase of the cyclotron rotation of secondary electrons. As a result, a small variation of the thruster channel width may result in abrupt changes of plasma parameters if the plasma state jumps from one stability interval to another

  11. Integration Testing of a Modular Discharge Supply for NASA's High Voltage Hall Accelerator Thruster

    Pinero, Luis R.; Kamhawi, hani; Drummond, Geoff

    2010-01-01

    NASA s In-Space Propulsion Technology Program is developing a high performance Hall thruster that can fulfill the needs of future Discovery-class missions. The result of this effort is the High Voltage Hall Accelerator thruster that can operate over a power range from 0.3 to 3.5 kW and a specific impulse from 1,000 to 2,800 sec, and process 300 kg of xenon propellant. Simultaneously, a 4.0 kW discharge power supply comprised of two parallel modules was developed. These power modules use an innovative three-phase resonant topology that can efficiently supply full power to the thruster at an output voltage range of 200 to 700 V at an input voltage range of 80 to 160 V. Efficiencies as high as 95.9 percent were measured during an integration test with the NASA103M.XL thruster. The accuracy of the master/slave current sharing circuit and various thruster ignition techniques were evaluated.

  12. Comment on 'Effects of Magnetic Field Gradient on Ion Beam Current in Cylindrical Hall Ion Source

    Raitses, Y.; Smirnov A.; Fisch, N.J.

    2008-01-01

    It is argued that the key difference of the cylindrical Hall thruster (CHT) as compared to the end-Hall ion source cannot be exclusively attributed to the magnetic field topology [Tang et al. J. Appl. Phys., 102, 123305 (2007)]. With a similar mirror-type topology, the CHT configuration provides the electric field with nearly equipotential magnetic field surfaces and a better suppression of the electron cross-field transport, as compared to both the end-Hall ion source and the cylindrical Hall ion source of Tang et al

  13. Predicting Hall Thruster Operational Lifetime Using a Kinetic Plasma Model and a Molecular Dynamics Simulation Method, Phase I

    National Aeronautics and Space Administration — Hall thrusters are being considered for many space missions because their high specific impulse delivers a larger payload mass fraction than chemical rockets. With a...

  14. A Comprehensive Investigation of Facility Effects on the Testing of High-Power Monolithic and Clustered Hall Thruster Systems

    Gallimore, Alec D; Walker, Mitchell M; Beal, Brian E; Smith, Timothy B

    2006-01-01

    .... It is difficult for researchers to make adequate comparisons between data sets because of both differences in instrumentation and back pressures due to the wide range of facilities used in Hall thruster testing...

  15. Integration Tests of the 4 kW-class High Voltage Hall Accelerator Power Processing Unit with the HiVHAc and the SPT-140 Hall Effect Thrusters

    Kamhawi, Hani; Pinero, Luis; Haag, Thomas; Huang, Wensheng; Ahern, Drew; Liang, Ray; Shilo, Vlad

    2016-01-01

    NASAs Science Mission Directorate is sponsoring the development of a 4 kW-class Hall propulsion system for implementation in NASA science and exploration missions. The main components of the system include the High Voltage Hall Accelerator (HiVHAc), an engineering model power processing unit (PPU) developed by Colorado Power Electronics, and a xenon flow control module (XFCM) developed by VACCO Industries. NASA Glenn Research Center is performing integrated tests of the Hall thruster propulsion system. This presentation presents results from integrated tests of the PPU and XFCM with the HiVHAc engineering development thruster and a SPT-140 thruster provided by Space System Loral. The results presented in this paper demonstrate thruster discharge initiation, open-loop and closed-loop control of the discharge current with anode flow for both the HiVHAc and the SPT-140 thrusters. Integrated tests with the SPT-140 thruster indicated that the PPU was able to repeatedly initiate the thrusters discharge, achieve steady state operation, and successfully throttle the thruster between 1.5 and 4.5 kW. The measured SPT-140 performance was identical to levels reported by Space Systems Loral.

  16. Global Linear Stability Analysis of the Spoke Oscillation in Hall Effect Thrusters

    2014-07-15

    meνeχ 2 nTe qex (4.1f) ddc dx = 2cpl vix ≡ γ (4.1g) where x is the axial coordinate along the thruster channel; e, me and mi are the electron charge...mi ) P − ( 5 2 Te mi nvex + qex mi ) 1 dc ddc dξ (4.25i) ddc dξ = Pγ (4.25j) Distribution A: Approved for public release; distribution is unlimited...Thruster. PhD thesis, Standford University , 2011. [128] D. Liu, R.E. Huffman, R.D. Branam, and W.A. Hargus. Ultrahigh-speed imaging of hall-thruster

  17. Ion ejection from a permanent-magnet mini-helicon thruster

    Chen, Francis F. [Electrical Engineering Department, University of California, Los Angeles 90095-1594 (United States)

    2014-09-15

    A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.

  18. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters

    Reese, Bradley

    2015-01-01

    Arkansas Power Electronics International (APEI), Inc., is developing a high-efficiency, radiation-hardened 3.8-kW SiC power supply for the PPU of Hall effect thrusters. This project specifically targets the design of a PPU for the high-voltage Hall accelerator (HiVHAC) thruster, with target specifications of 80- to 160-V input, 200- to 700-V/5A output, efficiency greater than 96 percent, and peak power density in excess of 2.5 kW/kg. The PPU under development uses SiC junction field-effect transistor power switches, components that APEI, Inc., has irradiated under total ionizing dose conditions to greater than 3 MRad with little to no change in device performance.

  19. High Input Voltage Discharge Supply for High Power Hall Thrusters Using Silicon Carbide Devices

    Pinero, Luis R.; Scheidegger, Robert J.; Aulsio, Michael V.; Birchenough, Arthur G.

    2014-01-01

    A power processing unit for a 15 kW Hall thruster is under development at NASA Glenn Research Center. The unit produces up to 400 VDC with two parallel 7.5 kW discharge modules that operate from a 300 VDC nominal input voltage. Silicon carbide MOSFETs and diodes were used in this design because they were the best choice to handle the high voltage stress while delivering high efficiency and low specific mass. Efficiencies in excess of 97 percent were demonstrated during integration testing with the NASA-300M 20 kW Hall thruster. Electromagnet, cathode keeper, and heater supplies were also developed and will be integrated with the discharge supply into a vacuum-rated brassboard power processing unit with full flight functionality. This design could be evolved into a flight unit for future missions that requires high power electric propulsion.

  20. Iodine Hall Thruster Propellant Feed System for a CubeSat

    Polzin, Kurt A.; Peeples, Steven

    2014-01-01

    The components required for an in-space iodine vapor-fed Hall effect thruster propellant management system are described. A laboratory apparatus was assembled and used to produce iodine vapor and control the flow through the application of heating to the propellant reservoir and through the adjustment of the opening in a proportional flow control valve. Changing of the reservoir temperature altered the flowrate on the timescale of minutes while adjustment of the proportional flow control valve changed the flowrate immediately without an overshoot or undershoot in flowrate with the requisite recovery time associated with thermal control systems. The flowrates tested spanned a range from 0-1.5 mg/s of iodine, which is sufficient to feed a 200-W Hall effect thruster.

  1. Measurement of sheath thickness by lining out grooves in the Hall-type stationary plasma thrusters

    Yu Daren; Wu Zhiwen; Ning Zhongxi; Wang Xiaogang

    2007-01-01

    Using grooves created along the axial direction of the discharge channel, a method for measuring sheath thickness in Hall-type stationary plasma thrusters has been developed. By distorting the wall surface using these grooves, it is possible to numerically study the effect of the wall surface on the sheath and near wall conductivity. Monte Carlo method is applied to calculate the electron temperature variation with different groove depths. The electron dynamic process in the plasma is described by a test particle method with the electron randomly entering the sheath from the discharge channel and being reflected back. Numerical results show that the reflected electron temperature is hardly affected by the wall surface if the groove depth is much less than the sheath thickness. On the other hand, the reflected electron temperature increases if the groove depth is much greater than the sheath thickness. The reflected electron temperature has a sharp jump when the depth of groove is on the order of the sheath thickness. The simulation is repeated with different sheath thicknesses and the results are the same. Therefore, a diagnosis mean of the sheath thickness can be developed based on the method. Also the simulation results are in accord with the experimental data. Besides, the measurement method may be applicable to other plasma device with similar orthogonal steady state electrical and magnetic fields

  2. Comparison of Medium Power Hall Effect Thruster Ion Acceleration for Krypton and Xenon Propellants

    2016-09-14

    Pumping is provided by four single-stage cryogenic panels (single-stage cold heads at 25 K) and one 50 cm two stage cryogenic pump (12 K). This vacuum...test chamber has a mea- sured pumping speed of 36 kL/s on xenon. The Hall thruster used in this study is a medium power laboratory Hall effect...The first compo- nent passes through a krypton opto-galvanic cell and is terminated by a beam dump . The opto-galvanic cell current is capacitively

  3. ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS

    2017-06-30

    NUMBER (Include area code) 30 June 2017 Briefing Charts 26 May 2017 - 30 June 2017 ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS ...Robert Martin N/A ION ACOUSTIC TURBULENCE, ANOMALOUS TRANSPORT, AND SYSTEM DYNAMICS IN HALL EFFECT THRUSTERS Robert Martin1, Jonathan Tran2 1AIR FORCE...Approved for Public Release; Distribution is Unlimited. PA# 17394 1 / 13 OUTLINE 1 INTRODUCTION 2 TRANSPORT 3 DYNAMIC SYSTEM 4 SUMMARY AND CONCLUSION

  4. Spectrum Diagnosis for Fuchsia Plume of Hall Effect Thruster with Xenon as Propellant

    Yu Daren; Ding Jiapeng; Dai Jingmin

    2006-01-01

    The colour of the Hall effect thruster's plume is often light-green, and sometimes a fuchsia plume appears during experiments. Based on a spectrum and colour analysis, and a comparison with normal plumes, a conclusion is made that the density of the Xe ions and the temperature of electrons are low when the plume appears fuchsia. In this condition, most of the components of the plume are Xe atoms, and the ionization rate of the propellant is low

  5. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  6. Hybrid-PIC Computer Simulation of the Plasma and Erosion Processes in Hall Thrusters

    Hofer, Richard R.; Katz, Ira; Mikellides, Ioannis G.; Gamero-Castano, Manuel

    2010-01-01

    HPHall software simulates and tracks the time-dependent evolution of the plasma and erosion processes in the discharge chamber and near-field plume of Hall thrusters. HPHall is an axisymmetric solver that employs a hybrid fluid/particle-in-cell (Hybrid-PIC) numerical approach. HPHall, originally developed by MIT in 1998, was upgraded to HPHall-2 by the Polytechnic University of Madrid in 2006. The Jet Propulsion Laboratory has continued the development of HPHall-2 through upgrades to the physical models employed in the code, and the addition of entirely new ones. Primary among these are the inclusion of a three-region electron mobility model that more accurately depicts the cross-field electron transport, and the development of an erosion sub-model that allows for the tracking of the erosion of the discharge chamber wall. The code is being developed to provide NASA science missions with a predictive tool of Hall thruster performance and lifetime that can be used to validate Hall thrusters for missions.

  7. Design, Assembly, Integration, and Testing of a Power Processing Unit for a Cylindrical Hall Thruster, the NORSAT-2 Flatsat, and the Vector Gravimeter for Asteroids Instrument Computer

    Svatos, Adam Ladislav

    This thesis describes the author's contributions to three separate projects. The bus of the NORSAT-2 satellite was developed by the Space Flight Laboratory (SFL) for the Norwegian Space Centre (NSC) and Space Norway. The author's contributions to the mission were performing unit tests for the components of all the spacecraft subsystems as well as designing and assembling the flatsat from flight spares. Gedex's Vector Gravimeter for Asteroids (VEGA) is an accelerometer for spacecraft. The author's contributions to this payload were modifying the instrument computer board schematic, designing the printed circuit board, developing and applying test software, and performing thermal acceptance testing of two instrument computer boards. The SFL's cylindrical Hall effect thruster combines the cylindrical configuration for a Hall thruster and uses permanent magnets to achieve miniaturization and low power consumption, respectively. The author's contributions were to design, build, and test an engineering model power processing unit.

  8. Non-Maxwellian electron energy probability functions in the plume of a SPT-100 Hall thruster

    Giono, G.; Gudmundsson, J. T.; Ivchenko, N.; Mazouffre, S.; Dannenmayer, K.; Loubère, D.; Popelier, L.; Merino, M.; Olentšenko, G.

    2018-01-01

    We present measurements of the electron density, the effective electron temperature, the plasma potential, and the electron energy probability function (EEPF) in the plume of a 1.5 kW-class SPT-100 Hall thruster, derived from cylindrical Langmuir probe measurements. The measurements were taken on the plume axis at distances between 550 and 1550 mm from the thruster exit plane, and at different angles from the plume axis at 550 mm for three operating points of the thruster, characterized by different discharge voltages and mass flow rates. The bulk of the electron population can be approximated as a Maxwellian distribution, but the measured distributions were seen to decline faster at higher energy. The measured EEPFs were best modelled with a general EEPF with an exponent α between 1.2 and 1.5, and their axial and angular characteristics were studied for the different operating points of the thruster. As a result, the exponent α from the fitted distribution was seen to be almost constant as a function of the axial distance along the plume, as well as across the angles. However, the exponent α was seen to be affected by the mass flow rate, suggesting a possible relationship with the collision rate, especially close to the thruster exit. The ratio of the specific heats, the γ factor, between the measured plasma parameters was found to be lower than the adiabatic value of 5/3 for each of the thruster settings, indicating the existence of non-trivial kinetic heat fluxes in the near collisionless plume. These results are intended to be used as input and/or testing properties for plume expansion models in further work.

  9. Laser injection of ultra-short electron bursts for the diagnosis of Hall thruster plasma

    Albarede, L; Gibert, T; Lazurenko, A; Bouchoule, A

    2006-01-01

    The present developments of Hall thrusters for satellite control and space mission technologies represent a new step towards their routine use in place of conventional thermal thrusters. In spite of their long R and D history, the complex physics of the E x B discharge at work in these structures has prevented, up to now, the availability of predictive simulations. The electron transport in the accelerating layers of these thrusters is one of the remaining challenges in this direction. From the experimental point of view, any diagnostics of electron transport and electric field in this critical layer would be welcome for comparison with code predictions. Appropriate diagnostics are difficult, due to the very aggressive local plasma conditions. This paper presents the first step in the development of a new tool for characterization of the plasma electric field in the very near exhaust thruster plume and comparison with simulation code predictions. The main idea is to use very short bursts of electrons, probing local electron dynamics in this critical plume area. Such bursts can be obtained through photoelectric emission induced by a UV pulsed laser beam on a convenient target. A specific study, devoted to the characterization of the electron burst emission, is presented in the first section of the paper; the implementation and testing of the injection of electrons in the critical layer of Hall thruster plasma is described in the second section. The design and testing of a fast and sensitive system for characterizing the transport of injected bursts will be the next step of this program. It requires a preliminary evaluation of electron trajectories which was achieved by using simulation code. Simulation data are presented in the last section of the paper, with the full diagnostic design to be tested in the near future, when runs will be available in the renewed PIVOINE facility. The same electron burst injection could also be a valuable input in the present

  10. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  11. A cavity ring-down spectroscopy sensor for real-time Hall thruster erosion measurements

    Lee, B. C.; Huang, W.; Tao, L.; Yamamoto, N.; Yalin, A. P.; Gallimore, A. D.

    2014-01-01

    A continuous-wave cavity ring-down spectroscopy sensor for real-time measurements of sputtered boron from Hall thrusters has been developed. The sensor uses a continuous-wave frequency-quadrupled diode laser at 250 nm to probe ground state atomic boron sputtered from the boron nitride insulating channel. Validation results from a controlled setup using an ion beam and target showed good agreement with a simple finite-element model. Application of the sensor for measurements of two Hall thrusters, the H6 and SPT-70, is described. The H6 was tested at power levels ranging from 1.5 to 10 kW. Peak boron densities of 10 ± 2 × 10 14 m −3 were measured in the thruster plume, and the estimated eroded channel volume agreed within a factor of 2 of profilometry. The SPT-70 was tested at 600 and 660 W, yielding peak boron densities of 7.2 ± 1.1 × 10 14 m −3 , and the estimated erosion rate agreed within ∼20% of profilometry. Technical challenges associated with operating a high-finesse cavity in the presence of energetic plasma are also discussed

  12. On the Application of Hall Thruster Working with Ambient Atmospheric Gas for Orbital Station-Keeping

    D. V. Duhopel'nikov

    2016-01-01

    Full Text Available The paper considers the application of the Hall thruster using the ambient atmospheric air for orbital station keeping. This is a relevant direction at the up-to-date development stage of propulsion systems. Many teams of designers of electric rocket thrusters evaluate the application of different schemes of particle acceleration at the low-earth orbit. Such technical solution allows us to abandon the storage systems of the working agent on the spacecraft board. Thus, lifetime of such a system at the orbit wouldn`t be limited by fuel range. The paper suggests a scheme of the propulsion device with a parabolic confuser that provides a required compression ratio of the ambient air for correct operation. Formulates physical and structural restrictions on ambient air to be used as a working agent of the thruster. Pointes out that the altitudes from 200 to 300 km are the most promising for such propulsion devices. Shows that for operation at lower altitudes are required the higher capacities that are not provided by modern onboard power supply systems. For the orbit heightening the air intakes with significant compression rate are of necessity. The size of such air intakes would exceed nose fairing of exploited space launch systems. To perform further design calculations are shown dependencies that allow us to calculate an effective diameter of the thruster channel and a critical voltage to be desirable for thrust force excess over air resistance. The dependencies to calculate minimal and maximal fluxes of neutral particles of oxygen and nitrogen, that are necessary for normal thruster operation, are also shown. Calculation results of the propulsion system parameters for the spacecrafts with cross-sectional area within 1 - 3 m2 and inlet diameter of air intake within 1 - 3 m are demonstrated. The research results have practical significance in design of advanced propulsion devices for lowaltitude spacecrafts. The work has been supported by the RFFR

  13. Plasma Perturbations in High-Speed Probing of Hall Thruster Discharge Chambers: Quantification and Mitigation

    Jorns, Benjamin A.; Goebel, Dan M.; Hofer, Richard R.

    2015-01-01

    An experimental investigation is presented to quantify the effect of high-speed probing on the plasma parameters inside the discharge chamber of a 6-kW Hall thruster. Understanding the nature of these perturbations is of significant interest given the importance of accurate plasma measurements for characterizing thruster operation. An array of diagnostics including a high-speed camera and embedded wall probes is employed to examine in real time the changes in electron temperature and plasma potential induced by inserting a high-speed reciprocating Langmuir probe into the discharge chamber. It is found that the perturbations onset when the scanning probe is downstream of the electron temperature peak, and that along channel centerline, the perturbations are best characterized as a downstream shift of plasma parameters by 15-20% the length of the discharge chamber. A parametric study is performed to investigate techniques to mitigate the observed probe perturbations including varying probe speed, probe location, and operating conditions. It is found that the perturbations largely disappear when the thruster is operated at low power and low discharge voltage. The results of this mitigation study are discussed in the context of recommended methods for generating unperturbed measurements of the discharge chamber plasma.

  14. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  15. One-dimensional hybrid-direct kinetic simulation of the discharge plasma in a Hall thruster

    Hara, Kentaro; Boyd, Iain D.; Kolobov, Vladimir I.

    2012-01-01

    In order to model the non-equilibrium plasma within the discharge region of a Hall thruster, the velocity distribution functions (VDFs) must be obtained accurately. A direct kinetic (DK) simulation method that directly solves the plasma Boltzmann equation can achieve better resolution of VDFs in comparison to particle simulations, such as the particle-in-cell (PIC) method that inherently include statistical noise. In this paper, a one-dimensional hybrid-DK simulation, which uses a DK simulation for heavy species and a fluid model for electrons, is developed and compared to a hybrid-PIC simulation. Time-averaged results obtained from the hybrid-DK simulation are in good agreement with hybrid-PIC results and experimental data. It is shown from a comparison of using a kinetic simulation and solving the continuity equation that modeling of the neutral atoms plays an important role for simulations of the Hall thruster discharge plasma. In addition, low and high frequency plasma oscillations are observed. Although the kinetic nature of electrons is not resolved due to the use of a fluid model, the hybrid-DK model provides spatially and temporally well-resolved plasma properties and an improved resolution of VDFs for heavy species with less statistical noise in comparison to the hybrid-PIC method.

  16. Hall probe magnetometer for SSC magnet cables

    Cross, R.W.; Goldfarb, R.B.

    1991-01-01

    The authors of this paper constructed a Hall probe magnetometer to measure the magnetization hysteresis loops of Superconducting Super Collider magnet cables. The instrument uses two Hall-effect field sensors to measure the applied field H and the magnetic induction B. Magnetization M is calculated from the difference of the two quantities. The Hall probes are centered coaxially in the bore of a superconducting solenoid with the B probe against the sample's broad surface. An alternative probe arrangement, in which M is measured directly, aligns the sample probe parallel to the field. The authors measured M as a function of H and field cycle rate both with and without a dc transport current. Flux creep as a function of current was measured from the dependence of ac loss on the cycling rate and from the decay of magnetization with time. Transport currents up to 20% of the critical current have minimal effect on magnetization and flux creep

  17. An analysis of millimetre-wave interferometry on Hall thruster plumes by finite difference time domain simulations

    Lee, Jungpyo; Cappelli, Mark A

    2008-01-01

    In this paper, we present finite difference time domain (FDTD) simulations of millimetre-wave propagation through the near-field plasma plume of low power Hall thrusters. The simulations are intended to address potential issues (collisions, magnetic fields) that may affect the validity of simple theory used for phase shift determination in the recent measurements of plasma density using microwave interferometry (Cappelli et al 2006 J. Phys. D: Appl. Phys. 39 4582). One-dimensional plane wave FDTD simulations indicate that plasma non-uniformities along the direction of wave propagation have only a minor effect on the phase shifts estimated from collisionless, non-magnetized wave propagation through a path-length averaged plasma slab. Three-dimensional FDTD simulations that also account for electron collisions and magnetic fields indicate that the departure from the use of usual simple models is no more than about 15%, well within the limits of uncertainty in the experimental measurements taken within the near field of these plasma sources

  18. The Iodine Satellite (iSAT) Hall Thruster Demonstration Mission Concept and Development

    Dankanich, John W.; Polzin, Kurt A.; Calvert, Derek; Kamhawi, Hani

    2014-01-01

    The use of iodine propellant for Hall thrusters has been studied and proposed by multiple organizations due to the potential mission benefits over xenon. In 2013, NASA Marshall Space Flight Center competitively selected a project for the maturation of an iodine flight operational feed system through the Technology Investment Program. Multiple partnerships and collaborations have allowed the team to expand the scope to include additional mission concept development and risk reduction to support a flight system demonstration, the iodine Satellite (iSAT). The iSAT project was initiated and is progressing towards a technology demonstration mission preliminary design review. The current status of the mission concept development and risk reduction efforts in support of this project is presented.

  19. Modeling an Iodine Hall Thruster Plume in the Iodine Satellite (ISAT)

    Choi, Maria

    2016-01-01

    An iodine-operated 200-W Hall thruster plume has been simulated using a hybrid-PIC model to predict the spacecraft surface-plume interaction for spacecraft integration purposes. For validation of the model, the plasma potential, electron temperature, ion current flux, and ion number density of xenon propellant were compared with available measurement data at the nominal operating condition. To simulate iodine plasma, various collision cross sections were found and used in the model. While time-varying atomic iodine species (i.e., I, I+, I2+) information is provided by HPHall simulation at the discharge channel exit, the molecular iodine species (i.e., I2, I2+) are introduced as Maxwellian particles at the channel exit. Simulation results show that xenon and iodine plasma plumes appear to be very similar under the assumptions of the model. Assuming a sticking coefficient of unity, iodine deposition rate is estimated.

  20. Low frequency azimuthal stability of the ionization region of the Hall thruster discharge. II. Global analysis

    Escobar, D.; Ahedo, E.

    2015-01-01

    The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared against experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods

  1. Control of the electric-field profile in the Hall thruster

    Fruchtman, A.; Fisch, N.J.; Raitses, Y.

    2001-01-01

    Control of the electric-field profile in the Hall thruster through the positioning of an additional electrode along the channel is shown theoretically to enhance the efficiency. The reduction of the potential drop near the anode by use of the additional electrode increases the plasma density there, through the increase of the electron and ion transit times, causing the ionization in the vicinity of the anode to increase. The resulting separation of the ionization and acceleration regions increases the propellant and energy utilizations. An abrupt sonic transition is forced to occur at the axial location of the additional electrode, accompanied by the generation of a large (theoretically infinite) electric field. This ability to generate a large electric field at a specific location along the channel, in addition to the ability to specify the electric potential there, allows us further control of the electric-field profile in the thruster. In particular, when the electron temperature is high, a large abrupt voltage drop is induced at the vicinity of the additional electrode, a voltage drop that can comprise a significant part of the applied voltage

  2. High Voltage Solar Array Arc Testing for a Direct Drive Hall Effect Thruster System

    Schneider, Todd; Carruth, M. R., Jr.; Vaughn, J. A.; Jongeward, G. A.; Mikellides, I. G.; Ferguson, D.; Kerslake, T. W.; Peterson, T.; Snyder, D.; Hoskins, A.

    2004-01-01

    The deleterious effects of spacecraft charging are well known, particularly when the charging leads to arc events. The damage that results from arcing can severely reduce system lifetime and even cause critical system failures. On a primary spacecraft system such as a solar array, there is very little tolerance for arcing. Motivated by these concerns, an experimental investigation was undertaken to determine arc thresholds for a high voltage (200-500 V) solar array in a plasma environment. The investigation was in support of a NASA program to develop a Direct Drive Hall-Effect Thruster (D2HET) system. By directly coupling the solar array to a Hall-effect thruster, the D2HET program seeks to reduce mass, cost and complexity commonly associated with the power processing in conventional power systems. In the investigation, multiple solar array technologies and configurations were tested. The cell samples were biased to a negative voltage, with an applied potential difference between them, to imitate possible scenarios in solar array strings that could lead to damaging arcs. The samples were tested in an environment that emulated a low-energy, HET-induced plasma. Short duration trigger arcs as well as long duration sustained arcs were generated. Typical current and voltage waveforms associated with the arc events are presented. Arc thresholds are also defined in terms of voltage, current and power. The data will be used to propose a new, high-voltage (greater than 300 V) solar array design for which the likelihood of damage from arcing is minimal.

  3. Continuous Wheel Momentum Dumping Using Magnetic Torquers and Thrusters

    Oh, Hwa-Suk; Choi, Wan-Sik; Eun, Jong-Won

    1996-12-01

    Two momentum management schemes using magnetic torquers and thrusters are sug-gested. The stability of the momentum dumping logic is proved at a general attitude equilibrium. Both momentum dumping control laws are implemented with Pulse-Width- Pulse-Frequency Modulated on-off control, and shown working equally well with the original continuous and variable strength control law. Thrusters are assummed to be asymmetrically configured as a contingency case. Each thruster is fired following separated control laws rather than paired thrusting. Null torque thrusting control is added on the thrust control calculated from the momentum control law for the gener-ation of positive thrusting force. Both magnetic and thrusting control laws guarantee the momentum dumping, however, the wheel inner loop control is needed for the "wheel speed" dumping, The control laws are simulated on the KOrea Multi-Purpose SATellite (KOMPSAT) model.

  4. Experimental Investigation of the Near-Wall Region in the NASA HiVHAc EDU2 Hall Thruster

    Shastry, Rohit; Kamhawi, Hani; Huang, Wensheng; Haag, Thomas W.

    2015-01-01

    The HiVHAc propulsion system is currently being developed to support Discovery-class NASA science missions. Presently, the thruster meets the required operational lifetime by utilizing a novel discharge channel replacement mechanism. As a risk reduction activity, an alternative approach is being investigated that modifies the existing magnetic circuit to shift the ion acceleration zone further downstream such that the magnetic components are not exposed to direct ion impingement during the thruster's lifetime while maintaining adequate thruster performance and stability. To measure the change in plasma properties between the original magnetic circuit configuration and the modified, "advanced" configuration, six Langmuir probes were flush-mounted within each channel wall near the thruster exit plane. Plasma potential and electron temperature were measured for both configurations across a wide range of discharge voltages and powers. Measurements indicate that the upstream edge of the acceleration zone shifted downstream by as much as 0.104 channel lengths, depending on operating condition. The upstream edge of the acceleration zone also appears to be more insensitive to operating condition in the advanced configuration, remaining between 0.136 and 0.178 channel lengths upstream of the thruster exit plane. Facility effects studies performed on the original configuration indicate that the plasma and acceleration zone recede further upstream into the channel with increasing facility pressure. These results will be used to inform further modifications to the magnetic circuit that will provide maximum protection of the magnetic components without significant changes to thruster performance and stability.

  5. Hardware in the Loop Testing of an Iodine-Fed Hall Thruster

    Polzin, Kurt A.; Peeples, Steven R.; Cecil, Jim; Lewis, Brandon L.; Molina Fraticelli, Jose C.; Clark, James P.

    2015-01-01

    CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload,1 providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cm cu and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high delta v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high ?Isp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine flow can also be thermally regulated, subliming at relatively low temperature ( less than100 C) to yield I2 vapor at or below 50 torr. At low power, the measured performance of an iodine-fed HET is very similar to that of a state-of-the-art xenon-fed thruster. Just as importantly, the current-voltage discharge characteristics of low power iodine-fed and xenon-fed thrusters are remarkably similar, potentially reducing development and qualifications costs by making it possible to use an already-qualified xenon-HET PPU in an iodine-fed system. Finally, a cold surface can be installed in a vacuum test chamber on which expended iodine propellant can deposit. In addition, the temperature doesn't have to be extremely cold to maintain a low vapor pressure in the vacuum

  6. Engineering Model Propellant Feed System Development for an Iodine Hall Thruster Demonstration Mission

    Polzin, Kurt A.

    2016-01-01

    CUBESATS are relatively new spacecraft platforms that are typically deployed from a launch vehicle as a secondary payload, providing low-cost access to space for a wide range of end-users. These satellites are comprised of building blocks having dimensions of 10x10x10 cu cm and a mass of 1.33 kg (a 1-U size). While providing low-cost access to space, a major operational limitation is the lack of a propulsion system that can fit within a CubeSat and is capable of executing high (Delta)v maneuvers. This makes it difficult to use CubeSats on missions requiring certain types of maneuvers (i.e. formation flying, spacecraft rendezvous). Recently, work has been performed investigating the use of iodine as a propellant for Hall-effect thrusters (HETs) 2 that could subsequently be used to provide a high specific impulse path to CubeSat propulsion. 3, 4 Iodine stores as a dense solid at very low pressures, making it acceptable as a propellant on a secondary payload. It has exceptionally high ?Isp (density times specific impulse), making it an enabling technology for small satellite near-term applications and providing the potential for systems-level advantages over mid-term high power electric propulsion options. Iodine flow can also be thermally regulated, subliming at relatively low temperature (engineering model propellant feed system for iSAT (see Fig. 1). The feed system is based around an iodine propellant reservoir and two proportional control valves (PFCVs) that meter the iodine flow to the cathode and anode. The flow is split upstream of the PFCVs to both components can be fed from a common reservoir. Testing of the reservoir is reported to demonstrate that the design is capable of delivering the required propellant flow rates to operate the thruster. The tubing and reservoir are fabricated from hastelloy to resist corrosion by the heated gaseous iodine propellant. The reservoir, tubing, and PFCVs are heated to ensure the sublimed propellant will not re

  7. Investigation of excited states populations density of Hall thruster plasma in three dimensions by laser-induced fluorescence spectroscopy

    Krivoruchko, D. D.; Skrylev, A. V.

    2018-01-01

    The article deals with investigation of the excited states populations distribution of a low-temperature xenon plasma in the thruster with closed electron drift at 300 W operating conditions were investigated by laser-induced fluorescence (LIF) over the 350-1100 nm range. Seven xenon ions (Xe II) transitions were analyzed, while for neutral atoms (Xe I) just three transitions were explored, since the majority of Xe I emission falls into the ultraviolet or infrared part of the spectrum and are difficult to measure. The necessary spontaneous emission probabilities (Einstein coefficients) were calculated. Measurements of the excited state distribution were made for points (volume of about 12 mm3) all over the plane perpendicular to thruster axis in four positions on it (5, 10, 50 and 100 mm). Measured LIF signal intensity have differences for each location of researched point (due to anisotropy of thruster plume), however the structure of states populations distribution persisted at plume and is violated at the thruster exit plane and cathode area. Measured distributions show that for describing plasma of Hall thruster one needs to use a multilevel kinetic model, classic model can be used just for far plume region or for specific electron transitions.

  8. Improvements to a Flow Sensor for Liquid Bismuth-Fed Hall Thrusters

    Bonds, Kevin; Polzin, Kurt A.

    2010-01-01

    Recently, there has been significant interest in using bismuth metal as a propellant in Hall Thrusters [1, 2]. Bismuth offers some considerable cost, weight, and space savings over the traditional propellant--xenon. Quantifying the performance of liquid metal-fed Hall thrusters requires a very precise measure of the low propellant flow rates [1, 2]. The low flow rates (10 mg/sec) and the temperature at which free flowing liquid bismuth exists (above 300 C) preclude the use of off-the-shelf flow sensing equipment [3]. Therefore a new type of sensor is required. The hotspot bismuth flow sensor, described in Refs. [1-5] is designed to perform a flow rate measurement by measuring the velocity at which a thermal feature moves through a flow chamber. The mass flow rate can be determined from the time of flight of the thermal peak, [4, 5]. Previous research and testing has been concerned mainly with the generation of the thermal peak and it's subsequent detection. In this paper, we present design improvements to the sensor concept; and the results of testing conducted to verify the functionality of these improvements. A ceramic material is required for the sensor body (see Fig. 1), which must allow for active heating of the bismuth flow channel to keep the propellant in a liquid state. The material must be compatible with bismuth and must be bonded to conductive elements to allow for conduction of current into the liquid metal and measurement of the temperature in the flow. The new sensor requires fabrication techniques that will allow for a very small diameter flow chamber, which is required to produce useful measurements. Testing of various materials has revealed several that are potentially compatible with liquid bismuth. Of primary concern in the fabrication and testing of a robust, working prototype, is the compatibility of the selected materials with one another. Specifically, the thermal expansion rates of the materials relative to the ceramic body cannot expand so

  9. Hall conductivity for two dimensional magnetic systems

    Desbois, J.; Ouvry, S.; Texier, C.

    1996-01-01

    A Kubo inspired formalism is proposed to compute the longitudinal and transverse dynamical conductivities of an electron in a plane (or a gas of electrons at zero temperature) coupled to the potential vector of an external local magnetic field, with the additional coupling of the spin degree of freedom of the electron to the local magnetic field (Pauli Hamiltonian). As an example, the homogeneous magnetic field Hall conductivity is rederived. The case of the vortex at the origin is worked out in detail. A perturbative analysis is proposed for the conductivity in the random magnetic impurity problem (Poissonian vortices in the plane). (author)

  10. Low-Power Operation and Plasma Characterization of a Qualification Model SPT-140 Hall Thruster for NASA Science Missions

    Garner, Charles E.; Jorns, Benjamin A.; van Derventer, Steven; Hofer, Richard R.; Rickard, Ryan; Liang, Raymond; Delgado, Jorge

    2015-01-01

    Hall thruster systems based on commercial product lines can potentially lead to lower cost electric propulsion (EP) systems for deep space science missions. A 4.5-kW SPT-140 Hall thruster presently under qualification testing by SSL leverages the substantial heritage of the SPT-100 being flown on Russian and US commercial satellites. The Jet Propulsion Laboratory is exploring the use of commercial EP systems, including the SPT-140, for deep space science missions, and initiated a program to evaluate the SPT-140 in the areas of low power operation and thruster operating life. A qualification model SPT-140 designated QM002 was evaluated for operation and plasma properties along channel centerline, from 4.5 kW to 0.8 kW. Additional testing was performed on a development model SPT-140 designated DM4 to evaluate operation with a Moog proportional flow control valve (PFCV). The PFCV was commanded by an SSL engineering model PPU-140 Power Processing Unit (PPU). Performance measurements on QM002 at 0.8 kW discharge power were 50 mN of thrust at a total specific impulse of 1250 s, a total thruster efficiency of 0.38, and discharge current oscillations of under 3% of the mean current. Steady-state operation at 0.8 kW was demonstrated during a 27 h firing. The SPT-140 DM4 was operated in closed-loop control of the discharge current with the PFCV and PPU over discharge power levels of 0.8-4.5 kW. QM002 and DM4 test data indicate that the SPT-140 design is a viable candidate for NASA missions requiring power throttling down to low thruster input power.

  11. Current Driven Instabilities and Anomalous Mobility in Hall-effect Thrusters

    Tran, Jonathan; Eckhardt, Daniel; Martin, Robert

    2017-10-01

    Due to the extreme cost of fully resolving the Debye length and plasma frequency, hybrid plasma simulations utilizing kinetic ions and quasi-steady state fluid electrons have long been the principle workhorse methodology for Hall-effect thruster (HET) modeling. Plasma turbulence and the resulting anomalous electron transport in HETs is a promising candidate for developing predictive models for the observed anomalous transport. In this work, we investigate the implementation of an anomalous electron cross field transport model for hybrid HET simulations such a HPHall. A theory for anomalous transport in HETs and current driven instabilities has been recently studied by Lafleur et al. This work has shown collective electron-wave scattering due to large amplitude azimuthal fluctuations of the electric field. We will further adapt the previous results for related current driven instabilities to electric propulsion relevant mass ratios and conduct a preliminary study of resolving this instability with a modified hybrid (fluid electron and kinetic ion) simulation with the hope of integration with established hybrid HET simulations. This work is supported by the Air Force Office of Scientific Research award FA9950-17RQCOR465.

  12. Thrust performance, propellant ionization, and thruster erosion of an external discharge plasma thruster

    Karadag, Burak; Cho, Shinatora; Funaki, Ikkoh

    2018-04-01

    It is quite a challenge to design low power Hall thrusters with a long lifetime and high efficiency because of the large surface area to volume ratio and physical limits to the magnetic circuit miniaturization. As a potential solution to this problem, we experimentally investigated the external discharge plasma thruster (XPT). The XPT produces and sustains a plasma discharge completely in the open space outside of the thruster structure through a magnetic mirror configuration. It eliminates the very fundamental component of Hall thrusters, discharge channel side walls, and its magnetic circuit consists solely of a pair of hollow cylindrical permanent magnets. Thrust, low frequency discharge current oscillation, ion beam current, and plasma property measurements were conducted to characterize the manufactured prototype thruster for the proof of concept. The thrust performance, propellant ionization, and thruster erosion were discussed. Thrust generated by the XPT was on par with conventional Hall thrusters [stationary plasma thruster (SPT) or thruster with anode layer] at the same power level (˜11 mN at 250 W with 25% anode efficiency without any optimization), and discharge current had SPT-level stability (Δ design and provide a successful proof of concept experiment of the XPT.

  13. Development of a Methodology for Conducting Hall Thruster EMI Tests in Metal Vacuum Chambers of Arbitrary Shape and Size

    Gallimore, Alec D.

    2000-01-01

    While the closed-drift Hall thruster (CDT) offers significant improvement in performance over conventional chemical rockets and other advanced propulsion systems such as the arcjet, its potential impact on spacecraft communication signals must be carefully assessed before widespread use of this device can take place. To this end, many of the potentially unique issues that are associated with these thrusters center on its plume plasma characteristics and the its interaction with electromagnetic waves. Although a great deal of experiments have been made in characterizing the electromagnetic interference (EMI) potential of these thrusters, the interpretation of the resulting data is difficult because most of these measurements have been made in vacuum chambers with metal walls which reflect radio waves emanating from the thruster. This project developed a means of assessing the impact of metal vacuum chambers of arbitrary size or shape on EMI experiments, thereby allowing for test results to be interpreted properly. Chamber calibration techniques were developed and initially tested at RIAME using their vacuum chamber. Calibration experiments were to have been made at Tank 5 of NASA GRC and the 6 m by 9 m vacuum chamber at the University of Michigan to test the new procedure, however the subcontract to RIAME was cancelled by NASA memorandum on Feb. 26. 1999.

  14. Analysis of Hall Probe Precise Positioning with Cylindrical Permanent Magnet

    Belicev, P.; Vorozhtsov, A.S.; Vorozhtsov, S.B.

    2007-01-01

    Precise positioning of a Hall probe for cyclotron magnetic field mapping, using cylindrical permanent magnets, was analyzed. The necessary permanent magnet parameters in order to achieve ±20 μm position precision, were determined. (author)

  15. Assessment of High-Voltage Photovoltaic Technologies for the Design of a Direct Drive Hall Effect Thruster Solar Array

    Mikellides, I. G.; Jongeward, G. A.; Schneider, T.; Carruth, M. R.; Peterson, T.; Kerslake, T. W.; Snyder, D.; Ferguson, D.; Hoskins, A.

    2004-01-01

    A three-year program to develop a Direct Drive Hall-Effect Thruster system (D2HET) begun in 2001 as part of the NASA Advanced Cross-Enterprise Technology Development initiative. The system, which is expected to reduce significantly the power processing, complexity, weight, and cost over conventional low-voltage systems, will employ solar arrays that operate at voltages higher than (or equal to) 300 V. The lessons learned from the development of the technology also promise to become a stepping-stone for the production of the next generation of power systems employing high voltage solar arrays. This paper summarizes the results from experiments conducted mainly at the NASA Marshal Space Flight Center with two main solar array technologies. The experiments focused on electron collection and arcing studies, when the solar cells operated at high voltages. The tests utilized small coupons representative of each solar array technology. A hollow cathode was used to emulate parts of the induced environment on the solar arrays, mostly the low-energy charge-exchange plasma (1012-1013 m-3 and 0.5-1 eV). Results and conclusions from modeling of electron collection are also summarized. The observations from the total effort are used to propose a preliminary, new solar array design for 2 kW and 30-40 kW class, deep space missions that may employ a single or a cluster of Hall- Effect thrusters.

  16. Planar Hall effect bridge magnetic field sensors

    Henriksen, A.D.; Dalslet, Bjarke Thomas; Skieller, D.H.

    2010-01-01

    Until now, the planar Hall effect has been studied in samples with cross-shaped Hall geometry. We demonstrate theoretically and experimentally that the planar Hall effect can be observed for an exchange-biased ferromagnetic material in a Wheatstone bridge topology and that the sensor signal can...... Hall effect bridge sensors....

  17. 氪气工质霍尔推力器束聚焦特性研究%Research on Beam Focusing Characteristics of Krypton Hall Thruster

    夏国俊; 宁中喜; 欧阳磊; 王亚楠; 黎润; 于达仁

    2017-01-01

    以研究氪气替代氙气作为霍尔推力器工质时,等离子体束发散程度大等束聚焦特性问题为目的,通过以霍尔推力器磁场参数、放电电压和阳极工质流量分别作为单一变量进行实验研究,考察其对推力器等离子体束聚焦影响情况.使用HET-P70霍尔推力器进行相关实验,通过改变磁场参数来研究磁场位形对氪气工质推力器性能的影响,最终发现合适磁场位形形成的磁聚焦状态,即实验一中的工况3,可以使羽流发散角达到11.5°,此时推力器放电电压在400V,阳极工质流量3mg/s.另外,通过实验二和实验三,考察阳极工质流量和放电电压对氪等离子体束聚焦的影响机理,发现两个放电参数的变化主要改变了中性气体主电离区位置,进而影响等离子体束聚焦状态.电离位置在设定工况下外移9%,会使得羽流发散半角增大约12°.所以,磁场位形和中性气体的电离位置是影响氪等离子体束聚焦的重要因素,在对氪气霍尔推力器进行设计优化时应予重点考虑.%For the purpose to study the problems of plasma beam focusing,like bad spreading state of plas-ma beam,when krypton is used to replace xenon as the propellant of the electric propulsion,regarding magnet-ic field parameters,discharge voltage and propellant flow of anode as a single variable respectively,three exper-imental researches have been carried out to investigate their effects on beam focusing of the thruster. Experiments was made by the HET-P70 hall thruster to study the effects of magnetic field configuration on krypton thruster performance by changing the parameters of magnetic field,finally finding that the appropriate field configuration can form magnetic focusing state,as case 3 of the first experiment,it can make the plume divergence angle to be 11.5°. And the discharge voltage is 400V,while the propellant flow of anode is 3mg/s at the moment. In addi-tion,the influencing mechanism of

  18. Resistive Instabilities in Hall Current Plasma Discharge

    Litvak, Andrei A.; Fisch, Nathaniel J.

    2000-01-01

    Plasma perturbations in the acceleration channel of a Hall thruster are found to be unstable in the presence of collisions. Both electrostatic lower-hybrid waves and electromagnetic Alfven waves transverse to the applied electric and magnetic field are found to be unstable due to collisions in the E X B electron flow. These results are obtained assuming a two-fluid hydrodynamic model in slab geometry. The characteristic frequencies of these modes are consistent with experimental observations in Hall current plasma thrusters

  19. Experimental Investigation of a Direct-drive Hall Thruster and Solar Array System at Power Levels up to 10 kW

    Snyder, John S.; Brophy, John R.; Hofer, Richard R.; Goebel, Dan M.; Katz, Ira

    2012-01-01

    As NASA considers future exploration missions, high-power solar-electric propulsion (SEP) plays a prominent role in achieving many mission goals. Studies of high-power SEP systems (i.e. tens to hundreds of kilowatts) suggest that significant mass savings may be realized by implementing a direct-drive power system, so NASA recently established the National Direct-Drive Testbed to examine technical issues identified by previous investigations. The testbed includes a 12-kW solar array and power control station designed to power single and multiple Hall thrusters over a wide range of voltages and currents. In this paper, single Hall thruster operation directly from solar array output at discharge voltages of 200 to 450 V and discharge powers of 1 to 10 kW is reported. Hall thruster control and operation is shown to be simple and no different than for operation on conventional power supplies. Thruster and power system electrical oscillations were investigated over a large range of operating conditions and with different filter capacitances. Thruster oscillations were the same as for conventional power supplies, did not adversely affect solar array operation, and were independent of filter capacitance from 8 to 80 ?F. Solar array current and voltage oscillations were very small compared to their mean values and showed a modest dependence on capacitor size. No instabilities or anomalous behavior were observed in the thruster or power system at any operating condition investigated, including near and at the array peak power point. Thruster startup using the anode propellant flow as the power 'switch' was shown to be simple and reliable with system transients mitigated by the proper selection of filter capacitance size. Shutdown via cutoff of propellant flow was also demonstrated. A simple electrical circuit model was developed and is shown to have good agreement with the experimental data.

  20. The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field

    Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-02-15

    Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.

  1. Numerical study on the electron—wall interaction in a Hall thruster with segmented electrodes placed at the channel exit

    Qing Shao-Wei; E Peng; Xu Dian-Guo; Duan Ping

    2013-01-01

    Electron—wall interaction is always recognized as an important physical problem because of its remarkable influences on thruster discharge and performance. Based on existing theories, an electrode is predicted to weaken electron—wall interaction due to its low secondary electron emission characteristic. In this paper, the electron—wall interaction in an Aton-type Hall thruster with low-emissive electrodes placed near the exit of discharge channel is studied by a fully kinetic particle-in-cell method. The results show that the electron—wall interaction in the region of segmented electrode is indeed weakened, but it is significantly enhanced in the remaining region of discharge channel. It is mainly caused by electrode conductive property which makes equipotential lines convex toward channel exit and even parallel to wall surface in near-wall region; this convex equipotential configuration results in significant physical effects such as repelling electrons, which causes the electrons to move toward the channel center, and the electrons emitted from electrodes to be remarkably accelerated, thereby increasing electron temperature in the discharge channel, etc. Furthermore, the results also indicate that the discharge current in the segmented electrode case is larger than in the non-segmented electrode case, which is qualitatively in accordance with previous experimental results. (physics of gases, plasmas, and electric discharges)

  2. Magnetic Electron Filtering by Fluid Models for the PEGASES Thruster

    Leray, Gary; Chabert, Pascal; Lichtenberg, Allan; Lieberman, Michael

    2009-10-01

    The PEGASES thruster produces thrust by creating positive and negative ions, which are then accelerated. To accelerate both type of ions, electrons need to be filtered, which is achieved by applying a static magnetic field strong enough to magnetize the electrons but not the ions. A 1D fluid model with three species (electrons, positive and negative ions) and an analytical model are proposed to understand this process for an oxygen plasma with p = 10 mTorr and B0 = 300 G [1]. The resulting ion-ion plasma formation in the transverse direction (perpendicular to the magnetic field) is demonstrated. It is shown that an additional electron/positive ion loss term is required. The solutions are evaluated for two main parameters: the ionizing fraction at the plasma center (x = 0), ne0/ng, and the electronegativity ratio at the center, α0=nn0/ne0. The effect of geometry and magnetic field amplitude are also discussed. [4pt] [1] Leray G, Chabert P, Lichtenberg A J and Lieberman M A, J. Phys. D: Appl. Phys., Plasma Modelling Cluster issue, to appear (2009)

  3. Magnetic Measurements of the Background Field in the Undulator Hall

    Fisher, Andrew

    2010-01-01

    The steel present in the construction of the undulator hall facility has the potential for changing the ambient fields present in the undulator hall. This note describes a measurement done to make a comparison between the fields in the hall and in the Magnetic Measurement Facility. In order for the undulators to have the proper tuning, the background magnetic field in the Undulator Hall should agree with the background field in the Magnetic Measurements Facility within .5 gauss. In order to verify that this was the case measurements were taken along the length of the undulator hall, and the point measurements were compared to the mean field which was measured on the MMF test bench.

  4. Two-Dimensional Modelling of the Hall Thruster Discharge: Final Report

    2007-09-10

    ion energy flux to wall, qWi, and electron energy flux to wall, qWe for Vd= 300 V, 600 V and 750 V. All variables are evaluated at the outer wall (r... qWe for Vd= 300 V, 600 V and 750 V. All variables are evaluated at the outer wall (r=0.05m). The vertical dashed line represents the thruster exit

  5. Magnetic Field Effects on the Plume of a Diverging Cusped-Field Thruster

    Matlock, Taylor

    2010-07-25

    The Diverging Cusped-Field Thruster (DCFT) uses three permanent ring magnets of alternating polarity to create a unique magnetic topology intended to reduce plasma losses to the discharge chamber surfaces. The magnetic field strength within the DCFT discharge chamber (up to 4 kG on axis) is much higher than in thrusters of similar geometry, which is believed to be a driving factor in the high measured anode efficiencies. The field strength in the near plume region is large as well, which may bear on the high beam divergences measured, with peaks in ion current found at angles of around 30-35 from the thruster axis. Characterization of the DCFT has heretofore involved only one magnetic topology. It is then the purpose of this study to investigate changes to the near-field plume caused by altering the shape and strength of the magnetic field. A thick magnetic collar, encircling the thruster body, is used to lower the field strength outside of the discharge chamber and thus lessen any effects caused by the external field. Changes in the thruster plume with field topology are monitored by the use of normal Langmuir and emissive probes interrogating the near-field plasma. Results are related to other observations that suggest a unified conceptual framework for the important near-exit region of the thruster.

  6. Superconducting Materials Applied to EP Systems: Applications of Superconductivity to Hall Thrusters Propulsion

    Bruno, Claudio

    2001-01-01

    This report results from a contract tasking University of Rome as follows: The contractor will investigate the use of superconducting materials for use in high power hall effect type electric propulsion motors...

  7. Silicon Carbide (SiC) Power Processing Unit (PPU) for Hall Effect Thrusters, Phase I

    National Aeronautics and Space Administration — In this SBIR project, APEI, Inc. is proposing to develop a high efficiency, rad-hard 3.8 kW silicon carbide (SiC) Power Processing Unit (PPU) for Hall Effect...

  8. Topological honeycomb magnon Hall effect: A calculation of thermal Hall conductivity of magnetic spin excitations

    Owerre, S. A., E-mail: solomon@aims.ac.za [African Institute for Mathematical Sciences, 6 Melrose Road, Muizenberg, Cape Town 7945, South Africa and Perimeter Institute for Theoretical Physics, 31 Caroline St. N., Waterloo, Ontario N2L 2Y5 (Canada)

    2016-07-28

    Quite recently, the magnon Hall effect of spin excitations has been observed experimentally on the kagome and pyrochlore lattices. The thermal Hall conductivity κ{sup xy} changes sign as a function of magnetic field or temperature on the kagome lattice, and κ{sup xy} changes sign upon reversing the sign of the magnetic field on the pyrochlore lattice. Motivated by these recent exciting experimental observations, we theoretically propose a simple realization of the magnon Hall effect in a two-band model on the honeycomb lattice. The magnon Hall effect of spin excitations arises in the usual way via the breaking of inversion symmetry of the lattice, however, by a next-nearest-neighbour Dzyaloshinsky-Moriya interaction. We find that κ{sup xy} has a fixed sign for all parameter regimes considered. These results are in contrast to the Lieb, kagome, and pyrochlore lattices. We further show that the low-temperature dependence on the magnon Hall conductivity follows a T{sup 2} law, as opposed to the kagome and pyrochlore lattices. These results suggest an experimental procedure to measure thermal Hall conductivity within a class of 2D honeycomb quantum magnets and ultracold atoms trapped in a honeycomb optical lattice.

  9. DISK FORMATION IN MAGNETIZED CLOUDS ENABLED BY THE HALL EFFECT

    Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun

    2011-01-01

    Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. A dynamically important magnetic field presents a significant obstacle to the formation of protostellar disks. Recent studies have shown that magnetic braking is strong enough to suppress the formation of rotationally supported disks in the ideal MHD limit. Whether non-ideal MHD effects can enable disk formation remains unsettled. We carry out a first study on how disk formation in magnetic clouds is modified by the Hall effect, the least explored of the three non-ideal MHD effects in star formation (the other two being ambipolar diffusion and Ohmic dissipation). For illustrative purposes, we consider a simplified problem of a non-self-gravitating, magnetized envelope collapsing onto a central protostar of fixed mass. We find that the Hall effect can spin up the inner part of the collapsing flow to Keplerian speed, producing a rotationally supported disk. The disk is generated through a Hall-induced magnetic torque. Disk formation occurs even when the envelope is initially non-rotating, provided that the Hall coefficient is large enough. When the magnetic field orientation is flipped, the direction of disk rotation is reversed as well. The implication is that the Hall effect can in principle produce both regularly rotating and counter-rotating disks around protostars. The Hall coefficient expected in dense cores is about one order of magnitude smaller than that needed for efficient spin-up in these models. We conclude that the Hall effect is an important factor to consider in studying the angular momentum evolution of magnetized star formation in general and disk formation in particular.

  10. Optimized Magnetic Nozzles for MPD Thrusters, Phase I

    National Aeronautics and Space Administration — Magnetoplasmadynamic (MPD) thrusters can provide the high-specific impulse, high-power propulsion required to enable ambitious human and robotic exploration missions...

  11. Hall current effects in dynamic magnetic reconnection solutions

    Craig, I.J.D.; Heerikhuisen, J.; Watson, P.G.

    2003-01-01

    The impact of Hall current contributions on flow driven planar magnetic merging solutions is discussed. The Hall current is important if the dimensionless Hall parameter (or normalized ion skin depth) satisfies c H >η, where η is the inverse Lundquist number for the plasma. A dynamic analysis of the problem shows, however, that the Hall current initially manifests itself, not by modifying the planar reconnection field, but by inducing a non-reconnecting perpendicular 'separator' component in the magnetic field. Only if the stronger condition c H 2 >η is satisfied can Hall currents be expected to affect the planar merging. These analytic predictions are then tested by performing a series of numerical experiments in periodic geometry, using the full system of planar magnetohydrodynamic (MHD) equations. The numerical results confirm that the nature of the merging changes dramatically when the Hall coupling satisfies c H 2 >η. In line with the analytic treatment of sheared reconnection, the coupling provided by the Hall term leads to the emergence of multiple current layers that can enhance the global Ohmic dissipation at the expense of the reconnection rate. However, the details of the dissipation depend critically on the symmetries of the simulation, and when the merging is 'head-on' (i.e., comprises fourfold symmetry) the reconnection rate can be enhanced

  12. Magnetic microbead detection using the planar Hall effect

    Ejsing, Louise; Hansen, Mikkel F.; Menon, Aric K.; Ferreira, Hugo A.; Graham, Daniel L.; Freitas, Paulo P.

    2005-01-01

    Magnetic sensors based on the planar Hall effect of exchanged-biased permalloy have been fabricated and characterized. It is demonstrated that the sensors are feasible for detecting just a few commercial 2.0 μm magnetic beads commonly used for bioseparation (Micromer-M, Micromod, Germany) and that the sensor sense current is sufficient to generate a signal from the beads

  13. Planar Hall effect sensor for magnetic micro- and nanobead detection

    Ejsing, Louise Wellendorph; Hansen, Mikkel Fougt; Menon, Aric Kumaran

    2004-01-01

    Magnetic bead sensors based on the planar Hall effect in thin films of exchange-biased permalloy have been fabricated and characterized. Typical sensitivities are 3 muV/Oe mA. The sensor response to an applied magnetic field has been measured without and with coatings of commercially available 2 ...

  14. Nanoconstriction spin-Hall oscillator with perpendicular magnetic anisotropy

    Divinskiy, B.; Demidov, V. E.; Kozhanov, A.; Rinkevich, A. B.; Demokritov, S. O.; Urazhdin, S.

    2017-07-01

    We experimentally study spin-Hall nano-oscillators based on [Co/Ni] multilayers with perpendicular magnetic anisotropy. We show that these devices exhibit single-frequency auto-oscillations at current densities comparable to those for in-plane magnetized oscillators. The demonstrated oscillators exhibit large magnetization precession amplitudes, and their oscillation frequency is highly tunable by the electric current. These features make them promising for applications in high-speed integrated microwave circuits.

  15. Effects of magnetic field strength in the discharge channel on the performance of a multi-cusped field thruster

    Peng Hu

    2016-09-01

    Full Text Available The performance characteristics of a Multi-cusped Field Thruster depending on the magnetic field strength in the discharge channel were investigated. Four thrusters with different outer diameters of the magnet rings were designed to change the magnetic field strength in the discharge channel. It is found that increasing the magnetic field strength could restrain the radial cross-field electron current and decrease the radial width of main ionization region, which gives rise to the reduction of propellant utilization and thruster performance. The test results in different anode voltage conditions indicate that both the thrust and anode efficiency are higher for the weaker magnetic field in the discharge channel.

  16. Quantum Hall effect in epitaxial graphene with permanent magnets.

    Parmentier, F D; Cazimajou, T; Sekine, Y; Hibino, H; Irie, H; Glattli, D C; Kumada, N; Roulleau, P

    2016-12-06

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  17. Quantum Hall effect in epitaxial graphene with permanent magnets

    Parmentier, F. D.; Cazimajou, T.; Sekine, Y.; Hibino, H.; Irie, H.; Glattli, D. C.; Kumada, N.; Roulleau, P.

    2016-12-01

    We have observed the well-kown quantum Hall effect (QHE) in epitaxial graphene grown on silicon carbide (SiC) by using, for the first time, only commercial NdFeB permanent magnets at low temperature. The relatively large and homogeneous magnetic field generated by the magnets, together with the high quality of the epitaxial graphene films, enables the formation of well-developed quantum Hall states at Landau level filling factors v = ±2, commonly observed with superconducting electro-magnets. Furthermore, the chirality of the QHE edge channels can be changed by a top gate. These results demonstrate that basic QHE physics are experimentally accessible in graphene for a fraction of the price of conventional setups using superconducting magnets, which greatly increases the potential of the QHE in graphene for research and applications.

  18. Extraordinary Hall-effect in colloidal magnetic nanoparticle films

    Ben Gur, Leah; Tirosh, Einat [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Segal, Amir [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Markovich, Gil, E-mail: gilmar@post.tau.ac.il [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel); Gerber, Alexander, E-mail: gerber@post.tau.ac.il [School of Physics, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801 (Israel)

    2017-03-15

    Colloidal nickel nanoparticles (NPs) coated with polyvinylpyrrolidone (PVP) were synthesized. The nanoparticle dispersions were deposited on substrates and dried under mild heating to form conductive films. The films exhibited very small coercivity, nearly metallic conductivity, and a significant extraordinary Hall effect signal. This method could be useful for preparing simple, printed magnetic field sensors with the advantage of relatively high sensitivity around zero magnetic field, in contrast to magnetoresistive sensors, which have maximal field sensitivity away from zero magnetic field. - Highlights: • Ni nanoparticle ink capable of forming conductive films on drying. • The Ni nanoparticle films exhibit significant extraordinary Hall effect. • This system could be used for preparing printed magnetic field sensors integrated in 3D printed structures.

  19. Growth of the magnetic field in Hall magnetohydrodynamics

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)

    2004-10-01

    While the Hall magnetohydrodynamics (MHD) model has been explored in depth in connection with the dispersive waves relevant in magnetic reconnection, a theoretical study of the mathematical features of this system is lacking. We consider here the boundedness of the solutions of the Hall MHD equations. With Dirichlet boundary conditions the total energy of the system is maintained, and dissipated by diffusion, but the behaviour of the higher moments of the magnetic field is more complicated. It is found that certain unusual geometries of the initial condition may lead to a blow-up of the L{sup 3}-norm of the field. Nevertheless, reasonable assumptions upon the correlation between the size of the magnetic field and the curvature of field lines imply that the magnetic field remains uniformly bounded.

  20. Ion Velocity Distribution in a Low-Power Cylindrical Hall Thruster

    2010-07-01

    profile inside a CHT – the magnetic field lines are believed to form equipotential surfaces , creating an electric field that has a significant axial...centerline of the channel. The resulting equipotential surfaces provide an electric field profile with a significant outward pointing radial component...pole and creating a region of the channel with a low surface -to-volume area (a cylindrical region), the CHT as developed by Princeton University reduces

  1. Novel Hall sensors developed for magnetic field imaging systems

    Cambel, Vladimir; Karapetrov, Goran; Novosad, Valentyn; Bartolome, Elena; Gregusova, Dagmar; Fedor, Jan; Kudela, Robert; Soltys, Jan

    2007-01-01

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat

  2. Scanning Hall probe microscopy of a diluted magnetic semiconductor

    Kweon, Seongsoo; Samarth, Nitin; Lozanne, Alex de

    2009-01-01

    We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga 0.94 Mn 0.06 As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 μm wide and fairly stable with temperature. Magnetic clusters are observed above T C , which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

  3. Scanning Hall probe microscopy of a diluted magnetic semiconductor

    Kweon, Seongsoo; Samarth, Nitin; de Lozanne, Alex

    2009-05-01

    We have measured the micromagnetic properties of a diluted magnetic semiconductor as a function of temperature and applied field with a scanning Hall probe microscope built in our laboratory. The design philosophy for this microscope and some details are described. The samples analyzed in this work are Ga0.94Mn0.06As films grown by molecular beam epitaxy. We find that the magnetic domains are 2-4 μm wide and fairly stable with temperature. Magnetic clusters are observed above TC, which we ascribe to MnAs defects too small and sparse to be detected by a superconducting quantum interference device magnetometer.

  4. Influence of Triply-Charged Ions and Ionization Cross-Sections in a Hybrid-PIC Model of a Hall Thruster Discharge

    Smith, Brandon D.; Boyd, Iain D.; Kamhawi, Hani

    2014-01-01

    The sensitivity of xenon ionization rates to collision cross-sections is studied within the framework of a hybrid-PIC model of a Hall thruster discharge. A revised curve fit based on the Drawin form is proposed and is shown to better reproduce the measured crosssections at high electron energies, with differences in the integrated rate coefficients being on the order of 10% for electron temperatures between 20 eV and 30 eV. The revised fit is implemented into HPHall and the updated model is used to simulate NASA's HiVHAc EDU2 Hall thruster at discharge voltages of 300, 400, and 500 V. For all three operating points, the revised cross-sections result in an increase in the predicted thrust and anode efficiency, reducing the error relative to experimental performance measurements. Electron temperature and ionization reaction rates are shown to follow the trends expected based on the integrated rate coefficients. The effects of triply-charged xenon are also assessed. The predicted thruster performance is found to have little or no dependence on the presence of triply-charged ions. The fraction of ion current carried by triply-charged ions is found to be on the order of 1% and increases slightly with increasing discharge voltage. The reaction rates for the 0?III, I?III, and II?III ionization reactions are found to be of similar order of magnitude and are about one order of magnitude smaller than the rate of 0?II ionization in the discharge channel.

  5. Magnetic anisotrpy in quantum Hall feromagnets

    Jungwirth, Tomáš; Shlukla, S. P.; Smrčka, Ludvík; Shayegan, M.; MacDonald, A. H.

    1998-01-01

    Roč. 81, č. 11 (1998), s. 2328-2331 ISSN 0031-9007 R&D Projects: GA ČR GA202/98/0085; GA MŠk ME 104 Grant - others:NSF GRANTS(US) INT-9602140; NSF GRANTS(US) DMR-9623511 Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.017, year: 1998

  6. Spin Hall effect-driven spin torque in magnetic textures

    Manchon, Aurelien; Lee, K.-J.

    2011-01-01

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  7. Spin Hall effect-driven spin torque in magnetic textures

    Manchon, Aurelien

    2011-07-13

    Current-induced spin torque and magnetization dynamics in the presence of spin Hall effect in magnetic textures is studied theoretically. The local deviation of the charge current gives rise to a current-induced spin torque of the form (1 - ΒM) × [(u 0 + αH u 0 M) ∇] M, where u0 is the direction of the injected current, H is the Hall angle and is the non-adiabaticity parameter due to spin relaxation. Since αH and ×can have a comparable order of magnitude, we show that this torque can significantly modify the current-induced dynamics of both transverse and vortex walls. © 2011 American Institute of Physics.

  8. Hall effect driven by non-collinear magnetic polarons in diluted magnetic semiconductors

    Denisov, K. S.; Averkiev, N. S.

    2018-04-01

    In this letter, we develop the theory of Hall effect driven by non-collinear magnetic textures (topological Hall effect—THE) in diluted magnetic semiconductors (DMSs). We show that a carrier spin-orbit interaction induces a chiral magnetic ordering inside a bound magnetic polaron (BMP). The inner structure of non-collinear BMP is controlled by the type of spin-orbit coupling, allowing us to create skyrmion- (Rashba) or antiskyrmion-like (Dresselhaus) configurations. The asymmetric scattering of itinerant carriers on polarons leads to the Hall response which exists in weak external magnetic fields and at low temperatures. We point out that DMS-based systems allow one to investigate experimentally the dependence of THE both on a carrier spin polarization and on a non-collinear magnetic texture shape.

  9. The Hall instability of unsteady inhomogeneous axially symmetric magnetized plasmas

    Shtemler, Yuri M.; Mond, Michael; Liverts, Edward

    2004-01-01

    The Hall instability in cylindrically symmetric resistive magnetized plasmas in vacuum is investigated. The unperturbed self-similar equilibrium solutions for imploding Z-pinches with time-dependent total current I t ∼t S ,S>1/3, are subjected by short-wave sausage perturbations. The instability criterion is derived in slow-time, frozen-radius approximation. In cylindrically symmetric configurations the instability is driven by the magnetic field curvature. The near-axis and near-edge branches of the neutral curve in the plane of the inverse Hall parameter and phase velocity with the frozen radial coordinate as a parameter are separated by the critical point, where the modified gradient from the unperturbed number density changes sign. The critical radius may be treated as a new characteristic size of the Z-pinch that emerges due to the instability: the pinch is envisaged restructured by the short-scale high-frequency Hall instability, in which a central stable core is surrounded by an outer shell. Such a modified equilibrium may explain the observed enhanced stability against magnetohydrodynamic modes

  10. Precise quantization of anomalous Hall effect near zero magnetic field

    Bestwick, A. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Fox, E. J. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Kou, Xufeng [Univ. of California, Los Angeles, CA (United States); Pan, Lei [Univ. of California, Los Angeles, CA (United States); Wang, Kang L. [Univ. of California, Los Angeles, CA (United States); Goldhaber-Gordon, D. [Stanford Univ., Stanford, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-05-04

    In this study, we report a nearly ideal quantum anomalous Hall effect in a three-dimensional topological insulator thin film with ferromagnetic doping. Near zero applied magnetic field we measure exact quantization in the Hall resistance to within a part per 10,000 and a longitudinal resistivity under 1 Ω per square, with chiral edge transport explicitly confirmed by nonlocal measurements. Deviations from this behavior are found to be caused by thermally activated carriers, as indicated by an Arrhenius law temperature dependence. Using the deviations as a thermometer, we demonstrate an unexpected magnetocaloric effect and use it to reach near-perfect quantization by cooling the sample below the dilution refrigerator base temperature in a process approximating adiabatic demagnetization refrigeration.

  11. Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas

    H. R. Strauss

    2012-11-27

    The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.

  12. Magnetic bilayer-skyrmions without skyrmion Hall effect

    Zhang, Xichao; Zhou, Yan; Ezawa, Motohiko

    2016-01-01

    Magnetic skyrmions might be used as information carriers in future advanced memories, logic gates and computing devices. However, there exists an obstacle known as the skyrmion Hall effect (SkHE), that is, the skyrmion trajectories bend away from the driving current direction due to the Magnus force. Consequently, the skyrmions in constricted geometries may be destroyed by touching the sample edges. Here we theoretically propose that the SkHE can be suppressed in the antiferromagnetically exchange-coupled bilayer system, since the Magnus forces in the top and bottom layers are exactly cancelled. We show that such a pair of SkHE-free magnetic skyrmions can be nucleated and be driven by the current-induced torque. Our proposal provides a promising means to move magnetic skyrmions in a perfectly straight trajectory in ultra-dense devices with ultra-fast processing speed.

  13. Magnetic Nozzles for Plasma Thrusters: Acceleration, Thrust, and Detachment Mechanisms

    2011-10-01

    neutral double layer. A very detailed study of this surface discontinuity has been culminated [4]. It had been claimed that the presence of this DL could...field assures that electrons are strongly-magnetized whereas ions are partially-magnetized. The use of the method of characteristic surfaces (i.e...z = const disk. (d) Ambipolar electric field and equipotential lines for plasmas with a 0.2 fraction of 9-times hotter electrons at the nozzle

  14. Device convolution effects on the collective scattering signal of the E × B mode from Hall thruster experiments: 2D dispersion relation

    Cavalier, J.; Lemoine, N.; Bonhomme, G.; Tsikata, S.; Honoré, C.; Grésillon, D.

    2012-01-01

    The effect of the collective light scattering diagnostic transfer function is considered in the context of the dispersion relation of the unstable E×B mode previously reported. This transfer function is found to have a contribution to the measured frequencies and mode amplitudes which is more or less significant depending on the measurement wavenumbers and angles. After deconvolution, the experimental data are found to be possibly compatible with the idea that the mode frequency in the jet frame (after subtraction of the Doppler effect due to the plasma motion along the thruster axis) is independent of the orientation of the wave vector in the plane orthogonal to the local magnetic field.

  15. Hall effect in a strong magnetic field: Direct comparisons of compressible magnetohydrodynamics and the reduced Hall magnetohydrodynamic equations

    Martin, L. N.; Dmitruk, P.; Gomez, D. O.

    2010-01-01

    In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.

  16. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics.

    Huang, Haiyun; Wang, Dejun; Xu, Yue

    2015-10-27

    This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS) technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  17. Experimental Verification of the Hall Effect during Magnetic Reconnection in a Laboratory Plasma

    Yang Ren; Masaaki Yamada; Stefan Gerhardt; Hantao Ji; Russell Kulsrud; Aleksey Kuritsyn

    2005-01-01

    In this letter we report a clear and unambiguous observation of the out-of-plane quadrupole magnetic field suggested by numerical simulations in the reconnecting current sheet in the Magnetic Reconnection Experiment (MRX). Measurements show that the Hall effect is large in collisionless regime and becomes small as the collisionality increases, indicating that the Hall effect plays an important role in collisionless reconnection

  18. Simulation and laboratory validation of magnetic nozzle effects for the high power helicon thruster

    Winglee, R.; Ziemba, T.; Giersch, L.; Prager, J.; Carscadden, J.; Roberson, B. R.

    2007-01-01

    The efficiency of a plasma thruster can be improved if the plasma stream can be highly focused, so that there is maximum conversion of thermal energy to the directed energy. Such focusing can be potentially achieved through the use of magnetic nozzles, but this introduces the potential problem of detachment of plasma from the magnetic field lines tied to the nozzles. Simulations and laboratory testing are used to investigate these processes for the high power helicon (HPH) thruster, which has the capacity of producing a dense (10 18 -10 20 m -3 ) energetic (tens of eV) plasma stream which can be both supersonic and super-Alfvenic within a few antenna wavelengths. In its standard configuration, the plasma plume generated by this device has a large opening angle, due to relatively high thermal velocity and rapid divergence of the magnetic field. With the addition of a magnetic nozzle system, the plasma can be directed/collimated close to the pole of the nozzle system causing an increase in the axial velocity of the plasma, as well as an increase in the Alfven Mach number. As such the magnetic field of the nozzle is insufficient to pull the plasma back to the spacecraft, i.e., plasma attachment is not a problem for the system. Laboratory results show that the specific impulse (Isp) of the system can be increased by ∼30% by the addition of the nozzle due to the conversion of thermal energy into directed energy in association with a highly collimated profile. An interesting feature of the system is that self-collimation of the beam is expected to occur during continuous operation through plasma currents induced downstream from the magnetic nozzle. These currents lead to magnetic fields that have a smaller divergence than the original vacuum magnetic field so that the following plasma will be more collimated than the proceeding plasma. This self-focusing can lead to beam propagation over extended distances

  19. Spin Hall driven domain wall motion in magnetic bilayers coupled by a magnetic oxide interlayer

    Liu, Yang; Furuta, Masaki; Zhu, Jian-Gang Jimmy

    2018-05-01

    mCell, previously proposed by our group, is a four-terminal magnetoresistive device with isolated write- and read-paths for all-spin logic and memory applications. A mCell requires an electric-insulating magnetic layer to couple the spin Hall driven write-path to the magnetic free layer of the read-path. Both paths are magnetic layers with perpendicular anisotropy and their perpendicularly oriented magnetization needs to be maintained with this insertion layer. We have developed a magnetic oxide (FeOx) insertion layer to serve for these purposes. We show that the FeOx insertion layer provides sufficient magnetic coupling between adjacent perpendicular magnetic layers. Resistance measurement shows that this magnetic oxide layer can act as an electric-insulating layer. In addition, spin Hall driven domain wall motion in magnetic bi-layers coupled by the FeOx insertion layer is significantly enhanced compared to that in magnetic single layer; it also requires low voltage threshold that poses possibility for power-efficient device applications.

  20. Magnetoresistivity and Hall resistivity of a YBCO thin film in a tilted magnetic field

    Amirfeiz, M.; Cimberle, M. R.; Ferdeghini, C.; Giannini, E.; Grassano, G.; Marre', D.; Putti, M.; Siri, A. S.

    1997-01-01

    In this paper they present magnetoresistivity and Hall effect measurements performed on a YBCO epitaxial film as a function of the angle θ between the external magnetic field and the a-b planes. The resistivity and Hall effect measurements are analyzed in term of the general scaling approach proposed by Blatter and coworkers; the Hall conductivity data are examined to separate the contributions due to vortices and quasi particles

  1. Anomalous electron transport in Hall-effect thrusters: Comparison between quasi-linear kinetic theory and particle-in-cell simulations

    Lafleur, T.; Martorelli, R.; Chabert, P.; Bourdon, A.

    2018-06-01

    Kinetic drift instabilities have been implicated as a possible mechanism leading to anomalous electron cross-field transport in E × B discharges, such as Hall-effect thrusters. Such instabilities, which are driven by the large disparity in electron and ion drift velocities, present a significant challenge to modelling efforts without resorting to time-consuming particle-in-cell (PIC) simulations. Here, we test aspects of quasi-linear kinetic theory with 2D PIC simulations with the aim of developing a self-consistent treatment of these instabilities. The specific quantities of interest are the instability growth rate (which determines the spatial and temporal evolution of the instability amplitude), and the instability-enhanced electron-ion friction force (which leads to "anomalous" electron transport). By using the self-consistently obtained electron distribution functions from the PIC simulations (which are in general non-Maxwellian), we find that the predictions of the quasi-linear kinetic theory are in good agreement with the simulation results. By contrast, the use of Maxwellian distributions leads to a growth rate and electron-ion friction force that is around 2-4 times higher, and consequently significantly overestimates the electron transport. A possible method for self-consistently modelling the distribution functions without requiring PIC simulations is discussed.

  2. Investigation of Fluctuation-Induced Electron Transport in Hall Thrusters with a 2D Hybrid Code in the Azimuthal and Axial Coordinates

    Fernandez, Eduardo; Borelli, Noah; Cappelli, Mark; Gascon, Nicolas

    2003-10-01

    Most current Hall thruster simulation efforts employ either 1D (axial), or 2D (axial and radial) codes. These descriptions crucially depend on the use of an ad-hoc perpendicular electron mobility. Several models for the mobility are typically invoked: classical, Bohm, empirically based, wall-induced, as well as combinations of the above. Experimentally, it is observed that fluctuations and electron transport depend on axial distance and operating parameters. Theoretically, linear stability analyses have predicted a number of unstable modes; yet the nonlinear character of the fluctuations and/or their contribution to electron transport remains poorly understood. Motivated by these observations, a 2D code in the azimuthal and axial coordinates has been written. In particular, the simulation self-consistently calculates the azimuthal disturbances resulting in fluctuating drifts, which in turn (if properly correlated with plasma density disturbances) result in fluctuation-driven electron transport. The characterization of the turbulence at various operating parameters and across the channel length is also the object of this study. A description of the hybrid code used in the simulation as well as the initial results will be presented.

  3. Particle-in-cell simulation for the effect of segmented electrodes near the exit of an aton-type Hall thruster on ion focusing acceleration

    Yu, D.R.; Qing, S.W.; Liu, H.; Li, H. [Lab. of Plasma Propulsion, Harbin Institute of Technology (China)

    2011-12-15

    The effect of floating conductive electrodes near the channel exit of an Aton-type Hall thruster on ion focusing acceleration is studied by simulating the two-dimensional plasma flow with a fully kinetic Particle-in-Cell method for the gas flow rate j{sub a} ranged in 1{proportional_to}3 mg/s. Numerical results show that low-emissive electrodes can reduce plume divergence if the electrode length is less than 2 mm due to the low secondary electron emissive characteristic, but widen plume in all the gas flow rate range if the electrode length is greater than 2mm since the conductive property of segmented electrodes trends to make equipotential lines convex toward channel exit and is even parallel to the wall surface in the near-wall region. Further investigation predicts that the combination of high emissive dielectric wall and segmented low-emissive dielectric wall is a promising way to reduce plume divergence (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. A highly sensitive CMOS digital Hall sensor for low magnetic field applications.

    Xu, Yue; Pan, Hong-Bin; He, Shu-Zhuan; Li, Li

    2012-01-01

    Integrated CMOS Hall sensors have been widely used to measure magnetic fields. However, they are difficult to work with in a low magnetic field environment due to their low sensitivity and large offset. This paper describes a highly sensitive digital Hall sensor fabricated in 0.18 μm high voltage CMOS technology for low field applications. The sensor consists of a switched cross-shaped Hall plate and a novel signal conditioner. It effectively eliminates offset and low frequency 1/f noise by applying a dynamic quadrature offset cancellation technique. The measured results show the optimal Hall plate achieves a high current related sensitivity of about 310 V/AT. The whole sensor has a remarkable ability to measure a minimum ± 2 mT magnetic field and output a digital Hall signal in a wide temperature range from -40 °C to 120 °C.

  5. Magnetic properties and Hall effect of single-crystalline YMn6Sn6

    Uhlirova, K.; Sechovsky, V.; Boer, F.R. de; Yoshii, S.; Yamamoto, T.; Hagiwara, M.; Lefevre, C.; Venturini, G.

    2007-01-01

    Magnetization behavior and Hall resistivity of YMn 6 Sn 6 , which crystallizes in the hexagonal HfFe 6 Ge 6 -type of structure, have been investigated on single crystals at various temperatures in the ordered magnetic state. The field dependence of the Hall resistivity shows anomalies, which are related to the field-induced spin reorientations occurring in YMn 6 Sn 6 . It is also found that the Hall resistivity cannot simply be described by the anomalous contribution proportional to the magnetization, but that an additional field-dependent contribution is present

  6. Design and performance evaluation of a hall effect magnetic compass for oceanographic and meteorological applications

    Joseph, A.; Desai, R.G.P.; Agarvadekar, Y.; Tengali, T.; Mishra, M.; Fadate, C.; Gomes, L.

    A Hall Effect magnetic compass, suitable for oceanographic and meteorological applications, has been designed and its performance characteristics have been evaluated. Slope of the least-squares-fitted linear graph was found to be close to the ideal...

  7. Hall effect and magnetization in the magnetic superconductor RuSr2GdCu2O8

    Jurelo, A.R.; Pimentel, J.L.; Wolff Fabris, F.; Schaf, J.; Pureur, P.; Vieira, V.N.

    2006-01-01

    We report on Hall effect, longitudinal resistivity and magnetization measurements in the rutheno-cuprate RuSr 2 GdCu 2 O 8 . Combining these results we separate the anomalous contribution to the Hall effect and argue that the occurrence of canting and chirality have to be considered for describing this property

  8. On-tip sub-micrometer Hall probes for magnetic microscopy prepared by AFM lithography

    Gregusova, D.; Martaus, J.; Fedor, J.; Kudela, R.; Kostic, I.; Cambel, V.

    2009-01-01

    We developed a technology of sub-micrometer Hall probes for future application in scanning hall probe microscopy (SHPM) and magnetic force microscopy (MFM). First, the Hall probes of ∼9-μm dimensions are prepared on the top of high-aspect-ratio GaAs pyramids with an InGaP/AlGaAs/GaAs active layer using wet-chemical etching and non-planar lithography. Then we show that the active area of planar Hall probes can be downsized to sub-micrometer dimensions by local anodic oxidation technique using an atomic force microscope. Such planar probes are tested and their noise and magnetic field sensitivity are evaluated. Finally, the two technologies are combined to fabricate sub-micrometer Hall probes on the top of high-aspect ratio mesa for future SHPM and MFM techniques.

  9. Planar Hall ring sensor for ultra-low magnetic moment sensing

    Hung, Tran Quang; Terki, Ferial; Kamara, Souleymanne

    2015-01-01

    The field sensitivity of a planar Hall effect (PHE) micro-ring type biosensor has been investigated as a function of magnetizing angle of the sensor material, for the sensing of low magnetic moment superparamagnetic labels. The field sensitivity is maximal at a magnetizing angle of α = 20°. At th...

  10. Spin Hall effect in a 2DEG in the presence of magnetic couplings

    Gorini, C; Schwab, P; Dzierzawa, M; Raimondi, R; Milletari, M

    2009-01-01

    It is now well established that the peculiar linear-in-momentum dependence of the Rashba (and of the Dresselhaus) spin-orbit coupling leads to the vanishing of the spin Hall conductivity in the bulk of a two-dimensional electron gas (2DEG). In this paper we discuss how generic magnetic couplings change this behaviour providing then a potential handle on the spin Hall effect. In particular we examine the influence of magnetic impurities and an in-plane magnetic field. We find that in both cases there is a finite spin Hall effect and we provide explicit expressions for the spin Hall conductivity. The results can be obtained by means of the quasiclassical Green function approach, that we have recently extended to spin-orbit coupled electron systems.

  11. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C., E-mail: acbruno@puc-rio.br

    2017-03-15

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10{sup −7} Am{sup 2}. We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am{sup 2}/kg (i.e 0.4%) at saturation and below 0.5 Am{sup 2}/kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  12. A portable Hall magnetometer probe for characterization of magnetic iron oxide nanoparticles

    Araujo, Jefferson F.D.F.; Costa, Mateus C.; Louro, Sonia R.W.; Bruno, Antonio C.

    2017-01-01

    We have built a portable Hall magnetometer probe, for measuring magnetic properties of iron oxide nanoparticles, that can be used for bulk materials and liquid samples as well. The magnetometer probe consists of four voltage-programmable commercial Hall sensors and a thin acrylic plate for positioning the sensors. In order to operate, it needs to be attached to a pole of an electromagnet and connected to an AD converter and a computer. It acquires a complete magnetization curve in a couple of minutes and has a magnetic moment sensitivity of 3.5×10 −7 Am 2 . We tested its performance with magnetic nanoparticles containing an iron oxide core and having coating layers with different sizes. The magnetization results obtained were compared with measurements performed on commercial stand-alone magnetometers, and exhibited errors of about ±0.2 Am 2 /kg (i.e 0.4%) at saturation and below 0.5 Am 2 /kg (i.e. 10%) at remanence. - Highlights: • A low-cost portable Hall magnetometer probe has been built. • The Hall magnetometer probe can be attached to any electromagnet. • The Hall probe was calibrated and successfully compared to industry standard magnetometers. • The Hall probe was able to measure iron oxide nanoparticles with different coatings.

  13. Bounds on the growth of the magnetic energy for the Hall kinematic dynamo equation

    Nunez, Manuel [Departamento de Analisis Matematico Universidad de Valladolid 47005 Valladolid (Spain)

    2005-09-09

    While the magnetic induction equation in plasmas, governing kinematic dynamos, is a linear one admitting exponential growth of the magnetic energy for certain velocity fields, the addition of the Hall term turns it into a nonlinear parabolic equation. Local existence of solutions may be proved, but in contrast with the magnetohydrodynamics case, for a number of boundary conditions the magnetic energy grows at most linearly in time for stationary velocity fields, and like the square of the time in the general case. It appears that the Hall effect enhances diffusivity in some way to compensate for the positive contribution of the transport of the magnetic field by the flow occurring in fast dynamos.

  14. Sixteen-state magnetic memory based on the extraordinary Hall effect

    Segal, A.; Karpovski, M.; Gerber, A.

    2012-01-01

    We report on a proof-of-concept study of split-cell magnetic storage in which multi-bit magnetic memory cells are composed of several multilevel ferromagnetic dots with perpendicular magnetic anisotropy. Extraordinary Hall effect is used for reading the data. Feasibility of the approach is supported by realization of four-, eight- and sixteen- state cells. - Highlights: ► We propose a novel structure of multi-bit magnetic random access memory. ► Each cell contains several interconnected storage dots. ► Extraordinary Hall effect is used for reading the data. ► Four-, eight- and sixteen-state cells have been realized.

  15. The magnetic flux leakage measurement by the hall sensor in the longitudinal magnetic field

    Joo, Gwang Tae; Son, Dae Rok; Han, Jung Hee; Park, Jae Hyung

    1998-01-01

    This paper is concerned with magnetic leakage flux measurement using by the hall sensor in the longitudinal magnetic field of the feromagnetic specimen. For detection sensitivity by the hall probe according to various depth of the subsurface defects, the specimen are prepared by six drilled holes of 0.5 mm φ from 1 mm depth to 4 mm depth in the carbon steel plate(10 x 35 x 265 mm). When the specimen applied by various frequency(2 - 9 Hz) of the AC through synthesizer and power amplifier in the yoke, the signals of the magnetic flux leakage using lack-in amplifier and synthesizer are decreased linearly with defect depth at 2 Hz, but these signals are decreased suddenly with defect depth from the surface and obscured with increasing frequency. And, when the specimen applied range of 1 Amp. to 5 Amp. by DC power supply in the yoke, the signals of the magnetic flux leakage through DVM decreased linearly with defect depth up to 2.5 mm depth and change slightly defect depth above 2.5 mm depth from the surface, but its signals appeared predominately.

  16. Two-dimensional magnetic field evolution measurements and plasma flow speed estimates from the coaxial thruster experiment

    Black, D.C.; Mayo, R.M.; Gerwin, R.A.; Schoenberg, K.F.; Scheuer, J.T.; Hoyt, R.P.; Henins, I.

    1994-01-01

    Local, time-dependent magnetic field measurements have been made in the Los Alamos coaxial thruster experiment (CTX) [C. W. Barnes et al., Phys. Fluids B 2, 1871 (1990); J. C. Fernandez et al., Nucl. Fusion 28, 1555 (1988)] using a 24 coil magnetic probe array (eight spatial positions, three axis probes). The CTX is a magnetized, coaxial plasma gun presently being used to investigate the viability of high pulsed power plasma thrusters for advanced electric propulsion. Previous efforts on this device have indicated that high pulsed power plasma guns are attractive candidates for advanced propulsion that employ ideal magnetohydrodynamic (MHD) plasma stream flow through self-formed magnetic nozzles. Indirect evidence of magnetic nozzle formation was obtained from plasma gun performance and measurements of directed axial velocities up to v z ∼10 7 cm/s. The purpose of this work is to make direct measurement of the time evolving magnetic field topology. The intent is to both identify that applied magnetic field distortion by the highly conductive plasma is occurring, and to provide insight into the details of discharge evolution. Data from a magnetic fluctuation probe array have been used to investigate the details of applied magnetic field deformation through the reconstruction of time-dependent flux profiles. Experimentally observed magnetic field line distortion has been compared to that predicted by a simple one-dimensional (1-D) model of the discharge channel. Such a comparison is utilized to estimate the axial plasma velocity in the thruster. Velocities determined in this manner are in approximate agreement with the predicted self-field magnetosonic speed and those measured by a time-of-flight spectrometer

  17. 15 cm mercury multipole thruster

    Longhurst, G. R.; Wilbur, P. J.

    1978-01-01

    A 15 cm multipole ion thruster was adapted for use with mercury propellant. During the optimization process three separable functions of magnetic fields within the discharge chamber were identified: (1) they define the region where the bulk of ionization takes place, (2) they influence the magnitudes and gradients in plasma properties in this region, and (3) they control impedance between the cathode and main discharge plasmas in hollow cathode thrusters. The mechanisms for these functions are discussed. Data from SERT II and cusped magnetic field thrusters are compared with those measured in the multipole thruster. The performance of this thruster is shown to be similar to that of the other two thrusters. Means of achieving further improvement in the performance of the multipole thruster are suggested.

  18. A Monolithic CMOS Magnetic Hall Sensor with High Sensitivity and Linearity Characteristics

    Haiyun Huang

    2015-10-01

    Full Text Available This paper presents a fully integrated linear Hall sensor by means of 0.8 μm high voltage complementary metal-oxide semiconductor (CMOS technology. This monolithic Hall sensor chip features a highly sensitive horizontal switched Hall plate and an efficient signal conditioner using dynamic offset cancellation technique. An improved cross-like Hall plate achieves high magnetic sensitivity and low offset. A new spinning current modulator stabilizes the quiescent output voltage and improves the reliability of the signal conditioner. The tested results show that at the 5 V supply voltage, the maximum Hall output voltage of the monolithic Hall sensor microsystem, is up to ±2.1 V and the linearity of Hall output voltage is higher than 99% in the magnetic flux density range from ±5 mT to ±175 mT. The output equivalent residual offset is 0.48 mT and the static power consumption is 20 mW.

  19. Electromagnetic Spacecraft Propulsion Motor and a Permanent Magnet (PM-Drive) Thruster

    Ahmadov, B. A.

    2018-04-01

    Ion thrusters are designed to be used for realization of a Mars Sample Return mission. The competing technologies with ion thrusters are electromagnetic spacecraft propulsion motors. I'm an engineer and engage in the creation of the new electromagnetic propulsion motors.

  20. Realization of quantum anomalous Hall effect from a magnetic Weyl semimetal

    Muechler, Lukas; Liu, Enke; Xu, Qiunan; Felser, Claudia; Sun, Yan

    2017-01-01

    The quantum anomalous Hall effect (QAHE) and magnetic Weyl semimetals (WSMs) are topological states induced by intrinsic magnetic moments and spin-orbital coupling. Their similarity suggests the possibility of achieving the QAHE by dimensional confinement of a magnetic WSM along one direction. In this study, we investigate the emergence of the QAHE in the two dimensional (2D) limit of magnetic WSMs due to finite size effects. We demonstrate the feasibility of this approach with effective mode...

  1. Magnetization and Hall effect under high pressure in NaV 6O 11

    Naka, T.; Matsumoto, T.; Kanke, Y.; Murata, K.

    1995-02-01

    We have investigated the pressure dependences of magnetization and the Hall coefficient in the ferromagnetic vanadium oxide NaV 6O 11 up to 1.2 GPa. Structural transitions (hexagonal-hexagonal-orthorhombic) occur at TH = 245 K and TL = 35 K at ambient pressure. Meanwhile, the susceptibility obeys the Curie-Weiss law X = C/( T - θ) with antiferromagnetic correlation of θ TH, with ferromagnetic correlation of θ TH. The spontaneous magnetization appears below Tc = 64.2 K. With increasing pressure, Tc and magnetization M( T TH increases. The sign of the Hall coefficient changes continuously (negative-positive-negative) at around T ≈ 170 K and 75 K.

  2. Septum magnet for ejection from the PS to the E-Hall

    CERN PhotoLab

    1977-01-01

    Pulsed septum magnet for ejection from PS straight sections 61/62 to the East-Hall. This septum magnet, for ss 61, had only 1 turn, for minimum thickness. It was followed by another septum in ss 62, with 2 turns, as there the ejected beam was already farther away from the circulating beam. Both septa were water-cooled.

  3. An Investigation of Hall Currents Associated with Tripolar Magnetic Fields During Magnetospheric Kelvin Helmholtz Waves

    Sturner, A. P.; Eriksson, S.; Newman, D. L.; Lapenta, G.; Gershman, D. J.; Plaschke, F.; Ergun, R.; Wilder, F. D.; Torbert, R. B.; Giles, B. L.; Strangeway, R. J.; Russell, C. T.; Burch, J. L.

    2016-12-01

    Kinetic simulations and observations of magnetic reconnection suggest the Hall term of Ohm's Law is necessary for understanding fast reconnection in the Earth's magnetosphere. During high (>1) guide field plasma conditions in the solar wind and in Earth's magnetopause, tripolar variations in the guide magnetic field are often observed during current sheet crossings, and have been linked to reconnection Hall magnetic fields. Two proposed mechanisms for these tripolar variations are the presence of multiple nearby X-lines and magnetic island coalescence. We present results of an investigation into the structure of the electron currents supporting tripolar guide magnetic field variations during Kelvin-Helmholtz wave current sheet crossings using the Magnetosphere Multiscale (MMS) Mission, and compare with bipolar magnetic field structures and with kinetic simulations to understand how these tripolar structures may be used as tracers for magnetic islands.

  4. HiVHAc Thruster Wear and Structural Tests

    National Aeronautics and Space Administration — NASA GRC is developing a 4.5 kW-class Hall propulsion system. This system includes a long life high performance Hall Effect Thruster (HET), a highly efficient...

  5. Tuning the stability and the skyrmion Hall effect in magnetic skyrmions by adjusting their exchange strengths with magnetic disks

    Sun, L.; Wu, H. Z.; Miao, B. F.; Wu, D.; Ding, H. F.

    2018-06-01

    Magnetic skyrmion is a promising candidate for the future information technology due to its small size, topological protection and the ultralow current density needed to displace it. The applications, however, are currently limited by its narrow phase diagram and the skyrmion Hall effect which prevents the skyrmion motion at high speed. In this work, we study the Dzyaloshinskii-Moriya interaction induced magnetic skyrmion that exchange coupled with magnetic nano-disks utilizing the micromagnetic simulation. We find that the stability and the skyrmion Hall effect of the created skyrmion can be tuned effectively with the coupling strength, thus opens the space to optimize the performance of the skyrmion based devices.

  6. On averaging the Kubo-Hall conductivity of magnetic Bloch bands leading to Chern numbers

    Riess, J.

    1997-01-01

    The authors re-examine the topological approach to the integer quantum Hall effect in its original form where an average of the Kubo-Hall conductivity of a magnetic Bloch band has been considered. For the precise definition of this average it is crucial to make a sharp distinction between the discrete Bloch wave numbers k 1 , k 2 and the two continuous integration parameters α 1 , α 2 . The average over the parameter domain 0 ≤ α j 1 , k 2 . They show how this can be transformed into a single integral over the continuous magnetic Brillouin zone 0 ≤ α j j , j = 1, 2, n j = number of unit cells in j-direction, keeping k 1 , k 2 fixed. This average prescription for the Hall conductivity of a magnetic Bloch band is exactly the same as the one used for a many-body system in the presence of disorder

  7. MOA: Magnetic Field Oscillating Amplified Thruster and its Application for Nuclear Electric and Thermal Propulsion

    Frischauf, Norbert; Hettmer, Manfred; Grassauer, Andreas; Bartusch, Tobias; Koudelka, Otto

    2006-01-01

    More than 60 years after the later Nobel laureate Hannes Alfven had published a letter stating that oscillating magnetic fields can accelerate ionised matter via magneto-hydrodynamic interactions in a wave like fashion, the technical implementation of Alfven waves for propulsive purposes has been proposed, patented and examined for the first time by a group of inventors. The name of the concept, utilising Alfven waves to accelerate ionised matter for propulsive purposes, is MOA - Magnetic field Oscillating Amplified thruster. Alfven waves are generated by making use of two coils, one being permanently powered and serving also as magnetic nozzle, the other one being switched on and off in a cyclic way, deforming the field lines of the overall system. It is this deformation that generates Alfven waves, which are in the next step used to transport and compress the propulsive medium, in theory leading to a propulsion system with a much higher performance than any other electric propulsion system. Based on computer simulations, which were conducted to get a first estimate on the performance of the system, MOA is a highly flexible propulsion system, whose performance parameters might easily be adapted, by changing the mass flow and/or the power level. As such the system is capable to deliver a maximum specific impulse of 13116 s (12.87 mN) at a power level of 11.16 kW, using Xe as propellant, but can also be attuned to provide a thrust of 236.5 mN (2411 s) at 6.15 kW of power. While space propulsion is expected to be the prime application for MOA and is supported by numerous applications such as Solar and/or Nuclear Electric Propulsion or even as an 'afterburner system' for Nuclear Thermal Propulsion, other terrestrial applications can be thought of as well, making the system highly suited for a common space-terrestrial application research and utilisation strategy. (authors)

  8. Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line

    Spies, Günther O.; Faghihi, Mustafa

    1987-06-01

    To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter.

  9. Hall effect on magnetohydrodynamic instabilities at an elliptic magnetic stagnation line

    Spies, G.O.; Faghihi, M.

    1987-01-01

    To answer the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting small wavelength kink instabilities at any elliptic magnetic stagnation line, a normal mode analysis is performed of the motion of an incompressible Hall fluid about cylindrical Z-pinch equilibria with circular cross sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. Every particular mode becomes stable as the Hall parameter exceeds a critical value. This value, however, depends on the mode such that it increases to infinity as the ideal growth rate decreases to zero, implying that there always remains an infinite number of slowly growing instabilities. Correspondingly, the stability criterion for equilibria with arbitrary current distributions is independent of the Hall parameter

  10. Sensitivity Enhancement of a Vertical-Type CMOS Hall Device for a Magnetic Sensor

    Sein Oh

    2018-01-01

    Full Text Available This study presents a vertical-type CMOS Hall device with improved sensitivity to detect a 3D magnetic field in various types of sensors or communication devices. To improve sensitivity, trenches are implanted next to the current input terminal, so that the Hall current becomes maximum. The effect of the dimension and location of trenches on sensitivity is simulated in the COMSOL simulator. A vertical-type Hall device with a width of 16 μm and a height of 2 μm is optimized for maximum sensitivity. The simulation result shows that it has a 23% better result than a conventional vertical-type CMOS Hall device without a trench.

  11. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-01-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  12. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  13. Hall magnetohydrodynamic effects for current sheet flapping oscillations related to the magnetic double gradient mechanism

    Erkaev, N. V.; Semenov, V. S.; Biernat, H. K.

    2010-01-01

    Hall magnetohydrodynamic model is investigated for current sheet flapping oscillations, which implies a gradient of the normal magnetic field component. For the initial undisturbed current sheet structure, the normal magnetic field component is assumed to have a weak linear variation. The profile of the electric current velocity is described by hyperbolic functions with a maximum at the center of the current sheet. In the framework of this model, eigenfrequencies are calculated as functions of the wave number for the ''kink'' and ''sausage'' flapping wave modes. Because of the Hall effects, the flapping eigenfrequency is larger for the waves propagating along the electric current, and it is smaller for the opposite wave propagation with respect to the current. The asymmetry of the flapping wave propagation, caused by Hall effects, is pronounced stronger for thinner current sheets. This is due to the Doppler effect related to the electric current velocity.

  14. Exchange magnetic field torques in YIG/Pt bilayers observed by the spin-Hall magnetoresistance

    Vlietstra, N.; Shan, J.; Castel, V.; Ben Youssef, J.; Bauer, G. E. W.; van Wees, B. J.

    2013-01-01

    The effective field torque of an yttrium-iron-garnet (YIG) film on the spin accumulation in an attached platinum (Pt) film is measured by the spin-Hall magnetoresistance (SMR). As a result, the magnetization direction of a ferromagnetic insulating layer can be measured electrically. Experimental

  15. Can Hall drag be observed in Coulomb coupled quantum wells in a magnetic field?

    Hu, Ben Yu-Kuang

    1997-01-01

    We study the transresistivity rho(21) (or equivalently, the drag rate) of two Coulomb-coupled quantum wells in the presence of a perpendicular magnetic field, using semi-classical transport theory. Elementary arguments seem to preclude any possibility of observation of ''Hall drag'' (i.e., a non...

  16. The current distribution in Bi-2223/Ag HTS conductors: comparing Hall probe and magnetic knife

    Demencik, E.; Dhalle, Marc M.J.; ten Kate, Herman H.J.; Polak, M.

    2006-01-01

    We analyzed the current distribution in three Bi-2223/Ag tapes with different filament lay-out, comparing the results of magnetic knife and Hall probe experiments. Detailed knowledge of the current distribution can be useful for the diagnostics of HTS conductors. The lateral current distribution was

  17. Electrical resistivity, Hall coefficient and electronic mobility in indium antimonide at different magnetic fields and temperatures

    Jee, Madan; Prasad, Vijay; Singh, Amita

    1995-01-01

    The electrical resistivity, Hall coefficient and electronic mobility of n-type and p-type crystals of indium antimonide have been measured from 25 degC-100 degC temperature range. It has been found by this measurement that indium antimonide is a compound semiconductor with a high mobility 10 6 cm 2 /V.S. The Hall coefficient R H was measured as a function of magnetic field strength H for a number of samples of both p and n-type using fields up to 12 kilo gauss. The Hall coefficient R h decreases with increasing magnetic fields as well as with increase in temperature of the sample. The electric field is more effective on samples with high mobilities and consequently the deviations from linearity are manifested at comparatively low values of the electric field. The measurement of R H in weak and strong magnetic fields makes it possible to determine the separate concentration of heavy and light holes. Measured values of Hall coefficient and electrical resistivity show that there is a little variation of ρ and R h with temperatures as well as with magnetic fields. (author). 12 refs., 5 tabs

  18. Planar Hall effect and magnetic anisotropy in epitaxially strained chromium dioxide thin films

    Goennenwein, S.T.B.; Keizer, R.S.; Schink, S.W.; Van Dijk, I.; Klapwijk, T.M.; Miao, G.X.; Xiao, G.; Gupta, A.

    2007-01-01

    We have measured the in-plane anisotropic magnetoresistance of 100?nm thick CrO2 thin films at liquid He temperatures. In low magnetic fields H, both the longitudinal and the transverse (planar Hall) resistance show abrupt switches, which characteristically depend on the orientation of H. All the

  19. A scanning Hall probe microscope for high resolution magnetic imaging down to 300 mK

    Khotkevych, V. V.; Bending, S. J.; Milosevic, M. V.

    2008-01-01

    We present the design, construction, and performance of a low-temperature scanning Hall probe microscope with submicron lateral resolution and a large scanning range. The detachable microscope head is mounted on the cold flange of a commercial 3 He-refrigerator (Oxford Instruments, Heliox VT-50) and operates between room temperature and 300 mK. It is fitted with a three-axis slip-stick nanopositioner that enables precise in situ adjustment of the probe location within a 6x6x7 mm 3 space. The local magnetic induction at the sample surface is mapped with an easily changeable microfabricated Hall probe [typically GsAs/AlGaAs or AlGaAs/InGaAs/GaAs Hall sensors with integrated scanning tunnel microscopy (STM) tunneling tips] and can achieve minimum detectable fields ≥10 mG/Hz 1/2 . The Hall probe is brought into very close proximity to the sample surface by sensing and controlling tunnel currents at the integrated STM tip. The instrument is capable of simultaneous tunneling and Hall signal acquisition in surface-tracking mode. We illustrate the potential of the system with images of superconducting vortices at the surface of a Nb thin film down to 372 mK, and also of labyrinth magnetic-domain patterns of an yttrium iron garnet film captured at room temperature.

  20. Planar Hall effect sensor bridge geometries optimized for magnetic bead detection

    Østerberg, Frederik Westergaard; Rizzi, Giovanni; Henriksen, Anders Dahl

    2014-01-01

    Novel designs of planar Hall effect bridge sensors optimized for magnetic bead detection are presented and characterized. By constructing the sensor geometries appropriately, the sensors can be tailored to be sensitive to an external magnetic field, the magnetic field due to beads being magnetized...... by the sensor self-field or a combination thereof. The sensors can be made nominally insensitive to small external magnetic fields, while being maximally sensitive to magnetic beads, magnetized by the sensor self-field. Thus, the sensor designs can be tailored towards specific applications with minimal...... of the dynamic magnetic response of suspensions of magnetic beads with a nominal diameter of 80 nm are performed. Furthermore, a method to amplify the signal by appropriate combinations of multiple sensor segments is demonstrated....

  1. The effect of interfacial intermixing on magnetization and anomalous Hall effect in Co/Pd multilayers

    Guo, Zaibing

    2015-05-01

    The effect of interfacial intermixing on magnetization and anomalous Hall effect (AHE) in Co/Pd multilayers is studied by using rapid thermal annealing to enhance the interfacial diffusion. The dependence of saturation magnetization and coercivity on the temperature of rapid thermal annealing at 5 K is discussed. It is found that AHE is closely related to the relative thickness of the Co and Pd layers. Localized paramagnetism has been observed which destroys AHE, while AHE can be enhanced by annealing.

  2. Qualitative models of magnetic field accelerated propagation in a plasma due to the Hall effect

    Kukushkin, A.B.; Cherepanov, K.V.

    2000-01-01

    Two qualitatively new models of accelerated magnetic field propagation (relative to normal diffusion) in a plasma due to the Hall effect are developed within the frames of the electron magnetic hydrodynamics. The first model is based on a simple hydrodynamic approach, which, in particular, reproduces the number of known theoretical results. The second one makes it possible to obtain exact analytical description of the basic characteristics of the magnetic field accelerated propagation in a inhomogeneous iso-thermic plasma, namely, the magnetic field front and its effective width [ru

  3. Anomalous Hall effect in a diluted p-InAs〈Mn〉 magnetic semiconductor

    Arslanov, R. K., E-mail: arslanovr@gmail.com; Arslanov, T. R.; Daunov, M. I. [Russian Academy of Sciences, Institute of Physics, Dagestan Scientific Center (Russian Federation)

    2017-03-15

    The dependences of the electrical resistivity and the Hall coefficient of single-crystal p-InAs〈Mn〉 bulk samples with an acceptor concentration of about 10{sup 18} cm{sup –3} on uniform pressure P = 4–6 GPa at T = 300 K in the region of impurity conduction are quantitatively analyzed. The anomalous Hall effect is shown to occur in p-InAs〈Mn〉. Its contribution is negative and correlates with the deionization of acceptors and an increase in the magnetic susceptibility.

  4. Imaging of topological magnetic pinning in superconductor-ferrimagnet bilayer with scanning Hall microscopy

    Marchevsky, M; Higgins, M J; Bhattacharya, S; Fratello, V J

    2011-01-01

    In a superconducting film deposited on ferromagnetic substrate with perpendicular magnetic anisotropy, vortex matter is confined by the magnetic potential landscape. Using scanning Hall microscopy we visualize flux accumulation and removal in a superconductor-ferrimagnet (S/F) bilayer prepared by rf sputtering of thin niobium film on bismuth-doped rare-earth iron garnet. Penetration of the perpendicular magnetic field in the S/F bilayer follows magnetic domain boundaries and is laterally guided by the garnet magnetization component along the field direction. Upon field removal, localization of the remnant flux at the disclination points of the labyrinthine domain pattern is observed. Our experiments show evidence for strong vortex pinning due the special topology of the domain pattern. Ac magnetic imaging of the transport current distribution in the bilayer reveals complex flow paths commensurate with the magnetic domain boundaries. Topological magnetic pinning can be a useful tool for enhancement and control of critical current in thin film superconductors.

  5. Imaging of topological magnetic pinning in superconductor-ferrimagnet bilayer with scanning Hall microscopy

    Marchevsky, M [Department of Physics, Syracuse University, Syracuse, NY 12344 (United States); Higgins, M J [Princeton High School, Princeton, NJ 08540 (United States); Bhattacharya, S [Tata Institute of Fundamental Research, Mumbai 400 005 (India); Fratello, V J, E-mail: mmartchevskii@lbl.gov [Integrated Photonics, Inc., Hillsborough, NJ 08844 (United States)

    2011-02-15

    In a superconducting film deposited on ferromagnetic substrate with perpendicular magnetic anisotropy, vortex matter is confined by the magnetic potential landscape. Using scanning Hall microscopy we visualize flux accumulation and removal in a superconductor-ferrimagnet (S/F) bilayer prepared by rf sputtering of thin niobium film on bismuth-doped rare-earth iron garnet. Penetration of the perpendicular magnetic field in the S/F bilayer follows magnetic domain boundaries and is laterally guided by the garnet magnetization component along the field direction. Upon field removal, localization of the remnant flux at the disclination points of the labyrinthine domain pattern is observed. Our experiments show evidence for strong vortex pinning due the special topology of the domain pattern. Ac magnetic imaging of the transport current distribution in the bilayer reveals complex flow paths commensurate with the magnetic domain boundaries. Topological magnetic pinning can be a useful tool for enhancement and control of critical current in thin film superconductors.

  6. Hall effect upon small wavelength kink instabilities near an elliptic magnetic stagnation line

    Spies, G.O.; Faghihi, M.

    1985-12-01

    To explore the question whether the Hall effect removes the unphysical feature of ideal magnetohydrodynamics of predicting unstable small wavelenght kinks near any elliptic magnetic stagnation line, a spectral analysis is performed of the motion of an incompressible plasma about cylindrical Z-pinch equilibria with circular sections. The eigenvalue loci in the complex frequency plane are derived for the equilibrium with constant current density. These show that every particular mode becomes stable as the Hall parameter exceeds a critical value. However, this critical value is a decreasing function of the ideal growth rate and has a pole at the origin, implying that there always remains an infinite reservoir of slowly growing instabilities. Correspondingly, for equilibiria with arbitrary current distributions, the stability criterion is unaffected by the Hall term. (author)

  7. A Magnetic Tracking System based on Highly Sensitive Integrated Hall Sensors

    Schlageter, Vincent; Drljaca, Predrag; Popovic, Radivoje S.; KuČERA, Pavel

    A tracking system with five degrees of freedom based on a 2D-array of 16 Hall sensors and a permanent magnet is presented in this paper. The sensitivity of the Hall sensors is increased by integrated micro- and external macro-flux-concentrators. Detection distance larger than 20cm (during one hour without calibration) is achieved using a magnet of 0.2cm3. This corresponds to a resolution of the sensors of 0.05µTrms. The position and orientation of the marker is displayed in real time at least 20 times per second. The sensing system is small enough to be hand-held and can be used in a normal environment. This presented tracking system has been successfully applied to follow a small swallowed magnet through the entire human digestive tube. This approach is extremely promising as a new non-invasive diagnostic technique in gastro-enterology.

  8. Current-Nonlinear Hall Effect and Spin-Orbit Torque Magnetization Switching in a Magnetic Topological Insulator

    Yasuda, K.; Tsukazaki, A.; Yoshimi, R.; Kondou, K.; Takahashi, K. S.; Otani, Y.; Kawasaki, M.; Tokura, Y.

    2017-09-01

    The current-nonlinear Hall effect or second harmonic Hall voltage is widely used as one of the methods for estimating charge-spin conversion efficiency, which is attributed to the magnetization oscillation by spin-orbit torque (SOT). Here, we argue the second harmonic Hall voltage under a large in-plane magnetic field with an in-plane magnetization configuration in magnetic-nonmagnetic topological insulator (TI) heterostructures, Crx (Bi1 -ySby )2 -xTe3 /(Bi1 -ySby )2Te3 , where it is clearly shown that the large second harmonic voltage is governed not by SOT but mainly by asymmetric magnon scattering without macroscopic magnetization oscillation. Thus, this method does not allow an accurate estimation of charge-spin conversion efficiency in TI. Instead, the SOT contribution is exemplified by current pulse induced nonvolatile magnetization switching, which is realized with a current density of 2.5 ×1010 A m-2 , showing its potential as a spintronic material.

  9. Enhancement of perpendicular magnetic anisotropy and anomalous hall effect in Co/Ni multilayers

    Liu, Yiwei; Zhang, Jingyan, E-mail: jyzhang@ustb.edu.cn; Jiang, Shaolong; Liu, Qianqian; Li, Xujing; Yu, Guanghua, E-mail: ghyu@mater.ustb.edu.cn

    2016-12-15

    The perpendicular magnetic anisotropy (PMA) and the anomalous Hall effect (AHE) in Co/Ni multilayer were optimized by manipulating its interface structure (inducing HfO{sub 2} capping layer and Pt insertion) and post-annealing treatment. A strong PMA can be obtained in Co/Ni multilayers with HfO{sub 2} capping layer even after annealing at 400 °C. The heavy metal Hf may improve the interfacial spin-orbit coupling, which responsible for the enhanced PMA and high annealing stability. Moreover, the multilayer containing HfO{sub 2} capping layer also exhibited high saturation anomalous Hall resistivity through post-annealing, which is 0.85 μΩ cm after annealing at 375 °C, 211% larger than in the sample at deposited state which is only 0.27 μΩ cm. The enhancement of AHE is mainly attributed to the interface scattering through post-annealing treatment. - Highlights: • The perpendicular magnetic anisotropy and anomalous Hall effect of Co/Ni multilayer films were studied. • The PMA thermal stability of the Co/Ni ML can be enhanced by HfO{sub 2} capping layer and Pt insertion. • The anomalous Hall resistivity of Co/Ni ML covered by HfO{sub 2} was enhanced by post-annealing treatment.

  10. Giant anomalous Hall angle in a half-metallic magnetic Weyl semimetal

    Liu, Enke; Sun, Yan; Müchler, Lukas; Sun, Aili; Jiao, Lin; Kroder, Johannes; Süß, Vicky; Borrmann, Horst; Wang, Wenhong; Schnelle, Walter; Wirth, Steffen; Goennenwein, Sebastian T. B.; Felser, Claudia

    2017-01-01

    Magnetic Weyl semimetals (WSMs) with time reversal symmetry breaking exhibit Weyl nodes that act as monopoles of Berry curvature and are thus expected to generate a large intrinsic anomalous Hall effect (AHE). However, in most magnetic WSMs, the Weyl nodes are located far from the Fermi energy, making it difficult to observe the Weyl-node dominated intrinsic AHE in experiments. Here we report a novel half-metallic magnetic WSM in the Kagome-lattice Shandite compound Co3Sn2S2. The Weyl nodes, ...

  11. Photoinduced quantum spin and valley Hall effects, and orbital magnetization in monolayer MoS2

    Tahir, M.

    2014-09-22

    We theoretically demonstrate that 100% valley-polarized transport in monolayers of MoS2 and other group-VI dichalcogenides can be obtained using off-resonant circularly polarized light. By tuning the intensity of the off-resonant light the intrinsic band gap in one valley is reduced, while it is enhanced in the other valley, enabling single valley quantum transport. As a consequence, we predict (i) enhancement of the longitudinal electrical conductivity, accompanied by an increase in the spin polarization of the flowing electrons, (ii) enhancement of the intrinsic spin Hall effect, together with a reduction of the intrinsic valley Hall effect, and (iii) enhancement of the orbital magnetic moment and orbital magnetization. These mechanisms provide appealing opportunities to the design of nanoelectronics based on dichalcogenides.

  12. Photoinduced quantum spin and valley Hall effects, and orbital magnetization in monolayer MoS2

    Tahir, M.; Manchon, Aurelien; Schwingenschlö gl, Udo

    2014-01-01

    We theoretically demonstrate that 100% valley-polarized transport in monolayers of MoS2 and other group-VI dichalcogenides can be obtained using off-resonant circularly polarized light. By tuning the intensity of the off-resonant light the intrinsic band gap in one valley is reduced, while it is enhanced in the other valley, enabling single valley quantum transport. As a consequence, we predict (i) enhancement of the longitudinal electrical conductivity, accompanied by an increase in the spin polarization of the flowing electrons, (ii) enhancement of the intrinsic spin Hall effect, together with a reduction of the intrinsic valley Hall effect, and (iii) enhancement of the orbital magnetic moment and orbital magnetization. These mechanisms provide appealing opportunities to the design of nanoelectronics based on dichalcogenides.

  13. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    Granovsky, Alexander B.; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-01-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed

  14. Influence of grain size on the extraordinary Hall effect in magnetic granular alloys

    Granovsky, Alexander B. E-mail: granov@magn.ru; Kalitsov, Alan V.; Khanikaev, Alexander B.; Kioussis, Nicholas

    2003-03-01

    A quantum statistical theory of the influence of grain size on the residual extraordinary Hall effect (EHE) in magnetic metal-insulator granular alloys is presented. It is shown that under certain conditions the quasi-classical size-effect (QSE) can lead to similar behaviors of EHE in metal-metal and metal-insulator alloys. The possible dependences of EHE coefficient on the grain size and the role of the QSE in the giant EHE in nanocomposites are discussed.

  15. Orbital magnetic moment and extrinsic spin Hall effect for iron impurities in gold

    Shick, Alexander; Kolorenč, Jindřich; Janiš, Václav; Lichtenstein, A.I.

    2011-01-01

    Roč. 84, č. 11 (2011), "113112-1"-"113112-4" ISSN 1098-0121 R&D Projects: GA ČR(CZ) GAP204/10/0330; GA AV ČR IAA100100912 Institutional research plan: CEZ:AV0Z10100520 Keywords : spin Hall effect * XMCD Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.691, year: 2011 http://prb.aps.org/abstract/PRB/v84/i11/e113112

  16. Interlayer Hall effect in double quantum wells subject to in-plane magnetic fields

    Kolorenč, Jindřich; Smrčka, Ludvík; Středa, Pavel

    2002-01-01

    Roč. 66, č. 8 (2002), s. 085301-1 - 085301-7 ISSN 0163-1829 R&D Projects: GA ČR GA202/01/0754; GA ČR GA202/01/0764 Institutional research plan: CEZ:AV0Z1010914 Keywords : double - layer two-dimensional electron system * magnetotransport * Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.327, year: 2002

  17. Interplay of Rashba effect and spin Hall effect in perpendicular Pt/Co/MgO magnetic multilayers

    赵云驰; 杨光; 董博闻; 王守国; 王超; 孙阳; 张静言; 于广华

    2016-01-01

    The interplay of the Rashba effect and the spin Hall effect originating from current induced spin–orbit coupling was investigated in the as-deposited and annealed Pt/Co/MgO stacks with perpendicular magnetic anisotropy. The above two effects were analyzed based on Hall measurements under external magnetic fields longitudinal and vertical to dc current, respectively. The coercive field as a function of dc current in vertical mode with only the Rashba effect involved decreases due to thermal annealing. Meanwhile, spin orbit torques calculated from Hall resistance with only the spin Hall effect involved in the longitudinal mode decrease in the annealed sample. The experimental results prove that the bottom Pt/Co interface rather than the Co/MgO top one plays a more critical role in both Rashba effect and spin Hall effect.

  18. Hall C

    Federal Laboratory Consortium — Hall C's initial complement of equipment (shown in the figure), includes two general-purpose magnetic spectrometers. The High Momentum Spectrometer (HMS) has a large...

  19. Hall B927, Work on new LHC magnet prototype.

    Maximilien Brice

    2011-01-01

    Photo 1 : Presse de Collaring vertical pour le quadrupole d’insertion MQXC (Juan Carlos Perez). Photo 8 : Presse de polymérisation équipée pour les bobines MQXC. Photo 10 : Bobine en Nb$_{3}$Sn pour le SMC (Short Model Coil) dans le cadre du programme HFM (High Field Magnets). Photo 19 : Mise en place des jauges de contrainte sur l’outillage de mesure de module élastique pour les bobines du quadrupole MQXC (Eugenie Gallay). Photo 21 : Installation du programme d’acquisition de données pour l’outillage de mesure du module élastique des bobines pour le quadrupole MQXC (Andrey Kuzmin). Photo 24 : Bobines modèle réduit du quadrupole MQXC. Photo 28 : Equipement du mandrin de bobinage pour les bobines du quadrupole MQXC (Hugues Dupont).

  20. Design and development of a 3 axis magnetic field measurement facility using Hall probe

    Sahoo, Shantonu; Bhattacharyya, Sumantra; Chaddha, Niraj; Mishra, Santosh Kr.; Nandy, Partha P.; Nandi, Chinmay; Bhole, Rajendra B.; Pal, Sarbajit; Pal, Gautam

    2015-01-01

    A 3-axis drive system has been designed and developed in-house to measure the magnetic field with positional accuracy of 0.2 mm in a volume of 1.5 x 1.3 x 0.15 cubic-meter. Hall sensor based magnetometer is used to measure the magnetic field with a precision of 100 μT(1 Gauss). The drive of each axis has linear guide and zero backlash ball screw combination to achieve accurate movement of the hall probe with positional repeatability of +/- 0.2 micron per 50 mm. The hardware and software, also developed in-house, facilitate precise probe positioning and sophisticated visualization of field map. Dedicated microcontroller based motor controllers and encoder read-out cards for each axis have been developed. The facility is integrated with a rich touch-screen based intelligent GUI for automated scanning and data acquisition. This facility can be used for accurate magnetic field mapping of big dipole magnets, solenoids, etc. The facility has been tested successfully to characterize a Dipole Magnet designed for Radioactive Ion Beam (RIB) facility. (author)

  1. Influence of magnetic disorders on quantum anomalous Hall effect in magnetic topological insulator films beyond the two-dimensional limit

    Xing, Yanxia; Xu, Fuming; Cheung, King Tai; Sun, Qing-feng; Wang, Jian; Yao, Yugui

    2018-04-01

    Quantum anomalous Hall effect (QAHE) has been experimentally realized in magnetic topological insulator (MTI) thin films fabricated on magnetically doped {({{Bi}},{{Sb}})}2{{{Te}}}3. In an MTI thin film with the magnetic easy axis along the normal direction (z-direction), orientations of magnetic dopants are randomly distributed around the magnetic easy axis, acting as magnetic disorders. With the aid of the non-equilibrium Green's function and Landauer–Büttiker formalism, we numerically study the influence of magnetic disorders on QAHE in an MTI thin film modeled by a three-dimensional tight-binding Hamiltonian. It is found that, due to the existence of gapless side surface states, QAHE is protected even in the presence of magnetic disorders as long as the z-component of magnetic moment of all magnetic dopants are positive. More importantly, such magnetic disorders also suppress the dissipation of the chiral edge states and enhance the quality of QAHE in MTI films. In addition, the effect of magnetic disorders depends very much on the film thickness, and the optimal influence is achieved at certain thickness. These findings are new features for QAHE in three-dimensional systems, not present in two-dimensional systems.

  2. Oxidized Mn:Ge magnetic semiconductor: Observation of anomalous Hall effect and large magnetoresistance

    Duc Dung, Dang; Choi, Jiyoun; Feng, Wuwei; Cao Khang, Nguyen; Cho, Sunglae

    2018-03-01

    We report on the structural and magneto-transport properties of the as-grown and oxidized Mn:Ge magnetic semiconductors. Based on X-ray diffraction and X-ray photoelectron spectroscopy results, the samples annealed at 650 and 700 °C became fully oxidized and the chemical binding energies of Mn was found to be Mn3O4. Thus, the system became Mn3O4 clusters embedded in Ge1-yOy. The as-grown sample showed positive linear Hall effect and negligible negative magnetoresistance (MR), which trend remained for the sample annealed up to 550 °C. Interestingly, for the samples annealed at above 650 °C, we observed the anomalous Hall effect around 45 K and the giant positive MR, which are respectively 59.2% and 78.5% at 7 kOe annealed at 650 °C and 700 °C.

  3. High magneticfield test of Bismuth Hall sensors for ITER steady state magnetic diagnostic

    Ďuran, Ivan; Entler, Slavomír; Kohout, Michal; Kocan, M.; Vayakis, G.

    2016-01-01

    Roč. 87, č. 11 (2016), č. článku 11D446. ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics (HTPD2016) /21./. Madison, Wisconsin, 05.06.2016-09.06.2016] R&D Projects: GA MŠk LG14002 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Hall sensors * ITER * Hall effect * magnetic diagnostic Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (FZU-D) OBOR OECD: 2.11 Other engineering and technologies; 2.11 Other engineering and technologies (FZU-D) Impact factor: 1.515, year: 2016 http://scitation.aip.org/content/aip/journal/rsi/87/11/10.1063/1.4964435

  4. Ion thruster performance model

    Brophy, J.R.

    1984-01-01

    A model of ion thruster performance is developed for high flux density cusped magnetic field thruster designs. This model is formulated in terms of the average energy required to produce an ion in the discharge chamber plasma and the fraction of these ions that are extracted to form the beam. The direct loss of high energy (primary) electrons from the plasma to the anode is shown to have a major effect on thruster performance. The model provides simple algebraic equations enabling one to calculate the beam ion energy cost, the average discharge chamber plasma ion energy cost, the primary electron density, the primary-to-Maxwellian electron density ratio and the Maxwellian electron temperature. Experiments indicate that the model correctly predicts the variation in plasma ion energy cost for changes in propellant gas (Ar, Kr, and Xe), grid transparency to neutral atoms, beam extraction area, discharge voltage, and discharge chamber wall temperature

  5. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-24

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  6. In-plane current induced domain wall nucleation and its stochasticity in perpendicular magnetic anisotropy Hall cross structures

    Sethi, P.; Murapaka, C.; Lim, G. J.; Lew, W. S.

    2015-01-01

    Hall cross structures in magnetic nanowires are commonly used for electrical detection of magnetization reversal in which a domain wall (DW) is conventionally nucleated by a local Oersted field. In this letter, we demonstrate DW nucleation in Co/Ni perpendicular magnetic anisotropy nanowire at the magnetic Hall cross junction. The DWs are nucleated by applying an in-plane pulsed current through the nanowire without the need of a local Oersted field. The change in Hall resistance, detected using anomalous Hall effect, is governed by the magnetic volume switched at the Hall junction, which can be tuned by varying the magnitude of the applied current density and pulse width. The nucleated DWs are driven simultaneously under the spin transfer torque effect when the applied current density is above a threshold. The possibility of multiple DW generation and variation in magnetic volume switched makes nucleation process stochastic in nature. The in-plane current induced stochastic nature of DW generation may find applications in random number generation

  7. The Inner Structure of Collisionless Magnetic Reconnection: The Electron-Frame Dissipation Measure and Hall Fields

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha

    2011-01-01

    It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron s rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.

  8. The inner structure of collisionless magnetic reconnection: The electron-frame dissipation measure and Hall fields

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha

    2011-01-01

    It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron's rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.

  9. The inner structure of collisionless magnetic reconnection: The electron-frame dissipation measure and Hall fields

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex; Black, Carrie; Kuznetsova, Masha [NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States)

    2011-12-15

    It was recently proposed that the electron-frame dissipation measure, the energy transfer from the electromagnetic field to plasmas in the electron's rest frame, identifies the dissipation region of collisionless magnetic reconnection [Zenitani et al., Phys. Rev. Lett. 106, 195003 (2011)]. The measure is further applied to the electron-scale structures of antiparallel reconnection, by using two-dimensional particle-in-cell simulations. The size of the central dissipation region is controlled by the electron-ion mass ratio, suggesting that electron physics is essential. A narrow electron jet extends along the outflow direction until it reaches an electron shock. The jet region appears to be anti-dissipative. At the shock, electron heating is relevant to a magnetic cavity signature. The results are summarized to a unified picture of the single dissipation region in a Hall magnetic geometry.

  10. Influence of Shape Anisotropy on Magnetization Dynamics Driven by Spin Hall Effect

    X. G. Li

    2016-01-01

    Full Text Available As the lateral dimension of spin Hall effect based magnetic random-access memory (SHE-RAM devices is scaled down, shape anisotropy has varied influence on both the magnetic field and the current-driven switching characteristics. In this paper, we study such influences on elliptic film nanomagnets and theoretically investigate the switching characteristics for SHE-RAM element with in-plane magnetization. The analytical expressions for critical current density are presented and the results are compared with those obtained from macrospin and micromagnetic simulation. It is found that the key performance indicators for in-plane SHE-RAM, including thermal stability and spin torque efficiency, are highly geometry dependent and can be effectively improved by geometric design.

  11. Magnetic Chern bands and triplon Hall effect in an extended Shastry-Sutherland model

    Malki, M.; Schmidt, K. P.

    2017-05-01

    We study topological properties of one-triplon bands in an extended Shastry-Sutherland model relevant for the frustrated quantum magnet SrCu2(BO3)2 . To this end perturbative continuous unitary transformations are applied about the isolated dimer limit allowing us to calculate the one-triplon dispersion up to high order in various couplings including intra- and interdimer Dzyaloshinskii-Moriya interactions and a general uniform magnetic field. We determine the Berry curvature and the Chern number of the different one-triplon bands. We demonstrate the occurrence of Chern numbers ±1 and ±2 for the case that two components of the magnetic field are finite. Finally, we also calculate the triplon Hall effect arising at finite temperatures.

  12. Resource Review Board Celebrates the Magnet and Liquid Argon Barrel Tests in Hall 180

    Jenni, P.

    2004-01-01

    Address by the Director-General, R. Aymar, in front of the barrel cryostat. On 25th October 2004 many RRB delegates and guests, ATLAS National Contact Physicists, and colleagues from far and from CERN working on the Liquid Argon calorimeter and the magnet system were gathering in Hall 180 to celebrate the major milestones reached during the past months in this hall: the successful cold tests of the first barrel toroid coil, of the solenoid, and of the barrel Liquid Argon calorimeter. About 250 people spent a relaxing evening after the speeches by the Director-General R. Aymar and by the spokesperson who gave the following address: 'It is a great pleasure for me to welcome you all here in Hall 180 in the name of the ATLAS Collaboration! With a few words I would like to recall why we are actually here today to share, what I hope, is a relaxed and joyful moment. To concentrate it all in one sentence I could say: To thank cordially all the main actors for the enormous work accomplished here over many years,...

  13. Relativistic quantum Hall conductivity for 3D and 2D electron plasma in an external magnetic field

    Gonzalez Felipe, R.; Perez Martinez, A.; Perez-Rojas, H.

    1990-05-01

    The complete antisymmetric form of the conductivity tensor in the static limit, as well as the expression for the Hall conductivity, is obtained for the relativistic 3D and 2D electron gas in a magnetic field. The non-relativistic 2D limit is also discussed. The typical step form of the 2D Hall conductivity at zero temperature is obtained under the simple hypothesis of constancy of the chemical potential. (author). 6 refs, 1 fig

  14. Measurements of Hk and Ms in thin magnetic films by the angular dependence of the planar Hall effect

    Vatskicheva, M.; Vatskichev, L.

    1987-11-01

    It is shown that the angular dependences of the planar Hall effect measured with infinite magnetic field and with magnetic field H⩾ Hk have an intersection point and this fact is enough for measuring the anisotropy field Hk applying the method presented by Pastor, Ferreiro and Torres in J. Magn. Magn. Mat. 53 (1986) 349, 62 (1986) 101. The scaling of the Hall tension U proportional to M2s in mV/Am -1 gives a possibility for calculating the Ms-values of the films. These assumptions are verified for NiFe- and NiFeGe films with a uniaxial magnetic anisotropy.

  15. Development of Bismuth Hall sensors for ITER steady state magnetic diagnostics.

    Ďuran, Ivan; Entler, Slavomír; Kočan, M.; Kohout, Michal; Viererbl, L.; Mušálek, Radek; Chráska, Tomáš; Vayakis, G.

    2017-01-01

    Roč. 123, November (2017), s. 690-694 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] R&D Projects: GA MŠk LG14002 Institutional support: RVO:61389021 ; RVO:68378271 Keywords : ITER * Magnetic diagnostic * Hall sensor * Bismuth * Neutron irradiation * Radiation hardness Subject RIV: JF - Nuclear Energetics; JF - Nuclear Energetics (FZU-D) OBOR OECD: Nuclear related engineering; Nuclear related engineering (FZU-D) Impact factor: 1.319, year: 2016 http://www.sciencedirect.com/science/article/pii/S0920379617306956

  16. Measurement of the Hall scattering factor in 4H SiC epilayers from 40 K to 290 K and up to magnetic fields of nine Tesla

    Rutsch, G. [Pittsburgh Univ., PA (United States). Dept. of Physics and Astronomy]|[Dept. of Electrical Engineering, Univ. of Pittsburgh, PA (United States); Devaty, R.P.; Choyke, W.J. [Pittsburgh Univ., PA (United States). Dept. of Physics and Astronomy; Langer, D.W. [Dept. of Electrical Engineering, Univ. of Pittsburgh, PA (United States); Rowland, L.B. [Northrop Grumman Science and Technology Center, Pittsburgh, PA (United States)

    1998-06-01

    In order to accurately extract material properties from temperature dependent Hall measurements, it is necessary to know the Hall scattering factor (r{sub H}), among other material properties. We present measurements of the Hall scattering factor on nitrogen doped 4H SiC epitaxial layers from 40 K to room temperature in magnetic fields up to 9 Tesla. The measured effective Hall scattering factor varies from 0.91 to 1.21. (orig.) 6 refs.

  17. High Fidelity Multi-Objective Design Optimization of a Downscaled Cusped Field Thruster

    Thomas Fahey

    2017-11-01

    Full Text Available The Cusped Field Thruster (CFT concept has demonstrated significantly improved performance over the Hall Effect Thruster and the Gridded Ion Thruster; however, little is understood about the complexities of the interactions and interdependencies of the geometrical, magnetic and ion beam properties of the thruster. This study applies an advanced design methodology combining a modified power distribution calculation and evolutionary algorithms assisted by surrogate modeling to a multi-objective design optimization for the performance optimization and characterization of the CFT. Optimization is performed for maximization of performance defined by five design parameters (i.e., anode voltage, anode current, mass flow rate, and magnet radii, simultaneously aiming to maximize three objectives; that is, thrust, efficiency and specific impulse. Statistical methods based on global sensitivity analysis are employed to assess the optimization results in conjunction with surrogate models to identify key design factors with respect to the three design objectives and additional performance measures. The research indicates that the anode current and the Outer Magnet Radius have the greatest effect on the performance parameters. An optimal value for the anode current is determined, and a trend towards maximizing anode potential and mass flow rate is observed.

  18. Spin Hall magnetoresistance at the interface between platinum and cobalt ferrite thin films with large magnetic anisotropy

    Takeshi Tainosho

    2017-05-01

    Full Text Available The recently discovered spin Hall magnetoresistance (SMR effect is a useful means to obtain information on the magnetization process at the interface between a nonmagnetic metal and ferromagnetic insulators. We report the SMR measurements at the interface between platinum and cobalt ferrite thin films for samples with two different preferential directions of magnetization (out-of-plane and in-plane. The directional difference of the magnetic easy axis does not seem to influence the value of SMR.

  19. Scanning Hall Probe Microscopy of Magnetic Vortices inVery Underdoped yttrium-barium-copper-oxide

    Guikema, Janice Wynn; /SLAC, SSRL

    2005-12-02

    Since their discovery by Bednorz and Mueller (1986), high-temperature cuprate superconductors have been the subject of intense experimental research and theoretical work. Despite this large-scale effort, agreement on the mechanism of high-T{sub c} has not been reached. Many theories make their strongest predictions for underdoped superconductors with very low superfluid density n{sub s}/m*. For this dissertation I implemented a scanning Hall probe microscope and used it to study magnetic vortices in newly available single crystals of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} (Liang et al. 1998, 2002). These studies have disproved a promising theory of spin-charge separation, measured the apparent vortex size (an upper bound on the penetration depth {lambda}{sub ab}), and revealed an intriguing phenomenon of ''split'' vortices. Scanning Hall probe microscopy is a non-invasive and direct method for magnetic field imaging. It is one of the few techniques capable of submicron spatial resolution coupled with sub-{Phi}{sub 0} (flux quantum) sensitivity, and it operates over a wide temperature range. Chapter 2 introduces the variable temperature scanning microscope and discusses the scanning Hall probe set-up and scanner characterizations. Chapter 3 details my fabrication of submicron GaAs/AlGaAs Hall probes and discusses noise studies for a range of probe sizes, which suggest that sub-100 nm probes could be made without compromising flux sensitivity. The subsequent chapters detail scanning Hall probe (and SQUID) microscopy studies of very underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} crystals with T{sub c} {le} 15 K. Chapter 4 describes two experimental tests for visons, essential excitations of a spin-charge separation theory proposed by Senthil and Fisher (2000, 2001b). We searched for predicted hc/e vortices (Wynn et al. 2001) and a vortex memory effect (Bonn et al. 2001) with null results, placing upper bounds on the vison energy inconsistent with

  20. A fully integrated GaAs-based three-axis Hall magnetic sensor exploiting self-positioned strain released structures

    Todaro, Maria T; Sileo, Leonardo; Epifani, Gianmichele; Tasco, Vittorianna; Cingolani, Roberto; De Vittorio, Massimo; Passaseo, Adriana

    2010-01-01

    In this work, we demonstrate a fully integrated three-axis Hall magnetic sensor by exploiting microfabrication technologies applied to a GaAs-based heterostructure. This allows us to obtain, by the same process, three mutually orthogonal sensors: an in-plane Hall sensor and two out-of-plane Hall sensors. The micromachined devices consist of a two-dimensional electron gas AlGaAs/InGaAs/GaAs multilayer which represents the sensing structure, grown on the top of an InGaAs/GaAs strained bilayer. After the release from the substrate, the strained bilayer acts as a hinge for the multilayered structure allowing the out-of-plane self-positioning of devices. Both the in-plane and out-of-plane Hall sensors show a linear response versus the magnetic field with a sensitivity for current-biased devices higher than 1000 V A −1 T −1 , corresponding to an absolute sensitivity more than 0.05 V T −1 at 50 µA. Moreover, Hall voltage measurements, as a function of the mechanical angle for both in-plane and out-of-plane sensors, demonstrate the potential of such a device for measurements of the three vector components of a magnetic field

  1. Studies of Non-Conventional Configuration Closed Electron Drift Thrusters

    Y. Raitses; D. Staack; A. Smirnov; A.A. Litvak; L.A. Dorf; T. Graves; N.J. Fisch

    2001-01-01

    In this paper, we review recent results obtained for segmented electrode and cylindrical Hall thrusters. A low sputtering graphite segmented electrode, placed at the exit of the annular thruster, is shown to affect the plasma potential distribution in the ceramic channel. This effect appears to be correlated with an observed plume reduction compared to a conventional, nonsegmented thruster. In preliminary experiments a 3-cm thruster was operated in the 50-200 W power range. Two operating regimes, stable and oscillating, were observed and investigated

  2. Surface wave propagation in steady ideal Hall-magnetohydrodynamic magnetic slabs

    Miteva, Rossitsa; Zhelyazkov, Ivan; Erdelyi, Robert

    2003-01-01

    This paper studies the dispersion characteristics of sausage and kink surface waves traveling along a plasma layer within the framework of Hall magnetohydrodynamics in steady state. While in a static plasma slab these waves are Alfven ones (their phase velocities are close to the Alfven speed in the layer); in a slab with steady flows they may become super Alfvenic waves. Moreover, there exist two types of waves: forward and backward ones bearing in mind that the flow velocity defines the positive (forward) direction. As a typical representative of a magnetic slab in steady state here is considered a solar wind flux rope with a finite β plasma flow (typically β∼1).The forward sausage surface mode exhibits an increased dispersion at small wave numbers while the forward kink waves become practically non-dispersive. Both backward propagating sausage and kink surface modes show an increased dispersion for large wave numbers

  3. A novel diagnosis method for a Hall plates-based rotary encoder with a magnetic concentrator.

    Meng, Bumin; Wang, Yaonan; Sun, Wei; Yuan, Xiaofang

    2014-07-31

    In the last few years, rotary encoders based on two-dimensional complementary metal oxide semiconductors (CMOS) Hall plates with a magnetic concentrator have been developed to measure contactless absolute angle. There are various error factors influencing the measuring accuracy, which are difficult to locate after the assembly of encoder. In this paper, a model-based rapid diagnosis method is presented. Based on an analysis of the error mechanism, an error model is built to compare minimum residual angle error and to quantify the error factors. Additionally, a modified particle swarm optimization (PSO) algorithm is used to reduce the calculated amount. The simulation and experimental results show that this diagnosis method is feasible to quantify the causes of the error and to reduce iteration significantly.

  4. Coaxial plasma thrusters for high specific impulse propulsion

    Schoenberg, Kurt F.; Gerwin, Richard A.; Barnes, Cris W.; Henins, Ivars; Mayo, Robert; Moses, Ronald, Jr.; Scarberry, Richard; Wurden, Glen

    1991-01-01

    A fundamental basis for coaxial plasma thruster performance is presented and the steady-state, ideal MHD properties of a coaxial thruster using an annular magnetic nozzle are discussed. Formulas for power usage, thrust, mass flow rate, and specific impulse are acquired and employed to assess thruster performance. The performance estimates are compared with the observed properties of an unoptimized coaxial plasma gun. These comparisons support the hypothesis that ideal MHD has an important role in coaxial plasma thruster dynamics.

  5. Multi-Valued Planar Hall Resistance Manipulated by Current Induced Magnetic Field in Fe Films Grown on GaAs(001) Substrates

    Khym, Sungwon; Yoo, Taehee; Lee, Hakjoon; Lee, Sangyeop; Lee, Sanghoon; Liu, Xinyu; Furdyna, Jacek K.; Lee, Dong Uk; Kim, Eun Kyu

    2012-09-01

    A Hall device was fabricated from single-crystal Fe film having two in-plane magnetic easy axes. Planar Hall resistance measured by sequential application of current pulses to the metal strip that was deposited on the top of a Hall bar showed a hysteresis similar to that observed by scanning an external magnetic field. It was shown that discrete Hall resistance values in the hysteresis, which correspond to specific multidomain structures in Fe film, can be created by the application of appropriate sequences of current pulses to the metal strip, and can thus be used for read/write logic applications.

  6. Cryogenic microsize Hall sensors

    Kvitkovic, J.; Polak, M.

    1993-01-01

    Hall sensors have a variety of applications in magnetic field measurements. The active area of the Hall sensor does not play an important role in measuring of homogeneous magnetic field. Actually Hall sensors are widely used to measure profiles of magnetic fields produced by magnetization currents in samples of HTC superconductors, as well as of LTC ones. Similar techniques are used to measure magnetization of both HTC and LTC superconductors. In these cases Hall sensor operates in highly inhomogeneous magnetic fields. Because of that, Hall sensors with very small active area are required. We developed and tested Hall sensors with active area 100 μm x 100 μm - type M and 50 μm x 50 μm - type V. Here we report on the most imporant parameters of these units, as well as on their properties as differential magnetometer. (orig.)

  7. Large intrinsic anomalous Hall effect in half-metallic ferromagnet Co3Sn2S2 with magnetic Weyl fermions

    Wang, Qi; Xu, Yuanfeng; Lou, Rui; Liu, Zhonghao; Li, Man; Huang, Yaobo; Shen, Dawei; Weng, Hongming; Wang, Shancai; Lei, Hechang

    2017-01-01

    The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspect in condensed matter physics and has been controversial for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berry curvature of occupied electronic states. In a magnetic Weyl semimetal with broken time-reversal symmetry, there are significant contributions on Berry curvature around Weyl nodes, which would lead to a large intrinsic AHE. Here, we report the la...

  8. Asymmetry of the Ion Diffusion Region Hall Electric and Magnetic Fields during Guide Field Reconnection: Observations and Comparison with Simulations

    Eastwood, J. P.; Shay, M. A.; Phan, T. D.; Oieroset, M.

    2010-01-01

    In situ measurements of magnetic reconnection in the Earth's magnetotail are presented showing that even a moderate guide field (20% of the reconnecting field) considerably distorts ion diffusion region structure. The Hall magnetic and electric fields are asymmetric and shunted away from the current sheet; an appropriately scaled particle-in-cell simulation is found to be in excellent agreement with the data. The results show the importance of correctly accounting for the effects of the magnetic shear when attempting to identify and study magnetic reconnection diffusion regions in nature.

  9. Magnetoelectrostatic thruster physical geometry tests

    Ramsey, W. D.

    1981-01-01

    Inert gas tests are conducted with several magnetoelectrostatic containment discharge chamber geometries. The configurations tested include three discharge chamber lengths; three boundary magnet patterns; two different flux density magnet materials; hemispherical and conical shaped thrusters having different surface-to-volume ratios; and two and three grid ion optics. Argon mass utilizations of 60 to 79% are attained at 210 to 280 eV/ion in different test configurations. Short hemi thruster configurations are found to produce 70 to 92% xenon mass utilization at 185 to 220 eV/ion.

  10. Excess hall effect in epitaxial YBCO film under moderate magnetic fields, approached by renormalized superconducting fluctuations model

    Puica, I.; Lang, W.; Goeb, W.; Sobolewski, R.

    2002-01-01

    Full text: Measurements of the Hall effect and the resistivity on precisely-patterned YBCO thin film in moderate magnetic fields B from 0.5 to 6 T oriented parallel to the crystallographic c axis reveal a sign reversal of the Hall coefficient for B < 3 T. The data are confronted with the full quantitative expressions given by the renormalized fluctuation model for the excess Hall conductivity. The model offers a satisfactory quantitative approach to the experimental results, for moderate fields and temperatures near the critical region, provided the inhomogeneity of the critical temperature distribution is also taken into account. For lower fields and temperatures, the adequacy of the model is altered by vortex pinning. (author)

  11. The lead-glass electromagnetic calorimeters for the magnetic spectrometers in Hall C at Jefferson Lab

    Mkrtchyan, H. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Carlini, R. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Tadevosyan, V., E-mail: tadevosn@jlab.org [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Arrington, J. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Asaturyan, A. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Christy, M.E. [Hampton University, Hampton, VA 23668 (United States); Dutta, D. [Triangle Universities Nuclear Laboratory and Duke University, Durham, NC 27708 (United States); Ent, R.; Fenker, H.C.; Gaskell, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Horn, T. [Catholic University of America, Washington, DC 20064 (United States); Jones, M.K. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Keppel, C.E. [Hampton University, Hampton, VA 23668 (United States); Mack, D.J. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Malace, S.P. [Triangle Universities Nuclear Laboratory and Duke University, Durham, NC 27708 (United States); Mkrtchyan, A. [A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute), Yerevan 0036 (Armenia); Niculescu, M.I. [James Madison University, Harrisonburg, VA 22807 (United States); Seely, J. [Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, MA (United States); Tvaskis, V. [Hampton University, Hampton, VA 23668 (United States); Wood, S.A. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); and others

    2013-08-11

    The electromagnetic calorimeters of the various magnetic spectrometers in Hall C at Jefferson Lab are presented. For the existing High Momentum Spectrometer (HMS) and Short Orbit Spectrometer (SOS), design considerations, relevant construction information, and comparisons of simulated and experimental results are included. The energy resolution of the HMS and SOS calorimeters is better than σ/E∼6%/√(E) and pion/electron (π/e) separation of about 100:1 has been achieved in the energy range of 1–5 GeV. Good agreement has been observed between the experimental and simulated energy resolutions, but simulations systematically exceed experimentally determined π{sup −} suppression factors by close to a factor of two. For the Super High Momentum Spectrometer (SHMS), presently under construction, details on the design and accompanying GEANT4 simulation efforts are given. The anticipated performance of the new calorimeter is predicted over the full momentum range of the SHMS. Good electron/hadron separation is anticipated by combining the energy deposited in an initial (preshower) calorimeter layer with the total energy deposited in the calorimeter. -- Highlights: • Construction and performance of lead glass calorimeters in JLab/Hall C are presented. • ∼5%/√(E) resolution, ∼100:1π/e separation is achieved in HMS calorimeter in GeV range. • Simulated resolution of the HMS calorimeter is in good agreement with experiment. • Simulated pion suppression of the HMS calorimeter exceeds experiment, by less than 2. • Pion suppression of ∼400:1 is predicted in projected SHMS calorimeter by simulations.

  12. Efficient switching of 3-terminal magnetic tunnel junctions by the giant spin Hall effect of Pt85Hf15 alloy

    Nguyen, Minh-Hai; Shi, Shengjie; Rowlands, Graham E.; Aradhya, Sriharsha V.; Jermain, Colin L.; Ralph, D. C.; Buhrman, R. A.

    2018-02-01

    Recent research has indicated that introducing impurities that increase the resistivity of Pt can enhance the efficiency of the spin Hall torque it generates. Here, we directly demonstrate the usefulness of this strategy by fabricating prototype 3-terminal in-plane-magnetized magnetic tunnel junctions that utilize the spin Hall torque from a Pt85Hf15 alloy and measuring the critical currents for switching. We find that Pt85Hf15 reduces the switching current densities compared to pure Pt by approximately a factor of 2 for both quasi-static ramped current biases and nanosecond-scale current pulses, thereby proving the feasibility of this approach in assisting the development of efficient embedded magnetic memory technologies.

  13. Spintronic logic design methodology based on spin Hall effect–driven magnetic tunnel junctions

    Kang, Wang; Zhang, Youguang; Zhao, Weisheng; Wang, Zhaohao; Klein, Jacques-Olivier; Lv, Weifeng

    2016-01-01

    Conventional complementary metal-oxide-semiconductor (CMOS) technology is now approaching its physical scaling limits to enable Moore’s law to continue. Spintronic devices, as one of the potential alternatives, show great promise to replace CMOS technology for next-generation low-power integrated circuits in nanoscale technology nodes. Until now, spintronic memory has been successfully commercialized. However spintronic logic still faces many critical challenges (e.g. direct cascading capability and small operation gain) before it can be practically applied. In this paper, we propose a standard complimentary spintronic logic (CSL) design methodology to form a CMOS-like logic design paradigm. Using the spin Hall effect (SHE)-driven magnetic tunnel junction (MTJ) device as an example, we demonstrate CSL implementation, functionality and performance. This logic family provides a unified design methodology for spintronic logic circuits and partly solves the challenges of direct cascading capability and small operation gain in the previously proposed spintronic logic designs. By solving a modified Landau–Lifshitz–Gilbert equation, the magnetization dynamics in the free layer of the MTJ is theoretically described and a compact electrical model is developed. With this electrical model, numerical simulations have been performed to evaluate the functionality and performance of the proposed CSL design. Simulation results demonstrate that the proposed CSL design paradigm is rather promising for low-power logic computing. (paper)

  14. MHD Mixed Convection Flow in a Rotating Channel in the Presence of an Inclined Magnetic Field with the Hall Effect

    Mishra, A.; Sharma, B. K.

    2017-11-01

    A numerical study of an oscillatory unsteady MHD flow and heat and mass transfer in a vertical rotating channel with an inclined uniform magnetic field and the Hall effect is carried out. The conservation equations of momentum, energy, and species are formulated in a rotating frame of reference with inclusion of the buoyancy effects and Lorentz forces. The Lorentz forces are determined by using the generalized Ohm law with the Hall parameter taken into account. The obtained coupled partial differential equations are nondimensionalized and solved numerically by using the explicit finite difference method. The effects of various model parameters, like the Hall parameter, Hartmann number, wall suction/injection parameter, rotation parameter, angle of magnetic field inclination, Prandtl number, Schmidt number, etc., on the channel velocities, skin friction coefficients, Nusselt number, and the Sherwood number are examined. It is found that the influence of the Hartmann number and Hall parameter on the channel velocities and skin friction coefficients is dependent on the value of the wall suction/injection parameter.

  15. Spectral Diagnosis on Contribution of Metastable Atoms to Ionization in Hall Effect Thruster%亚稳态原子对霍尔推力器电离影响的光谱诊断

    颜世林; 宁中喜; 于达仁

    2013-01-01

    In order to quantitatively evaluate the contribution of metastable atoms in the ionization process in Hall thrusters (HET),and to improve the accuracy of ionization simulation models,we adopted the emissive-spectrum-intensity-ratio method to obtain the Krypton effective ionization-rate in the channel of HET.The experimental results revealed that,by taking the effect of metastable atoms into consideration,compared with that of base atoms,the Krypton effective ionization-rate increased by about 11 % and the increase is most within the electron temperature range of 15~20 eV.Hence,it is concluded that Krypton atoms in HET channel have a relatively high effective ionization rate,and the metastable contribution should be considered in HET ionization models.%霍尔推力器(HET)是一种先进的电推进装置,在航天领域有着广泛应用.为了衡量亚稳态原子对于推力器电离过程的影响,提高相应电离计算模拟模型的准确性,应用发射光谱线强度比计算方法来确定HET通道中包含亚稳态原子贡献的氪原子有效电离速率.实验发现,考虑亚稳态院子的贡献后,氪原子有效电离速率相对于未考虑亚稳态贡献的基态原子电离速率高,在15~20 eV的电子温度范围内增加最多,大约11%.计算结果说明亚稳态原子的存在使得HET通道内氪原子具有较高的有效电离速率,所以在HET电离模型中必须引入亚稳态的贡献项.

  16. On Multiple Hall-Like Electron Currents and Tripolar Guide Magnetic Field Perturbations During Kelvin-Helmholtz Waves

    Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.

    2018-02-01

    Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.

  17. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    Li Juan; Wang Yifei; Gong Changde

    2011-01-01

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength φ, and a staggered-flux part with strength Δφ. Various properties of the Hall conductances and Hofstadter butterflies are studied. When φ is fixed, variation of Δφ leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero Δφs have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of Δφ = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by Δφ.

  18. Tight-binding electrons on triangular and kagome lattices under staggered modulated magnetic fields: quantum Hall effects and Hofstadter butterflies

    Li Juan; Wang Yifei; Gong Changde, E-mail: yfwang_nju@hotmail.com [Center for Statistical and Theoretical Condensed Matter Physics, and Department of Physics, Zhejiang Normal University, Jinhua 321004 (China)

    2011-04-20

    We consider the tight-binding models of electrons on a two-dimensional triangular lattice and kagome lattice under staggered modulated magnetic fields. Such fields have two components: a uniform-flux part with strength {phi}, and a staggered-flux part with strength {Delta}{phi}. Various properties of the Hall conductances and Hofstadter butterflies are studied. When {phi} is fixed, variation of {Delta}{phi} leads to the quantum Hall transitions and Chern numbers of Landau subbands being redistributed between neighboring pairs. The energy spectra with nonzero {Delta}{phi}s have similar fractal structures but quite different energy gaps compared with the original Hofstadter butterflies of {Delta}{phi} = 0. Moreover, the fan-like structure of Landau levels in the low magnetic field region is also modified appreciably by {Delta}{phi}.

  19. Temperature dependence of the extraordinary Hall effect in magnetic granular alloys

    Granovsky, A.; Kalitsov, A.; Khanikaev, A.; Sato, H.; Aoki, Y.

    2003-01-01

    We present the results of theoretical investigation of the temperature dependence of the extraordinary Hall effect (EHE) in granular metal-metal and metal-insulator alloys in the case of electron-phonon scattering at high temperatures. Skew scattering is assumed to be the dominant mechanism of the EHE. The calculations were carried out using Zhang-Levy model and the effective-medium approximation. The single-site electron-phonon interaction model was considered by analogy to that one in the theory of disordered alloys. In the case of strong spin-dependent scattering there is an additional term in the temperature dependence of the EHE coefficient of magnetic granular alloys in comparison with that for bulk ferromagnets. This term is linear with T 3 . The similar temperature dependence for the EHE conductivity in granular metal-metal and metal-insulator alloys takes place in spite of the different origin of giant magnetoresistance in these systems. The strong temperature dependence of the EHE coefficient can be viewed as an evidence of enhanced spin-orbit interaction at interfaces between granules and the matrix. We show a linear correlation between the interface contribution to the EHE coefficient and the interface contribution to alloy resistivity. The obtained results are in a qualitative agreement with the recent experimental data for nanocomposites

  20. Temperature dependence of the extraordinary Hall effect in magnetic granular alloys

    Granovsky, A. E-mail: granov@magn.ru; Kalitsov, A.; Khanikaev, A.; Sato, H.; Aoki, Y

    2003-02-01

    We present the results of theoretical investigation of the temperature dependence of the extraordinary Hall effect (EHE) in granular metal-metal and metal-insulator alloys in the case of electron-phonon scattering at high temperatures. Skew scattering is assumed to be the dominant mechanism of the EHE. The calculations were carried out using Zhang-Levy model and the effective-medium approximation. The single-site electron-phonon interaction model was considered by analogy to that one in the theory of disordered alloys. In the case of strong spin-dependent scattering there is an additional term in the temperature dependence of the EHE coefficient of magnetic granular alloys in comparison with that for bulk ferromagnets. This term is linear with T{sup 3}. The similar temperature dependence for the EHE conductivity in granular metal-metal and metal-insulator alloys takes place in spite of the different origin of giant magnetoresistance in these systems. The strong temperature dependence of the EHE coefficient can be viewed as an evidence of enhanced spin-orbit interaction at interfaces between granules and the matrix. We show a linear correlation between the interface contribution to the EHE coefficient and the interface contribution to alloy resistivity. The obtained results are in a qualitative agreement with the recent experimental data for nanocomposites.

  1. Macroscopic kinematics of the Hall electric field under influence of carrier magnetic moments

    Sakai, Masamichi

    2016-01-01

    The relativistic effect on electromagnetic forces yields two types of forces which depend on the velocity of the relevant particles: (i) the usual Lorentz force exerted on a moving charged particle and (ii) the apparent Lorentz force exerted on a moving magnetic moment. In sharp contrast with type (i), the type (ii) force originates due to the transverse field induced by the Hall effect (HE). This study incorporates both forces into a Drude-type equation with a fully spin-polarized condition to investigate the effects of self-consistency of the source and the resultant fields on the HE. We also examine the self-consistency of the carrier kinematics and electromagnetic dynamics by simultaneously considering the Drude type equation and Maxwell equations at low frequencies. Thus, our approach can predict both the dc and ac characteristics of the HE, demonstrating that the dc current condition solely yields the ordinary HE, while the ac current condition yields generation of both fundamental and second harmonic modes of the HE field. When the magnetostatic field is absent, the simultaneous presence of dc and ac longitudinal currents generates the ac HE that has both fundamental frequency and second harmonic.

  2. Extraordinary Hall effect in Co implanted GaAs hybrid magnetic semiconductors

    Honda, S.; Tateishi, K.; Nawate, M.; Sakamoto, I.

    2004-01-01

    Hybrid Co/GaAs ferromagnetic semiconductors have been prepared by implantation method. In these samples, sheet resistance shows weak temperature dependence, and the extraordinary Hall effect with positive coefficient is observed. In small Co content samples, Hall resistance increases with decreasing temperature and maximum value of 3.6x10 -2 Ω is obtained at 150 K

  3. Nuclear spin Hall and Klein tunneling effects during oxidation with electric and magnetic field inductions in graphene.

    Little, Reginald B; McClary, Felicia; Rice, Bria; Jackman, Corine; Mitchell, James W

    2012-12-14

    The recent observation of the explosive oxidation of graphene with enhancement for decreasing temperature and the requirements for synchronizing oxidants for collective oxidation-reduction (redox) reactions presented a chemical scenario for the thermal harvesting by the magnetic spin Hall Effect. More experimental data are presented to demonstrate such spin Hall Effect by determining the influence of spins of so-called spectator fermionic cations. Furthermore, the so-called spectator bosonic cations are discovered to cause a Klein tunneling effect during the redox reaction of graphene. The Na(+) and K(+), fermionic cations and the Mg(2+) and Ca(2+), bosonic cations were observed and compared under a variety of experimental conditions: adiabatic reactions with initial temperatures (18-22 °C); reactions toward infinite dilution; isothermal reactions under nonadiabatic conditions at low temperature of 18 °C; reactions under paramagnetic O(2) or diamagnetic N(2) atmospheres of different permeabilities; reactions in applied and no applied external magnetic field; and reactions toward excess concentrations of common and uncommon Na(+) and Mg(2+) cations. The observed reaction kinetics and dynamics under these various, diverse conditions are consistent with the spin Hall mechanism, energy harvesting and short time violation of Second Law of Thermodynamics for redox reactions of graphene by the Na(+)K(+) mixture and are consistent with the Klein tunnel mechanism for the redox reactions of graphene by the Mg(2+)Ca(2+) mixture. Mixed spin Hall and Klein tunnel mechanisms are discovered to slow and modulate explosive redox reactions. Such spin Hall Effect also gives explanation of recent tunneling of electrons through boron nitride.

  4. 28 May 2010 - Japanese Ambassador H. Ueda visiting the LHC superconducting magnet test hall with CERN Technology Deputy Department Head L. Rossi.

    Maximilien Brice

    2010-01-01

    CERN-HI-1005088 02 Japanese Ambassador H. Ueda (right) visiting the LHC superconducting magnet test hall with Technology Deputy Department Head L. Rossi(left). H. Ueda is accompanied by KEK and ATLAS Collaboration T. Kondo (centre).

  5. Q-Thruster Breadboard Campaign Project

    White, Harold

    2014-01-01

    Dr. Harold "Sonny" White has developed the physics theory basis for utilizing the quantum vacuum to produce thrust. The engineering implementation of the theory is known as Q-thrusters. During FY13, three test campaigns were conducted that conclusively demonstrated tangible evidence of Q-thruster physics with measurable thrust bringing the TRL up from TRL 2 to early TRL 3. This project will continue with the development of the technology to a breadboard level by leveraging the most recent NASA/industry test hardware. This project will replace the manual tuning process used in the 2013 test campaign with an automated Radio Frequency (RF) Phase Lock Loop system (precursor to flight-like implementation), and will redesign the signal ports to minimize RF leakage (improves efficiency). This project will build on the 2013 test campaign using the above improvements on the test implementation to get ready for subsequent Independent Verification and Validation testing at Glenn Research Center (GRC) and Jet Propulsion Laboratory (JPL) in FY 2015. Q-thruster technology has a much higher thrust to power than current forms of electric propulsion (7x Hall thrusters), and can significantly reduce the total power required for either Solar Electric Propulsion (SEP) or Nuclear Electric Propulsion (NEP). Also, due to the high thrust and high specific impulse, Q-thruster technology will greatly relax the specific mass requirements for in-space nuclear reactor systems. Q-thrusters can reduce transit times for a power-constrained architecture.

  6. Commissioning and Testing the 1970's Era LASS Solenoid Magnet in JLab's Hall D

    Ballard, Joshua T. [Jefferson Lab, Newport News, VA; Biallas, George H. [Jefferson Lab, Newport News, VA; Brown, G.; Butler, David E. [Jefferson Lab, Newport News, VA; Carstens, Thomas J. [Jefferson Lab, Newport News, VA; Chudakov, Eugene A. [Jefferson Lab, Newport News, VA; Creel, Jonathan D. [Jefferson Lab, Newport News, VA; Egiyan, Hovanes [Jefferson Lab, Newport News, VA; Martin, F.; Qiang, Yi [Jefferson Lab, Newport News, VA; Smith, Elton S. [Jefferson Lab, Newport News, VA; Stevens, Mark A. [Jefferson Lab, Newport News, VA; Spiegel, Scot L. [Jefferson Lab, Newport News, VA; Whitlatch, Timothy E. [Jefferson Lab, Newport News, VA; Wolin, Elliott J. [Carnegie Mellon University , Pittsburgh, PA; Ghoshal, Probir K. [Jefferson Lab, Newport News, VA

    2015-06-01

    JLab refurbished and reconfigured the LASS1, 1.85m bore Solenoid and installed it as the principal analysis magnet for nuclear physics in the newly constructed, Hall D at Jefferson Lab. The magnet contains four superconducting coils within an iron yoke. The magnet was built in the early1970's at Stanford Linear Accelerator Center and used a second time at Los Alamos National Laboratory. The coils were extensively refurbished and individually tested by JLab. A new Cryogenic Distribution Box provides cryogens and their control valving, current distribution bus, and instrumentation pass-through. A repurposed CTI 2800 refrigerator system and new transfer line complete the system. We describe the re-configuration, the process and problems of re-commissioning the magnet and the results of testing the completed magnet.

  7. Extremely Large Magnetoresistance at Low Magnetic Field by Coupling the Nonlinear Transport Effect and the Anomalous Hall Effect.

    Luo, Zhaochu; Xiong, Chengyue; Zhang, Xu; Guo, Zhen-Gang; Cai, Jianwang; Zhang, Xiaozhong

    2016-04-13

    The anomalous Hall effect of a magnetic material is coupled to the nonlinear transport effect of a semiconductor material in a simple structure to achieve a large geometric magnetoresistance (MR) based on a diode-assisted mechanism. An extremely large MR (>10(4) %) at low magnetic fields (1 mT) is observed at room temperature. This MR device shows potential for use as a logic gate for the four basic Boolean logic operations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Particle-in-cell simulations of asymmetric guide-field reconnection: quadrupolar structure of Hall magnetic field

    Schmitz, R. G.; Alves, M. V.; Barbosa, M. V. G.

    2017-12-01

    One of the most important processes that occurs in Earth's magnetosphere is known as magnetic reconnection (MR). This process can be symmetric or asymmetric, depending basically on the plasma density and magnetic field in both sides of the current sheet. A good example of symmetric reconnection in terrestrial magnetosphere occurs in the magnetotail, where these quantities are similar on the north and south lobes. In the dayside magnetopause MR is asymmetric, since the plasma regimes and magnetic fields of magnetosheath and magnetosphere are quite different. Symmetric reconnection has some unique signatures. For example, the formation of a quadrupolar structure of Hall magnetic field and a bipolar Hall electric field that points to the center of the current sheet. The different particle motions in the presence of asymmetries change these signatures, causing the quadrupolar pattern to be distorted and forming a bipolar structure. Also, the bipolar Hall electric field is modified and gives rise to a single peak pointing toward the magnetosheat, considering an example of magnetopause reconnection. The presence of a guide-field can also distort the quadrupolar pattern, by giving a shear angle across the current sheet and altering the symmetric patterns, according to previous simulations and observations. Recently, a quadrupolar structure was observed in an asymmetric guide-field MR event using MMS (Magnetospheric Multiscale) mission data [Peng et al., JGR, 2017]. This event shows clearly that the density asymmetry and the guide-field were not sufficient to form signatures of asymmetric reconnection. Using the particle-in-cell code iPIC3D [Markidis et al, Mathematics and Computers in Simulation, 2010] with the MMS data from this event used to define input parameters, we found a quadrupolar structure of Hall magnetic field and a bipolar pattern of Hall electric field in ion scales, showing that our results are in an excellent agreement with the MMS observations. To our

  9. Los Alamos NEP research in advanced plasma thrusters

    Schoenberg, Kurt; Gerwin, Richard

    1991-01-01

    Research was initiated in advanced plasma thrusters that capitalizes on lab capabilities in plasma science and technology. The goal of the program was to examine the scaling issues of magnetoplasmadynamic (MPD) thruster performance in support of NASA's MPD thruster development program. The objective was to address multi-megawatt, large scale, quasi-steady state MPD thruster performance. Results to date include a new quasi-steady state operating regime which was obtained at space exploration initiative relevant power levels, that enables direct coaxial gun-MPD comparisons of thruster physics and performance. The radiative losses are neglible. Operation with an applied axial magnetic field shows the same operational stability and exhaust plume uniformity benefits seen in MPD thrusters. Observed gun impedance is in close agreement with the magnetic Bernoulli model predictions. Spatial and temporal measurements of magnetic field, electric field, plasma density, electron temperature, and ion/neutral energy distribution are underway. Model applications to advanced mission logistics are also underway.

  10. Some aspects of achieving an ultimate accuracy during insertion device magnetic measurements by a Hall probe

    Vasserman, I. B.; Xu, J. Z.; Strelnikov, N. O.

    2013-01-01

    An extensive test of a new Senis 2-axis Hall probe was done at the Advanced Photon Source using the Undulator A device and calibration system. This new probe has clear advantages compared with previously used Bell and Sentron Hall probes: very stable zero offset (less than the noise of 0.026 G) and compensated planar Hall effect. It can be used with proper calibration even for first and second field integral measurements. A comparison with reference measurements by long stretched coil shows that the difference in the first field integral measurement results for a 2.4-m-long Undulator A device is between 17 G cm for the best of four Hall probes used for the test and 51 G cm for the worst of them for all gap ranges from 10.5 mm to 150 mm.

  11. Low-frequency oscillations in Hall thrusters

    Wei Li-Qiu; Han Liang; Yu Da-Ren; Guo Ning

    2015-01-01

    In this paper, we summarize the research development of low-frequency oscillations in the last few decades. The findings of physical mechanism, characteristics and stabilizing methods of low-frequency oscillations are discussed. It shows that it is unreasonable and incomplete to model an ionization region separately to analyze the physical mechanism of low-frequency oscillations. Electro-dynamics as well as the formation conditions of ionization distribution play an important role in characteristics and stabilizing of low-frequency oscillations. Understanding the physical mechanism and characteristics of low- frequency oscillations thoroughly and developing a feasible method stabilizing this instability are still important research subjects. (review)

  12. Thermal Characterization of a Hall Effect Thruster

    2008-03-01

    View Factor A = Area θ = Angle R = Distance xiii J = Radiosity q = Heat Transfer Rate W = Radiated Power U = Voltage C...summation rule. 1 1 N ij j F = =∑ (18) Radiosity (Ji) takes into account both radiation emitted and reflected from a surface. Analyzing radiation...exchanges between two surfaces is made easier with a few assumptions. Each surface is assumed isothermal and characterized by a uniform radiosity

  13. Azimuthal Spoke Propagation in Hall Effect Thrusters

    2013-10-01

    group velocity, m s−1 vph = phase velocity, m s−1 vs = ion acoustic velocity, m s−1 vsp = spoke velocity, m s−1 vspj,k = spoke velocity from bin n to m...phase velocity, vph , and group velocity, vgr, from the dispersion relation in Eq. (7) are vph = ω kθ = [ vαch − ( ωch kθ )α]1/α (9) vgr = ∂ω ∂kθ = vph ...vch vph )α (10) Eq. (9) shows that the phase velocity will always be less than the characteristic velocity and Eq. (10) shows the group velocity will

  14. Mode Transitions in Hall Effect Thrusters

    2013-07-01

    1 voltage divider that was calibrated with a BK Precision 5491A multimeter. Mean discharge current ( )I I tD D= where denotes the average was...computing the 2-D DFT of bDj a Hamming window is used. E. Support for Local Light Intensity Correlation to Local Discharge Current The most direct

  15. Sub-grid-scale effects on short-wave instability in magnetized hall-MHD plasma

    Miura, H.; Nakajima, N.

    2010-11-01

    Aiming to clarify effects of short-wave modes on nonlinear evolution/saturation of the ballooning instability in the Large Helical Device, fully three-dimensional simulations of the single-fluid MHD and the Hall MHD equations are carried out. A moderate parallel heat conductivity plays an important role both in the two kinds of simulations. In the single-fluid MHD simulations, the parallel heat conduction effectively suppresses short-wave ballooning modes but it turns out that the suppression is insufficient in comparison to an experimental result. In the Hall MHD simulations, the parallel heat conduction triggers a rapid growth of the parallel flow and enhance nonlinear couplings. A comparison between single-fluid and the Hall MHD simulations reveals that the Hall MHD model does not necessarily improve the saturated pressure profile, and that we may need a further extension of the model. We also find by a comparison between two Hall MHD simulations with different numerical resolutions that sub-grid-scales of the Hall term should be modeled to mimic an inverse energy transfer in the wave number space. (author)

  16. Reversible electrical-field control of magnetization and anomalous Hall effect in Co/PMN-PT hybrid heterostructures

    Wang, J.; Huang, Q. K.; Lu, S. Y.; Tian, Y. F.; Chen, Y. X.; Bai, L. H.; Dai, Y.; Yan, S. S.

    2018-04-01

    Room-temperature reversible electrical-field control of the magnetization and the anomalous Hall effect was reported in hybrid multiferroic heterojunctions based on Co/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT). We demonstrate herein that electrical-field-induced strain and oxygen-ion migration in ZnO/Co/PMN-PT junctions exert opposing effects on the magnetic properties of the Co sublayer, and the competition between these effects determines the final magnitude of magnetization. This proof-of-concept investigation opens an alternative way to optimize and enhance the electrical-field effect on magnetism through the combination of multiple electrical manipulation mechanisms in hybrid multiferroic devices.

  17. Experimental measurement of magnetic field null in the vacuum chamber of KTM tokamak based on matrix of 2D Hall sensors

    Shapovalov, G.; Chektybayev, B., E-mail: chektybaev@nnc.kz; Sadykov, A.; Skakov, M.; Kupishev, E.

    2016-11-15

    Experimental technique of measurement of magnetic field null region inside of the KTM tokamak vacuum chamber has been developed. Square matrix of 36 2D Hall sensors, which used in the technique, allows carrying out direct measurements of poloidal magnetic field dynamics in the vacuum chamber. To better measuring accuracy, Hall sensor’s matrix was calibrated with commercial Helmholtz coils and in situ measurement of defined magnetic field from poloidal and toroidal coils. Standard KTM Data-Acquisition System has been used to collect data from Hall sensors. Experimental results of measurement of magnetic field null in the vacuum chamber of KTM are shown in the paper. Additionally results of the magnetic field null reconstruction from signals of inductive total flux loops are shown in the paper.

  18. Single Cathode Ion Thruster

    National Aeronautics and Space Administration — Objective is to design an electrostatic ion thruster that is more efficient, simpler, and lower cost than the current gridded ion thruster. Initial objective is to...

  19. MPD thruster research issues, activities, strategies

    1991-01-01

    The following activities and plans in the MPD thruster development are summarized: (1) experimental and theoretical research (magnetic nozzles at present and high power levels, MPD thrusters with applied fields extending into the thrust chamber, and improved electrode performance); and (2) tools (MACH2 code for MPD and nozzle flow calculation, laser diagnostics and spectroscopy for non-intrusive measurements of flow conditions, and extension to higher power). National strategies are also outlined.

  20. Experimental Investigations of a Krypton Stationary Plasma Thruster

    A. I. Bugrova

    2013-01-01

    Full Text Available Stationary plasma thrusters are attractive electric propulsion systems for spacecrafts. The usual propellant is xenon. Among the other suggested propellants, krypton could be one of the best candidates. Most studies have been carried out with a Hall effect thruster previously designed for xenon. The ATON A-3 developed by MSTU MIREA (Moscow initially defined for xenon has been optimized for krypton. The stable high-performance ATON A-3 operation in Kr has been achieved after optimization of its magnetic field configuration and its optimization in different parameters: length and width of the channel, buffer volume dimensions, mode of the cathode operation, and input parameters. For a voltage of 400 V and the anode mass flow rate of 2.5 mg/s the anode efficiency reaches 60% and the specific impulse reaches 2900 s under A-3 operating with Kr. The achieved performances under operation A-3 with Kr are presented and compared with performances obtained with Xe.

  1. Giant magnetic anisotropy and robust quantum anomalous Hall effect in boron-doped graphene with Re-adsorption

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan

    2018-04-01

    Recently topological materials have attracted much attention due to their quantization transports as well as edge states. It will be excellent to realize the robust quantum anomalous Hall transports in graphene-based devices. Using density-functional theory and tight-binding method, we investigated the structural, magnetic and topological properties for the boron-doped graphene with Re-adsorption. A large band-gap of 32.5 meV is opened by the Rashba spin-orbital coupling, and the band-gap is robust against the shape deformation of  ± 4% along the zigzag direction. Giant magnetic anisotropy emerges in this adsorption system together with the Fermi level lying in the band gap. Both the magnetic anisotropy and the band gap can be tuned by a moderate electric field. Calculations reveal that the system exhibits the quantization transports with the Chern number C=2 .

  2. Thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect in epitaxial Co{sub 2}MnAl film

    Meng, K.K., E-mail: kkmeng@ustb.edu.cn [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Miao, J.; Xu, X.G. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, J.H. [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Jiang, Y. [School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 (China)

    2017-04-04

    We have investigated the thickness dependence of magnetic anisotropy and intrinsic anomalous Hall effect (AHE) in single-crystalline full-Heusler alloy Co{sub 2}MnAl (CMA) grown by molecular-beam epitaxy on GaAs(001). The magnetic anisotropy is the interplay of uniaxial and the fourfold anisotropy, and the corresponding anisotropy constants have been deduced. Considering the thickness of CMA is small, we ascribe it to the influence from interface stress. The AHE in CMA is found to be well described by a proper scaling. The intrinsic anomalous conductivity is found to be smaller than the calculated one and is thickness dependent, which is ascribed to the influence of chemical ordering by affecting the band structure and Fermi surface. - Highlights: • Single-crystalline full-Heusler alloy Co{sub 2}MnAl grown by molecular-beam epitaxy. • Uniaxial and the fourfold magnetic anisotropies in Heusler alloys. • Anomalous Hall effect in Heusler alloys. • The intrinsic contributions modified by chemical ordering.

  3. Theoretical and Experimental Investigation of Force Estimation Errors Using Active Magnetic Bearings with Embedded Hall Sensors

    Voigt, Andreas Jauernik; Santos, Ilmar

    2012-01-01

    to ∼ 20% of the nominal air gap the force estimation error is found to be reduced by the linearized force equation as compared to the quadratic force equation, which is supported by experimental results. Additionally the FE model is employed in a comparative study of the force estimation error behavior...... of AMBs by embedding Hall sensors instead of mounting these directly on the pole surfaces, force estimation errors are investigated both numerically and experimentally. A linearized version of the conventionally applied quadratic correspondence between measured Hall voltage and applied AMB force...

  4. Skyrmions and Hall viscosity

    Kim, Bom Soo

    2018-05-01

    We discuss the contribution of magnetic Skyrmions to the Hall viscosity and propose a simple way to identify it in experiments. The topological Skyrmion charge density has a distinct signature in the electric Hall conductivity that is identified in existing experimental data. In an electrically neutral system, the Skyrmion charge density is directly related to the thermal Hall conductivity. These results are direct consequences of the field theory Ward identities, which relate various physical quantities based on symmetries and have been previously applied to quantum Hall systems.

  5. One-millipound mercury ion thruster

    Hyman, J., Jr.; Dulgeroff, C. R.; Kami, S.; Williamson, W. S.

    1975-01-01

    A mercury ion thruster has been developed for efficient operation at the nominal 1-mlb thrust level with a specific impulse of about 3,000 sec and a total power consumption of about 120 W. At a beam voltage of 1,200 V and beam current of 72 mA, the discharge chamber operates with a propellant efficiency of 93.8% at an ion-generation energy of 276 eV/ion. The 8-cm diameter thruster advances proven component technology to assure the capability for thruster operation over an accumulated beam-on time in excess of 20,000 hours with a capability for 10,000 on-off duty cycles. Discharge chamber optimization has combined stable current-voltage characteristics with high performance efficiency by careful placement of the discharge cathode near the location of a magnetic-field zero just upstream of the thruster endplate.

  6. Hall effect in hopping regime

    Avdonin, A.; Skupiński, P.; Grasza, K.

    2016-01-01

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  7. Hall effect in hopping regime

    Avdonin, A., E-mail: avdonin@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Skupiński, P. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Grasza, K. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warszawa (Poland); Institute of Electronic Materials Technology, ul. Wólczyńska 133, 01-919 Warszawa (Poland)

    2016-02-15

    A simple description of the Hall effect in the hopping regime of conductivity in semiconductors is presented. Expressions for the Hall coefficient and Hall mobility are derived by considering averaged equilibrium electron transport in a single triangle of localization sites in a magnetic field. Dependence of the Hall coefficient is analyzed in a wide range of temperature and magnetic field values. Our theoretical result is applied to our experimental data on temperature dependence of Hall effect and Hall mobility in ZnO. - Highlights: • Expressions for Hall coefficient and mobility for hopping conductivity are derived. • Theoretical result is compared with experimental curves measured on ZnO. • Simultaneous action of free and hopping conduction channels is considered. • Non-linearity of hopping Hall coefficient is predicted.

  8. Reversible and irreversible temperature-induced changes in exchange-biased planar Hall effect bridge (PHEB) magnetic field sensors

    Rizzi, G.; Lundtoft, N.C.; Østerberg, F.W.

    2012-01-01

    We investigate the changes of planar Hall effect bridge magnetic field sensors upon exposure to temperatures between 25° C and 90°C. From analyses of the sensor response vs. magnetic fields we extract the exchange bias field Hex, the uniaxial anisotropy field HK and the anisotropic...... magnetoresistance (AMR) of the exchange biased thin film at a given temperature and by comparing measurements carried out at elevated temperatures T with measurements carried out at 25° C after exposure to T, we can separate the reversible from the irreversible changes of the sensor. The results are not only...... relevant for sensor applications but also demonstrate the method as a useful tool for characterizing exchange-biased thin films....

  9. Investigation of the difference between spin Hall magnetoresistance rectification and spin pumping from the viewpoint of magnetization dynamics

    Zhang, Qihan; Fan, Xiaolong; Zhou, Hengan; Kong, Wenwen; Zhou, Shiming; Gui, Y. S.; Hu, C.-M.; Xue, Desheng

    2018-02-01

    Spin pumping (SP) and spin rectification due to spin Hall magnetoresistance (SMR) can result in a dc resonant voltage signal, when magnetization in ferromagnetic insulator/nonmagnetic structures experiences ferromagnetic resonance. Since the two effects are often interrelated, quantitative identification of them is important for studying the dynamic nonlocal spin transport through an interface. In this letter, the key difference between SP and SMR rectification was investigated from the viewpoint of spin dynamics. The phase-dependent nature of SMR rectification, which is the fundamental characteristic distinguishing it from SP, was tested by a well-designed experiment. In this experiment, two identical yttrium iron garnet/Pt strips with a π phase difference in dynamic magnetization show the same SP signals and inverse SMR signals.

  10. Analysis and design of ion thruster for large space systems

    Poeschel, R. L.; Kami, S.

    1980-01-01

    Design analyses showed that an ion thruster of approximately 50 cm in diameter will be required to produce a thrust of 0.5 N using xenon or argon as propellants, and operating the thruster at a specific impulse of 3530 sec or 6076 sec respectively. A multipole magnetic confinement discharge chamber was specified.

  11. Experimental study of the Hall effect and electron diffusion region during magnetic reconnection in a laboratory plasma

    Ren Yang; Yamada, Masaaki; Ji Hantao; Dorfman, Seth; Gerhardt, Stefan P.; Kulsrud, Russel

    2008-01-01

    The Hall effect during magnetic reconnection without an external guide field has been extensively studied in the laboratory plasma of the Magnetic Reconnection Experiment [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] by measuring its key signature, an out-of-plane quadrupole magnetic field, with magnetic probe arrays whose spatial resolution is on the order of the electron skin depth. The in-plane electron flow is deduced from out-of-plane magnetic field measurements. The measured in-plane electron flow and numerical results are in good agreement. The electron diffusion region is identified by measuring the electron outflow channel. The width of the electron diffusion region scales with the electron skin depth (∼5.5-7.5c/ω pe ) and the peak electron outflow velocity scales with the electron Alfven velocity (∼0.12-0.16V eA ), independent of ion mass. The measured width of the electron diffusion region is much wider and the observed electron outflow is much slower than those obtained in 2D numerical simulations. It is found that the classical and anomalous dissipation present in the experiment can broaden the electron diffusion region and slow the electron outflow. As a consequence, the electron outflow flux remains consistent with numerical simulations. The ions, as measured by a Mach probe, have a much wider outflow channel than the electrons, and their outflow is much slower than the electron outflow everywhere in the electron diffusion region

  12. Helical magnetic structure and the anomalous and topological Hall effects in epitaxial B20 Fe1 -yCoyGe films

    Spencer, Charles S.; Gayles, Jacob; Porter, Nicholas A.; Sugimoto, Satoshi; Aslam, Zabeada; Kinane, Christian J.; Charlton, Timothy R.; Freimuth, Frank; Chadov, Stanislav; Langridge, Sean; Sinova, Jairo; Felser, Claudia; Blügel, Stefan; Mokrousov, Yuriy; Marrows, Christopher H.

    2018-06-01

    Epitaxial films of the B20-structure compound Fe1 -yCoyGe were grown by molecular beam epitaxy on Si (111) substrates. The magnetization varied smoothly from the bulklike values of one Bohr magneton per Fe atom for FeGe to zero for nonmagnetic CoGe. The chiral lattice structure leads to a Dzyaloshinskii-Moriya interaction (DMI), and the films' helical magnetic ground state was confirmed using polarized neutron reflectometry measurements. The pitch of the spin helix, measured by this method, varies with Co content y and diverges at y ˜0.45 . This indicates a zero crossing of the DMI, which we reproduced in calculations using first-principles methods. We also measured the longitudinal and Hall resistivity of our films as a function of magnetic field, temperature, and Co content y . The Hall resistivity is expected to contain contributions from the ordinary, anomalous, and topological Hall effects. Both the anomalous and topological Hall resistivities show peaks around y ˜0.5 . Our first-principles calculations show a peak in the topological Hall constant at this value of y , related to the strong spin polarization predicted for intermediate values of y . Our calculations predict half-metallicity for y =0.6 , consistent with the experimentally observed linear magnetoresistance at this composition, and potentially related to the other unusual transport properties for intermediate value of y . While it is possible to reconcile theory with experiment for the various Hall effects for FeGe, the large topological Hall resistivities for y ˜0.5 are much larger than expected when the very small emergent fields associated with the divergence in the DMI are taken into account.

  13. Systematics of electronic and magnetic properties in the transition metal doped Sb2Te3 quantum anomalous Hall platform

    Islam, M. F.; Canali, C. M.; Pertsova, A.; Balatsky, A.; Mahatha, S. K.; Carbone, C.; Barla, A.; Kokh, K. A.; Tereshchenko, O. E.; Jiménez, E.; Brookes, N. B.; Gargiani, P.; Valvidares, M.; Schatz, S.; Peixoto, T. R. F.; Bentmann, H.; Reinert, F.; Jung, J.; Bathon, T.; Fauth, K.; Bode, M.; Sessi, P.

    2018-04-01

    The quantum anomalous Hall effect (QAHE) has recently been reported to emerge in magnetically doped topological insulators. Although its general phenomenology is well established, the microscopic origin is far from being properly understood and controlled. Here, we report on a detailed and systematic investigation of transition metal (TM) doped Sb2Te3 . By combining density functional theory calculations with complementary experimental techniques, i.e., scanning tunneling microscopy, resonant photoemission, and x-ray magnetic circular dichroism, we provide a complete spectroscopic characterization of both electronic and magnetic properties. Our results reveal that the TM dopants not only affect the magnetic state of the host material, but also significantly alter the electronic structure by generating impurity-derived energy bands. Our findings demonstrate the existence of a delicate interplay between electronic and magnetic properties in TM doped topological insulators. In particular, we find that the fate of the topological surface states critically depends on the specific character of the TM impurity: while V- and Fe-doped Sb2Te3 display resonant impurity states in the vicinity of the Dirac point, Cr and Mn impurities leave the energy gap unaffected. The single-ion magnetic anisotropy energy and easy axis, which control the magnetic gap opening and its stability, are also found to be strongly TM impurity dependent and can vary from in plane to out of plane depending on the impurity and its distance from the surface. Overall, our results provide general guidelines for the realization of a robust QAHE in TM doped Sb2Te3 in the ferromagnetic state.

  14. Direct measurement of the field from a magnetic recording head using an InAs Hall sensor on a contact write/read tester

    Gokemeijer, N.J.; Clinton, T.W.; Crawford, T.M.; Johnson, Mark

    2005-01-01

    At 1 Tbit/in 2 areal density magnetic recording dimensions, reliable magnetic field metrology does not exist. One technique to map the spatial profile of the magnetic field of a write head is to use a contact read/write tester. A magnetic recording head is brought into contact with a Hall sensor, and is subsequently scanned with nm resolution. For a 300 nm track width longitudinal recording head, the magnetic field of the head was mapped. Measurements include the down track field gradient and cross-track field profile and the current-field transfer curve. These results suggest this technique offers a viable write field metrology

  15. Oxygen-Methane Thruster

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  16. Hall full of LEP magnets waiting to be installed in November 1987

    1987-01-01

    The white magnets in the background are LEP's innovative dipole magnets. They are made of plates of stell with the intervening spaces filled out with concrete. For the relatively low bending fields used in LEP, this technique offers a much cheaper alternative to solid steel costing about half the price. The blue magnets in the foreground are quadrupole focusing magnets and the small yellow magnets in the background are sextupoles which correct the beams "chromaticity", just as optical systems correct for the different wavelengths which make up light, these sextupoles correct for the spread of momenta in LEP's particle beams.

  17. Design and Realization of a Three Degrees of Freedom Displacement Measurement System Composed of Hall Sensors Based on Magnetic Field Fitting by an Elliptic Function

    Bo Zhao

    2015-09-01

    Full Text Available This paper presents the design and realization of a three degrees of freedom (DOFs displacement measurement system composed of Hall sensors, which is built for the XYθz displacement measurement of the short stroke stage of the reticle stage of lithography. The measurement system consists of three pairs of permanent magnets mounted on the same plane on the short stroke stage along the Y, Y, X directions, and three single axis Hall sensors correspondingly mounted on the frame of the reticle stage. The emphasis is placed on the decoupling and magnetic field fitting of the three DOFs measurement system. The model of the measurement system is illustrated, and the XY positions and θZ rotation of the short stroke stage can be obtained by decoupling the sensor outputs. A magnetic field fitting by an elliptic function-based compensation method is proposed. The practical field intensity of a permanent magnet at a certain plane height can be substituted for the output voltage of a Hall sensors, which can be expressed by the elliptic function through experimental data as the crucial issue to calculate the three DOFs displacement. Experimental results of the Hall sensor displacement measurement system are presented to validate the proposed three DOFs measurement system.

  18. Irreversible magnetic-field dependence of ferromagnetic resonance and inverse spin Hall effect voltage in CoFeB/Pt bilayer

    Kim, Sang-Il [Department of Materials Science and Engineering, Korea University, Seoul, 136-713 (Korea, Republic of); Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Seo, Min-Su [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Choi, Yeon Suk, E-mail: ychoi@kbsi.re.kr [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of); Park, Seung-Young, E-mail: parksy@kbsi.re.kr [Spin Engineering Physics Team, Division of Scientific Instrumentation, Korea Basic Science Institute, Daejeon, 305-806 (Korea, Republic of)

    2017-01-01

    Magnetic field (H) sweeping direction dependences of the mixed voltage V{sub mix} induced by the inverse-spin Hall effect(ISHE) and spin-rectified effect (SRE) in a CoFeB (5 nm)/Pt (10 nm) bilayer structure are investigated using the ferromagnetic resonance in the TE mode cavities and coplanar waveguide methods. Conventionally, the magnitude of ISHE voltage V{sub ISH} (symmetric) excluding the SRE (antisymmetric component) was unavoidably separated from the fitting curve of V{sub mix} (a sum of a symmetric and an antisymmetric part) for one direction of H-source. By studying the ratio of the two voltage parts with the bi-directional H sweeping, the optimized V{sub ISH} (no SRE condition) value which also include a well-defined spin Hall angle can be obtained via the linear response relation of ISHE and SRE components. - Highlights: • Hysteretic behavior of ferromagnetic resonance spectra in the CoFeB/Pt sample. • Hysteretic behavior of inverse-spin Hall effect voltage in the CoFeB/Pt sample. • Proportion of inverse spin-Hall effect voltage can be determined by the cavity mode. • The hysteretic behavior arise from the unsaturated magnetization limit. • The well-defined spin Hall angle which consider a hysteresis can be obtained.

  19. Collective coordinate models of domain wall motion in perpendicularly magnetized systems under the spin hall effect and longitudinal fields

    Nasseri, S. Ali, E-mail: ali.nasseri@isi.it [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); Politecnico di Torino - Corso Duca degli Abruzzi 24, 10129 Torino (Italy); Moretti, Simone; Martinez, Eduardo [University of Salamanca - Cardenal Plá y Deniel, 22, 37008 Salamanca (Spain); Serpico, Claudio [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); University of Naples Federico II - Via Claudio 21, 80125 Napoli (Italy); Durin, Gianfranco [ISI Foundation - Via Alassio 11/c –10126 Torino (Italy); Istituto Nazionale di Ricerca Metrologica (INRIM) - Strada delle Cacce 91, 10135 Torino (Italy)

    2017-03-15

    Recent studies on heterostructures of ultrathin ferromagnets sandwiched between a heavy metal layer and an oxide have highlighted the importance of spin-orbit coupling (SOC) and broken inversion symmetry in domain wall (DW) motion. Specifically, chiral DWs are stabilized in these systems due to the Dzyaloshinskii-Moriya interaction (DMI). SOC can also lead to enhanced current induced DW motion, with the Spin Hall effect (SHE) suggested as the dominant mechanism for this observation. The efficiency of SHE driven DW motion depends on the internal magnetic structure of the DW, which could be controlled using externally applied longitudinal in-plane fields. In this work, micromagnetic simulations and collective coordinate models are used to study current-driven DW motion under longitudinal in-plane fields in perpendicularly magnetized samples with strong DMI. Several extended collective coordinate models are developed to reproduce the micromagnetic results. While these extended models show improvements over traditional models of this kind, there are still discrepancies between them and micromagnetic simulations which require further work. - Highlights: • Moving DWs in PMA material maintain their structure under longitudinal in-plane fields. • As a result of longitudinal fields, magnetization in the domains becomes canted. • A critical longitudinal field was identified and correlated with the DMI strength. • A canted collective coordinate model was developed for DW motion under in-plane fields.

  20. Handheld magnetic probe with permanent magnet and Hall sensor for identifying sentinel lymph nodes in breast cancer patients.

    Sekino, Masaki; Kuwahata, Akihiro; Ookubo, Tetsu; Shiozawa, Mikio; Ohashi, Kaichi; Kaneko, Miki; Saito, Itsuro; Inoue, Yusuke; Ohsaki, Hiroyuki; Takei, Hiroyuki; Kusakabe, Moriaki

    2018-01-19

    The newly developed radioisotope-free technique based on magnetic nanoparticle detection using a magnetic probe is a promising method for sentinel lymph node biopsy. In this study, a novel handheld magnetic probe with a permanent magnet and magnetic sensor is developed to detect the sentinel lymph nodes in breast cancer patients. An outstanding feature of the probe is the precise positioning of the sensor at the magnetic null point of the magnet, leading to highly sensitive measurements unaffected by the strong ambient magnetic fields of the magnet. Numerical and experimental results show that the longitudinal detection length is approximately 10 mm, for 140 μg of iron. Clinical tests were performed, for the first time, using magnetic and blue dye tracers-without radioisotopes-in breast cancer patients to demonstrate the performance of the probe. The nodes were identified through transcutaneous and ex-vivo measurements, and the iron accumulation in the nodes was quantitatively revealed. These results show that the handheld magnetic probe is useful in sentinel lymph node biopsy and that magnetic techniques are widely being accepted as future standard methods in medical institutions lacking nuclear medicine facilities.

  1. Optimization of a coaxial electron cyclotron resonance plasma thruster with an analytical model

    Cannat, F., E-mail: felix.cannat@onera.fr, E-mail: felix.cannat@gmail.com; Lafleur, T. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France); Jarrige, J.; Elias, P.-Q.; Packan, D. [Physics and Instrumentation Department, Onera -The French Aerospace Lab, Palaiseau, Cedex 91123 (France); Chabert, P. [Laboratoire de Physique des Plasmas, CNRS, Sorbonne Universites, UPMC Univ Paris 06, Univ Paris-Sud, Ecole Polytechnique, 91128 Palaiseau (France)

    2015-05-15

    A new cathodeless plasma thruster currently under development at Onera is presented and characterized experimentally and analytically. The coaxial thruster consists of a microwave antenna immersed in a magnetic field, which allows electron heating via cyclotron resonance. The magnetic field diverges at the thruster exit and forms a nozzle that accelerates the quasi-neutral plasma to generate a thrust. Different thruster configurations are tested, and in particular, the influence of the source diameter on the thruster performance is investigated. At microwave powers of about 30 W and a xenon flow rate of 0.1 mg/s (1 SCCM), a mass utilization of 60% and a thrust of 1 mN are estimated based on angular electrostatic probe measurements performed downstream of the thruster in the exhaust plume. Results are found to be in fair agreement with a recent analytical helicon thruster model that has been adapted for the coaxial geometry used here.

  2. Single String Integration Test of the High Voltage Hall Accelerator System

    Kamhawi, Hani; Haag, Thomas W.; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Shastry, Rohit

    2013-01-01

    HiVHAc Task Objectives:-Develop and demonstrate low-power, long-life Hall thruster technology to enable cost effective EP for Discovery-class missions-Advance the TRL level of potential power processing units and xenon feed systems to integrate with the HiVHAc thruster.

  3. The FAST (FRC Acceleration Space Thruster) Experiment

    Martin, Adam; Eskridge, R.; Lee, M.; Richeson, J.; Smith, J.; Thio, Y. C. F.; Slough, J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    The Field Reverse Configuration (FRC) is a magnetized plasmoid that has been developed for use in magnetic confinement fusion. Several of its properties suggest that it may also be useful as a thruster for in-space propulsion. The FRC is a compact toroid that has only poloidal field, and is characterized by a high plasma beta = (P)/(B (sup 2) /2Mu0), the ratio of plasma pressure to magnetic field pressure, so that it makes efficient use of magnetic field to confine a plasma. In an FRC thruster, plasmoids would be repetitively formed and accelerated to high velocity; velocities of = 250 km/s (Isp = 25,000s) have already been achieved in fusion experiments. The FRC is inductively formed and accelerated, and so is not subject to the problem of electrode erosion. As the plasmoid may be accelerated over an extended length, it can in principle be made very efficient. And the achievable jet powers should be scalable to the MW range. A 10 kW thruster experiment - FAST (FRC Acceleration Space Thruster) has just started at the Marshall Space Flight Center. The design of FAST and the status of construction and operation will be presented.

  4. Design of large permanent magnetized synchronous electric machines: Low speed, high torque machines - generator for direct driven wind turbine - motor for rim driven thruster

    Kroevel, Oeystein

    2011-02-15

    This work presents the design of two prototype permanent magnetized electric machines for two different applications where large permanent magnet machines might be used. Existing technology have been used as the fundament for new design and adapted to new applications, contributing, hopefully, to the development of better and more environmental friendly energy conversion. The first application presented is represented with a prototype made in cooperation with the industry in which a PM-motor is integrated into a propeller unit. Both because of the industrial connection, and the integration between the PM-motor and the propeller, the choices made for the PM-motor are conservative trying to reduce the risk. The direct rim driven thruster prototype includes a surface mounted radial flux permanent magnet machine (SM RFPM) with fractional slot winding with a q around 1. Other engineering features were introduced to make the integration of propeller and motor feasible, but without the PM-machine the thruster would not have reached the performance demand. An important part of the project was to show that the SM RFPM enables this solution, providing high performance with a large air gap. The prototype has been tested in sea, under harsh conditions, and even though the magnets have been exposed directly to sea water and been visible corroded, the electric motor still performs well within the specifications. The second application is represented with a prototype PM-generator for wind turbines. This is an example of a new, very low speed high torque machine. The generator is built to test phenomena regarding concentrated coils, and as opposed to the first application, being a pure academic university project, its success is not connected to its performance, but with the prototype's ability to expose the phenomena in question. The prototype, or laboratory model, of the generator for direct driven wind turbines features SM RFPM with concentrated coils (CC). An opportunity

  5. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    Bang, Do; Yu, Jiawei; Qiu, Xuepeng; Wang, Yi; Awano, Hiroyuki; Manchon, Aurelien; Yang, Hyunsoo

    2016-01-01

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  6. Enhancement of spin Hall effect induced torques for current-driven magnetic domain wall motion: Inner interface effect

    Bang, Do

    2016-05-23

    We investigate the current-induced domain wall motion in perpendicular magnetized Tb/Co wires with structure inversion asymmetry and different layered structures. We find that the critical current density to drive domain wall motion strongly depends on the layered structure. The lowest critical current density ∼15MA/cm2 and the highest slope of domain wall velocity curve are obtained for the wire having thin Co sublayers and more inner Tb/Co interfaces, while the largest critical current density ∼26MA/cm2 required to drive domain walls is observed in the Tb-Co alloy magnetic wire. It is found that the Co/Tb interface contributes negligibly to Dzyaloshinskii-Moriya interaction, while the effective spin-orbit torque strongly depends on the number of Tb/Co inner interfaces (n). An enhancement of the antidamping torques by extrinsic spin Hall effect due to Tb rare-earth impurity-induced skew scattering is suggested to explain the high efficiency of current-induced domain wall motion.

  7. Micro-focused Brillouin light scattering study of the magnetization dynamics driven by Spin Hall effect in a transversely magnetized NiFe nanowire

    Madami, M., E-mail: marco.madami@fisica.unipg.it; Carlotti, G. [Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Gubbiotti, G.; Tacchi, S. [Istituto Officina dei Materiali del CNR (CNR-IOM), Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Moriyama, T.; Tanaka, K.; Ono, T. [Institute for Chemical Research, Kyoto University, Kyoto (Japan); Siracusano, G.; Finocchio, G. [Department of Electronic Engineering, Industrial Chemistry and Engineering, University of Messina, Messina (Italy); Carpentieri, M. [Department of Electrical and Information Engineering, Politecnico of Bari, Bari (Italy)

    2015-05-07

    We employed micro-focused Brillouin light scattering to study the amplification of the thermal spin wave eigenmodes by means of a pure spin current, generated by the spin-Hall effect, in a transversely magnetized Pt(4 nm)/NiFe(4 nm)/SiO{sub 2}(5 nm) layered nanowire with lateral dimensions 500 × 2750 nm{sup 2}. The frequency and the cross section of both the center (fundamental) and the edge spin wave modes have been measured as a function of the intensity of the injected dc electric current. The frequency of both modes exhibits a clear redshift while their cross section is greatly enhanced on increasing the intensity of the injected dc. A threshold-like behavior is observed for a value of the injected dc of 2.8 mA. Interestingly, an additional mode, localized in the central part of the nanowire, appears at higher frequency on increasing the intensity of the injected dc above the threshold value. Micromagnetic simulations were used to quantitatively reproduce the experimental results and to investigate the complex non-linear dynamics induced by the spin-Hall effect, including the modification of the spatial profile of the spin wave modes and the appearance of the extra mode above the threshold.

  8. Topological Hall and Spin Hall Effects in Disordered Skyrmionic Textures

    N'diaye, P. B.; Akosa, C. A.; Manchon, A.

    2016-01-01

    We carry out a throughout study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy band structure in the multiprobe Landauer-B\\"uttiker formalism and their link to the effective magnetic field emerging from the real space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and found that the adiabatic a...

  9. Performance and flow characteristics of MHD seawater thruster

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.

  10. On-Chip Magnetorelaxometry Using Planar Hall Effect Magnetic Field Sensors

    Østerberg, Frederik Westergaard

    In recent years there has been an increasing interest in developing lab-on-a-chip devices that potentially can be used as point-of-care biosensors. The advantage of point-of-care biosensors is that they can analyze samples obtained from patients immediately, cutting away the time needed for sending...... the sample to a laboratory for analysis. Many different read out techniques can be used for point-of-care biosensors, among these are magnetic readouts, which are especially interesting because most biological samples are non-magnetic. The goal of this thesis is to explore the possibilities and limitations...... signals by a factor of six compared to the cross sensor without significant noise being added to the measurements. A study varying the concentration of magnetic beads with a nominal diameter of 40 nm shows that the hydrodynamic diameters can be extracted reliably for concentrations down to 64 _g...

  11. Characterization of the magnetic anisotropy in thin films of La1-xSrxMnO3 using the planar Hall effect

    Bason, Y.; Klein, L.; Yau, J.B.; Hong, X.; Ahn, C.H.

    2004-01-01

    Thin films of the colossal magnetoresistance material La 1-x Sr x MnO 3 (LSMO) grown on SrTiO 3 substrates exhibit bi-axial magnetocrystalline anisotropy with easy axes along the [110] and [1 anti 1 0] directions. We have recently discovered that the intrinsic biaxial magnetic anisotropy combined with a giant planar Hall effect lead to striking switching behavior in the transverse resistivity of LSMO films (Appl. Phys. Lett. 84, 2593 (2004)). Here we use this phenomenon as a sensitive tool for measuring in-plane magnetization in order to characterize the magnetic anisotropy. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  12. Performance of Hall sensor-based devices for magnetic field diagnosis at fusion reactors

    Bolshakova, I.; Ďuran, Ivan; Holyaka, R.; Hristoforou, E.; Marusenkov, A.

    2007-01-01

    Roč. 5, č. 1 (2007), s. 283-288 ISSN 1546-198X R&D Projects: GA AV ČR KJB100430504 Institutional research plan: CEZ:AV0Z20430508 Keywords : Galvanomagnetic * Sensor * Fusion Reactor * Magnetic Diagnostics * Radiation Hardness Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.587, year: 2007

  13. Magnetic measurements using array of integrated Hall sensors on the CASTOR tokamak

    Ďuran, Ivan; Hronová-Bilyková, Olena; Stöckel, Jan; Sentkerestiová, J.; Havlíček, Josef

    2008-01-01

    Roč. 79, č. 10 (2008), 10F123-10F123 ISSN 0034-6748. [Topical Conference on High-Temperature Plasma Diagnostics/17th./. Albuquerque, 11.05.2008-15.05.2008] R&D Projects: GA MPO 2A-1TP1/101 Institutional research plan: CEZ:AV0Z20430508 Keywords : Galvanomagnetic Sensor * Fusion Reactor * Magnetic Diagnostics * CASTOR tokamak Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.738, year: 2008

  14. Scanning vector Hall probe microscopy

    Cambel, V.; Gregusova, D.; Fedor, J.; Kudela, R.; Bending, S.J.

    2004-01-01

    We have developed a scanning vector Hall probe microscope for mapping magnetic field vector over magnetic samples. The microscope is based on a micromachined Hall sensor and the cryostat with scanning system. The vector Hall sensor active area is ∼5x5 μm 2 . It is realized by patterning three Hall probes on the tilted faces of GaAs pyramids. Data from these 'tilted' Hall probes are used to reconstruct the full magnetic field vector. The scanning area of the microscope is 5x5 mm 2 , space resolution 2.5 μm, field resolution ∼1 μT Hz -1/2 at temperatures 10-300 K

  15. Ion thruster design and analysis

    Kami, S.; Schnelker, D. E.

    1976-01-01

    Questions concerning the mechanical design of a thruster are considered, taking into account differences in the design of an 8-cm and a 30-cm model. The components of a thruster include the thruster shell assembly, the ion extraction electrode assembly, the cathode isolator vaporizer assembly, the neutralizer isolator vaporizer assembly, ground screen and mask, and the main isolator vaporizer assembly. Attention is given to the materials used in thruster fabrication, the advanced manufacturing methods used, details of thruster performance, an evaluation of thruster life, structural and thermal design considerations, and questions of reliability and quality assurance.

  16. Magnetic field and temperature dependent measurements of hall coefficient in thermal evaporated Tin-Doped Cadmium Oxide Thin films

    Hamadi, O.; Shakir, N.; Mohammed, F.

    2010-01-01

    CdO:Sn thin films are deposited onto glass substrates by thermal evaporation under vacuum. The studied films are polycrystalline and have an NaCl structure. The Hall effect is studied for films with different thickness as substrates are maintained at different temperatures. The temperature dependence of the Hall mobility is also investigated. (authors)

  17. Finite element and network electrical simulation of rotating magnetofluid flow in nonlinear porous media with inclined magnetic field and hall currents

    Bég Anwar O.

    2014-01-01

    Full Text Available A mathematical model is presented for viscous hydromagnetic flow through a hybrid non-Darcy porous media rotating generator. The system is simulated as steady, incompressible flow through a nonlinear porous regime intercalated between parallel plates of the generator in a rotating frame of reference in the presence of a strong, inclined magnetic field A pressure gradient term is included which is a function of the longitudinal coordinate. The general equations for rotating viscous magnetohydrodynamic flow are presented and neglecting convective acceleration effects, the two-dimensional viscous flow equations are derived incorporating current density components, porous media drag effects, Lorentz drag force components and Hall current effects. Using an appropriate group of dimensionless variables, the momentum equations for primary and secondary flow are rendered nondimensional and shown to be controlled by six physical parameters-Hartmann number (Ha, Hall current parameter (Nh, Darcy number (Da, Forchheimer number (Fs, Ekman number (Ek and dimensionless pressure gradient parameter (Np, in addition to one geometric parameter-the orientation of the applied magnetic field (θ . Several special cases are extracted from the general model, including the non-porous case studied earlier by Ghosh and Pop (2006. A numerical solution is presented to the nonlinear coupled ordinary differential equations using both the Network Simulation Method and Finite Element Method, achieving excellent agreement. Additionally very good agreement is also obtained with the earlier analytical solutions of Ghosh and Pop (2006. for selected Ha, Ek and Nh values. We examine in detail the effects of magnetic field, rotation, Hall current, bulk porous matrix drag, second order porous impedance, pressure gradient and magnetic field inclination on primary and secondary velocity distributions and also frictional shear stresses at the plates. Primary velocity is seen to decrease

  18. 9 July 2012 - Academy of Sciences Malaysia (ASM), Chairman, Mathematical and Physical Sciences Discipline Group M. Yahaya FASc and his delegation visiting the LHC superconducting magnet test hall with Technology Department G. De Rijk.

    Maximilien Brice

    2012-01-01

    9 July 2012 - Academy of Sciences Malaysia (ASM), Chairman, Mathematical and Physical Sciences Discipline Group M. Yahaya FASc and his delegation visiting the LHC superconducting magnet test hall with Technology Department G. De Rijk.

  19. 22 February 2011 - German Ambassador to Switzerland A. Berg signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry.

    Maximilien Brice

    2011-01-01

    22 February 2011 - German Ambassador to Switzerland A. Berg signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry.

  20. 21st September 2010 - Representatives of the German Federal Ministry of eEducation and Research accompanied by M. Hauschield, ATLAS Collaboration, visiting the LHC superconducting magnet test hall with Department Head F. Bordry and R. Schmidt.

    Maximilien Brice

    2010-01-01

    21st September 2010 - Representatives of the German Federal Ministry of eEducation and Research accompanied by M. Hauschield, ATLAS Collaboration, visiting the LHC superconducting magnet test hall with Department Head F. Bordry and R. Schmidt.

  1. 8 October 2012 - Taipei Cultural and Economic Delegation, Geneva Office Ambassador A. Tah-Ray Yui visiting the LHC superconducting magnet test hall with International Relations Office Adviser R. Voss.

    Maximilien Brice

    2012-01-01

    8 October 2012 - Taipei Cultural and Economic Delegation, Geneva Office Ambassador A. Tah-Ray Yui visiting the LHC superconducting magnet test hall with International Relations Office Adviser R. Voss.

  2. 28 September 2011 - Canadian Intellectual Property Office Policy, International and Research Office Director K. Georgaras visiting the LHC superconducting magnet test hall with Engineer M. Bajko and Senior Scientists P. Jenni and R. Voss.

    2011-01-01

    28 September 2011 - Canadian Intellectual Property Office Policy, International and Research Office Director K. Georgaras visiting the LHC superconducting magnet test hall with Engineer M. Bajko and Senior Scientists P. Jenni and R. Voss.

  3. 4 August 2011 - Austrian Head of Protocol, Directorate General III, Federal Ministry of Science and Research I. Friedrich (3rd from left) in the LHC superconducting magnet test hall with M. Benedkit, C. Wulz and C. Fabjan.

    Maximilien Brice

    2011-01-01

    4 August 2011 - Austrian Head of Protocol, Directorate General III, Federal Ministry of Science and Research I. Friedrich (3rd from left) in the LHC superconducting magnet test hall with M. Benedkit, C. Wulz and C. Fabjan.

  4. 10th December 2010 - German Delegation from the Novartis Foundation for Sustainable Development visiting the LHC superconducting magnet test hall with Technology Department S. Russenschuck and accompanied by Adviser for Life Sciences M. Dosanjh.

    Maximilien Brice

    2010-01-01

    10th December 2010 - German Delegation from the Novartis Foundation for Sustainable Development visiting the LHC superconducting magnet test hall with Technology Department S. Russenschuck and accompanied by Adviser for Life Sciences M. Dosanjh.

  5. 12 April 2013 - The British Royal Academy of Engineering visiting the LHC superconducting magnet test hall with R. Veness and the ATLAS experimental cavern with Collaboration Spokesperson D. Charlton.

    Jean-Claude Gadmer

    2013-01-01

    12 April 2013 - The British Royal Academy of Engineering visiting the LHC superconducting magnet test hall with R. Veness and the ATLAS experimental cavern with Collaboration Spokesperson D. Charlton.

  6. 18 August 2011 - Armenian Yerevan Physics Institute Director A. Chilingarian visiting the LHC superconducting magnet test hall with A. Ballarino; signing the guest book with Adviser T. Kurtyka and Head of International Relations F. Pauss.

    Benoit Jeannet

    2011-01-01

    18 August 2011 - Armenian Yerevan Physics Institute Director A. Chilingarian visiting the LHC superconducting magnet test hall with A. Ballarino; signing the guest book with Adviser T. Kurtyka and Head of International Relations F. Pauss.

  7. 23rd August 2011 - Turkish Representatives of the Union of Chambers and Commodity Exchanges, E. Uluatam and S. Kologlu, visiting the LHC superconducting magnet test hall with Engineering Department Head R. Saban.

    Benoit Jeannet

    2011-01-01

    23rd August 2011 - Turkish Representatives of the Union of Chambers and Commodity Exchanges, E. Uluatam and S. Kologlu, visiting the LHC superconducting magnet test hall with Engineering Department Head R. Saban.

  8. Integration Test of the High Voltage Hall Accelerator System Components

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Pinero, Luis; Peterson, Todd; Dankanich, John

    2013-01-01

    NASA Glenn Research Center is developing a 4 kilowatt-class Hall propulsion system for implementation in NASA science missions. NASA science mission performance analysis was completed using the latest high voltage Hall accelerator (HiVHAc) and Aerojet-Rocketdyne's state-of-the-art BPT-4000 Hall thruster performance curves. Mission analysis results indicated that the HiVHAc thruster out performs the BPT-4000 thruster for all but one of the missions studied. Tests of the HiVHAc system major components were performed. Performance evaluation of the HiVHAc thruster at NASA Glenn's vacuum facility 5 indicated that thruster performance was lower than performance levels attained during tests in vacuum facility 12 due to the lower background pressures attained during vacuum facility 5 tests when compared to vacuum facility 12. Voltage-Current characterization of the HiVHAc thruster in vacuum facility 5 showed that the HiVHAc thruster can operate stably for a wide range of anode flow rates for discharge voltages between 250 and 600 volts. A Colorado Power Electronics enhanced brassboard power processing unit was tested in vacuum for 1,500 hours and the unit demonstrated discharge module efficiency of 96.3% at 3.9 kilowatts and 650 volts. Stand-alone open and closed loop tests of a VACCO TRL 6 xenon flow control module were also performed. An integrated test of the HiVHAc thruster, brassboard power processing unit, and xenon flow control module was performed and confirmed that integrated operation of the HiVHAc system major components. Future plans include continuing the maturation of the HiVHAc system major components and the performance of a single-string integration test.

  9. Chip-Based Measurements of Brownian Relaxation of Magnetic Beads Using a Planar Hall Effect Magnetic Field Sensor

    Østerberg, Frederik Westergaard; Dalslet, Bjarke Thomas; Snakenborg, Detlef

    2010-01-01

    using only the self-field arising from the bias current applied to the sensors as excitation field. We present measurements on a suspension of magnetic beads with a nominal diameter of 250 nm vs. temperature and find that the observations are consistent with the Cole-Cole model for Brownian relaxation...... with a constant hydrodynamic bead diameter when the temperature dependence of the viscosity of water is taken into account. These measurements demonstrate the feasibility of performing measurements of the Brownian relaxation response in a lab-on-a-chip system and constitute the first step towards an integrated...... biosensor based on the detection of the dynamic response of magnetic beads....

  10. The Plasmoid Thruster Experiment (PTX)

    Eskridge, Richard; Martin, Adam; Koelfgen, Syri; Lee, Mike; Smith, James W.

    2003-01-01

    A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are categorized according to the relative strength of the poloidal and toroidal magnetic field (B(phi), and B(tau), respectively). An object with B(phi)/B(tau) >> 1 is classified as a Field Reverse Configuration (FRC); if B(phi) = B(tau), it is called a Spheromak. There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A thruster based on this concept would operate by repetitively producing plasmoids and ejecting them from the device at high velocity. The plasmoid is formed inside of a single turn conical theta-pinch coil; as this process is inductive, there are no life-limiting electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s (l), and calculations indicate that velocities in excess of 100 km/s are possible. A thruster based on this concept would be capable of producing an I(sp) in the range of 5,000 - 10,OOO s, with thrust densities of order 10(exp 5) N/m(exp 2). The current experiment is designed to produce jet powers in the range of 5-10 kW, although the concept should be scalable to higher power. The purpose of this experiment is to determine the feasibility of this plasma propulsion concept. To accomplish this, it will be necessary to determine: a.) specific impulse and thrust, b.) efficiency and mass utilization, c.) which type of plasmoid (FRC-like or Spheromak-like) gives the best performance, and d.) the characteristics required of actual thruster components (i.e., switch and capacitor technology). The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras, and an interferometer. Simulations of the plasmoid thruster using MOQUI, a time dependent MHD code, will be carried out concurrently with experimental testing. The PTX

  11. Quadrupole magnetic mapping of the high resolution spectrometers of Thomas Jefferson National Accelerator Laboratory, Hall A. (Q.M.M. project: Quadrupole Magnetic Measurement)

    Quemener, Gilles

    1997-01-01

    This thesis describes the magnetic measurements that have been performed on the superconducting quadrupoles of the High Resolution Spectrometers of TJNAF, Hall A (USA), which are designed to measure particle momentum up to 4 GeV.c -1 with a σp/p = 10 -4 resolution. The mapping method is based on rotating coil technique, the originality being a segmentation of the probe along the quad axis. Together with an accurate magnet modelling, the measurement of the flux variations through the set of rotating coils allows to determine the magnetic field at each point. We use the 3D field formalism, i.e., the Fourier-Bessel expansion of the field obtained by solving the Laplace equation. We describe the QMM method and then the apparatus consisting in two probes of length 1.6 m and 3.2 m built to map the three quadrupoles Q1, Q2, Q3. Data processing uses Fourier analysis. The mapping of the Electron Arm took place in situ in 1996. A first set of results concerns integral measurements including the properties of excitation cycle of the magnets (saturation and hysteresis). Second set of results in terms of local field yields the 3D field maps of the quadrupoles. After having applied corrections to the data we obtain a local field accuracy of 5 Gauss on each component, i.e. an uncertainty of 5.10 -4 relative to the quadrupole central field. We use SNAKE ray-tracing code with the implementation of QMM field maps and obtain preliminary results on HRS optics. (author)

  12. Modeling of physical processes in radio-frequency plasma thrusters

    Tian, Bin

    2017-01-01

    This Thesis presents an investigation of the plasma-wave interaction in Helicon Plasma Thrusters (HPT). The HPT is a new concept of electric space propulsion, which generates plasmas with RF heating and provides thrust by the electrodeless acceleration of plasmas in a magnetic nozzle. An in-depth and extensive literature review of the state of the art of the models and experiments of plasma-wave interaction in helicon plasma sources and thrusters is carried out. Then, a theoret...

  13. Anomalous Hall effect

    Nagaosa, N.; Sinova, Jairo; Onoda, S.; MacDonald, A. H.; Ong, N. P.

    2010-01-01

    Roč. 82, č. 2 (2010), s. 1539-1592 ISSN 0034-6861 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 51.695, year: 2010

  14. Project of an ion thruster

    Perche, G.E.

    1983-07-01

    The mercury bombardment electrostatic ion thruster is the most successful electric thruster available today. This work describes a 5 cm diameter ion thruster with 3.000 s specific impulse and 5 mN thrust. The advantages of electric propulsion and the tests that will be performed are also presented. (Author) [pt

  15. Magnetic quantum oscillations of diagonal conductivity in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall effect

    Gvozdikov, V M; Taut, M

    2009-01-01

    We report on analytical and numerical studies of the magnetic quantum oscillations of the diagonal conductivity σ xx in a two-dimensional conductor with a weak square superlattice modulation under conditions of the integer quantum Hall (IQHE) effect. The quantum Hall effect in such a system differs from the conventional IQHE, in which the finite width of the Landau bands is due to disorder only. The superlattice modulation potential yields a fractal splitting of the Landau levels into Hofstadter minibands. For rational flux through a unit cell, the minibands have a finite width and intrinsic dispersion relations. We consider a regime, now accessible experimentally, in which disorder does not wash out the fractal internal gap structure of the Landau bands completely. We found the following distinctions from the conventional IQHE produced by the superlattice: (i) the peaks in diagonal conductivity are split due to the Hofstadter miniband structure of Landau bands; (ii) the number of split peaks in the bunch, their positions and heights depend irregularly on the magnetic field and the Fermi energy; (iii) the gaps between the split Landau bands (and related quantum Hall plateaus) become narrower with the superlattice modulation than without it.

  16. Microminiature Hall probes based on n-InSb(Sn)/i-GaAs heterostructure for pulsed magnetic field applications up to 52 T

    Mironov, O.A.; Myronov, M.; Durov, S.; Drachenko, O.; Leotin, J

    2004-04-30

    Microminiature Hall probes with sensitive area down to 33x115 {mu}m and based on n-InSb/i-GaAs optimized Sn-doped MBE-grown heterostructures are reported. The 'metallurgical' thicknesses of the n-InSb epilayers lie in the range d{sup m}=1.1-10.5 {mu}m giving room-temperature mobilities of (9-15)x10{sup 3} cm{sup 2}/Vs with carrier densities of (0.96-2.56)x10{sup 18} cm{sup -3}. Characterization of the devices was performed by magnetotransport measurements in quasi-static and pulsed magnetic fields. In the temperature range 1.1-300 K and in magnetic fields up to 12 T (static) and up to 52 T (pulsed, {tau}=120 mS), transport measurements yield remarkable linearity of the Hall voltage up to 52 T and sensitivity, as well as demonstrating the high-temperature stability of the Hall voltage, the offset voltage and the device resistivity. No significant effect of the high current up to 150 mA on either the sensitivity or the resistivity is observed.

  17. Measurement of in-plane magnetic relaxation in RE-123 coated conductors by use of scanning Hall probe microscopy

    Shiohara, K.; Higashikawa, K.; Inoue, M.; Kiss, T.; Iijima, Y.; Saitoh, T.; Yoshizumi, M.; Izumi, T.

    2013-01-01

    Highlights: ► We have investigated electric field criterion of in-plane critical current density. ► We could measure magnetic relaxation in a remanent state. ► The SHPM results show good agreement with the measurements by the 4-probe method. -- Abstract: We have investigated electric field criterion of in-plane critical current density in a coated conductor characterized by scanning Hall-probe microscopy (SHPM). From remanent field distribution and its relaxation measurements, we could obtain critical current distribution and induced electric field simultaneously by considering the Biot-Savart law and the Faraday’s law, respectively. These results lead us to evaluate a distribution of local critical current density and the corresponding criterion of electric field. As a result, it was found that the electric field criterion for the SHPM analysis was several orders lower than that used in the conventional 4-probe resistive method. However, the data point obtained by the SHPM shows good agreement with E–J curve analytically extended from the measurements by the 4-probe method. This means that we could characterize in-plane distribution of critical current density in a coated conductor at an electric field criterion quantitatively by this method in a nondestructive manner. These findings will be very important information since the uniformity of local critical current density in a coated conductor at extremely low electric fields is a key issue (1) especially for DC applications, (2) for quality control of coated conductors, and (3) for the standardization of the characterization of critical current among different methods

  18. The quantized Hall effect

    Klitzing von, K.

    1989-01-01

    The quantized Hall effect is theoretically explained in detail as are its basic properties. The explanation is completed with the pertinent mathematical relations and illustrative figures. Experimental data are critically assessed obtained by quantum transport measurement in a magnetic field on two-dimensional systems. The results are reported for a MOSFET silicon transistor and for GaAs-Al x Ga 1-x As heterostructures. The application is discussed of the quantized Hall effect in determining the fine structure constant or in implementing the resistance standard. (M.D.). 27 figs., 57 refs

  19. Hall A

    Federal Laboratory Consortium — The instrumentation in Hall A at the Thomas Jefferson National Accelerator Facility was designed to study electroand photo-induced reactions at very high luminosity...

  20. Inert gas thrusters

    Kaufman, H. R.; Robinson, R. S.

    1980-01-01

    Some advances in component technology for inert gas thrusters are described. The maximum electron emission of a hollow cathode with Ar was increased 60-70% by the use of an enclosed keeper configuration. Operation with Ar, but without emissive oxide, was also obtained. A 30 cm thruster operated with Ar at moderate discharge voltages give double-ion measurements consistent with a double ion correlation developed previously using 15 cm thruster data. An attempt was made to reduce discharge losses by biasing anodes positive of the discharge plasma. The reason this attempt was unsuccessful is not yet clear. The performance of a single-grid ion-optics configuration was evaluated. The ion impingement on the single grid accelerator was found to approach the value expected from the projected blockage when the sheath thickness next to the accelerator was 2-3 times the aperture diameter.

  1. Krypton Ion Thruster Performance

    Patterson, Michael J.; Williams, George J.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4 to 5.5 kW. The data presented are compared and contrasted to the data obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust to power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order of magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  2. Observation of the Zero Hall Plateau in a Quantum Anomalous Hall Insulator

    Feng, Yang; Feng, Xiao; Ou, Yunbo; Wang, Jing; Liu, Chang; Zhang, Liguo; Zhao, Dongyang; Jiang, Gaoyuan; Zhang, Shou-Cheng; He, Ke; Ma, Xucun; Xue, Qi-Kun; Wang, Yayu

    2015-09-16

    We report experimental investigations on the quantum phase transition between the two opposite Hall plateaus of a quantum anomalous Hall insulator. We observe a well-defined plateau with zero Hall conductivity over a range of magnetic field around coercivity when the magnetization reverses. The features of the zero Hall plateau are shown to be closely related to that of the quantum anomalous Hall effect, but its temperature evolution exhibits a significant difference from the network model for a conventional quantum Hall plateau transition. We propose that the chiral edge states residing at the magnetic domain boundaries, which are unique to a quantum anomalous Hall insulator, are responsible for the novel features of the zero Hall plateau.

  3. Performance and Environmental Test Results of the High Voltage Hall Accelerator Engineering Development Unit

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Mathers, Alex

    2012-01-01

    NASA Science Mission Directorate's In-Space Propulsion Technology Program is sponsoring the development of a 3.5 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn and Aerojet are developing a high fidelity high voltage Hall accelerator that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the high voltage Hall accelerator engineering development unit have been performed. Performance test results indicated that at 3.9 kW the thruster achieved a total thrust efficiency and specific impulse of 58%, and 2,700 sec, respectively. Thermal characterization tests indicated that the thruster component temperatures were within the prescribed material maximum operating temperature limits during full power thruster operation. Finally, thruster vibration tests indicated that the thruster survived the 3-axes qualification full-level random vibration test series. Pre and post-vibration test performance mappings indicated almost identical thruster performance. Finally, an update on the development progress of a power processing unit and a xenon feed system is provided.

  4. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa{sub 2}Cu{sub 3}O{sub 7}

    Xing, W.; Heinrich, B. [Simon Fraser Univ., British Columbia (Canada); Zhou, H. [CTF Systems, Inc., British Columbia (Canada)] [and others

    1994-12-31

    Mapping of the magnetic flux density B{sub z} (perpendicular to the film plane) for a YBa{sub 2}Cu{sub 3}O{sub 7} thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B{sub z} distributions. From the known sheet magnetization, the tangential (B{sub x,y}) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B{sub x,y}/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  5. 3D ion velocity distribution function measurement in an electric thruster using laser induced fluorescence tomography

    Elias, P. Q.; Jarrige, J.; Cucchetti, E.; Cannat, F.; Packan, D.

    2017-09-01

    Measuring the full ion velocity distribution function (IVDF) by non-intrusive techniques can improve our understanding of the ionization processes and beam dynamics at work in electric thrusters. In this paper, a Laser-Induced Fluorescence (LIF) tomographic reconstruction technique is applied to the measurement of the IVDF in the plume of a miniature Hall effect thruster. A setup is developed to move the laser axis along two rotation axes around the measurement volume. The fluorescence spectra taken from different viewing angles are combined using a tomographic reconstruction algorithm to build the complete 3D (in phase space) time-averaged distribution function. For the first time, this technique is used in the plume of a miniature Hall effect thruster to measure the full distribution function of the xenon ions. Two examples of reconstructions are provided, in front of the thruster nose-cone and in front of the anode channel. The reconstruction reveals the features of the ion beam, in particular on the thruster axis where a toroidal distribution function is observed. These findings are consistent with the thruster shape and operation. This technique, which can be used with other LIF schemes, could be helpful in revealing the details of the ion production regions and the beam dynamics. Using a more powerful laser source, the current implementation of the technique could be improved to reduce the measurement time and also to reconstruct the temporal evolution of the distribution function.

  6. Quantum Hall effect in quantum electrodynamics

    Penin, Alexander A.

    2009-01-01

    We consider the quantum Hall effect in quantum electrodynamics and find a deviation from the quantum-mechanical prediction for the Hall conductivity due to radiative antiscreening of electric charge in an external magnetic field. A weak dependence of the universal von Klitzing constant on the magnetic field strength, which can possibly be observed in a dedicated experiment, is predicted

  7. HG ion thruster component testing

    Mantenieks, M. A.

    1979-01-01

    Cathodes, isolators, and vaporizers are critical components in determining the performance and lifetime of mercury ion thrusters. The results of life tests of several of these components are reported. A 30-cm thruster CIV test in a bell jar has successfully accumulated over 26,000 hours. The cathode has undergone 65 restarts during the life test without requiring any appreciable increases in starting power. Recently, all restarts have been achieved with only the 44 volt keeper supply with no change required in the starting power. Another ongoing 30-cm Hg thruster cathode test has successfully passed the 10,000 hour mark. A solid-insert, 8-cm thruster cathode has accumulated over 4,000 hours of thruster operation. All starts have been achieved without the use of a high voltage ignitor. The results of this test indicate that the solid impregnated insert is a viable neutralizer cathode for the 8-cm thruster.

  8. Real-Tme Boron Nitride Erosion Measurements of the HiVHAc Thruster via Cavity Ring-Down Spectroscopy

    Lee, Brian C.; Yalin, Azer P.; Gallimore, Alec; Huang, Wensheng; Kamhawi, Hani

    2013-01-01

    Cavity ring-down spectroscopy was used to make real-time erosion measurements from the NASA High Voltage Hall Accelerator thruster. The optical sensor uses 250 nm light to measure absorption of atomic boron in the plume of an operating Hall thruster. Theerosion rate of the High Voltage Hall Accelerator thruster was measured for discharge voltages ranging from 330 to 600 V and discharge powers ranging from 1 to 3 kW. Boron densities as high as 6.5 x 10(exp 15) per cubic meter were found within the channel. Using a very simple boronvelocity model, approximate volumetric erosion rates between 5.0 x 10(exp -12) and 8.2 x 10(exp -12) cubic meter per second were found.

  9. Thermal Modeling for Pulsed Inductive FRC Plasmoid Thrusters

    Pfaff, Michael

    Due to the rising importance of space based infrastructure, long-range robotic space missions, and the need for active attitude control for spacecraft, research into Electric Propulsion is becoming increasingly important. Electric Propulsion (EP) systems utilize electric power to accelerate ions in order to produce thrust. Unlike traditional chemical propulsion, this means that thrust levels are relatively low. The trade-off is that EP thrusters have very high specific impulses (Isp), and can therefore make do with far less onboard propellant than cold gas, monopropellant, or bipropellant engines. As a consequence of the high power levels used to accelerate the ionized propellant, there is a mass and cost penalty in terms of solar panels and a power processing unit. Due to the large power consumption (and waste heat) from electric propulsion thrusters, accurate measurements and predictions of thermal losses are needed. Excessive heating in sensitive locations within a thruster may lead to premature failure of vital components. Between the fixed cost required to purchase these components, as well as the man-hours needed to assemble (or replace) them, attempting to build a high-power thruster without reliable thermal modeling can be expensive. This paper will explain the usage of FEM modeling and experimental tests in characterizing the ElectroMagnetic Plasmoid Thruster (EMPT) and the Electrodeless Lorentz Force (ELF) thruster at the MSNW LLC facility in Redmond, Washington. The EMPT thruster model is validated using an experimental setup, and steady state temperatures are predicted for vacuum conditions. Preliminary analysis of the ELF thruster indicates possible material failure in absence of an active cooling system for driving electronics and for certain power levels.

  10. Improvement of Flow Characteristics for an Advanced Plasma Thruster

    Inutake, M.; Hosokawa, Y.; Sato, R.; Ando, A.; Tobari, H.; Hattori, K.

    2005-01-01

    A higher specific impulse and a larger thrust are required for a manned interplanetary space thruster. Until the realization of a fusion-plasma thruster, a magneto-plasma-dynamic arcjet (MPDA) powered by a fission reactor is one of the promising candidates for a manned Mars space thruster. The MPDA plasma is accelerated axially by a self-induced j x B force. Thrust performance of the MPDA is expected to increase by applying a magnetic nozzle instead of a solid nozzle. In order to get a much higher thruster performance, two methods have been investigated in the HITOP device, Tohoku University. One is to use a magnetic Laval nozzle in the vicinity of the MPDA muzzle for converting the high ion thermal energy to the axial flow energy. The other is to heat ions by use of an ICRF antenna in the divergent magnetic nozzle. It is found that by use of a small-sized Laval-type magnetic nozzle, the subsonic flow near the muzzle is converted to be supersonic through the magnetic Laval nozzle. A fast-flowing plasma is successfully heated by use of an ICRF antenna in the magnetic beach configuration

  11. Laurance David Hall.

    Coxon, Bruce

    2011-01-01

    An account is given of the life, scientific contributions, and passing of Laurance David Hall (1938-2009), including his early history and education at the University of Bristol, UK, and the synthesis and NMR spectroscopy of carbohydrates and other natural products during ∼20 years of research and teaching at the University of British Columbia in Vancouver, Canada. Lists of graduate students, post-doctoral fellows, and sabbatical visitors are provided for this period. Following a generous endowment by Dr. Herchel Smith, Professor Hall built a new Department of Medicinal Chemistry at Cambridge University, UK, and greatly expanded his researches into the technology and applications of magnetic resonance imaging (MRI) and zero quantum NMR. MRI technology was applied both to medical problems such as the characterization of cartilage degeneration in knee joints, the measurement of ventricular function, lipid localization in animal models of atherosclerosis, paramagnetic metal complexes of polysaccharides as contrast agents, and studies of many other anatomical features, but also to several aspects of materials analysis, including food analyses, process control, and the elucidation of such physical phenomena as the flow of liquids through porous media, defects in concrete, and the visualization of fungal damage to wood. Professor Hall's many publications, patents, lectures, and honors and awards are described, and also his successful effort to keep the Asilomar facility in Pacific Grove, California as the alternating venue for the annual Experimental NMR Conference. Two memorial services for Professor Hall are remembered. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Arcjet space thrusters

    Keefer, Dennis; Rhodes, Robert

    1993-05-01

    Electrically powered arc jets which produce thrust at high specific impulse could provide a substantial cost reduction for orbital transfer and station keeping missions. There is currently a limited understanding of the complex, nonlinear interactions in the plasma propellant which has hindered the development of high efficiency arc jet thrusters by making it difficult to predict the effect of design changes and to interpret experimental results. A computational model developed at the University of Tennessee Space Institute (UTSI) to study laser powered thrusters and radio frequency gas heaters has been adapted to provide a tool to help understand the physical processes in arc jet thrusters. The approach is to include in the model those physical and chemical processes which appear to be important, and then to evaluate our judgement by the comparison of numerical simulations with experimental data. The results of this study have been presented at four technical conferences. The details of the work accomplished in this project are covered in the individual papers included in the appendix of this report. We present a brief description of the model covering its most important features followed by a summary of the effort.

  13. A Hall probe technique for characterizing high-temperature superconductors

    Zhang, J.; Sheldon, P.; Ahrenkiel, R.K.

    1992-01-01

    Thin-film GaAs Hall probes were fabricated by molecular beam epitaxy technology. A contactless technique was developed to characterize thin-film, high-temperature superconducting (HTSC) materials. The Hall probes detected the ac magnetic flux penetration through the high-temperature superconducting materials. The Hall detector has advantages over the mutual inductance magnetic flux detector

  14. Nondestructive hall coefficient measurements using ACPD techniques

    Velicheti, Dheeraj; Nagy, Peter B.; Hassan, Waled

    2018-04-01

    Hall coefficient measurements offer great opportunities as well as major challenges for nondestructive materials characterization. The Hall effect is produced by the magnetic Lorentz force acting on moving charge carriers in the presence of an applied magnetic field. The magnetic perturbation gives rise to a Hall current that is normal to the conduction current but does not directly perturb the electric potential distribution. Therefore, Hall coefficient measurements usually exploit the so-called transverse galvanomagnetic potential drop effect that arises when the Hall current is intercepted by the boundaries of the specimen and thereby produce a measurable potential drop. In contrast, no Hall potential is produced in a large plate in the presence of a uniform normal field at quasi-static low frequencies. In other words, conventional Hall coefficient measurements are inherently destructive since they require cutting the material under tests. This study investigated the feasibility of using alternating current potential drop (ACPD) techniques for nondestructive Hall coefficient measurements in plates. Specifically, the directional four-point square-electrode configuration is investigated with superimposed external magnetic field. Two methods are suggested to make Hall coefficient measurements in large plates without destructive machining. At low frequencies, constraining the bias magnetic field can replace constraining the dimensions of the specimen, which is inherently destructive. For example, when a cylindrical permanent magnet is used to provide the bias magnetic field, the peak Hall voltage is produced when the diameter of the magnet is equal to the diagonal of the square ACPD probe. Although this method is less effective than cutting the specimen to a finite size, the loss of sensitivity is less than one order of magnitude even at very low frequencies. In contrast, at sufficiently high inspection frequencies the magnetic field of the Hall current induces a

  15. Magnetic Measuring Instrumentation with Radiation-Resistant Hall Sensors for Fusion Reactors: Experience of Testing at JET

    Bolshakova, I.; Quercia, A.; Coccorese, V.; Murari, A.; Holyaka, R.; Ďuran, Ivan; Viererbl, L.; Konopleva, R.; Yerashok, V.

    2012-01-01

    Roč. 59, č. 4 (2012), s. 1224-1231 ISSN 0018-9499. [International Conference on Advancements in Nuclear Instrumentation, Measurement Methods and their Applications. Ghent, 06.06.2011-09.06.2011] R&D Projects: GA ČR GAP205/10/2055 Institutional research plan: CEZ:AV0Z20430508 Keywords : plasma * tokamak * JET * Hall probes * radiation resistance Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.219, year: 2012

  16. Paired Hall states

    Greiter, M.

    1992-01-01

    This dissertation contains a collection of individual articles on various topics. Their significance in the corresponding field as well as connections between them are emphasized in a general and comprehensive introduction. In the first article, the author explores the consequences for macroscopic effective Lagrangians of assuming that the momentum density is proportional to the flow of conserved current. The universal corrections obtained for the macroscopic Lagrangian of a superconductor describe the London Hall effect, and provide a fully consistent derivation of it. In the second article, a heuristic principle is proposed for quantized Hall states: the existence and incompressibility of fractionally quantized Hall states is explained by an argument based on an adiabatic localization of magnetic flux, the process of trading uniform flux for an equal amount of fictitious flux attached to the particles. This principle is exactly implemented in the third article. For a certain class of model Hamiltonians, the author obtains Laughlin's Jastrow type wave functions explicitly from a filled Landau level, by smooth extrapolation in quantum statistics. The generalization of this analysis to the torus geometry shows that theorems restricting the possibilities of quantum statistics on closed surfaces are circumvented in the presence of a magnetic field. In the last article, the existence is proposed of a novel incompressible quantum liquid, a paired Hall state, at a half filled Landau level. This state arises adiabatically from free fermions in zero magnetic field, and reduces to a state previously proposed by Halperin in the limit of tightly bound pairs. It supports unusual excitations, including neutral fermions and charge e/4 anyons with statistical parameter θ = π/8

  17. Piezo Voltage Controlled Planar Hall Effect Devices.

    Zhang, Bao; Meng, Kang-Kang; Yang, Mei-Yin; Edmonds, K W; Zhang, Hao; Cai, Kai-Ming; Sheng, Yu; Zhang, Nan; Ji, Yang; Zhao, Jian-Hua; Zheng, Hou-Zhi; Wang, Kai-You

    2016-06-22

    The electrical control of the magnetization switching in ferromagnets is highly desired for future spintronic applications. Here we report on hybrid piezoelectric (PZT)/ferromagnetic (Co2FeAl) devices in which the planar Hall voltage in the ferromagnetic layer is tuned solely by piezo voltages. The change of planar Hall voltage is associated with magnetization switching through 90° in the plane under piezo voltages. Room temperature magnetic NOT and NOR gates are demonstrated based on the piezo voltage controlled Co2FeAl planar Hall effect devices without the external magnetic field. Our demonstration may lead to the realization of both information storage and processing using ferromagnetic materials.

  18. Topological Hall and spin Hall effects in disordered skyrmionic textures

    Ndiaye, Papa Birame; Akosa, Collins Ashu; Manchon, Aurelien

    2017-01-01

    We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.

  19. Topological Hall and spin Hall effects in disordered skyrmionic textures

    Ndiaye, Papa Birame

    2017-02-24

    We carry out a thorough study of the topological Hall and topological spin Hall effects in disordered skyrmionic systems: the dimensionless (spin) Hall angles are evaluated across the energy-band structure in the multiprobe Landauer-Büttiker formalism and their link to the effective magnetic field emerging from the real-space topology of the spin texture is highlighted. We discuss these results for an optimal skyrmion size and for various sizes of the sample and find that the adiabatic approximation still holds for large skyrmions as well as for nanoskyrmions. Finally, we test the robustness of the topological signals against disorder strength and show that the topological Hall effect is highly sensitive to momentum scattering.

  20. Tuning giant anomalous Hall resistance ratio in perpendicular Hall balance

    Zhang, J. Y.; Yang, G. [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wang, S. G., E-mail: sgwang@iphy.ac.cn, E-mail: ghyu@mater.ustb.edu.cn [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Liu, J. L. [State Key Laboratory of Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Wang, R. M. [Department of Physics, Beijing University of Aeronautics and Astronautics, Beijing 100191 (China); Amsellem, E.; Kohn, A. [Department of Materials Engineering, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel); Yu, G. H., E-mail: sgwang@iphy.ac.cn, E-mail: ghyu@mater.ustb.edu.cn [Department of Materials Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China)

    2015-04-13

    Anomalous Hall effect at room temperature in perpendicular Hall balance with a core structure of [Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4} has been tuned by functional CoO layers, where [Pt/Co]{sub 4} multilayers exhibit perpendicular magnetic anisotropy. A giant Hall resistance ratio up to 69 900% and saturation Hall resistance (R{sub S}{sup P}) up to 2590 mΩ were obtained in CoO/[Pt/Co]{sub 4}/NiO/[Co/Pt]{sub 4}/CoO system, which is 302% and 146% larger than that in the structure without CoO layers, respectively. Transmission electron microscopy shows highly textured [Co/Pt]{sub 4} multilayers and oxide layers with local epitaxial relations, indicating that the crystallographic structure has significant influence on spin dependent transport properties.

  1. Tunneling Anomalous and Spin Hall Effects.

    Matos-Abiague, A; Fabian, J

    2015-07-31

    We predict, theoretically, the existence of the anomalous Hall effect when a tunneling current flows through a tunnel junction in which only one of the electrodes is magnetic. The interfacial spin-orbit coupling present in the barrier region induces a spin-dependent momentum filtering in the directions perpendicular to the tunneling current, resulting in a skew tunneling even in the absence of impurities. This produces an anomalous Hall conductance and spin Hall currents in the nonmagnetic electrode when a bias voltage is applied across the tunneling heterojunction. If the barrier is composed of a noncentrosymmetric material, the anomalous Hall conductance and spin Hall currents become anisotropic with respect to both the magnetization and crystallographic directions, allowing us to separate this interfacial phenomenon from the bulk anomalous and spin Hall contributions. The proposed effect should be useful for proving and quantifying the interfacial spin-orbit fields in metallic and metal-semiconductor systems.

  2. Effect of Ambipolar Potential on the Propulsive Performance of the GDM Plasma Thruster, Phase II

    National Aeronautics and Space Administration — The Gasdynamic Mirror (GDM) thruster is an electric propulsion device, without electrodes, that will magnetically confine a plasma with such density and temperature...

  3. Plasma simulation in space propulsion : the helicon plasma thruster

    Navarro Cavallé, Jaume

    2017-01-01

    The Helicon Plasma Thruster (HPT) is an electrodynamic rocket proposed in the early 2000s. It matches an Helicon Plasma Source (HPS), which ionizes the neutral gas and heats up the plasma, with aMagneticNozzle (MN),where the plasma is supersonically accelerated resulting in thrust. Although the core of this thruster inherits the knowledge on Helicon Plasma sources, dated from the seventies, the HPT technology is still not developed and remains below TRL 4. A deep review of the HPT State-of-ar...

  4. Investigation of Hall Effect Thruster Channel Wall Erosion Mechanisms

    2016-08-02

    empirical studies of sputtering yields for ceramic 15 compounds used in EP devices. Experimenters target material samples with ion beams at...a circular collector [54]. These measurements were conducted at heights of 40 and 60 cm from the floor of the chamber, and at several different... parabolic depression bounded by sharp-edged cusps. The surface has the overall appearance of a plane divided into Voronoi-like cells. Each cell is

  5. Velocity Plume Profiles for Hall Thrusters Using Laser Diagnostic

    2010-06-01

    multiple ionization of the propellant or momentum imparted by neutral xenon. Beam divergence is the angular measurement of the plume as the diameter...A3200 can manually move the stages or operate from a script to automate movement. The program also allows the user to define a local coordinate...primer/ java /lasers/diodelasers/index.html [68] Shore Laser (n.d.) Laser Operation [Online]. http://www.shorelaser.com/Laser_Operation.html [69

  6. Low Mass Low Power Hall Thruster System, Phase I

    National Aeronautics and Space Administration — NASA is seeking electric propulsion systems capable of producing up to 20mN thrust, input power up to 1000W and specific impulse ranging from 1600-3500 seconds. The...

  7. Plume Characterization of Busek 600W Hall Thruster

    2012-03-09

    of the exhaust channel [16]. Electrothermal works like a conventional chemical rocket. It relies on gas thermodynamics to produce the required...specific wavelength, the associated atom would absorb the laser‟s energy and reduces its energy. This reduction intensity governs by Beer ‟s law for

  8. Giant Spin Hall Effect and Switching Induced by Spin-Transfer Torque in a W /Co40Fe40B20/MgO Structure with Perpendicular Magnetic Anisotropy

    Hao, Qiang; Xiao, Gang

    2015-03-01

    We obtain robust perpendicular magnetic anisotropy in a β -W /Co40Fe40B20/MgO structure without the need of any insertion layer between W and Co40Fe40B20 . This is achieved within a broad range of W thicknesses (3.0-9.0 nm), using a simple fabrication technique. We determine the spin Hall angle (0.40) and spin-diffusion length for the bulk β form of tungsten with a large spin-orbit coupling. As a result of the giant spin Hall effect in β -W and careful magnetic annealing, we significantly reduce the critical current density for the spin-transfer-torque-induced magnetic switching in Co40Fe40B20 . The elemental β -W is a superior candidate for magnetic memory and spin-logic applications.

  9. Hall effect in noncommutative coordinates

    Dayi, Oemer F.; Jellal, Ahmed

    2002-01-01

    We consider electrons in uniform external magnetic and electric fields which move on a plane whose coordinates are noncommuting. Spectrum and eigenfunctions of the related Hamiltonian are obtained. We derive the electric current whose expectation value gives the Hall effect in terms of an effective magnetic field. We present a receipt to find the action which can be utilized in path integrals for noncommuting coordinates. In terms of this action we calculate the related Aharonov-Bohm phase and show that it also yields the same effective magnetic field. When magnetic field is strong enough this phase becomes independent of magnetic field. Measurement of it may give some hints on spatial noncommutativity. The noncommutativity parameter θ can be tuned such that electrons moving in noncommutative coordinates are interpreted as either leading to the fractional quantum Hall effect or composite fermions in the usual coordinates

  10. Calculation of radiative corrections to virtual compton scattering - absolute measurement of the energy of Jefferson Lab. electron beam (hall A) by a magnetic method: arc project

    Marchand, D.

    1998-11-01

    This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 10 4 . The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation

  11. Performance optimization of 20 cm xenon ion thruster discharge chamber

    Chen Juanjuan; Zhang Tianping; Jia Yanhui; Li Xiaoping

    2012-01-01

    This paper describes the performance of the LIPS-200 ion thruster discharge chamber which was developed by Lanzhou Institute of Physics. Based on the discharge chamber geometric configuration and magnetic field, the completely self-consistent analytical model is utilized to discuss performance optimization of the discharge chamber of the LIPS-200. The thrust is enhanced from 40 mN up to 60 mN at rated impulse and efficiency. The results show that the 188.515 W/A beam ion production cost at a propellant flow rate of 2.167 × 10 17 m -3 requires that the thruster runs at a discharge current of 6.9 A to produce 1.2 A ion beam current. Also, during the process of LIPS-200 ion thruster discharge chamber performance optimization, the sheath potential is always within 3.80 ∼ 6.65 eV. (authors)

  12. Hall devices improve electric motor efficiency

    Haeussermann, W.

    1979-01-01

    Efficiency of electric motors and generators is reduced by radial magnetic forces created by symmetric fields within device. Forces are sensed and counteracted by Hall devices on excitation or control windings. Hall generators directly measure and provide compensating control of anu asymmetry, eliminating additional measurements needed for calibration feedback control loop.

  13. Spin Hall effects

    Sinova, Jairo; Valenzuela, Sergio O.; Wunderlich, J.; Back, C. H.; Jungwirth, T.

    2015-10-01

    Spin Hall effects are a collection of relativistic spin-orbit coupling phenomena in which electrical currents can generate transverse spin currents and vice versa. Despite being observed only a decade ago, these effects are already ubiquitous within spintronics, as standard spin-current generators and detectors. Here the theoretical and experimental results that have established this subfield of spintronics are reviewed. The focus is on the results that have converged to give us the current understanding of the phenomena, which has evolved from a qualitative to a more quantitative measurement of spin currents and their associated spin accumulation. Within the experimental framework, optical-, transport-, and magnetization-dynamics-based measurements are reviewed and linked to both phenomenological and microscopic theories of the effect. Within the theoretical framework, the basic mechanisms in both the extrinsic and intrinsic regimes are reviewed, which are linked to the mechanisms present in their closely related phenomenon in ferromagnets, the anomalous Hall effect. Also reviewed is the connection to the phenomenological treatment based on spin-diffusion equations applicable to certain regimes, as well as the spin-pumping theory of spin generation used in many measurements of the spin Hall angle. A further connection to the spin-current-generating spin Hall effect to the inverse spin galvanic effect is given, in which an electrical current induces a nonequilibrium spin polarization. This effect often accompanies the spin Hall effect since they share common microscopic origins. Both can exhibit the same symmetries when present in structures comprising ferromagnetic and nonmagnetic layers through their induced current-driven spin torques or induced voltages. Although a short chronological overview of the evolution of the spin Hall effect field and the resolution of some early controversies is given, the main body of this review is structured from a pedagogical

  14. Spin Hall effect transistor

    Wunderlich, Joerg; Park, B.G.; Irvine, A.C.; Zarbo, Liviu; Rozkotová, E.; Němec, P.; Novák, Vít; Sinova, Jairo; Jungwirth, Tomáš

    2010-01-01

    Roč. 330, č. 6012 (2010), s. 1801-1804 ISSN 0036-8075 R&D Projects: GA AV ČR KAN400100652; GA MŠk LC510 EU Projects: European Commission(XE) 215368 - SemiSpinNet Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : spin Hall effect * spintronics * spin transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 31.364, year: 2010

  15. Electromagnetic properties of a modular MHD thruster

    Kom, C. H.; Brunet, Y.

    1999-04-01

    The magnetic field of an annular MHD thruster made of independent superconducting modules has been studied with analytical and numerical methods. This configuration allows to obtain large magnetized volumes and high induction levels with rapidly decreasing stray fields. When some inductors are out of order, the thruster remains still operational, but the stray fields increase in the vicinity of the failure. For given structural materials and superconductors, it is possible to determine the size of the conductor in order to reduce the electromagnetic forces and the peak field supported by the conductors. For an active field of 10 T in a 6 m ray annular active channel of a thruster with 24 modules, the peak field is exactly 15.6 T in the Nb3Sn conductors and the structure has to sustain 10^8 N/m forces. The necessity to place some magnetic or superconducting shield is discussed, particularly when the thruster is in a degraded regime. Nous présentons une étude analytique et numérique du champ magnétique d'un propulseur MHD naval annulaire, constitué de secteurs inducteurs supraconducteurs. Cette configuration nécessite des champs magnétiques élevés dans des volumes importants, et permet une décroissance rapide des champs de fuite. Lorsque quelques inducteurs sont en panne, le propulseur reste toujours opérationnel, mais les champs de fuite sont importants aux environs des modules hors service. Étant donné un matériau supraconducteur, il est possible de déterminer la forme des inducteurs dans le but de réduire à la fois les forces électromagnétiques et le surchamp supporté par le bobinage. Pour un propulseur annulaire constitué de 24 modules inducteurs, et un champ actif de 10 T au centre de la partie active du canal (r = 6 m) on obtient avec du Nb3Sn un champ maximun sur le conducteur de 15,5 T et la structure supporte une force de 10^8 N/m. De plus, la nécessité de placer des écrans magnétique ou supraconducteur en régime dégradé (mise

  16. Universal intrinsic spin Hall effect

    Sinova, J.; Culcer, D.; Sinitsyn, N. A.; Niu, Q.; Jungwirth, Tomáš; MacDonald, A. H.

    2004-01-01

    Roč. 92, č. 12 (2004), 126603/1-126603/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : semiconductor quantum wells * spin-orbit interaction * spin Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  17. Magnetoresistance in quantum Hall metals due to Pancharatnam ...

    Abstract. We derive the trial Hall resistance formula for the quantum Hall metals to address both the integer and fractional quantum Hall effects. Within the degenerate (and crossed) Landau levels, and in the presence of changing magnetic field strength, one can invoke two physical processes responsible for the electron ...

  18. A new CMOS Hall angular position sensor

    Popovic, R.S.; Drljaca, P. [Swiss Federal Inst. of Tech., Lausanne (Switzerland); Schott, C.; Racz, R. [SENTRON AG, Zug (Switzerland)

    2001-06-01

    The new angular position sensor consists of a combination of a permanent magnet attached to a shaft and of a two-axis magnetic sensor. The permanent magnet produces a magnetic field parallel with the magnetic sensor plane. As the shaft rotates, the magnetic field also rotates. The magnetic sensor is an integrated combination of a CMOS Hall integrated circuit and a thin ferromagnetic disk. The CMOS part of the system contains two or more conventional Hall devices positioned under the periphery of the disk. The ferromagnetic disk converts locally a magnetic field parallel with the chip surface into a field perpendicular to the chip surface. Therefore, a conventional Hall element can detect an external magnetic field parallel with the chip surface. As the direction of the external magnetic field rotates in the chip plane, the output voltage of the Hall element varies as the cosine of the rotation angle. By placing the Hall elements at the appropriate places under the disk periphery, we may obtain the cosine signals shifted by 90 , 120 , or by any other angle. (orig.)

  19. The Aerogel Čerenkov detector for the SHMS magnetic spectrometer in Hall C at Jefferson Lab

    Horn, T.; Mkrtchyan, H.; Ali, S.; Asaturyan, A.; Carmignotto, M.; Dittmann, A.; Dutta, D.; Ent, R.; Hlavin, N.; Illieva, Y.; Mkrtchyan, A.; Nadel-Turonski, P.; Pegg, I.; Ramos, A.; Reinhold, J.; Sapkota, I.; Tadevosyan, V.; Zhamkochyan, S.; Wood, S. A.

    2017-01-01

    Hadronic reactions producing strange quarks such as the exclusive p (e , e ‧K+) Λ and p (e , e ‧K+)Σ0 reactions, or the semi-inclusive p (e , e ‧K+) X reaction, play an important role in studies of hadron structure and the dynamics that bind the most basic elements of nuclear physics. The small-angle capability of the new Super High Momentum Spectrometer (SHMS) in Hall C, coupled with its high momentum reach - up to the anticipated 11-GeV beam energy in Hall C - and coincidence capability with the well-understood High Momentum Spectrometer (HMS), will allow for probes of such hadron structure involving strangeness down to the smallest distance scales to date. To cleanly select the kaons, a threshold aerogel Cerenkov detector has been constructed for the SHMS. The detector consists of an aerogel tray followed by a diffusion box. Four trays for aerogel of nominal refractive indices of n=1.030, 1.020, 1.015 and 1.011 were constructed. The tray combination will allow for identification of kaons from 1 GeV/c up to 7.2 GeV/c, reaching ∼10-2 proton and 10-3 pion rejection, with kaon detection efficiency better than 95%. The diffusion box of the detector is equipped with 14 five-inch diameter photomultiplier tubes. Its interior walls are covered with Gore diffusive reflector, which is superior to the commonly used Millipore paper and improved the detector performance by 35%. The inner surface of the two aerogel trays with higher refractive index is covered with Millipore paper, however, those two trays with lower aerogel refractive index are again covered with Gore diffusive reflector for higher performance. The measured mean number of photoelectrons in saturation is ∼12 for n=1.030, ∼8 for n=1.020, ∼10 for n=1.015, and ∼5.5 for n=1.011. The design details, the results of component characterization, and initial performance tests and optimization of the detector are presented.

  20. Electronegative Gas Thruster

    Dankanich, John; Polzin, Kurt; Walker, Mitchell

    2015-01-01

    The project is an international collaboration and academic partnership to mature an innovative electric propulsion thruster concept to Technology Research Level-3 (TRL-3) through direct thrust measurement. The project includes application assessment of the technology ranging from small spacecraft to high power. The Plasma propulsion with Electronegative GASES(PEGASES) basic proof of concept has been matured to TRL-2 by Ane Aanesland of Laboratoire de Physique des Plasma at Ecole Polytechnique. The concept has advantages through eliminating the neutralizer requirement and should yield longer life and lower cost over conventional gridded ion engines. The objective of this research is to validate the proof of concept through the first direct thrust measurements and mature the concept to TRL-3.

  1. AA under construction in its hall

    CERN PhotoLab

    1980-01-01

    The Antiproton Accumulator was installed in a specially built hall. Here we see it at an "early" stage of installation, just a few magnets on the floor, no vacuum chamber at all, but: 3 months later there was circulating beam !

  2. A theory of the Earth's magnetic field and of sunspots, based on a self-excited dynamo incorporating the Hall effect

    A. de Paor

    2001-01-01

    Full Text Available A new viewpoint on the generation and maintenance of the Earth's magnetic field is put forward, which integrates self-exciting dynamo theory with the possibility of energy coupling along orthogonal axes provided by the Hall effect. A nonlinear third-order system is derived, with a fourth equation serving as an observer of unspecified geophysical processes which could result in field reversal. Lyapunov analysis proves that chaos is not intrinsic to this system. Relative constancy of one of the variables produces pseudo equilibrium in a second order subsystem and allows for self-excitation of the geomagnetic field. Electromagnetic analysis yields expressions for key parameters. Models for secular variations recorded at London, Palermo and at the Cape of Good Hope over the past four hundred years are offered. Offset of the Earth's magnetic axis from the geographic axis is central to time-varying declination, but its causes have not yet been established. Applicability of the model to the explanation of sunspot activity is outlined. A corroborating experiment published by Peter Barlow in 1831 is appended.

  3. Quantum Hall Electron Nematics

    MacDonald, Allan

    In 2D electron systems hosted by crystals with hexagonal symmetry, electron nematic phases with spontaneously broken C3 symmetry are expected to occur in the quantum Hall regime when triplets of Landau levels associated with three different Fermi surface pockets are partially filled. The broken symmetry state is driven by intravalley Coulombic exchange interactions that favor spontaneously polarized valley occupations. I will discuss three different examples of 2D electron systems in which this type of broken symmetry state is expected to occur: i) the SnTe (111) surface, ii) the Bi (111) surface. and iii) unbalanced bilayer graphene. This type of quantum Hall electron nematic state has so far been confirmed only in the Bi (111) case, in which the anisotropic quasiparticle wavefunctions of the broken symmetry state were directly imaged. In the SnTe case the nematic state phase boundary is controlled by a competition between intravalley Coulomb interactions and intervalley scattering processes that increase in relative strength with magnetic field. An in-plane Zeeman field alters the phase diagram by lifting the three-fold Landau level degeneracy, yielding a ground state energy with 2 π/3 periodicity as a function of Zeeman-field orientation angle. I will comment on the possibility of observing similar states in the absence of a magnetic field. Supported by DOE Division of Materials Sciences and Engineering Grant DE-FG03-02ER45958.

  4. Experimental halls workshop summary

    Thorndike, A.

    1976-01-01

    A brief discussion is given of: (1) pros and cons of open areas as compared with enclosed halls; (2) experimental hall needs of ep, anti p p, and other options; (3) hall for the lepton detector; and, (4) hall for the hadron spectrometer

  5. Experimental halls workshop summary

    Thorndike, A.

    1976-01-01

    On May 26 and 27, 1976, approximately 50 people met for an informal workshop on plans for experimental halls for ISABELLE. Plans as they exist in the May 1976 version of the ISABELLE proposal were presented. Discussions were held on the following four general topics by separate working groups: (1) pros and cons of open areas as compared with enclosed halls; (2) experimental hall needs of ep, anti pp, and other options; (3) hall for the lepton detector; and (4) hall for the hadron spectrometer. The planning for experimental halls at PEP, the hall for the lepton detector, the hadron spectrometer, and open areas are discussed

  6. Current sheets in the Earth’s magnetosphere and in laboratory experiments: The magnetic field structure and the Hall effect

    Frank, A. G.; Artemyev, A. V.; Zelenyi, L. M.

    2016-01-01

    The main characteristics of current sheets (CSs) formed in laboratory experiments are compared with the results of satellite observations of CSs in the Earth’s magnetotail. We show that many significant features of the magnetic field structure and the distributions of plasma parameters in laboratory and magnetospheric CSs exhibit a qualitative similarity, despite the enormous differences of scales, absolute values of plasma parameters, magnetic fields, and currents. In addition to a qualitative comparison, we give a number of dimensionless parameters that demonstrate the possibility of laboratory modeling of the processes occurring in the magnetosphere.

  7. Oxygen-Methane Thruster, Phase I

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster will...

  8. Experimental halls workshop summary

    Thorndike, A.

    1976-01-01

    At the experimental halls workshop, discussions were held on: (1) open areas as compared with enclosed halls; (2) the needs of ep, anti pp, and other options; (3) the hall for the lepton detector; and (4) the hall for the hadron spectrometer. The value of different possibilities for the future experimental program was explored. A number of suggestions emerged which will be used as the design of the experimental halls progresses

  9. Particle-in-cell simulations of fast magnetic field penetration into plasmas due to the Hall electric field

    Swanekamp, S.B.; Grossmann, J.M.; Fruchtman, A.; Oliver, B.V.; Ottinger, P.F.

    1996-01-01

    Particle-in-cell (PIC) simulations are used to study the penetration of magnetic field into plasmas in the electron-magnetohydrodynamic (EMHD) regime. These simulations represent the first definitive verification of EMHD with a PIC code. When ions are immobile, the PIC results reproduce many aspects of fluid treatments of the problem. However, the PIC results show a speed of penetration that is between 10% and 50% slower than predicted by one-dimensional fluid treatments. In addition, the PIC simulations show the formation of vortices in the electron flow behind the EMHD shock front. The size of these vortices is on the order of the collisionless electron skin depth and is closely coupled to the effects of electron inertia. An energy analysis shows that one-half the energy entering the plasma is stored as magnetic field energy while the other half is shared between internal plasma energy (thermal motion and electron vortices) and electron kinetic energy loss from the volume to the boundaries. The amount of internal plasma energy saturates after an initial transient phase so that late in time the rate that magnetic energy increases in the plasma is the same as the rate at which kinetic energy flows out through the boundaries. When ions are mobile it is observed that axial magnetic field penetration is followed by localized thinning in the ion density. The density thinning is produced by the large electrostatic fields that exist inside the electron vortices which act to reduce the space-charge imbalance necessary to support the vortices. This mechanism may play a role during the opening process of a plasma opening switch. copyright 1996 American Institute of Physics

  10. 2 March 2011 - Swedish State Secretary to the Minister for Enterprise and Energy C. Håkansson Boman signing the guest book wit Head of International Relations F. Pauss; in the LHC superconducting magnet test hall with Technology Department Head F. Bordry; in the ATLAS visitor centre with P. Grafstrom; troughout accompanied by Deparment Head T. Pettersson.

    Jean-Claude Gadmer

    2011-01-01

    She was welcomed to CERN by Felicitas Pauss, head of international relations. The visit included a presentation about the LHC Computing Grid project and a tour of the LHC superconducting magnet test hall and the ATLAS visitor centre.

  11. Periodical plasma structures controlled by external magnetic field

    Schweigert, I. V.; Keidar, M.

    2017-11-01

    The plasma of Hall thruster type in external magnetic field is studied in 2D3V kinetic simulations using PIC MCC method. The periodical structure with maxima of electron and ion densities is formed and becomes more pronounced with increase of magnetic field incidence angle in the plasma. These ridges of electron and ion densities are aligned with the magnetic field vector and shifted relative each other. This leads to formation of two-dimensional double-layers structure in cylindrical plasma chamber. Depending on Larmor radius and Debye length up to nineteen potential steps appear across the oblique magnetic field. The electrical current gathered on the wall is associated with the electron and ion density ridges.

  12. The infrared Hall effect in YBCO: Temperature and frequency dependence of Hall scattering

    Grayson, M.; Cerne, J.; Drew, H.D.; Schmadel, D.C.; Hughes, R.; Preston, J.S.; Kung, P.J.; Vale, L.

    1999-01-01

    The authors measure the Hall angle, θ H , in YBCO films in the far- and mid-infrared to determine the temperature and frequency dependence of the Hall scattering. Using novel modulation techniques they measure both the Faraday rotation and ellipticity induced by these films in high magnetic fields to deduce the complex conductivity tensor. They observe a strong temperature dependence of the mid-infrared Hall conductivity in sharp contrast to the weak dependence of the longitudinal conductivity. By fitting the frequency dependent normal state Hall angle to a Lorentzian θ H (ω) = ω H /(γ H minus iω) they find the Hall frequency, ω H , is nearly independent of temperature. The Hall scattering rate, γ H , is consistent with γ H ∼ T 2 up to 200 K and is remarkably independent of IR frequency suggesting non-Fermi liquid behavior

  13. The direct wave-drive thruster

    Feldman, Matthew Solomon

    A propulsion concept relying on the direct, steady-state acceleration of a plasma by an inductive wave-launching antenna is presented. By operating inductively in steady state, a Direct Wave-Drive Thruster avoids drawbacks associated with electrode erosion and pulsed acceleration. The generalized relations for the scaling of thrust and efficiency with the antenna current are derived analytically; thrust is shown to scale with current squared, and efficiency is shown to increase with increasing current or power. Two specific configurations are modeled to determine nondimensional parameters governing the antenna-plasma coupling: an annular antenna pushing against a finite-conductivity plasma, and a linear antenna targeting the magnetosonic wave. Calculations from the model show that total thrust improves for increasing excitation frequencies, wavenumbers, plasma densities, and device sizes. To demonstrate the magnetosonic wave as an ideal candidate to drive a DWDT, it is shown to be capable of carrying substantial momentum and able to drive a variable specific impulse. The magnetosonic wave-driven mass flow is compared to mass transport due to thermal effects and cross-field diffusion in order to derive critical power requirements that ensure the thruster channel is dominated by wave dynamics. A proof-of-concept experiment is constructed that consists of a separate plasma source, a confining magnetic field, and a wave-launching antenna. The scaling of the increase of exhaust velocity is analytically modeled and is dependent on a nondimensional characteristic wavenumber that is proportional to the excitation frequency and plasma density and inversely proportional to the magnetic field strength. Experimental validation of the derived scaling behavior is carried out using a Mach probe to measure the flow velocity in the plume. Increases in exhaust velocity are measured as the antenna current increases for varying excitation frequencies and applied magnetic field

  14. Vacuum arc plasma thrusters with inductive energy storage driver

    Krishnan, Mahadevan (Inventor)

    2009-01-01

    A plasma thruster with a cylindrical inner and cylindrical outer electrode generates plasma particles from the application of energy stored in an inductor to a surface suitable for the formation of a plasma and expansion of plasma particles. The plasma production results in the generation of charged particles suitable for generating a reaction force, and the charged particles are guided by a magnetic field produced by the same inductor used to store the energy used to form the plasma.

  15. Valley-chiral quantum Hall state in graphene superlattice structure

    Tian, H. Y.; Tao, W. W.; Wang, J.; Cui, Y. H.; Xu, N.; Huang, B. B.; Luo, G. X.; Hao, Y. H.

    2016-05-01

    We theoretically investigate the quantum Hall effect in a graphene superlattice (GS) system, in which the two valleys of graphene are coupled together. In the presence of a perpendicular magnetic field, an ordinary quantum Hall effect is found with the sequence σxy=ν e^2/h(ν=0,+/-1,+/-2,\\cdots) . At the zeroth Hall platform, a valley-chiral Hall state stemming from the single K or K' valley is found and it is localized only on one sample boundary contributing to the longitudinal conductance but not to the Hall conductivity. Our findings may shed light on the graphene-based valleytronics applications.

  16. High Voltage Hall Accelerator Propulsion System Development for NASA Science Missions

    Kamhawi, Hani; Haag, Thomas; Huang, Wensheng; Shastry, Rohit; Pinero, Luis; Peterson, Todd; Dankanich, John; Mathers, Alex

    2013-01-01

    NASA Science Mission Directorates In-Space Propulsion Technology Program is sponsoring the development of a 3.8 kW-class engineering development unit Hall thruster for implementation in NASA science and exploration missions. NASA Glenn Research Center and Aerojet are developing a high fidelity high voltage Hall accelerator (HiVHAc) thruster that can achieve specific impulse magnitudes greater than 2,700 seconds and xenon throughput capability in excess of 300 kilograms. Performance, plume mappings, thermal characterization, and vibration tests of the HiVHAc engineering development unit thruster have been performed. In addition, the HiVHAc project is also pursuing the development of a power processing unit (PPU) and xenon feed system (XFS) for integration with the HiVHAc engineering development unit thruster. Colorado Power Electronics and NASA Glenn Research Center have tested a brassboard PPU for more than 1,500 hours in a vacuum environment, and a new brassboard and engineering model PPU units are under development. VACCO Industries developed a xenon flow control module which has undergone qualification testing and will be integrated with the HiVHAc thruster extended duration tests. Finally, recent mission studies have shown that the HiVHAc propulsion system has sufficient performance for four Discovery- and two New Frontiers-class NASA design reference missions.

  17. Thruster allocation for dynamical positioning

    Poppe, K.; van den Berg, J.B.; Blank, E.; Archer, C.; Redeker, M.; Kutter, M.; Hemker, P.

    2010-01-01

    Positioning a vessel at a fixed position in deep water is of great importance when working offshore. In recent years a Dynamical Positioning (DP) system was developed at Marin [2]. After the measurement of the current position and external forces (like waves, wind etc.), each thruster of the vessel

  18. Hall effect in organic layered conductors

    R.A.Hasan

    2006-01-01

    Full Text Available The Hall effect in organic layered conductors with a multisheeted Fermi surfaces was considered. It is shown that the experimental study of Hall effect and magnetoresistance anisotropy at different orientations of current and a quantizing magnetic field relative to the layers makes it possible to determine the contribution of various charge carriers groups to the conductivity, and to find out the character of Fermi surface anisotropy in the plane of layers.

  19. Bi-Modal Micro-Cathode Arc Thruster for Cube Satellites

    Chiu, Dereck

    A new concept design, named the Bi-Modal Micro-Cathode Arc Thruster (BM-muCAT), has been introduced utilizing features from previous generations of muCATs and incorporating a multi-propellant functionality. This arc thruster is a micro-Newton level thruster based off of vacuum arc technology utilizing an enhanced magnetic field. Adjusting the magnetic field allows the thrusters performance to be varied. The goal of this thesis is to present a new generation of micro-cathode arc thrusters utilizing a bi-propellant, nickel and titanium, system. Three experimental procedures were run to test the new designs capabilities. Arc rotation experiment was used as a base experiment to ensure erosion was occurring uniformly along each electrode. Ion utilization efficiency was found, using an ion collector, to be up to 2% with the nickel material and 2.5% with the titanium material. Ion velocities were also studied using a time-of-flight method with an enhanced ion detection system. This system utilizes double electrostatic probes to measure plasma propagation. Ion velocities were measured to be 10km/s and 20km/s for nickel and titanium without a magnetic field. With an applied magnetic field of 0.2T, nickel ion velocities almost doubled to about 17km/s, while titanium ion velocities also increased to about 30km/s.

  20. A Plasmoid Thruster for Space Propulsion

    Koelfgen, Syri J.; Hawk, Clark W.; Eskridge, Richard; Smith, James W.; Martin, Adam K.

    2003-01-01

    There are a number of possible advantages to using accelerated plasmoids for in-space propulsion. A plasmoid is a compact plasma structure with an integral magnetic field. They have been studied extensively in controlled fusion research and are classified according to the relative strength of the poloidal and toroidal magnetic field (B(sub p), and B(sub t), respectively). An object with B(sub p), / B(sub t) much greater than 1 is classified as a Field Reversed Configuration (FRC); if B(sub p) approximately equal to B(sub t), it is called a Spheromak. The plasmoid thruster operates by producing FRC-like plasmoids and subsequently ejecting them from the device at a high velocity. The plasmoid is formed inside of a single-turn conical theta-pinch coil. As this process is inductive, there are no electrodes. Similar experiments have yielded plasmoid velocities of at least 50 km/s, and calculations indicate that velocities in excess of 100 km/s should be possible. This concept should be capable of producing Isp's in the range of 5,000 - 15,000 s with thrust densities on the order of 10(exp 5) N per square meters. The current experiment is designed to produce jet powers in the range of 5 - 10 kW, although the concept should be scalable to several MW's. The plasmoid mass and velocity will be measured with a variety of diagnostics, including internal and external B-dot probes, flux loops, Langmuir probes, high-speed cameras and a laser interferometer. Also of key importance will be measurements of the efficiency and mass utilization. Simulations of the plasmoid thruster using MOQUI, a time-dependent MHD code, will be carried out concurrently with experimental testing.

  1. Magnetic domain size effect on resistivity and Hall effect of amorphous Fe83-xZr7B10Mx (M=Ni, Nb) alloys

    Rhie, K.; Lim, W.Y.; Lee, S.H.; Yu, S.C.

    1997-01-01

    Studies of effective permeability, core loss and saturation magnetostriction of Fe 83-x Zr 7 B 10 M x (M=Ni, Nb) alloys revealed that the domain width is smallest around x=0.10. We measured the resistivity and low field Hall coefficients of these alloys and found that the maxima of resistivity and Hall coefficients occurred roughly at the same concentrations. Larger surface area of smaller domains is considered the reason. copyright 1997 American Institute of Physics

  2. Hall magnetohydrodynamics of neutral layers

    Huba, J.D.; Rudakov, L.I.

    2003-01-01

    New analytical and numerical results of the dynamics of inhomogeneous, reversed field current layers in the Hall limit (i.e., characteristic length scales < or approx. the ion inertial length) are presented. Specifically, the two- and three-dimensional evolution of a current layer that supports a reversed field plasma configuration and has a density gradient along the current direction is studied. The two-dimensional study demonstrates that a density inhomogeneity along the current direction can dramatically redistribute the magnetic field and plasma via magnetic shock-like or rarefaction waves. The relative direction between the density gradient and current flow plays a critical role in the evolution of the current sheet. One important result is that the current sheet can become very thin rapidly when the density gradient is directed opposite to the current. The three-dimensional study uses the same plasma and field configuration as the two-dimensional study but is also initialized with a magnetic field perturbation localized along the current channel upstream of the plasma inhomogeneity. The perturbation induces a magnetic wave structure that propagates in the direction of the electron drift (i.e., opposite to the current). The propagating wave structure is a Hall phenomenon associated with magnetic field curvature. The interaction between the propagating wave structure and the evolving current layer can lead to rapid magnetic field line reconnection. The results are applied to laboratory and space plasma processes

  3. Magnetic Field Effects on Plasma Plumes

    Ebersohn, F.; Shebalin, J.; Girimaji, S.; Staack, D.

    2012-01-01

    Here, we will discuss our numerical studies of plasma jets and loops, of basic interest for plasma propulsion and plasma astrophysics. Space plasma propulsion systems require strong guiding magnetic fields known as magnetic nozzles to control plasma flow and produce thrust. Propulsion methods currently being developed that require magnetic nozzles include the VAriable Specific Impulse Magnetoplasma Rocket (VASIMR) [1] and magnetoplasmadynamic thrusters. Magnetic nozzles are functionally similar to de Laval nozzles, but are inherently more complex due to electromagnetic field interactions. The two crucial physical phenomenon are thrust production and plasma detachment. Thrust production encompasses the energy conversion within the nozzle and momentum transfer to a spacecraft. Plasma detachment through magnetic reconnection addresses the problem of the fluid separating efficiently from the magnetic field lines to produce maximum thrust. Plasma jets similar to those of VASIMR will be studied with particular interest in dual jet configurations, which begin as a plasma loops between two nozzles. This research strives to fulfill a need for computational study of these systems and should culminate with a greater understanding of the crucial physics of magnetic nozzles with dual jet plasma thrusters, as well as astrophysics problems such as magnetic reconnection and dynamics of coronal loops.[2] To study this problem a novel, hybrid kinetic theory and single fluid magnetohydrodynamic (MHD) solver known as the Magneto-Gas Kinetic Method is used.[3] The solver is comprised of a "hydrodynamic" portion based on the Gas Kinetic Method and a "magnetic" portion that accounts for the electromagnetic behaviour of the fluid through source terms based on the resistive MHD equations. This method is being further developed to include additional physics such as the Hall effect. Here, we will discuss the current level of code development, as well as numerical simulation results

  4. Report of experimental hall subworking group

    Miyake, K.; Ohama, T.; Takahashi, K.

    1982-01-01

    The general plan of constructing the TRISTAN e + e - colliding beam experimental halls may be divided into two parts. The first step is to construct two test-experimental halls associated with the 6.5 GeV x 6.5 GeV e + e - accumulator ring, and the second step is to build four experimental halls at the 30 GeV x 30 GeV e + e - TRISTAN main ring. At this workshop, extensive discussions on the detailed design of the four main ring experimental halls have been made. Four experimental areas will be built at the main ring, and two test-experimental halls at the accumulating ring. Among the four areas at the main ring, two will be used for electron-proton possible as well as electron-positron colliding beam experiment. The other two will be used exclusively for e + e - colliding experiments. Only a preliminary design has been made for these four experimental areas. A tentative plan of a larger experimental hall includes a counting and data processing room, a utility room, and a radiation safety control room. Two smaller halls have simpler structure. The figures of the experimental halls are presented. The two test-experimental halls at the accumulator ring will be used to test the detectors for e + e - colliding experiments before the final installation. The utility rooms designed for the halls are used to supply coolant and electric power of superconducting magnets. At the workshop, various ideas concerning the preliminary plan are presented. (Kato, T.)

  5. Density and velocity measurements of a sheath plasma from MPD thruster

    Ko, J.J.; Cho, T.S.; Choi, M.C.; Choi, E.H.; Cho, G.S.; Uhm, H.S.

    1999-07-01

    Magnetoplasma is the plasma that the electron and ion orbits are strongly confined by intense magnetic field. Recently, magnetoplasma dynamics (MPD) has been investigated in connection with applications to the rocket thruster in USA, Germany, etc. It can be widely applicable, including modification of satellite position and propulsion of the interplanetary space shuttle. A travel for a long distance journey is possible because a little amount of neutral gases is needed for the plasma source. Besides, this will provide a pollution free engine for future generations. MPD thruster is not a chemical engine. The authors have built a Mather type MPD thruster, which has 1 kV max charging, 10 kA max current flows, and has about 1 ms characteristic operation time. The Paschen curve of this thruster is measured and its minimum breakdown voltage occurs in the pressure range of 0.1 to 1 Torr. Langmuir and double probes are fabricated to diagnose the sheath plasma from the thruster. The temperature and density are calculated to be 2.5 eV and 10{sup 15} cm {sup {minus}3}, respectively, from the probe data. Making use of photo diode, an optical probe is fabricated to measure propagation velocity of the sheath plasma. The sheath plasma from the MPD thruster in the experiment propagates with velocity of 1 cm/{micro}s.

  6. Micropulsed Plasma Thrusters for Attitude Control of a Low-Earth-Orbiting CubeSat

    Gatsonis, Nikolaos A.; Lu, Ye; Blandino, John; Demetriou, Michael A.; Paschalidis, Nicholas

    2016-01-01

    This study presents a 3-Unit CubeSat design with commercial-off-the-shelf hardware, Teflon-fueled micropulsed plasma thrusters, and an attitude determination and control approach. The micropulsed plasma thruster is sized by the impulse bit and pulse frequency required for continuous compensation of expected maximum disturbance torques at altitudes between 400 and 1000 km, as well as to perform stabilization of up to 20 deg /s and slew maneuvers of up to 180 deg. The study involves realistic power constraints anticipated on the 3-Unit CubeSat. Attitude estimation is implemented using the q method for static attitude determination of the quaternion using pairs of the spacecraft-sun and magnetic-field vectors. The quaternion estimate and the gyroscope measurements are used with an extended Kalman filter to obtain the attitude estimates. Proportional-derivative control algorithms use the static attitude estimates in order to calculate the torque required to compensate for the disturbance torques and to achieve specified stabilization and slewing maneuvers or combinations. The controller includes a thruster-allocation method, which determines the optimal utilization of the available thrusters and introduces redundancy in case of failure. Simulation results are presented for a 3-Unit CubeSat under detumbling, pointing, and pointing and spinning scenarios, as well as comparisons between the thruster-allocation and the paired-firing methods under thruster failure.

  7. Quantum Hall effect

    Joynt, R.J.

    1982-01-01

    A general investigation of the electronic structure of two dimensional systems is undertaken with a view towards understanding the quantum Hall effect. The work is limited to the case of a strong perpendicular magnetic field, with a disordered potential and an externally applied electric field. The electrons are treated as noninteracting. First, the scattering theory of the system is worked out. The surprising result is found that a wavepacket will reform after scattering from an isolated potential. Also it will tend to be accelerated in the neighborhood of the scatterer if the potential has bound states. Fredholm theory can then be used to show that the extended states carry an additional current which compensates for the zero current of the bound states. Together, these give the quantized conductance. The complementary case of a smooth random potential is treated by a path-integral approach which exploits the analogies to the classical equations of motion. The Green's function can be calculated approximately, which gives the general character of both the bound and extended states. Also the ratio of these two types of states can be computed for a given potential. The charge density is uniform in first approximation, and the Hall conductance is quantized. Higher-order corrections for more rapidly fluctuating potential are calculated. The most general conditions under which the conductance is quantized are discussed. Because of the peculiar scattering properties of the system, numerical solution of the Schroedinger equation is of interest, both to confirm the analytical results, and for pedagogical reasons. The stability and convergence problems inherent in the computer solution of the problem are analyzed. Results for some model scattering potentials are presented

  8. Advanced-technology 30-cm-diameter mercury ion thruster

    Beattie, J. R.; Kami, S.

    1982-01-01

    An advanced-technology mercury ion thruster designed for operation at high thrust and high thrust-to-power ratio is described. The laboratory-model thruster employs a highly efficient discharge-chamber design that uses high-field-strength samarium-cobalt magnets arranged in a ring-cusp configuration. Ion extraction is achieved using an advanced three-grid ion-optics assembly which utilizes flexible mounts for supporting the screen, accel, and decel electrodes. Performance results are presented for operation at beam currents in the range from 1 to 5 A. The baseline specific discharge power is shown to be about 125 eV/ion, and the acceptable range of net-to-total accelerating-voltage ratio is shown to be in the range of 0.2-0.8 for beam currents in the range of 1-5 A.

  9. Investigation of the Effects of Facility Background Pressure on the Performance and Voltage-Current Characteristics of the High Voltage Hall Accelerator

    Kamhawi, Hani; Huang, Wensheng; Haag, Thomas; Spektor, Rostislav

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Science Mission Directorate In-Space Propulsion Technology office is sponsoring NASA Glenn Research Center to develop a 4 kW-class Hall thruster propulsion system for implementation in NASA science missions. A study was conducted to assess the impact of varying the facility background pressure on the High Voltage Hall Accelerator (HiVHAc) thruster performance and voltage-current characteristics. This present study evaluated the HiVHAc thruster performance in the lowest attainable background pressure condition at NASA GRC Vacuum Facility 5 to best simulate space-like conditions. Additional tests were performed at selected thruster operating conditions to investigate and elucidate the underlying physics that change during thruster operation at elevated facility background pressure. Tests were performed at background pressure conditions that are three and ten times higher than the lowest realized background pressure. Results indicated that the thruster discharge specific impulse and efficiency increased with elevated facility background pressure. The voltage-current profiles indicated a narrower stable operating region with increased background pressure. Experimental observations of the thruster operation indicated that increasing the facility background pressure shifted the ionization and acceleration zones upstream towards the thruster's anode. Future tests of the HiVHAc thruster are planned at background pressure conditions that are expected to be two to three times lower than what was achieved during this test campaign. These tests will not only assess the impact of reduced facility background pressure on thruster performance, voltage-current characteristics, and plume properties; but will also attempt to quantify the magnitude of the ionization and acceleration zones upstream shifting as a function of increased background pressure.

  10. Field theory approach to quantum hall effect

    Cabo, A.; Chaichian, M.

    1990-07-01

    The Fradkin's formulation of statistical field theory is applied to the Coulomb interacting electron gas in a magnetic field. The electrons are confined to a plane in normal 3D-space and also interact with the physical 3D-electromagnetic field. The magnetic translation group (MTG) Ward identities are derived. Using them it is shown that the exact electron propagator is diagonalized in the basis of the wave functions of the free electron in a magnetic field whenever the MTG is unbroken. The general tensor structure of the polarization operator is obtained and used to show that the Chern-Simons action always describes the Hall effect properties of the system. A general proof of the Streda formula for the Hall conductivity is presented. It follows that the coefficient of the Chern-Simons terms in the long-wavelength approximation is exactly given by this relation. Such a formula, expressing the Hall conductivity as a simple derivative, in combination with diagonal form of the full propagator allows to obtain a simple expressions for the filling factor and the Hall conductivity. Indeed, these results, after assuming that the chemical potential lies in a gap of the density of states, lead to the conclusion that the Hall conductivity is given without corrections by σ xy = νe 2 /h where ν is the filling factor. In addition it follows that the filling factor is independent of the magnetic field if the chemical potential remains in the gap. (author). 21 ref, 1 fig

  11. Assessment of elevator rope using Hall Sensor

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Lee, Jong Ku [Pukyung National University, Pusan (Korea, Republic of)

    2003-07-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4 mm and 1 mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2 mm in depth at 4 mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  12. Assesment of elevator rope using hall sensor

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of); Kim, Jung Woo; Lee, Jong Ku [Pukyong National University, Pusan (Korea, Republic of)

    2003-05-15

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4mm and 1mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2mm in depth at 4mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  13. Assessment of elevator rope using Hall Sensor

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo; Lee, Jong Ku

    2003-01-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4 mm and 1 mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2 mm in depth at 4 mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  14. Assesment of elevator rope using hall sensor

    Lee, Jong O; Yoon, Woon Ha; Son, Young Ho; Kim, Jung Woo; Lee, Jong Ku

    2003-01-01

    Defect detection of wire rope for an elevator was investigated through the measurement of magnetic flux leakage. The types of defect usually found in wire rope categorized such as inner and outer wire breakage and wear. The specimens that has artificial defects were magnetized via permanent magnet, and measurement of magnetic flux leakage on the defects was performed with Hall sensor. In wire broken model, a defect smaller than 0.4mm and 1mm in depth on outer and inner wire rope, respectively, could be detected well. In wear model, smaller defect could not be detected clearly, however, appearance of changing of total magnetic flux during magnetic pole of the sensor passing through a defect 0.2mm in depth at 4mm or above width could make possible to detect it. From the results, the measurement via Hall sensor might be useful tool for defect detection of wire rope.

  15. Elementary theory of quantum Hall effect

    Keshav N. Shrivastava

    2008-04-01

    Full Text Available The Hall effect is the generation of a current perpendicular to both the direction of the applied electric as well as magnetic field in a metal or in a semiconductor. It is used to determine the concentration of electrons. The quantum Hall effect with integer quantization was discovered by von Klitzing and fractionally charged states were found by Tsui, Stormer and Gossard. Robert Laughlin explained the quantization of Hall current by using “flux quantization” and introduced incompressibility to obtain the fractional charge. We have developed the theory of the quantum Hall effect by using the theory of angular momentum. Our predicted fractions are in accord with those measured. We emphasize our explanation of the observed phenomena. We use spin to explain the fractional charge and hence we discover spin-charge locking.

  16. Developments in Scanning Hall Probe Microscopy

    Chouinard, Taras; Chu, Ricky; David, Nigel; Broun, David

    2009-05-01

    Low temperature scanning Hall probe microscopy is a sensitive means of imaging magnetic structures with high spatial resolution and magnetic flux sensitivity approaching that of a Superconducting Quantum Interference Device. We have developed a scanning Hall probe microscope with novel features, including highly reliable coarse positioning, in situ optimization of sensor-sample alignment and capacitive transducers for linear, long range positioning measurement. This has been motivated by the need to reposition accurately above fabricated nanostructures such as small superconducting rings. Details of the design and performance will be presented as well as recent progress towards time-resolved measurements with sub nanosecond resolution.

  17. Composite fermions in the quantum Hall effect

    Johnson, B.L.; Kirczenow, G.

    1997-01-01

    The quantum Hall effect and associated quantum transport phenomena in low-dimensional systems have been the focus of much attention for more than a decade. Recent theoretical development of interesting quasiparticles - 'composite fermions' - has led to significant advances in understanding and predicting the behaviour of two-dimensional electron systems under high transverse magnetic fields. Composite fermions may be viewed as fermions carrying attached (fictitious) magnetic flux. Here we review models of the integer and fractional quantum Hall effects, including the development of a unified picture of the integer and fractional effects based upon composite fermions. The composite fermion picture predicts remarkable new physics: the formation of a Fermi surface at high magnetic fields, and anomalous ballistic transport, thermopower, and surface acoustic wave behaviour. The specific theoretical predictions of the model, as well as the body of experimental evidence for these phenomena are reviewed. We also review recent edge-state models for magnetotransport in low-dimensional devices based on the composite fermion picture. These models explain the fractional quantum Hall effect and transport phenomena in nanoscale devices in a unified framework that also includes edge state models of the integer quantum Hall effect. The features of the composite fermion edge-state model are compared and contrasted with those of other recent edge-state models of the fractional quantum Hall effect. (author)

  18. A Novel Hall Effect Sensor Using Elaborate Offset Cancellation Method

    Vlassis N. Petoussis

    2009-01-01

    Full Text Available The Hall effect is caused by a traverse force that is formed in the electrons or holes of metal element or semiconductor when are polarized by current source and simultaneously all the system it is found vertical in external magnetic field. Result is finally the production of difference of potential (Hall voltage in address vertical in that of current and magnetic field directions. In the present work is presented a new Hall sensor exploiting the former operation. In combination with his pioneering form and using dynamic spinning current technique with an elaborate sequence, it leads to satisfactory results of produced Hall voltage with small noise in a presence of external magnetic field. Anyone can see both the spinning current and anti-Hall technique in the same sensor simultaneously.

  19. Scale Model Thruster Acoustic Measurement Results

    Vargas, Magda; Kenny, R. Jeremy

    2013-01-01

    The Space Launch System (SLS) Scale Model Acoustic Test (SMAT) is a 5% scale representation of the SLS vehicle, mobile launcher, tower, and launch pad trench. The SLS launch propulsion system will be comprised of the Rocket Assisted Take-Off (RATO) motors representing the solid boosters and 4 Gas Hydrogen (GH2) thrusters representing the core engines. The GH2 thrusters were tested in a horizontal configuration in order to characterize their performance. In Phase 1, a single thruster was fired to determine the engine performance parameters necessary for scaling a single engine. A cluster configuration, consisting of the 4 thrusters, was tested in Phase 2 to integrate the system and determine their combined performance. Acoustic and overpressure data was collected during both test phases in order to characterize the system's acoustic performance. The results from the single thruster and 4- thuster system are discussed and compared.

  20. Testing of an Arcjet Thruster with Capability of Direct-Drive Operation

    Martin, Adam K.; Polzin, Kurt A.; Eskridge, Richard H.; Smith, James W.; Schoenfeld, Michael P.; Riley, Daniel P.

    2015-01-01

    Electric thrusters typically require a power processing unit (PPU) to convert the spacecraft provided power to the voltage-current that a thruster needs for operation. Testing has been initiated to study whether an arcjet thruster can be operated directly with the power produced by solar arrays without any additional conversion. Elimination of the PPU significantly reduces system-level complexity of the propulsion system, and lowers developmental cost and risk. The work aims to identify and address technical questions related to power conditioning and noise suppression in the system and heating of the thruster in long-duration operation. The apparatus under investigation has a target power level from 400-1,000 W. However, the proposed direct-drive arcjet is potentially a highly scalable concept, applicable to solar-electric spacecraft with up to 100's of kW and beyond. A direct-drive electric propulsion system would be comprised of a thruster that operates with the power supplied directly from the power source (typically solar arrays) with no further power conditioning needed between those two components. Arcjet thrusters are electric propulsion devices, with the power supplied as a high current at low voltage; of all the different types of electric thruster, they are best suited for direct drive from solar arrays. One advantage of an arcjet over Hall or gridded ion thrusters is that for comparable power the arcjet is a much smaller device and can provide more thrust and orders of magnitude higher thrust density (approximately 1-10 N/sq m), albeit at lower I(sub sp) (approximately 800-1000 s). In addition, arcjets are capable of operating on a wide range of propellant options, having been demonstrated on H2, ammonia, N2, Ar, Kr, Xe, while present SOA Hall and ion thrusters are primarily limited to Xe propellant. Direct-drive is often discussed in terms of Hall thrusters, but they require 250-300 V for operation, which is difficult even with high-voltage solar

  1. Anomalous Hall effect

    Nagaosa, Naoto; Sinova, Jairo; Onoda, Shigeki; MacDonald, A. H.; Ong, N. P.

    2010-04-01

    The anomalous Hall effect (AHE) occurs in solids with broken time-reversal symmetry, typically in a ferromagnetic phase, as a consequence of spin-orbit coupling. Experimental and theoretical studies of the AHE are reviewed, focusing on recent developments that have provided a more complete framework for understanding this subtle phenomenon and have, in many instances, replaced controversy by clarity. Synergy between experimental and theoretical works, both playing a crucial role, has been at the heart of these advances. On the theoretical front, the adoption of the Berry-phase concepts has established a link between the AHE and the topological nature of the Hall currents. On the experimental front, new experimental studies of the AHE in transition metals, transition-metal oxides, spinels, pyrochlores, and metallic dilute magnetic semiconductors have established systematic trends. These two developments, in concert with first-principles electronic structure calculations, strongly favor the dominance of an intrinsic Berry-phase-related AHE mechanism in metallic ferromagnets with moderate conductivity. The intrinsic AHE can be expressed in terms of the Berry-phase curvatures and it is therefore an intrinsic quantum-mechanical property of a perfect crystal. An extrinsic mechanism, skew scattering from disorder, tends to dominate the AHE in highly conductive ferromagnets. The full modern semiclassical treatment of the AHE is reviewed which incorporates an anomalous contribution to wave-packet group velocity due to momentum-space Berry curvatures and correctly combines the roles of intrinsic and extrinsic (skew-scattering and side-jump) scattering-related mechanisms. In addition, more rigorous quantum-mechanical treatments based on the Kubo and Keldysh formalisms are reviewed, taking into account multiband effects, and demonstrate the equivalence of all three linear response theories in the metallic regime. Building on results from recent experiment and theory, a

  2. Commemorative Symposium on the Hall Effect and its Applications

    Westgate, C

    1980-01-01

    In 1879, while a graduate student under Henry Rowland at the Physics Department of The Johns Hopkins University, Edwin Herbert Hall discovered what is now universally known as the Hall effect. A symposium was held at The Johns Hopkins University on November 13, 1979 to commemorate the lOOth anniversary of the discovery. Over 170 participants attended the symposium which included eleven in­ vited lectures and three speeches during the luncheon. During the past one hundred years, we have witnessed ever ex­ panding activities in the field of the Hall effect. The Hall effect is now an indispensable tool in the studies of many branches of condensed matter physics, especially in metals, semiconductors, and magnetic solids. Various components (over 200 million!) that utilize the Hall effect have been successfully incorporated into such devices as keyboards, automobile ignitions, gaussmeters, and satellites. This volume attempts to capture the important aspects of the Hall effect and its applications. It includes t...

  3. Pseudospin anisotropy classification of quantum Hall ferromagnets

    Jungwirth, Tomáš; MacDonald, A. H.

    2000-01-01

    Roč. 63, č. 3 (2000), s. 035305-1 - 035305-9 ISSN 0163-1829 R&D Projects: GA ČR GA202/98/0085 Institutional research plan: CEZ:AV0Z1010914 Keywords : quantum Hall ferromagnets * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.065, year: 2000

  4. Anomalous Hall effect in disordered multiband metals

    Kovalev, A.A.; Sinova, Jairo; Tserkovnyak, Y.

    2010-01-01

    Roč. 105, č. 3 (2010), 036601/1-036601/4 ISSN 0031-9007 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.621, year: 2010

  5. Anomalous Hall conductivity: Local orbitals approach

    Středa, Pavel

    2010-01-01

    Roč. 82, č. 4 (2010), 045115/1-045115/9 ISSN 1098-0121 Institutional research plan: CEZ:AV0Z10100521 Keywords : anomalous Hall effect * Berry phase correction * orbital polarization momentum Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.772, year: 2010

  6. Planar Hall Effect Sensors for Biodetection

    Rizzi, Giovanni

    . In the second geometry (dPHEB) half of the sensor is used as a local negative reference to subtract the background signal from magnetic beads in suspension. In all applications below, the magnetic beads are magnetised using the magnetic field due to the bias current passed through the sensor, i.e., no external...... as labels and planar Hall effect bridge (PHEB) magnetic field sensor as readout for the beads. The choice of magnetic beads as label is motivated by the lack of virtually any magnetic background from biological samples. Moreover, magnetic beads can be manipulated via an external magnetic field...... hybridisation in real-time, in a background of suspended magnetic beads. This characteristic is employed in single nucleotide polymorphism (SNP) genotyping, where the denaturation of DNA is monitored in real-time upon washing with a stringency buffer. The sensor setup includes temperature control and a fluidic...

  7. Power processing systems for ion thrusters.

    Herron, B. G.; Garth, D. R.; Finke, R. C.; Shumaker, H. A.

    1972-01-01

    The proposed use of ion thrusters to fulfill various communication satellite propulsion functions such as east-west and north-south stationkeeping, attitude control, station relocation and orbit raising, naturally leads to the requirement for lightweight, efficient and reliable thruster power processing systems. Collectively, the propulsion requirements dictate a wide range of thruster power levels and operational lifetimes, which must be matched by the power processing. This paper will discuss the status of such power processing systems, present system design alternatives and project expected near future power system performance.

  8. Advanced electrostatic ion thruster for space propulsion

    Masek, T. D.; Macpherson, D.; Gelon, W.; Kami, S.; Poeschel, R. L.; Ward, J. W.

    1978-01-01

    The suitability of the baseline 30 cm thruster for future space missions was examined. Preliminary design concepts for several advanced thrusters were developed to assess the potential practical difficulties of a new design. Useful methodologies were produced for assessing both planetary and earth orbit missions. Payload performance as a function of propulsion system technology level and cost sensitivity to propulsion system technology level are among the topics assessed. A 50 cm diameter thruster designed to operate with a beam voltage of about 2400 V is suggested to satisfy most of the requirements of future space missions.

  9. Mechanical design of SERT 2 thruster system

    Zavesky, R. J.; Hurst, E. B.

    1972-01-01

    The mechanical design of the mercury bombardment thruster that was tested on SERT is described. The report shows how the structural, thermal, electrical, material compatibility, and neutral mercury coating considerations affected the design and integration of the subsystems and components. The SERT 2 spacecraft with two thrusters was launched on February 3, 1970. One thruster operated for 3782 hours and the other for 2011 hours. A high voltage short resulting from buildup of loose eroded material was believed to be the cause of failure.

  10. Linear waves in a resistive plasma with Hall current

    Almaguer, J.A.

    1992-01-01

    Dispersion relations for the case of a magnetized plasma are determined taking into account the Hall current and a constant resistivity, η, in Ohm's law. It is found that the Hall effect is relevant only for parallel (to the equilibrium magnetic field) wave numbers in the case of uniform plasmas, giving place to a dispersive behavior. In particular, the cases of η→0 and small (nonzero) resistivity are discussed

  11. Hall probe for measuring high currents in superconducting coils

    Ferendeci, A.M.

    1986-01-01

    Constructional details of a compact Hall probe for measuring high currents in superconducting coils are given. The Hall probe is easy to assemble and can be inserted or removed from the system without breaking the superconducting loop. Upper current limit of the probe can be increased by using larger magnetic core material. Shielding becomes necessary if the probe holder is to be placed near large current dependent magnetic fields

  12. Halls Lake 1990

    National Oceanic and Atmospheric Administration, Department of Commerce — Salt marsh habitats along the shoreline of Halls Lake are threatened by wave erosion, but the reconstruction of barrier islands to reduce this erosion will modify or...

  13. Anomalous Hall effect in Fe/Gd bilayers

    Xu, W. J.; Zhang, Bei; Liu, Z. X.; Wang, Z.; Li, W.; Wu, Z. B.; Yu, R. H.; Zhang, Xixiang

    2010-01-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  14. Anomalous Hall effect in Fe/Gd bilayers

    Xu, W. J.

    2010-04-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  15. The quantum hall effect

    El-Arabi, N. M.

    1993-01-01

    Transport phenomena in two dimensional semiconductors have revealed unusual properties. In this thesis these systems are considered and discussed. The theories explain the Integral Quantum Hall Effect (IQHE) and the Fractional Quantum Hall Effect (FQHE). The thesis is composed of five chapters. The first and the second chapters lay down the theory of the IQHE, the third and fourth consider the theory of the FQHE. Chapter five deals with the statistics of particles in two dimension. (author). Refs

  16. Hall viscosity of hierarchical quantum Hall states

    Fremling, M.; Hansson, T. H.; Suorsa, J.

    2014-03-01

    Using methods based on conformal field theory, we construct model wave functions on a torus with arbitrary flat metric for all chiral states in the abelian quantum Hall hierarchy. These functions have no variational parameters, and they transform under the modular group in the same way as the multicomponent generalizations of the Laughlin wave functions. Assuming the absence of Berry phases upon adiabatic variations of the modular parameter τ, we calculate the quantum Hall viscosity and find it to be in agreement with the formula, given by Read, which relates the viscosity to the average orbital spin of the electrons. For the filling factor ν =2/5 Jain state, which is at the second level in the hierarchy, we compare our model wave function with the numerically obtained ground state of the Coulomb interaction Hamiltonian in the lowest Landau level, and find very good agreement in a large region of the complex τ plane. For the same example, we also numerically compute the Hall viscosity and find good agreement with the analytical result for both the model wave function and the numerically obtained Coulomb wave function. We argue that this supports the notion of a generalized plasma analogy that would ensure that wave functions obtained using the conformal field theory methods do not acquire Berry phases upon adiabatic evolution.

  17. Contamination Study of Micro Pulsed Plasma Thruster

    Kesenek, Ceylan

    2008-01-01

    .... Micro-Pulsed Plasma Thrusters (PPTs) are highly reliable and simple micro propulsion systems that will offer attitude control, station keeping, constellation flying, and drag compensation for such satellites...

  18. Electronegative Gas Thruster - Direct Thrust Measurement

    National Aeronautics and Space Administration — This effort is an international collaboration and academic partnership to mature an innovative electric propulsion (EP) thruster concept to TRL 3 through direct...

  19. Oxygen-Methane Thruster, Phase II

    National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...

  20. Giant photonic Hall effect in magnetophotonic crystals.

    Merzlikin, A M; Vinogradov, A P; Inoue, M; Granovsky, A B

    2005-10-01

    We have considered a simple, square, two-dimensional (2D) PC built of a magneto-optic matrix with square holes. It is shown that using such a magnetophotonic crystal it is possible to deflect a light beam at very large angles by applying a nonzero external magnetic field. The effect is called the giant photonic Hall effect (GPHE) or the magnetic superprism effect. The GPHE is based on magneto-optical properties, as is the photonic Hall effect [B. A. van Tiggelen and G. L. J. A. Rikken, in, edited by V. M. Shalaev (Springer-Verlag, Berlin, 2002), p. 275]; however GPHE is not caused by asymmetrical light scattering but rather by the influence of an external magnetic field on the photonic band structure.

  1. Magnetohydrodynamic simulations of Gamble I POS with Hall effect

    Roderick, N.F.; Frese, M.H.; Peterkin, R.E.; Payne, S.S.

    1989-01-01

    Two dimensional single fluid magnetohydrodynamic simulations have been conducted to investigate the effects of the Hall electric field on magnetic field transport in plasma opening switches of the type used on Gamble I. The Hall terms were included in the magnetic field transport equation in the two dimensional simulation code MACH2 through the use of a generalized Ohm's law. Calculations show the Hall terms augment the field transport previously observed to occur through ion fluid motion and diffusion. For modest values of microturbulent collision frequency, board current channels were observed . Results also show the magnetic field transport to be affected by the cathode boundary conditions with the Hall terms included. In all cases center of mass motion was slight

  2. Low power arcjet thruster pulse ignition

    Sarmiento, Charles J.; Gruber, Robert P.

    1987-01-01

    An investigation of the pulse ignition characteristics of a 1 kW class arcjet using an inductive energy storage pulse generator with a pulse width modulated power converter identified several thruster and pulse generator parameters that influence breakdown voltage including pulse generator rate of voltage rise. This work was conducted with an arcjet tested on hydrogen-nitrogen gas mixtures to simulate fully decomposed hydrazine. Over all ranges of thruster and pulser parameters investigated, the mean breakdown voltages varied from 1.4 to 2.7 kV. Ignition tests at elevated thruster temperatures under certain conditions revealed occasional breakdowns to thruster voltages higher than the power converter output voltage. These post breakdown discharges sometimes failed to transition to the lower voltage arc discharge mode and the thruster would not ignite. Under the same conditions, a transition to the arc mode would occur for a subsequent pulse and the thruster would ignite. An automated 11 600 cycle starting and transition to steady state test demonstrated ignition on the first pulse and required application of a second pulse only two times to initiate breakdown.

  3. 1 April 2011 - Croatian Rudjer Boskovic Institute (RBI)Director-General D. Ramljak visiting CMS Control Centre in Meyrin with Collaboration Spokesperson G. Tonelli; signing the guest book with Head of International Relations F. Pauss and visiting LHC superconducting magnet test hall with L. Walckiers.

    Maximilien brice

    2011-01-01

    1 April 2011 - Croatian Rudjer Boskovic Institute (RBI)Director-General D. Ramljak visiting CMS Control Centre in Meyrin with Collaboration Spokesperson G. Tonelli; signing the guest book with Head of International Relations F. Pauss and visiting LHC superconducting magnet test hall with L. Walckiers.

  4. 23rd June 2010 - IATA Director-General and CEO G. Bisignani signing the guest book with Research and Computing Director S. Bertolucci; visiting the LHC superconducting magnet test hall with L. Bottura; throughout accompanied by Adviser for International relations M. Bona.

    Maximilien Brice

    2010-01-01

    23rd June 2010 - IATA Director-General and CEO G. Bisignani signing the guest book with Research and Computing Director S. Bertolucci; visiting the LHC superconducting magnet test hall with L. Bottura; throughout accompanied by Adviser for International relations M. Bona.

  5. 18 January 2011 - The British Royal Academy of Engineering in the LHC tunnel with CMS Collaboration Spokesperson G. Tonelli and Beams Department Head P. Collier; in the CERN Control Centre with P. Collier and LHC superconducting magnet test hall with Technology Department Head F. Bordry.

    Jean-Claude Gadmer

    2011-01-01

    18 January 2011 - The British Royal Academy of Engineering in the LHC tunnel with CMS Collaboration Spokesperson G. Tonelli and Beams Department Head P. Collier; in the CERN Control Centre with P. Collier and LHC superconducting magnet test hall with Technology Department Head F. Bordry.

  6. 23rd June 2010 - University of Bristol Head of the Aerospace Engineering Department and Professor of Aerospace Dynamics N. Lieven visiting CERN control centre with Beams Department Head P. Collier, visiting the LHC superconducting magnet test hall with R. Veness and CMS control centre with Collaboration Spokesperson G. Tonelli and CMS User J. Goldstein.

    Jean-Claude Gadmer

    2010-01-01

    23rd June 2010 - University of Bristol Head of the Aerospace Engineering Department and Professor of Aerospace Dynamics N. Lieven visiting CERN control centre with Beams Department Head P. Collier, visiting the LHC superconducting magnet test hall with R. Veness and CMS control centre with Collaboration Spokesperson G. Tonelli and CMS User J. Goldstein.

  7. 20th May 2010 - Malaysian Minister for Science, Technology and Innovation H. F: B. H. Yusof signing the guest book with Coordinator for External Relations F. Pauss and CMS Collaboration Deputy Spokesperson A. De Roeck; visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by CERN Advisers J. Ellis and E. Tsesmelis.

    Maximilien brice

    2010-01-01

    20th May 2010 - Malaysian Minister for Science, Technology and Innovation H. F: B. H. Yusof signing the guest book with Coordinator for External Relations F. Pauss and CMS Collaboration Deputy Spokesperson A. De Roeck; visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by CERN Advisers J. Ellis and E. Tsesmelis.

  8. William Brinkman (centre), Director of the Department of Energy, U.S.A. at the superconducting magnet test hall SM18 with (from left to right) Coordinator for External Relations F. Pauss, Advisor for Non-Member States J. Ellis, J. Strait from Fermilab and Deputy Head of Technology Department L. Rossi on 13 November 2009.

    Maximilien Brice; SM18

    2009-01-01

    William Brinkman (centre), Director of the Department of Energy, U.S.A. at the superconducting magnet test hall SM18 with (from left to right) Coordinator for External Relations F. Pauss, Advisor for Non-Member States J. Ellis, J. Strait from Fermilab and Deputy Head of Technology Department L. Rossi on 13 November 2009.

  9. 18 January 2011 - Ing. Vittorio Malacalza, ASG Superconductors S.p.A, Italy in the LHC superconducting magnet test hall with Deputy Department Head L. Rossi, in the LHC tunnel at Point 5 and CMS experimental area with Spokesperson G. Tonelli.

    Maximilien Brice

    2011-01-01

    18 January 2011 - Ing. Vittorio Malacalza, ASG Superconductors S.p.A, Italy in the LHC superconducting magnet test hall with Deputy Department Head L. Rossi, in the LHC tunnel at Point 5 and CMS experimental area with Spokesperson G. Tonelli.

  10. 8 April 2011 - Brazilian Minister of State for Science and Technology A. Mercadante Oliva signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni; visiting LHC superconducting magnet test hall with J.M. Jimenez.

    Maximilien Brice

    2011-01-01

    8 April 2011 - Brazilian Minister of State for Science and Technology A. Mercadante Oliva signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni; visiting LHC superconducting magnet test hall with J.M. Jimenez.

  11. 2 March 2012 - US Google Management Team Executive Chairman E. Schmidt visiting the LHC superconducting magnet test hall with Director for Accelerators and Technology S. Myers and Head of Technology Department F. Bordry; signing the guest book with CERN Director-General R. Heuer.

    Maximilien Brice

    2012-01-01

    2 March 2012 - US Google Management Team Executive Chairman E. Schmidt visiting the LHC superconducting magnet test hall with Director for Accelerators and Technology S. Myers and Head of Technology Department F. Bordry; signing the guest book with CERN Director-General R. Heuer.

  12. 6 June 2012 - British Member of Parliament for Bromsgrove Parliamentary Private Secretary to George Osborne, Chancellor of the Exchequer S. Javid MP signing the guest book with Adviser E. Tsesmelis and visiting the LHC superconducting magnet test hall with Beams Department Head P. Collier, Head of Operations M. Lamont and Adviser E. Tsesmelis.

    Maximilien Brice

    2012-01-01

    6 June 2012 - British Member of Parliament for Bromsgrove Parliamentary Private Secretary to George Osborne, Chancellor of the Exchequer S. Javid MP signing the guest book with Adviser E. Tsesmelis and visiting the LHC superconducting magnet test hall with Beams Department Head P. Collier, Head of Operations M. Lamont and Adviser E. Tsesmelis.

  13. 19 September 2011 - Austrian State Secretary for European and International Affairs W. Waldner, signing the guest book with Head of International Relations F. Pauss; visiting CMS service cavern with Collaboration Spokesperson G. Tonelli and the LHC superconducting magnet test hall with M. Zerlauth.

    Benoît Jeannet

    2011-01-01

    Austrian state secretary for foreign affairs, Wolfgang Waldner, left, was welcomed to CERN by Felicitas Pauss, head of international relations at CERN, on 19 September. While at CERN, he toured the CMS control room and underground experimental service cavern, the LHC superconducting magnet test hall, and the Universe of Particles exhibition in the Globe of Science and Innovation.

  14. 26th August 2010 - World Meteorological Organization Secretary-General M. Jarraud signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by M. Bona, CERN Relations with International Organisations

    Maximilien Brice

    2010-01-01

    26th August 2010 - World Meteorological Organization Secretary-General M. Jarraud signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by M. Bona, CERN Relations with International Organisations

  15. 5 December 2011 - Chilean President of the Comision Nacional de Investigacion Cientifica y Tecnologica J. M. Aguilera in the ATLAS visitor centre with Adviser J. Salicio Diez and ATLAS Collaboration G. Mikenberg; signing the guest book with Head of International Relations F. Pauss; visiting the LHC superconducting magnet test hall with Department Head F. Bordry.

    VMO Team

    2011-01-01

    5 December 2011 - Chilean President of the Comision Nacional de Investigacion Cientifica y Tecnologica J. M. Aguilera in the ATLAS visitor centre with Adviser J. Salicio Diez and ATLAS Collaboration G. Mikenberg; signing the guest book with Head of International Relations F. Pauss; visiting the LHC superconducting magnet test hall with Department Head F. Bordry.

  16. 19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.

    2011-01-01

    19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.

  17. 27 February 2012 - Director of the Health Directorate at the Research DG European Commission R. Draghia-Akli in the ATLAS visitor centre with ATLAS Former Collaboration Spokesperson P. Jenni and Head of CERN EU Projects Office S. Stavrev; in the LHC superconducting magnet test hall with E. Todesco; and signing the guest book with CERN Director-General R. Heuer.

    Michel Blanc

    2012-01-01

    27 February 2012 - Director of the Health Directorate at the Research DG European Commission R. Draghia-Akli in the ATLAS visitor centre with ATLAS Former Collaboration Spokesperson P. Jenni and Head of CERN EU Projects Office S. Stavrev; in the LHC superconducting magnet test hall with E. Todesco; and signing the guest book with CERN Director-General R. Heuer.

  18. 27 January 2012 - Mitglieder des Stiftungsrates Academia Engelberg und Gesellschaft zum Bettag Luzern Schweiz welcomed by Head of International Relations F. Pauss; visiting LHC tunnel at Point 5 and CMS experimental cavern; in the LHC superconducting magnet test hall SM18.

    Maximilien Brice

    2012-01-01

    27 January 2012 - Mitglieder des Stiftungsrates Academia Engelberg und Gesellschaft zum Bettag Luzern Schweiz welcomed by Head of International Relations F. Pauss; visiting LHC tunnel at Point 5 and CMS experimental cavern; in the LHC superconducting magnet test hall SM18.

  19. 27 November 2013 - Greek Deputy Minister of Health Z. Makri with Governor of Thessaly K. Agorastos visiting the LHC superconducting magnet test hall with Senior Scientists D. Delikaris, E. Hatziangeli and E. Tsesmelis. E. Gazis, ATLAS Collaboration, National Technical University of Athens also present.

    Anna Pantelia

    2013-01-01

    27 November 2013 - Greek Deputy Minister of Health Z. Makri with Governor of Thessaly K. Agorastos visiting the LHC superconducting magnet test hall with Senior Scientists D. Delikaris, E. Hatziangeli and E. Tsesmelis. E. Gazis, ATLAS Collaboration, National Technical University of Athens also present.

  20. Tunnelling anomalous and planar Hall effects (Conference Presentation)

    Matos-Abiague, Alex; Scharf, Benedikt; Han, Jong E.; Hankiewicz, Ewelina M.; Zutic, Igor

    2016-10-01

    We theoretically show how the interplay between spin-orbit coupling (SOC) and magnetism can result in a finite tunneling Hall conductance, transverse to the applied bias. For two-dimensional tunnel junctions with a ferromagnetic lead and magnetization perpendicular to the current flow, the detected anomalous Hall voltage can be used to extract information not only about the spin polarization but also about the strength of the interfacial SOC. In contrast, a tunneling current across a ferromagnetic barrier on the surface of a three-dimensional topological insulator (TI) can induce a planar Hall response even when the magnetization is oriented along the current flow[1]. The tunneling nature of the states contributing to the planar Hall conductance can be switched from the ordinary to the Klein regimes by the electrostatic control of the barrier strength. This allows for an enhancement of the transverse response and a giant Hall angle, with the tunneling planar Hall conductance exceeding the longitudinal component. Despite the simplicity of a single ferromagnetic region, the TI/ferromagnet system exhibits a variety of functionalities. In addition to a spin-valve operation for magnetic sensing and storing information, positive, negative, and negative differential conductances can be tuned by properly adjusting the barrier potential and/or varying the magnetization direction. Such different resistive behaviors in the same system are attractive for potential applications in reconfigurable spintronic devices. [1] B. Scharf, A. Matos-Abiague, J. E. Han, E. M. Hankiewicz, and I. Zutic, arXiv:1601.01009 (2016).