WorldWideScience

Sample records for magnesium-incorporated apatite coatings

  1. Parallel nano-assembling of a multifunctional GO/HapNP coating on ultrahigh-purity magnesium for biodegradable implants

    International Nuclear Information System (INIS)

    Santos, C.; Piedade, C.; Uggowitzer, P.J.; Montemor, M.F.; Carmezim, M.J.

    2015-01-01

    Graphical abstract: - Highlights: • A GO/HapNP thin coating was applied on XHP-Mg using a parallel nano-assembling route. • The coating surface wettability can be controlled by adding HapNP and/or GO. • Nanostructured GO/HapNP/phosphate coating promotes the apatite mineralization. • Critical properties, including degradation on SBF, of the coating were studied. - Abstract: This work reports the one-step fabrication of a novel coating on ultra high purity magnesium using a parallel nano assembling process. The multifunctional biodegradable surface was obtained by adding hydroxyapatite nanoparticles (HapNP) plus graphene oxide (GO). The coating was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), micro-Raman spectroscopy. The thin phosphate coating (thickness of 1 μm) reveals a uniform coverage with cypress like structures. The incorporation of HapNP and GO promotes the hydrophilic behavior of the coating surface. The results revealed that the proposed coating can be used to tailor the surface properties such as wettability by adjusting the contents of HapNP and GO. The in vitro degradation rate of the coated magnesium suggests that the presence of HapNP and GO/HapNP in the phosphate coating decreased the current density compared to the single phosphate coating and uncoated magnesium. This study also reveals the HapNP/GO/phosphate coating induces apatite formation, showing suitable degradability that makes it a promising coating candidate for enhanced bone regeneration

  2. Parallel nano-assembling of a multifunctional GO/HapNP coating on ultrahigh-purity magnesium for biodegradable implants

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C., E-mail: catarina.santos@estsetubal.ips.pt [EST Setúbal, DEM, Instituto Politécnico de Setúbal, Campus IPS, 2914-508 Setúbal (Portugal); CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Piedade, C. [EST Setúbal, DEM, Instituto Politécnico de Setúbal, Campus IPS, 2914-508 Setúbal (Portugal); Uggowitzer, P.J. [Laboratory of Metal Physics and Technology, ETH Zurich, 8093 Zurich (Switzerland); Montemor, M.F. [CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Carmezim, M.J. [EST Setúbal, DEM, Instituto Politécnico de Setúbal, Campus IPS, 2914-508 Setúbal (Portugal); CQE, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)

    2015-08-01

    Graphical abstract: - Highlights: • A GO/HapNP thin coating was applied on XHP-Mg using a parallel nano-assembling route. • The coating surface wettability can be controlled by adding HapNP and/or GO. • Nanostructured GO/HapNP/phosphate coating promotes the apatite mineralization. • Critical properties, including degradation on SBF, of the coating were studied. - Abstract: This work reports the one-step fabrication of a novel coating on ultra high purity magnesium using a parallel nano assembling process. The multifunctional biodegradable surface was obtained by adding hydroxyapatite nanoparticles (HapNP) plus graphene oxide (GO). The coating was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), micro-Raman spectroscopy. The thin phosphate coating (thickness of 1 μm) reveals a uniform coverage with cypress like structures. The incorporation of HapNP and GO promotes the hydrophilic behavior of the coating surface. The results revealed that the proposed coating can be used to tailor the surface properties such as wettability by adjusting the contents of HapNP and GO. The in vitro degradation rate of the coated magnesium suggests that the presence of HapNP and GO/HapNP in the phosphate coating decreased the current density compared to the single phosphate coating and uncoated magnesium. This study also reveals the HapNP/GO/phosphate coating induces apatite formation, showing suitable degradability that makes it a promising coating candidate for enhanced bone regeneration.

  3. Parallel nano-assembling of a multifunctional GO/HapNP coating on ultrahigh-purity magnesium for biodegradable implants

    Science.gov (United States)

    Santos, C.; Piedade, C.; Uggowitzer, P. J.; Montemor, M. F.; Carmezim, M. J.

    2015-08-01

    This work reports the one-step fabrication of a novel coating on ultra high purity magnesium using a parallel nano assembling process. The multifunctional biodegradable surface was obtained by adding hydroxyapatite nanoparticles (HapNP) plus graphene oxide (GO). The coating was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), micro-Raman spectroscopy. The thin phosphate coating (thickness of 1 μm) reveals a uniform coverage with cypress like structures. The incorporation of HapNP and GO promotes the hydrophilic behavior of the coating surface. The results revealed that the proposed coating can be used to tailor the surface properties such as wettability by adjusting the contents of HapNP and GO. The in vitro degradation rate of the coated magnesium suggests that the presence of HapNP and GO/HapNP in the phosphate coating decreased the current density compared to the single phosphate coating and uncoated magnesium. This study also reveals the HapNP/GO/phosphate coating induces apatite formation, showing suitable degradability that makes it a promising coating candidate for enhanced bone regeneration.

  4. Bio-inspired citrate functionalized apatite coating on rapid prototyped titanium scaffold

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Peng [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Lu, Fang [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Guang Dong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Wang, Di [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Zhu, Xiaojing [Department of Prosthodontics, Guanghua School of Stomatology, Guang Dong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Tan, Guoxin, E-mail: tanguoxin@126.com [Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Wang, Xiaolan [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Zhang, Yu; Li, Lihua [General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010 (China); Ning, Chengyun, E-mail: imcyning@scut.edu.cn [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China)

    2014-09-15

    Highlights: • Designed and reproducible porous titanium scaffolds were produced. • Hydrophilic nanoporous film was built on scaffold. • Apatite coating was deposited on scaffold under the modulation of citrate ions. • Citrate ions could affect CO{sub 3}{sup 2−} incorporation in apatite coatings. - Abstract: Scaffold functionalized with appropriate osteogenic coatings can significantly improve implant-bone response. In this study, with designed model and optimized manufacture parameters, reproducible and precise titanium scaffolds were produced. Reconstructed three-dimensional image and sectional structure of the scaffold were examined by micro-computed tomography and relative software. Alkali treatment was carried out on these manufactured porous scaffolds to produce nanoporous hydrophilic film. After 6 days deposition in simulated body fluid (SBF) containing sodium citrate (SC-SBF), plate-like amorphous calcium phosphate (ACP) coating was deposited on scaffold surface. Ultrasonication tests qualitatively indicated an enhanced adhesion force of apatite coatings deposited in SC-SBF compared to that deposited in SBF. And the effect of citrate ions on the CO{sub 3}{sup 2−} incorporation rate in apatite coating was quantitatively examined by bending vibration of CO{sub 3}{sup 2−} at ∼874 cm{sup −1}. Results indicated the highest carbonate content was obtained at the citrate ion concentration of 6 × 10{sup −5} mol/L in SC-SBF. These three-dimensional porous titanium-apatite hybrid scaffolds are expected to find application in bone tissue regeneration.

  5. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Energy Technology Data Exchange (ETDEWEB)

    Tang Hui [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China); Yu Dezhen [School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Luo Yan [Department of Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wang Fuping, E-mail: hitth001@yahoo.cn [School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer Hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. Black-Right-Pointing-Pointer The corrosion resistance of the magnesium alloy has been enhanced by micro-arc oxidation and solution treatment. Black-Right-Pointing-Pointer The coating fabricated by micro-arc oxidation and solution treatment exhibits a high ability to form apatite. - Abstract: Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  6. In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Xiao [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Xiaoming [Panyu Hospital of Chinese Medicine, 65 Qiaodong Road, Guangzhou 511400 (China); Tan, Lili, E-mail: lltan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Li, Mei [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Wang, Xin [College of Chemistry, Liaoning University, 66 Chongshanzhong Road, Shenyang 110036 (China); Zhang, Yu, E-mail: luck_2001@126.com [Hospital of Orthopedics, Guangzhou General Hospital of Guangzhou Military Command, 111 Liuhua Road, Guangzhou 510010 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Hu, Zhuangqi [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Qiu, Jianhong [Trauson Medical Instrument Co., Ltd., Changzhou 213163 (China)

    2014-01-01

    Magnesium alloys are promising biodegradable implant candidates for orthopedic application. In the present study, a phosphate-based micro-arc oxidation (MAO) coating was applied on the ZK60 alloy to decrease its initial degradation rate. Strontium (Sr) was incorporated into the coating in order to improve the bioactivity of the coating. The in vitro degradation studies showed that the MAO coating containing Sr owned a better initial corrosion resistance, which was mainly attributed to the superior inner barrier layer, and a better long-term protective ability, probably owning to its larger thickness, superior inner barrier layer and the superior apatite formation ability. The degradation of MAO coating was accompanied by the formation of degradation layer and Ca-P deposition layer. The in vitro cell tests demonstrated that the incorporation of Sr into the MAO coating enhanced both the proliferation of preosteoblast cells and the alkaline phosphatase activity of the murine bone marrow stromal cells. In conclusion, the MAO coating with Sr is a promising surface treatment for the biodegradable magnesium alloys.

  7. Strontium and magnesium substituted dicalcium phosphate dehydrate coating for carbon/carbon composites prepared by pulsed electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shou-jie, E-mail: jlliushoujie@126.com; Li, He-jun, E-mail: lihejun@nwpu.edu.cn; Zhang, Lei-lei, E-mail: zhangleilei@nwpu.edu.cn; Feng, Lei, E-mail: fengleijinan@163.com; Yao, Pei, E-mail: 1113923884@qq.com

    2015-12-30

    Graphical abstract: The potentiodynamic polarization curve shows that the SM-DCPD coating can dramatically enhance the corrosion potential (E{sub corr}) value and meanwhile decrease the corrosion current density (I{sub corr}) of C/C composites. - Highlights: • Strontium and magnesium substituted dicalcium phosphate dehydrate coatings for carbon/carbon composites were synthesized by pulsed eletrodeposition. • Strontium and magnesium substituted dicalcium phosphate dehydrate coated carbon/carbon composites exhibited excellent bioactivity in vivo. • Strontium and magnesium substituted dicalcium phosphate dehydrate coated carbon/carbon composites showed lower corrosion rate with the comparison to pure carbon/carbon composites. - Abstract: Trace elements substituted apatite coatings have received a lot of interest recently as they have many benefits. In this work, strontium and magnesium substituted DCPD (SM-DCPD) coatings were deposited on carbon/carbon (C/C) composites by pulsed electrodeposition method. The morphology, microstructure, corrosion resistance and in vitro bioactivity of the SM-DCPD coatings are analyzed. The results show that the SM-DCPD coatings exhibit a flake-like morphology with dense and uniform structure. The SM-DCPD coatings could induce the formation of apatite layers on their surface in simulated body fluid. The electrochemical test indicates that the SM-DCPD coatings can evidently decrease the corrosion rate of the C/C composites in simulated body fluid. The SM-DCPD has potential application as the bioactive coatings.

  8. Preparation and characterization of HA microflowers coating on AZ31 magnesium alloy by micro-arc oxidation and a solution treatment

    Science.gov (United States)

    Tang, Hui; Yu, Dezhen; Luo, Yan; Wang, Fuping

    2013-01-01

    Magnesium and its alloys are potential biodegradable implant materials due to their attractive biological properties. But the use of magnesium is still hampered by its poor corrosion resistance in physiological fluids. In this work, hydroxyapatite microflowers coating is fabricated by micro-arc oxidation and a solution treatment on AZ31 magnesium alloy. The microstructure and composition are analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The potentiodynamic polarization and electrochemical impedance spectroscopy are studied in simulated body fluid (SBF) solution, and the apatite-forming ability is studied also. The results show that the corrosion resistance of the magnesium alloy has been enhanced by MAO coating. And the solution treatment can improve the corrosion resistance of the MAO sample, by forming a barrier layer on the surface of the MAO coating, and by penetrating into the outer layer of the MAO film, sealing the micropores and micro-cracks existed in the MAO coating. In addition, the MAO-ST coating also exhibits a high ability to form apatite.

  9. A novel simple strategy for in situ deposition of apatite layer on AZ31B magnesium alloy for bone tissue regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Mousa, Hamouda M. [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523 (Egypt); Lee, Do Hee [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Chan Hee, E-mail: biochan@jbnu.ac.kr [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kim, Cheol Sang, E-mail: chskim@jbnu.ac.kr [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)

    2015-10-01

    Graphical abstract: - Highlights: • Anodizing process was used for the surface modification of AZ31B magnesium alloy. • An appetite-like film was deposited on the surface of AZ31B magnesium alloy. • Ceramic film was investigated by XRD and XPS. • Nano-plates growth are observed though the implemented experimental design. • Significant increase in the substrate hardness and surface roughness was observed. - Abstract: In this study, for the first time, the degradation performance of AZ31B Mg alloy was tuned by an in situ deposition of apatite thin layer within a short time in one step. Using Taguchi method for experimental design, anodization process was designed under control conditions (time and voltage), and simulated body fluid (SBF) was used as the electrolyte to nucleate apatite-like compounds. The coated alloy was characterized through field emission scanning electron microscopy (FE-SEM), EDS, X-ray diffraction and XPS analysis. The results show that the applied voltage has a significant effect on the formation of apatite-like layers. Compared to the uncoated samples, microhardness and surface roughness of the coated samples showed remarkably different values. The potentiodynamic polarization results demonstrate that the polarization resistance of the anodized samples is higher than the substrate polarization resistance, thus improving the alloy corrosion resistant. Based on the experimental results, the proposed nanostructure apatite-like coating can offer a promising way to improve the biocompatibility and degradability properties of the Mg alloy for bone tissue regeneration.

  10. Mg substituted apatite coating from alkali conversion of acidic calcium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Navarro da Rocha, Daniel, E-mail: dnr.navarro@gmail.com [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil); Cruz, Leila Rosa de Oliveira [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil); Campos, José Brant de [Rio de Janeiro State University - UERJ, Rio de Janeiro, R.J. (Brazil); Marçal, Rubens L. Santana Blazutti [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil); Mijares, Dindo Q.; Coelho, Paulo G. [Department of Biomaterials and Biomimetics, New York University College of Dentistry (NYU), New York, NY (United States); Prado da Silva, Marcelo H. [Military Institute of Engineering-IME, Pça. Gen. Tiburcio, 80, P. Vermelha, Urca, Rio de Janeiro, R.J. (Brazil)

    2017-01-01

    In this work, two solutions were developed: the first, rich in Ca{sup 2+}, PO{sub 4}{sup 3−} ions and the second, rich in Ca{sup 2+}, PO{sub 4}{sup 3−} and Mg{sup 2+}, defined as Mg-modified precursor solution. For each Mg-modified precursor solution, the concentrations of Mg{sup 2+} ions were progressively increased by 5%, 10% and 15%wt. The aims of this research were to investigate the influence of magnesium ions substitution in calcium phosphate coatings on titanium surface and to evaluate these coatings by bioactivity assay in McCoy culture medium. The obtained coatings were characterized by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis, and the presence of Mg ions was confirmed by the inductively coupled plasma atomic emission spectroscopy (ICP) analysis. In vitro bioactivity assay in McCoy culture medium showed bioactivity after 14 days in incubation for the HA and 10% Mg-monetite coatings. The high chemical stability of Mg-HA coatings was verified by the bioactivity assays, and no bone-like apatite deposition, characteristic of bioactivity, was observed for Mg-HA coatings, for the time period used in this study. - Highlights: • The presence of Mg ions influenced the final apatite phase present in the produced coatings. • A lower efficiency in heterogeneous deposition and an exposure of Ti substrate in 5% Mg-monetite coatings was soon verified. • McCoy culture medium was effective in predicting the coatings bioactivity.

  11. Characterization of Coatings on Steel Self-Piercing Rivets for Use with Magnesium Alloys

    Science.gov (United States)

    McCune, Robert C.; Forsmark, Joy H.; Upadhyay, Vinod; Battocchi, Dante

    Incorporation of magnesium alloys in self-pierce rivet (SPR) joints poses several unique challenges among which are the creation of spurious galvanic cells and aggravated corrosion of adjacent magnesium when coated steel rivets are employed. This work firstly reviews efforts on development of coatings to steel fasteners for the diminution of galvanic corrosion when used with magnesium alloys. Secondly, approaches, based on several electrochemical methods, for the measurement of the galvanic-limiting effect of a number of commercially-available coatings to hardened 10B37 steel self-piercing rivets inserted into alloy couples incorporating several grades of magnesium are reported. Electrochemical impedance spectroscopy (EIS), zero-resistance ammeter (ZRA), corrosion potential and potential-mapping visualization methods (e.g. scanning vibrating electrode technique — SVET) are illustrated for the several rivet coatings considered.

  12. Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation

    Science.gov (United States)

    Yu, Huijun; Dong, Qing; Dou, Jinhe; Pan, Yaokun; Chen, Chuanzhong

    2016-12-01

    Magnesium and its alloys have the potential to serve as lightweight, degradable, biocompatible and bioactive orthopedic implants for load-bearing applications. However, severe local corrosion attack and high corrosion rate have prevented their further clinical use. Micro-arc oxidation (MAO) is proved to be a simple, controllable and efficient electrochemistry technique that can prepare protective ceramic coatings on magnesium alloys. In this paper, electrolyte containing silicate salts was used for microarc oxidation to form ceramic bioactive coatings on the ZK61 alloy substrate. The structure characteristics and element distributions of the coating were investigated by XRD, TEM, SEM and EPMA. The MAO samples were immersed in simulated body fluid (SBF) for 7 and 14 days, respectively. The surface characteristic of the immersed coatings was investigated by Fourier-transform infrared (FTIR) spectroscopy. The results show that these MAO coatings have low crystallinity and are mainly composed of MgO, Mg2SiO4 and Mg2Si2O6. The coating surface is porous. During the SBF immersion period, the nucleation and precipitation of bone-like apatites occur on the MAO coating surface. The corrosion resistance of the substrate is improved by the MAO coatings.

  13. Microwave assisted coating of bioactive amorphous magnesium phosphate (AMP) on polyetheretherketone (PEEK).

    Science.gov (United States)

    Ren, Yufu; Sikder, Prabaha; Lin, Boren; Bhaduri, Sarit B

    2018-04-01

    Polyetheretherketone (PEEK) with great thermal and chemical stability, desirable mechanical properties and promising biocompatibility is being widely used as orthopedic and dental implant materials. However, the bioinert surface of PEEK can hinder direct osseointegration between the host tissue and PEEK based implants. The important signatures of this paper are as follows. First, we report for the formation of osseointegrable amorphous magnesium phosphate (AMP) coating on PEEK surface using microwave energy. Second, coatings consist of nano-sized AMP particles with a stacked thickness of 800nm. Third, coatings enhance bioactivity in-vitro and induce significantly high amount of bone-like apatite coating, when soaked in simulated body fluid (SBF). Fourth, the as-deposited AMP coatings present no cytotoxicity effects and are beneficial for cell adhesion at early stage. Finally, the high levels of expression of osteocalcin (OCN) in cells cultured on AMP coated PEEK samples indicate that AMP coatings can promote new bone formation and hence osseointegration. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Xun [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Wan, Peng, E-mail: pwan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Tan, LiLi [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China); Fan, XinMin [Department of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Yang, Ke [Institute of Metal Research, Chinese Academy of Science, Shenyang 110016 (China)

    2014-03-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca–P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. - Highlights: • A Si-doped calcium phosphate coating was achieved via pulse ED on AZ31 alloy. • The coating was composed of a porous lamellar-like layer and outer block-like apatite. • The coating showed slow degradation rate and better biomineralization property. • The coating improved cell proliferation and activity of osteogenic marker ALP.

  15. Preliminary research on a novel bioactive silicon doped calcium phosphate coating on AZ31 magnesium alloy via electrodeposition

    International Nuclear Information System (INIS)

    Qiu, Xun; Wan, Peng; Tan, LiLi; Fan, XinMin; Yang, Ke

    2014-01-01

    A silicon doped calcium phosphate coating was obtained successfully on AZ31 alloy substrate via pulse electrodeposition. A novel dual-layer structure was observed with a porous lamellar-like and outer block-like apatite layer. In vitro immersion tests were adopted in simulated body fluid within 28 days of immersion. Slow degradation rate obtained from weight loss was observed for the Si-doped Ca–P coating, which was also consistent with the results of electrochemical experiments showing an enhanced corrosion resistance for the coating. Further formation of an apatite-like layer on the surface after immersion proved better integrity and biomineralization performance of the coating. Biological characterization was carried out for viability, proliferation and differentiation of MG63 osteoblast-like cells. The coating showed a good cell growth and an enhanced cell proliferation. Moreover, an increased activity of osteogenic marker ALP was found. All the results demonstrated that the Si-doped calcium phosphate was perspective to be used as a coating for magnesium alloy implants to control the degradation rate and enhance the bioactivity, which would facilitate the rapidity of bone tissue repair. - Highlights: • A Si-doped calcium phosphate coating was achieved via pulse ED on AZ31 alloy. • The coating was composed of a porous lamellar-like layer and outer block-like apatite. • The coating showed slow degradation rate and better biomineralization property. • The coating improved cell proliferation and activity of osteogenic marker ALP

  16. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique

    International Nuclear Information System (INIS)

    Onder, Sakip; Kok, Fatma Nese; Kazmanli, Kursat; Urgen, Mustafa

    2013-01-01

    In this study, formation of magnesium substituted hydroxyapatite (Ca 10−x Mg x (PO 4 ) 6 (OH) 2 ) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti 1−x ,Mg x )N (x = 0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. - Highlights: • Mg incorporated in (Ti,Mg)N coating structure and did not form a separate phase • Mg dissolution in SBF solution facilitated Mg-substituted hydroxyapatite formation • (Ti,Mg)N acted as Mg-source for Mg-substituted hydroxyapatite formation in SBF

  17. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    International Nuclear Information System (INIS)

    Ren, Yufu; Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B.

    2015-01-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants

  18. Rapid coating of AZ31 magnesium alloy with calcium deficient hydroxyapatite using microwave energy

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Yufu, E-mail: Yufu.Ren@rockets.utoledo.edu [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Zhou, Huan [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu (China); Nabiyouni, Maryam [Department of Bioengineering, The University of Toledo, Toledo, OH (United States); Bhaduri, Sarit B. [Department of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, Toledo, OH (United States); Division of Dentistry, The University of Toledo, Toledo, OH (United States)

    2015-04-01

    Due to their unique biodegradability, magnesium alloys have been recognized as suitable metallic implant materials for degradable bone implants and bioresorbable cardiovascular stents. However, the extremely high degradation rate of magnesium alloys in physiological environment has restricted its practical application. This paper reports the use of a novel microwave assisted coating technology to improve the in vitro corrosion resistance and biocompatibility of Mg alloy AZ31. Results indicate that a dense calcium deficient hydroxyapatite (CDHA) layer was uniformly coated on a AZ31 substrate in less than 10 min. Weight loss measurement and SEM were used to evaluate corrosion behaviors in vitro of coated samples and of non-coated samples. It was seen that CDHA coatings remarkably reduced the mass loss of AZ31 alloy after 7 days of immersion in SBF. In addition, the prompt precipitation of bone-like apatite layer on the sample surface during immersion demonstrated a good bioactivity of the CDHA coatings. Proliferation of osteoblast cells was promoted in 5 days of incubation, which indicated that the CDHA coatings could improve the cytocompatibility of the AZ31 alloy. All the results suggest that the CDHA coatings, serving as a protective layer, can enhance the corrosion resistance and biological response of magnesium alloys. Furthermore, this microwave assisted coating technology could be a promising method for rapid surface modification of biomedical materials. - Highlights: • A microwave assisted coating process for biodegradable Mg alloy. • CDHA coatings were successfully developed on AZ31 alloy in minutes. • The as-deposited CDHA coatings significantly reduced the degradation rate of AZ31 alloy. • The CDHA coated AZ31 alloy showed good bioactivity and biocompatibility in vitro. • The microwave assisted coating process can be used as rapid surface modification for bioimplants.

  19. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    Science.gov (United States)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  20. Anticorrosive magnesium hydroxide coating on AZ31 magnesium alloy by hydrothermal method

    International Nuclear Information System (INIS)

    Zhu Yanying; Wu Guangming; Xing Guangjian; Li Donglin; Zhao Qing; Zhang Yunhong

    2009-01-01

    Magnesium alloys are potential biodegradable biomaterials in orthopedic surgery. However, the rapid degradation rate has limited their application in biomedical field. A great deal of studies have been done to improve the resistance of magnesium alloys. In this article, An anticorrosive magnesium hydroxide coating with a thickness of approximately 100μm was formed on an AZ31 magnesium alloy by hydrothermal method. The morphology of the coatings were observed by an optical microscope and SEM. And the samples were soaked in hank's solution (37 deg. C) to investigate the corrosion resistance. Magnesium alloy AZ31 with magnesium hydroxide coatings present superior corrosion resistance than untreated samples.

  1. Formation of Apatite Coatings on an Artificial Ligament Using a Plasma- and Precursor-Assisted Biomimetic Process

    Directory of Open Access Journals (Sweden)

    Ayako Oyane

    2013-09-01

    Full Text Available A plasma- and precursor-assisted biomimetic process utilizing plasma and alternate dipping treatments was applied to a Leed-Keio artificial ligament to produce a thin coating of apatite in a supersaturated calcium phosphate solution. Following plasma surface modification, the specimen was alternately dipped in calcium and phosphate ion solutions three times (alternate dipping treatment to create a precoating containing amorphous calcium phosphate (ACP which is an apatite precursor. To grow an apatite layer on the ACP precoating, the ACP-precoated specimen was immersed for 24 h in a simulated body fluid with ion concentrations approximately equal to those in human blood plasma. The plasma surface modification was necessary to create an adequate apatite coating and to improve the coating adhesion depending on the plasma power density. The apatite coating prepared using the optimized conditions formed a thin-film that covered the entire surface of the artificial ligament. The resulting apatite-coated artificial ligament should exhibit improved osseointegration within the bone tunnel and possesses great potential for use in ligament reconstructions.

  2. Magnesium substituted hydroxyapatite formation on (Ti,Mg)N coatings produced by cathodic arc PVD technique.

    Science.gov (United States)

    Onder, Sakip; Kok, Fatma Nese; Kazmanli, Kursat; Urgen, Mustafa

    2013-10-01

    In this study, formation of magnesium substituted hydroxyapatite (Ca10-xMgx(PO4)6(OH)2) on (Ti,Mg)N and TiN coating surfaces were investigated. The (Ti1-x,Mgx)N (x=0.064) coatings were deposited on titanium substrates by using cathodic arc physical vapor deposition technique. TiN coated grade 2 titanium substrates were used as reference to understand the role of magnesium on hydroxyapatite (HA) formation. The HA formation experiments was carried out in simulated body fluids (SBF) with three different concentrations (1X SBF, 5X SBF and 5X SBF without magnesium ions) at 37 °C. The coatings and hydroxyapatite films formed were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and FTIR Spectroscopy techniques. The energy dispersive X-ray spectroscopy (EDS) analyses and XRD investigations of the coatings indicated that magnesium was incorporated in the TiN structure rather than forming a separate phase. The comparison between the TiN and (Ti, Mg)N coatings showed that the presence of magnesium in TiN structure facilitated magnesium substituted HA formation on the surface. The (Ti,Mg)N coatings can potentially be used to accelerate the HA formation in vivo conditions without any prior hydroxyapatite coating procedure. © 2013.

  3. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique

    International Nuclear Information System (INIS)

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-01-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, –PO 4 H 2 , –COOH and –OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants. - Highlights: • –PO 4 H 2 , –COOH and –OH groups were successfully introduced onto PEEK surface via tailored silanization layer technique. • Bone-like apatite formed uniformly on surface-functionalized PEEK after immersion in SBF, and tightly adhered to the PEEK. • SEM, EDS, FTIR, XPS and XRD results showed that apatite layer is composed of low-crystalline bone-like apatite. • Bone-like apatite coating remarkably enhanced pre

  4. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance.

    Science.gov (United States)

    Mukhametkaliyev, T M; Surmeneva, M A; Vladescu, A; Cotrut, C M; Braic, M; Dinu, M; Vranceanu, M D; Pana, I; Mueller, M; Surmenev, R A

    2017-06-01

    The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Visan, A. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Grossin, D. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Stefan, N.; Duta, L.; Miroiu, F.M. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Stan, G.E. [National Institute of Materials Physics, RO-077125, Magurele-Ilfov (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Freche, M.; Marsan, O.; Charvilat, C. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Ciuca, S. [Politehnica University of Bucharest, Faculty of Materials Science and Engineering, Bucharest (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania)

    2014-02-15

    Highlights: • We report the deposition by MAPLE of biomimetic apatite coatings on Ti substrates. • This is the first report of MAPLE deposition of hydrated biomimetic apatite films. • Biomimetic apatite powder was synthesized by double decomposition process. • Non-apatitic environments, of high surface reactivity, are preserved post-deposition. • We got the MAPLE complete transfer as thin film of a hydrated, delicate material. -- Abstract: We report the deposition by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique of biomimetic nanocrystalline apatite coatings on titanium substrates, with potential application in tissue engineering. The targets were prepared from metastable, nanometric, poorly crystalline apatite powders, analogous to mineral bone, synthesized through a biomimetic approach by double decomposition process. For the deposition of thin films, a KrF* excimer laser source was used (λ = 248 nm, τ{sub FWHM} ≤ 25 ns). The analyses revealed the existence, in synthesized powders, of labile non-apatitic mineral ions, associated with the formation of a hydrated layer at the surface of the nanocrystals. The thin film analyses showed that the structural and chemical nature of the nanocrystalline apatite was prevalently preserved. The perpetuation of the non-apatitic environments was also observed. The study indicated that MAPLE is a suitable technique for the congruent transfer of a delicate material, such as the biomimetic hydrated nanohydroxyapatite.

  6. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

    International Nuclear Information System (INIS)

    Visan, A.; Grossin, D.; Stefan, N.; Duta, L.; Miroiu, F.M.; Stan, G.E.; Sopronyi, M.; Luculescu, C.; Freche, M.; Marsan, O.; Charvilat, C.; Ciuca, S.; Mihailescu, I.N.

    2014-01-01

    Highlights: • We report the deposition by MAPLE of biomimetic apatite coatings on Ti substrates. • This is the first report of MAPLE deposition of hydrated biomimetic apatite films. • Biomimetic apatite powder was synthesized by double decomposition process. • Non-apatitic environments, of high surface reactivity, are preserved post-deposition. • We got the MAPLE complete transfer as thin film of a hydrated, delicate material. -- Abstract: We report the deposition by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique of biomimetic nanocrystalline apatite coatings on titanium substrates, with potential application in tissue engineering. The targets were prepared from metastable, nanometric, poorly crystalline apatite powders, analogous to mineral bone, synthesized through a biomimetic approach by double decomposition process. For the deposition of thin films, a KrF* excimer laser source was used (λ = 248 nm, τ FWHM ≤ 25 ns). The analyses revealed the existence, in synthesized powders, of labile non-apatitic mineral ions, associated with the formation of a hydrated layer at the surface of the nanocrystals. The thin film analyses showed that the structural and chemical nature of the nanocrystalline apatite was prevalently preserved. The perpetuation of the non-apatitic environments was also observed. The study indicated that MAPLE is a suitable technique for the congruent transfer of a delicate material, such as the biomimetic hydrated nanohydroxyapatite

  7. In vivo bioactivity of titanium and fluorinated apatite coatings for orthopaedic implants: a vibrational study

    Science.gov (United States)

    Taddei, Paola; Tinti, Anna; Reggiani, Matteo; Monti, Patrizia; Fagnano, Concezio

    2003-06-01

    The bone integration of implants is a complex process which depends on chemical composition and surface morphology. To accelerate osteointegration, metal implants are coated with porous metal or apatites which have been reported to increase mineralisation, improving prosthesis fixation. To study the influence of composition and morphology on the in vivo bioactivity, titanium screws coated by Plasma Flame Spraying (PFS) with titanium or fluorinated apatite (K690) were implanted in sheep tibia and femur for 10 weeks and studied by micro-Raman and IR spectroscopy. The same techniques, together with thermogravimetry, were used for characterising the pre-coating K690 powder. Contrary to the manufacturer report, the K690 pre-coating revealed to be composed of a partially fluorinated apatite containing impurities of Ca(OH) 2 and CaCO 3. By effect of PFS, the impurities were decomposed and the crystallinity degree of the coating was found to decrease. The vibrational spectra recorded on the implanted screws revealed the presence of newly formed bone; for the K690-coated screws at least, a high level of osteointegration was evidenced.

  8. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  9. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong; Zhang, Shenglan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: zhanglfcioc@163.com [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, –PO{sub 4}H{sub 2}, –COOH and –OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants. - Highlights: • –PO{sub 4}H{sub 2}, –COOH and –OH groups were successfully introduced onto PEEK surface via tailored silanization layer technique. • Bone-like apatite formed uniformly on surface-functionalized PEEK after immersion in SBF, and tightly adhered to the PEEK. • SEM, EDS, FTIR, XPS and XRD results showed that apatite layer is composed of low-crystalline bone-like apatite. • Bone-like apatite coating

  10. Calcium-Magnesium-Aluminosilicate (CMAS) Reactions and Degradation Mechanisms of Advanced Environmental Barrier Coatings

    Science.gov (United States)

    Ahlborg, Nadia L.; Zhu, Dongming

    2013-01-01

    The thermochemical reactions between calcium-magnesium-aluminosilicate- (CMAS-) based road sand and several advanced turbine engine environmental barrier coating (EBC) materials were studied. The phase stability, reaction kinetics and degradation mechanisms of rare earth (RE)-silicates Yb2SiO5, Y2Si2O7, and RE-oxide doped HfO2 and ZrO2 under the CMAS infiltration condition at 1500 C were investigated, and the microstructure and phase characteristics of CMAS-EBC specimens were examined using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD). Experimental results showed that the CMAS dissolved RE-silicates to form crystalline, highly non-stoichiometric apatite phases, and in particular attacking the silicate grain boundaries. Cross-section images show that the CMAS reacted with specimens and deeply penetrated into the EBC grain boundaries and formed extensive low-melting eutectic phases, causing grain boundary recession with increasing testing time in the silicate materials. The preliminary results also showed that CMAS reactions also formed low melting grain boundary phases in the higher concentration RE-oxide doped HfO2 systems. The effect of the test temperature on CMAS reactions of the EBC materials will also be discussed. The faster diffusion exhibited by apatite and RE-doped oxide phases and the formation of extensive grain boundary low-melting phases may limit the CMAS resistance of some of the environmental barrier coatings at high temperatures.

  11. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy

    International Nuclear Information System (INIS)

    Kannan, M Bobby; Orr, Lynnley

    2011-01-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  12. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, M Bobby; Orr, Lynnley, E-mail: bobby.mathan@jcu.edu.au [Discipline of Chemical Engineering, School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland 4811 (Australia)

    2011-08-15

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating.

  13. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Mukhametkaliyev, T.M.; Surmeneva, M.A. [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation); Vladescu, A. [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation); National Institute for Optoelectronics, 409 Atomistilor St., RO77125 Magurele (Romania); Cotrut, C.M. [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation); Politehnica University of Bucharest, 313 Spl. Independentei, Bucharest (Romania); Braic, M.; Dinu, M. [National Institute for Optoelectronics, 409 Atomistilor St., RO77125 Magurele (Romania); Vranceanu, M.D. [Politehnica University of Bucharest, 313 Spl. Independentei, Bucharest (Romania); Pana, I. [National Institute for Optoelectronics, 409 Atomistilor St., RO77125 Magurele (Romania); Faculty of Physics, Bucharest University, 405 Atomistilor St., RO77125 Magurele (Romania); Mueller, M. [Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, 70569 Stuttgart (Germany); Surmenev, R.A., E-mail: rsurmenev@gmail.com [National Research Tomsk Polytechnic University, 634050, Lenin Avenue 43, Tomsk (Russian Federation)

    2017-06-01

    The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy. - Highlights: • The nanostructured HA layer allows to control the degradation rate of the AZ91 alloy. • The HA coating significantly reduces the corrosion current density. • The HA coating significantly improves the polarization resistance in vitro. • The RF magnetron deposited HA coating promotes calcium-phosphate precipitation in SBF.

  14. A biodegradable AZ91 magnesium alloy coated with a thin nanostructured hydroxyapatite for improving the corrosion resistance

    International Nuclear Information System (INIS)

    Mukhametkaliyev, T.M.; Surmeneva, M.A.; Vladescu, A.; Cotrut, C.M.; Braic, M.; Dinu, M.; Vranceanu, M.D.; Pana, I.; Mueller, M.; Surmenev, R.A.

    2017-01-01

    The main aim of this study was to investigate the properties of an AZ91 alloy coated with nanostructured hydroxyapatite (HA) prepared by radio frequency (RF) magnetron sputtering. The bioactivity and biomineralization of the AZ91 magnesium alloy coated with HA were investigated in simulated body fluid (SBF) via an in vitro test. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and X-ray diffraction (XRD) analyses were performed. The samples were immersed in SBF to study the ability of the surface to promote the formation of an apatite layer as well as corrosion resistance and mass change of the HA-coated AZ91 alloy. Electrochemical tests were performed to estimate the corrosion behaviour of HA-coated and uncoated samples. The results revealed the capability of the HA coating to significantly improve the corrosion resistance of the uncoated AZ91 alloy. - Highlights: • The nanostructured HA layer allows to control the degradation rate of the AZ91 alloy. • The HA coating significantly reduces the corrosion current density. • The HA coating significantly improves the polarization resistance in vitro. • The RF magnetron deposited HA coating promotes calcium-phosphate precipitation in SBF.

  15. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    International Nuclear Information System (INIS)

    Gallego, Daniel; Higuita, Natalia; Garcia, Felipe; Ferrell, Nicholas; Hansford, Derek J.

    2008-01-01

    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO 2 atmosphere, allowing the formation of CaCO 3 . The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO 2 atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH) 2 on C-, and CaCO 3 on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications

  16. In vitro mechanical integrity of hydroxyapatite coated magnesium alloy.

    Science.gov (United States)

    Kannan, M Bobby; Orr, Lynnley

    2011-08-01

    The mechanical integrity of resorbable implants during service, especially in load bearing orthopaedic applications, is critical. The high degradation rate of resorbable magnesium and magnesium-based implants in body fluid may potentially cause premature in-service failure. In this study, a magnesium alloy (AZ91) was potentiostatically coated with hydroxyapatite at different cathodic voltages in an attempt to enhance the mechanical integrity. The mechanical integrity of the uncoated and hydroxyapatite coated alloys was evaluated after in vitro testing of the coated samples in simulated body fluid (SBF). The uncoated alloy showed 40% loss in the mechanical strength after five days exposure to SBF. However, the hydroxyapatite coated alloy exposed to SBF showed 20% improvement in the mechanical strength as compared to that of the uncoated alloy. The alloy coated potentiostatically at -2 V performed better than the -3 V coated alloy. The cross-sectional analysis of the coatings revealed relatively uniform coating thickness for the -2 V coated alloy, whereas the -3 V coated alloy exhibited areas of uneven coating. This can be attributed to the increase in hydrogen evolution on the alloy during -3 V coating as compared to -2 V coating. The scanning electron micrographs of the in vitro tested alloy revealed that hydroxyapatite coating significantly reduced the localized corrosion of the alloy, which is critical for better in-service mechanical integrity. Thus, the study suggests that the in vitro mechanical integrity of resorbable magnesium-based alloy can be improved by potentiostatic hydroxyapatite coating. © 2011 IOP Publishing Ltd

  17. Investigation of Coating and Corrosion Mitigation Strategies in Magnesium/Mixed Metal Assemblies

    Science.gov (United States)

    Forsmark, Joy H.; McCune, Robert C.; Giles, Terry; Audette, Michelle; Snowden, Jasmine; Stalker, Jeff; Morey, Matthew; O'Keefe, Matt; Castano, Carlos

    The US Automotive Materials Partnership through the Magnesium-Intensive Front End Development Project (MFERD) is currently investigating a number of joining, coating and corrosion mitigation strategies to incorporate magnesium components into the automotive body-in-white with the ultimate goal of decreasing vehicle curb weight, thus improving fuel economy. Because Mg is anodic to all other structural metals, this is a key hurdle to Mg component implementation in vehicles. This paper will discuss the results of a study to examine the effectiveness of different corrosion mitigation strategies in joined plate assemblies and provide some insight into the systems challenges of incorporation of Mg parts into a vehicle. Details of a statistically-designed experiment developed to explore the interaction of several materials of construction (magnesium, steel and aluminum), pretreatment and topcoatings, joining methods and standardized test protocols including SAE J-2334 and ASTM B-117 are discussed. A number of avenues have emerged from this study as potential strategies for corrosion mitigation.

  18. Corrosion electrochemical behaviors of silane coating coated magnesium alloy in NaCl solution containing cerium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F.; Li, Q.; Zhong, X.K.; Gao, H.; Dai, Y.; Chen, F.N. [School of Chemistry and Chemical Engineering, Southwest University Chongqing (China)

    2012-02-15

    Sol-gel coatings cannot provide adequate corrosion protection for metal/alloys in the corrosive environments due to their high crack-forming potential. This paper demonstrates the possibility to employ cerium nitrate as inhibitor to decrease the corrosion development of sol-gel-based silane coating on the magnesium alloy in NaCl solution. Cerium nitrate was added into the NaCl solution where the silane coating coated magnesium alloy was immersed. Scanning electron microscopy (SEM) was used to examine surface morphology of the silane coating coated magnesium alloy immersed in NaCl solutions doped and undoped with cerium nitrate. The corrosion electrochemical behaviors were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. The results showed that the introduction of cerium nitrate into NaCl solution could effectively inhibit the corrosion of the silane coating coated magnesium alloy. Moreover, the influence of concentration of cerium nitrate on the corrosion inhibition and the possible inhibiting mechanism were also discussed in detail. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Simultaneous incorporation of carbonate and fluoride in synthetic apatites: Effect on crystallographic and physico-chemical properties.

    Science.gov (United States)

    Yao, Fang; LeGeros, John P; LeGeros, Racquel Z

    2009-07-01

    The mineral in bone is an impure hydroxyapatite, with carbonate as the chief minor substituent. Fluoride has been shown to stimulate osteoblastic activity and inhibit osteoclastic resorption in vitro. CO(3)- and F-substituted apatite (CFA) has been considered as potential bone graft material for orthopedic and dental applications. The objective of this study was to determine the effects of simultaneously incorporated CO(3) and F on the crystallographic physico-chemical properties of apatite. The results showed that increasing CO(3) and Na content in apatites with relatively constant F concentration caused a decrease in crystallite size and an increase in the extent of calcium release; increasing F content in apatites with relatively constant CO(3) concentration caused an increase in crystallite size and a decrease in the extent of Ca release. These findings suggest that CFAs as bone graft materials of desired solubility can be prepared by manipulating the relative concentrations of CO(3) and F incorporated in the apatite.

  20. Biocorrosion and osteoconductivity of PCL/nHAp composite porous film-based coating of magnesium alloy

    Science.gov (United States)

    Abdal-hay, Abdalla; Amna, Touseef; Lim, Jae Kyoo

    2013-04-01

    The present study was aimed at designing a novel porous hydroxyapatite/poly(ɛ-caprolactone) (nHAp/PCL) hybrid nanocomposite matrix on a magnesium substrate with high and low porosity. The coated samples were prepared using a dip-coating technique in order to enhance the bioactivity and biocompatibility of the implant and to control the degradation rate of magnesium alloys. The mechanical and biocompatible properties of the coated and uncoated samples were investigated and an in vitro test for corrosion was conducted by electrochemical polarization and measurement of weight loss. The corrosion test results demonstrated that both the pristine PCL and nHAp/PCL composites showed good corrosion resistance in SBF. However, during the extended incubation time, the composite coatings exhibited more uniform and superior resistance to corrosion attack than pristine PCL, and were able to survive severe localized corrosion in physiological solution. Furthermore, the bioactivity of the composite film was determined by the rapid formation of uniform CaP nanoparticles on the sample surfaces during immersion in SBF. The mechanical integrity of the composite coatings displayed better performance (˜34% higher) than the uncoated samples. Finally, our results suggest that the nHAp incorporated with novel PCL composite membranes on magnesium substrates may serve as an excellent 3-D platform for cell attachment, proliferation, migration, and growth in bone tissue. This novel as-synthesized nHAp/PCL membrane on magnesium implants could be used as a potential material for orthopedic applications in the future.

  1. A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium.

    Science.gov (United States)

    Zhang, Yufen; Feyerabend, Frank; Tang, Shawei; Hu, Jin; Lu, Xiaopeng; Blawert, Carsten; Lin, Tiegui

    2017-09-01

    Calcium stearate based super-hydrophobic coating was deposited on plasma electrolytic oxidation (PEO) pre-treated magnesium substrate. The pre-treated magnesium and super-hydrophobic coating covered sample were characterized by scanning electron microscopy, X-ray diffraction and electrochemical corrosion measurements. The cytocompatibility and degradation resistance of magnesium, pre-treated magnesium and super-hydrophobic coating were analysed in terms of cell adhesion and osteoblast differentiation. The results indicate that the calcium stearate top coating shows super-hydrophobicity and that the surface is composed of micro/nanostructure. The super-hydrophobic coating covered sample shows higher barrier properties compared with the PEO pre-treated magnesium and bare magnesium. Human osteoblast proliferation, but not differentiation is enhanced by the PEO coating. Contrary, the super-hydrophobic coating reduces proliferation, but enhances differentiation of osteoblast, observable by the formation of hydroxyapatite. The combination of corrosion protection and cell reaction indicates that this system could be interesting for biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Statistical optimization of microencapsulation process for coating of magnesium particles with Viton polymer

    Energy Technology Data Exchange (ETDEWEB)

    Pourmortazavi, Seied Mahdi, E-mail: pourmortazavi@yahoo.com [Faculty of Material and Manufacturing Technologies, Malek Ashtar University of Technology, P.O. Box 16765-3454, Tehran (Iran, Islamic Republic of); Babaee, Saeed; Ashtiani, Fatemeh Shamsi [Faculty of Chemistry & Chemical Engineering, Malek Ashtar University of Technology, Tehran (Iran, Islamic Republic of)

    2015-09-15

    Graphical abstract: - Highlights: • Surface of magnesium particles was modified with Viton via solvent/non-solvent method. • FT-IR, SEM, EDX, Map analysis, and TG/DSC techniques were employed to characterize the coated particles. • Coating process factors were optimized by Taguchi robust design. • The importance of coating conditions on resistance of coated magnesium against oxidation was studied. - Abstract: The surface of magnesium particles was modified by coating with Viton as an energetic polymer using solvent/non-solvent technique. Taguchi robust method was utilized as a statistical experiment design to evaluate the role of coating process parameters. The coated magnesium particles were characterized by various techniques, i.e., Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and thermogravimetry (TG), and differential scanning calorimetry (DSC). The results showed that the coating of magnesium powder with the Viton leads to a higher resistance of metal against oxidation in the presence of air atmosphere. Meanwhile, tuning of the coating process parameters (i.e., percent of Viton, flow rate of non-solvent addition, and type of solvent) influences on the resistance of the metal particles against thermal oxidation. Coating of magnesium particles yields Viton coated particles with higher thermal stability (632 °C); in comparison with the pure magnesium powder, which commences oxidation in the presence of air atmosphere at a lower temperature of 260 °C.

  3. Development of biodegradable magnesium alloy stents with coating

    Directory of Open Access Journals (Sweden)

    Lorenza Petrini

    2014-07-01

    Full Text Available Biodegradable stents are attracting the attention of many researchers in biomedical and materials research fields since they can absolve their specific function for the expected period of time and then gradually disappear. This feature allows avoiding the risk of long-term complications such as restenosis or mechanical instability of the device when the vessel grows in size in pediatric patients. Up to now biodegradable stents made of polymers or magnesium alloys have been proposed. However, both the solutions have limitations. The polymers have low mechanical properties, which lead to devices that cannot withstand the natural contraction of the blood vessel: the restenosis appears just after the implant, and can be ascribed to the compliance of the stent. The magnesium alloys have much higher mechanical properties, but they dissolve too fast in the human body. In this work we present some results of an ongoing study aiming to the development of biodegradable stents made of a magnesium alloy that is coated with a polymer having a high corrosion resistance. The mechanical action on the blood vessel is given by the magnesium stent for the desired period, being the stent protected against fast corrosion by the coating. The coating will dissolve in a longer term, thus delaying the exposition of the magnesium stent to the corrosive environment. We dealt with the problem exploiting the potentialities of a combined approach of experimental and computational methods (both standard and ad-hoc developed for designing magnesium alloy, coating and scaffold geometry from different points of views. Our study required the following steps: i selection of a Mg alloy suitable for stent production, having sufficient strength and elongation capability; ii computational optimization of the stent geometry to minimize stress and strain after stent deployment, improve scaffolding ability and corrosion resistance; iii development of a numerical model for studying stent

  4. Corrosion resistance of zinc-magnesium coated steel

    International Nuclear Information System (INIS)

    Hosking, N.C.; Stroem, M.A.; Shipway, P.H.; Rudd, C.D.

    2007-01-01

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn 5 Cl 2 (OH) 8 . H 2 O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH) 2 ) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH) 2 , which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature

  5. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Jiang, Xiao; Guo, Ruiguang; Jiang, Shuqin

    2015-01-01

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E corr by 157 mV and decrease the i corr by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy

  6. Microstructure and corrosion resistance of Ce–V conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xiao, E-mail: xiaoxiao217@126.com; Guo, Ruiguang; Jiang, Shuqin

    2015-06-30

    Highlights: • Through simple chemical conversion process, a Ce–V conversion coating is prepared on AZ31 magnesium alloy. The coating (∼2 μm thick) has a duplex structure and is composed of Mg, Al, Ce, V and O in the outer layer and Mg, Al, V, F and O in the inner layer. • The Ce–V conversion coating can increase the E{sub corr} by 157 mV and decrease the i{sub corr} by 80 times compared to AZ31 magnesium alloy substrate. Moreover, the performance of the Ce–V conversion coating excels the chromate conversion coating on AZ31 magnesium alloy. • The EIS results of Ce–V conversion coating indicate an increase of 10× in the corrosion resistance and a delay in the corrosion process kinetics compared to uncoated AZ31 magnesium alloy in 3.5 wt.% NaCl solution. • The ball cratering is a simple and effective technique of thickness measurement for chemical conversion coating. - Abstract: A Ce–V conversion coating was developed to improve the corrosion resistance of AZ31 magnesium alloy. Scanning electronic microscope (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectrometer (XPS), grazing incidence X-ray diffraction (GIXRD) and the ball cratering test were adopted to study the morphology, chemical composition, structure and thickness of the coating. The coating has duplex structure with network and its thickness is about 2 μm. The coating contains high contents of Ce and V, which exhibits amorphous structure. Potentiodynamic polarization shows the coating can increase the corrosion potential and reduce the corrosion current density of AZ31 magnesium alloy. Moreover, the electrochemical impedance spectra exhibit the coating significantly improves the corrosion resistance of AZ31 magnesium alloy. Results indicate that the Ce–V conversion coating can provide effective protection to AZ31 magnesium alloy.

  7. Chrome-free Samarium-based Protective Coatings for Magnesium Alloys

    Science.gov (United States)

    Hou, Legan; Cui, Xiufang; Yang, Yuyun; Lin, Lili; Xiao, Qiang; Jin, Guo

    The microstructure of chrome-free samarium-based conversion coating on magnesium alloy was investigated and the corrosion resistance was evaluated as well. The micro-morphology, transverse section, crystal structure and composition of the coating were observed by scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive spectroscopy (EDS) and X- ray photoelectron spectroscopy (XPS), respectively. The corrosion resistance was evaluated by potentiodynamic polarization curve and electrochemical impedance spectroscopy (EIS). The results reveal that the morphology of samarium conversion coating is of crack-mud structure. Tiny cracks distribute in the compact coating deposited by samarium oxides. XRD, EDS and XPS results characterize that the coating is made of amorphous and trivalent-samarium oxides. The potentiodynamic polarization curve, EIS and OCP indicate that the samarium conversion coating can improve the corrosion resistance of magnesium alloys.

  8. Hybrid organic-inorganic coatings including nanocontainers for corrosion protection of magnesium alloy ZK30

    Science.gov (United States)

    Kartsonakis, I. A.; Koumoulos, E. P.; Charitidis, C. A.; Kordas, G.

    2013-08-01

    This study is focused on the fabrication, characterization, and application of corrosion protective coatings to magnesium alloy ZK30. Hybrid organic-inorganic coatings were synthesized using organic-modified silicates together with resins based on bisphenol A diglycidyl ether. Cerium molybdate nanocontainers (ncs) with diameter 100 ± 20 nm were loaded with corrosion inhibitor 2-mercaptobenzothiazole and incorporated into the coatings in order to improve their anticorrosion properties. The coatings were investigated for their anticorrosion and nanomechanical properties. The morphology of the coatings was examined by scanning electron microscopy. The composition was estimated by energy-dispersive X-ray analysis. The mechanical integrity of the coatings was studied through nanoindentation and nanoscratch techniques. Scanning probe microscope imaging of the coatings revealed that the addition of ncs creates surface incongruity; however, the hardness to modulus ratio revealed significant strengthening of the coating with increase of ncs. Studies on their corrosion behavior in 0.5 M sodium chloride solutions at room temperature were made using electrochemical impedance spectroscopy. Artificial defects were formatted on the surface of the films in order for possible self-healing effects to be evaluated. The results showed that the coated magnesium alloys exhibited only capacitive response after exposure to corrosive environment for 16 months. This behavior denotes that the coatings have enhanced barrier properties and act as an insulator. Finally, the scratched coatings revealed a partial recovery due to the increase of charge-transfer resistance as the immersion time elapsed.

  9. Evaluation of Plasma Spray hydroxy Apatite Coatings on Metallic Materials

    International Nuclear Information System (INIS)

    Take, S.; Mitsul, K.; Kasahara, M.; Sawal, R.; Izawa, S.; Nakayama, M.; Itoi, Y.

    2007-01-01

    Biocompatible Hydroxy apatite (HAp) coatings on metallic substrate by plasma spray techniques have been developed. Long-term credibility of plasma spray HAp coatings has been evaluated in physiological saline by electrochemical measurements. It was found that the corrosion resistance of SUS316L based HAp/Ti combined coatings was excellent even after more than 10 weeks long-term immersion. It was shown that postal heat treatment improved both the crystallinity and corrosion resistance of HAp. By lowering cooling rate during heat treatment process, less cracks produced in HAp coating layer, which lead to higher credibility of HAp during immersion in physiological saline. The ICP results showed that the dissolution level of substrate metallic ions was low and HAp coatings produced in this research can be acceptable as biocompatible materials. Also, the concentration of dissolved ions from HAp coatings with postal heat treatment was lower compared to those from samples without postal heat treatment. The adherence of HAp coatings with Ti substrate and other mechanical properties were also assessed by three-point bending test. The poor adhesion of HAp coating to titanium substrate can be improved by introducing a plasma spray titanium intermediate layer

  10. Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL

    Science.gov (United States)

    Matena, Julia; Petersen, Svea; Gieseke, Matthias; Teske, Michael; Beyerbach, Martin; Kampmann, Andreas; Escobar, Hugo Murua; Gellrich, Nils-Claudius; Haferkamp, Heinz; Nolte, Ingo

    2015-01-01

    Degradable implant material for bone remodeling that corresponds to the physiological stability of bone has still not been developed. Promising degradable materials with good mechanical properties are magnesium and magnesium alloys. However, excessive gas production due to corrosion can lower the biocompatibility. In the present study we used the polymer coating polycaprolactone (PCL), intended to lower the corrosion rate of magnesium. Additionally, improvement of implant geometry can increase bone remodeling. Porous structures are known to support vessel ingrowth and thus increase osseointegration. With the selective laser melting (SLM) process, defined open porous structures can be created. Recently, highly reactive magnesium has also been processed by SLM. We performed studies with a flat magnesium layer and with porous magnesium implants coated with polymers. The SLM produced magnesium was compared with the titanium alloy TiAl6V4, as titanium is already established for the SLM-process. For testing the biocompatibility, we used primary murine osteoblasts. Results showed a reduced corrosion rate and good biocompatibility of the SLM produced magnesium with PCL coating. PMID:26068455

  11. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution

    International Nuclear Information System (INIS)

    Hiromoto, Sachiko; Yamamoto, Akiko

    2009-01-01

    Anticorrosion coatings are crucial for practical applications of magnesium alloys, which are used to reduce the weight of vehicles, aircraft, electronics enclosures etc. Hydroxyapatite (HAp) potentially offers high corrosion resistance and no environmental toxicity because its thermodynamic structural stability is high and it is a basic component of bone. However, direct synthesis of HAp on magnesium in aqueous solutions has been a scientific challenge because Mg ions prevent HAp crystallization. A new method of direct synthesis of HAp on magnesium was developed using a Ca chelate compound, which can maintain a sufficiently high concentration of Ca ions on the magnesium surface to overcome prevention of HAp crystallization with Mg ions. Highly crystallized HAp coatings were successfully formed on pure magnesium and AZ series alloys. Corrosion behavior of HAp-coated pure magnesium was examined by cyclic dry and wet tests with 1 g m -2 NaCl on the surface and polarization tests in a 3.5 wt% NaCl solution. A HAp-coated pure magnesium showed no noticeable corrosion pits after the dry and wet test. HAp-coated specimens showed 10 3 -10 4 times lower anodic current density than as-polished specimen in the polarization test. The results demonstrate the remarkable anticorrosion performance of HAp coatings on magnesium for the first time.

  12. Appearance of cell-adhesion factor in osteoblast proliferation and differentiation of apatite coating titanium by blast coating method.

    Science.gov (United States)

    Umeda, Hirotsugu; Mano, Takamitsu; Harada, Koji; Tarannum, Ferdous; Ueyama, Yoshiya

    2017-08-01

    We have already reported that the apatite coating of titanium by the blast coating (BC) method could show a higher rate of bone contact from the early stages in vivo, when compared to the pure titanium (Ti) and the apatite coating of titanium by the flame spraying (FS) method. However, the detailed mechanism by which BC resulted in satisfactory bone contact is still unknown. In the present study, we investigated the importance of various factors including cell adhesion factor in osteoblast proliferation and differentiation that could affect the osteoconductivity of the BC disks. Cell proliferation assay revealed that Saos-2 could grow fastest on BC disks, and that a spectrophotometric method using a LabAssay TM ALP kit showed that ALP activity was increased in cells on BC disks compared to Ti disks and FS disks. In addition, higher expression of E-cadherin and Fibronectin was observed in cells on BC disks than Ti disks and FS disks by relative qPCR as well as Western blotting. These results suggested that the expression of cell-adhesion factors, proliferation and differentiation of osteoblast might be enhanced on BC disks, which might result higher osteoconductivity.

  13. Barium titanate coated with magnesium titanate via fused salt method and its dielectric property

    International Nuclear Information System (INIS)

    Chen Renzheng; Cui Aili; Wang Xiaohui; Li Longtu

    2003-01-01

    Barium titanate fine particles were coated homogeneously with magnesium titanate via the fused salt method. The thickness of the magnesium titanate film is 20 nm, as verified by TEM and XRD. The mechanism of the coating is that: when magnesium chloride is liquated in 800 deg. C, magnesium will replace barium in barium titanate, and form magnesium titanate film on the surface of barium titanate particles. Ceramics sintered from the coated particles show improved high frequency ability. The dielectric constant is about 130 at the frequency from 1 to 800 MHz

  14. A comparative study of zinc, magnesium, strontium-incorporated hydroxyapatite-coated titanium implants for osseointegration of osteopenic rats

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Zhou-Shan [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Zhou, Wan-Shu [Endocrine & Metabolic Diseases Unit, Affiliated Hospital of Guizhou Medical University, Guizhou 550001 (China); He, Xing-Wen [Department of Orthopaedic Surgery, Hangzhou Bay Hospital of Ningbo, 315000 (China); Liu, Wei [Department of Orthopaedic Surgery, Jingmen No. 1 People' s Hospital, Jingmen 44800, Hubei (China); Bai, Bing-Li; Zhou, Qiang; Huang, Zheng-Liang; Tu, Kai-kai; Li, Hang; Sun, Tao [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China); Lv, Yang-Xun [Department of Orthopaedic Surgery, Wenzhou Central Hospital, Wenzhou, Zhejiang 325000 (China); Cui, Wei [Sichuan Provincial Orthopedics Hospital, No. 132 West First Section First Ring Road, Chengdu, Sichuan 610000 (China); Yang, Lei, E-mail: tzs19900327@163.com [Department of Orthopaedic Surgery, Second Affiliated Hospital of Wenzhou Medical University, 109 Xueyuan Xi Road, Wenzhou, Zhejiang 325027 (China)

    2016-05-01

    Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), magnesium (Mg), and strontium (Sr) present a beneficial effect on bone growth, and positively affect bone regeneration. The aim of this study was to confirm the different effects of the fixation strength of Zn, Mg, Sr-substituted hydroxyapatite-coated (Zn-HA-coated, Mg-HA-coated, Sr-HA-coated) titanium implants via electrochemical deposition in the osteoporotic condition. Female Sprague–Dawley rats were used for this study. Twelve weeks after bilateral ovariectomy, all animals were randomly divided into four groups: group HA; group Zn-HA; group Mg-HA and group Sr-HA. Afterwards, all rats from groups HA, Zn-HA, Mg-HA and Sr-HA received implants with hydroxyapatite containing 0%, 10% Zn ions, 10% Mg ions, and 10% Sr ions. Implants were inserted bilaterally in all animals until death at 12 weeks. The bilateral femurs of rats were harvested for evaluation. All treatment groups increased new bone formation around the surface of titanium rods and push-out force; group Sr-HA showed the strongest effects on new bone formation and biomechanical strength. Additionally, there are significant differences in bone formation and push-out force was observed between groups Zn-HA and Mg-HA. This finding suggests that Zn, Mg, Sr-substituted hydroxyapatite coatings can improve implant osseointegration, and the 10% Sr coating exhibited the best properties for implant osseointegration among the tested coatings in osteoporosis rats. - Highlights: • Surface modification techniques have been applied to generate titanium implant surfaces that promote osseointegration for the implants in cementless arthroplasty. • However, its effect is not sufficient for osteoporotic bone. Zinc (Zn), Magnesium(Mg), Strontium (Sr) present a benificial effect on bone

  15. Iodine immobilization in apatites

    International Nuclear Information System (INIS)

    Audubert, F.; Lartigue, J.E.

    2000-01-01

    In the context of a scientific program on long-lived radionuclide conditioning, a matrix for iodine 129 immobilization has been studied. A lead vanado-phosphate apatite was prepared from the melt of lead vanado-phosphate Pb 3 (VO 4 ) 1.6 (PO 4 ) 0.4 and lead iodide PbI 2 in stoichiometric proportions by calcination at 700 deg. C during 3 hours. Natural sintering of this apatite is not possible because the product decomposition occurs at 400 deg. C. Reactive sintering is the solution. The principle depends on the coating of lead iodide with lead vanado-phosphate. Lead vanado-phosphate coating is used as iodo-apatite reactant and as dense covering to confine iodine during synthesis. So the best condition to immobilize iodine during iodo-apatite synthesis is a reactive sintering at 700 deg. C under 25 MPa. We obtained an iodo-apatite surrounded with dense lead vanadate. Leaching behaviour of the matrix synthesized by solid-solid reaction is under progress in order to determine chemical durability, basic mechanisms of the iodo-apatite alteration and kinetic rate law. Iodo-apatite dissolution rates were pH and temperature dependent. We obtained a rate of 2.5 10 -3 g.m -2 .d -1 at 90 deg. C in initially de-ionised water. (authors)

  16. Microstructure, in vitro corrosion and cytotoxicity of Ca-P coatings on ZK60 magnesium alloy prepared by simple chemical conversion and heat treatment.

    Science.gov (United States)

    Li, Kaikai; Wang, Bing; Yan, Biao; Lu, Wei

    2013-09-01

    Magnesium alloys are potential biodegradable materials for biomedical application. But their poor corrosion resistance may result in premature failure of implants. In this study, to solve this problem, Ca-P coatings were prepared on ZK60 magnesium alloy by a simple chemical conversion process and heat treatment. Surface characterization showed that a flake-like Dicalcium phosphate dihydrate (DCPD) (CaHPO₄·2H₂O) coating was formed on ZK60 alloy by the chemical conversion process. DCPD transformed into Dicalcium phosphate anhydrous (DCPa) (CaHPO₄) and Ca₂P₂O₇ after heat treatment. Results of potentiodynamic polarization showed the corrosion potential of ZK60 was increased from -1666 mV to -1566 mV with DCPD coating, while -1515 mV was obtained after heat treatment. The corrosion current density of ZK60 was measured to be reduced from 35 µA/cm² to 3.5 µA/cm² with DCPD coating, while a further reduction to 1 µA/cm² was observed after heat treatment. This indicated that the coatings improved the substrate corrosion resistance significantly, and apparently, the heat-treated coating had a higher corrosion resistance. Immersion test demonstrated that both the coatings could provide protection for the substrate and the heat-treated coating could induce deposition of bone-like apatite. Cytotoxicity evaluation revealed that none of the samples induced toxicity to L-929 cells after 1- and 3-day culture. The cytocompatibility of ZK60 was improved by the coatings, with the following sequence: uncoated ZK60 < DCPD-coated ZK60 < heat-treated coating.

  17. Layer-by-Layer Assembly of a Self-Healing Anticorrosion Coating on Magnesium Alloys.

    Science.gov (United States)

    Fan, Fan; Zhou, Chunyu; Wang, Xu; Szpunar, Jerzy

    2015-12-16

    Fabrication of self-healing anticorrosion coatings has attracted attention as it has the ability to extend the service life and prevent the substrate from corrosive attack. However, a coating system with a rapid self-healing ability and an improved corrosion resistance is rarely reported. In this work, we developed a self-healing anticorrosion coating on a magnesium alloy (AZ31). The coating comprises a cerium-based conversion layer, a graphene oxide layer, and a branched poly(ethylene imine) (PEI)/poly(acrylic acid) (PAA) multilayer. We incorporated the graphene oxide as corrosion inhibitors and used the PEI/PAA multilayers to provide the self-healing ability to the coating systems. X-ray diffraction (XRD) and Raman spectroscopy were used to characterize the composition of the multilayers, and scanning electron microscopy (SEM) was used to analyze the surface morphology. The electrochemical impedance spectroscopy (EIS) results illustrate the improved corrosion resistance of the coating. The proposed coating also has a rapid self-healing ability in the presence of water.

  18. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique.

    Science.gov (United States)

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang

    2015-10-01

    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach

    International Nuclear Information System (INIS)

    Sader, Marcia S.; Martins, Virginia C.A.; Gomez, Santiago; LeGeros, Racquel Z.; Soares, Gloria A.

    2013-01-01

    3D porous scaffolds are relevant biomaterials to bone engineering as they can be used as templates to tissue reconstruction. The aim of the present study was to produce and characterize in vitro 3D magnesium-carbonate apatite/collagen (MCA/col) scaffolds. They were prepared by using biomimetic approach, followed by cross-linking with 0.25% glutaraldehyde solution (GA) and liofilization. Results obtained with Fourier-transform infrared spectroscopy (FT-IR) confirmed the type-B carbonate substitution, while by X-ray diffraction (XRD), a crystallite size of ∼ 10 nm was obtained. Optical and electron microscopy showed that the cylindrical samples exhibited an open-porous morphology, with apatite nanocrystals precipitated on collagen fibrils. The cross-linked 3D scaffolds showed integrity when immersed in culture medium up to 14 days. Also, the immersion of such samples into an acid buffer solution, to mimic the osteoclastic resorption environment, promotes the release of important ions for bone repair, such as calcium, phosphorus and magnesium. Bone cells (SaOs2) adhered, and proliferated on the 3D composite scaffolds, showing that synthesis and the cross-linking processes did not induce cytotoxicity. Highlights: • 3D scaffolds of Mg-carbonate–apatite and anionic-collagen were produced. • The biomimetic approach and the cross-linking with 0.25% GA solution were employed. • The scaffolds showed open-porous structure and apatite crystals on collagen fibrils. • The cross-linked scaffolds exhibited integrity when immersed in culture medium. • SaOs2 cells adhered and proliferated on the cross-linked scaffolds confirming no cytotoxicity

  20. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach

    Energy Technology Data Exchange (ETDEWEB)

    Sader, Marcia S., E-mail: msader@metalmat.ufrj.br [Prog. Engenharia Metalúrgica e Materiais, COPPE/UFRJ, RJ (Brazil); Martins, Virginia C.A. [Depto. de Química e Física Molecular, IQSC/USP, SP (Brazil); Gomez, Santiago [Dept. Anatomía Patológica, Universidad de Cádiz, Cadiz (Spain); LeGeros, Racquel Z. [Department of Biomaterials and Biomimetics, New York University College of Dentistry, NY (United States); Soares, Gloria A. [Prog. Engenharia Metalúrgica e Materiais, COPPE/UFRJ, RJ (Brazil)

    2013-10-15

    3D porous scaffolds are relevant biomaterials to bone engineering as they can be used as templates to tissue reconstruction. The aim of the present study was to produce and characterize in vitro 3D magnesium-carbonate apatite/collagen (MCA/col) scaffolds. They were prepared by using biomimetic approach, followed by cross-linking with 0.25% glutaraldehyde solution (GA) and liofilization. Results obtained with Fourier-transform infrared spectroscopy (FT-IR) confirmed the type-B carbonate substitution, while by X-ray diffraction (XRD), a crystallite size of ∼ 10 nm was obtained. Optical and electron microscopy showed that the cylindrical samples exhibited an open-porous morphology, with apatite nanocrystals precipitated on collagen fibrils. The cross-linked 3D scaffolds showed integrity when immersed in culture medium up to 14 days. Also, the immersion of such samples into an acid buffer solution, to mimic the osteoclastic resorption environment, promotes the release of important ions for bone repair, such as calcium, phosphorus and magnesium. Bone cells (SaOs2) adhered, and proliferated on the 3D composite scaffolds, showing that synthesis and the cross-linking processes did not induce cytotoxicity. Highlights: • 3D scaffolds of Mg-carbonate–apatite and anionic-collagen were produced. • The biomimetic approach and the cross-linking with 0.25% GA solution were employed. • The scaffolds showed open-porous structure and apatite crystals on collagen fibrils. • The cross-linked scaffolds exhibited integrity when immersed in culture medium. • SaOs2 cells adhered and proliferated on the cross-linked scaffolds confirming no cytotoxicity.

  1. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Hiromoto, Sachiko [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)], E-mail: hiromoto.sachiko@nims.go.jp; Yamamoto, Akiko [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2009-11-30

    Anticorrosion coatings are crucial for practical applications of magnesium alloys, which are used to reduce the weight of vehicles, aircraft, electronics enclosures etc. Hydroxyapatite (HAp) potentially offers high corrosion resistance and no environmental toxicity because its thermodynamic structural stability is high and it is a basic component of bone. However, direct synthesis of HAp on magnesium in aqueous solutions has been a scientific challenge because Mg ions prevent HAp crystallization. A new method of direct synthesis of HAp on magnesium was developed using a Ca chelate compound, which can maintain a sufficiently high concentration of Ca ions on the magnesium surface to overcome prevention of HAp crystallization with Mg ions. Highly crystallized HAp coatings were successfully formed on pure magnesium and AZ series alloys. Corrosion behavior of HAp-coated pure magnesium was examined by cyclic dry and wet tests with 1 g m{sup -2} NaCl on the surface and polarization tests in a 3.5 wt% NaCl solution. A HAp-coated pure magnesium showed no noticeable corrosion pits after the dry and wet test. HAp-coated specimens showed 10{sup 3}-10{sup 4} times lower anodic current density than as-polished specimen in the polarization test. The results demonstrate the remarkable anticorrosion performance of HAp coatings on magnesium for the first time.

  2. Effective and Environmentally Friendly Nickel Coating on the Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Ivana Škugor Rončević

    2016-12-01

    Full Text Available The low density and good mechanical properties make magnesium and its alloys attractive construction materials in the electronics, automotive, and aerospace industry, together with application in medicine due to their biocompatibility. Magnesium AZ91D alloy is an alloy with a high content of aluminum, whose mechanical properties overshadow the low corrosion resistance caused by the composition of the alloy and the existence of two phases: α magnesium matrix and β magnesium aluminum intermetallic compound. To improve the corrosion resistance, it is necessary to find an effective protection method for the alloy surface. Knowing and predicting electrochemical processes is an essential for the design and optimization of protective coatings on magnesium and its alloys. In this work, the formations of nickel protective coatings on the magnesium AZ91D alloy surface by electrodeposition and chemical deposition, are presented. For this purpose, environmentally friendly electrolytes were used. The corrosion resistance of the protected alloy was determined in chloride medium using appropriate electrochemical techniques. Characterization of the surface was performed with highly sophisticated surface-analytical methods.

  3. Preparation, characterization and wear behavior of carbon coated magnesium alloy with electroless plating nickel interlayer

    International Nuclear Information System (INIS)

    Mao, Yan; Li, Zhuguo; Feng, Kai; Guo, Xingwu; Zhou, Zhifeng; Dong, Jie; Wu, Yixiong

    2015-01-01

    Highlights: • The carbon film with nickel interlayer (Ni + C coating) is deposited on GW83. • In Ni + C composite coating the carbon coating has good adhesion with the nickel interlayer. • The wear track of Ni + C coating is narrower compared to the bare one. • The wear resistance of GW83 is greatly improved by the Ni + C coating. - Abstract: Poor wear resistance of rare earth magnesium alloys has prevented them from wider application. In this study, composite coating (PVD carbon coating deposited on electroless plating nickel interlayer) is prepared to protect GW83 magnesium alloys against wear. The Ni + C composite coating has a dense microstructure, improved adhesion strength and hardness due to the effective support of Ni interlayer. The wear test result shows that the Ni + C composite coating can greatly prolong the wear life of the magnesium alloy. The wear track of the Ni + C coated magnesium alloy is obviously narrower and shows less abrasive particles as compared with the bare one. Abrasive wear is the wear mechanism of the coatings at the room temperature. In conclusion, the wear resistance of the GW83 magnesium alloy can be greatly improved by the Ni + C composite coating

  4. EFFECT OF ALUMINIUM AND MAGNESIUM ON THE CORROSION RESISTANCE OF ZINC COATINGS

    Directory of Open Access Journals (Sweden)

    Leszek Klimek

    2017-06-01

    Full Text Available This article presents the research on corrosion resistance of Zn-Al-Mg coatings with varying aluminium and magnesium content. Aluminium and magnesium were added directly to the zinc bath at 10:1 rate. There was found more than sixfold increase in corrosion resistance of zinc coatings with aluminium content at the level of 4% of weight and magnesium content at the level of 0.4% of weight. In contrast to the amounts applied in the literature, such content of these alloy additives in the zinc bath limits to a significant extent the amount of intermetallic phases in zinc coatings obtained from such baths. This, in consequence, results in high resistance to corrosion with simultaneous retention of high plasticity of these coatings.

  5. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P. Nandha; Mishra, Sandeep K.; Kannan, S., E-mail: para_kanna@yahoo.com

    2015-11-15

    A series of magnesium doped non-stoichiometric calcium deficient apatites were synthesized through an aqueous precipitation route. The resultant structural changes during heat treatment were investigated by X-ray diffraction, Raman and FT-IR spectroscopy and Rietveld refinement. The results confirmed the formation of biphasic mixtures comprising Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and β-Ca{sub 3}(PO{sub 4}){sub 2} after heat treatment at 1000 °C with the preferential occupancy of Mg{sup 2+} at the crystal lattice of β-Ca{sub 3}(PO{sub 4}){sub 2}. The concentration of Mg{sup 2+} uptake in β-Ca{sub 3}(PO{sub 4}){sub 2} is limited till reaching the stoichiometric ratio of (Ca+Mg)/P=1.67 and beyond this stoichiometric value [(Ca+Mg)/P>1.67], Mg{sup 2+} precipitates as Mg(OH){sub 2} and thereafter gets converted to MgO during heat treatment. Any kind of Mg{sup 2+} uptake in the crystal lattice of Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} is discarded from the investigation. - Highlights: • Aqueous co-precipitation of calcium deficient apatites with excess magnesium (Mg{sup 2+}) additions. • Heat treatments beyond 800 °C results in the formation of biphasic apatite mixtures. • Mg{sup 2+} gets accommodated at the β-Ca{sub 3}(PO{sub 4}){sub 2} lattice of biphasic mixtures. • Mg{sup 2+} additions exceeding stoichiometric value (Ca/P>1.67) results in its formation as MgO. • Mg{sup 2+} occupancy at β-Ca{sub 3}(PO{sub 4}){sub 2} lattice delays its allotropic conversion α-Ca{sub 3}(PO{sub 4}){sub 2} till 1350 °C.

  6. Hard coatings on magnesium alloys by sputter deposition using a pulsed d.c. bias voltage

    Energy Technology Data Exchange (ETDEWEB)

    Reiners, G. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany); Griepentrog, M. [Bundesanstalt fuer Materialforschung und -pruefung, Berlin (Germany)

    1995-12-01

    An increasing use of magnesium-based light-metal alloys for various industrial applications was predicted in different technological studies. Companies in different branches have developed machine parts made of magnesium alloys (e.g. cars, car engines, sewing and knitting machines). Hence, this work was started to evaluate the ability of hard coatings obtained by physical vapour deposition (PVD) in combination with coatings obtained by electrochemical deposition to protect magnesium alloys against wear and corrosion. TiN hard coatings were deposited onto magnesium alloys by unbalanced magnetron sputter deposition. A bipolar pulsed d.c. bias voltage was used to limit substrate temperatures to 180 C during deposition without considerable loss of microhardness and adhesion. Adhesion, hardness and load-carrying capacity of TiN coatings deposited directly onto magnesium alloys are compared with the corresponding values of TiN coatings deposited onto substrates which had been coated electroless with an Ni-P alloy interlayer prior to the PVD. (orig.)

  7. A Novel Method for Incorporation of Micron-Sized SiC Particles into Molten Pure Aluminum Utilizing a Co Coating

    Science.gov (United States)

    Mohammadpour, M.; Khosroshahi, R. Azari; Mousavian, R. Taherzadeh; Brabazon, D.

    2015-02-01

    Ceramic particles typically do not have sufficiently high wettability by molten metal for effective bonding during metal matrix composite fabrication. In this study, a novel method has been used to overcome this drawback. Micron-sized SiC particles were coated by a cobalt metallic layer using an electroless deposition method. A layer of cobalt on the SiC particles was produced prior to incorporation in molten pure aluminum in order to improve the injected particle bonding with the matrix. For comparison, magnesium was added to the melt in separate experiments as a wetting agent to assess which method was more effective for particle incorporation. It was found that both of these methods were more effective as regard ceramic particulate incorporation compared with samples produced with as-received SiC particles injected into the pure aluminum matrix. SEM images indicated that cobalt coating of the particles was more effective than magnesium for incorporation of fine SiC particles (below 30 µm), while totally the incorporation percentage of the particles was higher for a sample in which Mg was added as a wetting agent. In addition, microhardness tests revealed that the cobalt coating leads to the fabrication of a harder composite due to increased amount of ceramic incorporation, ceramic-matrix bonding, and possibly also to formation of Al-Co intermetallic phases.

  8. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs

    NARCIS (Netherlands)

    Dekker, Robert J.; de Bruijn, Joost Dick; Stigter, Martin; Barrère, F.; Layrolle, Pierre; van Blitterswijk, Clemens

    2005-01-01

    Poor fixation of bone replacement implants, e.g. the artificial hip, in implantation sites with inferior bone quality and quantity may be overcome by the use of implants coated with a cultured living bone equivalent. In this study, we tested, respectively, amorphous carbonated apatite (CA)- and

  9. Chemical conversion coating for protecting magnesium alloys from corrosion

    Science.gov (United States)

    Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh; Hornish, Peter; Jain, Mohit

    2016-01-05

    A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds as self-healing moieties to defect sites, thus providing active corrosion protection.

  10. Hydroxyapatite-Coated Magnesium-Based Biodegradable Alloy: Cold Spray Deposition and Simulated Body Fluid Studies

    Science.gov (United States)

    Noorakma, Abdullah C. W.; Zuhailawati, Hussain; Aishvarya, V.; Dhindaw, B. K.

    2013-10-01

    A simple modified cold spray process in which the substrate of AZ51 alloys were preheated to 400 °C and sprayed with hydroxyapatite (HAP) using high pressure cold air nozzle spray was designed to get biocompatible coatings of the order of 20-30 μm thickness. The coatings had an average modulus of 9 GPa. The biodegradation behavior of HAP-coated samples was tested by studying with simulated body fluid (SBF). The coating was characterized by FESEM microanalysis. ICPOES analysis was carried out for the SBF solution to know the change in ion concentrations. Control samples showed no aluminum corrosion but heavy Mg corrosion. On the HAP-coated alloy samples, HAP coatings started dissolving after 1 day but showed signs of regeneration after 10 days of holding. All through the testing period while the HAP coating got eroded, the surface of the sample got deposited with different apatite-like compounds and the phase changed with course from DCPD to β-TCP and β-TCMP. The HAP-coated samples clearly improved the biodegradability of Mg alloy, attributed to the dissolution and re-precipitation of apatite showed by the coatings as compared to the control samples.

  11. Characterization and mechanical properties of coatings on magnesium by micro arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Usta, Metin

    2012-01-01

    Highlights: ► The commercial pure magnesium was coated by MAO in sodium silicate and sodium phosphate. ► Coatings produced in the phosphate electrolyte are thicker than ones in the silicate electrolyte. ► Coatings in the silicate electrolyte are harder than ones in the phosphate electrolyte. ► Adhesion strength of coatings increases with increasing coating thickness. ► The wear resistance of the coated commercial pure magnesium is improved. - Abstracts: The commercial pure magnesium was coated by micro arc oxidation method in different aqueous solution, containing sodium silicate and sodium phosphate. Micro arc oxidation process was carried out at 0.060 A/cm 2 , 0.085 A/cm 2 and 0.140 A/cm 2 current densities for 30 min. The thickness, phase composition, morphology, hardness, adhesion strength and wear resistance of coatings were analyzed by eddy current, X-ray diffraction (XRD), scanning electron microscope (SEM), micro hardness tester, scratch tester and ball-on disk tribometer, respectively. The average thicknesses of the micro arc oxidized coatings ranged from 27 to 48 μm for sodium silicate solution and from 45 to 75 μm for sodium phosphate solution. The dominant phases formed on the pure magnesium were found to be a mixture of spinel Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. The average hardnesses of the micro arc oxidized coatings were between 260 HV and 470 HV for sodium silicate solution and between 175 HV and 260 HV for sodium phosphate solution. Adhesion strengths and wear resistances of coatings produced in sodium silicate solution were higher than those of the ones in sodium phosphate solution due to high hardness of coatings produced in sodium silicate solution.

  12. Antibacterial property of fabrics coated by magnesium-based brucites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ying; Sha, Lin; Zhao, Jiao; Li, Qian; Zhu, Yimin, E-mail: ntp@dlmu.edu.cn; Wang, Ninghui

    2017-04-01

    Highlights: • Magnesium-based antibacterial agents composited by brucites with different particle sizes were proposed for the first time. • The coating process for making antibacterial fabrics was easy to operate and apply in industrial application. • The materials used in the antibacterial fabrics were environmental-friendly and cost-effective. • Reduction percentage of as-prepared antibacterial fabrics against E. coli and S. aureus reached to 96.6%, 100% respectively. • The antibacterial fabrics attained excellent washing durability. - Abstract: A kind of environmental-friendly magnesium-based antibacterial agent was reported for the first time, which was composited by brucites with different particle sizes. The antibacterial fabrics were produced by coating the magnesium-based antibacterial agents on the 260T polyester pongee fabrics with waterborne polyurethane. The coating process was simple, low-cost, and harmless to human health and environment. Characteristics of the antibacterial agents and fabrics were studied by particulate size distribution analyzer (PSDA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The results demonstrated that the coating layer was covered tightly on the fabrics and compositing of different particles by a certain proportion made full filling of the coating layer. Meanwhile, compositing did not change the structure of brucites. The antibacterial fabrics presented strong antibacterial properties against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), with the reduction percentage of 96.6% and 100%, respectively, and the antibacterial fabrics attained excellent washing durability.

  13. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianwei [Louisiana State Univ., Baton Rouge, LA (United States); Lian, Jie [Rensselaer Polytechnic Inst., Troy, NY (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States)

    2016-01-04

    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations; and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.

  14. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    Science.gov (United States)

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs

  15. Incorporation of iodine into calcium phosphates with apatitic structure

    International Nuclear Information System (INIS)

    Coulon, Antoine

    2014-01-01

    In order to avoid the release of 129 I (long-lived intermediate-level waste) in the environment, we describe a novel material incorporating iodine under the form of iodate in a calcium phosphate based hydroxyapatite. This material is prepared by two synthetic processes: a wet precipitation route followed by a spark plasma sintering and a cementitious route. A high iodine content (with a maximum incorporation rate of 10 wt.%) is reached for both processes, by incorporation of the iodate in the apatitic structure. A monolith with relative density of 88.6% was obtained after shaping of the precipitated powders by spark plasma sintering. This material reveals satisfactory leaching properties, with an initial leaching rate in pure water at 50 C of 10 -2 g.m -2 .j -1 , and a residual leaching rate at 50 C of 10 -5 g.m -2 .j -1 in underground water of potential geological repositories. All in all, this material is a potential candidate for the conditioning of radioactive iodine. (author) [fr

  16. Complex anticorrosion coating for ZK30 magnesium alloy

    International Nuclear Information System (INIS)

    Lamaka, S.V.; Knoernschild, G.; Snihirova, D.V.; Taryba, M.G.; Zheludkevich, M.L.; Ferreira, M.G.S.

    2009-01-01

    This work aims at developing a new complex anticorrosion protection system for ZK30 magnesium alloy. This protective coating is based on an anodic oxide layer loaded with corrosion inhibitors in its pores, which is then sealed with a sol-gel hybrid polymer. The porous oxide layer is produced by spark anodizing. The sol-gel film shows good adhesion to the oxide layer as it penetrates through the pores of the anodized layer forming an additional transient oxide-sol-gel interlayer. The thickness of this complex protective coating is about 3.7-7.0 μm. A blank oxide-sol-gel coating system or one doped with Ce 3+ ions proved to be effective corrosion protection for the magnesium alloy preventing corrosion attack after exposure for a relatively long duration in an aggressive NaCl solution. The structure and the thickness of the anodized layer and the sol-gel film were characterized by scanning electron microscopy (SEM). The corrosion behaviour of the ZK30 substrates pre-treated with the complex coating was tested by electrochemical impedance spectroscopy (EIS), scanning vibrating electrode technique (SVET), and scanning ion-selective electrode techniques (SIET).

  17. Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-10-15

    Magnesium (Mg) alloys have been introduced as new generation of biodegradable orthopedic materials in recent years since it has been proved that Mg is one of the main minerals required for osseous tissue revival. The main goal of the present study was to establish a desired harmony between the necessities of orthopedic patient body to Mg{sup 2+} ions and degradation rate of the Mg based implants as a new class of biodegradable/bioresorbable materials. This prospect was followed by providing a sol–gel derived nanostructured hydroxyapatite (n-HAp) coating on AZ91 alloy using dip coating technique. Phase structural analysis, morphology study, microstructure characterization, and functional group identification were performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The prepared samples were immersed in simulated body fluid in order to study the formation of apatite-like precipitations, barricade properties of the n-HAp coating, and to estimate the dosage of released Mg{sup 2+} ions within a specified and limited time of implantation. Electrochemical polarization tests were carried out to evaluate and compare the corrosion behavior of the n-HAp coated and uncoated samples. The changes of the in vitro pH values were also evaluated. Results posed the noticeable capability of n-HAp coating on stabilizing alkalization behavior and improving the corrosion resistance of AZ91 alloy. It was concluded that n-HAp coated AZ91 alloy could be a good candidate as a type of biodegradable implant material for biomedical applications. - Highlights: • Nanostructured hydroxyapatite coatings were applied on Mg based alloy. • The whole corrosion process of Mg based alloy was controlled in body fluid. • This coating was able to act as a barrier against further release of Mg{sup 2+} ions. • The coating improved the stabilization of Mg alkalization behavior.

  18. Controlling the degradation rate of AZ91 magnesium alloy via sol–gel derived nanostructured hydroxyapatite coating

    International Nuclear Information System (INIS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-01-01

    Magnesium (Mg) alloys have been introduced as new generation of biodegradable orthopedic materials in recent years since it has been proved that Mg is one of the main minerals required for osseous tissue revival. The main goal of the present study was to establish a desired harmony between the necessities of orthopedic patient body to Mg 2+ ions and degradation rate of the Mg based implants as a new class of biodegradable/bioresorbable materials. This prospect was followed by providing a sol–gel derived nanostructured hydroxyapatite (n-HAp) coating on AZ91 alloy using dip coating technique. Phase structural analysis, morphology study, microstructure characterization, and functional group identification were performed using X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) techniques. The prepared samples were immersed in simulated body fluid in order to study the formation of apatite-like precipitations, barricade properties of the n-HAp coating, and to estimate the dosage of released Mg 2+ ions within a specified and limited time of implantation. Electrochemical polarization tests were carried out to evaluate and compare the corrosion behavior of the n-HAp coated and uncoated samples. The changes of the in vitro pH values were also evaluated. Results posed the noticeable capability of n-HAp coating on stabilizing alkalization behavior and improving the corrosion resistance of AZ91 alloy. It was concluded that n-HAp coated AZ91 alloy could be a good candidate as a type of biodegradable implant material for biomedical applications. - Highlights: • Nanostructured hydroxyapatite coatings were applied on Mg based alloy. • The whole corrosion process of Mg based alloy was controlled in body fluid. • This coating was able to act as a barrier against further release of Mg 2+ ions. • The coating improved the stabilization of Mg alkalization behavior

  19. Improving the Corrosion Resistance of Biodegradable Magnesium Alloys by Diffusion Coating Process

    Science.gov (United States)

    Levy, Galit Katarivas; Aghion, Eli

    Magnesium alloys suffer from accelerated corrosion in physiological environment and hence their use as a structural material for biodegradable implants is limited. The present study focuses on a diffusion coating treatment that amplifies the beneficial effect of Neodymium on the corrosion resistance of magnesium alloys. The diffusion coating layer was obtained by applying 1 µm Nd coating on EW10X04 magnesium alloy using Electron-gun evaporator and PVD process. The coated alloy was heat treated at 350°C for 3 hours in a protective atmosphere of N2+0.2%SF6. The micro structure characteristics were evaluated by SEM, XRD, and XPS; the corrosion resistance was examined by potentiodynamic polarization and EIS analysis. The corrosion resistance of the diffusion coated alloy was significantly improved compared to the uncoated material. This was related to: (i) formation of Nd2O3 in the outer scale, (ii) integration of Nd in the MgO oxide layer, and (iii) formation of secondary phase Mg41Nd5 along the grain boundaries of α-Mg.

  20. Conversion Coatings Produced on AZ61 Magnesium Alloy by Low-Voltage Process

    Directory of Open Access Journals (Sweden)

    Nowak M.

    2016-03-01

    Full Text Available The resultes of anodic oxide conversion coatings on wrought AZ61 magnesium alloy production are describe. The studies were conducted in a solution containing: KOH (80 g/l and KF (300 g/l using anodic current densities of 3, 5 and 10 A/dm2 and different process durations. The obtained coatings were examined under a microscope and corrosion tests were performed by electrochemical method. Based on these results, it was found that the low-voltage process produces coatings conferring improved corrosion resistance to the tested magnesium alloy.

  1. Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO2 coating with magnesium impregnation

    International Nuclear Information System (INIS)

    Cecchinato, Francesca; Karlsson, Johan; Ferroni, Letizia; Gardin, Chiara; Galli, Silvia; Wennerberg, Ann; Zavan, Barbara; Andersson, Martin; Jimbo, Ryo

    2015-01-01

    The aim of this study was to evaluate the osteogenic response of human adipose-derived stromal cells (ADScs) to mesoporous titania (TiO 2 ) coatings produced with evaporation-induced self-assembly method (EISA) and loaded with magnesium. Our emphasis with the magnesium release functionality was to modulate progenitor cell osteogenic differentiation under standard culture conditions. Osteogenic properties of the coatings were assessed for stromal cells by means of scanning electron microscopy (SEM) imaging, colorimetric mitochondrial viability assay (MTT), colorimetric alkaline phosphates activity (ALP) assay and real time RT-polymerase chain reaction (PCR). Using atomic force microscopy (AFM) it was shown that the surface expansion area (S dr ) was strongly enhanced by the presence of magnesium. From MTT results it was shown that ADSc viability was significantly increased on mesoporous surfaces compared to the non-porous one at a longer cell culture time. However, no differences were observed between the magnesium impregnated and non-impregnated surfaces. The alkaline phosphatase activity confirmed that ADSc started to differentiate into the osteogenic phenotype after 2 weeks of culturing. The gene expression profile at 2 weeks of cell growth showed that such coatings were capable to incorporate specific osteogenic markers inside their interconnected nano-pores and, at 3 weeks, ADSc differentiated into osteoblasts. Interestingly, magnesium significantly promoted the osteopontin gene expression, which is an essential gene for the early biomaterial–cell osteogenic interaction. - Highlights: • The magnesium loading presents a transitory effect on mesoporous TiO 2 surface topography • The mesoporous structure promotes cellular attachment and spreading • The mesoporous structure activates osteogenesis of mesenchymal stem cells in absence of osteogenic promoters • The physical adsorbed magnesium is suggested to be involved in the expression of osteopontin

  2. Silica-Based Sol-Gel Coating on Magnesium Alloy with Green Inhibitors

    Directory of Open Access Journals (Sweden)

    Vinod Upadhyay

    2017-06-01

    Full Text Available In this work, the performances of several natural organic inhibitors were investigated in a sol-gel system (applied on the magnesium alloy Mg AZ31B substrate. The inhibitors were quinaldic acid (QDA, betaine (BET, dopamine hydrochloride (DOP, and diazolidinyl urea (DZU. Thin, uniform, and defect-free sol-gel coatings were prepared with and without organic inhibitors, and applied on the Mg AZ31B substrate. SEM and EDX were performed to analyze the coating surface properties, the adhesion to the substrate, and the thickness. Electrochemical measurements, including electrochemical impedance spectroscopy (EIS and anodic potentiodynamic polarization scan (PDS, were performed on the coated samples to characterize the coatings’ protective properties. Also, hydrogen evolution measurement—an easy method to measure magnesium corrosion—was performed in order to characterize the efficiency of coating protection on the magnesium substrate. Moreover, scanning vibrating electrode technique (SVET measurements were performed to examine the efficiency of the coatings loaded with inhibitors in preventing and containing corrosion events in defect areas. From the testing results it was observed that the formulated sol-gel coatings provided a good barrier to the substrate, affording some protection even without the presence of inhibitors. Finally, when the inhibitors’ performances were compared, the QDA-doped sol-gel was able to contain the corrosion event at the defect.

  3. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yanfeng Ge

    2014-12-01

    Full Text Available The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section morphologies showed that the outer organic coating was filled into the hole on surface of MAO coating, and it acted as a shelter against corrosive products. The copper-accelerated acetic acid salt spray Test, abrasion resistance test, stone impact resistance test, thermal shock resistance test and adhesion test were used to evaluate the protective characterization by the third testing organization which approved by GM. The test results showed the composite coatings meet all the requirements. The MCC coating on Mg presents excellent properties, and it is a promising surface treatment technology on magnesium alloys for production vehicles.

  4. Manufacture of nanosized apatite coatings on titanium with different surface treatments using a supersaturated calcification solution

    Directory of Open Access Journals (Sweden)

    Adrian Paz Ramos

    Full Text Available The biomimetic method is used for the deposition of calcium phosphate coatings (Ca - P on the surface of different biomaterials. However, the application of this method requires long exposure times in order to obtain a suitable layer thickness for its use in medical devices. In this paper, we present a fast approach to obtain apatite coatings on titanium, using a combination of supersaturated calcification solution (SCS with chemical modification of the titanium surface. Also, it was evaluated the effect of four different surface treatments on the apatite deposition rate. Commercially pure titanium plates were activated by chemical or thermochemical treatments. Then, the activated samples were immersed in a solution with high content of calcium and phosphate ions at 37 ºC for 24 h, mimicking the physiological conditions. The coatings were studied by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX. The use of SCS solutions allowed the formation of crystalline hydroxyapatite coatings within a period of 24 h with a thickness between 1 and 5.3 µm. Besides, precipitates of hydroxyapatite nanoparticles with a globular configuration, forming aggregates with submicrometer size, were found in SCS solutions.

  5. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seyfoori, A., E-mail: klm.1985@yahoo.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); National Cell Bank, Pasteur Institute of Iran, 13164 Tehran (Iran, Islamic Republic of); Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); Aliofkhazraei, M. [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, 14115-143 Tehran (Iran, Islamic Republic of)

    2013-10-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained.

  6. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    International Nuclear Information System (INIS)

    Seyfoori, A.; Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A.; Aliofkhazraei, M.

    2013-01-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained

  7. Bio-Corrosion Behavior of Ceramic Coatings Containing Hydroxyapatite on Mg-Zn-Ca Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Hong-Yan Ding

    2018-04-01

    Full Text Available Ceramic coatings containing hydroxyapatite (HA were fabricated on a biodegradable Mg66Zn29Ca5 magnesium alloy through micro-arc oxidation by adding HA particles into the electrolytes. The phase composition and surface morphology of the coatings were characterized by X-ray diffraction and scanning electron microscopy analyses, respectively. Electrochemical experiments and immersion tests were performed in Hank’s solution at 37 °C to measure the corrosion resistance of the coatings. Blood compatibility was evaluated by in vitro blood platelet adhesion tests and static water contact angle measurement. The results show that the typical ceramic coatings with a porous structure were prepared on the magnesium alloy surface with the main phases of MgO and MgSiO3 and a small amount of Mg3(PO42 and HA. The optimal surface morphology appeared at HA concentration of 0.4 g/L. The electrochemical experiments and immersion tests reveal a significant improvement in the corrosion resistance of the ceramic coatings containing HA compared with the coatings without HA or bare Mg66Zn29Ca5 magnesium alloy. The static water contact angle of the HA-containing ceramic coatings is 18.7°, which is lower than that of the coatings without HA (40.1°. The in vitro blood platelet adhesion tests indicate that the HA-containing ceramic coatings possess improved blood compatibility compared with the coatings without HA. Utilizing HA-containing ceramic coatings may be an effective way to improve the surface biocompatibility and corrosion resistance of magnesium alloys.

  8. Corrosion behaviors in physiological solution of cerium conversion coatings on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Cui Xiufang; Yang Yuyun; Liu Erbao; Jin Guo; Zhong Jinggao; Li Qingfen

    2011-01-01

    In this paper, a non-toxic Ce-based conversion coating was obtained on the surface of bio-medical AZ31 magnesium alloys. The micro-morphology of the coating prepared with optimal technical parameters and immersed in physiological solution (Hank's solution) in different time was observed by scanning electron microscopy (SEM), composition of the cerium conversion coating and corrosion products in Hank's solution were characterized by X-ray photoelectron spectroscopy (XPS) and energy dispersive spectroscopy (EDS), respectively. In addition, the corrosion property in Hank's solution was studied by electrochemical experiment and immersion test. The results show that the dense Ce-based conversion coating is obtained on the surface of AZ31 magnesium alloys in optimal technical parameters and the conversion coating consists of a mass of trivalent and tetravalent cerium oxides. The cerium conversion coating can provide obvious protection of magnesium alloys and can effectively reduce the degradation speed in Hank's solution. Also the degradation products have little influence on human body.

  9. Tribological Behaviour of the Ceramic Coating Formed on Magnesium Alloy

    International Nuclear Information System (INIS)

    Chen Fei; Zhou Hai; Chen Qiang; Ge Yuanjing; Lv Fanxiu

    2007-01-01

    Micro-arc oxidation is a recently developed surface treatment technology under anodic oxidation. Through micro-arc oxidation, a ceramic coating is directly formed on the surface of magnesium alloy, by which its surface property is significantly improved. In this paper, a dense ceramic oxide coating was prepared on an AZ31 magnesium alloy by micro-arc oxidation in a NaOH-Na 2 SiO 3 -NaB 4 O 7 -(NaPO 3 ) 6 electrolytic solution. Micro-structure, surface morphology and phase composition were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). The tribological behavior of the micro-arc oxidation ceramic coating under dry sliding against GCr15 steel was evaluated on a ball-on-disc test rig. The results showed that the AZ31 alloy was characterized by adhesion wear and scuffing under dry sliding against the steel, while the surface micro-arc oxidation ceramic coating experienced much abated adhesion wear and scuffing under the same testing conditions. The micro-arc oxidation ceramic coating showed good friction-reducing and fair antiwear ability in dry sliding against the steel

  10. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Brunelli, Katya; Dabala, Manuele; Calliari, Irene; Magrini, Maurizio

    2005-01-01

    The corrosion protection afforded by a cerium conversion coating, formed by immersion in a solution containing rare earth salt and hydrogen peroxide, on pure magnesium and two magnesium alloys, AZ91 and AM50, has been studied. The effect of HCl pre-treatments on the morphology and on the corrosion resistance of the cerium conversion layer was investigated. A thicker and more homogeneous distribution of the conversion coating was obtained when the sample surface was pre-treated with acid. Higher amounts of cerium on the surface of the pre-treated samples were detected. The cerium conversion coating increased the corrosion resistance of the alloys because it ennobled the corrosion potential and decreased both the anodic and cathodic current. The acid pre-treatment further increased the corrosion resistance of the coated alloys. After five days of immersion in chloride environment the untreated samples showed localized corrosion while the chemical conversion coated samples appeared unaffected

  11. An ab-initio study of the energetics and geometry of sulfide, sulfite and sulfate incorporation into apatite: The thermodynamic basis for using this system as an oxybarometer

    Science.gov (United States)

    Kim, Y.; Konecke, B.; Fiege, A.; Simon, A. C.; Becker, U.

    2017-12-01

    We use ab-initio calculations to investigate the energetics and geometry of incorporation of S with its oxidation states S6+, S4+, and S2- into the apatite end-members fluor-, chlor-, and hydroxylapatite, [Ca10(PO4)6(F,Cl,OH)2]. The reaction energy of the balanced equation indicates the stability of the modeled S-incorporated apatite relative to the host apatite, the source, and sink phases. One possible coupled substitution mechanism involves the replacement of La3+ + PO43- ↔ Ca2+ + SO42-. Our results show that the incorporation of SO42- into La- and Na-bearing apatite, Ca8NaLa(PO4)6(F,Cl,OH)2, is energetically favored over the incorporation into La- and Si-bearing apatite, Ca9La(PO4)5(SiO4)(F,Cl,OH)2. Co-incorporation of SO42- and SO32- is energetically favored when the lone pair electrons of SO32- face towards the anion column site, compared to facing away from it. Full or partial incorporation of S2- is favored on the column anion site in the form of [Ca10(PO4)6S] and [Ca20(PO4)12SX2)], where X = F, Cl, or OH. Upon full incorporation (i.e., replacing all column ions by sulfide ions), S2- is positioned in the anion column at z = 0.5 (half way between the mirror planes at z = 1/4 and z = 3/4) in the energy-optimized structure. The calculated energies for partial incorporation of S2- demonstrate that in an energy-optimized structure, S2- is displaced from the mirror plane at z = 1/4 or 3/4, by 1.0 to 1.6 Å, depending on the surrounding species (F-, Cl- or OH-); however, the probability for S2- to be incorporated into the apatite structure is highest for chlorapatite end-members. Our results describe energetically feasible incorporation mechanisms for all three oxidations states of S (S6+, S4+, S2-) in apatite, along with structural distortion and concurring electronic structure changes. These observations are consistent with recently published experimental results (Konecke et al. 2017) that demonstrate S6+, S4+ and S2- incorporation into apatite, where the

  12. AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles

    International Nuclear Information System (INIS)

    Arrabal, R.; Matykina, E.; Viejo, F.; Skeldon, P.; Thompson, G.E.; Merino, M.C.

    2008-01-01

    The incorporation of monoclinic zirconia nanoparticles and their subsequent transformation is examined for coatings formed on magnesium by plasma electrolytic oxidation under AC conditions in silicate electrolyte. The coatings are shown to comprise two main layers, with nanoparticles entering the coating at the coating surface and through short-circuit paths to the region of the interface between the inner and outer coating layers. Under local heating of microdischarges, the zirconia reacts with magnesium species to form Mg 2 Zr 5 O 12 in the outer coating layer. Relatively little zirconium is present in the inner coating layer. In contrast, silicon species are present in both coating layers, with reduced amounts in the inner layer

  13. Morphological and chemical evaluation of bone with apatite-coated Al2O3 implants as scaffolds for bone repair

    Directory of Open Access Journals (Sweden)

    A. L. M. Maia F.

    2013-12-01

    Full Text Available The clinical challenge in the reconstruction of bone defects has stimulated several studies in search of alternatives to repair these defects. The ceramics are considered as synthetic scaffolds and are used in dentistry and orthopedics. This study aimed to evaluate by micro energy-dispersive X-ray fluorescence spectrometry (µ-EDXRF and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS, the influence of uncoated and apatite-coated Al2O3 implants on bone regeneration. Twelve samples of Al2O3 implants were prepared and half of this samples (n = 6 were apatite-coated by the modified biomimetic method and then the ceramic material were implanted in the tibia of rabbits. Three experimental groups were tested: Group C - control, surgery procedure without ceramic implant, Group Ce - uncoated Al2O3 implants (n = 6 and Group CeHA - apatite-coated Al2O3 implants (n = 6. The deposition of bone tissue was determined by measuring the weight content of Ca and P through surface mapping of bone-implant interface by µ-EDXRF and through point analysis by EDS. It was observed after thirty days of treatment a greater deposition of Ca and P in the group treated with CeHA (p <0.001 compared to group C. The results suggest that ceramic coated with hydroxyapatite (CeHA can be an auxiliary to bone deposition in tibia defect model in rabbits.

  14. Osteogenic potential of human adipose-derived stromal cells on 3-dimensional mesoporous TiO{sub 2} coating with magnesium impregnation

    Energy Technology Data Exchange (ETDEWEB)

    Cecchinato, Francesca, E-mail: francesca.cecchinato@mah.se [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Karlsson, Johan [Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg (Sweden); Ferroni, Letizia; Gardin, Chiara [Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova (Italy); Galli, Silvia; Wennerberg, Ann [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Zavan, Barbara [Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, Padova (Italy); Andersson, Martin [Department of Chemical and Biological Engineering, Applied Surface Chemistry, Chalmers University of Technology, Gothenburg (Sweden); Jimbo, Ryo [Department of Prosthodontics, Faculty of Odontology, Malmö University, Malmö (Sweden); Department of Applied Prosthodontics, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki (Japan)

    2015-07-01

    The aim of this study was to evaluate the osteogenic response of human adipose-derived stromal cells (ADScs) to mesoporous titania (TiO{sub 2}) coatings produced with evaporation-induced self-assembly method (EISA) and loaded with magnesium. Our emphasis with the magnesium release functionality was to modulate progenitor cell osteogenic differentiation under standard culture conditions. Osteogenic properties of the coatings were assessed for stromal cells by means of scanning electron microscopy (SEM) imaging, colorimetric mitochondrial viability assay (MTT), colorimetric alkaline phosphates activity (ALP) assay and real time RT-polymerase chain reaction (PCR). Using atomic force microscopy (AFM) it was shown that the surface expansion area (S{sub dr}) was strongly enhanced by the presence of magnesium. From MTT results it was shown that ADSc viability was significantly increased on mesoporous surfaces compared to the non-porous one at a longer cell culture time. However, no differences were observed between the magnesium impregnated and non-impregnated surfaces. The alkaline phosphatase activity confirmed that ADSc started to differentiate into the osteogenic phenotype after 2 weeks of culturing. The gene expression profile at 2 weeks of cell growth showed that such coatings were capable to incorporate specific osteogenic markers inside their interconnected nano-pores and, at 3 weeks, ADSc differentiated into osteoblasts. Interestingly, magnesium significantly promoted the osteopontin gene expression, which is an essential gene for the early biomaterial–cell osteogenic interaction. - Highlights: • The magnesium loading presents a transitory effect on mesoporous TiO{sub 2} surface topography • The mesoporous structure promotes cellular attachment and spreading • The mesoporous structure activates osteogenesis of mesenchymal stem cells in absence of osteogenic promoters • The physical adsorbed magnesium is suggested to be involved in the expression of

  15. Fabrication of Coatings on the Surface of Magnesium Alloy by Plasma Electrolytic Oxidation Using ZrO2 and SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. V. Gnedenkov

    2015-01-01

    Full Text Available Results of investigation of the incorporation of zirconia and silica nanoparticles into the coatings formed on magnesium alloy by plasma electrolytic oxidation are presented. Comprehensive research of electrochemical and mechanical properties of obtained coatings was carried out. It was established that the polarization resistance of the samples with a coating containing zirconia nanoparticles is two times higher than that for the sample with base PEO layer. One of the important reasons for improving the protective properties of coatings formed in electrolytes containing nanoparticles consists in enhanced morphological characteristics, in particular, the porosity decrease and increase of thickness and resistivity (up to two orders of magnitude for ZrO2-containing coating of porousless sublayer in comparison with base PEO layer. Incorporation of silica and zirconia particles into the coating increases the mechanical performances. The layers containing nanoparticles have greater hardness and are more wear resistant in comparison with the coatings formed in the base electrolyte.

  16. Preparation and characterization of the micro-arc oxidation composite coatings on magnesium alloys

    OpenAIRE

    Yanfeng Ge; Bailing Jiang; Ming Liu; Congjie Wang; Wenning Shen

    2014-01-01

    The magnesium alloys attract the light-weight manufacture due to its high strength to weight ratio, however the poor corrosion resistance limits the application in automobile industry. The Micro-arc Composite Ceramic (MCC) coatings on AZ91D magnesium alloys were prepared by Micro-arc Oxidation (MAO) and electrophoresis technologies. The microstructure, corrosion resistance, abrasion resistance, stone impact resistance and adhesion of MCC coatings were studied respectively. The cross section m...

  17. Wear and Corrosion Properties of 316L-SiC Composite Coating Deposited by Cold Spray on Magnesium Alloy

    Science.gov (United States)

    Chen, Jie; Ma, Bing; Liu, Guang; Song, Hui; Wu, Jinming; Cui, Lang; Zheng, Ziyun

    2017-08-01

    In order to improve the wear and corrosion resistance of commonly used magnesium alloys, 316L stainless steel coating and 316L-SiC composite coating have been deposited directly on commercial AZ80 magnesium alloy using cold spraying technology (CS). The microstructure, hardness and bonding strength of as-sprayed coatings were studied. Their tribological properties sliding against Si3N4 and GCr15 steel under unlubricated conditions were evaluated by a ball-on-disk tribometer. Corrosion behaviors of coated samples were also evaluated and compared to that of uncoated magnesium alloy substrate in 3.5 wt.% NaCl solution by electrochemical measurements. Scanning electron microscopy was used to characterize the corresponding wear tracks and corroded surfaces to determine wear and corrosion mechanisms. The results showed that the as-sprayed coatings possessed higher microhardness and more excellent wear resistance than magnesium alloy substrate. Meanwhile, 316L and 316L-SiC coating also reduced the corrosion current density of magnesium alloy and the galvanic corrosion of the substrates was not observed after 200-h neutral salt spray exposure, which demonstrated that corrosion resistance of a magnesium alloy substrate could be greatly improved by cold-sprayed stainless steel-based coatings.

  18. In-situ reduced graphene oxide-polyvinyl alcohol composite coatings as protective layers on magnesium substrates

    Directory of Open Access Journals (Sweden)

    Xingkai Zhang

    2017-06-01

    Full Text Available A simple and feasible method was developed to fabricate in-situ reduced graphene oxide-polyvinyl alcohol composite (GO-PVA coatings as protective layers on magnesium substrates. Polyvinyl alcohol was used as an in-situ reductant to transform GO into reduced GO. Contiguous and uniform GO-PVA coatings were prepared on magnesium substrates by dip-coating method, and were further thermally treated at 120 °C under ambient condition to obtain in-situ reduced GO-PVA coatings. Owing to the reducing effect of PVA, thermal treatment at low temperature led to effective in-situ reduction of GO as confirmed by XRD, Raman, FTIR and XPS tests. The corrosion current density of magnesium substrates in 3.5 wt% NaCl solution could be lowered to its 1/25 when using in-situ reduced GO-PVA coatings as protective layers.

  19. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements

    International Nuclear Information System (INIS)

    Gu, Zhengrong; Wang, Sicheng; Weng, Weizong; Chen, Xiao; Cao, Liehu; Wei, Jie; Shin, Jung-Woog; Su, Jiacan

    2017-01-01

    In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH = 7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration. - Highlights: • The mesoporous magnesium silicate and calcium sulfate composite was fabricated. • The composite possessed good water absorption and drug release of vancomycin. • The bioactive composite could enhance the in vivo apatite formation in SBF. • The composite promoted cell adhesion, proliferation and osteogenic differentiation.

  20. Influences of doping mesoporous magnesium silicate on water absorption, drug release, degradability, apatite-mineralization and primary cells responses to calcium sulfate based bone cements

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Zhengrong [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); The Department of Orthopaedics, Jing' an District Centre Hospital of Shanghai (Huashan Hospital Fudan University Jing' An Branch), 200040 (China); Wang, Sicheng [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Department of Orthopaedics, Zhongye Hospital, Shanghai 200941 (China); Weng, Weizong; Chen, Xiao; Cao, Liehu [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Wei, Jie [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Shin, Jung-Woog [Department of Biomedical Engineering, Inje University, Gimhae, 621749 (Korea, Republic of); Su, Jiacan, E-mail: jiacansu@sina.com [Department of Trauma Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433 (China)

    2017-06-01

    In this study, composite cements containing mesoporous magnesium silicate (m-MS) and calcium sulfate (CS) were fabricated. The results revealed that the setting time of the m-MS/CS composite cements (m-MSC) slightly prolonged with the increase of m-MS content while the compressive strength suffered a little loss. The doping of m-MS improved the water absorption, drug release (vancomycin) and degradability of the m-MSC in Tris-HCl solution (pH = 7.4). In addition, addition of m-MS facilitated the apatite-mineralization of m-MSC in simulated body fluid (SBF), indicating good bioactivity. For cell cultural experiments, the results revealed that the m-MSC promoted the cells adhesion and proliferation, and improved the alkaline phosphatase (ALP) activity of MC3T3-E1 cells, revealing good cytocompatibility. It could be suggested that the m-MSC might be promising cements biomaterials for bone tissue regeneration. - Highlights: • The mesoporous magnesium silicate and calcium sulfate composite was fabricated. • The composite possessed good water absorption and drug release of vancomycin. • The bioactive composite could enhance the in vivo apatite formation in SBF. • The composite promoted cell adhesion, proliferation and osteogenic differentiation.

  1. Al₂O₃ Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB) Technique.

    Science.gov (United States)

    Baiocco, Gabriele; Rubino, Gianluca; Tagliaferri, Vincenzo; Ucciardello, Nadia

    2018-01-09

    Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less), and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al₂O₃ film on a magnesium alloy realized by the fluidized bed (FB) technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al₂O₃ coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  2. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects.

    Science.gov (United States)

    Roland, Laura; Grau, Michael; Matena, Julia; Teske, Michael; Gieseke, Matthias; Kampmann, Andreas; Beyerbach, Martin; Murua Escobar, Hugo; Haferkamp, Heinz; Gellrich, Nils-Claudius; Nolte, Ingo

    2015-12-22

    For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL) and poly-(3-hydroxybutyrate)/poly-(4-hydroxybutyrate) (P(3HB)/P(4HB)). As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB). Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI) with Green fluorescent protein (GFP)-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF) and High Mobility Group Box 1 (HMGB1) were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  3. Laser cladding of Zr-based coating on AZ91D magnesium alloy for ...

    Indian Academy of Sciences (India)

    based coating made of Zr powder was fabricated on AZ91D magnesium alloy by laser cladding. The microstructure of the coating was characterized by XRD, SEM and TEM techniques. The wear resistance of the coating was evaluated under dry ...

  4. Preparation and characterization of a calcium-phosphate-silicon coating on a Mg-Zn-Ca alloy via two-step micro-arc oxidation.

    Science.gov (United States)

    Dou, Jinhe; Chen, Yang; Chi, Yiming; Li, Huancai; Gu, Guochao; Chen, Chuanzhong

    2017-06-14

    Magnesium alloys are the most promising implant materials due to their excellent biodegradability. However, their high degradation rate limits their practical application. In this study, we produced a calcium-phosphate (Ca-P) coating and a calcium-phosphate-silicon (Ca-P-Si) coating via one-step and two-step micro-arc oxidation processes, respectively. The microstructure and chemical composition of the MAO coatings were characterized using SEM, XRD and EDS. The degradation behaviors of the MAO coatings and the substrate were investigated using electrochemical techniques and immersion tests in simulated body fluid (SBF). The results show that the silicate was successfully incorporated into the Ca-P coating in the second MAO step, and this also increased the thickness of the coating. The Ca-P-Si coatings remarkably reduced the corrosion rate of the Mg alloy and Ca-P coating during 18 days of immersion in SBF. In addition, the bone-like apatite layer on the sample surface demonstrated the good biomineralization ability of the Ca-P-Si coating. Potentiodynamic polarization results showed that the MAO coating could clearly enhance the corrosion resistance of the Mg alloy. Moreover, we propose the growth mechanism of the MAO coating in the second step.

  5. Development and electrochemical characterization of Ni‐P coated tungsten incorporated electroless nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shibli, S.M.A., E-mail: smashibli@yahoo.com; Chinchu, K.S.

    2016-08-01

    Ni‐P-W alloy and composite coatings were prepared by incorporation of sodium tungstate/tungsten and Ni‐P coated tungsten into electroless nickel bath respectively. Good inter-particle interactions among the depositing elements i.e. Ni and P with the incorporating tungsten particles were achieved by means of pre-coated tungsten particle by electroless nickel covering prior to its addition into the electroless bath. The pre-coated tungsten particles got incorporated uniformly into the Ni-P matrix of the coating. The particles and the coatings were characterized at different stages by different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The electroless Ni-P coating incorporated with pre-coated tungsten exhibited considerably high hardness, thickness and deposition rate. The performance and corrosion resistance characteristics of the composite coating incorporated with the nickel coated tungsten were found to be superior over other conventional Ni-P-W ternary alloy coatings currently reported. - Highlights: • An amorphous Ni-P coating was effectively formed on tungsten particles. • Electroless ternary Ni-P-W composite coatings were successfully prepared. • Enhancement in the inter-particle interaction in the Ni-P composite matrix was achieved. • Efficient and uniform incorporation of the composite in the internal layer was evident. • The tungsten incorporated coating possessed effective barrier protection.

  6. Biocompatibility and Biocorrosion of Hydroxyapatite-Coated Magnesium Plate: Animal Experiment

    Directory of Open Access Journals (Sweden)

    Ho-Kyung Lim

    2017-09-01

    Full Text Available Magnesium (Mg has the advantage of being resorbed in vivo, but its resorption rate is difficult to control. With uncontrolled resorption, Magnesium as a bone fixation material has minimal clinical value. During resorption not only is the strength rapidly weakened, but rapid formation of metabolite also occurs. In order to overcome these disadvantages, hydroxyapatite (HA surface coating of pure magnesium plate was attempted in this study. Magnesium plates were inserted above the frontal bone of Sprague-Dawley rats in both the control group (Bare-Mg group and the experimental group (HA-Mg group. The presence of inflammation, infection, hydrogen gas formation, wound dehiscence, and/or plate exposure was observed, blood tests were performed, and the resorption rate and tensile strength of the retrieved metal plates were measured. The HA-Mg group showed no gas formation or plate exposure until week 12. However, the Bare-Mg group showed consistent gas formation and plate exposure beginning in week 2. WBC (White Blood Cell, BUN (Blood Urea Nitrogen, Creatinine, and serum magnesium concentration levels were within normal range in both groups. AST (Aspartate Aminotransferase and ALT (Alanine Aminotransferase values, however, were above normal range in some animals of both groups. The HA-Mg group showed statistically significant advantage in resistance to degradation compared to the Bare-Mg group in weeks 2, 4, 6, 8, and 12. Degradation of HA-Mg plates proceeded after week 12. Coating magnesium plates with hydroxyapatite may be a viable method to maintain their strength long enough to allow bony healing and to control the resorption rate during the initial period.

  7. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    Directory of Open Access Journals (Sweden)

    D. Thirumalaikumarasamy

    2014-12-01

    Full Text Available Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 wt% NaCl solution. Empirical relationship was established to predict the corrosion rate of plasma sprayed alumina coatings by incorporating process parameters. The experiments were conducted based on a three factor, five-level, central composite rotatable design matrix. The developed relationship can be effectively used to predict the corrosion rate of alumina coatings at 95% confidence level. The results indicate that the input power has the greatest influence on corrosion rate, followed by stand-off distance and powder feed rate.

  8. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Beni, Batoul Hashemi; Razavi, Seyed Mohammad; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi2O6) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  9. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi2O6)

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Beni, Batoul Hashemi; Razavi, Seyed Mohammad; Vashaee, Daryoosh

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi 2 O 6 ) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  10. Preparation and characterization of graphite-dispersed styrene-acrylic emulsion composite coating on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Renhui [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Lanzhou University of Technology, College of Science, Lanzhou 730050 (China); Liang Jun, E-mail: jliang@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Wang Qing [Lanzhou University of Technology, College of Science, Lanzhou 730050 (China)

    2012-03-01

    In this work, an electrically conductive, corrosion resistant graphite-dispersed styrene-acrylic emulsion composite coating on AZ91D magnesium alloy was successfully produced by the method of anodic deposition. The microstructure, composition and conductivity of the composite coating were characterized using optical microscope (OM), scanning electron microscope (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) and four electrode volume resistivity instrument, respectively. The corrosion resistance of the coating was evaluated using potentiodynamic polarization measurements and salt spray tests. It is found that the graphite-dispersed styrene-acrylic emulsion composite coating was layered structure and displayed good electrical conductivity. The potentiodynamic polarization tests and salt spray tests reveal that the composite coating was successful in providing superior corrosion resistance to AZ91D magnesium alloy.

  11. The effect of PVD coatings on the corrosion behaviour of AZ91 magnesium alloy

    International Nuclear Information System (INIS)

    Altun, Hikmet; Sen, Sadri

    2006-01-01

    In this study, multilayered AlN (AlN + AlN + AlN) and AlN + TiN were coated on AZ91 magnesium alloy using physical vapour deposition (PVD) technique of DC magnetron sputtering, and the influence of the coatings on the corrosion behaviour of the AZ91 alloy was examined. A PVD system for coating processes, a potentiostat for electrochemical corrosion tests, X-ray difractometer for compositional analysis of the coatings, and scanning electron microscopy for surface examinations were used. It was determined that PVD coatings deposited on AZ91 magnesium alloy increased the corrosion resistance of the alloy, and AlN + AlN + AlN coating increased the corrosion resistance much more than AlN + TiN coating. However, it was observed that, in the coating layers, small structural defects e.g., pores, pinholes, cracks that could arise from the coating process or substrate and get the ability of protection from corrosion worsened were present

  12. Bioceramics of apatites: an option for bone regeneration

    International Nuclear Information System (INIS)

    Arxer, Eliana Alves; Almeida Filho, Edson de; Guastaldi, Antonio Carlos

    2011-01-01

    The bioceramics of calcium phosphate called apatite, are widely used as material for bone replacement and regeneration, due to its similarity to the mineral component of bones and teeth. The apatites are biocompatible, bioactive and integrate with living tissue by the same active process of physiological bone remodeling. These bioceramics may be used in medical, dental and orthopedic applications. In this research, it was used the wet method for the synthesis of the powder and biomimetic method for coating the surface. The Solubility study was performed in the layer deposited, apatite, for possible application as a platform for inorganic drug delivery. The bioceramics were characterized by MEV, DRX, and EDS. The curves of solubility of apatite in coatings showed that the OCP phase had a higher rate of release in the short term (4 days) while the HA phase showed a gradual release throughout the experiment (16 days). (author)

  13. Factors Influencing Plasma Electrolytic Oxidation(PEO) Coatings on Magnesium Alloys: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Gunchoo [KISTI ReSEAT Program, Daejon (Korea, Republic of)

    2017-05-15

    Magnesium alloys, which possess excellent specific strength and castability, are highly susceptible to corrosion. Although anodizing is widely used to resolve this problem, it requires toxic electrolytes and produces relatively thin and weak surface coatings. Recently, plasma electrolytic oxidation (PEO) has emerged as an alternative to anodizing. Although it is derived from conventional anodizing, it uses eco-friendly electrolytes and forms thicker, denser, and harder coatings on the surface of magnesium alloys. However, PEO is a complex process involving physical, chemical, and electrochemical reactions, and it is influenced by various factors such as the alloy substrate composition, electrolyte/additive composition, and the electrical variables including the mode of power supply, applied voltage/current density, frequency, and duty cycle. In this article, the detailed effects of these parameters on the microstructure and properties of the PEO coatings are reviewed, and methods of improving the coatings are proposed.

  14. Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time

    Energy Technology Data Exchange (ETDEWEB)

    Waterman, J., E-mail: jay.waterman@pg.canterbury.ac.nz [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Pietak, A. [Department of Anatomy and Structural Biology, University of Otago, Dunedin (New Zealand); Birbilis, N. [Department of Materials Engineering, Monash University (Australia); Woodfield, T. [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Department of Orthopaedic Surgery, University of Otago, Christchurch (New Zealand); Dias, G. [Department of Anatomy and Structural Biology, University of Otago, Dunedin (New Zealand); Staiger, M.P., E-mail: mark.staiger@canterbury.ac.nz [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand)

    2011-12-15

    Calcium phosphate coatings were prepared on magnesium substrates via a biomimetic coating process. The effects of a magnesium hydroxide pretreatment on the formation and the ultimate corrosion protection of the coatings were studied. The pretreatment layer was found to affect the amount of defects present in the coatings. Corrosion resistance of the coatings was studied in vitro using two simulated body fluids, 0.8% NaCl and Hanks solution. In NaCl, the resistance to corrosion of all samples decreases with time as corrosion proceeded through cracks and other defects in the coatings. Samples with no pretreatment displayed the highest corrosion resistance as these samples had the fewest defects in the coating. However, in Hanks solution, corrosion resistance increased with time due to additional nucleation of calcium phosphate from the fluid on to the substrate. In this solution, additional pretreatment time was beneficial to the overall corrosion resistance.

  15. Poly-ε-caprolactone Coated and Functionalized Porous Titanium and Magnesium Implants for Enhancing Angiogenesis in Critically Sized Bone Defects

    Directory of Open Access Journals (Sweden)

    Laura Roland

    2015-12-01

    Full Text Available For healing of critically sized bone defects, biocompatible and angiogenesis supporting implants are favorable. Murine osteoblasts showed equal proliferation behavior on the polymers poly-ε-caprolactone (PCL and poly-(3-hydroxybutyrate/poly-(4-hydroxybutyrate (P(3HB/P(4HB. As vitality was significantly better for PCL, it was chosen as a suitable coating material for further experiments. Titanium implants with 600 µm pore size were evaluated and found to be a good implant material for bone, as primary osteoblasts showed a vitality and proliferation onto the implants comparable to well bottom (WB. Pure porous titanium implants and PCL coated porous titanium implants were compared using Live Cell Imaging (LCI with Green fluorescent protein (GFP-osteoblasts. Cell count and cell covered area did not differ between the implants after seven days. To improve ingrowth of blood vessels into porous implants, proangiogenic factors like Vascular Endothelial Growth Factor (VEGF and High Mobility Group Box 1 (HMGB1 were incorporated into PCL coated, porous titanium and magnesium implants. An angiogenesis assay was performed to establish an in vitro method for evaluating the impact of metallic implants on angiogenesis to reduce and refine animal experiments in future. Incorporated concentrations of proangiogenic factors were probably too low, as they did not lead to any effect. Magnesium implants did not yield evaluable results, as they led to pH increase and subsequent cell death.

  16. Preparation and characterization of inorganic and organic coatings on AZ91D magnesium alloy with electroless plating pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, S.Y.; Li, Q.; Zhang, H.X.; Wang, S.Y.; Liu, F. [School of Chemistry and Chemical Engineering, Southwest University Chongqing, 400715 (China); Yang, X.K. [School of Materials Science and Engineering, Southwest University Chongqing, 400715 (China)

    2011-09-15

    In this paper, a protective coating scheme was applied for the corrosion protection of AZ91D magnesium alloy. Electroless Ni coating (EN coating) as bottom layer, electrodeposited Ni coating (ENN coating), and silane-based coating (ENS coating) as top layer, respectively, were successfully prepared on AZ91D magnesium alloy by combination techniques. Scanning electron microscopy and X-ray diffraction were employed to investigate the surface and phase structure of coatings, respectively. The electrochemical corrosion behaviors of coatings in neutral 3.5 wt% NaCl solution were evaluated by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization techniques. The corrosion testing showed that the three kinds of coatings all could provide corrosion protection for AZ91D magnesium alloy to a certain extent, and the corrosion resistance of ENN and ENS was superior to EN. In order to further study the corrosion protection properties of ENN and ENS, a comparative investigation on the evolution of EIS of ENN and ENS was carried out by dint of immersion test in neutral 3.5 wt% NaCl solution. The results indicated that, compared with ENN, the ENS could provide longer corrosion protection for AZ91D magnesium alloy. It is significant to determine the barrier effect of each coating, which could provide reference for industry applications. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Song, Y.W.; Shan, D.Y.; Han, E.H.

    2008-01-01

    The process of electroless plating Ni-P on AZ91D magnesium alloys was improved. The Ni-P-ZrO 2 composite coatings and multilayer coatings were investigated based on the new electroless plating process. The coatings surface and cross-section morphologies were observed with scanning electron microscopy (SEM). The chemical compositions were analyzed by EDXS. The corrosion behaviors were evaluated by immersion, salt spray and electrochemical tests. The experimental results indicated that the Ni-P-ZrO 2 composite coatings suffered attack in NaCl solution but displayed passivation characteristics in NaOH and Na 2 SO 4 solutions. The corrosion resistance of Ni-P-ZrO 2 coatings was superior to Ni-P coatings due to the effect of ZrO 2 nano-particle. The multilayer coatings consisting of Ni-P-ZrO 2 /electroplating nickel/Ni-P (from substrate to surface) can protect magnesium alloys from corroding more than 1000 h for the salt spray test

  18. Corrosion resistance and cytocompatibility of biodegradable surgical magnesium alloy coated with hydrogenated amorphous silicon.

    Science.gov (United States)

    Xin, Yunchang; Jiang, Jiang; Huo, Kaifu; Tang, Guoyi; Tian, Xiubo; Chu, Paul K

    2009-06-01

    The fast degradation rates in the physiological environment constitute the main limitation for the applications of surgical magnesium alloys as biodegradable hard-tissue implants. In this work, a stable and dense hydrogenated amorphous silicon coating (a-Si:H) with desirable bioactivity is deposited on AZ91 magnesium alloy using magnetron sputtering deposition. Raman spectroscopy and Fourier transform infrared spectroscopy reveal that the coating is mainly composed of hydrogenated amorphous silicon. The hardness of the coated alloy is enhanced significantly and the coating is quite hydrophilic as well. Potentiodynamic polarization results show that the corrosion resistance of the coated alloy is enhanced dramatically. In addition, the deterioration process of the coating in simulated body fluids is systematically investigated by open circuit potential evolution and electrochemical impedance spectroscopy. The cytocompatibility of the coated Mg is evaluated for the first time using hFOB1.19 cells and favorable biocompatibility is observed. 2008 Wiley Periodicals, Inc.

  19. Fault-tolerant epoxy-silane coating for corrosion protection of magnesium alloy AZ31

    NARCIS (Netherlands)

    Lamaka, S.V.; Xue, H.B.; Meis, N.N.A.H.; Esteves, A.C.C.; Ferreira, M.G.S.

    2015-01-01

    In this work, a hybrid epoxy-silane coating was developed for corrosion protection of magnesium alloy AZ31. The average thickness of the film produced by dip-coating procedure was 14 µm. The adhesion strength of the epoxy-silane coating to the Mg substrate was evaluated by pull-off tests and was

  20. Characterization of coatings formed on AZX magnesium alloys by plasma electrolytic oxidation

    Science.gov (United States)

    Anawati, Anawati; Gumelar, Muhammad Dikdik

    2018-05-01

    Plasma Electrolytic Oxidation (PEO) is an electrochemical anodization process which involves the application of a high voltage to create intense plasma on a metal surface to form a ceramic type of oxide. The resulted coating exhibits high wear resistance and good corrosion barrier which are suitable to enhance the performance of biodegradable Mg alloys. In this work, the role of alloying element Ca in modifying the characteristics of PEO layer formed on AZ61 series magnesium alloys was investigated. PEO treatment was conducted on AZ61, AZX611, and AZX612 alloys in 0.5 M Na3PO4 solution at a constant current of 200 A/m2 at 25°C for 8 min. The resulted coatings were characterized by field emission-scanning electron microscope (FESEM), X-ray diffraction spectroscopy (XRD), and X-ray fluorescence spectroscopy (XRF), as well as hardness test. The presence of alloying element Ca in the AZ61 alloys accelerated the PEO coatings formation without altering the coating properties significantly. The coating formed on AZX specimen was slightly thicker ( 14-17 µm) than that of formed onthe AZ specimens ( 13 µm). Longer exposure time to plasma discharge was the reason for faster thickening of the coating layer on AZX specimen. XRD detected a similar crystalline oxide phase of Mg3(PO4)2 in the oxide formed on all of the specimens. Zn was highly incorporated in the coatings with a concentration in the range 24-30 wt%, as analyzed by XRF. Zn compound might exist in amorphous phases. The microhardness test on the coatings revealed similar average hardness 124 HVon all of the specimens.

  1. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Science.gov (United States)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-10-01

    A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  2. Mechanical, degradation and cytocompatibility properties of magnesium coated phosphate glass fibre reinforced polycaprolactone composites.

    Science.gov (United States)

    Liu, Xiaoling; Hasan, Muhammad S; Grant, David M; Harper, Lee T; Parsons, Andrew J; Palmer, Graham; Rudd, Chris D; Ahmed, Ifty

    2014-11-01

    Retention of mechanical properties of phosphate glass fibre reinforced degradable polyesters such as polycaprolactone and polylactic acid in aqueous media has been shown to be strongly influenced by the integrity of the fibre/polymer interface. A previous study utilising 'single fibre' fragmentation tests found that coating with magnesium improved the fibre and matrix interfacial shear strength. Therefore, the aim of this study was to investigate the effects of a magnesium coating on the manufacture and characterisation of a random chopped fibre reinforced polycaprolactone composite. Short chopped strand non-woven phosphate glass fibre mats were sputter coated with degradable magnesium to manufacture phosphate glass fibre/polycaprolactone composites. The degradation behaviour (water uptake, mass loss and pH change of the media) of these polycaprolactone composites as well as of pure polycaprolactone was investigated in phosphate buffered saline. The Mg coated fibre reinforced composites revealed less water uptake and mass loss during degradation compared to the non-coated composites. The cations released were also explored and a lower ion release profile for all three cations investigated (namely Na(+), Mg(2+) and Ca(2+)) was seen for the Mg coated composite samples. An increase of 17% in tensile strength and 47% in tensile modulus was obtained for the Mg coated composite samples. Both flexural and tensile properties were investigated and a higher retention of mechanical properties was obtained for the Mg coated fibre reinforced composite samples up to 10 days immersion in PBS. Cytocompatibility study showed both composite samples (coated and non-coated) had good cytocompatibility with human osteosarcoma cell line. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  3. A Fundamental Metric for Metal Recycling Applied to Coated Magnesium

    NARCIS (Netherlands)

    Meskers, C.E.M.; Reuter, M.A.; Boin, U.; Kvithyld, A.

    2008-01-01

    A fundamental metric for the assessment of the recyclability and, hence, the sustainability of coated magnesium scrap is presented; this metric combines kinetics and thermodynamics. The recycling process, consisting of thermal decoating and remelting, was studied by thermogravimetry and differential

  4. Al2O3 Coatings on Magnesium Alloy Deposited by the Fluidized Bed (FB Technique

    Directory of Open Access Journals (Sweden)

    Gabriele Baiocco

    2018-01-01

    Full Text Available Magnesium alloys are widely employed in several industrial domains for their outstanding properties. They have a high strength-weight ratio, with a density that is lower than aluminum (33% less, and feature good thermal properties, dimensional stability, and damping characteristics. However, they are vulnerable to oxidation and erosion-corrosion phenomena when applied in harsh service conditions. To avoid the degradation of magnesium, several coating methods have been presented in the literature; however, all of them deal with drawbacks that limit their application in an industrial environment, such as environmental pollution, toxicity of the coating materials, and high cost of the necessary machinery. In this work, a plating of Al2O3 film on a magnesium alloy realized by the fluidized bed (FB technique and using alumina powder is proposed. The film growth obtained through this cold deposition process is analyzed, investigating the morphology as well as tribological and mechanical features and corrosion behavior of the plated samples. The resulting Al2O3 coatings show consistent improvement of the tribological and anti-corrosive performance of the magnesium alloy.

  5. Effect of copper content on the properties of electroless Ni–Cu–P coatings prepared on magnesium alloys

    International Nuclear Information System (INIS)

    Liu, Junjun; Wang, Xudong; Tian, Zhiyong; Yuan, Ming; Ma, Xijuan

    2015-01-01

    Highlights: • Electroless Ni–Cu–P coatings were obtained on ZK61M magnesium alloys. • The crystallinity and compactness increases with the increasing of copper content. • The introduction of copper element in the coatings contributes to the formation of passivation film. • The coatings with higher corrosion resistance were obtained from the solution with a higher CuSO 4 concentration. - Abstract: The Ni–Cu–P coatings were obtained by electroless plating method on ZK61M magnesium alloys. The effect of copper content on the properties of electroless Ni–Cu–P coatings on magnesium alloys was further studied. The coatings surface and cross-section morphologies were observed with scanning electron microscope. The crystal structure and corrosion resistance of Ni–Cu–P coatings were evaluated by X-ray diffractometer and electrochemical tests. The experimental results showed that the Ni–Cu–P coatings were uniform and compact, and the corrosion resistance of these coatings was superior to Ni–P coatings owing to the introduction of copper. The crystallinity and compactness of the Ni–Cu–P coatings gradually enhanced with the increasing of copper content in the coatings. The introduction of copper element in the Ni–Cu–P coatings contributes to the formation of passivation film. The Ni–Cu–P coatings with higher corrosion resistance were obtained from the solution with a higher CuSO 4 concentration.

  6. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection

    International Nuclear Information System (INIS)

    Yong Zhiyi; Zhu Jin; Qiu Cheng; Liu Yali

    2008-01-01

    In this paper, a new conversion coating-molybdate/phosphate (Mo/P) coating on magnesium alloy was prepared and investigated by electrochemical impedance spectra (EIS), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and salt-water immersion experiments, respectively. The results demonstrated that the Mo/P coating contained composite phases, which were consisted of metaphosphate as well as molybdate oxide with an 'alveolate-crystallized' structure. The composite Mo/P conversion coating had better corrosion resistance performance than molybdate (Mo) coating, and even had almost comparable corrosion protection for Mg alloy to the traditional chromate-based coating.

  7. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Lamaka, S.V.; Montemor, M.F.; Galio, A.F.; Zheludkevich, M.L.; Trindade, C.; Dick, L.F.; Ferreira, M.G.S.

    2008-01-01

    This work aims to develop and study new anticorrosion films for AZ31B magnesium alloy based on the sol-gel coating approach. Hybrid organic-inorganic sols were synthesized by copolymerization of epoxy-siloxane and titanium or zirconium alkoxides. Tris(trimethylsilyl) phosphate was also used as additive to confer additional corrosion protection to magnesium-based alloy. A sol-gel coating, about 5-μm thick, shows good adhesion to the metal substrate and prevents corrosion attack in 0.005 M NaCl solution for 2 weeks. The sol-gel coating system doped with tris(trimethylsilyl)-phosphate revealed improved corrosion protection of the magnesium alloy due to formation of hydrolytically stable Mg-O-P chemical bonds. The structure and the thickness of the sol-gel film were characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The corrosion behaviour of AZ31B substrates pre-treated with the sol-gel derived hybrid coatings was tested by electrochemical impedance spectroscopy (EIS). The chemical composition of the silylphosphate-containing sol-gel film at different depths was investigated by X-ray photoelectron spectroscopy (XPS) with depth profiling

  8. Fabrication of a Delaying Biodegradable Magnesium Alloy-Based Esophageal Stent via Coating Elastic Polymer

    Directory of Open Access Journals (Sweden)

    Tianwen Yuan

    2016-05-01

    Full Text Available Esophageal stent implantation can relieve esophageal stenosis and obstructions in benign esophageal strictures, and magnesium alloy stents are a good candidate because of biodegradation and biological safety. However, biodegradable esophageal stents show a poor corrosion resistance and a quick loss of mechanical support in vivo. In this study, we chose the elastic and biodegradable mixed polymer of Poly(ε-caprolactone (PCL and poly(trimethylene carbonate (PTMC as the coated membrane on magnesium alloy stents for fabricating a fully biodegradable esophageal stent, which showed an ability to delay the degradation time and maintain mechanical performance in the long term. After 48 repeated compressions, the mechanical testing demonstrated that the PCL-PTMC-coated magnesium stents possess good flexibility and elasticity, and could provide enough support against lesion compression when used in vivo. According to the in vitro degradation evaluation, the PCL-PTMC membrane coated on magnesium was a good material combination for biodegradable stents. During the in vivo evaluation, the proliferation of the smooth muscle cells showed no signs of cell toxicity. Histological examination revealed the inflammation scores at four weeks in the magnesium-(PCL-PTMC stent group were similar to those in the control group (p > 0.05. The α-smooth muscle actin layer in the media was thinner in the magnesium-(PCL-PTMC stent group than in the control group (p < 0.05. Both the epithelial and smooth muscle cell layers were significantly thinner in the magnesium-(PCL-PTMC stent group than in the control group. The stent insertion was feasible and provided reliable support for at least four weeks, without causing severe injury or collagen deposition. Thus, this stent provides a new stent for the treatment of benign esophageal stricture and a novel research path in the development of temporary stents in other cases of benign stricture.

  9. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation

    International Nuclear Information System (INIS)

    Chen Ying; Song Yang; Zhang Shaoxiang; Li Jianan; Zhao Changli; Zhang Xiaonong

    2011-01-01

    In this study, polycaprolactone (PCL) and polylactic acid (PLA) coatings were prepared on the surface of high purity magnesium (HPMs), respectively, and electrochemical and dynamic degradation tests were used to investigate the degradation behaviors of these polymer-coated HPMs. The experimental results indicated that two uniform and smooth polymer films with thicknesses between 15 and 20 μm were successfully prepared on the HPMs. Electrochemical tests showed that both PCL-coated and PLA-coated HPMs had higher free corrosion potentials (E corr ) and smaller corrosion currents (I corr ) in the modified simulated body fluid (m-SBF) at 37 0 C, compared to those of the uncoated HPMs. Dynamic degradation tests simulating the flow conditions in coronary arteries were carried out on a specific test platform. The weight of the specimens and the pH over the tests were recorded to characterize the corrosion performance of those samples. The surfaces of the specimens after the dynamic degradation tests were also examined. The data implied that there was a special interaction between HPM and its polymer coatings during the dynamic degradation tests, which undermined the corrosion resistance of the coated HPMs. A model was proposed to illustrate the interaction between the polymer coatings and HPM. This study also suggested that this reciprocity may also exist on the implanted magnesium stents coated with biodegradable polymers, which is a potential obstacle for the further development of drug-eluting magnesium stents.

  10. Interaction between a high purity magnesium surface and PCL and PLA coatings during dynamic degradation

    Energy Technology Data Exchange (ETDEWEB)

    Chen Ying; Song Yang; Zhang Shaoxiang; Li Jianan; Zhao Changli; Zhang Xiaonong, E-mail: xnzhang@sjtu.edu.cn [State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-04-15

    In this study, polycaprolactone (PCL) and polylactic acid (PLA) coatings were prepared on the surface of high purity magnesium (HPMs), respectively, and electrochemical and dynamic degradation tests were used to investigate the degradation behaviors of these polymer-coated HPMs. The experimental results indicated that two uniform and smooth polymer films with thicknesses between 15 and 20 {mu}m were successfully prepared on the HPMs. Electrochemical tests showed that both PCL-coated and PLA-coated HPMs had higher free corrosion potentials (E{sub corr}) and smaller corrosion currents (I{sub corr}) in the modified simulated body fluid (m-SBF) at 37 {sup 0}C, compared to those of the uncoated HPMs. Dynamic degradation tests simulating the flow conditions in coronary arteries were carried out on a specific test platform. The weight of the specimens and the pH over the tests were recorded to characterize the corrosion performance of those samples. The surfaces of the specimens after the dynamic degradation tests were also examined. The data implied that there was a special interaction between HPM and its polymer coatings during the dynamic degradation tests, which undermined the corrosion resistance of the coated HPMs. A model was proposed to illustrate the interaction between the polymer coatings and HPM. This study also suggested that this reciprocity may also exist on the implanted magnesium stents coated with biodegradable polymers, which is a potential obstacle for the further development of drug-eluting magnesium stents.

  11. Coating of biodegradable magnesium alloy bone implants using nanostructured diopside (CaMgSi{sub 2}O{sub 6})

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mehdi.razavi@okstate.edu [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Beni, Batoul Hashemi [Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); and others

    2014-01-01

    Magnesium alloys with their biodegradable characteristic can be a very good candidate to be used in orthopedic implants. However, magnesium alloys may corrode and degrade too fast for applications in the bone healing procedure. In order to enhance the corrosion resistance and the in vitro bioactivity of a magnesium alloy, a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) film was coated on AZ91 magnesium alloy through combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) methods. The crystalline structures, morphologies and compositions of the coated and uncoated substrates were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy. Polarization, electrochemical impedance spectroscopy, and immersion test in simulated body fluid (SBF) were employed to evaluate the corrosion resistance and the in vitro bioactivity of the samples. The results of our investigation showed that the nanostructured diopside coating deposited on the MAO layer increases the corrosion resistance and improves the in vitro bioactivity of the biodegradable magnesium alloy.

  12. Hexagonal Boron Nitride Impregnated Silane Composite Coating for Corrosion Resistance of Magnesium Alloys for Temporary Bioimplant Applications

    Directory of Open Access Journals (Sweden)

    Saad Al-Saadi

    2017-11-01

    Full Text Available Magnesium and its alloys are attractive potential materials for construction of biodegradable temporary implant devices. However, their rapid degradation in human body fluid before the desired service life is reached necessitate the application of suitable coatings. To this end, WZ21 magnesium alloy surface was modified by hexagonal boron nitride (hBN-impregnated silane coating. The coating was chemically characterised by Raman spectroscopy. Potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS of the coated alloy in Hanks’ solution showed a five-fold improvement in the corrosion resistance of the alloy due to the composite coating. Post-corrosion analyses corroborated the electrochemical data and provided a mechanistic insight of the improvement provided by the composite coating.

  13. Evaluation of self-healing ability of Ce–V conversion coating on AZ31 magnesium alloy

    Directory of Open Access Journals (Sweden)

    Xiao Jiang

    2016-09-01

    Full Text Available This study investigated the influence of cerium nitrate in vanadate solutions on the properties of Ce–V conversion coatings on AZ31 magnesium alloys, and evaluated the self-healing behavior of the Ce–V conversion coating for AZ31 magnesium alloy. The results showed that the additions of cerium nitrate prevented pentavalent vanadium from reducing to tetravalent vanadium in the coatings during conversion reaction process. Adding appropriate cerium nitrate to vanadate solution led to a thicker coating with a more compact CeVO4 layer. The corrosion behavior of the Ce–V conversion coating was investigated by the electrochemical tests and the scratch immersion test in 3.5 wt.% NaCl solution. The self-healing ability of the coating was confirmed from all tests. The surface analysis revealed that the self-healing effect of the Ce–V conversion coating was only provided by the release and migration of vanadium compounds.

  14. Effect of surface coating with magnesium stearate via mechanical dry powder coating approach on the aerosol performance of micronized drug powders from dry powder inhalers.

    Science.gov (United States)

    Zhou, Qi Tony; Qu, Li; Gengenbach, Thomas; Larson, Ian; Stewart, Peter J; Morton, David A V

    2013-03-01

    The objective of this study was to investigate the effect of particle surface coating with magnesium stearate on the aerosolization of dry powder inhaler formulations. Micronized salbutamol sulphate as a model drug was dry coated with magnesium stearate using a mechanofusion technique. The coating quality was characterized by X-ray photoelectron spectroscopy. Powder bulk and flow properties were assessed by bulk densities and shear cell measurements. The aerosol performance was studied by laser diffraction and supported by a twin-stage impinger. High degrees of coating coverage were achieved after mechanofusion, as measured by X-ray photoelectron spectroscopy. Concomitant significant increases occurred in powder bulk densities and in aerosol performance after coating. The apparent optimum performance corresponded with using 2% w/w magnesium stearate. In contrast, traditional blending resulted in no significant changes in either bulk or aerosolization behaviour compared to the untreated sample. It is believed that conventional low-shear blending provides insufficient energy levels to expose host micronized particle surfaces from agglomerates and to distribute guest coating material effectively for coating. A simple ultra-high-shear mechanical dry powder coating step was shown as highly effective in producing ultra-thin coatings on micronized powders and to substantially improve the powder aerosolization efficiency.

  15. Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions

    Energy Technology Data Exchange (ETDEWEB)

    Guo, H.F. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: Guohf@hit.edu.cn; An, M.Z. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)]. E-mail: mzan@hit.edu.cn; Huo, H.B. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Xu, S. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China); Wu, L.J. [Department of Applied Chemistry, Harbin Institute of Technology, Harbin 150001 (China)

    2006-09-15

    Micro-arc oxidation (MAO) of AZ31B magnesium alloys was studied in alkaline silicate solutions at constant applied current densities. The microstructure, phase composition and elemental distribution of ceramic coatings were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDX). There are two inflections in the voltage-time response, three regions were identifiable and each of the regions was almost linear. The pores with different shapes distributed all over the coating surface, the number of the pores was decreasing, while the diameter was apparently increasing with prolonged MAO treatment time. There were also cracks on the coating surface, resulting from the rapid solidification of the molten oxide. The ceramic coating was comprised of two layers, an outer loose layer and an inner dense layer. The ceramic coating was mainly composed of forsterite phase Mg{sub 2}SiO{sub 4} and MgO; the formation of MgO was similar to conversional anodizing technology, while formation of Mg{sub 2}SiO{sub 4} was attributed to a high temperature phase transformation reaction. Presence of Si and O indicated that the electrolyte components had intensively incorporated into coatings.

  16. Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nida Iqbal [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, M. A. Jinnah Campus, Defence Road, Off Raiwind Road, Lahore (Pakistan); Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Ijaz, Kashif; Zahid, Muniza; Khan, Abdul S. [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, M. A. Jinnah Campus, Defence Road, Off Raiwind Road, Lahore (Pakistan); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Hussain, Rafaqat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johore (Malaysia); Anis-ur-Rehman [Department of Physics, COMSATS Institute of Information Technology, Chakshahzad Campus, Islamabad (Pakistan); Darr, Jawwad A. [Clean Materials Technology Group, Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Ihtesham-ur-Rehman [The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Chaudhry, Aqif A., E-mail: aqifanwar@ciitlahore.edu.pk [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, M. A. Jinnah Campus, Defence Road, Off Raiwind Road, Lahore (Pakistan)

    2015-11-01

    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900 °C for 1 h) reduced twelve folds (to 2 h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1 h) at 900 °C. - Highlights: • Microwave irradiation of suspensions of calcium phosphates accelerated maturation. • Reactions took 2 h to complete as compared to 18 h required traditionally. • Magnesium contents higher than 1 wt.% lead to the presence of non-apatitic phases. • Agglomerates with micron and sub-micron porosity were obtained after heat-treatment.

  17. Characterization and corrosion behavior of ceramic coating on magnesium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Durdu, Salih; Aytac, Aylin; Usta, Metin

    2011-01-01

    Highlights: · The commercial pure magnesium was coated by micro-arc oxidation method. · The coating is composed of two layers, a porous outer layer and a dense inner layer. · A super corrosion resistance was achieved with MAO coatings. · Coating with Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 . - Abstract: In this study, the commercial pure magnesium was coated in different aqueous solutions of Na 2 SiO 3 and Na 3 PO 4 by the micro-arc oxidation method (MAO). Coating thickness, phase composition, surface and cross sectional morphology and corrosion resistance of coatings were analyzed by eddy current method, X-ray diffraction (XRD), scanning electron microscope (SEM) and tafel extrapolation method, respectively. The average thickness of the coatings ranged from 52 to 74 μm for sodium silicate solution and from 64 to 88 μm for sodium phosphate solution. The dominant phases on the coatings were detected as spinal Mg 2 SiO 4 (Forsterite) and MgO (Periclase) for sodium silicate solution and Mg 3 (PO 4 ) 2 (Farringtonite) and MgO (Periclase) for sodium phosphate solution. SEM images reveal that the coating is composed of two layers as of a porous outer layer and a dense inner layer. The corrosion results show the coating consisting Mg 2 SiO 4 is more resistant to corrosion than that containing Mg 3 (PO 4 ) 2 .

  18. Incorporation of cesium into phosphates of apatitic and rhabdophane lattices. Application to the conditioning of separated radionuclides

    International Nuclear Information System (INIS)

    Campayo, L.

    2003-04-01

    Two phosphate-based materials were investigated for cesium immobilization after its partitioning from spent nuclear fuel: apatites and rhabdophanes. The incorporation of cesium into the apatitic lattice creates steric stresses. These stresses induce the formation of secondary phases which are rapidly leached. The effectiveness of the cesium immobilization in this material is not therefore validated. A second phosphate CsCaNd(PO 4 ) 2 was consistently found at the end of the leach test and its properties were further characterized. The structure of CsCaNd(PO 4 ) 2 , which is rhabdophane-like, is made of large channels which enable the incorporation of the largest alkaline cations. The synthesis involves two intermediates: the monazite, NdPO 4 , and a soluble phosphate, CsCaPO 4 . The study of a rhabdophane with 10 wt.% of cesium reveals satisfactory intrinsic properties: a thermal stability up to 1100 C and a leach rate of 10 -2 g/(m 2 .d). The next step will be to improve the reaction yield. (author)

  19. Hybrid coating on a magnesium alloy for minimizing the localized degradation for load-bearing biodegradable mini-implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au; Liyanaarachchi, S.

    2013-10-01

    The effect of a hybrid coating, calcium phosphate (CaP) + polylactic acid (PLA), on a magnesium alloy on its in vitro degradation (general and localized) behaviour was studied for potential load-bearing biodegradable mini-implant applications. CaP was coated on a magnesium alloy, AZ91, using an electrochemical deposition method. A spin coating method was used to coat PLA on the CaP coated alloy. In vitro degradation performance of the alloy with hybrid coating was evaluated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The EIS results showed that the hybrid coating enhanced the degradation resistance of the alloy by more than two-order of magnitude as compared to the bare alloy and one-order of magnitude higher than that of the CaP coated alloy, after 1 h exposure in simulated body fluid (SBF). Long-term (48 h) EIS results also confirmed that the hybrid coating performed better than the bare alloy and the CaP coated alloy. Importantly, the hybrid coating improved the localized degradation resistance of the alloy significantly, which is critical for better in service mechanical integrity. - Highlights: • A hybrid coating (CaP + PLA) was applied on a magnesium-based alloy. • The hybrid coating enhanced the in vitro degradation resistance of the alloy. • Localized degradation resistance was also improved by the hybrid coating.

  20. Hybrid coating on a magnesium alloy for minimizing the localized degradation for load-bearing biodegradable mini-implant applications

    International Nuclear Information System (INIS)

    Kannan, M. Bobby; Liyanaarachchi, S.

    2013-01-01

    The effect of a hybrid coating, calcium phosphate (CaP) + polylactic acid (PLA), on a magnesium alloy on its in vitro degradation (general and localized) behaviour was studied for potential load-bearing biodegradable mini-implant applications. CaP was coated on a magnesium alloy, AZ91, using an electrochemical deposition method. A spin coating method was used to coat PLA on the CaP coated alloy. In vitro degradation performance of the alloy with hybrid coating was evaluated using electrochemical impedance spectroscopy (EIS) in simulated body fluid (SBF). The EIS results showed that the hybrid coating enhanced the degradation resistance of the alloy by more than two-order of magnitude as compared to the bare alloy and one-order of magnitude higher than that of the CaP coated alloy, after 1 h exposure in simulated body fluid (SBF). Long-term (48 h) EIS results also confirmed that the hybrid coating performed better than the bare alloy and the CaP coated alloy. Importantly, the hybrid coating improved the localized degradation resistance of the alloy significantly, which is critical for better in service mechanical integrity. - Highlights: • A hybrid coating (CaP + PLA) was applied on a magnesium-based alloy. • The hybrid coating enhanced the in vitro degradation resistance of the alloy. • Localized degradation resistance was also improved by the hybrid coating

  1. Corrosion mitigation of rare-earth metals containing magnesium EV31A-T6 alloy via chrome-free conversion coating treatment

    International Nuclear Information System (INIS)

    Hamdy, Abdel Salam; Butt, Darryl P.

    2013-01-01

    Highlights: • Protective stannate coatings have been proposed for rare-earth-EV31A-T6 magnesium alloy. • A simple coating method based on direct treatment of EV31A-T6 in a diluted stannate was found promising. • Surface modification prior to stannate coating offer no substantial advantage over directly coating. • Stannate conversion coatings decrease corrosion rates by a factor of 1/7. • The coating does not display any self-healing characteristics as shown in AZ91D. -- Abstract: Magnesium alloys posses unique mechanical and physical characteristics making them attractive light-weight materials for several strategic industries such as electronics, computer, automotive and aerospace. Due to their high chemical reactivity and poor corrosion resistance, the protection of magnesium alloys from corrosion is one of the hottest topics in materials science and engineering. Addition of rare-earth metals (RE) as alloying elements to magnesium alloys is one of the common approaches to improve their mechanical properties and, sometimes, the corrosion resistance. However, the potential difference between the RE metals phase formed in the Mg matrix enhances the galvanic corrosion at the interfaces where RE metals inert phase acts as cathode and the active Mg matrix acts as anode. This paper introduces a simple one-step clean conversion coating treatment for improving the protection of RE containing magnesium EV31A-T6 alloy in Cl − media

  2. Organic coatings silane-based for AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Hu Junying; Li Qing; Zhong Xiankang; Li Longqin; Zhang Liang

    2010-01-01

    Organic coatings silane-based containing electron withdrawing group or electron donating group have been synthesized and evaluated as prospective surface treatments for AZ91D magnesium alloy by hydrolysis and condensation reaction of the different silanes. Electrochemical tests were employed to confirm the corrosion resistance ability of the two kinds of organic coatings. The results showed that the coating with electron donating group had better corrosion protection performance. On the basis of the spatial configuration and the density of charge of those silanes molecules which was obtained through Gaussian 03 procedure based on B3LYP and density functional theory, combining experiment results, the rational explanation was provided.

  3. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Science.gov (United States)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-07-01

    The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Sisbnd Osbnd Si and Sisbnd Osbnd M chemical bonds. The optimum corrosion resistance of the coating in the corrosive media is obtained by 25 ml L-1 BTESPT modification. This whole study implies that the cerium conversion coating modified with certain silane agent deserves cautiousness before its application for corrosion resistance.

  4. Improvement in the corrosion protection and bactericidal properties of AZ91D magnesium alloy coated with a microstructured polypyrrole film

    Directory of Open Access Journals (Sweden)

    A.D. Forero López

    2018-03-01

    Full Text Available In this work hollow rectangular microtubes of polypyrrole (PPy films were potentiostatically electrodeposited on magnesium alloy AZ91D in salicylate solution. The substrate was previously anodized under potentiostatic conditions in a molybdate solution in order to improve the adherence of polymer. Finally the duplex film was modified by the incorporation of silver species. The obtained coatings were characterized by scanning electron microscopy (SEM, X-ray diffraction (XRD and X-ray photoelectron spectroscopies (XPS and the antimicrobial activity against the bacteria Escherichia coli was evaluated. The corrosion protection properties of the coatings were examined in Ringer solution by monitoring the open circuit potential, polarization techniques and electrochemical spectroscopy (EIS. The duplex coating presents an improved anticorrosive performance with respect to the PPy film. The best results concerning corrosion protection and antibacterial activity were obtained for the silver-modified composite coating. Keywords: Polypyrrole, Duplex coating, AZ91D alloy, Corrosion resistance, Antibacterial properties

  5. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, S. [Hakkari University, Dept. of Biomedical Eng., 30000 Hakkari (Turkey); Aksakal, B., E-mail: baksakal@yildiz.edu.tr [Yildiz Technical University, Chemical Metallurgy Faculty, Dept. of Metall and Mater Eng., Istanbul (Turkey); Dikici, B. [Yuzuncu Yil University, Dept. of Mechanical Eng., 65080 Van (Turkey)

    2014-05-01

    Graphical abstract: The corrosion resistance of magnesium alloys is the primary concern in biomedical applications. Micron and nano-scale hydroxyapatite (HA) was coated successfully on MA8M magnesium alloy substrates by using a sol–gel deposition. In this study, the effects of coating thicknesses and HA powder particle sizes on the adhesion strength and corrosion behavior were investigated. Potentiodynamic polarization tests were performed in a Ringer solution. The coatings before and after corrosion tests were characterized by adhesion tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. The anodic activity of the micro-scale-HA coatings increased with increased coating thickness and the corrosion resistance of Mg substrates decreased. Corrosion susceptibilities of the nano-scale-HA coated samples were affected inversely. The coated film provided good barrier characteristics and achieved good corrosion protection for Mg substrates when compared to substrates without coatings. For micro-scale-HA coatings, anodic and cathodic activities were more intense for thicker films. When HA coatings are compared to nano-scale HA coatings, the micro-scale-HA coatings produced better current density values. Overall, as shown in Fig. 1, the best corrosion behavior of the Mg alloys was achieved using micro-scale HA powders at 30 μm coating thickness. - Highlights: • Nano and micro-scale-HA coatings provided good anti-corrosion performance compared to the uncoated ones. • The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. • The best corrosion behavior was achieved for the micro-scale HA powders at 30 μm coating thickness. • Anodic activity decrease and cathodic activity increase with increasing film thickness. - Abstract: To improve the corrosion resistance of MA8M magnesium alloy, sol

  6. In vivo study of nanostructured diopside (CaMgSi2O6) coating on magnesium alloy as biodegradable orthopedic implants

    International Nuclear Information System (INIS)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Razavi, Seyed Mohammad; Heidari, Fariba; Manshaei, Maziar; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi 2 O 6 ) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions

  7. Biofunctionalized anti-corrosive silane coatings for magnesium alloys.

    Science.gov (United States)

    Liu, Xiao; Yue, Zhilian; Romeo, Tony; Weber, Jan; Scheuermann, Torsten; Moulton, Simon; Wallace, Gordon

    2013-11-01

    Biodegradable magnesium alloys are advantageous in various implant applications, as they reduce the risks associated with permanent metallic implants. However, a rapid corrosion rate is usually a hindrance in biomedical applications. Here we report a facile two step procedure to introduce multifunctional, anti-corrosive coatings on Mg alloys, such as AZ31. The first step involves treating the NaOH-activated Mg with bistriethoxysilylethane to immobilize a layer of densely crosslinked silane coating with good corrosion resistance; the second step is to impart amine functionality to the surface by treating the modified Mg with 3-amino-propyltrimethoxysilane. We characterized the two-layer anticorrosive coating of Mg alloy AZ31 by Fourier transform infrared spectroscopy, static contact angle measurement and optical profilometry, potentiodynamic polarization and AC impedance measurements. Furthermore, heparin was covalently conjugated onto the silane-treated AZ31 to render the coating haemocompatible, as demonstrated by reduced platelet adhesion on the heparinized surface. The method reported here is also applicable to the preparation of other types of biofunctional, anti-corrosive coatings and thus of significant interest in biodegradable implant applications. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Formation of a hydrophobic and corrosion resistant coating on magnesium alloy via a one-step hydrothermal method.

    Science.gov (United States)

    Zheng, Tianxu; Hu, Yaobo; Zhang, Yuxin; Pan, Fusheng

    2017-11-01

    A hydrophobic coating was fabricated on the surface of magnesium alloy using a simple one-step hydrothermal method with the use of environmentally friendly agent. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle test were used to characterize the surfaces. Corrosion behavior in a 3.5wt.% NaCl solution was evaluated using OCP time curves test, potentiodynamic polarization test and EIS analysis. The findings show that the substrate is covered by the coating of magnesium hydroxide and magnesium stearate, reaching a contact angle of around 146°. Corrosion behavior show huge improvement, the progress with increase of treatment time could be related to the increased growth rate of coating. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Porous SiO_2 nanofiber grafted novel bioactive glass–ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant

    International Nuclear Information System (INIS)

    Das, Indranee; De, Goutam; Hupa, Leena; Vallittu, Pekka K.

    2016-01-01

    A composite bioactive glass–ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. - Highlights: • Fabricated porous SiO_2 nanofibers grafted composite bioactive glass–ceramic coating on inert glass. • The newly engineered coating facilitates uniformly dense apatite precipitation. • Embedded porous silica nanofibers enhance hydrophilicity of the coated surface. • Cells proliferate well on the entire coating following a particular orientation by the assistance of nanofibers. • The coatings have potential to be used as biological scaffold on the surface of implants.

  10. Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid) Composite Coatings on Metallic Magnesium.

    Science.gov (United States)

    Yamada, Shinya; Maeda, Hirotaka; Obata, Akiko; Lohbauer, Ulrich; Yamamoto, Akiko; Kasuga, Toshihiro

    2013-12-12

    Poly(l-lactic acid)-based films which include 60 wt % of vaterite (V) or siloxane-containing vaterite (SiV) were coated on a pure magnesium substrate, denoted by PLLA/V or PLLA/SiV, respectively, to suppress early corrosion and improve its cytocompatibility. Both coating films adhered to the Mg substrate with 2.3-2.8 MPa of tensile bonding strength. Soaking test for 7 days in α-modified minimum essential medium revealed that the morphological instability of the PLLA/V film caused a higher amount of Mg 2+ ion to be released from the coating sample. On the other hand, in the case of the coating with the PLLA/SiV film, no morphological change even after the soaking test was observed, owing to the suppression of the degradation rate. In cell culture tests, the proliferation of mouse osteoblast-like cell (MC3T3-E1) was significantly enhanced by both coatings, in comparison with the uncoated magnesium substrate. The cell morphology revealed that a few less-spread cells were observed on the PLLA/V film, while more elongated cells were done on the PLLA/SiV film. The cells on the PLLA/SiV film exhibited an extremely higher alkaline phosphatase activity after 21 days of incubation than that on the PLLA/V one. The PLLA/SiV film suppressed the early corrosion and enhanced cytocompatibility on metallic magnesium.

  11. Cytocompatibility of Siloxane-Containing Vaterite/Poly(l-lactic acid Composite Coatings on Metallic Magnesium

    Directory of Open Access Journals (Sweden)

    Shinya Yamada

    2013-12-01

    Full Text Available Poly(l-lactic acid-based films which include 60 wt % of vaterite (V or siloxane-containing vaterite (SiV were coated on a pure magnesium substrate, denoted by PLLA/V or PLLA/SiV, respectively, to suppress early corrosion and improve its cytocompatibility. Both coating films adhered to the Mg substrate with 2.3–2.8 MPa of tensile bonding strength. Soaking test for 7 days in α-modified minimum essential medium revealed that the morphological instability of the PLLA/V film caused a higher amount of Mg2+ ion to be released from the coating sample. On the other hand, in the case of the coating with the PLLA/SiV film, no morphological change even after the soaking test was observed, owing to the suppression of the degradation rate. In cell culture tests, the proliferation of mouse osteoblast-like cell (MC3T3-E1 was significantly enhanced by both coatings, in comparison with the uncoated magnesium substrate. The cell morphology revealed that a few less-spread cells were observed on the PLLA/V film, while more elongated cells were done on the PLLA/SiV film. The cells on the PLLA/SiV film exhibited an extremely higher alkaline phosphatase activity after 21 days of incubation than that on the PLLA/V one. The PLLA/SiV film suppressed the early corrosion and enhanced cytocompatibility on metallic magnesium.

  12. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents.

    Science.gov (United States)

    Gu, Xinzhu; Mao, Zhongwei; Ye, Sang-Ho; Koo, Youngmi; Yun, Yeoheung; Tiasha, Tarannum R; Shanov, Vesselin; Wagner, William R

    2016-08-01

    Vascular stent design continues to evolve to further improve the efficacy and minimize the risks associated with these devices. Drug-eluting coatings have been widely adopted and, more recently, biodegradable stents have been the focus of extensive evaluation. In this report, biodegradable elastomeric polyurethanes were synthesized and applied as drug-eluting coatings for a relatively new class of degradable vascular stents based on Mg. The dynamic degradation behavior, hemocompatibility and drug release were investigated for poly(carbonate urethane) urea (PCUU) and poly(ester urethane) urea (PEUU) coated magnesium alloy (AZ31) stents. Poly(lactic-co-glycolic acid) (PLGA) coated and bare stents were employed as control groups. The PCUU coating effectively slowed the Mg alloy corrosion in dynamic degradation testing compared to PEUU-coated, PLGA-coated and bare Mg alloy stents. This was confirmed by electron microscopy, energy-dispersive x-ray spectroscopy and magnesium ion release experiments. PCUU-coating of AZ31 was also associated with significantly reduced platelet adhesion in acute blood contact testing. Rat vascular smooth muscle cell (rSMC) proliferation was successfully inhibited when paclitaxel was released from pre-loaded PCUU coatings. The corrosion retardation, low thrombogenicity, drug loading capacity, and high elasticity make PCUU an attractive option for drug eluting coating on biodegradable metallic cardiovascular stents. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, R.F. [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Zhang, S.F., E-mail: zhangshufang790314@sina.com [Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China); Yang, N.; Yao, L.J.; He, F.X.; Zhou, Y.P.; Xu, X.; Chang, L.; Bai, S.J. [School of Material Science and Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013 (China)

    2012-10-25

    Highlights: Black-Right-Pointing-Pointer 8-HQ can promote the coating formation and change the coating color. Black-Right-Pointing-Pointer 8-HQ can increase the coating thickness and decrease the pore size. Black-Right-Pointing-Pointer Insoluble Mg(HQ){sub 2} is formed in anodic coatings in an alkaline solution with 8-HQ. Black-Right-Pointing-Pointer 8-HQ improves the corrosion resistance of the anodized magnesium alloys. - Abstract: The influence of 8-hydroxyquinoline (8-HQ) on formation and properties of anodic coatings obtained by micro arc oxidation (MAO) on AZ91 magnesium alloys was studied by scanning electron microscope (SEM), energy dispersive spectrometry (EDS), Fourier transform infrared (FT-IR) spectroscopy and potentiodynamic polarization tests. The results demonstrate that 8-HQ can decrease the solution conductivity, take part in the coating formation and change the coating color. By developing anodic coatings with increasing thickness, insoluble Mg(HQ){sub 2} and small pore size, 8-HQ improves the corrosion resistance of the anodized magnesium alloys. The coating shows the best corrosion resistance in the solution of 10 g/L NaOH and 18 g/L Na{sub 2}SiO{sub 3} with 2 g/L 8-HQ.

  14. A dual-task design of corrosion-controlling and osteo-compatible hexamethylenediaminetetrakis- (methylene phosphonic acid) (HDTMPA) coating on magnesium for biodegradable bone implants application.

    Science.gov (United States)

    Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang

    2015-05-01

    Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application. © 2014 Wiley Periodicals, Inc.

  15. Corrosion and erosion properties of silicate and phosphate coatings on magnesium

    International Nuclear Information System (INIS)

    Ma, Y.; Nie, X.; Northwood, D.O.; Hu, H.

    2004-01-01

    Electrolytic plasma processing (EPP) is an emerging, environmentally friendly, surface engineering technique. In this study, we have utilized the EPP technique to deposit silicate and phosphate coatings on magnesium for both corrosion and erosion protection. Potentiodynamic polarization measurements were used to investigate the corrosion properties of the coated samples. A stirring device was also used for corrosion and erosion testing. Coated and uncoated samples were immersed in a 3.5 wt.% NaCl solution with SiO 2 sand in suspension and rotated at a given speed. Scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis were used to study surface morphology and chemical composition of the coatings before and after corrosion-erosion testing

  16. Corrosion protection and improved cytocompatibility of biodegradable polymeric layer-by-layer coatings on AZ31 magnesium alloys.

    Science.gov (United States)

    Ostrowski, Nicole; Lee, Boeun; Enick, Nathan; Carlson, Benjamin; Kunjukunju, Sangeetha; Roy, Abhijit; Kumta, Prashant N

    2013-11-01

    Composite coatings of electrostatically assembled layer-by-layer anionic and cationic polymers combined with an Mg(OH)2 surface treatment serve to provide a protective coating on AZ31 magnesium alloy substrates. These ceramic conversion coating and layer-by-layer polymeric coating combinations reduced the initial and long-term corrosion progression of the AZ31 alloy. X-ray diffraction and Fourier transform infrared spectroscopy confirmed the successful application of coatings. Potentiostatic polarization tests indicate improved initial corrosion resistance. Hydrogen evolution measurements over a 2 week period and magnesium ion levels over a 1 week period indicate longer range corrosion protection and retention of the Mg(OH)2 passivation layer in comparison to the uncoated substrates. Live/dead staining and DNA quantification were used as measures of biocompatibility and proliferation while actin staining and scanning electron microscopy were used to observe the cellular morphology and integration with the coated substrates. The coatings simultaneously provided improved biocompatibility, cellular adhesion and proliferation in comparison to the uncoated alloy surface utilizing both murine pre-osteoblast MC3T3 cells and human mesenchymal stem cells. The implementation of such coatings on magnesium alloy implants could serve to improve the corrosion resistance and cellular integration of these implants with the native tissue while delivering vital drugs or biological elements to the site of implantation. Copyright © 2013. Published by Elsevier Ltd.

  17. Comparative study on the biodegradation and biocompatibility of silicate bioceramic coatings on biodegradable magnesium alloy as biodegradable biomaterial

    Science.gov (United States)

    Razavi, M.; Fathi, M. H.; Savabi, O.; Razavi, S. M.; Hashemibeni, B.; Yazdimamaghani, M.; Vashaee, D.; Tayebi, L.

    2014-03-01

    Many clinical cases as well as in vivo and in vitro assessments have demonstrated that magnesium alloys possess good biocompatibility. Unfortunately, magnesium and its alloys degrade too quickly in physiological media. In order to improve the biodegradation resistance and biocompatibility of a biodegradable magnesium alloy, we have prepared three types of coating include diopside (CaMgSi2O6), akermanite (Ca2MgSi2O6) and bredigite (Ca7MgSi4O16) coating on AZ91 magnesium alloy through a micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method. In this research, the biodegradation and biocompatibility behavior of samples were evaluated in vitro and in vivo. The in vitro analysis was performed by cytocompatibility and MTT-assay and the in vivo test was conducted on the implantation of samples in the greater trochanter of adult rabbits. The results showed that diopside coating has the best bone regeneration and bredigite has the best biodegradation resistance compared to others.

  18. Characterization of Porous Phosphate Coatings Enriched with Magnesium or Zinc on CP Titanium Grade 2 under DC Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Krzysztof Rokosz

    2018-02-01

    Full Text Available The aim of the paper is to study and determine the effect of voltage increasing from 500 up to 650 VDC on chemical and electrochemical properties of the obtained porous coatings with plasma electrolytic oxidation (PEO processes, known also as micro arc oxidation (MAO. In the present paper, the chemical and electrochemical characterization of porous phosphate coatings enriched with magnesium or zinc on commercially pure (CP Titanium Grade 2 under DC-PEO obtained in electrolytes based on concentrated 85% analytically pure H3PO4 (98 g/mole acid with additions of 500 g·L−1 of zinc nitrate Zn(NO32∙6H2O or magnesium nitrate Mg(NO32∙6H2O, are described. These materials were characterized using scanning electron microscope (SEM with energy-dispersive X-ray spectroscopy (EDS, X-ray photoelectron spectroscopy (XPS and glow discharge optical emission spectroscopy (GDOES. It was found that the voltage of PEO process has influence on the chemical composition and thickness of the obtained porous coatings as well as on their electrochemical behavior. The higher the potential of PEO treatment, the higher the amount of zinc-to-phosphorus ratio for zinc enriched coatings was obtained, whereas in magnesium enriched coatings, the average amount of magnesium detected in PEO coating is approximately independent of the PEO voltages. Based on XPS studies, it was found out that most likely the top 10 nm of porous coatings is constructed of titanium (Ti4+, magnesium (Mg2+, zinc (Zn2+, and phosphates PO43− and/or HPO42− and/or H2PO4− and/or P2O74−. On the basis of GDOES studies, a four-sub-layer model of PEO coatings is proposed. Analysis of the potentiodynamic corrosion curves allowed to conclude that the best electrochemical repeatability was noted for magnesium and zinc enriched coatings obtained at 575 VDC.

  19. Application of electroless Ni-P coating on magnesium alloy via CrO3/HF free titanate pretreatment

    Science.gov (United States)

    Rajabalizadeh, Z.; Seifzadeh, D.

    2017-11-01

    The titanate conversion coating was applied as CrO3/HF free pretreatment for the electroless Ni-P plating on AM60B magnesium alloy. The microscopic images revealed that the alloy surface was completely covered by a cracked conversion film after titanate pretreatment which was mainly composed of Mg(OH)2/MgO, MgF2, TiO2, SiO2, and Al2O3/Al(OH)3. The microscopic images also revealed that numerous Ni nucleation centers were formed over the titanate film after short electroless plating times. The nucleation centers were created not only on the cracked area but also over the whole pretreated surface due to the catalytic action of the titanate film. Also, uniform, dense, and defect-free Ni-P coating with fine structure was achieved after 3 h plating. The Ni-P coating showed mixed crystalline-amorphous structure due to its moderate phosphorus content. The results of two traditional corrosion monitoring methods indicated that the Ni-P coating significantly increases the corrosion resistance of the magnesium alloy. Moreover, Electrochemical Noise (EN) method was used as a non-polarized technique to study the corrosion behavior of the electroless coating at different immersion times. The results of the EN tests were clearly showed the localized nature of the corrosion process. Micro-hardness value of the magnesium alloy was remarkably enhanced after the electroless plating. Finally, suitable adhesion between the Ni-P coating and the magnesium alloy substrate was confirmed by thermal shock and pull-off-adhesion tests.

  20. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Liyanaarachchi, S.; Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au

    2012-09-30

    Polylactic acid (PLA) was coated on a biodegradable magnesium alloy, AZ91, using spin coating technique for temporary implant applications. The degradation behaviour of the coated alloy samples was evaluated using electrochemical impedance spectroscopy (EIS) method in simulated body fluid (SBF). EIS results suggested that the PLA coating enhanced the degradation resistance of the alloy significantly. Increase in the PLA coating thickness was found to increase the degradation resistance, but resulted in poor adhesion. Long-term EIS experiments of the PLA coated samples suggested that their degradation resistance gradually decreased with increase in SBF exposure time. However, the degradation resistance of the PLA coated samples was significantly higher than that of the bare metal even after a 48 h exposure to SBF. - Highlights: Black-Right-Pointing-Pointer Polylactic acid (PLA) was coated on a magnesium-based alloy. Black-Right-Pointing-Pointer PLA coating enhanced the in vitro degradation resistance of the alloy. Black-Right-Pointing-Pointer Increase in the PLA coating thickness improved the alloy degradation resistance. Black-Right-Pointing-Pointer Thin film PLA coating exhibited both good degradation resistance and adhesion.

  1. Polylactic acid coating on a biodegradable magnesium alloy: An in vitro degradation study by electrochemical impedance spectroscopy

    International Nuclear Information System (INIS)

    Alabbasi, Alyaa; Liyanaarachchi, S.; Kannan, M. Bobby

    2012-01-01

    Polylactic acid (PLA) was coated on a biodegradable magnesium alloy, AZ91, using spin coating technique for temporary implant applications. The degradation behaviour of the coated alloy samples was evaluated using electrochemical impedance spectroscopy (EIS) method in simulated body fluid (SBF). EIS results suggested that the PLA coating enhanced the degradation resistance of the alloy significantly. Increase in the PLA coating thickness was found to increase the degradation resistance, but resulted in poor adhesion. Long-term EIS experiments of the PLA coated samples suggested that their degradation resistance gradually decreased with increase in SBF exposure time. However, the degradation resistance of the PLA coated samples was significantly higher than that of the bare metal even after a 48 h exposure to SBF. - Highlights: ► Polylactic acid (PLA) was coated on a magnesium-based alloy. ► PLA coating enhanced the in vitro degradation resistance of the alloy. ► Increase in the PLA coating thickness improved the alloy degradation resistance. ► Thin film PLA coating exhibited both good degradation resistance and adhesion.

  2. Interface characterization of plasma sprayed hydroxy apatite coat on Ti-6 Al-4 V

    International Nuclear Information System (INIS)

    Ghorbani, M.; Afshar, A.; Ehsani, N.; Saeri, R.; Sorrell, C.C.

    2002-01-01

    Hydroxyapatite, a material proven to be biocompatible within the human body, has been produced to a high level of purity. This material has been applied as a coating on Ti-6 Al-4 V alloy by using the air plasma spraying technique.The coat was characterized with SEM, XRD, FTIR and Raman spectroscopy methods to consist of a mixture of calcium phosphates including H A mainly and traces of tricalcium phosphate, tetra calcium phosphate and calcium oxide phases. This H A phase was dehydrated and partially decomposed to oxy apatite and amorphous H A. EPMA method was used cross-sectionally on the interface in order to determine the depth profiles and elemental maps of Calcium, Phosphorous, Oxygen, Titanium, Vanadium and Aluminum elements.The results clearly showed to evidence of interdiffusion at the interface. Ultimately, the diffusion depth of each element was studied and compared with each other

  3. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun; Liu, Junyao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China)

    2015-10-30

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V{sup 5+}, V{sup 4+} and Mg(OH){sub 2}. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  4. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-01-01

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V"5"+, V"4"+ and Mg(OH)_2. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  5. Behaviors of MC3T3-E1 cells on carbonated apatite films, with a characteristic network structure, fabricated on a titanium plate by aqueous spray coating

    International Nuclear Information System (INIS)

    Mochizuki, Chihiro; Hara, Hiroki; Oya, Kei; Aoki, Shun; Hayakawa, Tohru; Fujie, Hiromichi; Sato, Mitsunobu

    2014-01-01

    Four carbonated apatite films having average thicknesses of 1.3–0.11 μm, proportions of network sizes above 10 μm of 41–68%, and average border heights of the characteristic network structure of 0.98–0.29 μm were fabricated on a titanium plate by aqueous spray coating. These carbonated apatite films after heat treatment showed good mineralization ability in Hanks' balanced salt solution. Assessment of initial cell attachment and calcination on these films and on the Ti plate using osteoblastic MC3T3-E1 indicated that the carbonated apatite film heat treated at 600 °C, whose film thickness, proportion of network sizes above 10 μm, and border height were 0.11 μm, 61%, and 0.31 μm, respectively, was most preferred by osteoblastic cells. Field emission scanning electron microscopic observation of the cells attached to the films showed that the wide network and low border height of the network structure on the carbonated apatite film play an important role in the development of the filopodia of the osteoblastic cells. - Highlights: • Osteoblastic MC3T3-E1 behaviors on aqueous spray coating-derived carbonated apatite (CA) films • The network size of CA films is important. • CA films having a low network border height are better for cell proliferation

  6. Behaviors of MC3T3-E1 cells on carbonated apatite films, with a characteristic network structure, fabricated on a titanium plate by aqueous spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Chihiro; Hara, Hiroki [Division of Liberal Arts, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Oya, Kei [Research Institute for Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); School of Engineering, Tokai University, 4-1-1 Kitakanane, Hiratsuka, Kanagawa 259-1292 (Japan); Aoki, Shun [Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065 (Japan); Hayakawa, Tohru [Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama City, Kanagawa 230-8501 (Japan); Fujie, Hiromichi [Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065 (Japan); Sato, Mitsunobu, E-mail: lccsato@cc.kogakuin.ac.jp [Division of Liberal Arts, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)

    2014-06-01

    Four carbonated apatite films having average thicknesses of 1.3–0.11 μm, proportions of network sizes above 10 μm of 41–68%, and average border heights of the characteristic network structure of 0.98–0.29 μm were fabricated on a titanium plate by aqueous spray coating. These carbonated apatite films after heat treatment showed good mineralization ability in Hanks' balanced salt solution. Assessment of initial cell attachment and calcination on these films and on the Ti plate using osteoblastic MC3T3-E1 indicated that the carbonated apatite film heat treated at 600 °C, whose film thickness, proportion of network sizes above 10 μm, and border height were 0.11 μm, 61%, and 0.31 μm, respectively, was most preferred by osteoblastic cells. Field emission scanning electron microscopic observation of the cells attached to the films showed that the wide network and low border height of the network structure on the carbonated apatite film play an important role in the development of the filopodia of the osteoblastic cells. - Highlights: • Osteoblastic MC3T3-E1 behaviors on aqueous spray coating-derived carbonated apatite (CA) films • The network size of CA films is important. • CA films having a low network border height are better for cell proliferation.

  7. Corrosion Behavior and Microhardness of Ni-P-SiO2-Al2O3 Nano-composite Coatings on Magnesium Alloy

    Science.gov (United States)

    Sadreddini, S.; Rahemi Ardakani, S.; Rassaee, H.

    2017-05-01

    In the present work, nano-composites of Ni-P-SiO2-Al2O3 were coated on AZ91HP magnesium alloy. The surface morphology of the nano-composite coating was studied by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was determined by energy-dispersive analysis of x-ray (EDX), and the crystalline structure of the coating was examined by x-ray diffractometer (XRD). All the experiments concerning the corrosion behavior of the coating carried out in 3.5 wt.% NaCl solution and evaluated by electrochemical impedance spectroscopy (EIS) and polarization technique. The results showed that an incorporation of SiO2 and Al2O3 in Ni-P coating at the SiO2 concentration of 10 g/Land 14 g/LAl2O3 led to the lowest corrosion rate ( i corr = 1.3 µA/cm2), the most positive E corr and maximum microhardness (496 VH). Furthermore, Ni-P-SiO2-Al2O3 nano-composite coating possesses less porosity than that in Ni-P coating, resulting in improving corrosion resistance.

  8. Porous SiO{sub 2} nanofiber grafted novel bioactive glass–ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant

    Energy Technology Data Exchange (ETDEWEB)

    Das, Indranee [Nano-Structured Materials Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); De, Goutam, E-mail: gde@cgcri.res.in [Nano-Structured Materials Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Hupa, Leena [Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo (Finland); Vallittu, Pekka K. [Turku Clinical Biomaterials Centre—TCBC, University of Turku, FI-20520 Turku (Finland); Institute of Dentistry, University of Turku, Department of Biomaterials Science and City of Turku, Welfare Division, Turku (Finland)

    2016-05-01

    A composite bioactive glass–ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. - Highlights: • Fabricated porous SiO{sub 2} nanofibers grafted composite bioactive glass–ceramic coating on inert glass. • The newly engineered coating facilitates uniformly dense apatite precipitation. • Embedded porous silica nanofibers enhance hydrophilicity of the coated surface. • Cells proliferate well on the entire coating following a particular orientation by the assistance of nanofibers. • The coatings have potential to be used as biological scaffold on the surface of implants.

  9. Preparation and corrosion resistance of electroless Ni-P/SiC functionally gradient coatings on AZ91D magnesium alloy

    Science.gov (United States)

    Wang, Hui-Long; Liu, Ling-Yun; Dou, Yong; Zhang, Wen-Zhu; Jiang, Wen-Feng

    2013-12-01

    In this paper, the protective electroless Ni-P/SiC gradient coatings on AZ91D magnesium alloy substrate were successfully prepared. The prepared Ni-P/SiC gradient coatings were characterized for its microstructure, morphology, microhardness and adhesion to the substrate. The deposition reaction kinetics was investigated and an empirical rate equation for electroless Ni-P/SiC plating on AZ91D magnesium alloy was developed. The anticorrosion properties of the Ni-P/SiC gradient coatings in 3.5 wt.% NaCl solution were evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies. The potentiodynamic polarization measurements revealed that the SiC concentration in the bath and heat treatment can influence the corrosion protection performance of electroless deposited Ni-P/SiC gradient coatings. EIS studies indicated that higher charge transfer resistance and slightly lower capacitance values were obtained for Ni-P/SiC gradient coatings compared to Ni-P coatings. The corrosion resistance of the Ni-P/SiC gradient coatings increases initially and decreases afterwards with the sustained increasing of immersion time in the aggressive medium. The electroless Ni-P/SiC gradient coatings can afford better corrosion protection for magnesium alloy substrate compared with Ni-P coatings.

  10. Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model.

    Science.gov (United States)

    Rahim, Muhammad Imran; Tavares, Ana; Evertz, Florian; Kieke, Marc; Seitz, Jan-Marten; Eifler, Rainer; Weizbauer, Andreas; Willbold, Elmar; Jürgen Maier, Hans; Glasmacher, Birgit; Behrens, Peter; Hauser, Hansjörg; Mueller, Peter P

    2017-08-01

    Magnesium alloys have promising mechanical and biological properties for the development of degradable implants. However, rapid implant corrosion and gas accumulations in tissue impede clinical applications. With time, the implant degradation rate is reduced by a highly biocompatible, phosphate-containing corrosion layer. To circumvent initial side effects after implantation it was attempted to develop a simple in vitro procedure to generate a similarly protective phosphate corrosion layer. To this end magnesium samples were pre-incubated in phosphate solutions. The resulting coating was well adherent during routine handling procedures. It completely suppressed the initial burst of corrosion and it reduced the average in vitro magnesium degradation rate over 56 days almost two-fold. In a small animal model phosphate coatings on magnesium implants were highly biocompatible and abrogated the appearance of gas cavities in the tissue. After implantation, the phosphate coating was replaced by a layer with an elemental composition that was highly similar to the corrosion layer that had formed on plain magnesium implants. The data demonstrate that a simple pre-treatment could improve clinically relevant properties of magnesium-based implants. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1622-1635, 2017. © 2016 Wiley Periodicals, Inc.

  11. Preformulation Studies for Generic Omeprazole Magnesium Enteric Coated Tablets

    Directory of Open Access Journals (Sweden)

    C. O. Migoha

    2015-01-01

    Full Text Available Preformulation is an important step in the rational formulation of an active pharmaceutical ingredient (API. Micromeritics properties: bulk density (BD and tapped density (TD, compressibility index (Carr’s index, Hauser’s ratio (H, and sieve analysis were performed in order to determine the best excipients to be used in the formulation development of omeprazole magnesium enteric coated tablets. Results show that omeprazole magnesium has fair flow and compressibility properties (BD 0.4 g/mL, TD 0.485 g/mL, Carr’s index 17.5%, Hauser’s ratio 1.2, and sieve analysis time 5 minutes. There were no significant drug excipient interactions except change in colour in all three conditions in the mixture of omeprazole and aerosil 200. Moisture content loss on drying in all three conditions was not constant and the changes were attributed to surrounding environment during the test time. Changes in the absorption spectra were noted in the mixture of omeprazole and water aerosil only in the visible region of 350–2500 nm. Omeprazole magnesium alone and with all excipients showed no significant changes in omeprazole concentration for a 30-day period. Omeprazole magnesium formulation complies with USP standards with regards to the fineness, flowability, and compressibility of which other excipients can be used in the formulation.

  12. Magnesium Coated Bioresorbable Phosphate Glass Fibres: Investigation of the Interface between Fibre and Polyester Matrices

    Directory of Open Access Journals (Sweden)

    Xiaoling Liu

    2013-01-01

    Full Text Available Bioresorbable phosphate glass fibre reinforced polyester composites have been investigated as replacement for some traditional metallic orthopaedic implants, such as bone fracture fixation plates. However, composites tested revealed loss of the interfacial integrity after immersion within aqueous media which resulted in rapid loss of mechanical properties. Physical modification of fibres to change fibre surface morphology has been shown to be an effective method to improve fibre and matrix adhesion in composites. In this study, biodegradable magnesium which would gradually degrade to Mg2+ in the human body was deposited via magnetron sputtering onto bioresorbable phosphate glass fibres to obtain roughened fibre surfaces. Fibre surface morphology after coating was observed using scanning electron microscope (SEM. The roughness profile and crystalline texture of the coatings were determined via atomic force microscope (AFM and X-ray diffraction (XRD analysis, respectively. The roughness of the coatings was seen to increase from 40±1 nm to 80±1 nm. The mechanical properties (tensile strength and modulus of fibre with coatings decreased with increased magnesium coating thickness.

  13. In vivo study of nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on magnesium alloy as biodegradable orthopedic implants

    Energy Technology Data Exchange (ETDEWEB)

    Razavi, Mehdi, E-mail: mrzavi2659@gmail.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Savabi, Omid [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Razavi, Seyed Mohammad [School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Heidari, Fariba; Manshaei, Maziar [Torabinejad Dental Research Center, School of Dentistry, Isfahan University of Medical Sciences, Isfahan 81746-73461 (Iran, Islamic Republic of); Vashaee, Daryoosh [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@okstate.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States)

    2014-09-15

    Highlights: • In vitro biocompatibility of biodegradable Mg alloy was improved by diopside coating. • In vivo biocompatibility of biodegradable Mg alloy was improved by diopside coating. • Degradation behavior of biodegradable Mg alloy was improved by diopside coating. - Abstract: In order to improve the corrosion resistance and bioactivity of a biodegradable magnesium alloy, we have recently prepared a nanostructured diopside (CaMgSi{sub 2}O{sub 6}) coating on AZ91 magnesium alloy through a combined micro-arc oxidation (MAO) and electrophoretic deposition (EPD) method (reported elsewhere). In this work, we performed a detailed biocompatibility analysis of the implants made by this material and compared their performance with those of the uncoated and micro arc oxidized magnesium implants. The biocompatibility evaluation of samples was performed by culturing L-929 cells and in vivo animal study, including implantation of samples in greater trochanter of rabbits, radiography and histological examinations. The results from both the in vitro and in vivo studies indicated that the diopside/MAO coated magnesium implant significantly enhanced cell viability, biodegradation resistance and new bone formation compared with both the uncoated and the micro-arc oxidized magnesium implants. Our data provides an example of how the proper surface treatment of magnesium implants can overcome their drawbacks in terms of high degradation rate and gas bubble formation under physiological conditions.

  14. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    Energy Technology Data Exchange (ETDEWEB)

    Cai Jingshun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Cao Fahe, E-mail: nelson_cao@zju.edu.cn [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Chang Linrong; Zheng Junjun [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); Zhang Jianqing; Cao Chunan [Department of Chemistry, Zhejiang University, Zheda Road 38, Hangzhou, Zhejiang 310027 (China); State Key Laboratory for Corrosion and Protection, Institute of Metal Research, The Chinese Academy of Sciences, Shenyang 110016 (China)

    2011-02-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  15. The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film

    International Nuclear Information System (INIS)

    Cai Jingshun; Cao Fahe; Chang Linrong; Zheng Junjun; Zhang Jianqing; Cao Chunan

    2011-01-01

    A novel kind of micro-arc oxidation (MAO) coating was prepared on magnesium alloy surface coated with rare earth conversion film (RE-film) in an alkaline aluminum oxidation electrolyte by AC power source. Inspection of scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) microspectroscopy, the structure and composition of MAO coating formed on AZ91D with RE-film under different applied voltages were investigated and the performance of the optimized MAO coating compared with the MAO coating directly formed on magnesium alloy. As the pretreatment of magnesium alloy with RE-film, the cerium oxides can be incorporated into the MAO coatings, reduce porosity of the MAO coating surface and enhance the thickness of MAO coating. These structure features and the cerium oxides incorporated into the MAO coating result in greatly improved corrosion resistance. Base on electrochemistry impedance spectroscopy (EIS) measurement, the electronic structure and composition analysis of the MAO coating, a double-layer structure, with a compact inner layer and a porous outer layer, of the coating was proposed for understanding its corrosion process.

  16. The oxidation state of sulfur in apatite: A new oxybarometer?

    Science.gov (United States)

    Fiege, A.; Konecke, B.; Kim, Y.; Simon, A. C.; Becker, U.; Parat, F.

    2016-12-01

    Oxygen fugacity (fO2) of magmatic and hydrothermal systems influences, for instance, crystallization and degassing processes as well as metal solubilities in melts and fluids. Apatite is a ubiquitous mineral in magmatic and hydrothermal environments that can record and preserve volatile zonation. It can contain several thousand μg/g of the redox sensitive element sulfur (S), making S-in-apatite a potential fO2 sensor. Despite the polyvalent properties of S (e.g., S2-, S4+, S6+), the oxidation state and incorporation mechanisms of S in the apatite structure are poorly understood. In this study, the oxidation state of S-in-apatite as a function of fO2 is investigated using X-ray absorption near-edge structures (XANES) spectroscopy at the S K-edge. Apatites crystallized from lamproitic melts at 1000°C, 300 MPa and over a broad range of fO2 and sulfur fugacities (fS2) were measured. Peaks corresponding to S6+ ( 2482 eV), S4+ ( 2478 eV) and S2- ( 2470 eV) were identified in apatite. The integrated S6+/STotal (STotal = S6+ + S4+ + S2-) peak area ratios show a distinct positive correlation with fO2, increasing from 0.17 at FMQ+0 to 0.96 at FMQ+3. Ab-initio calculations were performed to further understand the energetics and geometry of incorporation of S6+, S4+ and S2- into the apatite (F-, Cl-, OH-) end-members. The results confirm that apatite can contain three different oxidations states of S (S6+, S4+, S2-) as a function of fO2. This makes apatite probably the first geologically relevant mineral to incorporate reduced (S2-), intermediate (S4+), and oxidized (S6+) S in variable proportions. We emphasize that the strong dependence of the S oxidation state in apatite as a function of fO2 is also coupled with changing S content of apatite and co-existing melt (i.e., with changing fS2), resulting in a complex correlation between [1] apatite-melt (or fluid) partitioning, [2] redox conditions and [3] the melt and/or fluid composition, making the application of previously

  17. Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition

    International Nuclear Information System (INIS)

    Zhu, Rundong; Li, Zhiyong; Li, Xiaoxi; Sun, Qi

    2015-01-01

    Highlights: • The low-power-laser was used to obtain the excellent coatings with different amount of Y_2O_3 addition. • The addition of rare earth oxide Y_2O_3 refined and purified the microstructure of the coatings, meanwhile, increased the thickness of the coatings and reduced the dilution of cladding materials from based alloy. • The primary phases in the coatings are Mg_3_2Al_4_7Cu_7, MgCu_6Al_5, Al_2CuMg and Al_1_2Mg_1_7. The A_l_4MgY and MgAl_2O_4 phase can be found in Y_2O_3-modified coatings. • The micro-hardness and the abrasion resistance of the coatings with Y_2O_3 had been improved obviously compared with the coatings without Y_2O_3. • The corrosion resistance of the AZ91D magnesium alloy had been improved by laser cladding. And the effect of Y_2O_3 on the corrosion potential of the coatings was less than the effect of Y_2O_3 on corrosion current density of the coatings. - Abstract: Due to the low-melting-point and high evaporation rate of magnesium at elevated temperature, high power laser clad coating on magnesium always causes subsidence and deterioration in the surface. Low power laser can reduce the evaporation effect while brings problems such as decreased thickness, incomplete fusion and unsatisfied performance. Therefore, low power laser with selected parameters was used in our research work to obtain Al–Cu coatings with Y_2O_3 addition on AZ91D magnesium alloy. The addition of Y_2O_3 obviously increases thickness of the coating and improves the melting efficiency. Furthermore, the effect of Y_2O_3 addition on the microstructure of laser clad Al–Cu coatings was investigated by scanning electron microscopy. The energy-dispersive spectrometer (EDS) and X-ray diffractometer (XRD) were used to examine the elemental and phase compositions of the coatings. The properties were investigated by micro-hardness test, dry wear test and electrochemical corrosion. It was found that the addition of Y_2O_3 refined the microstructure. The micro

  18. An efficient biomimetic coating methodology for a prosthetic alloy

    International Nuclear Information System (INIS)

    Adawy, Alaa; Abdel-Fattah, Wafa I.

    2013-01-01

    The combination of the load-bearing metallic implants with the bioactive materials in the design of synthetic implants is an important aspect in the biomaterials research. Biomimetic coating of bioinert alloys with calcium phosphate phases provides a good alternative to the prerequisite for the continual replacement of implants because of the failure of bone-implant integration. We attempted to accelerate the biomimetic coating process of stainless steel alloy (316L) with biomimetic apatite. In addition, we investigated the incorporation of functioning minerals such as strontianite and smithsonite into the deposited layer. In order to develop a highly mature apatite coating, our method requires soaking of the pre-treated alloy in highly concentrated synthetic body fluid for only few hours. Surface characterizations were performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). Also, the deposited apatitic layers were analysed by powder diffraction X-ray analysis (XRD). 316L surface showed the growth of highly crystalline, low carbonated hydroxyapatite, after only 6 h of the whole soaking process. Highlights: ► The manuscript describes a fast and efficient biomimetic coating methodology. ► This methodology can be used for metallic implants. ► 316L was coated with crystalline hydroxyapatite. ► Addition of strontium and zinc lead to the deposition of brushite. ► Coating of all synthetic solutions is highly crystalline

  19. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    Science.gov (United States)

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  20. MoO3 incorporation in magnesium aluminosilicate glasses

    International Nuclear Information System (INIS)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-01-01

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO 3 ) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO 3 can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO 3 increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO 4 2− units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO 4

  1. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells.

    Science.gov (United States)

    Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu; Liu, Huinan

    2015-05-01

    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium-yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium-yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed using scanning electron microscopy and quantitative image analysis tools. Surface elemental compositions and phases were analyzed using energy dispersive X-ray spectroscopy and X-ray diffraction, respectively. The deposited nCaP coatings showed a homogeneous particulate surface with the dominant feature size of 200-500 nm in the long axis and 100-300 nm in the short axis, and a Ca/P atomic ratio of 1.5-1.6. Hydroxyapatite was the major phase identified in the nCaP coatings. The modulatory effects of nCaP coatings on the sample degradation and BMSC behaviors were dependent on the substrate composition and surface conditions. The direct culture of BMSCs in vitro indicated that multiple factors, including surface composition and topography, and the degradation-induced changes in media composition, influenced cell adhesion directly on the sample surface, and indirect adhesion surrounding the sample in the same culture. The alkaline pH, the indicator of Mg degradation, played a role in BMSC adhesion and morphology, but not the sole factor. Additional studies are necessary to elucidate BMSC responses to each contributing factor.

  2. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    International Nuclear Information System (INIS)

    Anandan, C.; Mohan, L.; Babu, P. Dilli

    2014-01-01

    Highlights: • Titanium alloy β21S was coated with Mo doped DLC. • XRD, XPS and micro Raman show that Mo is present in the form of carbide. • Mo doping facilitates apatite growth on DLC during immersion in Hanks’ solution. • Mo doped DLC sample shows better passivation behavior in Hanks’ solution. - Abstract: Titanium alloy β-21S (Ti–15Mo–3Nb–3Al–0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks’ solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks’ solution

  3. Electrochemical studies and growth of apatite on molybdenum doped DLC coatings on titanium alloy β-21S

    Energy Technology Data Exchange (ETDEWEB)

    Anandan, C., E-mail: canandan@nal.res.in; Mohan, L.; Babu, P. Dilli

    2014-03-01

    Highlights: • Titanium alloy β21S was coated with Mo doped DLC. • XRD, XPS and micro Raman show that Mo is present in the form of carbide. • Mo doping facilitates apatite growth on DLC during immersion in Hanks’ solution. • Mo doped DLC sample shows better passivation behavior in Hanks’ solution. - Abstract: Titanium alloy β-21S (Ti–15Mo–3Nb–3Al–0.2Si) was coated with molybdenum doped DLC by Plasma-enhanced chemical vapor deposition and sputtering. XRD, XPS and Raman spectroscopy show that Mo is present in the form of carbide in the coating. XPS of samples immersed in Hanks’ solution shows presence of calcium, phosphorous and oxygen in hydroxide/phosphate form on the substrate and Mo-doped DLC. Potentiodynamic polarization studies show that the corrosion resistance and passivation behavior of Mo-doped DLC is better than that of substrate. Electrochemical impedance spectroscopy (EIS) studies show that Mo-doped DLC samples behave like an ideal capacitor in Hanks’ solution.

  4. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    OpenAIRE

    Seyed Rahim Kiahosseini; Abdollah Afshar; Majid Mojtahedzadeh Larijani; Mardali Yousefpour

    2015-01-01

    Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA) coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion...

  5. Anti-corrosion mechanism of epoxy-resin and different content Fe2O3 coatings on magnesium alloy

    Science.gov (United States)

    Jin, Tao; Kong, Fan-mei; Bai, Rui-qin; Zhang, Ru-liang

    2016-12-01

    In this study, anti-corrosion coatings were prepared and coated successfully on magnesium alloy substrates by mixing nanopowders, solvent, curing agent with epoxy resin. The effect of the amount of iron trioxide (Fe2O3) on the adhesion strength and corrosion resistance on magnesium alloy was investigated with standard protocols, and electrochemical measurements were also made in 3.5 wt.% NaCl solutions. The surface morphology and corrosion mechanism after corrosion tests was characterized using FESEM analysis. Nanoparticles in matrix acted as filler, and interstitial cross-linked spaces and other coating artifacts regions (micro cracks and voids) would all affect the anti-corrosion properties of coating. The results showed the proper powder content not only provided adhesion strength to these coatings but also improved obviously their anticorrosion. Hydrogen bound to the amine nitrogen (1N) could take part in the curing process rather than hydrogen of the amide site due to the smaller Δ G and the more stable configuration.

  6. Electrochemical corrosion behavior of composite MAO/sol-gel coatings on magnesium alloy AZ91D using combined micro-arc oxidation and sol-gel technique

    International Nuclear Information System (INIS)

    Shang Wei; Chen Baizhen; Shi Xichang; Chen Ya; Xiao Xiang

    2009-01-01

    Protective composite coatings were obtained on a magnesium alloy by micro-arc oxidation (MAO) and sol-gel technique. The coatings consisted of a MAO layer and a sol-gel layer. The microstructure and composition of the MAO coating and the composite coatings were analyzed by scanning electron microscopy (SEM) and energy dispersive X-rays (EDX). Potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and total immersion tests were used to evaluate the corrosion behavior of these coatings in a 3.5 wt.% NaCl solution. The results show that the sol-gel layer provides corrosion protection by physically sealing the pores in the MAO coating and acting as a barrier. The composite coatings can suppress the corrosion process by preventing the corrosive ions from transferring or diffusing to the magnesium alloy substrate. This enhances the corrosion resistance of the magnesium alloy AZ91D significantly

  7. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Energy Technology Data Exchange (ETDEWEB)

    Rojaee, Ramin, E-mail: raminrojaee@aim.com [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Fathi, Mohammadhossein [Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of); Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan (Iran, Islamic Republic of); Raeissi, Keyvan [Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 (Iran, Islamic Republic of)

    2013-11-15

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF{sub 2} conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  8. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    International Nuclear Information System (INIS)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-01-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF 2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  9. Electrophoretic deposition of nanostructured hydroxyapatite coating on AZ91 magnesium alloy implants with different surface treatments

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2013-11-01

    Bio-absorbable magnesium (Mg) based alloys have been introduced as innovative orthopedic implants during recent years. It has been specified that rapid degradation of Mg based alloys in physiological environment should be restrained in order to be utilized in orthopedic trauma fixation and vascular intervention. In this developing field of healthcare materials, micro-arc oxidation (MAO), and MgF2 conversion coating were exploited as surface pre-treatment of AZ91 magnesium alloy to generate a nanostructured hydroxyapatite (n-HAp) coating via electrophoretic deposition (EPD) method. X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), and transmission electron microscopy (TEM) techniques were used to characterize the obtained powder and coatings. The potentiodynamic polarization tests were carried out to evaluate the corrosion behavior of the coated and uncoated specimens, and in vitro bioactivity evaluation were performed in simulated body fluid. Results revealed that the MAO/n-HAp coated AZ91 Mg alloy samples with a rough topography and lower corrosion current density leads to a lower Mg degradation rate accompanied by high bioactivity.

  10. Microstructure and properties of the low-power-laser clad coatings on magnesium alloy with different amount of rare earth addition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Rundong; Li, Zhiyong, E-mail: lizhiyong@nuc.edu.cn; Li, Xiaoxi; Sun, Qi

    2015-10-30

    Highlights: • The low-power-laser was used to obtain the excellent coatings with different amount of Y{sub 2}O{sub 3} addition. • The addition of rare earth oxide Y{sub 2}O{sub 3} refined and purified the microstructure of the coatings, meanwhile, increased the thickness of the coatings and reduced the dilution of cladding materials from based alloy. • The primary phases in the coatings are Mg{sub 32}Al{sub 47}Cu{sub 7}, MgCu{sub 6}Al{sub 5}, Al{sub 2}CuMg and Al{sub 12}Mg{sub 17}. The A{sub l4}MgY and MgAl{sub 2}O{sub 4} phase can be found in Y{sub 2}O{sub 3}-modified coatings. • The micro-hardness and the abrasion resistance of the coatings with Y{sub 2}O{sub 3} had been improved obviously compared with the coatings without Y{sub 2}O{sub 3}. • The corrosion resistance of the AZ91D magnesium alloy had been improved by laser cladding. And the effect of Y{sub 2}O{sub 3} on the corrosion potential of the coatings was less than the effect of Y{sub 2}O{sub 3} on corrosion current density of the coatings. - Abstract: Due to the low-melting-point and high evaporation rate of magnesium at elevated temperature, high power laser clad coating on magnesium always causes subsidence and deterioration in the surface. Low power laser can reduce the evaporation effect while brings problems such as decreased thickness, incomplete fusion and unsatisfied performance. Therefore, low power laser with selected parameters was used in our research work to obtain Al–Cu coatings with Y{sub 2}O{sub 3} addition on AZ91D magnesium alloy. The addition of Y{sub 2}O{sub 3} obviously increases thickness of the coating and improves the melting efficiency. Furthermore, the effect of Y{sub 2}O{sub 3} addition on the microstructure of laser clad Al–Cu coatings was investigated by scanning electron microscopy. The energy-dispersive spectrometer (EDS) and X-ray diffractometer (XRD) were used to examine the elemental and phase compositions of the coatings. The properties were investigated

  11. Influence of chloride ion concentration on the electrochemical corrosion behaviour of plasma electrolytic oxidation coated AM50 magnesium alloy

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Dietzel, W.

    2010-01-01

    The electrochemical degradation of a silicate- and a phosphate-based plasma electrolytic oxidation (PEO) coated AM50 magnesium alloy obtained using a pulsed DC power supply was investigated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in NaCl solutions of different chloride ion concentrations viz., 0.01 M, 0.1 M, 0.5 M and 1 M. The surface of the PEO coated specimens after 50 h of immersion/EIS testing was examined by optical microscopy and scanning electron microscopy. The results showed that the corrosion deterioration of PEO coated magnesium alloy in NaCl solutions was significantly influenced by chloride ion concentration. The silicate-based coating was found to offer a superior corrosion resistance to the magnesium substrate than the phosphate-based coatings in lower chloride ion concentration NaCl solutions (0.01 M and 0.1 M NaCl). On the other hand both these PEO coatings were found to be highly susceptible to localized damage, and could not provide an effective corrosion protection to Mg alloy substrate in solutions containing higher chloride concentrations (0.5 M and 1 M). The extent of localized damage was observed to be more with increase in chloride concentration in both the cases.

  12. Dynamic behaviors of a Ca–P coated AZ31B magnesium alloy during in vitro and in vivo degradations

    International Nuclear Information System (INIS)

    Wang Qiang; Tan Lili; Xu Wenli; Zhang Bingchun; Yang Ke

    2011-01-01

    Surface modification can be an effective way to control the biodegradation behavior of magnesium alloys and even improve their biological properties. Much attention has been paid to the initial protection ability and biological properties of magnesium alloys coating. In this work, the dynamic behaviors of a Ca–P coated AZ31B magnesium alloy during the degradations in vitro and in vivo, including hemolysis, mechanical loading capability and implantation in animals, were investigated. The hemolytic rates of the alloy with and without coating were all declined to be lower than 5% after more than 20 days immersion in PBS, though an increase happened to the alloy at the early immersion of 3–7 days. Reduction of the mechanical loading capacity was gradually evolved for the coated alloy and the peak load retention of 85% was still maintained after 120 days degradation. The in vivo implantation indicated that the Ca–P coated AZ31B alloy showed a more suitable time dependent degradation behavior which was favorable for growth of the new tissue and the healing dynamics of bones, making it a promising choice for medical application.

  13. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Kuan-Chen [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China); Lee, Tzer-Min, E-mail: tmlee@mail.ncku.edu.t [Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan (China); Lui, Truan-Sheng [Department of Materials Science and Engineering, National Cheng Kung University, Tainan, Taiwan (China)

    2010-10-22

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E{sub corr}) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  14. Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation

    International Nuclear Information System (INIS)

    Kung, Kuan-Chen; Lee, Tzer-Min; Lui, Truan-Sheng

    2010-01-01

    Research highlights: The dental implant of titanium could be modified by anodic oxidation. It was found that incorporation of strontium ions into the matrix increase the bone formation. In this study, we try to investigate the effect of corrosion property and bioactivity on coatings containing strontium by anodic oxidation. The results suggest that coatings containing strontium on titanium by anodic oxidation has the potential to show the stability and bioactivity in the clinical use. - Abstract: Pure titanium (Ti) and titanium alloys are considered as bio-inert materials in clinical use. Bioactivity is the ability to induce bone-like apatite on the material surface. The micro-arc oxidation (MAO) technique is an effective method for improving the surface properties of titanium. The aim of this study was to investigate the bioactivity and corrosion behavior of MAO coatings containing strontium, which is beneficial for biological performance. The bioactivity of materials was evaluated based on the ability to induce a bond-like apatite layer on the surface in simulated body fluid (SBF), as proposed by Kokubo et al. After the materials were soaked in SBF for 1 day, precipitates formed on the surface of MAO coating. The surface of MAO coatings was completely covered with precipitates after 7 days. The precipitates, which were found to be composed of fiber structures, were identified as the apatite phase using thin film X-ray diffraction (TF-XRD). The results show that MAO coatings containing strontium can induce the formation of an apatite layer on their surface. In the potentiodynamic test, MAO coatings exhibited a more noble corrosion potential (E corr ) than that of titanium in SBF. In the passive region, the current density of MAO coatings was lower than that of titanium. All findings in this study indicated that MAO coatings containing strontium have good bioactivity and corrosion resistance for clinical applications.

  15. Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates

    Science.gov (United States)

    Kasioptas, Argyrios; Geisler, Thorsten; Perdikouri, Christina; Trepmann, Claudia; Gussone, Nikolaus; Putnis, Andrew

    2011-06-01

    Aragonite and calcite single crystals can be readily transformed into polycrystalline hydroxyapatite pseudomorphs by hydrothermal treatment in a (NH 4) 2HPO 4 solution. Scanning electron microscopy of the reaction products showed that the transformation of aragonite to apatite is characterised by the formation of a sharp interface between the two phases and by the development of intracrystalline porosity in the hydroxyapatite phase. In addition, electron backscattered diffraction (EBSD) imaging showed that the c-axis of apatite is predominantly oriented perpendicular to the reaction front with no crystallographic relationship to the aragonite lattice. However, the Ca isotopic composition of the parent aragonite, measured by thermal ionization mass spectrometry was inherited by the apatite product. Hydrothermal experiments conducted with use of phosphate solutions prepared with water enriched in 18O (97%) further revealed that the 18O from the solution is incorporated in the product apatite, as measured by micro-Raman spectroscopy. Monitoring the distribution of 18O with Raman spectroscopy was possible because the incorporation of 18O in the PO 4 group of apatite generates four new Raman bands at 945.8, 932, 919.7 and 908.8 cm -1, in addition to the ν1(PO 4) symmetric stretching band of apatite located at 962 cm -1, which can be assigned to four 18O-bearing PO 4 species. The relative intensities of these bands reflect the 18O content in the PO 4 group of the apatite product. By using equilibrated and non-equilibrated solutions, with respect to the 18O distribution between aqueous phosphate and water, we could show that the concentration of 18O in the apatite product is linked to the degree of 18O equilibration in the solution. The textural and chemical observations are indicative of a coupled mechanism of aragonite dissolution and apatite precipitation taking place at a moving reaction interface.

  16. Enhancement of the ALP activity of C3H10T1/2 cells by the combination of an oxysterol and apatite

    International Nuclear Information System (INIS)

    Son, Kyung Mi; Park, Hee Chul; Kim, Na Ryoung; Yang, Hyeong-Cheol; Lee, In-Seop

    2010-01-01

    Biomimetic apatite coating has been used to load osteogenic biomolecules onto the surface of titanium implants. Apatite on the surface of biomaterials is thought to function as a reservoir of biomolecules as well as enhancing osteoconductivity. In this study, 20α-hydroxycholesterol (20α-HC), an osteogenic oxysterol, was used to induce differentiation of a mouse embryo fibroblast cell line (C3H10T1/2) by loading the oxysterol on biomimetically coated apatite of titanium discs. We found that the phosphatase (alkaline phosphatase (ALP)) activity of 20α-HC was significantly higher with ascorbic acid than alone, suggesting a need for ascorbic acid as a co-factor. When 20α-HC was added into the apatite coating solution, the ALP activity of the C3H10T1/2 cells did not increase on the apatite surface, even in the presence of ascorbic acid. However, ALP activity increased dramatically when 20α-HC was loaded by volatilization of EtOH from the apatite coat after dipping discs in 20α-HC-dissolved EtOH. Interestingly, ascorbic acid was not needed for this increase in ALP activity, suggesting a synergistic effect of 20α-HC and apatite. The concentration of calcium ions, a major component of apatite, affected the osteogenic effect of 20α-HC, and the increase in ALP activity was attenuated by L-type calcium channel inhibitors, verapamil and nifedipine. These results demonstrate that calcium ions released from apatite are important in the synergistic effect of 20α-HC and apatite.

  17. Influence of Zeolite Coating on the Corrosion Resistance of AZ91D Magnesium Alloy

    OpenAIRE

    Banerjee, P. Chakraborty; Woo, Ren Ping; Grayson, Sam Matthew; Majumder, Amrita; Raman, R. K. Singh

    2014-01-01

    The protective performance of zeolite coating on AZ91D magnesium alloy was evaluated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution (NaCl). Electrical equivalent circuit (EEC) was developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and the chemical nature of the coating were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD...

  18. Laser cladding of Zr-based coating on AZ91D magnesium alloy for ...

    Indian Academy of Sciences (India)

    3Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, ... To improve the wear and corrosion resistance of AZ91D magnesium alloy, Zr-based coating made of ... process that lead to inflammatory cascades which reduce bio- ... tions regarding their application as protective films on load- ... Experimental.

  19. Influence of Zeolite Coating on the Corrosion Resistance of AZ91D Magnesium Alloy.

    Science.gov (United States)

    Banerjee, P Chakraborty; Woo, Ren Ping; Grayson, Sam Matthew; Majumder, Amrita; Raman, R K Singh

    2014-08-22

    The protective performance of zeolite coating on AZ91D magnesium alloy was evaluated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution (NaCl). Electrical equivalent circuit (EEC) was developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and the chemical nature of the coating were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. Post corrosion morphologies of the zeolite coated and the uncoated AZ91D alloy were investigated using SEM. The corrosion resistance of the zeolite coated specimen was at least one order of magnitude higher than the uncoated specimen.

  20. Micromorphological effect of calcium phosphate coating on compatibility of magnesium alloy with osteoblast

    Science.gov (United States)

    Hiromoto, Sachiko; Yamazaki, Tomohiko

    2017-12-01

    Octacalcium phosphate (OCP) and hydroxyapatite (HAp) coatings were developed to control the degradation speed and to improve the biocompatibility of biodegradable magnesium alloys. Osteoblast MG-63 was cultured directly on OCP- and HAp-coated Mg-3Al-1Zn (wt%, AZ31) alloy (OCP- and HAp-AZ31) to evaluate cell compatibility. Cell proliferation was remarkably improved with OCP and HAp coatings which reduced the corrosion and prevented the H2O2 generation on Mg alloy substrate. OCP-AZ31 showed sparse distribution of living cell colonies and dead cells. HAp-AZ31 showed dense and homogeneous distribution of living cells, with dead cells localized over and around corrosion pits, some of which were formed underneath the coating. These results demonstrated that cells were dead due to changes in the local environment, and it is necessary to evaluate the local biocompatibility of magnesium alloys. Cell density on HAp-AZ31 was higher than that on OCP-AZ31 although there was not a significant difference in the amount of Mg ions released in medium between OCP- and HAp-AZ31. The outer layer of OCP and HAp coatings consisted of plate-like crystal with a thickness of around 0.1 μm and rod-like crystals with a diameter of around 0.1 μm, respectively, which grew from a continuous inner layer. Osteoblasts formed focal contacts on the tips of plate-like OCP and rod-like HAp crystals, with heights of 2-5 μm. The spacing between OCP tips of 0.8-1.1 μm was wider than that between HAp tips of 0.2-0.3 μm. These results demonstrated that cell proliferation depended on the micromorphology of the coatings which governed spacing of focal contacts. Consequently, HAp coating is suitable for improving cell compatibility and bone-forming ability of the Mg alloy.

  1. Correction: Mutsuzaki, H., et al. Improved Bonding of Partially Osteomyelitic Bone to Titanium Pins Owing to Biomimetic Coating of Apatite. Int. J. Mol. Sci. 2013, 14, 24366–24379.

    Directory of Open Access Journals (Sweden)

    Hirotaka Mutsuzaki

    2014-05-01

    Full Text Available In the original version of the manuscript [1] there was an inadvertent error. The words “25 °C for 48 h” should be replaced with “25 °C for 24 h”. The authors carried out the coating experiments at 25 °C for 1, 3, 6, 12, 24 and 48 h. The apatite coatings formed at 25 °C for 24 and 48 h were found to be identical in physicochemical nature, which was revealed by SEM, EDX, XRD and chemical analysis. Thus, in the animal experiments, the authors used apatite-coated Ti pins fabricated at 25 °C for 24 h. Several corrections are thus required in the abstract, the main text, the figure legends, and the figures (Table 1. The authors would like to apologize for any inconvenience this may have caused to readers of the journal. [...

  2. Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance

    International Nuclear Information System (INIS)

    Guo, H.F.; An, M.Z.

    2005-01-01

    Micro-arc oxidization of AZ91D magnesium alloys was studied in solutions containing sodium aluminate and potassium fluoride at constant applied current densities. The influence of applied current densities, concentration and constituents of the electrolyte as well as treatment time on micro-arc oxidization process was investigated, respectively; surface morphology and phase structure were analyzed using scanning electron microscope (SEM) and X-ray powder diffraction (XRD). Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion resistance of ceramic coatings formed on magnesium alloys. XRD analyses indicate that the ceramic coatings fabricated on the surface of magnesium alloys by micro-arc oxidization are composed of spinel phase MgAl 2 O 4 and intermetallic phase Al 2 Mg; variation of treatment time arises no obvious difference to phase structure of the ceramic coatings. A few circular pores and micro-cracks are also observed to remain on the ceramic coating surface; the number of the pores is decreasing, while the diameter of the pores is apparently increasing with prolonging of treatment time. The corrosion resistance of ceramic coatings is improved more than 100 times compared with magnesium alloy substrate

  3. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    Directory of Open Access Journals (Sweden)

    Saita M

    2016-01-01

    Full Text Available Makiko Saita,1 Takayuki Ikeda,1,2 Masahiro Yamada,1,3 Katsuhiko Kimoto,4 Masaichi Chang-Il Lee,5 Takahiro Ogawa1 1Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; 2Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Yokosuka, Japan; 3Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; 4Department of Prosthodontics and Oral Rehabilitation, 5Yokosuka-Shonan Disaster Health Emergency Research Center and ESR Laboratories, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan Background: Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability.Methods and results: Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light were immersed in simulated body fluid (SBF for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition

  4. Structure, apatite inducing ability, and corrosion behavior of chitosan/halloysite nanotube coatings prepared by electrophoretic deposition on titanium substrate.

    Science.gov (United States)

    Molaei, A; Amadeh, A; Yari, M; Reza Afshar, M

    2016-02-01

    In this study chitosan/halloysite nanotube composite (CS/HNT) coatings were deposited by electrophoretic deposition (EPD) on titanium substrate. Using HNT particles were investigated as new substituents for carbon nanotubes (CNTs) in chitosan matrix coatings. The ability of chitosan as a stabilizing, charging, and blending agent for HNT particles was exploited. Furthermore, the effects of pH, electrophoretic bath, and sonicating duration were studied on the deposition of suspensions containing HNT particles. Microstructure properties of coatings showed uniform distribution of HNT particles in chitosan matrix to form smooth nanocomposite coatings. The zeta potential results revealed that at pH around 3 there is an isoelectric point for HNT and it would have cathodic and anionic states at pH values less and more than 3, respectively. Therefore, CS/HNT composite deposits were produced in the pH range of 2.5 to 3. The apatite inducing ability of chitosan-HNT composite coating assigned that HNT particles were biocompatible because they formed carbonated hydroxyapatite particles on CS/HNT coating in corrected simulated body fluid (C-SBF). Finally, electrochemical corrosion characterizations determined that corrosion resistance in CS/HNT coating has been improved compared to bare titanium substrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. In Vitro Corrosion and Cytocompatibility of ZK60 Magnesium Alloy Coated with Hydroxyapatite by a Simple Chemical Conversion Process for Orthopedic Applications

    Science.gov (United States)

    Wang, Bing; Huang, Ping; Ou, Caiwen; Li, Kaikai; Yan, Biao; Lu, Wei

    2013-01-01

    Magnesium and its alloys—a new class of degradable metallic biomaterials—are being increasingly investigated as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. However, the high corrosion rate in physiological environments prevents the clinical application of Mg-based materials. Therefore, the objective of this study was to develop a hydroxyapatite (HA) coating on ZK60 magnesium alloy substrates to mediate the rapid degradation of Mg while improving its cytocompatibility for orthopedic applications. A simple chemical conversion process was applied to prepare HA coating on ZK60 magnesium alloy. Surface morphology, elemental compositions, and crystal structures were characterized using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction, respectively. The corrosion properties of samples were investigated by immersion test and electrochemical test. Murine fibroblast L-929 cells were harvested and cultured with coated and non-coated ZK60 samples to determine cytocompatibility. The degradation results suggested that the HA coatings decreased the degradation of ZK60 alloy. No significant deterioration in compression strength was observed for all the uncoated and coated samples after 2 and 4 weeks’ immersion in simulated body fluid (SBF). Cytotoxicity test indicated that the coatings, especially HA coating, improved cytocompatibility of ZK60 alloy for L929 cells. PMID:24300096

  6. Understanding the evolution of S- and I-type granitic plutons through analysis of apatite.

    Science.gov (United States)

    Hess, B. L.; Fiege, A.; Tailby, N.

    2017-12-01

    The major and trace element composition of apatites from the Lachlan fold belt (LFB) S- and I-type granitoids (Australia) and the Central French Massif (CFM) S-type leucogranites (France) were analyzed to investigate their compositional and redox variation. Apatite is a common accessory mineral in magmatic systems that can incorporate a variety of trace elements, including the polyvalent elements sulfur (S), iron (Fe), and manganese (Mn). It was recently discovered that apatite can incorporate three oxidation states of S (S6+, S4+, S2-) into its structure as a function of oxygen fugacity [1]. However, the oxidation states of Mn and Fe in apatite are essentially unknown (2+ and/or 3+). In this study, we collected many electron probe line transects across apatites in several different host phases from a variety of S- and I-type plutons. The F-H-Cl contents of the S- and I-type LFB samples were similar ( 2.9 wt% F, 0.4 wt% Cl, 0.5 wt% OH). The CFM S-types contained virtually no Cl and ranged from near-endmember OH-apatite to near-endmember F-apatite. The apatites of all studied the S- and I-type plutons are characterized by similar ranges of Fe content (X-ray absorption near-edge structure (XANES) spectroscopy. The spectra show variability in S oxidation states ranging from mostly sulfate down to nearly equal S6+/S2- ratios, indicating redox variations during apatite formation. The S-type Mn + Fe content plots in a 1:1 ratio against calcium (Ca) in atoms per formula unit, while the I-type apatites have too low Mn and Fe to show a clear trend. Thus, divalent Mn and Fe probably replace Ca2+ in the S-types' apatite structure, while the incorporation of trivalent Mn or Fe in apatite is rather unlikely. We suggest that Mn and Fe contents in apatite may become a useful tracer of melt evolution once the distributions coefficients are experimentally calibrated. [1] Konecke et al. (2017), Am Mineral

  7. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate–borax

    International Nuclear Information System (INIS)

    Shen, M.J.; Wang, X.J.; Zhang, M.F.

    2012-01-01

    Highlights: ► The MgO ceramic coating has been prepared on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation in the borax-doped silicate system. ► Boron element exists in the PEO films in the form of noncrystal. ► The microhardness and compactness of doped ceramic coating are much higher than that of the substrate and undoped ceramic coating, and this doped coated sample shows better wear-resisting property. - Abstract: A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  8. Development and properties of duplex MgF2/PCL coatings on biodegradable magnesium alloy for biomedical applications.

    Science.gov (United States)

    Makkar, Preeti; Kang, Hoe Jin; Padalhin, Andrew R; Park, Ihho; Moon, Byoung-Gi; Lee, Byong Taek

    2018-01-01

    The present work addresses the performance of polycaprolactone (PCL) coating on fluoride treated (MgF2) biodegradable ZK60 magnesium alloy (Mg) for biomedical application. MgF2 conversion layer was first produced by immersing Mg alloy substrate in hydrofluoric acid solution. The outer PCL coating was then prepared using dip coating technique. Morphology, elements profile, phase structure, roughness, mechanical properties, invitro corrosion, and biocompatibility of duplex MgF2/PCL coating were then characterized and compared to those of fluoride coated and uncoated Mg samples. The invivo degradation behavior and biocompatibility of duplex MgF2/PCL coating with respect to ZK60 Mg alloy were also studied using rabbit model for 2 weeks. SEM and TEM analysis showed that the duplex coating was uniform and comprised of porous PCL film (~3.3 μm) as upper layer with compact MgF2 (~2.2 μm) as inner layer. No significant change in microhardness was found on duplex coating compared with uncoated ZK60 Mg alloy. The duplex coating showed improved invitro corrosion resistance than single layered MgF2 or uncoated alloy samples. The duplex coating also resulted in better cell viability, cell adhesion, and cell proliferation compared to fluoride coated or uncoated alloy. Preliminary invivo studies indicated that duplex MgF2/PCL coating reduced the degradation rate of ZK60 Mg alloy and exhibited good biocompatibility. These results suggested that duplex MgF2/PCL coating on magnesium alloy might have great potential for orthopedic applications.

  9. Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetron sputtering

    International Nuclear Information System (INIS)

    Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi

    2009-01-01

    Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.

  10. Improvement of corrosion protection property of Mg-alloy by DLC and Si-DLC coatings with PBII technique and multi-target DC-RF magnetron sputtering

    Science.gov (United States)

    Masami, Ikeyama; Setsuo, Nakao; Tsutomu, Sonoda; Junho, Choi

    2009-05-01

    Magnesium alloys have been considered as one of the most promising light weight materials with potential applications for automobile and aircraft components. Their poor corrosion resistance, however, has to date prevented wider usage. Diamond-like carbon (DLC) and silicon-incorporated DLC (Si-DLC) coatings are known to provide a high degree of corrosion protection, and hold accordingly promise for enhancing the corrosion resistance of the magnesium alloys. In this work we have studied the effect of coating conditions of DLC coatings as well as Si incorporation into coating on corrosion resistance, deposited onto AZ91 magnesium alloy substrates by plasma based ion implantation (PBII). The influences of a Ti interlayer beneath the DLC, Si-DLC and Ti incorporated DLC (Ti-DLC) coatings fabricated by multi-target direct-current radio-frequency (DC-RF) magnetron sputtering were also examined on both the adhesion strength and corrosion resistance of the materials. We have also examined the effect of the Si content in the Si-DLC coatings made by magnetron sputtering on the alloys' corrosion resistance. The results of potentiodynamic polarization measurements demonstrate that Si-DLC coating deposited by PBII exhibits the highest corrosion resistance in an aqueous 0.05 M NaCl solution. Although Ti layer is helpful in increasing adhesion between DLC coating and AZ91 substrate, it also influences adversely corrosion protection. The ozone treatment of the magnesium alloy's surface before the formation of coatings has been found to improve both adhesion strength and corrosion resistance.

  11. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Li; Shi, Jing, E-mail: shijing@ouc.edu.cn; Wang, Xin, E-mail: wangxin.hd@163.com; Liu, Dan; Xu, Haigang

    2016-07-15

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L{sup −1} BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si

  12. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates

    International Nuclear Information System (INIS)

    Lei, Li; Shi, Jing; Wang, Xin; Liu, Dan; Xu, Haigang

    2016-01-01

    Graphical abstract: The unmodified coating shows averaged static water contact angles of a little more than 50º, which is clearly hydrophilic for water solutions. With the silane concentration increases, the water contact angles show an increase tendency. Especially, when the silane addition is increased to 25 ml L-1, the coating surface presents a hydrophobic feature, with static water contact angle of more than 110º. - Highlights: • BTESPT modification can effectively improve the uniformity, hydrophobic performance, chemical stability and corrosion inhibition capability of traditional cerium conversion coating. • Si-O-Si linkage builds a robust structure to increase of the coating density. Si−O−Mg bonds strengthen the adhesion between the coating/substrate. • The system modified with 25 ml L"−"1 BTESPT displays the optimum corrosion protection performance. - Abstract: The cerium conversion coating with and without different concentrations of silane agent bis-(γ-triethoxysilylpropyl)-tetrasulfide (BTESPT) modification is obtained on magnesium alloys. Detailed properties of the coatings and the role of BTESPT as an additive are studied and followed with careful discussion. The coating morphology, wettability, chemical composition and corrosion resistance are characterized by scanning electronic microscope (SEM), water contact-angle, X-ray photoelectron spectroscopy (XPS), potentiodynamic measurements and electrochemical impedance spectroscopy (EIS). The electrochemical behavior of the coatings is investigated using EIS. The results indicate that the coating morphology and composition can be controlled by changing silane concentration. The combination of cerium ions and silane molecules could promote the formation of more homogenous and higher hydrophobic coating. The coating turns to be more compact and the adhesive strength between the coating and the magnesium substrate are strongly improved with the formation of Si−O−Si and Si−O−M chemical

  13. Biological activity evaluation of magnesium fluoride coated Mg-Zn-Zr alloy in vivo.

    Science.gov (United States)

    Jiang, Hongfeng; Wang, Jingbo; Chen, Minfang; Liu, Debao

    2017-06-01

    To explore the biodegradable characteristics and biological properties, which could promote new bone formation, of MgF 2 coated magnesium alloy (Mg-3wt%Zn-0.5wt%Zr) in rabbits. Magnesium alloy with MgF 2 coating was made and the MgF 2 /Mg-Zn-Zr was implanted in the femoral condyle of rabbits. Twelve healthy adult Japanese white rabbits in weight of 2.8-3.2kg were averagely divided into A(Mg-Zn-Zr) group and B(MgF 2 /MgZn-Zr) group. Indexes such as microstructural evolution, SEM scan, X-ray, Micro-CT and mechanical properties were observed and detected at 1th day, 2th, 4th, 8th, 12th, 24th week after implantation. Low-density regions occurred around the cancellous bone, and the regions gradually expanded during the 12weeks after implantation. The implant was gradually absorbed from 12 to 24weeks. The density of surrounding cancellous bone increased compared with the 12th week data. The degradation rate of B group was lower than that of A group (Pmagnesium ions. The biological properties of the coating itself presented good biocompatibility and bioactivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Biomimetic magnesium–carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger

    Energy Technology Data Exchange (ETDEWEB)

    Iafisco, Michele, E-mail: michele.iafisco@istec.cnr.it; Ruffini, Andrea; Adamiano, Alessio; Sprio, Simone; Tampieri, Anna

    2014-02-01

    The present work investigates the preparation of biomimetic nanocrystalline apatites co-substituted with Mg, CO{sub 3} and Sr to be used as starting materials for the development of nanostructured bio-devices for regeneration of osteoporotic bone. Biological-like amounts of Mg and CO{sub 3} ions were inserted in the apatite structure to mimic the composition of bone apatite, whereas the addition of increasing quantities of Sr ions, from 0 up to 12 wt.%, as anti-osteoporotic agent, was evaluated. The chemical–physical features, the morphology, the degradation rates, the ion release kinetics as well as the in vitro bioactivity of the as-prepared apatites were fully evaluated. The results indicated that the incorporation of 12 wt.% of Sr can be viewed as a threshold for the structural stability of Mg–CO{sub 3}-apatite. Indeed, incorporation of lower quantity of Sr did not induce considerable variations in the chemical structure of Mg–CO{sub 3}-apatite, while when the Sr doping extent reached 12 wt.%, a dramatically destabilizing effect was detected on the crystal structure thus yielding alteration of the symmetry and distortion of the PO{sub 4}. As a consequence, this apatite exhibited the fastest degradation kinetic and the highest amount of Sr ions released when tested in physiological conditions. In this respect, the surface crystallization of new calcium phosphate phase when immersed in physiological-like solution occurred by different mechanisms and extents due to the different structural chemistry of the variously doped apatites. Nevertheless, all the apatites synthesized in this work exhibited in vitro bioactivity demonstrating their potential use to develop biomedical devices with anti-osteoporotic functionality. - Highlights: • Biomimetic nanocrystalline apatites co-substituted with Mg, CO{sub 3} and Sr were prepared. • Biological-like amounts of Mg and CO{sub 3} were inserted to mimic the composition of bone apatite. • The addition of increasing

  15. Biomimetic magnesium–carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger

    International Nuclear Information System (INIS)

    Iafisco, Michele; Ruffini, Andrea; Adamiano, Alessio; Sprio, Simone; Tampieri, Anna

    2014-01-01

    The present work investigates the preparation of biomimetic nanocrystalline apatites co-substituted with Mg, CO 3 and Sr to be used as starting materials for the development of nanostructured bio-devices for regeneration of osteoporotic bone. Biological-like amounts of Mg and CO 3 ions were inserted in the apatite structure to mimic the composition of bone apatite, whereas the addition of increasing quantities of Sr ions, from 0 up to 12 wt.%, as anti-osteoporotic agent, was evaluated. The chemical–physical features, the morphology, the degradation rates, the ion release kinetics as well as the in vitro bioactivity of the as-prepared apatites were fully evaluated. The results indicated that the incorporation of 12 wt.% of Sr can be viewed as a threshold for the structural stability of Mg–CO 3 -apatite. Indeed, incorporation of lower quantity of Sr did not induce considerable variations in the chemical structure of Mg–CO 3 -apatite, while when the Sr doping extent reached 12 wt.%, a dramatically destabilizing effect was detected on the crystal structure thus yielding alteration of the symmetry and distortion of the PO 4 . As a consequence, this apatite exhibited the fastest degradation kinetic and the highest amount of Sr ions released when tested in physiological conditions. In this respect, the surface crystallization of new calcium phosphate phase when immersed in physiological-like solution occurred by different mechanisms and extents due to the different structural chemistry of the variously doped apatites. Nevertheless, all the apatites synthesized in this work exhibited in vitro bioactivity demonstrating their potential use to develop biomedical devices with anti-osteoporotic functionality. - Highlights: • Biomimetic nanocrystalline apatites co-substituted with Mg, CO 3 and Sr were prepared. • Biological-like amounts of Mg and CO 3 were inserted to mimic the composition of bone apatite. • The addition of increasing quantities of Sr (from 0 to 12

  16. Influence of Zeolite Coating on the Corrosion Resistance of AZ91D Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    P. Chakraborty Banerjee

    2014-08-01

    Full Text Available The protective performance of zeolite coating on AZ91D magnesium alloy was evaluated using potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS in 0.1 M sodium chloride solution (NaCl. Electrical equivalent circuit (EEC was developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and the chemical nature of the coating were characterized by scanning electron microscopy (SEM and X-ray diffraction (XRD analysis. Post corrosion morphologies of the zeolite coated and the uncoated AZ91D alloy were investigated using SEM. The corrosion resistance of the zeolite coated specimen was at least one order of magnitude higher than the uncoated specimen.

  17. Influence of Applied Voltage and Film-Formation Time on Microstructure and Corrosion Resistance of Coatings Formed on Mg-Zn-Zr-Ca Bio-magnesium Alloy

    Science.gov (United States)

    Yandong, Yu; Shuzhen, Kuang; Jie, Li

    2015-09-01

    The influence of applied voltage and film-formation time on the microstructure and corrosion resistance of coatings formed on a Mg-Zn-Zr-Ca novel bio-magnesium alloy has been investigated by micro-arc oxidation (MAO) treatment. Phase composition and microstructure of as-coated samples were analyzed by the x-ray diffraction, energy dispersive x-ray spectroscopy and scanning electron microscopy. And the porosity and average of micro-pore aperture of the surface on ceramic coatings were analyzed by general image software. Corrosion microstructure of as-coated samples was caught by a microscope digital camera. The long-term corrosion resistance of as-coated samples was tested in simulated body fluid for 30 days. The results showed that the milky white smooth ceramic coating formed on the Mg-Zn-Zr-Ca novel bio-magnesium alloy was a compound of MgO, Mg2SiO4 and MgSiO3, and its corrosion resistance was significantly improved compared with that of the magnesium substrate. In addition, when the MAO applied voltage were 450 V and 500 V and film-formation time were 9 min and 11 min, the surface micro-morphology and the corrosion resistance of as-coated samples were relatively improved. The results provided a theoretical foundation for the application of the Mg-Zn-Zr-Ca novel bio-magnesium alloy in biomedicine.

  18. Architectural optimization of an epoxy-based hybrid sol–gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Murillo-Gutiérrez, N.V., E-mail: murillo@chimie.ups-tlse.fr [Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, Toulouse (France); Ansart, F.; Bonino, J-P. [Université de Toulouse UPS-INP-CNRS, Institut Carnot CIRIMAT, Toulouse (France); Kunst, S.R.; Malfatti, C.F. [Universidade Federal do Rio grande do Sul, Laboratory of Corrosion Research (LAPEC), Porto Alegre (Brazil)

    2014-08-01

    An epoxy-based hybrid sol–gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol–gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol–gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  19. Architectural optimization of an epoxy-based hybrid sol-gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    Science.gov (United States)

    Murillo-Gutiérrez, N. V.; Ansart, F.; Bonino, J.-P.; Kunst, S. R.; Malfatti, C. F.

    2014-08-01

    An epoxy-based hybrid sol-gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol-gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol-gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  20. Architectural optimization of an epoxy-based hybrid sol–gel coating for the corrosion protection of a cast Elektron21 magnesium alloy

    International Nuclear Information System (INIS)

    Murillo-Gutiérrez, N.V.; Ansart, F.; Bonino, J-P.; Kunst, S.R.; Malfatti, C.F.

    2014-01-01

    An epoxy-based hybrid sol–gel coating was prepared in various architectural configurations has been studied for the corrosion protection of a cast Elektron21 magnesium alloy. The creation of a single layer of this coating presents defects consisting of macro-pores and protuberances, which opens access for corrosive species to reach the metallic substrate. These defects are suspected to result from the high reactivity of the substrate, as well as to the irregular topography of the substrate disrupted by the microstructure of the own magnesium alloy. Hence, a sol–gel coating in bilayer architecture is proposed, where the first layer would “inert” the surface of the magnesium substrate, and the second layer would cover the defects of the first layer and also thickening the coating. The morphological characteristics of the sol–gel coatings were analyzed by scanning electron microscopy (SEM), and their corrosion behavior was evaluated by OCP (open circuit potential) monitoring and electrochemical impedance spectroscopy (EIS) in chloride media. It is shown that both the architectural arrangement and the individual thickness of the first and second layers have an important influence on the anticorrosion performances of the protective system, just as much as its global thickness.

  1. Apatite Biominerals

    Directory of Open Access Journals (Sweden)

    Christèle Combes

    2016-04-01

    Full Text Available Calcium phosphate apatites offer outstanding biological adaptability that can be attributed to their specific physico-chemical and structural properties. The aim of this review is to summarize and discuss the specific characteristics of calcium phosphate apatite biominerals in vertebrate hard tissues (bone, dentine and enamel. Firstly, the structural, elemental and chemical compositions of apatite biominerals will be summarized, followed by the presentation of the actual conception of the fine structure of synthetic and biological apatites, which is essentially based on the existence of a hydrated layer at the surface of the nanocrystals. The conditions of the formation of these biominerals and the hypothesis of the existence of apatite precursors will be discussed. Then, we will examine the evolution of apatite biominerals, especially during bone and enamel aging and also focus on the adaptability of apatite biominerals to the biological function of their related hard tissues. Finally, the diagenetic evolution of apatite fossils will be analyzed.

  2. Mechanical Properties and Durability of Advanced Environmental Barrier Coatings in Calcium-Magnesium-Alumino-Silicate Environments

    Science.gov (United States)

    Miladinovich, Daniel S.; Zhu, Dongming

    2011-01-01

    Environmental barrier coatings are being developed and tested for use with SiC/SiC ceramic matrix composite (CMC) gas turbine engine components. Several oxide and silicate based compositons are being studied for use as top-coat and intermediate layers in a three or more layer environmental barrier coating system. Specifically, the room temperature Vickers-indentation-fracture-toughness testing and high-temperature stability reaction studies with Calcium Magnesium Alumino-Silicate (CMAS or "sand") are being conducted using advanced testing techniques such as high pressure burner rig tests as well as high heat flux laser tests.

  3. Synthesis of hybrid sol-gel coatings for corrosion protection of we54-ae magnesium alloy

    International Nuclear Information System (INIS)

    Hernández-Barrios, C A; Peña, D Y; Coy, A E; Duarte, N Z; Hernández, L M; Viejo, F

    2013-01-01

    The present work shows some preliminary results related to the synthesis, characterization and corrosion evaluation of different hybrid sol-gel coatings applied on the WE54-AE magnesium alloy attending to the two experimental variables, i.e. the precursors ratio and the aging time, which may affect the quality and the electrochemical properties of the coatings resultant. The experimental results confirmed that, under some specific experimental conditions, it was possible to obtain homogeneous and uniform, porous coatings with good corrosion resistance that also permit to accommodate corrosion inhibitors

  4. Research on the preparation, biocompatibility and bioactivity of magnesium matrix hydroxyapatite composite material.

    Science.gov (United States)

    Linsheng, Li; Guoxiang, Lin; Lihui, Li

    2016-08-12

    In this paper, magnesium matrix hydroxyapatite composite material was prepared by electrophoretic deposition method. The optimal process parameters of electrophoretic deposition were HA suspension concentration of 0.02 kg/L, aging time of 10 days and voltage of 60 V. Animal experiment and SBF immersion experiment were used to test the biocompatibility and bioactivity of this material respectively. The SD rats were divided into control group and implant group. The implant surrounding tissue was taken to do tissue biopsy, HE dyed and organizational analysis after a certain amount of time in the SD rat body. The biological composite material was soaked in SBF solution under homeothermic condition. After 40 days, the bioactivity of the biological composite material was evaluated by testing the growth ability of apatite on composite material. The experiment results showed that magnesium matrix hydroxyapatite biological composite material was successfully prepared by electrophoretic deposition method. Tissue hyperplasia, connective tissue and new blood vessels appeared in the implant surrounding soft tissue. No infiltration of inflammatory cells of lymphocytes and megakaryocytes around the implant was found. After soaked in SBF solution, a layer bone-like apatite was found on the surface of magnesium matrix hydroxyapatite biological composite material. The magnesium matrix hydroxyapatite biological composite material could promot calcium deposition and induce bone-like apatite formation with no cytotoxicity and good biocompatibility and bioactivity.

  5. Bioceramics of apatites: an option for bone regeneration; Bioceramica de apatitas: uma opcao para regeneracao ossea

    Energy Technology Data Exchange (ETDEWEB)

    Arxer, Eliana Alves; Almeida Filho, Edson de; Guastaldi, Antonio Carlos, E-mail: iarxer@iq.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2011-07-01

    The bioceramics of calcium phosphate called apatite, are widely used as material for bone replacement and regeneration, due to its similarity to the mineral component of bones and teeth. The apatites are biocompatible, bioactive and integrate with living tissue by the same active process of physiological bone remodeling. These bioceramics may be used in medical, dental and orthopedic applications. In this research, it was used the wet method for the synthesis of the powder and biomimetic method for coating the surface. The Solubility study was performed in the layer deposited, apatite, for possible application as a platform for inorganic drug delivery. The bioceramics were characterized by MEV, DRX, and EDS. The curves of solubility of apatite in coatings showed that the OCP phase had a higher rate of release in the short term (4 days) while the HA phase showed a gradual release throughout the experiment (16 days). (author)

  6. Peri-apatite coating decreases uncemented tibial component migration: long-term RSA results of a randomized controlled trial and limitations of short-term results.

    Science.gov (United States)

    Van Hamersveld, Koen T; Marang-Van De Mheen, Perla J; Nelissen, Rob G H H; Toksvig-Larsen, Sören

    2018-05-09

    Background and purpose - Biological fixation of uncemented knee prostheses can be improved by applying hydroxyapatite coating around the porous surface via a solution deposition technique called Peri-Apatite (PA). The 2-year results of a randomized controlled trial, evaluating the effect of PA, revealed several components with continuous migration in the second postoperative year, particularly in the uncoated group. To evaluate whether absence of early stabilization is diagnostic of loosening, we now present long-term follow-up results. Patients and methods - 60 patients were randomized to PA-coated or uncoated (porous only) total knee arthroplasty of which 58 were evaluated with radiostereometric analysis (RSA) performed at baseline, at 3 months postoperatively and at 1, 2, 5, 7, and 10 years. A linear mixed-effects model was used to analyze the repeated measurements. Results - PA-coated components had a statistically significantly lower mean migration at 10 years of 0.94 mm (95% CI 0.72-1.2) compared with the uncoated group showing a mean migration of 1.72 mm (95% CI 1.4-2.1). Continuous migration in the second postoperative year was seen in 7 uncoated components and in 1 PA-coated component. All of these implants stabilized after 2 years except for 2 uncoated components. Interpretation - Peri-apatite enhances stabilization of uncemented components. The number of components that stabilized after 2 years emphasizes the importance of longer follow-up to determine full stabilization and risk of loosening in uncemented components with biphasic migration profiles.

  7. Formation of an ascorbate-apatite composite layer on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Atsuo [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566 (Japan); Sogo, Yu [National Institute of Advanced Industrial Science and Technology (AIST), Institute for Human Science and Biomedical Engineering, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566 (Japan); Ebihara, Yuko [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan); Onoguchi, Masahiro [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan); Oyane, Ayako [National Institute of Advanced Industrial Science and Technology (AIST), Nanotechnology Research Institute, Central 4, Higashi 1-1-1, Tsukuba, Ibaraki 305-8562 (Japan); Ichinose, Noboru [School of Science and Technology, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8050 (Japan)

    2007-09-15

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 {sup 0}C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 {mu}g mm{sup -2}, which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute.

  8. Formation of an ascorbate-apatite composite layer on titanium

    International Nuclear Information System (INIS)

    Ito, Atsuo; Sogo, Yu; Ebihara, Yuko; Onoguchi, Masahiro; Oyane, Ayako; Ichinose, Noboru

    2007-01-01

    An ascorbate-apatite composite layer was successfully formed on NaOH- and heat-treated titanium by coprecipitating L-ascorbic acid phosphate and low-crystalline apatite in a supersaturated calcium phosphate solution at 37 0 C for 48 h. The supersaturated calcium phosphate solutions used have chemical compositions attainable by mixing infusion fluids officially approved for clinical use. The amount of immobilized L-ascorbic acid phosphate ranged from 1.0 to 2.3 μg mm -2 , which is most likely to be sufficient for the in vitro osteogenic differentiation of mesenchymal stem cells on titanium. Since ascorbate is important for the collagen synthesis and subsequent osteogenesis of mesenchymal stem cells, titanium coated with the ascorbate-apatite composite layer would be useful as a scaffold in bone tissue engineering and as a bone substitute

  9. Development of nanosized silver-substituted apatite for biomedical applications: A review.

    Science.gov (United States)

    Lim, Poon Nian; Chang, Lei; Thian, Eng San

    2015-08-01

    The favorable biocompatibility of hydroxyapatite (HA) makes it a popular bone graft material as well as a coating layer on metallic implant. To reduce implant-related infections, silver ions were either incorporated into the apatite during co-precipitation process (AgHA-CP) or underwent ion-exchange with the calcium ions in the apatite (AgHA-IE). However, the distribution of silver ions in AgHA-CP and AgHA-IE was different, thus affecting the antibacterial action. Several studies reported that nanosized AgHA-CP containing 0.5 wt.% of silver provided an optimal trade-off between antibacterial properties and cytotoxicity. Nevertheless, nanosized AgHA and AgHA nanocoatings could not function ideally due to the compromise in the bone differentiation of mesenchymal stem cells, as evidenced in the reduced alkaline phosphatase, type I collagen and osteocalcin. Preliminary studies showed that biological responses of nanosized AgHA and AgHA nanocoatings could be improved with the addition of silicon. This review will discuss on nanosized AgHA and AgHA nanocoatings. In many patients needing bone graft material, hydroxyapatite (HA) has proven to be a popular choice. Nonetheless, implant-related infections remain a major concern. Hence, effective preventive measures are needed. In this review article, the authors discussed the application of incorporating silver nanoparticles in HA and its use as bone graft biomaterials together with the addition of silica. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Influence of heat treatment on bond strength and corrosion resistance of sol-gel derived bioglass-ceramic coatings on magnesium alloy.

    Science.gov (United States)

    Shen, Sibo; Cai, Shu; Xu, Guohua; Zhao, Huan; Niu, Shuxin; Zhang, Ruiyue

    2015-05-01

    In this study, bioglass-ceramic coatings were prepared on magnesium alloy substrates through sol-gel dip-coating route followed by heat treatment at the temperature range of 350-500°C. Structure evolution, bond strength and corrosion resistance of samples were studied. It was shown that increasing heat treatment temperature resulted in denser coating structure as well as increased interfacial residual stress. A failure mode transition from cohesive to adhesive combined with a maximum on the measured bond strength together suggested that heat treatment enhanced the cohesion strength of coating on the one hand, while deteriorated the adhesion strength of coating/substrate on the other, thus leading to the highest bond strength of 27.0MPa for the sample heat-treated at 450°C. This sample also exhibited the best corrosion resistance. Electrochemical tests revealed that relative dense coating matrix and good interfacial adhesion can effectively retard the penetration of simulated body fluid through the coating, thus providing excellent protection for the underlying magnesium alloy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. MoO{sub 3} incorporation in magnesium aluminosilicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Shengheng; Ojovan, Michael I.; Hyatt, Neil C.; Hand, Russell J.

    2015-03-15

    Molybdate has a very low solubility in silicate and borosilicate glass systems and its excess presence in nuclear waste glass can cause the formation of a readily soluble “yellow phase”. In this study, the incorporation of molybdenum oxide (MoO{sub 3}) in a magnesium aluminosilicate glass system has been investigated. The prepared glasses show a higher than 90% molybdenum retention rate and up to 5.34 mol% (12.28 wt%) MoO{sub 3} can be incorporated into these glasses without causing visible phase separation. The incorporation of MoO{sub 3} increases glass density, decreases glass transition and crystallisation temperatures and intensifies Raman bands assigned to vibrations of MoO{sub 4}{sup 2−} units. When excess molybdate is added liquid–liquid phase separation and crystallisation occurs. The separated phase is spherical, 200–400 nm in diameter and randomly dispersed. Based on powder X-ray diffraction, Raman spectroscopy and transmission electron microscopy, the separated phase is identified as MgMoO{sub 4}.

  12. Loss of mechanical properties in vivo and bone-implant interface strength of AZ31B magnesium alloy screws with Si-containing coating.

    Science.gov (United States)

    Tan, Lili; Wang, Qiang; Lin, Xiao; Wan, Peng; Zhang, Guangdao; Zhang, Qiang; Yang, Ke

    2014-05-01

    In this study the loss of mechanical properties and the interface strength of coated AZ31B magnesium alloy (a magnesium-aluminum alloy) screws with surrounding host tissues were investigated and compared with non-coated AZ31B, degradable polymer and biostable titanium alloy screws in a rabbit animal model after 1, 4, 12 and 21weeks of implantation. The interface strength was evaluated in terms of the extraction torque required to back out the screws. The loss of mechanical properties over time was indicated by one-point bending load loss of the screws after these were extracted at different times. AZ31B samples with a silicon-containing coating had a decreased degradation rate and improved biological properties. The extraction torque of Ti6Al4V, poly-l-lactide (PLLA) and coated AZ31B increased significantly from 1week to 4weeks post-implantation, indicating a rapid osteosynthesis process over 3weeks. The extraction torque of coated AZ31B increased with implantation time, and was higher than that of PLLA after 4weeks of implantation, equalling that of Ti6Al4V at 12weeks and was higher at 21weeks. The bending loads of non-coated AZ31B and PLLA screws degraded sharply after implantation, and that of coated AZ31B degraded more slowly. The biodegradation mechanism, the coating to control the degradation rate and the bioactivity of magnesium alloys influencing the mechanical properties loss over time and bone-implant interface strength are discussed in this study and it is concluded that a suitable degradation rate will result in an improvement in the mechanical performance of magnesium alloys, making them more suitable for clinical application. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Corrosion characterization of micro-arc oxidization composite electrophoretic coating on AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Congjie [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China); Jiang, Bailing [School of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816 (China); Liu, Ming [General Motors China Science Lab, Shanghai 201206 (China); Ge, Yanfeng [School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048 (China)

    2015-02-05

    Highlights: • A new protective composite coatings were prepared on AZ31B Mg alloy. • The E-coat locked into MAO coat by discharge channels forming a smoother and compact surface without defects. • Comparing with MAO coat, the MAOE composite coat could provide an excellent barrier for bare Mg against corrosion attack. - Abstract: A two layer composite coating system was applied on the surface of AZ31B magnesium alloy by Micro-arc Oxidation (MAO) plus electrophoretic coat (E-coat) technique. The Mg sample coated with MAO plus E-coat (MAOE) was compared with bare Mg and Mg sample coated by MAO only. The surface microstructure and cross section of bare and coated Mg before and after corrosion were examined by Scanning Electron Microscopy (SEM). The corrosion performance of bare and coated Mg was evaluated using electrochemical measurement and hydrogen evolution test. The results indicated that the corrosion resistance of AZ31B Mg alloy was significantly improved by MAOE composite coating. The corrosion mechanism of bare and coated Mg is discussed.

  14. Similarities and differences in coatings for magnesium-based stents and orthopaedic implants

    Directory of Open Access Journals (Sweden)

    Jun Ma

    2014-07-01

    Full Text Available Magnesium (Mg-based biodegradable materials are promising candidates for the new generation of implantable medical devices, particularly cardiovascular stents and orthopaedic implants. Mg-based cardiovascular stents represent the most innovative stent technology to date. However, these products still do not fully meet clinical requirements with regards to fast degradation rates, late restenosis, and thrombosis. Thus various surface coatings have been introduced to protect Mg-based stents from rapid corrosion and to improve biocompatibility. Similarly, different coatings have been used for orthopaedic implants, e.g., plates and pins for bone fracture fixation or as an interference screw for tendon-bone or ligament-bone insertion, to improve biocompatibility and corrosion resistance. Metal coatings, nanoporous inorganic coatings and permanent polymers have been proved to enhance corrosion resistance; however, inflammation and foreign body reactions have also been reported. By contrast, biodegradable polymers are more biocompatible in general and are favoured over permanent materials. Drugs are also loaded with biodegradable polymers to improve their performance. The key similarities and differences in coatings for Mg-based stents and orthopaedic implants are summarized.

  15. Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Dietzel, W.

    2009-01-01

    Two types of PEO coatings were produced on AM50 magnesium alloy using pulsed DC plasma electrolytic oxidation process in an alkaline phosphate and acidic fluozirconate electrolytes, respectively. The phase composition and microstructure of these PEO coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion behaviour of the coated samples was evaluated by open circuit potential (OCP) measurements, potentiodynamic polarization tests, and electrochemical impedance spectroscopy (EIS) in neutral 0.1 M NaCl solution. The results showed that PEO coating prepared from alkaline phosphate electrolyte consisted of only MgO and on the other hand the one formed in acidic fluozirconate solution was mainly composed of ZrO 2 , MgF 2 . Electrochemical corrosion tests indicated that the phase composition of PEO coating has a significant effect on the deterioration process of coated magnesium alloy in this corrosive environment. The PEO coating that was composed of only MgO suffered from localized corrosion in the 50 h exposure studies, whereas the PEO coating with ZrO 2 compounds showed a much superior stability during the corrosion tests and provided an efficient corrosion protection. The results showed that the preparation of PEO coating with higher chemical stability compounds offers an opportunity to produce layers that could provide better corrosion protection to magnesium alloys.

  16. Microstructure and properties of duplex (Ti:N)-DLC/MAO coating on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei; Ke, Peiling [Ningbo Key Laboratory of Marine Protection Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Fang, Yong [Sir Run Run Shaw Hospital, School of Medicine, Zhe Jiang University, Zhejiang 310016 (China); Zheng, He [Ningbo Key Laboratory of Marine Protection Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Wang, Aiying, E-mail: aywang@nimte.ac.cn [Ningbo Key Laboratory of Marine Protection Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2013-04-01

    Ti and N co-doped diamond-like carbon ((Ti:N)-DLC) film was deposited on the MAO coated substrate using a hybrid beam deposition system, which consists of a DC magnetron sputtering of Ti target and a linear ion source (LIS) with C{sub 2}H{sub 2} and N{sub 2} precursor gas. The microstructure and properties of the duplex (Ti:N)-DLC/MAO coating were investigated. Results indicate that the (Ti:N)-DLC top film with TiN crystalline phase was formed. Ti and N co-doping resulted in the increasing I{sub D}/I{sub G} ratio. The significant improvement in the wear and corrosion resistance of duplex (Ti:N)-DLC/MAO coating was mainly attributed to the increased binding strength, lubrication characteristics and chemical inertness of (Ti:N)-DLC top film. The superior low-friction and anti-corrosion properties of duplex (Ti:N)-DLC/MAO coating make it a good candidate as protective coating on magnesium alloy.

  17. Effects of TiO2 coating on the microstructures and mechanical properties of tungsten inert gas welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Wang Linzhi; Shen Jun; Xu Nan

    2011-01-01

    Highlights: → The weld penetration and the D/W ratio could be improved dramatically by increasing of the amount of the TiO 2 coating. → The average grain size of the α-Mg grains increased and the β-Mg 17 Al 12 IMC transformed from granular structure to continuous structure with an increase of the amount of the TiO 2 coating. → With an increase of the amount of the TiO 2 coating, the microhardness of the FZ of the AZ31 magnesium alloy welded joints decreased slightly at first and then decreased sharply. → The UTS value of the welded joints increased with an increase of the amount of the TiO 2 coating. → However, too much TiO 2 coating caused a significant decrease of the UTS value of the welded joints. - Abstract: The effects of TiO 2 coating on the macro-morphologies, microstructures and mechanical properties of tungsten inert gas (TIG) welded AZ31 magnesium alloy joints were investigated by microstructural observations, microhardness tests and tensile tests. The results showed that an increase in the amount of the TiO 2 coating resulted in an increase in the weld penetration and the depth/width (D/W) ratio of the TIG welded AZ31 magnesium alloy seams. Moreover, the average grain size of the α-Mg grains increased and the β-Mg 17 Al 12 intermetallic compound (IMC) was coarser in the case of higher amount of the TiO 2 coating. With an increase in the amount of the TiO 2 coating, the microhardness of the fusion zone (FZ) of the AZ31 magnesium alloy welded joints decreased slightly initially and then decreased sharply. In addition, with an increase in the amount of the TiO 2 coating, the ultimate tensile strength (UTS) value and elongation of the welded joints increased at first and then decreased sharply.

  18. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers.

    Science.gov (United States)

    Kim, In Ae; Rhee, Sang-Hoon

    2017-07-01

    This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl 2 ·2H 2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1973-1983, 2017. © 2017 Wiley Periodicals, Inc.

  19. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Energy Technology Data Exchange (ETDEWEB)

    Abdal-hay, Abdalla [Departmentt of Bionano System Engineering, College of Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Dewidar, Montasser [Department of Materials and Mechanical Design, Faculty of Energy Engineering, South Valley University, Aswan (Egypt); Lim, Jae Kyoo, E-mail: jklim@jbnu.ac.kr [Department of Mechanical Design Engineering, Advanced wind power system research institute, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The corrosion behavior of magnesium for orthopedic applications is extremely poor. Black-Right-Pointing-Pointer The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. Black-Right-Pointing-Pointer Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. Black-Right-Pointing-Pointer Treated samples indicated significant damping for the degradation rate. Black-Right-Pointing-Pointer Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might

  20. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    International Nuclear Information System (INIS)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-01-01

    Highlights: ► The corrosion behavior of magnesium for orthopedic applications is extremely poor. ► The solvent (DCM, THF and DMF) had a strong effect on the coatings performance. ► Mg bar alloy coated with PVAc/DCM layers provided an excellent bonding strength. ► Treated samples indicated significant damping for the degradation rate. ► Cytocompatibility on MC3T3 cells of the PVAc/DCM samples revealed a good behavior. - Abstract: The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc–solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  1. Corrosion performance of atmospheric plasma sprayed alumina coatings on AZ31B magnesium alloy under immersion environment

    OpenAIRE

    D. Thirumalaikumarasamy; K. Shanmugam; V. Balasubramanian

    2014-01-01

    Plasma sprayed ceramic coatings are successfully used in many industrial applications, where high wear and corrosion resistance with thermal insulation are required. The alumina powders were plasma sprayed on AZ31B magnesium alloy with three different plasma spraying parameters. In the present work, the influence of plasma spray parameters on the corrosion behavior of the coatings was investigated. The corrosion behavior of the coated samples was evaluated by immersion corrosion test in 3.5 w...

  2. Preliminary Microstructural and Microscratch Results of Ni-Cr-Fe and Cr3C2-NiCr Coatings on Magnesium Substrate

    Science.gov (United States)

    Istrate, B.; Munteanu, C.; Lupescu, S.; Benchea, M.; Vizureanu, P.

    2017-06-01

    Thermal coatings have a large scale application in aerospace and automotive field, as barriers improving wear mechanical characteristics and corrosion resistance. In present research, there have been used two types of coatings, Ni-Cr-Fe, respectively Cr3C2-NiCr which were deposited on magnesium based alloys (pure magnesium and Mg-30Y master alloy). There have been investigated the microstructural aspects through scanning electronic microscopy and XRD analysis and also a series of mechanical characteristics through microscratch and indentation determinations. The results revealed the formation of some adherent layers resistant to the penetration of the metallic indenter, the coatings did not suffer major damages. Microstructural analysis highlighted the formation of Cr3C2, Cr7C3, Cr3Ni2, Cr7Ni3, FeNi3, Cr-Ni phases. Also, the apparent coefficient of friction for Ni-Cr-Fe coatings presents superior values than Cr3C2-NiCr coatings.

  3. Al-TiC in situ composite coating fabricated by low power pulsed laser cladding on AZ91D magnesium alloy

    Science.gov (United States)

    Yang, Liuqing; Li, Zhiyong; Zhang, Yingqiao; Wei, Shouzheng; Liu, Fuqiang

    2018-03-01

    Al + (Ti + B4C) composite coating was cladded on AZ91D magnesium alloy by a low power pulsed Nd-YAG laser. The Ti+B4C mixed powder is with the ratio of Ti: B4C = 5:1, which was then mixed with Al powder by weight fraction of 10%, 15% and 20%, respectively. Scanning electron microscopy, energy dispersive spectrometer and X-ray diffraction were used to study the microstructure, chemical composition and phase composition of the coating. Results showed that the coating had satisfied metallurgical bonding with the magnesium substrate. Al3Mg2, Al12Mg17, Al3Ti and TiC were formed by in-situ reaction. The coatings have micro-hardness of 348HV, which is about 5-6 times higher than that of AZ91D. The wear resistance and corrosion resistance of the coatings are enhanced with the addition of the mixed powder.

  4. Coating of tips for electrochemical scanning tunneling microscopy by means of silicon, magnesium, and tungsten oxides

    Science.gov (United States)

    Salerno, Marco

    2010-09-01

    Different combinations of metal tips and oxide coatings have been tested for possible operation in electrochemical scanning tunneling microscopy. Silicon and magnesium oxides have been thermally evaporated onto gold and platinum-iridium tips, respectively. Two different thickness values have been explored for both materials, namely, 40 and 120 nm for silicon oxide and 20 and 60 nm for magnesium oxide. Alternatively, tungsten oxide has been grown on tungsten tips via electrochemical anodization. In the latter case, to seek optimal results we have varied the pH of the anodizing electrolyte between one and four. The oxide coated tips have been first inspected by means of scanning electron microscopy equipped with microanalysis to determine the morphological results of the coating. Second, the coated tips have been electrically characterized ex situ for stability in time by means of cyclic voltammetry in 1 M aqueous KCl supporting electrolyte, both bare and supplemented with K3[Fe(CN)6] complex at 10 mM concentration in milliQ water as an analyte. Only the tungsten oxide coated tungsten tips have shown stable electrical behavior in the electrolyte. For these tips, the uncoated metal area has been estimated from the electrical current levels, and they have been successfully tested by imaging a gold grating in situ, which provided stable results for several hours. The successful tungsten oxide coating obtained at pH=4 has been assigned to the WO3 form.

  5. Preparation of an apatite-based matrix for the confinement of iodine 129

    International Nuclear Information System (INIS)

    Audubert, F.

    1995-01-01

    The aim of this thesis is the study of the conditioning of iodine 129 from the reprocessing of nuclear wastes. Because of its long half life (1.57 10 7 years), the conditioning of iodine 129 requires a matrix stable during several thousands of years. The study of natural minerals allows the selection of mineral phases having a good long term behaviour. In the first part the policy of nuclear wastes management, and in particular of iodine, is recalled. A naturalistic approach is used to define the best conditioning material and the remarkable properties of apatite in this way are described. In the second part, the preparation and physical-chemical characterization of iodo-apatites are described. A demonstration is made that iodine can penetrate inside vanadate or lead phospho-vanadate apatite-based compounds. The third part deals with the preparation of the conditioning material. The sintering reaction under pressure allows the preparation of composite ceramics including iodo-apatite. A multi-layer coating process is defined: coating of PbI 2 with a Pb 3 (VO 4 ) 1.6 (PO 4 ) 0.4 layer and a Ca 10 (PO 4 ) 6 F 2 layer. Sintering is performed at 700 deg. celsius under a 25 MPa pressure. (J.S.)

  6. Carbonate loss from two magnesium-substituted carbonated apatites prepared by different synthesis techniques

    International Nuclear Information System (INIS)

    Barinov, S.M.; Rau, J.V.; Fadeeva, I.V.; Cesaro, S. Nunziante; Ferro, D.; Trionfetti, G.; Komlev, V.S.; Bibikov, V.Yu.

    2006-01-01

    This study was aimed at the investigation of the thermal stability of Mg-substituted carbonated apatites over the wide temperature range. Two different apatites were studied, which were prepared by either precipitation from aqueous solution or by solid-liquid interaction. The following methods were employed: FTIR spectroscopy of the condensed gas phase to evaluate the CO and CO 2 release with increasing temperature, FTIR of the solid residue after heating, XRD analysis, thermogravimetry and scanning electron microscopy. Decomposition behavior was shown to depend significantly on the synthesis method. Wet-synthesized powders are significantly less thermally stable compared with those prepared by solid-liquid interaction. Intensive release of carbon oxides from the former was observed at 300 deg. C, whereas the latter powder was relatively stable up to temperature about 1000 deg. C

  7. Surface modification of beta-tricalcium phosphate scaffolds with topological nanoapatite coatings

    International Nuclear Information System (INIS)

    Zhang Faming; Chang Jiang; Lu Jianxi; Ning Congqin

    2008-01-01

    A biomimetic process was developed to create a modulable surface topography of nanocrystalline apatite on pure beta-tricalcium phosphate (β-TCP) scaffolds. The scaffolds were immersed in a newly revised simulated body fluid (R n -SBF) to produce nanocrystalline apatite. The obtained surfaces were investigated using scanning electric microscopy, energy dispersion spectrum, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electric microscopy. Nanoparticulates apatite were produced on the surface of the scaffolds for 1 day's soaking; increasing soaking to 3 days led to the formation of a surface covered by needle-like apatite nanocrystals; and a surface coating of needle-like apatite clusters was created after two weeks' soaking in the R n -SBF without bicarbonate ion concentrations. The increase of bicarbonate ion concentrations progressively in the R n -SBF provided a surface entirely coated with a nanostructured thick layer of apatite. These apatite nanostructures were low-crystalline bone-like apatite. The mechanisms for the apatite formation and transition of surface topographies were also discussed. Therefore, a variety of surface topography of nanoapatite coatings on the β-TCP scaffolds can be obtained using this method, which may enhance cell adhesion to the scaffolds for bone tissue engineering applications

  8. Corrosion behaviors of Zn/Al-Mn alloy composite coatings deposited on magnesium alloy AZ31B (Mg-Al-Zn)

    International Nuclear Information System (INIS)

    Zhang Jifu; Zhang Wei; Yan Chuanwei; Du Keqin; Wang Fuhui

    2009-01-01

    After being pre-plated a zinc layer, an amorphous Al-Mn alloy coating was applied onto the surface of AZ31B magnesium alloy with a bath of molten salts. Then the corrosion performance of the coated magnesium alloy was examined in 3.5% NaCl solution by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The results showed that the single Zn layer was active in the test solution with a high corrosion rate while the Al-Mn alloy coating could effectively protect AZ31B magnesium alloy from corrosion in the solution. The high corrosion resistance of Al-Mn alloy coating was ascribed to an intact and stable passive film formed on the coating. The performances of the passive film on Al-Mn alloy were further investigated by Mott-Schottky curve and X-ray photoelectron spectroscopy (XPS) analysis. It was confirmed that the passive film exhibited n-type semiconducting behavior in 3.5% NaCl solution with a carrier density two orders of magnitude less than that formed on pure aluminum electrode. The XPS analysis indicated that the passive film was mainly composed of AlO(OH) after immersion for long time and the content of Mn was negligible in the outer part of the passive film. Based on the EIS measurement, electronic structure and composition analysis of the passive film, a double-layer structure, with a compact inner oxide and a porous outer layer, of the film was proposed for understanding the corrosion process of passive film, with which the experimental observations might be satisfactorily interpreted.

  9. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method.

    Science.gov (United States)

    Ning, C Q; Zhou, Y

    2002-07-01

    Traditionally, hydroxyapatite was used as a coating material on titanium substrate by various techniques. In the present work, a biocomposite was successfully fabricated from hydroxyapatite and titanium powders by powder metallurgy method. Bioactivity of the composite in a simulated body fluid (SBF) was investigated. Main crystal phases of the as-fabricated composite are found to be Ti2O, CaTiO3, CaO, alpha-Ti and a TiP-like phase. When the composite is immersed in the simulated body fluid for a certain time, a poor-crystallized, calcium-deficient, carbonate-containing apatite film will form on the surface of the composite. The time required to induce apatite nucleation is within 2 h. In addition, the apatite is also incorporated with a little magnesium and chlorine element. It is found that Ti2O has the ability to induce the formation of bone-like apatite in the SBF. And a dissolve of the CaO phase could also provide favorable conditions for the apatite formation, by forming open pores on the surface of the composite and increasing the degree of supersaturation of the SBF with respect to the apatite.

  10. Calcium phosphate nuclear materials: apatitic ceramics for separated wastes

    International Nuclear Information System (INIS)

    Carpena, J.; Lacout, J.L.

    2005-01-01

    Is it feasible to elaborate conditioning materials for separated high activity nuclear wastes, as actinides or fission products? Specific materials have been elaborated so that the waste is incorporated within the crystalline structure of the most stable calcium phosphate, i.e. apatite. This mineral is able to sustain high irradiation doses assuming a well chosen chemical composition. Mainly two different ways of synthesis have been developed to produce hard apatite ceramics that can be used to condition nuclear wastes. Here we present a data synthesis regarding the elaboration of these apatite nuclear materials that includes experiments on crystallo-chemistry, chemical analysis, leaching and irradiation tests performed for the past fifteen years. (authors)

  11. Incorporation of cesium into phosphates of apatitic and rhabdophane lattices. Application to the conditioning of separated radionuclides; Incorporation du cesium dans des phosphates de structure apatitique et rhabdophane. Application au conditionnement des radionucleides separes

    Energy Technology Data Exchange (ETDEWEB)

    Campayo, L

    2003-04-01

    Two phosphate-based materials were investigated for cesium immobilization after its partitioning from spent nuclear fuel: apatites and rhabdophanes. The incorporation of cesium into the apatitic lattice creates steric stresses. These stresses induce the formation of secondary phases which are rapidly leached. The effectiveness of the cesium immobilization in this material is not therefore validated. A second phosphate CsCaNd(PO{sub 4}){sub 2} was consistently found at the end of the leach test and its properties were further characterized. The structure of CsCaNd(PO{sub 4}){sub 2}, which is rhabdophane-like, is made of large channels which enable the incorporation of the largest alkaline cations. The synthesis involves two intermediates: the monazite, NdPO{sub 4}, and a soluble phosphate, CsCaPO{sub 4}. The study of a rhabdophane with 10 wt.% of cesium reveals satisfactory intrinsic properties: a thermal stability up to 1100 C and a leach rate of 10{sup -2} g/(m{sup 2}.d). The next step will be to improve the reaction yield. (author)

  12. Chitosan coatings crosslinked with genipin for corrosion protection of AZ31 magnesium alloy sheets.

    Science.gov (United States)

    de Y Pozzo, Ludmila; da Conceição, Thiago F; Spinelli, Almir; Scharnagl, Nico; Pires, Alfredo T N

    2018-02-01

    In this study, coatings of chitosan crosslinked with genipin were prepared on sheets of AZ31 magnesium alloy and their corrosion protection properties were characterized by means of potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The coatings were also characterized by means of FTIR and XPS. It was observed that the crosslinking process decreases the corrosion current and shifts the corrosion potential of the alloy to less negative values. The EIS analysis demonstrated that the crosslinking process increases the maximum impedance after short and long exposure times. The superior performance of the crosslinked coatings is related to a lower degree of swelling, as observed in the swelling tests carried out on free-standing films. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials.

    Science.gov (United States)

    Pino, M; Stingelin, N; Tanner, K E

    2008-11-01

    The skirt of an artificial cornea must integrate the implant to the host sclera, a major failure of present devices. Thus, it is highly desirable to encourage the metabolic activity of the cornea by using more bioactive, flexible skirt materials. Here we describe attempts to increase the bioactivity of polyether ether ketone (PEEK), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE) films. The effectiveness of different strength NaOH pre-treatments to initiate apatite deposition on PEEK, HDPE and UHMWPE is investigated. We find that exposure of PEEK, HDPE and UHMWPE films to NaOH solutions induces the formation of potential nuclei for apatite (calcium phosphate), from which the growth of an apatite coating is stimulated when subsequently immersing the polymer films in 1.5 strength Simulated Body Fluid (SBF). As immersion time in SBF increases, further nucleation and growth produces a thicker and more compact apatite coating that can be expected to be highly bioactive. Interestingly, the apatite growth is found to also be dependent on both the concentration of NaOH solution and the structure of the polymer surface.

  14. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    Science.gov (United States)

    Civale, Leonardo; Tan, Teng; Wolak, M.; Xi, Xiaoxing; Tajima, Tsuyoshi

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoids to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with 200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  15. Fouling Release Coatings Based on Polydimethylsiloxane with the Incorporation of Phenylmethylsilicone Oil

    Directory of Open Access Journals (Sweden)

    Miao Ba

    2018-04-01

    Full Text Available In this study, phenylmethylsilicone oil (PSO with different viscosity was used for research in fouling release coatings based on polydimethylsiloxane (PDMS. The surface properties and mechanical properties of the coatings were investigated, while the leaching behavior of PSO from the coatings was studied. Subsequently, the antifouling performance of the coatings was investigated by the benthic diatom adhesion test. The results showed that the coatings with high-viscosity PSO exhibited high levels of hydrophobicity and PSO leaching, while the high PSO content significantly decreased the elastic modulus of the coatings and prolonged the release time of PSO. The antifouling results indicated that the incorporation of PSO into coatings enhanced the antifouling performance of the coating by improving the coating hydrophobicity and decreasing the coating elastic modulus, while the leaching of PSO from the coatings improved the fouling removal rate of the coating. This suggests a double enhancement effect on the antifouling performance of fouling release coatings based on PDMS with PSO incorporated.

  16. Magnesium incorporated bentonite clay for defluoridation of drinking water

    International Nuclear Information System (INIS)

    Thakre, Dilip; Rayalu, Sadhana; Kawade, Raju; Meshram, Siddharth; Subrt, J.; Labhsetwar, Nitin

    2010-01-01

    Low cost bentonite clay was chemically modified using magnesium chloride in order to enhance its fluoride removal capacity. The magnesium incorporated bentonite (MB) was characterized by using XRD and SEM techniques. Batch adsorption experiments were conducted to study and optimize various operational parameters such as adsorbent dose, contact time, pH, effect of co-ions and initial fluoride concentration. It was observed that the MB works effectively over wide range of pH and showed a maximum fluoride removal capacity of 2.26 mg g -1 at an initial fluoride concentration of 5 mg L -1 , which is much better than the unmodified bentonite. The experimental data fitted well into Langmuir adsorption isotherm and follows pseudo-first-order kinetics. Thermodynamic study suggests that fluoride adsorption on MB is reasonably spontaneous and an endothermic process. MB showed significantly high fluoride removal in synthetic water as compared to field water. Desorption study of MB suggest that almost all the loaded fluoride was desorbed (∼97%) using 1 M NaOH solution however maximum fluoride removal decreases from 95.47 to 73 (%) after regeneration. From the experimental results, it may be inferred that chemical modification enhances the fluoride removal efficiency of bentonite and it works as an effective adsorbent for defluoridation of water.

  17. Electrochemical investigation of powder coatings and their application to magnesium-rich primers for corrosion protection

    Science.gov (United States)

    Orgon, Casey Roy

    Corrosion is the decomposition of metal and metal alloys which threatens the integrity of man-made structures. One of the more efficient methods of delaying the corrosion process in metals is by coatings. In this work, the durability of two polyester powder coatings were investigated for corrosion protection of AA-2024-T3. Polyester powder coatings crosslinked by either triglycidyl isocyanurate (TGIC) or beta-hydroxyalkyl amide (HAA) compounds were prepared and investigated for barrier protection of metal substrates by electrochemical impedance spectroscopy (EIS). Polyester-TGIC coatings were found to provide better long-term protection, which can be attributed to the increased mechanical strength and higher concentration of crosslinking in the coating films. Additionally, the polyester powder coatings, along with a fusion bonded epoxy (FBE) were investigated for their compatibility as a topcoat for magnesium-rich primers (MgRP). Under proper application conditions, powder topcoats were successfully applied to cured MgRP while corrosion protection mechanisms of each system were maintained.

  18. In vitro biomimetic deposition of apatite on alkaline and heat treated ...

    Indian Academy of Sciences (India)

    WINTEC

    materials of choice for most dental and orthopedic appli- .... treatment on the surface of the substrate and the structure of the titanium substrate, gel layer and bone-like apatite coatings obtained were analysed by thin film X-ray dif-.

  19. Influence of phytic acid concentration on performance of phytic acid conversion coatings on the AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Cui Xiufang; Li Ying; Li Qingfen; Jin Guo; Ding Minghui; Wang Fuhui

    2008-01-01

    In this study, the phytic acid conversion coating, a new environmentally friendly chemical protective coating for magnesium alloys, was prepared. The influences of phytic acid concentration on the formation process, microstructure, chemical state and corrosion resistance of the conversion coatings on AZ91D magnesium alloy were investigated by means of weight gain measurement, field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FTIR) spectroscopy, potentiodynamic polarization method and electrochemical impedance spectroscopy (EIS), respectively. And the depth profile of all elements in the optimal conversion coatings was analyzed by auger electron spectroscopy (AES). The results show that the growth, microstructure, chemical state and corrosion resistance of the conversion coatings are all obviously affected by the phytic acid concentration. The concentration of 5 g l -1 corresponds to the maximum weight gain. The main elements of the coating are Mg, Al, O, P, and C, which are distributed gradually in depth. The functional groups of conversion coatings formed in higher concentration phytic acid solution are closer to the constituent of phytic acid than those formed in lower concentration phytic acid solution. The coatings formed in 1-5 g l -1 are integrated and uniform. However, those formed in 20-50 g l -1 have some micro-cracks on the α phase. The coating formed in 5 g l -1 has the best corrosion resistance, whose open circuit current density decreases about six orders than that of the untreated sample, although the coatings deposited in 1-20 g l -1 can all improve the corrosion resistance of AZ91D

  20. Effect of aluminum coatings on corrosion properties of AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiu Liuho; Lin Hsingan; Chen Chunchin; Yang Chihfu [Dept. of materials engineering, Tatung Univ., Taipei (Taiwan); Chang Chiahua; Wu Jenchin [Physical chemistry section, chemical systems research div., Chung-Shan Inst. of Science and Technology, Tao-Yuan (Taiwan)

    2003-07-01

    This investigation aimed to increase the corrosion resistance of an AZ31 magnesium alloy by an aluminum arc spray coating and a post-treatment consisted of hot pressing and anodizing. It was found that the aluminum arc spraying alone was incapable of protection against corrosion due to the high amount of pores present in the coating layer. In order to solve the problem, densification of the Al arc-sprayed layer was carried out by hot pressing the coated AZ31 Mg alloy plate under an appropriate range of temperature, time and pressure. After hot pressing the Al coated AZ31 Mg alloy plate exhibited a much improved corrosion resistance. A final anodizing treatment applied to the AZ31 alloy with the dense Al coating further improved its resisting to corrosion. The results showed that, by adopting the Al arc spraying, hot pressing and anodizing process, the corrosion current density of the AZ31 alloy in a 3.5 wt% NaCl solution was from 2.1 x 10{sup -6} A/cm{sup 2} (original AZ31) to 3.7 x 10{sup -7} A/cm{sup 2} (after the surface treatment), which value is close to that of an anodized aluminum plate. (orig.)

  1. Effect of magnesium stearate concentration on dissolution properties of ranitidine hydrochloride coated tablets.

    Science.gov (United States)

    Uzunović, Alija; Vranić, Edina

    2007-08-01

    Most pharmaceutical formulations also include a certain amount of lubricant to improve their flowability and prevent their adhesion to the surfaces of processing equipment. Magnesium stearate is an additive that is most frequently used as a lubricant. Magnesium stearate is capable of forming films on other tablet excipients during prolonged mixing, leading to a prolonged drug liberation time, a decrease in hardness, and an increase in disintegration time. It is hydrophobic, and there are many reports in the literature concerning its adverse effect on dissolution rates. The objective of this study was to evaluate the effects of two different concentrations of magnesium stearate on dissolution properties of ranitidine hydrochloride coated tablet formulations labeled to contain 150 mg. The uniformity content was also checked. During the drug formulation development, several samples were designed for choice of the formulation. For this study, two formulations containing 0,77 and 1,1% of magnesium stearate added in the manufacture of cores were chosen. Fraction of ranitidine hydrochloride released in dissolution medium was calculated from calibration curves. The data were analyzed using pharmacopeial test for similarity of dissolution profiles ( f2 equation), previously proposed by Moore and Flanner. Application of f2 equation showed differences in time-course of ranitidine hydrochloride dissolution properties. The obtained values indicate differences in drug release from analyzed ranitidine hydrochloride formulations and could cause differences in therapeutic response.

  2. Porous SiO2 nanofiber grafted novel bioactive glass-ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant.

    Science.gov (United States)

    Das, Indranee; De, Goutam; Hupa, Leena; Vallittu, Pekka K

    2016-05-01

    A composite bioactive glass-ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A novel silica nanotube reinforced ionic incorporated hydroxyapatite composite coating on polypyrrole coated 316L SS for implant application

    Energy Technology Data Exchange (ETDEWEB)

    Prem Ananth, K., E-mail: kpananth01@gmail.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India); Joseph Nathanael, A. [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Jose, Sujin P. [Department of Materials Science and Nano engineering, Rice University, Texas 77005 (United States); School of Physics, Madurai Kamaraj University, Madurai-625021 (India); Oh, Tae Hwan [Department of Nano, Medical and Polymer Materials, Yeungnam University, Gyeongsan 712-749 (Korea, Republic of); Mangalaraj, D. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore – 641 046 (India)

    2016-02-01

    An attempt has been made to deposit a novel smart ion (Sr, Zn, Mg) substituted hydroxyapatite (I-HAp) and silica nanotube (SiNTs) composite coatings on polypyrrole (PPy) coated surgical grade 316L stainless steel (316L SS) to improve its biocompatibility and corrosion resistance. The I-HAp/SiNTS/PPy bilayer coating on 316L SS was prepared by electrophoretic deposition technique. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) studies were carried out. These results confirmed the significant improvement of the corrosion resistance of the 316L SS alloy by the I-HAp/SiNTs/PPy bilayer composite coating. The adhesion strength and hardness test confirmed the anticipated mechanical properties of the composite. A low contact angle value revealed the hydrophilic nature. Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was used for the leach out analysis of the samples. Added to this, the bioactivity of the composite was analyzed by observing the apatite formation in the SBF solution for 7, 14, 21 and 28 days of incubation. An enhancement of in vitro osteoblast attachment and cell viability was observed, which could lead to the optimistic orthopedic and dental applications. - Highlights: • Polypyrrole (PPy) coated 316L SS substrates were fabricated using electrodeposition method. • A novel silica nanotube (SiNTs) and ionic substituted (Sr, Zn, Mg) hydroxyapatite composite (I-HAp) were prepared. • The composite (I-HAp/SiNTs) was coated on PPy coated 316L SS substrate using electrophoretic deposition. • These results are favorable for corrosion resistance and enhanced osteoblast cell attachment for bone formation.

  4. Towards lightweight nanocomposite coatings for corrosion inhibition: Graphene, carbon nanotubes, and nanostructured magnesium as case studies

    Science.gov (United States)

    Dennis, Robert Vincent, III

    The field of nanocomposites is a burgeoning area of research due to the interest in the remarkable properties which can be achieved through their use in a variety of applications, including corrosion resistant coatings. Lightweighting is of increasing importance in the world today due to the ever growing push towards energy efficiency and the green movement and in recent years there has been a vast amount of research performed in the area of developing lightweight nanocomposites for corrosion inhibition. Many new composite materials have been developed through the use of newly developed nanomaterials (including carbonaceous and metallic constituents) and their specialized incorporation in the coating matrix materials. We start with a general review on the development of hybrid nanostructured composites for corrosion protection of base metals from a sustainability perspective in Chapter 1. This review demonstrates the ever swelling requirements for a paradigm shift in the way that we protect metals against corrosion due to the costs and environmental concerns that exist with currently used technology. In Chapter 2, we delve into the much required understanding of graphene oxide and reduced graphene oxide through near-edge X-ray absorption fine structure (NEXAFS) spectroscopy measurements to elucidate information about the electronic structure upon incorporation of nitrogen within the structure. For successful integration of the carbonaceous nanomaterials into a composite coating, a full swath of knowledge is necessary. Within this work we have shown that upon chemical defunctionalization of graphene oxide to reduced graphene oxide by means of hydrazine treatment, nitrogen is incorporated into the structure in the form of a pyrazole ring. In Chapter 3, we demonstrate that by way of in situ polymerization, graphene and multiwalled carbon nanotubes can be incorporated within a polymer (polyetherimide, PEI) matrix. Two systems have been developed including graphene and

  5. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  6. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  7. Theoretical basis of remediation of heavy metal contamination by apatite

    International Nuclear Information System (INIS)

    Raicevic, S.; Mandic, M.; Kaludjerovic, T.

    2001-01-01

    Recently we have demonstrated the connection between stability of the products of the in situ remediation processes and their values of the ion-ion interaction potential, representing the main term of the cohesive energy. Using this approach, the stability of the products of remediation of Pb and Cd by hydroxyapatite (HAP) was investigated. It has been demonstrated that incorporation of Pb ions from pyromorphite into HAP is followed by a decrease of the cohesive energy, indicating that in remediation of Pb, HAP serves as a source of components necessary for formation of a stabile Pb-apatite phase which is precipitated on the surface of the HAP particles. Contrary, incorporation of Cd from the Cd-apatite into HAP increases the cohesive energy of the system, suggesting that the precipitated Cd-apatite phase is later transformed into a more stabile HAP/Cd solid solution. The presented results of theoretical analysis are in good accordance with the reported experimental results. Based on the results of this analysis, the general criterion for estimation of stability of the products of the in situ remediation processes was proposed. (author)

  8. Electrochemical Evaluation of Hydroxyapatite/ZrN Coated Magnesium Biodegradable Alloy in Ringer Solution as a Simulated Body Fluid

    Directory of Open Access Journals (Sweden)

    Seyed Rahim Kiahosseini

    2015-02-01

    Full Text Available Magnesium alloys as biodegradable materials can be used in body as an implant materials but since they have poor corrosion resistance, it is required to decrease their corrosion rate by biocompatible coatings. In this study, hydroxyapatite (HA coatings in the presence of an intermediate layer of ZrN as a biocompatible material, deposited on AZ91 magnesium alloy by ion beam sputtering method at 300 °C temperature and at different times 180, 240, 300, 360 and 420 min. Then changes in corrosion resistance of samples in Ringer's solution as a solution similar to the human body was evaluated in two ways, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS. To investigate the causes of the destruction of the samples, the surface of samples was studied by scanning electron microscopy (SEM. The results showed that because of porous coatings created, the corrosion potential of the samples was about +55mV higher than the uncoated substrate that by changing the deposition time, was not observed the significant change But with increasing deposition time to 360 min, corrosion current decreased which represents an increase of corrosion resistance of magnesium alloy in body solution. However, a further increase in deposition time to 420 min, due to increase thickness and stress in the layer, the corrosion resistance of the samples was reduced. The results of the EIS confirm the corrosion behavior of the polarization method, too.   

  9. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent

    Energy Technology Data Exchange (ETDEWEB)

    Amini, R. [Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Sarabi, A.A., E-mail: sarabi@aut.ac.ir [Department of Polymer Engineering and Color Technology, AmirKabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of)

    2011-06-01

    Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied. Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.

  10. The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent

    International Nuclear Information System (INIS)

    Amini, R.; Sarabi, A.A.

    2011-01-01

    Sodium nitrite has been used as an accelerating agent in phosphating bath to improve its properties. However, it is well known that sodium nitrite is a carcinogenic component in phosphating sludge. In this study, it has been aimed to replace sodium nitrite by an environmentally friendly accelerating agent. To this end, sodium dodecyl sulfate (SDS) was used in phosphating bath to improve the phosphate coating formation on an AZ31 magnesium alloy. The effect of SDS/sodium nitrite ratio on the phosphated samples properties was also studied. Using field emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), direct current (DC) polarization and electrochemical impedance spectroscopy (EIS) the properties of phosphated magnesium samples were studied. Results showed uniform phosphate coating formation on the magnesium sample mostly in hopeite phase composition. In addition, a denser and less permeable coating can be obtained at these conditions. The corrosion resistance of the phosphated samples was superiorly improved using higher SDS concentration in the phosphating bath.

  11. Magnesium incorporated bentonite clay for defluoridation of drinking water.

    Science.gov (United States)

    Thakre, Dilip; Rayalu, Sadhana; Kawade, Raju; Meshram, Siddharth; Subrt, J; Labhsetwar, Nitin

    2010-08-15

    Low cost bentonite clay was chemically modified using magnesium chloride in order to enhance its fluoride removal capacity. The magnesium incorporated bentonite (MB) was characterized by using XRD and SEM techniques. Batch adsorption experiments were conducted to study and optimize various operational parameters such as adsorbent dose, contact time, pH, effect of co-ions and initial fluoride concentration. It was observed that the MB works effectively over wide range of pH and showed a maximum fluoride removal capacity of 2.26 mgg(-1) at an initial fluoride concentration of 5 mg L(-1), which is much better than the unmodified bentonite. The experimental data fitted well into Langmuir adsorption isotherm and follows pseudo-first-order kinetics. Thermodynamic study suggests that fluoride adsorption on MB is reasonably spontaneous and an endothermic process. MB showed significantly high fluoride removal in synthetic water as compared to field water. Desorption study of MB suggest that almost all the loaded fluoride was desorbed ( approximately 97%) using 1M NaOH solution however maximum fluoride removal decreases from 95.47 to 73 (%) after regeneration. From the experimental results, it may be inferred that chemical modification enhances the fluoride removal efficiency of bentonite and it works as an effective adsorbent for defluoridation of water. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Biocorrosion resistance of coated magnesium alloy by microarc oxidation in electrolyte containing zirconium and calcium salts

    Science.gov (United States)

    Wang, Ya-Ming; Guo, Jun-Wei; Wu, Yun-Feng; Liu, Yan; Cao, Jian-Yun; Zhou, Yu; Jia, De-Chang

    2014-09-01

    The key to use magnesium alloys as suitable biodegradable implants is how to adjust their degradation rates. We report a strategy to prepare biocompatible ceramic coating with improved biocorrosion resistance property on AZ91D alloy by microarc oxidation (MAO) in a silicate-K2ZrF6 solution with and without Ca(H2PO4)2 additives. The microstructure and biocorrosion of coatings were characterized by XRD and SEM, as well as electrochemical and immersion tests in simulated body fluid (SBF). The results show that the coatings are mainly composed of MgO, Mg2SiO4, m-ZrO2 phases, further Ca containing compounds involve the coating by Ca(H2PO4)2 addition in the silicate-K2ZrF6 solution. The corrosion resistance of coated AZ91D alloy is significantly improved compared with the bare one. After immersing in SBF for 28 d, the Si-Zr5-Ca0 coating indicates a best corrosion resistance performance.

  13. Composition and Performance of Nanostructured Zirconium Titanium Conversion Coating on Aluminum-Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Sheng-xue Yu

    2013-01-01

    Full Text Available Nanostructured conversion coating of Al-Mg alloy was obtained via the surface treatment with zirconium titanium salt solution at 25°C for 10 min. The zirconium titanium salt solution is composed of tannic acid 1.00 g·L−1, K2ZrF6 0.75 g·L−1, NaF 1.25 g·L−1, MgSO4 1.0 g/L, and tetra-n-butyl titanate (TBT 0.08 g·L−1. X-ray diffraction (XRD, X-ray photoelectron spectroscopy (XPS, and Fourier transform infrared spectrum (FT-IR were used to characterize the composition and structure of the obtained conversion coating. The morphology of the conversion coating was obtained by atomic force microscopy (AFM and scanning electron microscopy (SEM. Results exhibit that the zirconium titanium salt conversion coating of Al-Mg alloy contains Ti, Zr, Al, F, O, Mg, C, Na, and so on. The conversion coating with nm level thickness is smooth, uniform, and compact. Corrosion resistance of conversion coating was evaluated in the 3.5 wt.% NaCl electrolyte through polarization curves and electrochemical impedance spectrum (EIS. Self-corrosion current density on the nanostructured conversion coating of Al-Mg alloy is 9.7×10-8A·cm-2, which is only 2% of that on the untreated aluminum-magnesium alloy. This result indicates that the corrosion resistance of the conversion coating is improved markedly after chemical conversion treatment.

  14. Microwave-assisted fabrication of strontium doped apatite coating on Ti6Al4V

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Huan, E-mail: huanzhou@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164 (China); Kong, Shiqin [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164 (China); School of Materials Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164 (China); Pan, Yan; Zhang, Zhiguo [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164 (China); Deng, Linhong, E-mail: dlh@cczu.edu.cn [Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164 (China)

    2015-11-01

    Strontium has been shown to be a beneficial dopant to calcium phosphates when incorporated at nontoxic level. In the present work we studied the possibility of solution derived doping strontium into calcium phosphate coatings on titanium alloy Ti6Al4V based implants by a recently reported microwave-assisted method. By using this method strontium doped calcium phosphate nuclei were deposited to pretreated titanium alloy surface dot by dot to compose a crack-free coating layer. The presence of strontium in solution led to reduced roughness of the coating and finer nucleus size formed. In vitro study found that proliferation and differentiation of osteoblast cells seeded on the coating were influenced by strontium content in coatings, showing an increasing followed by a decreasing behavior with increasing substitution of calcium by strontium. It is suggested that this new microwave-assisted strontium doped calcium phosphate coatings may have great potential in implant modification. - Highlights: • Strontium doped calcium phosphate coating is deposited with microwave irradiation. • Increase of strontium reduces coating roughness and results in finer nucleus size. • Proliferation and differentiation of osteoblasts depend on doped strontium content.

  15. Corrosion Monitoring of PEO-Pretreated Magnesium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gnedenkov, A. S.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Gnedenkov, S. V.; Sergienko, V. I. [Institute of Chemistry, Vladivostok (Russian Federation)

    2017-06-15

    The MA8 alloy (formula Mg-Mn-Ce) has been shown to have greater corrosion stability than the VMD10 magnesium alloy (formula Mg-Zn-Zr-Y) in chloride-containing solutions by Scanning Vibrating Electrode Technique (SVET) and by optical microscopy, gravimetry, and volumetry. It has been established that the crucial factor for the corrosion activity of these samples is the occurrence of microgalvanic coupling at the sample surface. The peculiarities of the kinetics and mechanism of the corrosion in the local heterogeneous regions of the magnesium alloy surface were investigated by localized electrochemical techniques. The stages of the corrosion process in artificial defects in the coating obtained by plasma electrolytic oxidation (PEO) at the surface of the MA8 magnesium alloy were also studied. The analysis of the experimental data enabled us to determine that the corrosion process in the defect zone develops predominantly at the magnesium/coating interface. Based on the measurements of the corrosion rate of the samples with PEO and composite polymer-containing coatings, the best anticorrosion properties were displayed by the composite polymer-containing coatings.

  16. Nanostructured calcium phosphate coatings on magnesium alloys: characterization and cytocompatibility with mesenchymal stem cells

    OpenAIRE

    Iskandar, Maria Emil; Aslani, Arash; Tian, Qiaomu; Liu, Huinan

    2015-01-01

    This article reports the deposition and characterization of nanostructured calcium phosphate (nCaP) on magnesium–yttrium alloy substrates and their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The nCaP coatings were deposited on magnesium and magnesium–yttrium alloy substrates using proprietary transonic particle acceleration process for the dual purposes of modulating substrate degradation and BMSC adhesion. Surface morphology and feature size were analyzed usin...

  17. Mg-containing hydroxyapatite coatings produced by plasma electrolytic oxidation of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cesar Augusto; Rangel, Elidiane Cipriano; Durrant, Steven Frederick; Cruz, Nilson Cristino da, E-mail: cesar.augustoa@hotmail.com [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Sorocaba, SP (Brazil). Lab. de Plasmas Tecnologicos; Delgado-Silva, Adriana de Oliveira [Universidade Federal de Sao Carlos (UFSCar), Sorocaba, SP (Brazil); Tabacniks, Manfredo H. [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Fisica

    2017-07-15

    Plasma Electrolytic Oxidation (PEO) is promising for the processing of biomaterials because it enables the production of surfaces with adjustable composition and structure. In this work, aimed at the improvement of the bioactivity of titanium, PEO has been used to grow calcium phosphide coatings on titanium substrates. The effects of the addition of magnesium acetate to the electrolytes on the composition of the coatings produced during 120 s on Ti disks using bipolar voltage pulses and solutions of calcium and magnesium acetates and sodium glycerophosphate as electrolytes have been studied. Scanning electron microscopy, X-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy, X-ray diffractometry with Rietveld refinement and profilometry were used to characterize the modified samples. Coatings composed of nearly 50 % of Mg-doped hydroxyapatite have been produced. In certain conditions up to 4% Mg can be incorporated into the coating without any observable significant structural modifications of the hydroxyapatite. (author)

  18. Corrosion and protection of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, E. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining and Metallurgy

    2000-07-01

    The oxide film on magnesium offers considerable surface protection in rural and some industrial environments and the corrosion rate lies between that of aluminum and low carbon steels. Galvanic coupling of magnesium alloys, high impurity content such as Ni, Fe, Cu and surface contamination are detrimental for corrosion resistance of magnesium alloys. Alloying elements can form secondary particles which are noble to the Mg matrix, thereby facilitating corrosion, or enrich the corrosion product thereby possibly inhibiting the corrosion rate. Bimetallic corrosion resistance can be increased by fluxless melt protection, choice of compatible alloys, insulating materials, and new high-purity alloys. Magnesium is relatively insensible to oxygen concentration. Pitting, corrosion in the crevices, filiform corrosion are observed. Granular corrosion of magnesium alloys is possible due to the cathodic grain-boundary constituent. More homogeneous microstructures tend to improve corrosion resistance. Under fatigue loading conditions, microcrack initiation in Mg alloys is related to slip in preferentially oriented grains. Coating that exclude the corrosive environments can provide the primary defense against corrosion fatigue. Magnesium alloys that contain neither aluminum nor zinc are the most SCC resistant. Compressive surface residual stresses as that created by short peening increase SCC resistance. Cathodic polarization or cladding with a SCC resistant sheet alloy are good alternatives. Effective corrosion prevention for magnesium alloy components and assemblies should start at the design stage. Selective surface preparation, chemical treatment and coatings are recommended. Oil application, wax coating, anodizing, electroplating, and painting are possible alternatives. Recently, it is found that a magnesium hydride layer, created on the magnesium surface by cathodic charging in aqueous solution is a good base for painting. (orig.)

  19. Effect of Magnesium Stearate Concentration on Dissolution Properties of Ranitidine Hydrochloride Coated Tablets

    Directory of Open Access Journals (Sweden)

    Alija Uzunović

    2007-08-01

    Full Text Available Most pharmaceutical formulations also include a certain amount of lubricant to improve their flowability and prevent their adhesion to the surfaces of processing equipment. Magnesium stearate is an additive that is most frequently used as a lubricant. Magnesium stearate is capable of forming films on other tablet excipients during prolonged mixing, leading to a prolonged drug liberation time, a decrease in hardness, and an increase in disintegration time. It is hydrophobic, and there are many reports in the literature concerning its adverse effect on dissolution rates.The objective of this study was to evaluate the effects of two different concentrations of magnesium stearate on dissolution properties of ranitidine hydrochloride coated tablet formulations labeled to contain 150 mg. The uniformity content was also checked.During the drug formulation development, several samples were designed for choice of the formulation. For this study, two formulations containing 0,77 and 1,1% of magnesium stearate added in the manufacture of cores were chosen. Fraction of ranitidine hydrochloride released in dissolution medium was calculated from calibration curves. The data were analyzed using pharmaco-peial test for similarity of dissolution profiles (f2 equation, previously proposed by Moore and Flanner.Application of f2 equation showed differences in time-course of ranitidine hydrochloride dissolution properties. The obtained values indicate differences in drug release from analyzed ranitidine hydrochloride formulations and could cause differences in therapeutic response.

  20. Apatite-Melt Partitioning at 1 Bar: An Assessment of Apatite-Melt Exchange Equilibria Resulting from Non-Ideal Mixing of F and Cl in Apatite

    Science.gov (United States)

    McCubbin, F. M.; Ustunisik, G.; Vander Kaaden, K. E.

    2016-01-01

    The mineral apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (X-site), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to precisely determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multi-component silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al. recently reported that the exchange coefficients may vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing. In the present study, we conducted apatite-melt partitioning experiments in evacuated, sealed silica-glass tubes at approximately 1 bar and 950-1050 degrees Centigrade on a synthetic Martian basalt composition equivalent to the basaltic shergottite Queen Alexandria Range (QUE) 94201. These experiments were conducted dry, at low pressure, to assess the effects of temperature and apatite composition on the partitioning behavior of F and Cl between apatite and basaltic melt along the F-Cl apatite binary join, where there is non-ideal mixing of F and Cl

  1. Fabrication of multifunctional CaP-TC composite coatings and the corrosion protection they provide for magnesium alloys.

    Science.gov (United States)

    Tan, Cui; Zhang, Xiaoxu; Li, Qing

    2017-08-28

    Two major problems with magnesium (Mg) alloy biomaterials are the poor corrosion resistance and infection associated with implantation. In this study, a novel calcium phosphate (CaP)/tetracycline (TC) composite coating for Mg implants that can both improve the corrosion resistance of Mg and release a drug in a durable way is reported. Scanning electron microscope (SEM) images showed that TC additives make the CaP coating more compact and uniform. Electrochemical tests indicated CaP/TC coatings can provide excellent corrosion protection for Mg alloy substrates. Besides, TC additives can also provide effective prevention of bone infection and inflammation due to its broad-spectrum antibacterial properties. The one-step hydrothermal process reported here greatly simplified the multi-step fabrication of smart coatings reported previously.

  2. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    Energy Technology Data Exchange (ETDEWEB)

    Xu Liping [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan); Yamamoto, Akiko, E-mail: yamamoto.akiko@nims.go.jp [Biometals Group, Biomaterials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki, 305-0044 (Japan)

    2012-06-15

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly ({epsilon}-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg{sup 2+} are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg{sup 2+} (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  3. In vitro degradation of biodegradable polymer-coated magnesium under cell culture condition

    International Nuclear Information System (INIS)

    Xu Liping; Yamamoto, Akiko

    2012-01-01

    Magnesium (Mg) coated with four kinds of polymers, poly (L-lactic acid) (PLLA)-high molecular weight (HMW), PLLA-low molecular weight (LMW), poly (ε-caprolactone) (PCL)-HMW and PCL-LMW, and uncoated Mg were immersed under cell culture condition to study the degradation/corrosion behavior of the polymer-coated Mg. The releases of Mg 2+ are measured during the immersion. Surface morphology and chemical composition are observed and identified by SEM and EDX. The tomography is obtained by X-ray CT observation and degradation rate is calculated by image analysis after 10-day immersion. All kinds of polymer-coated Mg showed significantly low release of Mg 2+ (p < 0.05) in the whole immersion process comparing to that of uncoated Mg. In SEM and EDX results show, a corrosion layer can be observed on both polymer-coated and uncoated Mg after immersion. There is no obvious difference on the morphology and chemical composition of the corrosion layer between polymer-coated and uncoated Mg, indicating the corrosion/degradation process and corrosion product of Mg substrate are not changed by the polymer films under the present condition compared with uncoated Mg. Concerning the tomography and degradation rate of 10-day immersion, it can be found that the polymer-coated Mg shows a significantly low corrosion rate (p < 0.05) compared with that of uncoated Mg. PLLA coated Mg shows relatively uniform corrosion than PCL coated Mg and uncoated Mg. The largest pitting corrosion depth of PCL-LMW is about 3 times as large as the PLLA-LMW, which might be attributed to the difference of polymer microstructure. It is suggested that PLLA coating might be a suitable option for retarding the loss of mechanical properties of Mg substrate.

  4. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Science.gov (United States)

    Wolak, M. A.; Tan, T.; Krick, A.; Johnson, E.; Hambe, M.; Chen, Ke; Xi, X. X.

    2014-01-01

    We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD). To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB2 films on these substrates showed uniformly good superconducting properties including Tc of 37-40 K, residual resistivity ratio of up to 14, and root-mean-square roughness Rq of 20-30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB2 by the HPCVD technique, an important step towards superconducting rf cavities with MgB2 coating.

  5. Formation and properties of composite nanostructured PEO-coatings on metals and alloys

    Directory of Open Access Journals (Sweden)

    Mashtalyar Dmitry V.

    2017-01-01

    Full Text Available Results of investigation of the incorporation of zirconia and titanium nitride nanoparticles into the coatings formed on magnesium alloy by plasma electrolytic oxidation are presented. Comprehensive research of electrochemical and mechanical properties of obtained coatings was carried out. It was established that the polarization resistance of the samples with a coating containing zirconia nanoparticles is in two fold higher than for the sample with base PEO-coating. One of the important reasons for improving the protective properties of coatings formed in electrolytes containing nanoparticles consists in enhanced morphological characteristics, in particular, the porosity decrease and increase of thickness and resistivity of porousless sublayer in comparison with base PEO-layer. Incorporation of zirconia and titanium nitride particles into the coating increases the mechanical performances. The coating containing nanoparticles have greater hardness and are more wear resistant in comparison with the coatings formed in the electrolyte without nanoparticle.

  6. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    International Nuclear Information System (INIS)

    Pei, Xibo; Zeng, Yongxiang; He, Rui; Li, Zhongjie; Tian, Lingyang; Wang, Jian; Wan, Qianbing; Li, Xiaoyu; Bao, Hong

    2014-01-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants

  7. Single-walled carbon nanotubes/hydroxyapatite coatings on titanium obtained by electrochemical deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pei, Xibo; Zeng, Yongxiang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); He, Rui [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Stomatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou 310015 (China); Li, Zhongjie; Tian, Lingyang [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wang, Jian, E-mail: fero@scu.edu.cn [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Wan, Qianbing, E-mail: pxb1024@hotmail.com [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Bao, Hong [Department of Stomatology, Hospital of Chengdu Office of People' s Government of Tibetan Autonomous Region, Chengdu 610000 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The incorporation of SWNTs into the HA coating leaded to the formation of homogeneous and crack-free composite coatings. • The highest bonding strength was detected for the SWNTs/HA-0.5 composite coating (25.70 MPa). • The SWNTs/HA composite coatings induced better cell proliferation, cell viability and ALP activity compared to pure HA coating and pure Ti. • The results suggested that SWNTs/HA-0.5 and SWNTs/HA-1.0 composite coating prepared in this work is acceptable in terms of mechanical property and in-vitro bioactivity. - Abstract: Single-walled carbon nanotubes/hydroxyapatite (SWNTs/HA) composite coatings were successfully fabricated by electrochemical deposition technique. Different concentrations of SWNTs were incorporated into the apatite coating by adding functionalized SWNTs into the electrolyte. Homogeneous and crack-free SWNTs/HA composite coatings were achieved and the coatings had higher crystallinity compared to pure HA coating. In addition, the highest bonding strength of the SWNTs/HA coating reached 25.7 MPa, which was nearly 70% higher than that of pure HA coating. The in-vitro cellular biocompatibility tests revealed that SWNTs/HA composite coatings exhibited higher in-vitro bioactivity than that of pure HA coating and pure titanium (Ti). It suggests that SWNTs/HA composite coating may have enormous potential applications in the field of biomaterials, especially for the metal implants.

  8. Controlling the Biodegradation of Magnesium Implants Through Nanostructured Calcium-Phosphate Coating

    Science.gov (United States)

    Iskandar, Maria Emil

    Magnesium (Mg) alloys, a novel class of degradable, metallic biomaterials, have attracted growing interest as a promising alternative for medical implant and device applications due to their advantageous mechanical and biological properties. Moreover, Mg is biodegradable in the physiological environments. However, the major obstacle for Mg to be used as medical implants is its rapid degradation in physiological fluids. Therefore, the present key challenge lies in controlling Mg degradation rate in the physiological environment. The objective of this study was to develop a nanostructured-hydroxyapatite (nHA) coating on polished Mg implants to control the degradation and bone tissue integration of the implants. The nHA coatings were deposited on Mg using the Spire's patented TPA process to moderate the aggressive degradation of Mg and to improve quick osteointegration between Mg and natural bone. Nanostructured-HA coatings mimic the nanostructure and chemistry of natural bone, which will provide a desirable environment for bone tissue regeneration. Surface morphology, element compositions, and crystal structures were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and x-ray diffractometry (XRD), respectively. SEM images of the deposited nHA-coating was analyzed using ImageJ's quantitative image analysis tool, to determine the nHA-coating particle size and thickness. The degradation of nHA-coated and non-coated Mg samples was investigated by incubating samples in phosphate buffered saline (PBS) and revised simulated body fluid (r-SBF), under standard cell culture conditions. To mimic the in vivo cell response in the physiological environment, rat bone marrow stromal cells (BMSC) were harvested and cultured with nHA-coated and non-coated polished Mg samples to determine cytocompatibilty. The degradation results suggested that the nanocoatings positively mediated Mg degradation. It can therefore be concluded that nHA-coatings

  9. Tribological properties of duplex MAO/DLC coatings on magnesium alloy using combined microarc oxidation and filtered cathodic arc deposition

    International Nuclear Information System (INIS)

    Liang Jun; Wang Peng; Hu Litian; Hao Jingcheng

    2007-01-01

    The combined microarc oxidation (MAO) and filtered cathode arc deposition process was used to deposit duplex MAO/DLC coating on AM60B magnesium alloy. The microstructure and composition of the resulting duplex coating were analyzed by Raman spectroscopy, X-ray photoelectron spectroscope (XPS) and scanning electron microscope (SEM). The tribological behaviors of the duplex coating were studied by ball-on-disk friction testing. It is found that the Ti-doped DLC thin film could be successfully deposited onto the polished MAO coating. The duplex MAO/DLC coating exhibits a better tribological property than the DLC or MAO monolayer on Mg alloy substrate, owing to the MAO coating served as an intermediate layer provides improved load support for the soft Mg alloy substrate and the DLC top coating exhibits low friction coefficient

  10. Magnesium-Based Sacrificial Anode Cathodic Protection Coatings (Mg-Rich Primers for Aluminum Alloys

    Directory of Open Access Journals (Sweden)

    Michael D. Blanton

    2012-09-01

    Full Text Available Magnesium is electrochemically the most active metal employed in common structural alloys of iron and aluminum. Mg is widely used as a sacrificial anode to provide cathodic protection of underground and undersea metallic structures, ships, submarines, bridges, decks, aircraft and ground transportation systems. Following the same principle of utilizing Mg characteristics in engineering advantages in a decade-long successful R&D effort, Mg powder is now employed in organic coatings (termed as Mg-rich primers as a sacrificial anode pigment to protect aerospace grade aluminum alloys against corrosion. Mg-rich primers have performed very well on aluminum alloys when compared against the current chromate standard, but the carcinogenic chromate-based coatings/pretreatments are being widely used by the Department of Defense (DoD to protect its infrastructure and fleets against corrosion damage. Factors such as reactivity of Mg particles in the coating matrix during exposure to aggressive corrosion environments, interaction of atmospheric gases with Mg particles and the impact of Mg dissolution, increases in pH and hydrogen gas liberation at coating-metal interface, and primer adhesion need to be considered for further development of Mg-rich primer technology.

  11. Control of surface topography in biomimetic calcium phosphate coatings.

    Science.gov (United States)

    Costa, Daniel O; Allo, Bedilu A; Klassen, Robert; Hutter, Jeffrey L; Dixon, S Jeffrey; Rizkalla, Amin S

    2012-02-28

    The behavior of cells responsible for bone formation, osseointegration, and bone bonding in vivo are governed by both the surface chemistry and topography of scaffold matrices. Bone-like apatite coatings represent a promising method to improve the osteoconductivity and bonding of synthetic scaffold materials to mineralized tissues for regenerative procedures in orthopedics and dentistry. Polycaprolactone (PCL) films were coated with calcium phosphates (CaP) by incubation in simulated body fluid (SBF). We investigated the effect of SBF ion concentration and soaking time on the surface properties of the resulting apatite coatings. CaP coatings were examined by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and energy dispersive X-ray spectrometry (EDX). Young's modulus (E(s)) was determined by nanoindentation, and surface roughness was assessed by atomic force microscopy (AFM) and mechanical stylus profilometry. CaP such as carbonate-substituted apatite were deposited onto PCL films. SEM and AFM images of the apatite coatings revealed an increase in topographical complexity and surface roughness with increasing ion concentration of SBF solutions. Young's moduli (E(s)) of various CaP coatings were not significantly different, regardless of the CaP phase or surface roughness. Thus, SBF with high ion concentrations may be used to coat synthetic polymers with CaP layers of different surface topography and roughness to improve the osteoconductivity and bone-bonding ability of the scaffold. © 2012 American Chemical Society

  12. Evolution processes of the corrosion behavior and structural characteristics of plasma electrolytic oxidation coatings on AZ31 magnesium alloy

    Science.gov (United States)

    Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip

    2018-03-01

    Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.

  13. Physico-chemical and thermochemical studies of the hydrolytic conversion of amorphous tricalcium phosphate into apatite

    International Nuclear Information System (INIS)

    Somrani, Saida; Banu, Mihai; Jemal, Mohamed; Rey, Christian

    2005-01-01

    The conversion of amorphous tricalcium phosphate with different hydration ratio into apatite in water at 25 deg. C has been studied by microcalorimetry and several physical-chemical methods. The hydrolytic transformation was dominated by two strong exothermic events. A fast, relatively weak, wetting process and a very slow but strong heat release assigned to a slow internal rehydration and the crystallization of the amorphous phase into an apatite. The exothermic phenomenon related to the rehydration exceeded the crystalline transformation enthalpy. Rehydration occurred before the conversion of the amorphous phase into apatite and determined the advancement of the hydrolytic reaction. The apatitic phases formed evolved slightly with time after their formation. The crystallinity increased whereas the amount of HPO 4 2- ion decreased. These data allow a better understanding of the behavior of biomaterials involving amorphous phases such as hydroxyapatite plasma-sprayed coatings

  14. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution

    Science.gov (United States)

    Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang

    2011-12-01

    A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.

  15. Osteointegration of Porous Poly-ε-Caprolactone-Coated and Previtalised Magnesium Implants in Critically Sized Calvarial Bone Defects in the Mouse Model

    Directory of Open Access Journals (Sweden)

    Michael Grau

    2017-12-01

    Full Text Available Metallic biomaterials are widely used in maxillofacial surgery. While titanium is presumed to be the gold standard, magnesium-based implants are a current topic of interest and investigation due to their biocompatible, osteoconductive and degradable properties. This study investigates the effects of poly-ε-caprolactone-coated and previtalised magnesium implants on osteointegration within murine calvarial bone defects: After setting a 3 mm × 3 mm defect into the calvaria of 40 BALB/c mice the animals were treated with poly-ε-caprolactone-coated porous magnesium implants (without previtalisation or previtalised with either osteoblasts or adipose derived mesenchymal stem cells, porous Ti6Al4V implants or without any implant. To evaluate bone formation and implant degradation, micro-computertomographic scans were performed at day 0, 28, 56 and 84 after surgery. Additionally, histological thin sections were prepared and evaluated histomorphometrically. The outcomes revealed no significant differences within the differently treated groups regarding bone formation and the amount of osteoid. While the implant degradation resulted in implant shifting, both implant geometry and previtalisation appeared to have positive effects on vascularisation. Although adjustments in degradation behaviour and implant fixation are indicated, this study still considers magnesium as a promising alternative to titanium-based implants in maxillofacial surgery in future.

  16. Some Structural Properties of the Mixed Lead-Magnesium Hydroxyapatites

    Science.gov (United States)

    Kaaroud, K.; Ben Moussa, S.; Brigui, N.; Badraoui, B.

    2018-02-01

    Lead-magnesium hydroxyapatite solid solutions Pb(10- x)Mg x (PO4)6(OH)2 have been prepared via a hydrothermal process. They were characterized by X-ray powder diffraction, Transmission Electron Microscopy (TEM), chemical and IR spectroscopic analyses. The results of the structural refinement indicated that the limits of lead-magnesium solid solutions ( x ≤ 1.5), a regular decrease of the lattice constant a and a preferential magnesium distribution in site S(I). Through the progressive replacement of Pb2+ ( r = 0.133 nm) by the smaller cation Mg2+ ( r = 0.072 nm), all interatomic distances decrease in accordance with the decrease of the cell parameters. According to what could be expected from the coordinance of the metallic sites S(I) (hexacoordination) and S(II) (heptacoordination), the small magnesium cation preferentially occupies the four sites S(I). The results of the TEM analysis confirm the presence of magnesium in the starting solution and reveals the decrease in the average size of crystals. The IR spectra show the presence of the absorption bands characteristic for the apatite structure.

  17. Role of magnesium on the biomimetic deposition of calcium phosphate

    Science.gov (United States)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  18. Improved biological performance of magnesium by micro-arc oxidation

    Directory of Open Access Journals (Sweden)

    W.H. Ma

    2015-03-01

    Full Text Available Magnesium and its alloys have recently been used in the development of lightweight, biodegradable implant materials. However, the corrosion properties of magnesium limit its clinical application. The purpose of this study was to comprehensively evaluate the degradation behavior and biomechanical properties of magnesium materials treated with micro-arc oxidation (MAO, which is a new promising surface treatment for developing corrosion resistance in magnesium, and to provide a theoretical basis for its further optimization and clinical application. The degradation behavior of MAO-treated magnesium was studied systematically by immersion and electrochemical tests, and its biomechanical performance when exposed to simulated body fluids was evaluated by tensile tests. In addition, the cell toxicity of MAO-treated magnesium samples during the corrosion process was evaluated, and its biocompatibility was investigated under in vivo conditions. The results of this study showed that the oxide coating layers could elevate the corrosion potential of magnesium and reduce its degradation rate. In addition, the MAO-coated sample showed no cytotoxicity and more new bone was formed around it during in vivo degradation. MAO treatment could effectively enhance the corrosion resistance of the magnesium specimen and help to keep its original mechanical properties. The MAO-coated magnesium material had good cytocompatibility and biocompatibility. This technique has an advantage for developing novel implant materials and may potentially be used for future clinical applications.

  19. Improving the packing density of calcium phosphate coating on a magnesium alloy for enhanced degradation resistance.

    Science.gov (United States)

    Kannan, M Bobby

    2013-05-01

    In this study, an attempt was made to improve the packing density of calcium phosphate (CaP) coating on a magnesium alloy by tailoring the coating solution for enhanced degradation resistance of the alloy for implant applications. An organic solvent, ethanol, was added to the coating solution to decrease the conductivity of the coating solution so that hydrogen bubble formation/bursting reduces during the CaP coating process. Experimental results confirmed that ethanol addition to the coating solution reduces the conductivity of the solution and also decreases the hydrogen evolution/bubble bursting. In vitro electrochemical experiments, that is, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization showed that CaP coating produced in 30% (v/v) ethanol containing coating solution (3E) exhibits significantly higher degradation resistance (i.e., ~50% higher polarization resistance and ~60% lower corrosion current) than the aqueous solution coating. Scanning electron microscope (SEM) analysis of the coatings revealed that the packing of 3E coating was denser than that of aqueous coating, which can be attributed to the lower hydrogen evolution in the former than in the latter. Further increase in the ethanol content in the coating solution was not beneficial; in fact, the coating produced in 70% (v/v) ethanol containing solution (7E) showed degradation resistance much inferior to that of the aqueous coating, which is due to low thickness of 7E coating. Copyright © 2012 Wiley Periodicals, Inc.

  20. Structurally bound sulfide and sulfate in apatite from the Philips Mine iron oxide - apatite deposit, New York, USA: A tracer of redox changes

    Science.gov (United States)

    Sadove, G.; Konecke, B.; Fiege, A.; Simon, A. C.

    2017-12-01

    Multiple competing hypotheses attempt to explain the genesis of iron oxide-apatite (IOA) ore deposits. Many studies have investigated the chemistry of apatite because the abundances of F and Cl can distinguish magmatic vs. hydrothermal processes. Recent experiments demonstrate that apatite incorporates S6+, S4+, and S2-, and that total sulfur (∑S) as well as the S6+/∑S ratio in apatite vary systematically as a function of oxygen fugacity [1], providing information about sulfur budget and redox. Here, we present results from X-ray absorption near-edge structure (XANES) spectroscopy at the S K-edge, electron microprobe analyses, cathodoluminescence (CL) imaging, and element mapping of apatite from the Philip's Mine IOA deposit, southern Adirondack Mountains, USA. The Philip's Mine apatite contains inclusions of pyrite and pyrrhotite, where the latter includes iron oxide and Ni-rich domains. The apatite also contains inclusions of monazite, and exhibits complex CL zonation coincident with variations in the abundances of REE and S. The presence of monazite fingerprints fluid-mediated dissolution-reprecipitation of originally REE-enriched apatite [2]. The S XANES spectra reveal varying proportions of structurally bound S6+ and S2-, as the S6+/∑S ratio ranges from sulfide-only to sulfate-only. Notably, sulfide-dominated domains contain higher S contents than sulfate-dominated regions. These observations are consistent with co-crystallization of apatite and monosulfide solid solution (MSS) at reducing conditions, followed by decomposition of MSS to pyrrhotite, pyrite and intermediate solid solution (ISS, which is not preserved; [3]). Metasomatism of that assemblage by an oxidized fluid resulted in formation of monazite in apatite and iron oxide domains in pyrrhotite. We conclude that the deposit formed by a H2S-Fe-rich volatile phase, possibly evolved from a rather primitive magmatic source, which is consistent with the low Ti content of magnetite. The deposit was

  1. High-compactness coating grown by plasma electrolytic oxidation on AZ31 magnesium alloy in the solution of silicate-borax

    Science.gov (United States)

    Shen, M. J.; Wang, X. J.; Zhang, M. F.

    2012-10-01

    A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.

  2. Novel selenium-doped hydroxyapatite coatings for biomedical applications.

    Science.gov (United States)

    Rodríguez-Valencia, C; López-Álvarez, M; Cochón-Cores, B; Pereiro, I; Serra, J; González, P

    2013-03-01

    Nowadays there is a short-term need of investigating in orthopedic implants with a greater functionality, including an improved osseointegration and also antibacterial properties. The coating of metallic implants with hydroxyapatite (HA) remains to be the main proposal, but superior quality HA coatings with compositions closer to natural bone apatites, including carbonates, trace elements are required. Selenium is an essential nutrient in biological tissues and, at the same time, it also presents antibacterial properties. A pioneering study on the fabrication of selenium-doped carbonated hydroxyapatite (iHA:Se) coatings by Pulsed Laser Deposition (PLD) is presented. Different proportions of selenium were incorporated to obtain the iHA:Se coatings. Their physicochemical characterization, performed by SEM/EDS, FTIR, FT-Raman, Interferometric Profilometry and XPS, revealed typical columnar growth of HA in globular aggregates and the efficient incorporation of selenium into the HA coatings by the, most probably, substitution of SeO(3)(2-) groups in the CO(3)(2-) sites. Biological evaluation illustrated the absence of cytotoxicity when an amount of 0.6 at.% of Se was added to the iHA:Se coatings and excellent proliferation of the MC3T3-E1 preosteoblasts. Antibacterial properties were also proved with the inhibition of P. aeruginosa and S. aureus from establishing bacterial biofilms. Copyright © 2012 Wiley Periodicals, Inc.

  3. Hexavalent Chromium Free Coatings Projects for Aerospace Applications

    Science.gov (United States)

    2012-08-01

    laboratory qualification of a total hexavalent chrome free coating systems for use on magnesium transmission housings. This project will leverage... hexavalent chrome free coating system by utilizing a hexavalent chrome free topcoat, primer, and pretreatment for magnesium parts used on Army...of the hexavalent chrome free conversion coatings. Hexavalent Chromium Free Coating System for Magnesium Housings on Aviation Systems Desert

  4. Wettability and corrosion of alumina embedded nanocomposite MAO coating on nanocrystalline AZ31B magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Gheytani, M.; Aliofkhazraei, M., E-mail: maliofkh@gmail.com; Bagheri, H.R.; Masiha, H.R.; Rouhaghdam, A. Sabour

    2015-11-15

    In this paper, micro- and nanocrystalline AZ31B magnesium alloy were coated by micro-arc oxidation method. In order to fabricate nanocrystalline surface layer, surface mechanical attrition treatment was performed and nano-grains with average size of 5–10 nm were formed on the surface of the samples. Coating process was carried out at different conditions including two coating times and two types of electrolyte. Alumina nanoparticles were utilized as suspension in electrolyte to form nanocomposite coatings by micro-arc oxidation method. Potentiodynamic polarization, percentage of porosity, and wettability tests were performed to study various characteristics of the coated samples. The results of scanning electron microscope imply that samples coated in silicate-based electrolyte involve much lower surface porosity (∼25%). Besides, the results of wettability test indicated that the maximum surface tension with deionized water is for nanocrystalline sample. In this regard, the sample coated in silicate-based suspension was 4 times more hydrophilic than the microcrystalline sample. - Highlights: • MAO in phosphate electrolyte needs higher energy as compared to silicate electrolyte. • Less porosity and finer grain size on free surface of the silicate-based coatings. • Observed porosity from top surface of coating shows the effect of the final MAO sparks. • SMAT affects surface roughness and accelerates growth kinetics.

  5. Impact of whey protein coating incorporated with Bifidobacterium and Lactobacillus on sliced ham properties.

    Science.gov (United States)

    Odila Pereira, Joana; Soares, José; J P Monteiro, Maria; Gomes, Ana; Pintado, Manuela

    2018-05-01

    Edible coatings/films with functional ingredients may be a solution to consumers' demands for high-quality food products and an extended shelf-life. The aim of this work was to evaluate the antimicrobial efficiency of edible coatings incorporated with probiotics on sliced ham preservation. Coatings was developed based on whey protein isolates with incorporation of Bifidobacterium animalis Bb-12® or Lactobacillus casei-01. The physicochemical analyses showed that coating decreased water and weight loss on the ham. Furthermore, color analysis showed that coated sliced ham, exhibited no color change, comparatively to uncoated slices. The edible coatings incorporating the probiotic strains inhibited detectable growth of Staphylococcus spp., Pseudomonas spp., Enterobacteriaceae and yeasts/molds, at least, for 45days of storage at 4°C. The sensory evaluation demonstrated that there was a preference for the sliced coated ham. Probiotic bacteria viable cell numbers were maintained at ca. 10 8 CFU/g throughout storage time, enabling the slice of ham to act as a suitable carrier for the beneficial bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Microstructure of hydroxyapatite- and octacalcium phosphate-coatings formed on magnesium by a hydrothermal treatment at various pH values

    International Nuclear Information System (INIS)

    Tomozawa, Masanari; Hiromoto, Sachiko

    2011-01-01

    Hydroxyapatite (HAp) coatings with and without octacalcium phosphate (OCP) were uniformly formed on pure magnesium by a hydrothermal treatment using a Ca-EDTA solution. The crystal structure, crystallographic orientation and lattice images were investigated using transmission electron microscopy (TEM) and high-resolution TEM. It was demonstrated that the crystal phase and microstructure of the calcium phosphate-coatings can vary with the pH of the treatment solution. In a weak acid treatment solution, a dual-layer structure was formed: an outer coarse layer consisting of plate-like OCP crystals and an inner dense layer consisting primarily of HAp crystals. One piece of the OCP plate corresponded to a single OCP crystal growing parallel to the (1 0 0) OCP . In a weak alkali treatment solution, a dual-layer structure was also formed: an outer coarse layer consisting of rod-like HAp crystals and an inner dense layer consisting of HAp crystals. One piece of the HAp rod corresponded to a single HAp crystal growing along [0 0 2] HAp . In a strong alkali treatment solution, needle-like HAp crystals were formed. No defect was observed in the lattice image of the OCP and HAp. The corrosion current density of pure magnesium in a 3.5 wt.% NaCl solution decreased with the HAp coating more significantly than the OCP + HAp coating. It is revealed that the degree of protection afforded by calcium phosphate-coatings varies with their crystal phase and microstructure.

  7. In-vitro biodegradation and corrosion-assisted cracking of a coated magnesium alloy in modified-simulated body fluid.

    Science.gov (United States)

    Jafari, Sajjad; Singh Raman, R K

    2017-09-01

    A calcium phosphate coating was directly synthesized on AZ91D magnesium (Mg) alloy. Resistance of this coating to corrosion in a modified-simulated body fluid (m-SBF) was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Mechanical properties of the bare and coated alloy were investigated using slow strain rate tensile (SSRT) and fatigue testing in air and m-SBF. Very little is reported in the literature on human-body-fluid-assisted cracking of Mg alloys, viz., resistance to corrosion fatigue (CF) and stress corrosion cracking (SCC). This study has a particular emphasis on the effect of bio-compatible coatings on mechanical and electrochemical degradations of Mg alloys for their applications as implants. The results suggest the coating to improve the general as well as pitting corrosion resistance of the alloy. The coating also provides visible improvement in resistance to SCC, but little improvement in CF resistance. This is explained on the basis of pitting behaviour in the presence and absence of the coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  9. Characterization and corrosion behavior of phytic acid coatings, obtained by chemical conversion on magnesium substrates in physiological solution; Caracterizacion y comportamiento frente a la corrosion de recubrimientos de acido fitico, obtenidos por conversion quimica, sobre substratos de magnesio en solucion fisiologica

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Alvarado, L. A.; Lomeli, M. A.; Hernandez, L. S.; Miranda, J. M.; Narvaez, L.; Diaz, I.; Garcia-Alonso, M. C.; Escudero, M. L.

    2014-10-01

    In order to improve the corrosion resistance of biodegradable magnesium and AZ31 magnesium alloy implants, a phytic acid coating has been applied on both substrates and their protective effect against corrosion has been assessed. The morphology and the chemical nature of the conversion coating were analyzed by SEM/EDX, XRD and FTIR. The spectra showed that the conversion coating was amorphous, and it was composed of Mg, O, and P on magnesium surface, along with Al, Zn and C on AZ31 alloy. The main coating components were chelate compounds formed by phytic acid and metallic ions. The corrosion resistance of bare and coated samples was evaluated by potentiodynamic polarization technique in Hank's solution at 37 degree centigrade. The results indicate that phytic acid conversion coatings provided a very effective protection to the magnesium substrates studied. (Author)

  10. Hanford 100-N Area In Situ Apatite and Phosphate Emplacement by Groundwater and Jet Injection: Geochemical and Physical Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Vermeul, Vincent R.; Fruchter, Jonathan S.; Williams, Mark D.; Rockhold, Mark L.; Qafoku, Nikolla; Phillips, Jerry L.

    2010-07-01

    The purpose of this study is to evaluate emplacement of phosphate into subsurface sediments in the Hanford Site 100-N Area by two different technologies: groundwater injection of a Ca-citrate-PO4 solution and water-jet injection of sodium phosphate and/or fish-bone apatite. In situ emplacement of phosphate and apatite adsorbs, then incorporates Sr-90 into the apatite structure by substitution for calcium. Overall, both technologies (groundwater injection of Ca-citrate-PO4) and water-jet injection of sodium phosphate/fish-bone apatite) delivered sufficient phosphate to subsur¬face sediments in the 100-N Area. Over years to decades, additional Sr-90 will incorporate into the apatite precipitate. Therefore, high pressure water jetting is a viable technology to emplace phosphate or apatite in shallow subsurface sediments difficult to emplace by Ca-citrate-PO4 groundwater injections, but further analysis is needed to quantify the relevant areal extent of phosphate deposition (in the 5- to 15-ft distance from injection points) and cause of the high deposition in finer grained sediments.

  11. Superconducting magnesium diboride coatings for radio frequency cavities fabricated by hybrid physical-chemical vapor deposition

    Directory of Open Access Journals (Sweden)

    M. A. Wolak

    2014-01-01

    Full Text Available We have investigated the coating of an inner surface of superconducting radio frequency cavities with a magnesium diboride thin film by hybrid physical-chemical vapor deposition (HPCVD. To simulate a 6 GHz rf cavity, a straight stainless steel tube of 1.5-inch inner diameter and a dummy stainless steel cavity were employed, on which small sapphire and metal substrates were mounted at different locations. The MgB_{2} films on these substrates showed uniformly good superconducting properties including T_{c} of 37–40 K, residual resistivity ratio of up to 14, and root-mean-square roughness R_{q} of 20–30 nm. This work demonstrates the feasibility of coating the interior of cylindrical and curved objects with MgB_{2} by the HPCVD technique, an important step towards superconducting rf cavities with MgB_{2} coating.

  12. Study of vanadium-based chemical conversion coating on the corrosion resistance of magnesium alloy

    International Nuclear Information System (INIS)

    Yang, K.H.; Ger, M.D.; Hwu, W.H.; Sung, Y.; Liu, Y.C.

    2007-01-01

    In this study, magnesium alloy (AZ61) was immersed in vanadium containing bath with various conditions, such as the vanadium concentration, immersion time and bath temperature. The results indicate that increase of both vanadium concentration and immersion time produces a thicker conversion layer. However, when immersion time is too long, it will worsen the corrosion resistance due to the increasing of the crack density. The experimental parameter of bath temperature has no significant effect on corrosion resistance. Our results demonstrated that the better corrosion resistance coating can be obtained when the samples are submitted to an immersion in the conversion bath containing NaVO 3 with concentration of 30 g l -1 for 10 min at 80 deg. C. The presented conversion treatment has its potential to replace the chrome-based conversion coating treatment

  13. Corrosion studies of modified organosilane coated magnesium-yttrium alloy in different environments

    Energy Technology Data Exchange (ETDEWEB)

    Xue Dingchuan [College of Engineering, University of Cincinnati, OH 45221 (United States); Tan Zongqing [Internal Medicine, College of Medicine, University of Cincinnati, OH 45221 (United States); Schulz, Mark J. [College of Engineering, University of Cincinnati, OH 45221 (United States); Vanooij, William J. [College of Engineering, University of Cincinnati, OH 45221 (United States); ECOSIL Technologies LLC, Fairfield, OH 45014 (United States); Sankar, Jagannathan [Biomedical Engineering Program, College of Engineering, North Carolina A and T State University, NC 27411 (United States); Yun Yeoheung, E-mail: yyun@ncat.edu [College of Engineering, University of Cincinnati, OH 45221 (United States); Biomedical Engineering Program, College of Engineering, North Carolina A and T State University, NC 27411 (United States); Dong Zhongyun [Internal Medicine, College of Medicine, University of Cincinnati, OH 45221 (United States)

    2012-07-01

    Magnesium (Mg) and its alloys have numerous potential applications as biodegradable implants, but the fast degradation rate of Mg alloys at the initial implanted stage could be a problem. This paper describes the modification of the water-based bis-[triethoxysilyl] ethane (BTSE) silane applied to the surface of magnesium-yttrium (Mg-4Y) to increase its corrosion resistance. Surface characterization by SEM, FTIR, and EDX showed that the hydrolysis and condensation of the silane resulted in a covalent bonding to the Mg-4Y surface. Corrosion behavior of the uncoated and coated Mg-4Y alloy was evaluated in different environments by using a novel self-developed corrosion probe. Based on the electrochemical results of DC polarization and electrochemical impedance spectroscopy (EIS), we conclude that the epoxy-modified BTSE silane coating successfully increases the corrosion resistance at the initial stage of implantation. The corrosion rates in the flesh of dead mice environments such as body cavity and subcutaneous tissue of the mice were lower than the corrosion rates in in vitro environments. - Highlights: Black-Right-Pointing-Pointer Modified silane was used on Mg-4Y for biological applications. Black-Right-Pointing-Pointer Modified silane-treated Mg-4Y increased its corrosion resistance in both In Vitro and In Vivo environments. Black-Right-Pointing-Pointer In Vitro testing environment is not consistent with In Vivo animal environment. Black-Right-Pointing-Pointer The modified silane mixture protecting mechanisms and its biocompatibility were discussed. Black-Right-Pointing-Pointer A novel three-electrode corrosion-monitoring probe was developed for realizing this work's In Vivo testing goals.

  14. Biocorrosion behavior and cell viability of adhesive polymer coated magnesium based alloys for medical implants

    Science.gov (United States)

    Abdal-hay, Abdalla; Dewidar, Montasser; Lim, Jae Kyoo

    2012-11-01

    The present study was ultimately aimed to design novel adhesive biodegradable polymer, poly(vinyl acetate) (PVAc), coatings onto Mg based alloys by the dip-coating technique in order to control the degradation rate and enhance the biocompatibility of magnesium alloys. The influence of various solvents on PVAc surface topography and their protection of Mg alloys were dramatically studied in vitro. Electrochemical polarization, degradation, and PVAc film cytocompatibility were also tested. Our results showed that the solvent had a significant effect on coating quality. PVAc/dichloromethane solution showed a porous structure and solution concentration could control the porous size. The coatings prepared using tetrahydrofuran and dimethylformamide solvents are exceptional in their ability to generate porous morphology even at low polymer concentration. In general, the corrosion performance appears to be different on different PVAc-solvent system. Immersion tests illustrated that the porous morphology on PVAc stabilized corrosion rates. A uniform corrosion attack in artificial simulation body fluid was also exhibited. The cytocompatibility of osteoblast cells (MC3T3) revealed high adherence, proliferation, and survival on the porous structure of PVAc coated Mg alloy, which was not observed for the uncoated samples. This novel PVAc coating is a promising candidate for biodegradable implant materials, which might widen the use of Mg based implants.

  15. Biocorrosion behavior of biodegradable nanocomposite fibers coated layer-by-layer on AM50 magnesium implant.

    Science.gov (United States)

    Abdal-Hay, Abdalla; Hasan, Anwarul; Kim, Yu-Kyoung; Yu-Kyoung; Lee, Min-Ho; Hamdy, Abdel Salam; Khalil, Khalil Abdelrazek

    2016-01-01

    This article demonstrates the use of hybrid nanofibers to improve the biodegradation rate and biocompatibility of AM50 magnesium alloy. Biodegradable hybrid membrane fiber layers containing nano-hydroxyapatite (nHA) particles and poly(lactide)(PLA) nanofibers were coated layer-by-layer (LbL) on AM50 coupons using a facile single-step air jet spinning (AJS) approach. The corrosion performance of coated and uncoated coupon samples was investigated by means of electrochemical measurements. The results showed that the AJS 3D membrane fiber layers, particularly the hybrid membrane layers containing a small amount of nHA (3 wt.%), induce a higher biocorrosion resistance and effectively decrease the initial degradation rate compared with the neat AM50 coupon samples. The adhesion strength improved highly due to the presence of nHA particles in the AJS layer. Furthermore, the long biodegradation rates of AM50 alloy in Hank's balanced salt solution (HBSS) were significantly controlled by the AJS-coatings. The results showed a higher cytocompatibility for AJS-coatings compared to that for neat Mg alloys. The nanostructured nHA embedded hybrid PLA nanofiber coating can therefore be a suitable coating material for Mg alloy as a potential material for biodegradable metallic orthopedic implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    OpenAIRE

    Wei-wei Chen; Ze-xin Wang; Lei Sun; Sheng Lu

    2015-01-01

    Micro-arc oxidation (MAO) coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2). The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM) coupled with an energy dispersive spectrometer (EDS), confocal laser scanning microscopy and X-ray diffraction (XRD). The results indicate that the growth process of MAO coating mainly goes through “form...

  17. Effect of Sn4+ Additives on the Microstructure and Corrosion Resistance of Anodic Coating Formed on AZ31 Magnesium Alloy in Alkaline Solution

    Science.gov (United States)

    Salman, S. A.; Kuroda, K.; Saito, N.; Okido, M.

    Magnesium is the lightest structural metal with high specific strength and good mechanical properties. However, poor corrosion resistance limits its widespread use in many applications. Magnesium is usually treated with Chromate conversion coatings. However, due to changing environmental regulations and pollution prevention requirements, a significant push exists to find new, alternative for poisonous Cr6+. Therefore, we aim to improve corrosion resistance of anodic coatings on AZ31 alloys using low cost non-chromate electrolyte. Anodizing was carried out in alkaline solutions with tin additives. The effect of tin additives on the coating film was characterized by SEM and XRD. The corrosion resistance was evaluated using anodic and cathodic polarizations and electrochemical impedance spectroscopy (EIS). Corrosion resistance property was improved with tin additives and the best anti-corrosion property was obtained with addition of 0.03 M Na2SnO3.3H2O to anodizing solution.

  18. Research of Plasma Spraying Process on Aluminum-Magnesium Alloy

    Directory of Open Access Journals (Sweden)

    Patricija Kavaliauskaitė

    2016-04-01

    Full Text Available The article examines plasma sprayed 95Ni-5Al coatings on alu-minum-magnesium (Mg ≈ 2,6‒3,6 % alloy substrate. Alumi-num-magnesium samples prior spraying were prepared with mechanical treatment (blasting with Al2O3. 95Ni-5Al coatings on aluminum-magnesium alloys were sprayed with different parameters of process and coating‘s thickness, porosity, micro-hardness and microstructure were evaluated. Also numerical simulations in electric and magnetic phenomena of plasma spray-ing were carried out.

  19. Electrochemical corrosion behaviour of plasma electrolytic oxidation coatings on AM50 magnesium alloy formed in silicate and phosphate based electrolytes

    International Nuclear Information System (INIS)

    Liang, J.; Srinivasan, P. Bala; Blawert, C.; Stoermer, M.; Dietzel, W.

    2009-01-01

    PEO coatings were produced on AM50 magnesium alloy by plasma electrolytic oxidation process in silicate and phosphate based electrolytes using a pulsed DC power source. The microstructure and composition of the PEO coatings were analyzed by scanning electron microscopy (SEM) and X-ray Diffraction (XRD). The corrosion resistance of the PEO coatings was evaluated using open circuit potential (OCP) measurements, potentiodynamic polarisation tests and electrochemical impedance spectroscopy (EIS) in 0.1 M NaCl solution. It was found that the electrolyte composition has a significant effect on the coating evolution and on the resulting coating characteristics, such as microstructure, composition, coating thickness, roughness and thus on the corrosion behaviour. The corrosion resistance of the PEO coating formed in silicate electrolyte was found to be superior to that formed in phosphate electrolyte in both the short-term and long-term electrochemical corrosion tests.

  20. Proliferation and differentiation of osteoblast-like MC3T3-E1 cells ons biomimetically and electrolytically deposited calcium phosphate coatings

    NARCIS (Netherlands)

    Wang, J.; de Boer, Jan; de Groot, K.

    2009-01-01

    Biomimetic and electrolytic deposition are versatile methods to prepare calcium phosphate coatings. In this article, we compared the effects of biomimetically deposited octacalcium phosphate and carbonate apatite coatings as well as electrolytically deposited carbonate apatite coating on the

  1. In situ composite coating of titania-hydroxyapatite on titanium substrate by micro-arc oxidation coupled with electrophoretic deposition processing

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Yu [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kim, Kyoung-A. [Department of Oral and Maxillofacial Radiology, School of Dentistry and Institute of Oral Bio Science, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Park, Il Song, E-mail: ilsong@chonbuk.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Sook Jeong [Neural Injury Research Lab, Department of Neurology, Asan life Science Institute, University, of Ulsan, College of Medicine, Seoul 138-736 (Korea, Republic of); Bae, Tae Sung [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Lee, Min Ho, E-mail: mh@jbnu.ac.kr [Department of Dental Biomaterials, School of Dentistry and Institute of Oral Bioscience, Brain Korea 21 Project, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2011-09-15

    Highlights: {center_dot} HA/TiO{sub 2} coating were prepared by a MAO and EPD technique. {center_dot} The NaOH electrolyte solution containing HA particles is employed. {center_dot} MAO and EPD treatment enhances the corrosion resistance and bioactivity of titanium. - Abstract: In situ composite coating of hydroxyapatite (HA)/TiO{sub 2} were produced on titanium (Ti) substrate by micro-arc oxidation coupled with electrophoretic deposition (MAO and EPD) technique with different concentrations of HA particles in the 0.2 M NaOH electrolyte solution. The surface morphology and chemical composition of the hybrid coating were effected by HA concentration. The amount of HA particles incorporated into coating layer increased with increasing HA concentration used in the electrolyte solution. The corrosion behavior of the coating layer in simulated body fluids (SBF) was evaluated using a potentiodynamic polarization test. The corrosion resistance of the coated sample was increased compared to the untreated Ti sample. The in vitro bioactivity assessment showed that the MAO and EPD treated Ti substrate possessed higher apatite-forming ability than the untreated Ti. Moreover, the apatite-forming ability had a positive correlation with HA concentration. In addition, the cell behavior was also examined using cell proliferation assay and alkaline phosphatase ability. The coating formed at HA concentration of 5 g/L exhibited the highest cell ability.

  2. In vitro bioactivity of 3D Ti-mesh with bioceramic coatings in simulated body fluid

    Directory of Open Access Journals (Sweden)

    Wei Yi

    2014-09-01

    Full Text Available 3D Ti-mesh has been coated with bioceramics under different coating conditions, such as material compositions and micro-porosity, using a dip casting method. Hydroxyapatite (HA, micro-HA particles (HAp, a bioglass (BG and their different mixtures together with polymer additives were used to control HA-coating microstructures. Layered composites with the following coating-to-substrate designs, such as BG/Ti, HA + BG/BG/Ti and HAp + BG/BG/Ti, were fabricated. The bioactivity of these coated composites and the uncoated Ti-mesh substrate was then investigated in a simulated body fluid (SBF. The Ti-mesh substrate and BG/Ti composite did not induce biomimetic apatite deposition when they were immersed in SBF for the selected BG, a pressable dental ceramic, used in this study. After seven days in SBF, an apatite layer was formed on both HA + BG/BG/Ti and HAp + BG/BG/Ti composites. The difference is the apatite layer on the HAp + BG/BG/Ti composite was rougher and contained more micro-pores, while the apatite layer on the HA + BG/BG/Ti composite was dense and smooth. The formation of biomimetic apatite, being more bioresorbable, is favored for bone regeneration.

  3. Influence of Electrolyte Chemistry on Morphology and Corrosion Resistance of Micro Arc Oxidation Coatings Deposited on Magnesium

    Science.gov (United States)

    Rama Krishna, L.; Poshal, G.; Sundararajan, G.

    2010-12-01

    In the present work, micro arc oxidation (MAO) coatings were synthesized on magnesium substrate employing 11 different electrolyte compositions containing systematically varied concentrations of sodium silicate (Na2SiO3), potassium hydroxide (KOH), and sodium aluminate (NaAlO2). The resultant coatings were subjected to coating thickness measurement, energy dispersive spectroscopy (EDS), scanning electron microscopy (SEM), image analysis, and three-dimensional (3-D) optical profilometry. The corrosion performance of the coatings was evaluated by conducting potentiodynamic polarization tests in 3.5 wt pct NaCl solution. The inter-relationships between the electrolyte chemistry and the resulting chemistry and porosity of the coating, on one hand, and with the aqueous corrosion behavior of the coating, on the other, were studied. The changes in pore morphology and pore distribution in the coatings were found to be significantly influenced by the electrolyte composition. The coatings can have either through-thickness pores or pores in the near surface region alone depending on the electrolyte composition. The deleterious role of KOH especially when its concentration is >20 pct of total electrolyte constituents promoting the formation of large and deep pores in the coating was demonstrated. A reasonable correlation indicating the increasing pore volume implying the increased corrosion was noticed.

  4. Coating of hydroxyapatite doped Ag on commercially pure titanium surface

    International Nuclear Information System (INIS)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva

    2012-01-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO 3 substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions

  5. Synthesis and characterization of magnesium gluconate contained poly(lactic-co-glycolic acid)/chitosan microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shekh M. [Department of Chemical, Biological and Bioengineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Mahoney, Christopher [Department of Bioengineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15250 (United States); Sankar, Jagannathan [NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Department of Mechanical Engineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Marra, Kacey G. [NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Department of Bioengineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15250 (United States); Department of Plastic Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15250 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15250 (United States); Bhattarai, Narayan, E-mail: nbhattar@ncat.edu [Department of Chemical, Biological and Bioengineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States)

    2016-01-15

    Graphical abstract: - Highlights: • Magnesium gluconate contained PLGA/chitosan microspheres were fabricated. • In vitro release of magnesium ions was performed using Xylidyl Blue assay. • Chitosan coated PLGA can significantly control the release of magnesium ions. • Cellular compatibility was tested using adipose-derived stem cells and PC12 cells. • The cells encounter acceptably low levels of damage in contact with microspheres. - Abstract: The goal of this study was to fabricate and investigate the chitosan coated poly(lactic-co-glycolic acid) (PLGA) microspheres for the development of controlled release magnesium delivery system. PLGA based microspheres are ideal vehicles for many controlled release drug delivery applications. Chitosan is a naturally occurring biodegradable and biocompatible polysaccharide, which can coat the surface of PLGA to alter the release of drugs. Magnesium gluconate (MgG) was encapsulated in the PLGA and PLGA/chitosan microspheres by utilizing the double emulsion solvent evaporation technique for controlled release study. The microspheres were tested with respect to several physicochemical and biological properties, including morphology, chemical structure, chitosan adsorption efficiency, magnesium encapsulation efficiency, in vitro release of magnesium ions, and cellular compatibility using both human adipose-derived stem cells (ASCs) and PC12 cells. Chitosan coated PLGA microspheres can significantly control the release of magnesium ions compared to uncoated PLGA microspheres. Both coated and uncoated microspheres showed good cellular compatibility.

  6. Fabrication of nanoporous Sr incorporated TiO{sub 2} coating on 316L SS: Evaluation of bioactivity and corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Anne Pauline, S. [Department of Chemistry, Anna University, Chennai 600025 (India); Kamachi Mudali, U. [Corrosion Science and Technology Section, IGCAR, Kalpakkam 603102 (India); Rajendran, N., E-mail: nrajendran@annauniv.edu [Department of Chemistry, Anna University, Chennai 600025 (India)

    2013-10-01

    In this paper, nanoporous TiO{sub 2} and Sr-incorporated TiO{sub 2} coated 316L SS were prepared by sol–gel methodology. The effect of Sr incorporation into TiO{sub 2} coating on bioactivity and corrosion resistance was investigated. Attenuated total reflectance–Fourier transform infrared (ATR–FTIR) spectroscopy, X-ray diffraction analysis (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) results obtained after in vitro bioactivity test confirm the excellent growth of crystalline hydroxyapatite (HAp) over nanoporous Sr-incorporated TiO{sub 2} coated 316L SS which may be attributed to the slow and steady release of Sr ions from the coatings. The electrochemical evaluation of the coatings confirms that Sr-incorporated TiO{sub 2} coating offer excellent protection to 316L SS by acting as a barrier layer. The results showed that the incorporation of Sr enhanced both bioactivity and corrosion resistance of 316L SS. Hence Sr-incorporated TiO{sub 2} coated 316L SS is a promising material for orthopaedic implant applications. - Highlights: • Nanoporous Sr-incorporated TiO{sub 2} coatings were successfully fabricated on 316L SS. • The coatings have excellent adhesion to the substrate and appreciable Vickers micro hardness value. • Sr-incorporated TiO{sub 2} coated specimens exhibited excellent hydroxyapatite growth due to slow release of Sr from the coating. • Sr incorporation enhances the corrosion resistance of TiO{sub 2} coating.

  7. Coating magnesium hydroxide on surface of carbon microspheres and interface binding with poly (ethylene terephthalate) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Baoxia [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Niu, Mei, E-mail: niumei@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Bai, Jie; Song, Yinghao; Peng, Yun [College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-08-01

    Highlights: • Magnesium hydroxide (MH) as a capsule wall was firstly coated on the surface of carbon microspheres (CMSs) to obtain MH@CMSs by liquid phase deposition method. • An organic layer of 3-Aminopropyltriethoxysilane (APTS) was then introduced on the surface of MH@CMSs. • The formed two layers provided the FMH@CMSs/PET with good mechanical and flame-retardant properties. - Abstract: In this account, magnesium hydroxide (MH) employed as a capsule wall was firstly coated on the surface of carbon microspheres (CMSs) to obtain MH@CMSs using liquid phase deposition, then was modified by 3-Aminopropyltriethoxysilane (APTS) to form FMH@CMSs. To investigate the interface binding forces, a series of PET composites was prepared by melt compounding with MH@CMSs or FMH@CMSs. Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier-transform Infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, chemical structure, and effect of functionalization of CMSs. The coating degree and thermal stability were investigated by thermogravimetry analysis. The results showed that CMSs were coated by an inorganic shell layer of MH as a capsule wall. On the other hand, MH@CMSs were coated with an organic layer of APTS. When compared to MH@CMSs, the interface binding forces between FMH@CMSs and PET matrix were significantly improved, and the tensile strength of FMH@CMSs/PET was higher than that of MH@CMSs/PET. At 1 wt% mass fraction of FMH@CMSs, the limiting oxygen index (LOI) value of PET composites increased from 21% to 27.6% following a V-0 rating. The tensile strength of FMH@CMSs/PET increased by 66.2% to reach 47.20 MPa, a value nearly similar to that of PET. Overall, the formed two layers provided the FMH@CMSs/PET with good mechanical and flame-retardant properties, which would broaden their scope of application.

  8. Research of growth mechanism of ceramic coatings fabricated by micro-arc oxidation on magnesium alloys at high current mode

    Directory of Open Access Journals (Sweden)

    Wei-wei Chen

    2015-09-01

    Full Text Available Micro-arc oxidation (MAO coatings of ZK60 magnesium alloys were formed in a self-developed dual electrolyte composed of sodium silicate and phosphate at the high constant current of 1.8 A (15 A/dm2. The MAO process and growth mechanism were investigated by scanning electron microscopy (SEM coupled with an energy dispersive spectrometer (EDS, confocal laser scanning microscopy and X-ray diffraction (XRD. The results indicate that the growth process of MAO coating mainly goes through “forming → puncturing → rapid growth of micro-arc oxidation →large arc discharge → self-repairing”. The coating grows inward and outward at the same time in the initial stage, but outward growth of the coating is dominant later. Mg, Mg2SiO4 and MgO are the main phases of ceramic coating.

  9. Thermal Barrier Coatings Resistant to Glassy Deposits

    Science.gov (United States)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  10. Effect of magnesium and of some trace elements on 14C incorporation in leaf sugars and amino acids of maize plants recovering after magnesium deficit stress

    International Nuclear Information System (INIS)

    Chichev, P.; Stoyanov, I.; Tungarov, G.

    1977-01-01

    The incorporation and distribution of 14 C in leaf free sugars and amino acids of maize plants under magnesium deficiency and following their recovery was studied by the aid of Mg applied singly or in combination with the trace elements Co, Cr, and B. It was established that stress resulting from magnesium deficit causes considerable changes in free sugar and amino acid metabolism. Magnesium deficiency reduces the relative share of sugars and raises the share of amino acids. It leads to great changes also in the ratio of the individual substances - reduces succrose, glutamic acid, and -amino butyric acid, increases fructose, rafinose, glucose, alanine, aspartic acid and valine. During a 10-day period of plant recovery the metabolic changes of free sugars and amino acids occurring as a result of magnesium deficit are restored to normal condition. Under the conditions existing in this experiment Mg was capable to restore alone disturbances in free sugar and amino acid metabolism to the level observed in the control plants. The trace elements Co, Cr and B, used in combination with Mg, had no marked additive effect on the recovery process of free sugar and amino acid metabolic disturbances caused by Mg deficiency. (author)

  11. Sealing of PEO Coated AZ91 Magnesium Alloy Using La-Based Solutions

    Directory of Open Access Journals (Sweden)

    Luca Pezzato

    2017-01-01

    Full Text Available In this work, solutions containing lanthanum salts were used for a post-treatment of sealing to increase the corrosion resistance of PEO coated AZ91 alloy. PEO coatings were produced on samples of AZ91 magnesium alloy using an alkaline solution containing sodium hydroxide, sodium phosphates, and sodium silicates. The sealing treatment was performed in a solution containing 12 g/L of La(NO33 at pH 4 at different temperatures and for different treatment times. Potentiodynamic polarization test, an EIS test, showed that the sealing treatment with solution containing lanthanum nitrate caused a remarkable increase in the corrosion resistance. The corrosion behavior was correlated with the surface morphology and elemental composition evaluated with scanning electron microscope (SEM, X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS. In particular, the sealing treatment at 50°C for 30 min resulted in being the most promising to increase the corrosion properties of PEO treated samples because of the formation of a homogeneous sealing layer, mainly composed of La(OH3.

  12. Interdiffusion of the aluminum magnesium system. Quantitative analysis and numerical model; Interdiffusion des Aluminium-Magnesium-Systems. Quantitative Analyse und numerische Modellierung

    Energy Technology Data Exchange (ETDEWEB)

    Seperant, Florian

    2012-03-21

    Aluminum coatings are a promising approach to protect magnesium alloys against corrosion and thereby making them accessible to a variety of technical applications. Thermal treatment enhances the adhesion of the aluminium coating on magnesium by interdiffusion. For a deeper understanding of the diffusion process at the interface, a quantitative description of the Al-Mg system is necessary. On the basis of diffusion experiments with infinite reservoirs of aluminum and magnesium, the interdiffusion coefficients of the intermetallic phases of the Al-Mg-system are calculated with the Sauer-Freise method for the first time. To solve contradictions in the literature concerning the intrinsic diffusion coefficients, the possibility of a bifurcation of the Kirkendall plane is considered. Furthermore, a physico-chemical description of interdiffusion is provided to interpret the observed phase transitions. The developed numerical model is based on a temporally varied discretization of the space coordinate. It exhibits excellent quantitative agreement with the experimentally measured concentration profile. This confirms the validity of the obtained diffusion coefficients. Moreover, the Kirkendall shift in the Al-Mg system is simulated for the first time. Systems with thin aluminum coatings on magnesium also exhibit a good correlation between simulated and experimental concentration profiles. Thus, the diffusion coefficients are also valid for Al-coated systems. Hence, it is possible to derive parameters for a thermal treatment by simulation, resulting in an optimized modification of the magnesium surface for technical applications.

  13. Effectiveness of incorporating citric acid in cassava starch edible coatings to preserve quality of Martha tomatoes

    Science.gov (United States)

    Ambarsari, I.; Oktaningrum, G. N.; Endrasari, R.

    2018-01-01

    Tomato as an agricultural product is extremely perishable. Coatings of tomatoes with edible starch extend quality and storage life of the fruits. Incorporation of citric acid as antimicrobial agent in the edible starch coatings is expected to preserve the quality of tomatoes during storage. The aim of this study was to verify the effectiveness of citric acid incorporated in cassava starch coating to preserve quality of tomatoes. The edible coatings formula consisted of cassava starch solutions (1; 2; 3%), citric acid (0.5; 1.0%) and glycerol (10%). Tomatoes were dipped to the coating solution for 10 seconds, then air-dried and stored at room temperature during 18 days. All the treatments were carried out in triplicates. Experimental data were analyzed using One Way ANOVA. The results showed that coating treatments did not affect the weight loss, moisture content, color characteristic, carotene and vitamin C content on Martha tomatoes. The low concentration of starch coating on Martha tomatoes are indicated to be the reason why there was no significant difference between coated and coated tomatoes for some parameters. However, incorporating citric acid in cassava starch-based coatings could prevent tomato fruits from firmness reduction and spoilage during storage.

  14. The Use of AC-DC-AC Methods in Assessing Corrosion Resistance Performance of Coating Systems for Magnesium Alloys

    Science.gov (United States)

    McCune, Robert C.; Upadhyay, Vinod; Wang, Yar-Ming; Battocchi, Dante

    The potential utility of AC-DC-AC electrochemical methods in comparative measures of corrosion-resisting coating system performance for magnesium alloys under consideration for the USAMP "Magnesium Front End Research and Development" project was previously shown in this forum [1]. Additional studies of this approach using statistically-designed experiments have been conducted with focus on alloy types, pretreatment, topcoat material and topcoat thickness as the variables. Additionally, sample coupons made for these designed experiments were also subjected to a typical automotive cyclic corrosion test cycle (SAE J2334) as well as ASTM B117 for comparison of relative performance. Results of these studies are presented along with advantages and limitations of the proposed methodology.

  15. Tough ceramic coatings: Carbon nanotube reinforced silica sol-gel

    Science.gov (United States)

    López, A. J.; Rico, A.; Rodríguez, J.; Rams, J.

    2010-08-01

    Silica coatings reinforced with carbon nanotubes were produced via sol-gel route using two mixing techniques of the sol-gel precursors, mechanical and ultrasonic mixing, and dip-coating as deposition process on magnesium alloy substrates. Effective incorporation and distribution of 0.1 wt.% of carbon nanotubes in the amorphous silica matrix of the coatings were achieved using both techniques. Fabrication procedure determines the morphological aspects of the coating. Only mechanical mixing process produced coatings dense and free of defects. Nanoindentation technique was used to examine the influence of the fabrication process in the mechanical features of the final coatings, i.e. indentation fracture toughness, Young's modulus and hardness. A maximum toughening effect of about 24% was achieved in silica coatings reinforced with carbon nanotubes produced by the mechanical mixing route. Scanning electron microscopy investigation revealed that the toughening of these reinforced coatings was mainly due to bridging effect of the reinforcement.

  16. Apatite glass-ceramics: a review

    Science.gov (United States)

    Duminis, Tomas; Shahid, Saroash; Hill, Robert Graham

    2016-12-01

    This article is a review of the published literature on apatite glass-ceramics (GCs). Topics covered include crystallization mechanisms of the various families of the apatite GCs and an update on research and development on apatite GCs for applications in orthopedics, dentistry, optoelectronics and nuclear waste management. Most apatite GCs crystallize through a homogenous nucleation and crystallization mechanism, which is aided by a prior liquid-liquid phase separation. Careful control of the base glass composition and heat-treatment conditions, which determine the nature and morphology of the crystal phases in the GC can produce GC materials with exceptional thermal, mechanical, optical and biological properties. The GCs reviewed for orthopedic applications exhibit suitable mechanical properties and can chemically bond to bone and stimulate its regeneration. The most commercially successful apatite GCs are those developed for dental veneering. These materials exhibit excellent translucency and clinical esthetics, and mimic the natural tooth mineral. Due to the ease of solid solution of the apatite lattice, rare earth doped apatite GCs are discussed for potential applications in optoelectronics and nuclear waste management. One of the drawbacks of the commercial apatite GCs used in orthopedics is the lack of resorbability, therefore the review provides a direction for future research in the field.

  17. Study of the auto-irradiation effects in apatites structure materials

    International Nuclear Information System (INIS)

    Soulet, St.

    2000-11-01

    The incorporation of an actinide in a material puts it to the action of an alpha particle, of some MeV always followed by the recoil of the residual nucleus. This last ones, with an energy of about a hundred of keV produces the greatest part of the irradiation damages. The study of the natural analogues has allowed to identify the fluoro-apatites which have a high amount of phosphates groups, as potential actinides conditioning matrices. Former works, simulating the alpha decay in the monocrystalline phospho-calcic fluoro-apatite have revealed an exfoliation phenomenon and an annealing of the defects which are formed by the recoil nuclei by the helium ions. This work has shown that the exfoliation can not be produced on polycrystalline apatitic materials (phospho-calcic fluoro-apatite and fluoro-apatite with one silicate) probably on account of the removal of helium outside the grains and by the diffusion of helium inside the grain boundaries. On the other hand, these helium removal ways decrease the chemical resistance of the fluoro-apatite. In the same way, the dissolution velocity of the apatite is strongly increased above the damage threshold corresponding to the percolation of the isolated defects and especially in the case of total amorphization. Concerning the effect of the recoil and annealing nuclei by the alpha particles, an original study method including the use of a transmission electron microscope coupled with a ions implanter has been carried out. This device has allowed to make irradiations simulating the alpha decay and to follow in situ the evolution of polycrystalline samples disorder. It has been shown that for all the solid solution of phospho-silicated fluoro-apatites, the amorphization is produced directly in series. In the same way, on account of this technique, the efficiency of the annealing by alpha has been measured on different apatite compositions. The main result shows that the efficiency of the annealing by alpha in the fluoro-apatite

  18. Microstructure and properties of nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhiwen [University of Science and Technology Liaoning, Anshan 114051 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Chen, Qiang, E-mail: 2009chenqiang@163.com [Southwest Technique and Engineering Research Institute, Chongqing 400039 (China); Chen, Tian [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714 (China); Gao, Xu; Yu, Xiaoguang; Song, Hua; Feng, Yongjun [University of Science and Technology Liaoning, Anshan 114051 (China)

    2015-06-15

    The novel nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings are fabricated on the AM60 magnesium alloys. The microstructure, tribological and electrochemical properties of the duplex coatings are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, nano-indenter, electrochemical corrosion and wear tester. These studies reveal that the MoS{sub 2}-phenolic resin coating has a two-phase microstructure crystalline MoS{sub 2} particles embedded in the amorphous phenolic resin matrix. The single-layer MoS{sub 2}-phenolic resin enhances the corrosion resistance of magnesium alloys, but shows poor wear resistance due to the low substrate's load bearing capacity. The addition of nitrogen ion implantation/AlN/CrAlN interlayer in the MoS{sub 2}-phenolic resin/substrate system greatly enhances the substrate's load bearing capacity. The AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coating with a high load bearing capacity demonstrates super wear resistance (i.e., long wear life and low friction coefficient). In addition, the nitrogen ion implantation/AlN interlayer greatly depresses the effect of galvanic corrosion because its potential is close to that of the magnesium alloys, but the nitrogen ion implantation/AlN/CrAlN interlayer is inefficient in reducing the galvanic corrosion due to the large potential difference between the CrN phase and the substrate. As a result, the nitrogen ion implantation/AlN/MoS{sub 2}-phenolic resin duplex coating shows a better corrosion resistance compared to the nitrogen ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin. - Highlights: • Ion implantation/AlN/CrAlN/MoS{sub 2}-phenolic resin duplex coatings were presented. • Ion implantation/AlN/CrAlN interlayer greatly enhanced the load bearing capacity. • Ion implantation/AlN interlayer greatly depressed the effect of galvanic corrosion. • The

  19. Effects of Voltage on Microstructure and Corrosion Resistance of Micro-arc Oxidation Ceramic Coatings Formed on KBM10 Magnesium Alloy

    Science.gov (United States)

    Lu, J. P.; Cao, G. P.; Quan, G. F.; Wang, C.; Zhuang, J. J.; Song, R. G.

    2018-01-01

    Micro-arc oxidation (MAO) coatings on KBM10 magnesium alloy were prepared in an electrolyte system with sodium silicate, potassium hydroxide, sodium tungstate, and citric acid. The effects of voltage on the microstructure and corrosion resistance of MAO coatings were studied using stereoscopic microscopy, scanning electron microscopy, x-ray diffraction, scratch tests, potentiodynamic polarization, and electrochemical impedance spectroscopy. The results showed that the roughness of the MAO coatings, diameter, and number of pores increase with the increase in voltage. The coating formed at the voltage of 350 V exhibited the best adhesive strength when evaluated by the automatic scratch tester. The coatings were mainly composed of MgO, MgWO4, and Mg2SiO4, and the content of Mg2SiO4 increased with the increase in voltage. The corrosion resistance of MAO coatings could be improved by changing the applied voltage, and the best corrosion resistance of MAO coating was observed at the voltage of 350 V.

  20. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying

    Science.gov (United States)

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  1. The study of a Mg-rich epoxy primer for protection of AZ91D magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Lu Xiangyu [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zuo Yu, E-mail: zuoy@mail.buct.edu.c [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China); Zhao Xuhui; Tang Yuming; Feng Xingguo [School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029 (China)

    2011-01-15

    Research highlights: {yields} A Mg-rich epoxy primer was prepared by adding pure magnesium particles in epoxy coating. Cross scratch testing results showed that in 3% NaCl solution the Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. {yields} The open circuit potential of AZ91D alloy in NaCl solution decreased after coated with Mg-rich coating, suggesting that cathodic protection effect of the Mg-rich coating on AZ91D alloy was present. {yields} EIS studies showed that during the immersion tests of AZ91D alloy with Mg-rich coating the magnesium particles in coating dissolved with the charge-transfer resistance R{sub ct} at the magnesium particle/coating interface decreased and the double-layer capacitance Q{sub dl} increased. While the coating resistance remained stable for a long time and corrosion of the AZ91D alloy substrate was obviously delayed. - Abstract: A Mg-rich epoxy primer was prepared by adding pure magnesium particles to an epoxy coating. The coating properties were studied with electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. The open circuit potential measurements showed cathodic protection effect of the Mg-rich primer on AZ91D alloy. Cross scratch testing showed that the Mg-rich primer provided better protection for the substrate than original epoxy coating. The precipitation of Mg(OH){sub 2} in the coating also provided some degree of barrier protection.

  2. The study of a Mg-rich epoxy primer for protection of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Lu Xiangyu; Zuo Yu; Zhao Xuhui; Tang Yuming; Feng Xingguo

    2011-01-01

    Research highlights: → A Mg-rich epoxy primer was prepared by adding pure magnesium particles in epoxy coating. Cross scratch testing results showed that in 3% NaCl solution the Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. → The open circuit potential of AZ91D alloy in NaCl solution decreased after coated with Mg-rich coating, suggesting that cathodic protection effect of the Mg-rich coating on AZ91D alloy was present. → EIS studies showed that during the immersion tests of AZ91D alloy with Mg-rich coating the magnesium particles in coating dissolved with the charge-transfer resistance R ct at the magnesium particle/coating interface decreased and the double-layer capacitance Q dl increased. While the coating resistance remained stable for a long time and corrosion of the AZ91D alloy substrate was obviously delayed. - Abstract: A Mg-rich epoxy primer was prepared by adding pure magnesium particles to an epoxy coating. The coating properties were studied with electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. The open circuit potential measurements showed cathodic protection effect of the Mg-rich primer on AZ91D alloy. Cross scratch testing showed that the Mg-rich primer provided better protection for the substrate than original epoxy coating. The precipitation of Mg(OH) 2 in the coating also provided some degree of barrier protection.

  3. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    International Nuclear Information System (INIS)

    Meininger, M.; Wolf-Brandstetter, C.; Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J.; Moseke, C.

    2016-01-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr 2+ ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr 2+ into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr 2+ ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  4. Hydroxyapatite-coated magnesium implants with improved in vitro and in vivo biocorrosion, biocompatibility, and bone response.

    Science.gov (United States)

    Kim, Sae-Mi; Jo, Ji-Hoon; Lee, Sung-Mi; Kang, Min-Ho; Kim, Hyoun-Ee; Estrin, Yuri; Lee, Jong-Ho; Lee, Jung-Woo; Koh, Young-Hag

    2014-02-01

    Magnesium and its alloys are candidate materials for biodegradable implants; however, excessively rapid corrosion behavior restricts their practical uses in biological systems. For such applications, surface modification is essential, and the use of anticorrosion coatings is considered as a promising avenue. In this study, we coated Mg with hydroxyapatite (HA) in an aqueous solution containing calcium and phosphate sources to improve its in vitro and in vivo biocorrosion resistance, biocompatibility and bone response. A layer of needle-shaped HA crystals was created uniformly on the Mg substrate even when the Mg sample had a complex shape of a screw. In addition, a dense HA-stratum between this layer and the Mg substrate was formed. This HA-coating layer remarkably reduced the corrosion rate of the Mg tested in a simulated body fluid. Moreover, the biological response, including cell attachment, proliferation and differentiation, of the HA-coated samples was enhanced considerably compared to samples without a coating layer. The preliminary in vivo experiments also showed that the biocorrosion of the Mg implant was significantly retarded by HA coating, which resulted in good mechanical stability. In addition, in the case of the HA-coated implants, biodegradation was mitigated, particularly over the first 6 weeks of implantation. This considerably promoted bone growth at the interface between the implant and bone. These results confirmed that HA-coated Mg is a promising material for biomedical implant applications. © 2013 Wiley Periodicals, Inc.

  5. In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone

    Energy Technology Data Exchange (ETDEWEB)

    Schaller, Benoit [Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital and University of Bern, CH-3010 Bern (Switzerland); National Dental Centre Singapore, 168938 (Singapore); Saulacic, Nikola [Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital and University of Bern, CH-3010 Bern (Switzerland); Beck, Stefan, E-mail: SBECK2@its.jnj.com [Synthes Biomaterials, Eimattstr. 3, CH-4436 Oberdorf (Switzerland); Imwinkelried, Thomas [RMS Foundation, Bischmattstr. 12, CH-2544 Bettlach (Switzerland); Goh, Bee Tin [National Dental Centre Singapore, 168938 (Singapore); Nakahara, Ken [Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital and University of Bern, CH-3010 Bern (Switzerland); Hofstetter, Willy [Department of Clinical Research, University of Bern, CH-3010 Bern (Switzerland); Iizuka, Tateyuki [Department of Cranio-Maxillofacial Surgery, Inselspital, Bern University Hospital and University of Bern, CH-3010 Bern (Switzerland)

    2016-12-01

    Self-tapping of magnesium screws in hard bone may be a challenge due to the limited torsional strength of magnesium alloys in comparison with titanium. To avoid screw failure upon implantation, the new concept of a rivet-screw was applied to a WE43 magnesium alloy. Hollow cylinders with threads on the outside were expanded inside drill holes of minipig mandibles. During the expansion with a hexagonal mandrel, the threads engaged the surrounding bone and the inside of the screw transformed into a hexagonal screw drive to allow further screwing in or out of the implant. The in vivo degradation of the magnesium implants and the performance of the used coating were studied in a human standard-sized animal model. Four magnesium alloy rivet-screws were implanted in each mandible of 12 minipigs. Six animals received the plasmaelectrolytically coated magnesium alloy implants; another six received the uncoated magnesium alloy rivet-screws. Two further animals received one titanium rivet-screw each as control. In vivo radiologic examination was performed at one, four, and eight weeks. Euthanasia was performed for one group of seven animals (three animals with coated, three with uncoated magnesium alloy implants and one with titanium implant) at 12 weeks and for the remaining seven animals at 24 weeks. After euthanasia, micro-computed tomography and histological examination with histomorphometry were performed. Significantly less void formation as well as higher bone volume density (BV/TV) and bone-implant contact area (BIC) were measured around the coated implants compared to the uncoated ones. The surface coating was effective in delaying degradation despite plastic deformation. The results showed potential for further development of magnesium hollow coated screws for bone fixation. - Highlights: • A new concept of rivet screws as an alternative to classical screws is presented • The rivet screw concept was tested in vivo in a mini-pig pilot study • Un-coated and

  6. In vivo degradation of a new concept of magnesium-based rivet-screws in the minipig mandibular bone

    International Nuclear Information System (INIS)

    Schaller, Benoit; Saulacic, Nikola; Beck, Stefan; Imwinkelried, Thomas; Goh, Bee Tin; Nakahara, Ken; Hofstetter, Willy; Iizuka, Tateyuki

    2016-01-01

    Self-tapping of magnesium screws in hard bone may be a challenge due to the limited torsional strength of magnesium alloys in comparison with titanium. To avoid screw failure upon implantation, the new concept of a rivet-screw was applied to a WE43 magnesium alloy. Hollow cylinders with threads on the outside were expanded inside drill holes of minipig mandibles. During the expansion with a hexagonal mandrel, the threads engaged the surrounding bone and the inside of the screw transformed into a hexagonal screw drive to allow further screwing in or out of the implant. The in vivo degradation of the magnesium implants and the performance of the used coating were studied in a human standard-sized animal model. Four magnesium alloy rivet-screws were implanted in each mandible of 12 minipigs. Six animals received the plasmaelectrolytically coated magnesium alloy implants; another six received the uncoated magnesium alloy rivet-screws. Two further animals received one titanium rivet-screw each as control. In vivo radiologic examination was performed at one, four, and eight weeks. Euthanasia was performed for one group of seven animals (three animals with coated, three with uncoated magnesium alloy implants and one with titanium implant) at 12 weeks and for the remaining seven animals at 24 weeks. After euthanasia, micro-computed tomography and histological examination with histomorphometry were performed. Significantly less void formation as well as higher bone volume density (BV/TV) and bone-implant contact area (BIC) were measured around the coated implants compared to the uncoated ones. The surface coating was effective in delaying degradation despite plastic deformation. The results showed potential for further development of magnesium hollow coated screws for bone fixation. - Highlights: • A new concept of rivet screws as an alternative to classical screws is presented • The rivet screw concept was tested in vivo in a mini-pig pilot study • Un-coated and

  7. High-Energy-Density Aqueous Magnesium-Ion Battery Based on a Carbon-Coated FeVO4 Anode and a Mg-OMS-1 Cathode.

    Science.gov (United States)

    Zhang, Hongyu; Ye, Ke; Zhu, Kai; Cang, Ruibai; Yan, Jun; Cheng, Kui; Wang, Guiling; Cao, Dianxue

    2017-12-01

    Porous FeVO 4 is prepared by hydrothermal method and further modified by coating with carbon to obtain FeVO 4 /C with a hierarchical pore structure. FeVO 4 /C is used as an anodic electrode in aqueous rechargeable magnesium-ion batteries. The FeVO 4 /C material not only has improved electrical conductivity as a result of the carbon coating layer, but also has an increased specific surface area as a result of the hierarchical pore structure, which is beneficial for magnesium-ion insertion/deinsertion. Therefore, an aqueous rechargeable magnesium-ion full battery is successfully constructed with FeVO 4 /C as the anode, Mg-OMS-1 (OMS=octahedral molecular sieves) as the cathode, and 1.0 mol L -1 MgSO 4 as the electrolyte. The discharge capacity of the Mg-OMS-1//FeVO 4 /C aqueous battery is 58.9 mAh g -1 at a current density of 100 mA g -1 ; this value is obtained by calculating the total mass of two electrodes and the capacity retention rate of this device is 97.7 % after 100 cycles, with almost 100 % coulombic efficiency, which indicates that the system has a good electrochemical reversibility. Additionally, this system can achieve a high energy density of 70.4 Wh kg -1 , which provides powerful evidence that an aqueous magnesium-ion battery is possible. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Thermionic vacuum arc (TVA) technique for magnesium thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Balbag, M.Z., E-mail: zbalbag@ogu.edu.t [Eskisehir Osmangazi University, Education Faculty, Primary Education, Meselik Campus, Eskisehir 26480 (Turkey); Pat, S.; Ozkan, M.; Ekem, N. [Eskisehir Osmangazi University, Art and Science Faculty, Physics Department, Eskisehir 26480 (Turkey); Musa, G. [Ovidius University, Physics Department, Constanta (Romania)

    2010-08-15

    In this study, magnesium thin films were deposited on glass substrate by the Thermionic Vacuum Arc (TVA) technique for the first time. We present a different technique for deposition of high-quality magnesium thin films. By means of this technique, the production of films is achieved by condensing the plasma of anode material generated using Thermionic Vacuum Arc (TVA) under high vacuum conditions onto the surface to be coated. The crystal orientation and morphology of the deposited films were investigated by using XRD, EDX, SEM and AFM. The aim of this study is to search the use of TVA technique to coat magnesium thin films and to determine some of the physical properties of the films generated. Furthermore, this study will contribute to the scientific studies which search the thin films of magnesium or the compounds containing magnesium. In future, this study will be preliminary work to entirely produce magnesium diboride (MgB{sub 2}) superconductor thin film with the TVA technique.

  9. Cold-Sprayed AZ91D Coating and SiC/AZ91D Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    2018-03-01

    Full Text Available As an emerging coating building technique, cold spraying has many advantages to elaborate Mg alloy workpieces. In this study, AZ91D coatings and AZ91D-based composite coatings were deposited using cold spraying. Coatings were prepared using different gas temperatures to obtain the available main gas temperature. Compressed air was used as the accelerating gas, and although magnesium alloy is oxidation-sensitive, AZ91D coatings with good performance were obtained. The results show that dense coatings can be fabricated until the gas temperature is higher than 500 °C. The deposition efficiency increases greatly with the gas temperature, but it is lower than 10% for all coating specimens. To analyze the effects of compressed air on AZ91D powder particles and the effects of gas temperature on coatings, the phase composition, porosity, cross-sectional microstructure, and microhardness of coatings were characterized. X-ray diffraction and oxygen content analysis clarified that no phase transformation or oxidation occurred on AZ91D powder particles during cold spraying processes with compressed air. The porosity of AZ91D coatings remained between 3.6% and 3.9%. Impact melting was found on deformed AZ91D particles when the gas temperature increased to 550 °C. As-sprayed coatings exhibit much higher microhardness than as-casted bulk magnesium, demonstrating the dense structure of cold-sprayed coatings. To study the effects of ceramic particles on cold-sprayed AZ91D coatings, 15 vol % SiC powder particles were added into the feedstock powder. Lower SiC content in the coating than in the feedstock powder means that the deposition efficiency of the SiC powder particles is lower than the deposition efficiency of AZ91D particles. The addition of SiC particles reduces the porosity and increases the microhardness of cold-sprayed AZ91D coatings. The corrosion behavior of AZ91D coating and SiC reinforced AZ91D composite coating were examined. The Si

  10. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, E.H., E-mail: md.ezharul.hoque@med.monash.edu.my [Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan (Malaysia)

    2011-06-17

    Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  11. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    International Nuclear Information System (INIS)

    Chowdhury, E.H.

    2011-01-01

    Highlights: → Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. → Fluoridated carbonate apatite promotes a robust increase in transgene expression. → Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  12. Atomistic modelling study of lanthanide incorporation in the crystal lattice of an apatite

    International Nuclear Information System (INIS)

    Louis-Achille, V.

    1999-01-01

    Studies of natural and synthetic apatites allow to propose such crystals as matrix for nuclear waste storage. The neodymium substituted britholite, Ca 9 Nd(PO 4 ) 5 (SiO 4 )F 2 . is a model for the trivalent actinide storage Neodymium can be substituted in two types of sites. The aim of this thesis is to compare the chemical nature of this two sites in fluoro-apatite Ca 9 (PO 4 ) 6 F 2 and then in britholite, using ab initio atomistic modeling. Two approaches are used: one considers the infinite crystals and the second considers clusters. The calculations of the electronic structure for both were performed using Kohn and Sham density functional theory in the local approximation. For solids, pseudopotentials were used, and wave functions are expanded in plane waves. For clusters, a frozen core approximation was used, and the wave functions are expanded in a linear combination of Slater type atomic orbitals. The pseudopotential is semi-relativistic for neodymium, and the Hamiltonian is scalar relativistic for the clusters. The validation of the solid approach is performed using two test cases: YPO 4 and ScPO 4 . Two numerical tools were developed to compute electronic deformation density map, and calculate partial density of stases. A full optimisation of the lattice parameters with a relaxation of the atomic coordinates leads to correct structural and thermodynamic properties for the fluoro-apatite, compared to experience. The electronic deformation density maps do not show any significant differences. between the two calcium sites. but Mulliken analysis on the solid and on the clusters point out the more ionic behavior of the calcium in site 2. A neodymium substituted britholite is then studied. Neodymium location only induces local modifications in; the crystalline structure and few changes in the formation enthalpy. The electronic study points out an increase of the covalent character the bonding involving neodymium compared with the one related to calcium

  13. Calcium-magnesium Aluminosilicate (CMAS) Interactions with Advanced Environmental Barrier Coating Material

    Science.gov (United States)

    Wiesner, Valerie L.; Bansal, Narottam P.

    2015-01-01

    Particulates, like sand and volcanic ash, threaten the development of robust environmental barrier coatings (EBCs) that protect next-generation silicon-based ceramic matrix composite (CMC) turbine engine components from harsh combustion environments during service. The siliceous particulates transform into molten glassy deposits of calcium-magnesium aluminosilicate (CMAS) when ingested by an aircraft engine operating at temperatures above 1200C. In this study, a sample of desert sand was melted into CMAS glass to evaluate high-temperature interactions between the sand glass and an advanced EBC material. Desert sand glass was added to the surface of hot-pressed EBC substrates, which were then heated in air at temperatures ranging from 1200C to 1500C. Scanning electron microscopy and X-ray energy-dispersive spectroscopy were used to evaluate microstructure and phase compositions of specimens and the CMASEBC interface after heat treatments.

  14. Magnesium stable isotope ecology using mammal tooth enamel

    Science.gov (United States)

    Martin, Jeremy E.; Vance, Derek; Balter, Vincent

    2015-01-01

    Geochemical inferences on ancient diet using bone and enamel apatite rely mainly on carbon isotope ratios (δ13C) and to a lesser extent on strontium/calcium (Sr/Ca) and barium/calcium (Ba/Ca) elemental ratios. Recent developments in nontraditional stable isotopes provide an unprecedented opportunity to use additional paleodietary proxies to disentangle complex diets such as omnivory. Of particular relevance for paleodietary reconstruction are metals present in large quantity in bone and enamel apatite, providing that biologically mediated fractionation processes are constrained. Calcium isotope ratios (δ44Ca) meet these criteria but exhibit complex ecological patterning. Stable magnesium isotope ratios (δ26Mg) also meet these criteria but a comprehensive understanding of its variability awaits new isotopic data. Here, 11 extant mammal species of known ecology from a single locality in equatorial Africa were sampled for tooth enamel and, together with vegetation and feces, analyzed for δ26Mg, δ13C, Sr/Ca, and Ba/Ca ratios. The results demonstrate that δ26Mg incorporated in tooth enamel becomes heavier from strict herbivores to omnivores/faunivores. Using data from experimentally raised sheep, we suggest that this 26Mg enrichment up the trophic chain is due to a 26Mg enrichment in muscle relative to bone. Notably, it is possible to distinguish omnivores from herbivores, using δ26Mg coupled to Ba/Ca ratios. The potential effects of metabolic and dietary changes on the enamel δ26Mg composition remain to be explored but, in the future, multiproxy approaches would permit a substantial refinement of dietary behaviors or enable accurate trophic reconstruction despite specimen-limited sampling, as is often the case for fossil assemblages.

  15. Characterization and corrosion property of nano-rod-like HA on fluoride coating supported on Mg-Zn-Ca alloy.

    Science.gov (United States)

    Feng, Yashan; Zhu, Shijie; Wang, Liguo; Chang, Lei; Yan, Bingbing; Song, Xiaozhe; Guan, Shaokang

    2017-06-01

    The poor corrosion resistance of biodegradable magnesium alloys is the dominant factor that limits their clinical application. In this study, to deal with this challenge, fluoride coating was prepared on Mg-Zn-Ca alloy as the inner coating and then hydroxyapatite (HA) coating as the outer coating was deposited on fluoride coating by pulse reverse current electrodeposition (PRC-HA/MgF 2 ). As a comparative study, the microstructure and corrosion properties of the composite coating with the outer coating fabricated by traditional constant current electrodeposition (TED-HA/MgF 2 ) were also investigated. Scanning electron microscopy (SEM) images of the coatings show that the morphology of PRC-HA/MgF 2 coating is dense and uniform, and presents nano-rod-like structure. Compared with that of TED-HA/MgF 2 , the corrosion current density of Mg alloy coated with PRC-HA/MgF 2 coatings decreases from 5.72 × 10 -5 A/cm 2 to 4.32 × 10 -7 A/cm 2 , and the corrosion resistance increases by almost two orders of magnitude. In immersion tests, samples coated with PRC-HA/MgF 2 coating always show the lowest hydrogen evolution amount, and could induce deposition of the hexagonal structure-apatite on the surface rapidly. The results show that the corrosion resistance and the bioactivity of the coatings have been improved by adopting double-pulse current mode in the process of preparing HA on fluoride coating, and the PRC-HA/MgF 2 coating is worth of further investigation.

  16. Evaluation of magnesium ions release, biocorrosion, and hemocompatibility of MAO/PLLA-modified magnesium alloy WE42.

    Science.gov (United States)

    Lu, Ping; Cao, Lu; Liu, Yin; Xu, Xinhua; Wu, Xiangfeng

    2011-01-01

    Magnesium alloys may potentially be applied as biodegradable metallic materials in cardiovascular stent. However, the high corrosion rate hinders its clinical application. In this study, a new approach was adopted to control the corrosion rate by fabricating a biocompatible micro-arc oxidation/poly-L-lactic acid (MAO/PLLA) composite coating on the magnesium alloy WE42 substrate and the biocompatibility of the modified samples was investigated. The scanning electronic microscope (SEM) images were used to demonstrate the morphology of the samples before and after being submerged in hanks solution for 4 weeks. The degradation was evaluated through the magnesium ions release rate and electrochemical impedance spectroscopy (EIS) test. The biocompatibility of the samples was demonstrated by coagulation time and hemolysis behavior. The result shows that the poly-L-lactic acid (PLLA) effectively improved the corrosion resistance by sealing the microcracks and microholes on the surface of the MAO coating. The modified samples had good compatibility. © 2010 Wiley Periodicals, Inc.

  17. The surface chemistry of 3-mercaptopropyltrimethoxysilane films deposited on magnesium alloy AZ91

    International Nuclear Information System (INIS)

    Scott, A.; Gray-Munro, J.E.

    2009-01-01

    Magnesium and its alloys have desirable physical and mechanical properties for a number of applications. Unfortunately, these materials are highly susceptible to corrosion, particularly in the presence of aqueous solutions. The purpose of this study is to develop a uniform, non-toxic surface treatment to enhance the corrosion resistance of magnesium alloys. This paper reports the influence of the coating bath parameters and alloy microstructure on the deposition of 3-mercaptopropyltrimethoxysilane (MPTS) coatings on magnesium alloy AZ91. The surface chemistry at the magnesium/MPTS interface has also been explored. The results indicate that the deposition of MPTS onto AZ91 was influenced by both the pH and MPTS concentration in the coating bath. Furthermore, scanning electron microscopy results showed that the MPTS film deposited uniformly on all phases of the magnesium alloy surface. X-ray photoelectron spectroscopy studies revealed that at the magnesium/MPTS interface, the molecules bond to the surface through the thiol group in an acid-base interaction with the Mg(OH) 2 layer, whereas in the bulk of the film, the molecules are randomly oriented.

  18. Low temperature sol-gel process for optical coatings based on magnesium fluoride and titanium dioxide; Niedertemperatur Sol-Gel Verfahren fuer optische Schichtsysteme auf Basis von Magnesiumfluorid und Titandioxid

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Hannes

    2009-09-24

    This work deals with the development of a low temperature sol-gel spincoating process for thin films with thicknesses in the nanometer range based on metal oxides and metal fluorides. Optical films such as anti-reflective (AR) or high reflective coatings are of much interest and consist of alternating dielectric layers of low and high refractive index materials. Regarding the general procedure for the metal fluorides a novel nonaqueous sol-gel synthesis starting from metal alkoxides and alcohol-dissolved HF was used. The coatings were dried and calcined at 100 C. The morphology of these films was characterised with REM, TEM and AFM. EDX and XPS were used to identify the chemical composition and ellipsometry and UV-vis spectroscopy to determine the optical properties of the films. This new process allows the preparation of homogeneous magnesium fluoride and titanium dioxide layers with low roughness (R{sub a} {<=} 1,9 nm) on silicon and quartz substrates. The magnesium fluoride layers are partially amorphous or microcrystalline with crystallite sizes from 2 nm to 10 nm. The titanium dioxide layers are predominantly amorphous. The thicknesses of the magnesium fluoride and titanium dioxide single layers were adjustable between 25 nm and 500 nm depending on the number of coating steps and on the concentration of the used sols. The magnesium fluoride layers had a refractive index of n{sub 500} = 1,36 and the titanium dioxide layers a refraction index of n{sub 500} = 2,05. For the first time, an alternating metal fluoride and oxide multilayer system was produced with a low temperature sol-gel method (consisting of magnesium fluoride and titanium dioxide). Based on the determined optical constants of the magnesium fluoride and titanium dioxide single layers, AR and HR multilayer systems were calculated and fabricated. The transmission spectra of the designs and the corresponding multilayer were in good agreement. Similar results were obtained with the reflection spectra

  19. Hanford 100N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100N Sediments

    Energy Technology Data Exchange (ETDEWEB)

    Szecsody, James E.; Burns, Carolyn A.; Moore, Robert C.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Williams, Mark D.; Girvin, Donald C.; McKinley, James P.; Truex, Michael J.; Phillips, Jerry L.

    2007-10-01

    This report summarizes laboratory scale studies investigating the remediation of Sr-90 by Ca-citrate-PO4 solution injection/infiltration to support field injection activities in the Hanford 100N area. This study is focused on experimentally testing whether this remediation technology can be effective under field scale conditions to mitigate Sr-90 migration 100N area sediments into the Columbia River. Sr-90 is found primarily adsorbed to sediments by ion exchange (99% adsorbed, < 1% in groundwater) in the upper portion of the unconfined aquifer and lower vadose zone. Although primarily adsorbed, Sr-90 is still considered a high mobility risk as it is mobilized by seasonal river stage increases and by plumes of higher ionic strength relative to groundwater. This remediation technology relies upon the Ca-citrate-PO4 solution forming apatite precipitate [Ca6(PO4)10(OH)2], which incorporates some Sr-90 during initial precipitation and additionally slowly incorporates Sr-90 by solid phase substitution for Ca. Sr substitution occurs because Sr-apatite is thermodynamically more stable than Ca-apatite. Once the Sr-90 is in the apatite structure, Sr-90 will decay to Y-90 (29.1 y half-life) then Zr-90 (64.1 h half-life) without the potential for migration into the Columbia River. For this technology to be effective, sufficient apatite needs to be emplaced in sediments to incorporate Sr and Sr-90 for 300 years (~10 half-lives of Sr-90), and the rate of incorporation needs to exceed the natural groundwater flux rate of Sr in the 100N area. A primary objective of this study is to supply an injection sequence to deliver sufficient apatite into subsurface sediments that minimizes initial mobility of Sr-90, which occurs because the injection solution has a higher ionic strength compared to groundwater. This can be accomplished by sequential injections of low, then high concentration injection of Ca-citrate-PO4 solutions. Assessment of low concentration Ca-citrate-PO4, citrate-PO4

  20. In Vitro Analysis of Electrophoretic Deposited Fluoridated Hydroxyapatite Coating on Micro-arc Oxidized AZ91 Magnesium Alloy for Biomaterials Applications

    Science.gov (United States)

    Razavi, Mehdi; Fathi, Mohammadhossein; Savabi, Omid; Vashaee, Daryoosh; Tayebi, Lobat

    2015-03-01

    Magnesium (Mg) alloys have been recently introduced as a biodegradable implant for orthopedic applications. However, their fast corrosion, low bioactivity, and mechanical integrity have limited their clinical applications. The main aim of this research was to improve such properties of the AZ91 Mg alloy through surface modifications. For this purpose, nanostructured fluoridated hydroxyapatite (FHA) was coated on AZ91 Mg alloy by micro-arc oxidation and electrophoretic deposition method. The coated alloy was characterized through scanning electron microscopy, transmission electron microscopy, X-ray diffraction, in vitro corrosion tests, mechanical tests, and cytocompatibility evaluation. The results confirmed the improvement of the corrosion resistance, in vitro bioactivity, mechanical integrity, and the cytocompatibility of the coated Mg alloy. Therefore, the nanostructured FHA coating can offer a promising way to improve the properties of the Mg alloy for orthopedic applications.

  1. Effect of Thickness on the Morphology and Corrosion Behavior of Cerium-Based Conversion Coatings on AZ31B Magnesium Alloy

    Science.gov (United States)

    Castano, Carlos E.; Maddela, Surender; O'Keefe, Matthew J.; Wang, Yar-Ming

    Cerium-based conversion coatings (CeCCs) were deposited onto AZ31B magnesium alloy substrates using a spontaneous reaction of CeCl3, H2O2 and gelatin in a water-based solution. The coating thickness was adjusted by controlling the immersion time in the deposition solution. Prior to deposition, the AZ31B substrates were treated using an acid pickling in nitric acid and then an alkaline cleaning in sodium metasilicate pentahydrate. After deposition, the coated samples were immersed in a phosphate bath that converted cerium oxide/hydroxide into cerium phosphate. Electrochemical impedance spectroscopy, potentiodynamic polarization and neutral salt spray testing studies indicated that 100 nm thick CeCC had better corrosion performance than 400 nm coatings. Characterization of the CeCCs by transmission electron microscopy (TEM) revealed a three layer structure with different compositions.

  2. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2015-03-15

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO{sub 2}) and cerium oxide (CeO{sub 2}) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity.

  3. Degradation behavior of n-MAO/EPD bio-ceramic composite coatings on magnesium alloy in simulated body fluid

    International Nuclear Information System (INIS)

    Xiong, Ying; Lu, Chao; Wang, Chao; Song, Renguo

    2015-01-01

    Highlights: • A bio-ceramic n-MAO/EPD coating was prepared by combined MAO and EPD technique. • The precipitates of Ca/P compound are formed on the surface samples during immersion. • The n-MAO/EPD coating with HA dense structure has a favorable anti-corrosion effect. • Two degradation mechanism models for the n-MAO and n-MAO/EPD coating were proposed. - Abstract: The bio-ceramic composite coatings have been fabricated on ZK60 magnesium (Mg) alloy to improve its bio-corrosion resistance in a simulated body fluid (SBF). Firstly, micro-arc oxidation coatings (n-MAO coating) with the addition of zirconium oxide (ZrO 2 ) and cerium oxide (CeO 2 ) nano-particles were prepared by MAO technique on ZK60Mg alloy in alkaline electrolyte. Secondly, nano-hydroxyapatite (HA) was deposited on the surface of n-MAO coatings by using electrophoretic deposition (EPD) technique. The degradation behavior of the coated samples was investigated by means of immersion tests and electrochemical impedance spectroscopy (EIS) in the SBF at 36.5 ± 0.5 °C. The variation of phase composition, surface and cross-section morphology of coatings at different immersion stages were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The results showed that the precipitation layer with biological activity formed on the surface of coated samples during the SBF immersion, which can inhibit Mg alloys from degrading effectively. The n-MAO/EPD composite coating with HA dense structure has a favorable anti-corrosion effect compared to the n-MAO coating. Degradation mechanism model of the corrosion process at different corrosion stages for two kinds of coatings were proposed. The long-term corrosion protection of the n-MAO/EPD composite coating was governed significantly by the synergistic effect of phase composition stability and micro structural integrity

  4. Cellulose acetate/hydroxyapatite/chitosan coatings for improved corrosion resistance and bioactivity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Zhenyu; Qin, Jinli [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Ma, Jun, E-mail: caltary@gmail.com [Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Department of Biomedical Engineering, School of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-04-01

    Cellulose acetate (CA) nanofibers were deposited on stainless steel plates by electrospinning technique. The composite of hydroxyapatite (HAP) nanoparticles and chitosan (CHI) was coated subsequently by dip-coating. The structure and morphology of the obtained coatings were investigated by Fourier transform infrared spectroscopy and scanning electron microscopy. The stability of the coatings in physiological environment was studied using electrochemical polarization and impedance spectroscopy. The CA nanofibers were embedded in the HAP/CHI coating and the resulted composite film was densely packed and uniform on the substrate. The in vitro biomineralization study of the coated samples immersed in simulated body fluid (SBF) confirmed the formation ability of bone-like apatite layer on the surface of HAP-containing coatings. Furthermore, the coatings could provide corrosion resistance to the stainless steel substrate in SBF. The electrochemical results suggested that the incorporation of CA nanofibers could improve the corrosion resistance of the HAP/CHI coating. Thus, biocompatible CA/HAP/CHI coated metallic implants could be very useful in the long-term stability of the biomedical applications. - Highlights: • The composite coatings were prepared by electrospinning and dip-coating. • Good in vitro bioactivity of the CA/HAP/CHI coating was confirmed. • Electrochemical behaviors in SBF of the coatings have been studied. • The CA/HAP/CHI coating shows better resistance property than HAP/CHI.

  5. Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties

    Energy Technology Data Exchange (ETDEWEB)

    Geng, Zhen [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Wang, Renfeng [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Zhuo, Xianglong, E-mail: doctorzhuo@139.com [Department of Spinal Surgery, Liuzhou Worker' s Hospital, Liuzhou 545001 (China); Li, Zhaoyang, E-mail: zyli@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Huang, Yongcan [Orthopedics Research Center, Peking University Shenzhen Hospital, Shenzhen 518036 (China); Ma, Lili; Cui, Zhenduo [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhu, Shengli [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China); Liang, Yanqin [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Liu, Yunde; Bao, Huijing; Li, Xue; Huo, Qianyu; Liu, Zhili [School of Laboratory Medicine, Tianjin Medical University, Tianjin 300072 (China); Yang, Xianjin, E-mail: xjyang@tju.edu.cn [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Tianjin Key Laboratory of Composite and Functional Materials, Tianjin 300072 (China)

    2017-02-01

    Implant-related infection in primary total joint prostheses has attracted considerable research attention. As a measure to improve the antimicrobial properties of implant materials, silver (Ag) was incorporated into calcium phosphate (CaP) coatings on Titanium (Ti) via a hydrothermal method. Further, strontium (Sr) was added as a binary dopant to reduce the cytotoxicity of Ag in the coatings. Results showed that the CaP coatings were uniformly deposited on Ti with enhanced hydrophilicity and nanoscale surface roughness. Moreover, cell adhesion, proliferation, and differentiation were improved after the CaP coating deposition. The antibacterial properties of the coatings were distinctly improved by the incorporation of Ag, but the cell proliferation and differentiation were significantly decreased. Owing to the incorporation of Sr, the Ag-CaP coatings were able to effectively counteract the negative effects of Ag while maintaining good antibacterial properties. In summary, hydrothermally deposited CaP coatings doped with Ag and Sr exhibit excellent biocompatibility and antimicrobial activity. Thus, such co-doped CaP coatings have considerable potential for orthopaedic implant modification. - Highlights: • Ag- and Sr-substituted HA coating is deposited on titanium by hydrothermal method. • This coating shows a remarkable antibacterial activity and good biocompatibility. • The coating process is simple and suitable for large-scale fabrication. • The possible mechanism of Sr{sup 2+} is proposed.

  6. Electrochemically assisted deposition of strontium modified magnesium phosphate on titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Meininger, M. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Wolf-Brandstetter, C. [Max Bergmann Center for Biomaterials, Technical University of Dresden, Budapester Straße 27, D-01069 Dresden (Germany); Zerweck, J.; Wenninger, F.; Gbureck, U.; Groll, J. [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany); Moseke, C., E-mail: claus.moseke@fmz.uni-wuerzburg.de [Department for Functional Materials in Medicine and Dentistry, University of Würzburg, Pleicherwall 2, D-97070 Würzburg (Germany)

    2016-10-01

    Electrochemically assisted deposition was utilized to produce ceramic coatings on the basis of magnesium ammonium phosphate (struvite) on corundum-blasted titanium surfaces. By the addition of defined concentrations of strontium nitrate to the coating electrolyte Sr{sup 2+} ions were successfully incorporated into the struvite matrix. By variation of deposition parameters it was possible to fabricate coatings with different kinetics of Sr{sup 2+} into physiological media, whereas the release of therapeutically relevant strontium doses could be sustained over several weeks. Morphological and crystallographic examinations of the immersed coatings revealed that the degradation of struvite and the release of Sr{sup 2+} ions were accompanied by a transformation of the coating to a calcium phosphate based phase similar to low-crystalline hydroxyapatite. These findings showed that strontium doped struvite coatings may provide a promising degradable coating system for the local application of strontium or other biologically active metal ions in the implant–bone interface. - Highlights: • Sr-doped struvite coatings have been deposited on titanium by electrochemically assisted deposition. • Sr content can be adjusted by means of process time, current density and pulse mode. • Sr-doped coatings release therapeutically relevant Sr doses in physiological media for several weeks. • During immersion in physiological media Sr-doped struvite coatings transform into a low crystalline calcium phosphate phase.

  7. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  8. Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty Banerjee, P. [Department of Chemical Engineering, Monash University, Clayton, VIC-3800 (Australia); CAST Cooperative Research Centre, Hawthorn, VIC-3122 (Australia); Singh Raman, R.K., E-mail: raman.singh@eng.monash.edu.a [Department of Chemical Engineering, Monash University, Clayton, VIC-3800 (Australia); Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC-3800 (Australia)

    2011-04-15

    The protective performance of the coatings of bis-1,2-(triethoxysilyl) ethane (BTSE) on ZE41 magnesium alloy with different surface pre-treatments were evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution. Electrical equivalent circuits were developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and cross section of the alloy subjected to different pre-treatments and coatings were characterized using scanning electron microscope. A specific alkaline pre-treatment of the substrate prior to the coating has been found to improve the corrosion resistance of the alloy.

  9. Electrochemical impedance spectroscopic investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41

    International Nuclear Information System (INIS)

    Chakraborty Banerjee, P.; Singh Raman, R.K.

    2011-01-01

    The protective performance of the coatings of bis-1,2-(triethoxysilyl) ethane (BTSE) on ZE41 magnesium alloy with different surface pre-treatments were evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 0.1 M sodium chloride solution. Electrical equivalent circuits were developed based upon hypothetical corrosion mechanisms and simulated to correspond to the experimental data. The morphology and cross section of the alloy subjected to different pre-treatments and coatings were characterized using scanning electron microscope. A specific alkaline pre-treatment of the substrate prior to the coating has been found to improve the corrosion resistance of the alloy.

  10. Atomistic modelling study of lanthanide incorporation in the crystal lattice of an apatite; Etude par modelisation atomistique de l'incorporation de lanthanides dans le reseau cristallin d'une apatite phosphocalcique

    Energy Technology Data Exchange (ETDEWEB)

    Louis-Achille, V

    1999-07-01

    Studies of natural and synthetic apatites allow to propose such crystals as matrix for nuclear waste storage. The neodymium substituted britholite, Ca{sub 9}Nd(PO{sub 4}){sub 5}(SiO{sub 4})F{sub 2}. is a model for the trivalent actinide storage Neodymium can be substituted in two types of sites. The aim of this thesis is to compare the chemical nature of this two sites in fluoro-apatite Ca{sub 9}(PO{sub 4}){sub 6}F{sub 2} and then in britholite, using ab initio atomistic modeling. Two approaches are used: one considers the infinite crystals and the second considers clusters. The calculations of the electronic structure for both were performed using Kohn and Sham density functional theory in the local approximation. For solids, pseudopotentials were used, and wave functions are expanded in plane waves. For clusters, a frozen core approximation was used, and the wave functions are expanded in a linear combination of Slater type atomic orbitals. The pseudopotential is semi-relativistic for neodymium, and the Hamiltonian is scalar relativistic for the clusters. The validation of the solid approach is performed using two test cases: YPO{sub 4} and ScPO{sub 4}. Two numerical tools were developed to compute electronic deformation density map, and calculate partial density of stases. A full optimisation of the lattice parameters with a relaxation of the atomic coordinates leads to correct structural and thermodynamic properties for the fluoro-apatite, compared to experience. The electronic deformation density maps do not show any significant differences. between the two calcium sites. but Mulliken analysis on the solid and on the clusters point out the more ionic behavior of the calcium in site 2. A neodymium substituted britholite is then studied. Neodymium location only induces local modifications in; the crystalline structure and few changes in the formation enthalpy. The electronic study points out an increase of the covalent character the bonding involving neodymium

  11. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  12. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  13. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications

    Directory of Open Access Journals (Sweden)

    Gh. Barati Darband

    2017-03-01

    Full Text Available Plasma Electrolyte Oxidation (PEO process has increasingly been employed to improve magnesium surface properties by fabrication of an MgO-based coating. Originating from conventional anodizing procedures, this high-voltage process produces an adhesive ceramic film on the surface. The present article provides a comprehensive review around mechanisms of PEO coatings fabrication and their different properties. Due to complexity of PEO coatings formation, a complete explanation regarding fabrication mechanisms of PEO coatings has not yet been proposed; however, the most important advancements in the field of fabrication mechanisms of PEO coatings were gathered in this work. Mechanisms of PEO coatings fabrication on magnesium were reviewed considering voltage–time plots, optical spectrometry, acoustic emission spectrometry and electronic properties of the ceramic film. Afterwards, the coatings properties, affecting parameters and improvement strategies were discussed. In addition, corrosion resistance of coatings, important factors in corrosion resistance and methods for corrosion resistance improvement were considered. Tribological properties (important factors and improvement methods of coatings were also studied. Since magnesium and its alloys are broadly used in biological applications, the biological properties of PEO coatings, important factors in their biological performance and existing methods for improvement of coatings were explained. Addition of ceramic based nanoparticles and formation of nanocomposite coatings may considerably influence properties of plasma electrolyte oxidation coatings. Nanocomposite coatings properties and nanoparticles adsorption mechanisms were included in a separate sector. Another method to improve coatings properties is formation of hybrid coatings on PEO coatings which was discussed in the end.

  14. Corrosion resistance and durability of superhydrophobic surface formed on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution.

    Science.gov (United States)

    Ishizaki, Takahiro; Masuda, Yoshitake; Sakamoto, Michiru

    2011-04-19

    The corrosion resistant performance and durability of the superhydrophobic surface on magnesium alloy coated with nanostructured cerium oxide film and fluoroalkylsilane molecules in corrosive NaCl aqueous solution were investigated using electrochemical and contact angle measurements. The durability of the superhydrophobic surface in corrosive 5 wt% NaCl aqueous solution was elucidated. The corrosion resistant performance of the superhydrophobic surface formed on magnesium alloy was estimated by electrochemical impedance spectroscopy (EIS) measurements. The EIS measurements and appropriate equivalent circuit models revealed that the superhydrophobic surface considerably improved the corrosion resistant performance of magnesium alloy AZ31. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test was performed to investigate the adhesion of the superhydrophobic film to the magnesium alloy surface. The corrosion formation mechanism of the superhydrophobic surface formed on the magnesium alloy was also proposed. © 2011 American Chemical Society

  15. The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Li Qing; Xu Shuqiang; Hu Junying; Zhang Shiyan; Zhong Xiankang; Yang Xiaokui

    2010-01-01

    This paper discussed a zinc phosphate conversion coating formed on magnesium alloy AZ91D from the phosphating bath with varying amounts of ethanolamine (MEA). The effects of MEA on the form, structure, phase composition and electrochemical behavior of the phosphate coatings were examined using an scanning electron microscopy (SEM), X-ray diffraction (XRD) potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Interpretations of the electrical elements of the equivalent circuit were obtained from the SEM structure of the coatings, assumed to be formed of two layers: an outer porous crystal layer and an inner flat amorphous layer. The result showed that adding MEA refined the microstructure of the crystal layer and that the phosphate coating, derived at the optimal content of 1.2 g/L, with the most uniform and compact outer crystal layer provided the best corrosion protection.

  16. Synthesis and characterization of bulk and coatings of hydroxyapatite using methanol precursor

    International Nuclear Information System (INIS)

    Khongwar, Jasper K.; Kannan, K.R.; Buvaneswari, G.

    2008-01-01

    Hydroxyapatite, an important bioceramic was synthesized in the bulk form and developed as a coating by a sol-gel route using alcoholic precursor. The bioactive coating was developed on bio-inert α-alumina and yttria stabilized zirconia substrates. The apatite phase began to form after the heat treatment of the precursor at 500 deg. C for 10 min. The complete crystallization of the apatite was obtained at 800 deg. C heat treatment for 10 min. The phase composition of the bulk and the coatings was identified by FT-IR spectroscopic and powder X-ray diffraction (XRD) techniques. Surface morphology was determined by scanning electron microscopy. The study indicates different surface textures for the powder and for the coatings on α-alumina and yttria stabilized zirconia substrates

  17. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Science.gov (United States)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-08-01

    The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  18. Synthesis and evaluation of MgF2 coatings by chemical conversion on magnesium alloys for producing biodegradable orthopedic implants of temporary use

    International Nuclear Information System (INIS)

    Casanova, P Y; Jaimes, K J; Parada, N J; Viejo, F; Hernández-Barrios, C A; Aparicio, M; Coy, A E

    2013-01-01

    The aim of the present work was the synthesis of biodegradable MgF 2 coatings by chemical conversion on the commercial Elektron 21 and AZ91D magnesium alloys, in aqueous HF solutions for different concentrations and temperatures. The chemical composition and morphology of the coatings were analyzed by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD). On the other hand, their corrosion behavior was evaluated by gravimetric and electrochemical measurements in Hank's solution at 37°C for different immersion times. The experimental results revealed that chemical conversion in HF produced MgF 2 coatings which corrosion resistance was enhanced by increasing the HF concentration. Further, the microstructure and composition of the base alloy played a key role on the growth and degradation mechanisms of the MgF 2 coatings

  19. Effect of alumina sol addition to micro-arc oxidation electrolyte on the properties of MAO coatings formed on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Laleh, M.; Rouhaghdam, A. Sabour; Shahrabi, T.; Shanghi, A.

    2010-01-01

    Oxide coatings were formed on AZ91D magnesium alloy using micro-arc oxidation process in alkaline electrolyte without and with addition of alumina sol. The microstructures and compositions of the MAO coatings were analyzed by scanning electron microscope (SEM) and X-ray diffraction (XRD). Corrosion behaviors of the coatings were evaluated with electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests in 3.5%NaCl solution. Porosities of the coatings were measured by potentiodynamic polarization tests. It was found that the coating produced in the electrolyte with alumina sol has more compact and uniform morphology than that produced in the electrolyte without alumina sol. The results of corrosion tests showed that the coating formed in electrolyte with alumina sol enhances the corrosion resistance of the substrate significantly. XRD patterns showed that the coating produced in the electrolyte with alumina sol has more MgAl 2 O 4 phase than MgO.

  20. Apatite: A New Tool For Understanding The Temporal Variability Of Magmatic Volatile Contents

    Science.gov (United States)

    Stock, M. J.; Humphreys, M.; Smith, V.; Pyle, D. M.; Isaia, R.

    2015-12-01

    The apatite crystal structure is capable of incorporating H2O, F and Cl, as well as trace CO2 and sulphur. These can be related to parental magma compositions through application of a series of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994), permitting apatite crystals to preserve a record of all major volatile species in the melt. Furthermore, due to the general incompatibility of P in other rock-forming minerals, apatite is ubiquitous in igneous systems and often begins crystallising early, such that apatite inclusions within phenocrysts record melt volatile contents throughout magmatic differentiation. In this work, we compare the compositions of apatite inclusions and microphenocrysts with pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy. These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to determine a time-series of magmatic volatile evolution in the build-up to eruption. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset during ascent, due to rapid H diffusion through the phenocryst hosts (Woods et al., 2000). Given the rapid diffusivity of volatiles in apatite (Brenan, 1993), preservation of undersaturated compositions in microphenocrysts suggests that saturation was only achieved a few days to months before eruption and that it may have been the transition into a volatile-saturated state that ultimately triggered eruption. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Gualda et al., 2012

  1. TiO2 on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    International Nuclear Information System (INIS)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-01-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO 2 ) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO 2 powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO 2 aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO 2 powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO 2 sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC 3 H 7 ) 4 ) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO 2 powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO 2 active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified

  2. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Science.gov (United States)

    Zou, Y. S.; Wu, Y. F.; Yang, H.; Cang, K.; Song, G. H.; Li, Z. X.; Zhou, K.

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp3 carbon content and mechanical properties of the deposited DLC films. A maximum sp3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  3. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    International Nuclear Information System (INIS)

    Zou, Y.S.; Wu, Y.F.; Yang, H.; Cang, K.; Song, G.H.; Li, Z.X.; Zhou, K.

    2011-01-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp 3 carbon content and mechanical properties of the deposited DLC films. A maximum sp 3 content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  4. The microstructure, mechanical and friction properties of protective diamond like carbon films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Y.S., E-mail: yshzou75@gmail.com [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Wu, Y.F.; Yang, H.; Cang, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China); Song, G.H. [School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, Liaoning, 110178 (China); Li, Z.X.; Zhou, K. [School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094 (China)

    2011-12-01

    Protective hard coatings deposited on magnesium alloys are believed to be effective for overcoming their poor wear properties. In this work, diamond-like carbon (DLC) films as hard protective films were deposited on AZ91 magnesium alloy by arc ion plating under negative pulse bias voltages ranging from 0 to -200 V. The microstructure, composition and mechanical properties of the DLC films were analyzed by scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and nanoindentation. The tribological behavior of uncoated and coated AZ91 magnesium alloy was investigated using a ball-on-disk tribotester. The results show that the negative pulse bias voltage used for film deposition has a significant effect on the sp{sup 3} carbon content and mechanical properties of the deposited DLC films. A maximum sp{sup 3} content of 33.3% was obtained at -100 V, resulting in a high hardness of 28.6 GPa and elastic modulus of 300.0 GPa. The DLC films showed very good adhesion to the AZ91 magnesium alloy with no observable cracks and delamination even during friction testing. Compared with the uncoated AZ91 magnesium alloy, the magnesium alloy coated with DLC films exhibits a low friction coefficient and a narrow, shallow wear track. The wear resistance and surface hardness of AZ91 magnesium alloy can be significantly improved by coating a layer of DLC protective film due to its high hardness and low friction coefficient.

  5. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy

    NARCIS (Netherlands)

    Stigter, M.; Bezemer, J.M.; de Groot, K.; Layrolle, P.

    2004-01-01

    Carbonated hydroxyapatite (CHA) coatings were applied onto titanium implants by using a biomimetic precipitation method. Different antibiotics were incorporated into the CHA coatings and their release and efficacy against bacteria growth were studied in vitro. The following antibiotics were used

  6. Synthesis and characterization of in situ TiC–TiB2 composite coatings by reactive plasma spraying on a magnesium alloy

    International Nuclear Information System (INIS)

    Zou Binglin; Tao Shunyan; Huang Wenzhi; Khan, Zuhair S.; Fan Xizhi; Gu Lijian; Wang Ying; Xu Jiaying; Cai Xiaolong; Ma Hongmei; Cao Xueqiang

    2013-01-01

    Highlights: ► TiC–TiB 2 composites coatings were produced on Mg alloy by reactive plasma spraying. ► Phase composition, microstructure and wear resistance of the coatings were studied. ► The resultant product in the coatings was composed of TiC and TiB 2 . ► The produced coatings displayed porous and dense microstructures. ► The synthesized coatings exhibited good wear resistance for Mg alloy substrate. - Abstract: TiC–TiB 2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB 2 . Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.

  7. Ceramic wash-coat for catalyst support

    Science.gov (United States)

    Kulkarni, Anand A.; Subramanian, Ramesh; Sabol, Stephen M.

    2012-08-14

    A wash-coat (16) for use as a support for an active catalyst species (18) and a catalytic combustor component (10) incorporating such wash-coat. The wash-coat is a solid solution of alumina or alumina-based material (Al.sub.2O.sub.3-0-3 wt % La.sub.2O.sub.3) and a further oxide exhibiting a coefficient of thermal expansion that is lower than that exhibited by alumina. The further oxide may be silicon dioxide (2-30 wt % SiO.sub.2), zirconia silicate (2-30 wt % ZrSiO.sub.4), neodymium oxide (0-4 wt %), titania (Al.sub.2O.sub.3-3-40% TiO.sub.2) or alumina-based magnesium aluminate spinel (Al.sub.2O.sub.3-25 wt % MgO) in various embodiments. The active catalyst species may be palladium and a second metal in a concentration of 10-50% of the concentration of the palladium.

  8. Corrosion resistance of plasma-anodized AZ91D magnesium alloy by electrochemical methods

    International Nuclear Information System (INIS)

    Barchiche, C.-E.; Rocca, E.; Juers, C.; Hazan, J.; Steinmetz, J.

    2007-01-01

    Anodic coatings formed on magnesium alloys by plasma anodization process are mainly used as protective coatings against corrosion. The effects of KOH concentration, anodization time and current density on properties of anodic layers formed on AZ91D magnesium alloy were investigated to obtain coatings with improved corrosion behaviour. The coatings were characterized by scanning electron microscopy (SEM), electron dispersion X-ray spectroscopy (EDX), X-ray diffraction (XRD) and micro-Raman spectroscopy. The film is porous and cracked, mainly composed of magnesium oxide (MgO), but contains all the elements present in the electrolyte and alloy. The corrosion behaviour of anodized Mg alloy was examined by using stationary and dynamic electrochemical techniques in corrosive water. The best corrosion resistance measured by electrochemical methods is obtained in the more concentrated electrolyte 3 M KOH + 0.5 M KF + 0.25 M Na 3 PO 4 .12 H 2 O, with a long anodization time and a low current density. A double electrochemical effects of the anodized layer on the magnesium corrosion is observed: a large inhibition of the cathodic process and a stabilization of a large passivation plateau

  9. Nanocontainer-Enhanced Self-Healing for Corrosion-Resistant Ni Coating on Mg Alloy.

    Science.gov (United States)

    Xie, Zhi-Hui; Li, Dan; Skeete, Zakiya; Sharma, Anju; Zhong, Chuan-Jian

    2017-10-18

    The ability to manipulate the functionalization of Ni coating is of great importance in improving the corrosion resistance of magnesium (Mg) alloy for many industrial applications. In the present work, MCM-41 type mesoporous silica nanocontainers (MSNs) loaded with corrosion inhibitor (NaF) were synthesized and employed as smart reinforcements to enhance the integrity and corrosion inhibition of the Ni coating. The incorporation of the F-loaded MSNs (F@MSNs) to enhance the corrosion resistant capacity of a metallic coating is reported for the first time. The mesoporous structures of the as-prepared MSNs and F@MSNs were confirmed by transmission electron microscopy (TEM), small angle X-rays scattering (SAXS), and N 2 adsorption-desorption isotherms. The X-ray photoelectron spectroscopy (XPS) data demonstrated the successful immobilization of fluoride ion on the MSNs and formation of a magnesium fluoride (MgF 2 ) protective film at the corrosion sites of the Mg alloy upon soaking in a F@MSNs-containing NaCl solution. The results from potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) for both bare Mg alloy and Ni coatings with and without F@MSNs have revealed a clear decrease in corrosion rate in a corrosive solution for a long-time immersion due to the introduction of F@MSNs. These findings open new opportunities in the exploration of self-healing metallic coatings for highly enhanced anticorrosion protection of Mg alloy.

  10. Beta transmutations in apatites with ferric iron as an electron acceptor - implication for nuclear waste form development.

    Science.gov (United States)

    Yao, Ge; Zhang, Zelong; Wang, Jianwei

    2017-09-27

    Apatite-structured materials have been considered for the immobilization of a number of fission products from reprocessing nuclear fuel because of their chemical durability as well as compositional and structural flexibility. It is hypothesized that the effect of beta decay on the stability can be mitigated by introducing an appropriate electron acceptor at the neighboring sites in the structure. The decay series 137 Cs → 137 Ba and 90 Sr → 90 Y → 90 Zr were investigated using a spin-polarized DFT approach to test the hypothesis. Apatites with compositions of Ca 10 (PO 4 ) 6 F 2 and Ca 4 Y 6 (SiO 4 ) 6 F 2 were selected as model systems for the incorporation of radionuclides Cs and Sr, respectively. Ferric iron was introduced in the structure as an electron acceptor. Electron density of states, crystal and defect structures, and energies before and after beta decay were calculated. The calculated electron density of states suggests that the extra electron is localized at the ferric iron, which changes its oxidation state and becomes ferrous iron. The crystal and defect structures were analyzed based on the volume, lattice parameters, radial distribution functions, metal cation to coordinating oxygen distances, and the metaprism twist angle of the apatite crystal structure. The results show that there are minor changes in the crystal and defect structures of CsFeCa 8 (PO 4 ) 6 F 2 with Cs + and Fe 3+ substitutions undergoing the Cs → Ba transmutation, and of Ca 3 SrY 4 Fe 2 (SiO 4 ) 6 F 2 with Sr 2+ and Fe 3+ substitutions undergoing the Sr → Y → Zr transmutations. The last decay change, from Y 3+ → Zr 4+ , causes relatively larger changes in the local defect structure around Zr involving the coordination environment but the change is not significant to the crystal structure. The results on calculated cohesive energy suggest that the transmutations Cs + → Ba 2+ and Sr 2+ → Y 3+ → Zr 4+ in both apatite compositions are energetically favorable

  11. Calcium-Magnesium-Alumino-Silicates (CMAS) Reaction Mechanisms and Resistance of Advanced Turbine Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Costa, Gustavo; Harder, Bryan J.; Wiesner, Valerie L.; Hurst, Janet B.; Puleo, Bernadette J.

    2017-01-01

    Environmental barrier coatings (EBCs) and SiC/SiC ceramic matrix composites (CMCs) systems will play a crucial role in future turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is an essential requirement to enable the applications of the 2700-3000 F EBC - CMC systems. This presentation primarily focuses on the reaction mechanisms of advanced NASA environmental barrier coating systems, when in contact with Calcium-Magnesium Alumino-Silicates (CMAS) at high temperatures. Advanced oxide-silicate defect cluster environmental barrier coatings are being designed for ultimate balanced controls of the EBC temperature capability and CMAS reactivity, thus improving the CMAS resistance. Further CMAS mitigation strategies are also discussed.

  12. Surface-Modification of Carbonate Apatite Nanoparticles Enhances Delivery and Cytotoxicity of Gemcitabine and Anastrozole in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Fitya Syarifa Mozar

    2017-06-01

    Full Text Available pH sensitive nanoparticles of carbonate apatite (CA have been proven to be effective delivery vehicles for DNA, siRNAs and proteins. More recently, conventional anti-cancer drugs, such as doxorubicin, methotrexate and cyclophosphamide have been successfully incorporated into CA for intracellular delivery to breast cancer cells. However, physical and chemical properties of drug molecules appeared to affect their interactions with CA, with hydrophillic drug so far exhibiting better binding affinity and cellular uptakes compared to hydrophobic drugs. In this study, anastrozole, a non-steroidal aromatase inhibitor which is largely hydrophobic, and gemcitabine, a hydrophilic nucleoside inhibitor were used as solubility models of chemotherapy drug. Aggregation tendency of poorly soluble drugs resulting in larger particle-drug complex size might be the main factor hindering their delivery effectiveness. For the first time, surface modification of CA with poly(ethylene glycol (PEG has shown promising result to drastically reduce anastrozole- loaded CA particle size, from approximately 1000 to 500 nm based on zeta sizer analysis. Besides PEG, a cell specific ligand, in this case fibronectin, was attached to the particles in order to facilitate receptor mediated endocytosis based on fibronectin–integrin interaction. High-performance liquid chromatography (HPLC was performed to measure uptake of the drugs by breast cancer cells, revealing that surface modification increased the drug uptake, especially for the hydrophobic drug, compared to the uncoated particles and the free drug. In vitro chemosensitivity assay and in vivo tumor regression study also showed that coated apatite/drug nanoparticle complexes presented higher cytotoxicity and tumor regression effects than uncoated apatite/drug nanoparticles and free drugs, indicating that surface modification successfully created optimum particles size with the consequence of more effective uptake along with

  13. In vitro performance of Ag-incorporated hydroxyapatite and its adhesive porous coatings deposited by electrostatic spraying.

    Science.gov (United States)

    Gokcekaya, Ozkan; Webster, Thomas J; Ueda, Kyosuke; Narushima, Takayuki; Ergun, Celaletdin

    2017-08-01

    Bacterial infection of implanted materials is a significant complication that might require additional surgical operations for implant retrieval. As an antibacterial biomaterial, Ag-containing hydroxyapatite (HA) may be a solution to reduce the incidences of implant associated infections. In this study, pure, 0.2mol% and 0.3mol% Ag incorporated HA powders were synthesized via a precipitation method. Colloidal precursor dispersions prepared from these powders were used to deposit porous coatings onto titanium and stainless steel substrates via electrostatic spraying. The porous coating layers obtained with various deposition times and heat treatment conditions were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Scratch tests were conducted to assess the adhesion strength of the coating. Antibacterial activity of Ag-incorporated HA was tested towards Escherichia coli (E. coli) at various incubation times. Osteoblast adhesion on Ag-incorporated HA was evaluated to assess biocompatibility. Improvement in adhesion strength of the coating layer was observed after the heat treatment process due to mutual ionic diffusion at the interface. The Ag-incorporated HA killed all viable E. coli after 24h of incubation, whereas no antibacterial activity was detected with pure HA. In addition, in vitro cell culture tests demonstrated osteoblast adhesion similar to pure HA, which indicated good cytocompatibility. In summary, results of this study provided significant promise for the future study of Ag-incorporated HA for numerous medical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cell Adhesion on Surface-Functionalized Magnesium.

    Science.gov (United States)

    Wagener, Victoria; Schilling, Achim; Mainka, Astrid; Hennig, Diana; Gerum, Richard; Kelch, Marie-Luise; Keim, Simon; Fabry, Ben; Virtanen, Sannakaisa

    2016-05-18

    The biocompatibility of commercially pure magnesium-based (cp Mg) biodegradable implants is compromised of strong hydrogen evolution and surface alkalization due to high initial corrosion rates of cp Mg in the physiological environment. To mitigate this problem, the addition of corrosion-retarding alloying elements or coating of implant surfaces has been suggested. In the following work, we explored the effect of organic coatings on long-term cell growth. cp Mg was coated with aminopropyltriehtoxysilane + vitamin C (AV), carbonyldiimidazole (CDI), or stearic acid (SA). All three coatings have been previously suggested to reduce initial corrosion and to enhance protein adsorption and hence cell adhesion on magnesium surfaces. Endothelial cells (DH1+/+) and osteosarcoma cells (MG63) were cultured on coated samples for up to 20 days. To quantify Mg corrosion, electrochemical impedance spectroscopy (EIS) was measured after 1, 3, and 5 days of cell culture. We also investigated the speed of initial cell spreading after seeding using fluorescently labeled fibroblasts (NIH/3T3). Hydrogen evolution after contact with cell culture medium was markedly decreased on AV- and SA-coated Mg compared to uncoated Mg. These coatings also showed improved cell adhesion and spreading after 24 h of culture comparable to tissue-treated plastic surfaces. On AV-coated cp Mg, a confluent layer of endothelial cells formed after 5 days and remained intact for up to 20 days. Together, these data demonstrate that surface coating with AV is a viable strategy for improving long-term biocompatibility of cp Mg-based implants. EIS measurements confirmed that the presence of a confluent cell layer increased the corrosion resistance.

  15. The Effectiveness of Surface Coatings on Preventing Interfacial Reaction During Ultrasonic Welding of Aluminum to Magnesium

    Science.gov (United States)

    Panteli, Alexandria; Robson, Joseph D.; Chen, Ying-Chun; Prangnell, Philip B.

    2013-12-01

    High power ultrasonic spot welding (USW) is a solid-state joining process that is advantageous for welding difficult dissimilar material couples, like magnesium to aluminum. USW is also a useful technique for testing methods of controlling interfacial reaction in welding as the interface is not greatly displaced by the process. However, the high strain rate deformation in USW has been found to accelerate intermetallic compound (IMC) formation and a thick Al12Mg17 and Al3Mg2 reaction layer forms after relatively short welding times. In this work, we have investigated the potential of two approaches for reducing the IMC reaction rate in dissimilar Al-Mg ultrasonic welds, both involving coatings on the Mg sheet surface to (i) separate the join line from the weld interface, using a 100- μm-thick Al cold spray coating, and (ii) provide a diffusion barrier layer, using a thin manganese physical vapor deposition (PVD) coating. Both methods were found to reduce the level of reaction and increase the failure energy of the welds, but their effectiveness was limited due to issues with coating attachment and survivability during the welding cycle. The effect of the coatings on the joint's interface microstructure, and the fracture behavior have been investigated in detail. Kinetic modeling has been used to show that the benefit of the cold spray coating can be attributed to the reaction rate reverting to that expected under static conditions. This reduces the IMC growth rate by over 50 pct because at the weld line, the high strain rate dynamic deformation in USW normally enhances diffusion through the IMC layer. In comparison, the thin PVD barrier coating was found to rapidly break up early in USW and become dispersed throughout the deformation layer reducing its effectiveness.

  16. Development of nano SiO2 incorporated nano zinc phosphate coatings on mild steel

    International Nuclear Information System (INIS)

    Tamilselvi, M.; Kamaraj, P.; Arthanareeswari, M.; Devikala, S.; Selvi, J. Arockia

    2015-01-01

    Highlights: • Nano SiO 2 incorporated nano zinc phosphate coating on mild steel was developed. • Coatings showed enhanced corrosion resistance. • The nano SiO 2 is adsorbed on mild steel surface and become nucleation sites. • The nano SiO 2 accelerates the phosphating process. - Abstract: This paper reports the development of nano SiO 2 incorporated nano zinc phosphate coatings on mild steel at low temperature for achieving better corrosion protection. A new formulation of phosphating bath at low temperature with nano SiO 2 was attempted to explore the possibilities of development of nano zinc phosphate coatings on mild steel with improved corrosion resistance. The coatings developed were studied by Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDX), X-ray Diffraction (XRD), Transmission Electron Microscopy (TEM) and Electrochemical measurements. Significant variation in the coating weight, morphology and corrosion resistance was observed as nano SiO 2 concentrations varied from 0.5–4 g/L. The results showed that, the nano SiO 2 in the phosphating solution changed the initial potential of the interface between mild steel substrate and phosphating solution and reduce the activation energy of the phosphating process, increase the nucleation sites and yielded zinc phosphate coatings of higher coating weight, greater surface coverage and enhanced corrosion resistance. Better corrosion resistance was observed for coatings derived from phosphating bath containing 1.5 g/L nano SiO 2 . The new formulation reported in the present study was free from Ni or Mn salts and had very low concentration of sodium nitrite (0.4 g/L) as accelerator

  17. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    International Nuclear Information System (INIS)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi; Guo, Changhong; Jiang, Guirong; Shen, Dejiu

    2016-01-01

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  18. Corrosion behaviors and effects of corrosion products of plasma electrolytic oxidation coated AZ31 magnesium alloy under the salt spray corrosion test

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yan; Huang, Zhiquan; Yan, Qin; Liu, Chen; Liu, Peng; Zhang, Yi [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China); Guo, Changhong; Jiang, Guirong [College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004 (China); Shen, Dejiu, E-mail: DejiuShen@163.com [State Key Laboratory of Metastable Materials Science and Technology, College of Materials Science and Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-08-15

    Highlights: • Corrosion behaviors of a PEO coating was investigated after the salt spray test. • Corrosion products have significant effects on corrosion behaviors of the coating. • An electrochemical corrosion model is proposed. - Abstract: The effects of corrosion products on corrosion behaviors of AZ31 magnesium alloy with a plasma electrolytic oxidation (PEO) coating were investigated under the salt spray corrosion test (SSCT). The surface morphology, cross-sectional microstructure, chemical and phase compositions of the PEO coating were determined using scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction analysis (XRD), respectively. Further, the corrosion process of the samples under the SSCT was examined in a non-aqueous electrolyte (methanol) using electrochemical impedance spectroscopy (EIS) coupled with equivalent circuit. The results show that the inner layer of the coating was destroyed firstly and the corrosion products have significant effects on the corrosion behaviors of the coating. The results above are discussed and an electrochemical corrosion model is proposed in the paper.

  19. Biocompatibility assessment of graphene oxide-hydroxyapatite coating applied on TiO2 nanotubes by ultrasound-assisted pulse electrodeposition.

    Science.gov (United States)

    Fathyunes, Leila; Khalil-Allafi, Jafar; Sheykholeslami, Seyed Omid Reza; Moosavifar, Maryam

    2018-06-01

    In this study, the ultrasound-assisted pulse electrodeposition was introduced to fabricate the graphene oxide (GO)-hydroxyapatite (HA) coating on TiO 2 nanotubes. The results of the X-ray diffraction (XRD), Fourier Transform Infrared spectroscope (FTIR), Transmission Electron Microscope (TEM) and micro-Raman spectroscopy showed the successful synthesis of GO. The Scanning Electron Microscope (SEM) images revealed that in the presence of ultrasonic waves and GO sheets a more compact HA-based coating with refined microstructure could be formed on the pretreated titanium. The results of micro-Raman analysis confirmed the successful incorporation of the reinforcement filler of GO into the coating electrodeposited by the ultrasound-assisted method. The FTIR analysis showed that the GO-HA coating was consisted predominantly of the B-type carbonated HA (CHA) phase. The pretreatment of the substrate and incorporation of the GO sheets into the HA coating had a significant effect on improving the bonding strength at the coating-substrate interface. Moreover, the results of the fibroblast cell culture and 3‑(4,5‑dimethylthiazolyl‑2)‑2, 5‑diphenyltetrazolium bromide (MTT) assay after 2 days demonstrated a higher percentage of cell activity for the GO-HA coated sample. Finally, the 7-day exposure to simulated body fluid (SBF) showed a faster rate of apatite precipitation on the GO-HA coating, as compared to the HA coating and pretreated titanium. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Kinetics of apatite formation on a calcium-silicate cement for root-end filling during ageing in physiological-like phosphate solutions.

    Science.gov (United States)

    Gandolfi, Maria Giovanna; Taddei, Paola; Tinti, Anna; De Stefano Dorigo, Elettra; Rossi, Piermaria Luigi; Prati, Carlo

    2010-12-01

    The bioactivity of calcium silicate mineral trioxide aggregate (MTA) cements has been attributed to their ability to produce apatite in presence of phosphate-containing fluids. This study evaluated surface morphology and chemical transformations of an experimental accelerated calcium-silicate cement as a function of soaking time in different phosphate-containing solutions. Cement discs were immersed in Dulbecco's phosphate-buffered saline (DPBS) or Hank's balanced salt solution (HBSS) for different times (1-180 days) and analysed by scanning electron microscopy connected with an energy dispersive X-ray analysis (SEM-EDX) and micro-Raman spectroscopy. SEM-EDX revealed Ca and P peaks after 14 days in DPBS. A thin Ca- and P-rich crystalline coating layer was detected after 60 days. A thicker multilayered coating was observed after 180 days. Micro-Raman disclosed the 965-cm(-1) phosphate band at 7 days only on samples stored in DPBS and later the 590- and 435-cm(-1) phosphate bands. After 60-180 days, a layer approximately 200-900 μm thick formed displaying the bands of carbonated apatite (at 1,077, 965, 590, 435 cm(-1)) and calcite (at 1,088, 713, 280 cm(-1)). On HBSS-soaked, only calcite bands were observed until 90 days, and just after 180 days, a thin apatite-calcite layer appeared. Micro-Raman and SEM-EDX demonstrated the mineralization induction capacity of calcium-silicate cements (MTAs and Portland cements) with the formation of apatite after 7 days in DPBS. Longer time is necessary to observe bioactivity when cements are immersed in HBSS.

  1. Study on the deterioration process of a chromium-free conversion coating on AZ91D magnesium alloy in NaCl solution

    International Nuclear Information System (INIS)

    Zhao Ming; Wu Shusen; An Ping; Luo Jirong

    2006-01-01

    The morphology of a chromium-free conversion coating for AZ91D magnesium alloy was observed with an Atomic Force Microscopy. The results showed the uniform conversion coating has a relatively smooth appearance with shallow valleys. The EDX results indicated that the compositions of the coating were mainly compounds of Mg, Al, Mn, P, Ca and O. The XRD result showed that the coating contained amorphous materials and a small quantity of crystalline compound. The pitting product of the coating in NaCl water solution mainly composed of Mg, Cl, Mn, P, Ca and O. The corrosion behavior of the samples in NaCl solution was also studied by electrochemical impedance spectroscopy (EIS), which was characterized by one capacitive loop and one inductive loop. Based upon study on both a mathematical model for Faradic admittance of coating in NaCl solution and EIS, it could be considered that the inductive loop was caused by the adsorption of Cl anion and the appearance of pitting corrosion. A degradation mechanism of the coating in NaCl solution is set forth: dissolution velocity of the Cl - adsorption regions of the coating is higher than those non-adsorption regions, for Cl - anions are selective adsorption at some regions of coating surface. When the adsorption regions of coating layer are penetrated by dissolution, the pitting comes into being. The degradation mechanism of conversion coating and the mathematical model are consistent with the EIS results, polarization measurement results and coating's corrosion test results

  2. Biomedical coatings on magnesium alloys - a review.

    Science.gov (United States)

    Hornberger, H; Virtanen, S; Boccaccini, A R

    2012-07-01

    This review comprehensively covers research carried out in the field of degradable coatings on Mg and Mg alloys for biomedical applications. Several coating methods are discussed, which can be divided, based on the specific processing techniques used, into conversion and deposition coatings. The literature review revealed that in most cases coatings increase the corrosion resistance of Mg and Mg alloys. The critical factors determining coating performance, such as corrosion rate, surface chemistry, adhesion and coating morphology, are identified and discussed. The analysis of the literature showed that many studies have focused on calcium phosphate coatings produced either using conversion or deposition methods which were developed for orthopaedic applications. However, the control of phases and the formation of cracks still appear unsatisfactory. More research and development is needed in the case of biodegradable organic based coatings to generate reproducible and relevant data. In addition to biocompatibility, the mechanical properties of the coatings are also relevant, and the development of appropriate methods to study the corrosion process in detail and in the long term remains an important area of research. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  3. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Zhang Ziping; Yu Gang; Ouyang Yuejun; He Xiaomei; Hu Bonian; Zhang Jun; Wu Zhenjun

    2009-01-01

    The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH) 2 and MgF 2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF 2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm -3 of F - is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.

  4. Nano-Structured Magnesium Oxide Coated Iron Ore: Its Application to the Remediation of Wastewater Containing Lead.

    Science.gov (United States)

    Nagarajah, Ranjini; Jang, Min; Pichiah, Saravanan; Cho, Jongman; Snyder, Shane A

    2015-12-01

    Magnetically separable nano-structured magnesium oxide coated iron ore (IO(MgO)) was prepared using environmentally benign chemicals, such as iron ore (IO), magnesium(II) nitrate hexahydrate [Mg(NO3)2 x 6H2O] and urea; via an easy and fast preparation method. The lO(MgO) was characterized using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDS) and alternating gradient magnetometer (AGM) analyses. The isotherm and kinetic studies indicated that lO(MgO) has a comparably higher Langmuir constant (K(L), 1.69 L mg(-1)) and maximum sorption capacity (33.9 mg g(-1)) for lead (Pb) than other inorganic media. Based on MgO amount, the removal capacity of Pb by IO(MgO) was 2,724 mg Pb (g MgO)(-1), which was higher than that (1,980 mg g(-1)) for flowerlike magnesium oxide nanostructures reported by Cao et al. The kinetics, FE-SEM, elemental mapping and XRD results revealed that the substitution followed by precipitation was identified as the mechanism of Pb removal and plumbophyllite (Pb2Si4O10 x H2O) was the precipitated phase of Pb. A leaching test revealed that IOMgO) had negligible concentrations of leached Fe at pH 4-9. Since the base material, IO, is cheap and easily available, lO(MgO) could be produced in massive amounts and used for remediation of wastewater containing heavy metals, applying simple and fast magnetic separation.

  5. Comparing nanostructured hydroxyapatite coating on AZ91 alloy samples via sol-gel and electrophoretic deposition for biomedical applications.

    Science.gov (United States)

    Rojaee, Ramin; Fathi, Mohammadhossein; Raeissi, Keyvan

    2014-12-01

    Magnesium is one of the most critical elements in hard tissues regeneration and therefore causes speeding up the restoration of harmed bones, while high deterioration rate of magnesium in body fluid restricts it to be used as biodegradable implants. Alloying magnesium with some relatively nobler metals such as aluminium, zinc, rare earth elements, magnesium-bioceramics composites, and surface modification techniques are some of the routes to control magnesium corrosion rate. In this study AZ91 magnesium alloy had been coated by nanostructured hydroxyapatite via sol-gel dip coating and electrophoretical methods to survey the final barricade properties of the obtained coatings. In order to perform electrophoretic coating, powders were prepared by sol-gel method, and then the powders deposited on substrates utilizing direct current electricity. Zeta potentials of the electrophoresis suspensions were measured to determine a best mode for good quality coatings. Transmission Electron Microscopy (TEM), and Scanning Electron Microscopy (SEM) were used to confirm nanoscale dimension, and the uniformity of the nanostructured hydroxyapatite coating, respectively. Fourier Transform-Infrared and X-ray diffraction analysis were utilized for functional group and phase structure evaluation of the prepared coatings, correspondingly. Electrochemical corrosion tests were performed in SBF at 37±1 (°)C which revealed considerable increase in corrosion protection resistivity and corrosion current density for electrophoretic coated specimens versus sol-gel coated specimens. Results showed that both sol-gel and electrophoretical techniques seem to be suitable to coat magnesium alloys for biomedical applications but electrophoretic coating technique is a better choice due to the more homogeneity and more crystalline structure of the coating.

  6. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Janković, Ana; Eraković, Sanja [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Mitrić, Miodrag [Vinča Institute of Nuclear Sciences, University of Belgrade, Mike Petrovića Alasa 12-14, 11 000 Belgrade (Serbia); Matić, Ivana Z.; Juranić, Zorica D. [Institute of Oncology and Radiology of Serbia, Pasterova 14, 11 000 Belgrade (Serbia); Tsui, Gary C.P.; Tang, Chak-yin [Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China); Mišković-Stanković, Vesna [Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11 000 Belgrade (Serbia); Rhee, Kyong Yop, E-mail: rheeky@khu.ac.kr [Department of Mechanical Engineering, Kyung Hee University, Yongin 449-701 (Korea, Republic of); Park, Soo Jin [Chemistry, College of Natural Sciences, Inha University, Incheon 402-751 (Korea, Republic of)

    2015-03-05

    Highlights: • Bioactive HAP/Gr coating on Ti was successfully obtained by EPD. • Increased fracture toughness of the HAP/Gr coating compared to pure HAP coating. • HAP/Gr coating exhibited superior biomimetic mineralization vs. pure HAP coating. • Gr improved the mechanical properties and thermal stability of HAP/Gr coating. • HAP/Gr coating was classified as non-cytotoxic against the targeted PBMC. - Abstract: The hydroxyapatite/graphene (HAP/Gr) composite was electrodeposited on Ti using the electrophoretic deposition process to obtain uniform bioactive coating with improved mechanical strength and favorable corrosion stability in simulated body fluid (SBF). Incorporation of Gr was verified by Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis. The HAP/Gr composite coating exhibited reduced surface cracks, nearly double the hardness, and elastic modulus increased by almost 50% compared to pure HAP coating, as estimated by a nanoindentation test. The bioactive HAP/Gr composite coating provided a newly formed apatite layer in SBF with enhanced corrosion stability, as evidenced by electrochemical impedance spectroscopy. The thermal stability of the HAP/Gr coating was improved in comparison to the pure HAP coating, and the Ca/P ratio was closer to the stoichiometric value. No antibacterial activity against Staphylococcus aureus or Escherichia coli could be verified. The HAP/Gr composite coating was classified as non-cytotoxic when tested against healthy peripheral blood mononuclear cells (PBMC)

  7. Bioactive hydroxyapatite/graphene composite coating and its corrosion stability in simulated body fluid

    International Nuclear Information System (INIS)

    Janković, Ana; Eraković, Sanja; Mitrić, Miodrag; Matić, Ivana Z.; Juranić, Zorica D.; Tsui, Gary C.P.; Tang, Chak-yin; Mišković-Stanković, Vesna; Rhee, Kyong Yop; Park, Soo Jin

    2015-01-01

    Highlights: • Bioactive HAP/Gr coating on Ti was successfully obtained by EPD. • Increased fracture toughness of the HAP/Gr coating compared to pure HAP coating. • HAP/Gr coating exhibited superior biomimetic mineralization vs. pure HAP coating. • Gr improved the mechanical properties and thermal stability of HAP/Gr coating. • HAP/Gr coating was classified as non-cytotoxic against the targeted PBMC. - Abstract: The hydroxyapatite/graphene (HAP/Gr) composite was electrodeposited on Ti using the electrophoretic deposition process to obtain uniform bioactive coating with improved mechanical strength and favorable corrosion stability in simulated body fluid (SBF). Incorporation of Gr was verified by Raman spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, and X-ray photoelectron analysis. The HAP/Gr composite coating exhibited reduced surface cracks, nearly double the hardness, and elastic modulus increased by almost 50% compared to pure HAP coating, as estimated by a nanoindentation test. The bioactive HAP/Gr composite coating provided a newly formed apatite layer in SBF with enhanced corrosion stability, as evidenced by electrochemical impedance spectroscopy. The thermal stability of the HAP/Gr coating was improved in comparison to the pure HAP coating, and the Ca/P ratio was closer to the stoichiometric value. No antibacterial activity against Staphylococcus aureus or Escherichia coli could be verified. The HAP/Gr composite coating was classified as non-cytotoxic when tested against healthy peripheral blood mononuclear cells (PBMC)

  8. Development of layered anode structures supported over Apatite-type Solid Electrolytes

    Directory of Open Access Journals (Sweden)

    Pandis P.

    2016-01-01

    Full Text Available Apatite-type lanthanum silicates (ATLS materials have attracted interest in recent literature as solid electrolytes for SOFCs. The fabrication of an ATLS based fuel cell with the state-of-art electrodes (NiO/YSZ as anode and LSCF or LSM as cathode can show degradation after long operation hours due to Si diffusion mainly towards the anode. In this work, we report a “layer-by-layer anodic electrodes” fabrication by means of spin coating and physical spraying. The overall aim of this work is the successful fabrication of such a layered structure including suitable blocking layers towards the inhibition of Si interdiffusion from the apatite electrolyte to the anode. The results showed that the deposition of 3 layers of LFSO/GDC (3μm, NiO/GDC (4μm and the final NiO/YSZ anode layer provided a stable half-cell, with no solid state reaction occurring among the electrodes and no Si diffusion observed towards the anode after thermal treatment at 800°C for 120h.

  9. Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Mirna Pereira [Laboratório de Biomateriais, P" 2CEM/UFS, Av. Marechal Rondon, s/n, São Cristóvão 49100-000, Sergipe (Brazil); Dulce de Almeida Soares, Gloria [Dep. de Eng. Metal. e de Materiais, COPPE/UFRJ, CP 68505, Rio de Janeiro 21941-972 (Brazil); Dentzer, Joseph; Anselme, Karine [Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR7361, Université de Haute-Alsace, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Sena, Lídia Ágata de; Kuznetsov, Alexei [Divisão de Metrologia de Materiais, Inmetro, Av. N. Sra. das Graças, 50, Duque de Caxias 25250-020, Rio de Janeiro (Brazil); Santos, Euler Araujo dos, E-mail: euler@ufs.br [Laboratório de Biomateriais, P" 2CEM/UFS, Av. Marechal Rondon, s/n, São Cristóvão 49100-000, Sergipe (Brazil)

    2016-04-01

    Samples of crystalline hydroxyapatite (HA) with and without the addition of individual Mg{sup 2+}, Mn{sup 2+} and Sr{sup 2+} ions and samples with the addition of all three ions simultaneously were prepared using the precipitation method in an aqueous medium. Chemical, structural, spectroscopic and thermophysical analyses of the synthesized samples were conducted. The obtained results indicate that Sr{sup 2+} ions were easily incorporated into the HA crystal structure, whereas it was difficult to incorporate Mg{sup 2+} and Mn{sup 2+} ions into the HA lattice when these ions were individually introduced into the samples. The synthesis of HA with Mg{sup 2+} or Mn{sup 2+} ions is characterized by the formation of HA with a low concentration of doping elements that is outweighed by the amount of these atoms present in less biocompatible phases that formed simultaneously. However, the incorporation of Sr{sup 2+} along with Mg{sup 2+} and Mn{sup 2+} ions into the samples allowed for the synthesis of HA with considerably higher concentrations of Mg{sup 2+} and Mn{sup 2+} in the crystal lattice. - Graphical abstract: Sr{sup 2+} ions were easily incorporated into the HA lattice, whereas Mg{sup 2+} and Mn{sup 2+} ions were hardly retained in the HA structure after heating to 1000 °C when they were individually incorporated in the samples. Nevertheless, co-substitution with Sr{sup 2+} ions allowed for better fixation of the Mg{sup 2+} and Mn{sup 2+} ions into the HA lattice. - Highlights: • Mg{sup 2+} and Mn{sup 2+} ions have a great difficulty being stabilized in the apatite lattice. • Sr{sup 2+} ions can stabilize Mg{sup 2+} and Mn{sup 2+} in the hydroxyapatite structure. • Except for Mn{sup 2+}, Sr{sup 2+} and Mg{sup 2+} obstruct the release of CO{sub 2}.

  10. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    International Nuclear Information System (INIS)

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I.N.; Petrovic, R.; Janackovic, Dj.

    2007-01-01

    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 , or bioglasses in the system SiO 2 -Na 2 O-K 2 O-CaO-MgO-P 2 O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* (λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2 O vapors, while the bioglass layers were deposited in O 2 . Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications

  11. Properties of gelatin-based films incorporated with chitosan-coated microparticles charged with rutin.

    Science.gov (United States)

    Dammak, Ilyes; Bittante, Ana Mônica Quinta Barbosa; Lourenço, Rodrigo Vinicius; do Amaral Sobral, Paulo José

    2017-08-01

    The aim of this study was development an active film based on gelatin incorporated with antioxidant, rutin carried into microparticles. The complexation between oppositely charged lecithin and chitosan was applied to prepare the chitosan-coated microparticles. The generated microparticles had an average size of 520±4nm and a span of 0.3 were formulated by a rotor-stator homogenize at the homogenization speed 10,000rpm. Composite films were prepared by incorporating chitosan-coated microparticles, at various concentrations (0.05, 0.1, 0.5, or 1% (based on the weight of the gelatin powder)) in the gelatin-based films. For the prepared films, the results showed that obtained physicochemical, water vapor barrier, and mechanical were compared with native gelatin film with a slight decrease for chitosan concentration higher than 0.5%. The microstructure studies done by scanning electron microscopes, revealed different micropores embedded with oil resulting from the incorporation of the microparticles into the gelatin matrix. Moreover, the calorimetric results were comparable to those of gelatin control film with T g value 45°C and increased crystallinity percentage with increasing incorporation of microparticles. This original concept of composite biodegradable films may thus be a good alternative to incorporate liposoluble active compounds to design an active packaging with good properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Science.gov (United States)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-05-01

    Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  13. Corrosion resistance of multilayered magnesium phosphate/magnesium hydroxide film formed on magnesium alloy using steam-curing assisted chemical conversion method

    International Nuclear Information System (INIS)

    Ishizaki, Takahiro; Kudo, Ruriko; Omi, Takeshi; Teshima, Katsuya; Sonoda, Tsutomu; Shigematsu, Ichinori; Sakamoto, Michiru

    2012-01-01

    Anticorrosive multilayered films were successfully prepared on magnesium alloy AZ31 by chemical conversion treatment, followed by steam curing treatment. The crystal structures, chemical composition, surface morphologies, chemical bonding states of the film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscope (FE-SEM) measurements. All the films had thicknesses of ranging from 24 to 32 μm. The film had two layers that were composed of crystalline NH 4 MgPO 4 ·H 2 O, Mg 2 PO 4 OH·3H 2 O, Mg(OH) 2 and amorphous MgO. The outer layers include magnesium, oxygen, and phosphorous, and the inner layers include magnesium and oxygen. The corrosion resistant performances of the multilayered films in 5 wt% NaCl aqueous solution were investigated by electrochemical and gravimetric measurements. The potentiodynamic polarization curves revealed that the corrosion current density (j corr ) of all the film coated magnesium alloys decreased by more than four orders of magnitude as compared to that of the bare magnesium alloy, indicating that all the films had an inhibiting effect of corrosion reaction. Gravimetric measurements showed that the average corrosion rates obtained from the weight loss rates were estimated to be in the ranges of ca. 0.085–0.129 mm/y. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test revealed that the adhesion of our anticorrosive multilayered film to the magnesium alloy surface was very good.

  14. The effects of atmospheric [CO2] on carbon isotope fractionation and magnesium incorporation into biogenic marine calcite

    Science.gov (United States)

    Vieira, Veronica

    1997-01-01

    The influences of atmospheric carbon dioxide on the fractionation of carbon isotopes and the magnesium incorporation into biogenic marine calcite were investigated using samples of the calcareous alga Amphiroa and benthic foraminifer Sorites grown in the Biosphere 2 Ocean system under variable atmospheric CO2 concentrations (approximately 500 to 1200 ppm). Carbon isotope fractionation was studied in both the organic matter and the skeletal carbonate. Magnesium analysis was to be performed on the carbonate removed during decalcification. These data have not been collected due to technical problems. Carbon isotope data from Amphiroa yields a linear relation between [CO2] and Delta(sup 13)C(sub Corg)values suggesting that the fractionation of carbon isotopes during photosynthesis is positively correlated with atmospheric [CO2]. [CO2] and Delta(sup 13)C(sub Corg) values for Sorites produce a relation that is best described by a hyperbolic function where Delta(sup 13)C(sub Corg) values increase between 300 and 700 ppm and decrease from 700 to 1200 ppm. Further investigation of this relation and Sorites physiology is needed.

  15. The n-MAO/EPD bio-ceramic composite coating fabricated on ZK60 magnesium alloy using combined micro-arc oxidation with electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Ying, E-mail: yxiong@zjut.edu.cn [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Lu, Chao [College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310032 (China); Wang, Chao; Song, Renguo [School of Materials Science and Engineering, Changzhou University, Changzhou 213164 (China); Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164 (China)

    2014-12-15

    Highlights: • Adding CeO{sub 2}/ZrO{sub 2} nano-particles to modify the properties of n-MAO coating. • A bio-ceramic n-MAO/EPD composite coating was prepared by two-step methods. • The n-MAO/EPD composite coating with HA has a favorable anti-corrosion effect. - Abstract: A bio-ceramic composite coating was fabricated on ZK60 magnesium (Mg) alloy using combined micro-arc oxidation (MAO) with electrophoretic deposition (EPD) technique. The MAO coating as the basal layer was produced in alkaline electrolyte with (n-MAO coating) and without (MAO coating) the addition of CeO{sub 2} and ZrO{sub 2} nano-particles, respectively. A hydroxyapatite (HA) coating as the covering layer was deposited on the n-MAO coating to improve the biological properties of the coating (n-MAO/EPD composite coating). The morphology and phase composition of three treated coatings were investigated by scanning electron microscope (SEM) and X-ray diffraction (XRD). The corrosion resistance of these coatings was evaluated with potentiodynamic polarization tests and immersion tests in simulated body fluid (SBF) at 36.5 ± 0.5 °C. The XRD spectra showed that the CeO{sub 2} and ZrO{sub 2} peaks can be collected in the n-MAO coating, and HA particles exists in the n-MAO/EPD composite coating. The results of corrosion tests indicated that the n-MAO/EPD composite coating owned increased bioactivity and long-term protective ability compared with the MAO coating and the n-MAO coating. Thus Mg alloy coated with the n-MAO/EPD composite coating should be more suited as biodegradable bone implants.

  16. TiO{sub 2} on magnesium silicate monolith: effects of different preparation techniques on the photocatalytic oxidation of chlorinated hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Ana I.; Candal, Roberto; Sanchez, Benigno; Avila, Pedro; Rebollar, Moises

    2004-05-01

    In this article, the comparative results of the photocatalytic oxidation of trichloroethylene (TCE) alone and a mixture of chlorinated hydrocarbons (trichloroethylene, perchloroethylene and chloroform) in gas phase, obtained with three different monolithic catalysts in a flat reactor frontally illuminated with a Xenon lamp are presented. The three catalysts incorporate titanium dioxide (TiO{sub 2}) as active phase on a magnesium silicate support, by means of different procedures: (i) incorporation of commercial TiO{sub 2} powder into the silicate matrix ('massic monolith'); (ii) sol-gel coating of the silicate support; (iii) impregnation with a commercial TiO{sub 2} aqueous suspension of the same silicate support. In the first case, the massic monolith was made from a 50:50 w/w mixture of magnesium silicate and 'Titafrance G5' TiO{sub 2} powder. In the second case, a magnesium silicate monolith was coated with several layers of an aqueous TiO{sub 2} sol prepared from hydrolysis and condensation of titanium tetra-isopropoxide (Ti(OC{sub 3}H{sub 7}){sub 4}) in excess of acidified water (acid catalysis). The third catalyst was prepared by impregnating the same silicate support with several layers of 'Titafrance G5' TiO{sub 2} powder water suspension. All the catalysts were thermal treated under comparable conditions in order to fix the TiO{sub 2} active phase to the silicate support. Although the performance of the massic monolith was better than the sol-gel monolith, the latter is of great interest because this technique allows the chemical composition of the active films to be easily modified.

  17. BIOMINERALOGICAL INVESTIGATION OF APATITE PIEZOELECTRICITY

    Directory of Open Access Journals (Sweden)

    M. Pawlikowski

    2016-01-01

    Full Text Available Investigation of apatite piezoelectricity was conducted in order to assess piezoelectric properties of bone. In the first stage, mineralogical analysis of different apatite crystals, regarding their purity and fitness for the experiments was performed. After the crystals had been chosen, 0.8 mm-thick plates were cut, perpendicular and parallel to the crystallographic Z axis. The plates were then polished and dusted with gold. Electrodes were attached to the opposite surfaces of the plates with conductive glue. So prepared plates were hooked up to the EEG machine used for measuring electrical activity in the brain. The plates were then gently tapped to observe and register currents generated in them. Acquired data was processed by subtracting from the resulting graphs those generated by a hand movement, without tapping the plate. Results indicate that apatite plates have weak piezoelectric properties. Observed phenomenon may be translated to bone apatite, which would explain, at least partially, piezoelectric properties of bone. Acquired results suggest that there is a relation between the mechanical workload of bones (bone apatite and theirelectrical properties. Considering the massive internal surface of bones, they may be treated as a kind of internal “antenna” reacting not only to mechanical stimuli, but to changes in electromagnetic field as well. Observed phenomena no doubt significantly influence the biological processes occurring in bones and the whole human body.

  18. Preliminary characterization of calcium chemical environment in apatitic and non-apatitic calcium phosphates of biological interest by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Eichert, D.; Salome, M.; Banu, M.; Susini, J.; Rey, C.

    2005-01-01

    Several reports have mentioned the existence of non-apatitic environments of phosphate and carbonate ions in synthetic and biological poorly crystalline apatites. However there were no direct spectroscopic evidences for the existence of non-apatitic environment of calcium ions. X-ray Absorption Spectroscopy, at the K-edge of calcium, allows the discrimination between different calcium phosphates of biological interest despite great spectral similarities. A primary analysis of the spectra reveals the existence, in synthetic poorly crystalline apatites, of variable features related to the maturation stage of the sample and corresponding to the existence of non-apatitic environments of calcium ions. Although these features can also be found in several other calcium phosphate salts, and do not allow a clear identification of the ionic environments of calcium ions, they give a possibility to directly determine the maturity of poorly crystalline apatite from calcium X-ray Absorption Near Edge Structure spectra

  19. Electrophoretic deposition of magnesium silicates on titanium implants: Ion migration and silicide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Afshar-Mohajer, M. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yaghoubi, A., E-mail: yaghoubi@siswa.um.edu.my [Center for High Impact Research, University of Malaya, Kuala Lumpur 50603 (Malaysia); Ramesh, S., E-mail: ramesh79@um.edu.my [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Bushroa, A.R.; Chin, K.M.C.; Tin, C.C. [Center for Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Chiu, W.S. [Low Dimensional Materials Research Center, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2014-07-01

    Magnesium silicates (Mg{sub x}SiO{sub y}) and in particular forsterite (Mg{sub 2}SiO{sub 4}) owing to their low thermal expansion mismatch with metals are promising materials for bioactive coating of implants. Here, we report the electrophoretic deposition (EPD) of forsterite onto titanium substrates using different precursors. Unlike bulk samples which achieve full stoichiometry only beyond 1400 °C, non-stoichiometric magnesium silicate rapidly decomposes into magnesium oxide nanowires during sintering. Elemental mapping and X-ray diffraction suggest that oxygen diffusion followed by ion exchange near the substrate leads to formation of an interfacial Ti{sub 5}Si{sub 3} layer. Pre-annealed forsterite powder on the other hand shows a comparatively lower diffusion rate. Overall, magnesium silicate coatings do not exhibit thermally induced microcracks upon sintering as opposed to calcium phosphate bioceramics which are currently in use.

  20. Adhesive strength of hydroxyl apatite(HA coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    Directory of Open Access Journals (Sweden)

    Tian-yang ZHANG

    2011-05-01

    Full Text Available Objective To explore the influence of adhesive strength of hydroxyapatite(HA coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01.Histopathological examination and bone morphometry showed that,at the early stage of prosthesis implantation,the bony growth around HA-coated prosthesis was significantly higher than that around Ti-coated prosthesis(P < 0.01,but the ultimate shear strength of HA-coated prosthesis was much lower than that of Ti-coated prosthesis(P < 0.01.After the push-out test with prosthesis,histopathological observation showed that there were accumulations of clump-and strip-like granular residues on the surface of bones that newly grew around the HA-coated prosthesis,and surface energy-dispersive X-ray spectroscopy(EDX analysis also confirmed that the shear stress induced HA decohesion from the substrate of prosthesis.Conclusions Although HA coating showed a satisfactory effect on early bone formation and prosthetic stability,due to the deficiencies of adhesive strength,the early stability of prosthesis may be gradually destroyed by the shear loads of human body and coating degradation.

  1. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  2. Bioactivity and electrochemical behavior of hydroxyapatite-silicon-multi walled carbon nano-tubes composite coatings synthesized by EPD on NiTi alloys in simulated body fluid

    Energy Technology Data Exchange (ETDEWEB)

    Khalili, V., E-mail: V_khalili@sut.ac.ir [Department of Materials Engineering, Engineering Faculty, University of Bonab, Bonab (Iran, Islamic Republic of); Khalil-Allafi, J. [Research Center for Advanced Materials and Mineral Processing, Faculty of Materials Engineering, Sahand University of Technology, Tabriz (Iran, Islamic Republic of); Frenzel, J.; Eggeler, G. [Institute for Materials, Faculty of Mechanical Engineering, Ruhr-University Bochum, 44801 Bochum (Germany)

    2017-02-01

    In order to improve the surface bioactivity of NiTi bone implant and corrosion resistance, hydroxyapatite coating with addition of 20 wt% silicon, 1 wt% multi walled carbon nano-tubes and both of them were deposited on a NiTi substrate using a cathodic electrophoretic method. The apatite formation ability was estimated using immersion test in the simulated body fluid for 10 days. The SEM images of the surface of coatings after immersion in simulated body fluid show that the presence of silicon in the hydroxyapatite coatings accelerates in vitro growth of apatite layer on the coatings. The Open-circuit potential and electrochemical impedance spectroscopy were measured to evaluate the electrochemical behavior of the coatings in the simulated body fluid at 37 °C. The results indicate that the compact structure of hydroxyapatite-20 wt% silicon and hydroxyapatite-20 wt% silicon-1 wt% multi walled carbon nano-tubes coatings could efficiently increase the corrosion resistance of NiTi substrate. - Highlights: • The composite coatings of HA, Si and MWCNTs was prepared using electrophoretic deposition. • The presence of 1 wt.% MWCNTs in the HA coating provides more nucleation cites of apatite crystallites in SBF. • The presence of Si in HA coating increases the growth rate of apatite crystallites with the Ca/P atomic ratio of 1.67. • The EIS indicate the compact HA-20%Si and HA-20%Si-1%MWCNTs coatings efficiently increase corrosion resistance of NiTi. • The porous HA and HA-1%MWCNTs do not increase significantly corrosion resistance due to the easy diffusion path.

  3. Adhesive strength of hydroxyl apatite(HA) coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    OpenAIRE

    Tian-yang ZHANG; Yong-hong DUAN; Shu ZHU; Jin-yu ZHU; Qing-sheng ZHU

    2011-01-01

    Objective To explore the influence of adhesive strength of hydroxyapatite(HA) coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti)-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01).Hist...

  4. Inhibition of Listeria monocytogenes ATCC 19115 on ham steak by tea bioactive compounds incorporated into chitosan-coated plastic films

    Directory of Open Access Journals (Sweden)

    Vodnar Dan C

    2012-07-01

    Full Text Available Abstract Background The consumer demands for better quality and safety of food products have given rise to the development and implementation of edible films. The use of antimicrobial films can be a promising tool for controlling L. monocytogenes on ready to eat products. The aim of this study was to develop effective antimicrobial films incorporating bioactive compounds from green and black teas into chitosan, for controlling L. monocytogenes ATCC 19115 on vacuum-packaged ham steak. The effectiveness of these antimicrobial films was evaluated at room temperature (20°C for 10 days and at refrigerated temperature (4°C for 8 weeks. Results The HPLC results clearly show that relative concentrations of catechins and caffeine in green tea ranked EGCG>EGC>CAF>ECG>EC>C while in black tea extracts ranked CAF>EGCG>ECG>EGC>EC>C. The chitosan-coated plastic films incorporating green tea and black tea extracts shows specific markers identified by FTIR. Incorporating natural extracts into chitosan showed that the growth of L monocytogenes ATCC 19115 was inhibited. The efficacy of antimicrobial effect of tea extracts incorporated into chitosan-coated plastic film was dose dependent. However, chitosan-coated films without addition of tea extracts did not inhibit the growth of L. monocytogenes ATCC 19115. Chitosan-coated plastic films incorporating 4% Green tea extract was the most effective antimicrobial, reducing the initial counts from 3.2 to 2.65 log CFU/cm2 during room temperature storage and from 3.2 to 1–1.5 log CFU/cm2 during refrigerated storage. Conclusions Incorporation of tea extracts into the chitosan-coated films considerably enhanced their effectiveness against L. monocytogenes ATCC 19115. 4% Green tea incorporated into chitosan-coated plastic film had a better antilisterial effect than 2% green tea or 2% and 4% black tea. Data from this study would provide new formulation options for developing antimicrobial packaging films using tea

  5. Incorporation of cerium oxide into hydroxyapatite coating regulates osteogenic activity of mesenchymal stem cell and macrophage polarization.

    Science.gov (United States)

    Li, Kai; Shen, Qingyi; Xie, Youtao; You, Mingyu; Huang, Liping; Zheng, Xuebin

    2017-02-01

    Biomedical coatings for orthopedic implants should facilitate osseointegration and mitigate implant-induced inflammatory reactions. Cerium oxide (CeO 2 ) ceramics possess anti-oxidative properties and can be used to decrease mediators of inflammation, which makes them attractive for biomedical applications. In our work, two kinds of CeO 2 incorporated hydroxyapatite coatings (HA-10Ce and HA-30Ce) were prepared via plasma spraying technique and the effects of CeO 2 addition on the responses of bone mesenchymal stem cells (BMSCs) and RAW264.7 macrophages were investigated. An increase in CeO 2 content in the HA coatings resulted in better osteogenic behaviors of BMSCs in terms of cell proliferation, alkaline phosphatase (ALP) activity and mineralized nodule formation. RT-PCR and western blot analysis suggested that the incorporation of CeO 2 may promote the osteogenic differentiation of BMSCs through the Smad-dependent BMP signaling pathway, which activated Runx2 expression and subsequently enhanced the expression of ALP and OCN. The expression profiles of macrophages cultured on the CeO 2 modified coating revealed a tendency toward a M2 phenotype, because of an upregulation of M2 surface markers (CD163 and CD206), anti-inflammatory cytokines (TNF-α and IL-6) and osteoblastogenesis-related genes (BMP2 and TGF-β1) as well as a downregulation of M1 surface markers (CCR7 and CD11c), proinflammatory cytokines (IL-10 and IL-1ra) and reactive oxygen species production. The results suggested the regulation of BMSCs behaviors and macrophage-mediated responses at the coating's surface were associated with CeO 2 incorporation. The incorporation of CeO 2 in HA coatings can be a valuable strategy to promote osteogenic responses and reduce inflammatory reactions.

  6. Preparation and in vitro evaluation of nanostructured TiO2/TCP composite coating by plasma electrolytic oxidation

    International Nuclear Information System (INIS)

    Hu, Hongjie; Liu, Xuanyong; Ding, Chuanxian

    2010-01-01

    Porous and nanostructured TiO 2 /tricalcium phosphate (TCP) composite coating on titanium substrate was prepared by plasma electrolytic oxidation (PEO). The microstructure and phase composition of the coating were characterized using scanning electron microscopy and X-ray diffraction. Its bioactivity was evaluated by simulated body fluid (SBF) immersion tests. MG63 cells were cultured on the surface of the coating to investigate its cytocompatibility. Potentiodynamic polarization tests were applied to measure its corrosion resistance. The results revealed that rough and hydrophilic TiO 2 /TCP composite coating with pores of several micrometers and grains of 50-200 nm was prepared by one-step PEO treatment. The TiO 2 /TCP composite coating showed good apatite-forming ability in SBF, and the TCP phase in the coating played an important role in inducing apatite formation. MG63 cells could adhere and proliferate on the surface of the coating, indicating its good cytocompatibility. The composite coating also exhibited good corrosion resistance in 0.9% NaCl solution.

  7. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    Energy Technology Data Exchange (ETDEWEB)

    Yazdimamaghani, Mostafa [School of Chemical Engineering, Oklahoma State University, Stillwater, OK 74078 (United States); School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Razavi, Mehdi [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Vashaee, Daryoosh [Electrical and Computer Engineering Department, North Carolina State University, Raleigh, NC 27606 (United States); Pothineni, Venkata Raveendra [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Rajadas, Jayakumar [Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA 94305 (United States); Tayebi, Lobat, E-mail: lobat.tayebi@marquette.edu [School of Materials Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, OK 74106 (United States); Biomaterials and Advanced Drug Delivery Laboratory, Stanford University, Palo Alto, CA 94305 (United States); Department of Developmental Sciences, Marquette University School of Dentistry, Milwaukee, WI 53233 (United States)

    2015-05-30

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability.

  8. Significant degradability enhancement in multilayer coating of polycaprolactone-bioactive glass/gelatin-bioactive glass on magnesium scaffold for tissue engineering applications

    International Nuclear Information System (INIS)

    Yazdimamaghani, Mostafa; Razavi, Mehdi; Vashaee, Daryoosh; Pothineni, Venkata Raveendra; Rajadas, Jayakumar; Tayebi, Lobat

    2015-01-01

    Highlights: • PCL-BaG/Gel-BaG coating was applied on the surface of Mg scaffolds. • Mg scaffold/PCL-BaG/Gel-BaG presented improved biodegradation resistance. • Mg scaffold coated with the PCL-BaG layer indicated better bioactivity. - Abstract: Magnesium (Mg) is a promising candidate to be used in medical products especially as bone tissue engineering scaffolds. The main challenge for using Mg in biomedical applications is its high degradation rate in the body. For this reason, in this study, a multilayer polymeric layer composed of polycaprolactone (PCL) and gelatin (Gel) reinforced with bioactive glass (BaG) particles has been applied on the surface of Mg scaffolds. The materials characteristics of uncoated Mg scaffold, Mg scaffold coated only with PCL-BaG and Mg scaffold coated with PCL-BaG and Gel-BaG have been analyzed and compared in detail. Scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS), and Fourier transform infrared spectroscopy (FTIR) were utilized for microstructural studies. In vitro bioactivity and biodegradation evaluations were carried out by submerging the scaffolds in simulated body fluid (SBF) at pre-determined time points. The results demonstrated that Mg scaffold coated with PCL-BaG and Gel-BaG exhibited significant improvement in biodegradability

  9. Preparation of an apatite-based matrix for the confinement of iodine 129; Mise au point d`une matrice apatitique pour le confinement de l`iode 129

    Energy Technology Data Exchange (ETDEWEB)

    Audubert, F

    1995-11-08

    The aim of this thesis is the study of the conditioning of iodine 129 from the reprocessing of nuclear wastes. Because of its long half life (1.57 10{sup 7} years), the conditioning of iodine 129 requires a matrix stable during several thousands of years. The study of natural minerals allows the selection of mineral phases having a good long term behaviour. In the first part the policy of nuclear wastes management, and in particular of iodine, is recalled. A naturalistic approach is used to define the best conditioning material and the remarkable properties of apatite in this way are described. In the second part, the preparation and physical-chemical characterization of iodo-apatites are described. A demonstration is made that iodine can penetrate inside vanadate or lead phospho-vanadate apatite-based compounds. The third part deals with the preparation of the conditioning material. The sintering reaction under pressure allows the preparation of composite ceramics including iodo-apatite. A multi-layer coating process is defined: coating of PbI{sub 2} with a Pb{sub 3}(VO{sub 4}){sub 1.6}(PO{sub 4}){sub 0.4} layer and a Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2} layer. Sintering is performed at 700 deg. celsius under a 25 MPa pressure. (J.S.). 131 refs.

  10. Analysis of silver particles incorporated on TiO2 coatings for the photodecomposition of o-cresol

    International Nuclear Information System (INIS)

    Kuo, Y.-L.; Chen, H.-W.; Ku, Y.

    2007-01-01

    Silver-modified TiO 2 (Ag-TiO 2 ) and pure TiO 2 coatings were prepared on sapphire substrates by dip-coating process for the photodecomposition of o-cresol. In order to investigate the behaviors of silver incorporated on TiO 2 surface coatings, Brunauer-Emmett-Teller (BET) surface area measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), diffuse reflectance UV-Vis spectra (DRS), and photoluminescence (PL) emission spectra were performed. Experimental results indicate that the silver on TiO 2 surface coatings were easily oxidized into silver oxide (Ag 2 O), because of the existence of Ag 2 O crystal phase in XRD spectrum and Ag 2+ -O and O 1s -Ag chemical bonding states in Ag 3d and O 1s narrow scans of XPS, respectively. PL spectra showed that as increasing the amount of silver incorporated, the PL intensity of Ag-TiO 2 coatings evidently decrease, which means that the Ag-TiO 2 coatings have higher efficiencies of charge carrier trapping, immigration and transferring, and subsequently promote the photodecomposition rate constants after the UV/TiO 2 process. An optimal composition of 0.50 wt.% Ag-TiO 2 coating for the photodecomposition of o-cresol correspond to a maximum photodecomposition rate constant (k value) of 0.01 min -1 as compared to that of the pure TiO 2 coatings (k = 0.0062 min -1 )

  11. The influence of surface microchemistry in protective film formation on multi-phase magnesium alloys

    International Nuclear Information System (INIS)

    Gray-Munro, J.E.; Luan, B.; Huntington, L.

    2008-01-01

    The high strength:weight ratio of magnesium alloys makes them an ideal metal for automotive and aerospace applications where weight reduction is of significant concern. Unfortunately, magnesium alloys are highly susceptible to corrosion particularly in salt-spray conditions. This has limited their use in the automotive and aerospace industries, where exposure to harsh service conditions is unavoidable. The simplest way to avoid corrosion is to coat the magnesium-based substrate by a process such as electroless plating, which is a low-cost, non line of sight process. Magnesium is classified as a difficult to plate metal due to its high reactivity. This means that in the presence of air magnesium very quickly forms a passive oxide layer that must be removed prior to plating. Furthermore, high aluminium content alloys are especially difficult to plate due to the formation of intermetallic species at the grain boundaries, resulting in a non-uniform surface potential across the substrate and thereby further complicating the plating process. The objective of this study is to understand how the magnesium alloy microstructure influences the surface chemistry of the alloy during both pretreatment and immersion copper coating of the substrate. A combination of scanning electron microscopy, energy dispersive spectroscopy and scanning Auger microscopy has been used to study the surface chemistry at the various stages of the coating process. Our results indicate that the surface chemistry of the alloy is different on the aluminum rich β phase of the material compared to the magnesium matrix which leads to preferential deposition of the metal on the aluminum rich phase of the alloy

  12. RBS and RNRA studies on sorption of europium by apatite

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuki, Toshihiko; Kozai, Naofumi; Isobe, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murakami, Takashi; Yamamoto, Shunya; Aoki, Yasushi; Naramoto, Hiroshi

    1997-03-01

    The sorption mechanism of europium, alternative of trivalent TRU has been studied based on the depth profiles of elements obtained by Rutherford Backscattering Spectroscopy (RBS) and Resonant Nuclear Reaction Analysis (RNRA). The positive peak for Eu and the negative peak for Ca were observed in the subtracted RBS spectra of the apatites on which Eu was sorbed from that of the fresh apatite. This indicates that Eu was sorbed on apatite, while a fraction of Ca was released from apatite. The peak height for Eu in the RBS spectrum of the apatite obtained at 75degC was higher than that of the apatite at 40degC. The depth profile of hydrogen of the apatite on which Eu was sorbed was similar to that of the fresh apatite. The concentration of Eu in the solution decreased with increasing temperature. On the contrary, the concentration of Ca increased with increasing temperature. Thus, it is concluded that a fraction of Eu is exchanged for Ca in the structure of apatite. (author)

  13. Coating electrospun poly(epsilon-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering.

    Science.gov (United States)

    Li, Xiaoran; Xie, Jingwei; Yuan, Xiaoyan; Xia, Younan

    2008-12-16

    Electrospinning was employed to fabricate fibrous scaffolds of poly(epsilon-caprolactone) in the form of nonwoven mats. The surfaces of the fibers were then coated with gelatin through layer-by-layer self-assembly, followed by functionalization with a uniform coating of bonelike calcium phosphate by mineralization in the 10 times concentrated simulated body fluid for 2 h. Transmission electron microscopy, water contact angle, and scanning electron microscopy measurements confirmed the presence of gelatin and calcium phosphate coating layers, and X-ray diffraction results suggested that the deposited mineral phase was a mixture of dicalcium phosphate dehydrate (a precursor to apatite) and apatite. It was also demonstrated that the incorporation of gelatin promoted nucleation and growth of calcium phosphate. The porous scaffolds could mimic the structure, composition, and biological function of bone extracellular matrix. It was found that the preosteoblastic MC3T3-E1 cells attached, spread, and proliferated well with a flat morphology on the mineralized scaffolds. The proliferation rate of the cells on the mineralized scaffolds was significantly higher (by 1.9-fold) than that on the pristine fibrous scaffolds after culture for 7 days. These results indicated that the hybrid system containing poly(epsilon-caprolactone), gelatin, and calcium phosphate could serve as a new class of biomimetic scaffolds for bone tissue engineering.

  14. Cytotoxic effect of galvanically coupled magnesium-titanium particles.

    Science.gov (United States)

    Kim, Jua; Gilbert, Jeremy L

    2016-01-01

    Recent work has shown that reduction reactions at metallic biomaterial surfaces can induce significant killing of cells in proximity to the surface. To exploit this phenomenon for therapeutic purposes, for example, for cancer tumor killing or antibacterial effects (amongst other applications), magnesium metal particles, galvanically coupled to titanium by sputtering, have been evaluated for their cell-killing capability (i.e. cytotoxicity). Magnesium (Mg) particles large enough to prevent particle phagocytosis were investigated, so that only electrochemical reactions, and not particle toxicity per se, caused cytotoxic effects. Titanium (Ti) coated magnesium particles, as well as magnesium-only particles were introduced into MC3T3-E1 mouse pre-osteoblast cell cultures over a range of particle concentrations, and cells were observed to die in a dosage-dependent manner. Ti-coated magnesium particles killed more cells at lower particle concentration than magnesium alone (Pmagnesium and magnesium-titanium had no significant difference at similar particle concentrations. Complete cell killing occurred at 750μg/ml and 1500μg/ml for Mg-Ti and Mg, respectively. Thus, this work demonstrates that galvanically coupled Mg-Ti particles have a significant cell killing capability greater than Mg alone. In addition, when the pH associated with complete killing with particles was created using NaOH only (no particles), then the percentage of cells killed was significantly less (Pmagnesium-titanium microparticles kill cells more effectively than magnesium particles alone. The killing effect was shown to not be due to pH shifts since no differences were seen for different particle types and pH adjusted medium without particles did not exhibit the same level of killing. The significance of this work is the recognition of this killing effect with Mg particles and the potential therapeutic applications in infection control and cancer treatment that this process may provide. Copyright

  15. Bony defect repair in rabbit using hybrid rapid prototyping polylactic co glycolic acid/β tricalciumphosphate collagen I/apatite scaffold and bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Long Pang

    2013-01-01

    Full Text Available Background: In bone tissue engineering, extracellular matrix exerts critical influence on cellular interaction with porous biomaterial and the apatite playing an important role in the bonding process of biomaterial to bone tissue. The aim of this study was to observe the therapeutic effects of hybrid rapid prototyping (RP scaffolds comprising polylactic-co-glycolic acid (PLGA, β-tricalciumphosphate (β-TCP, collagen I and apatite (PLGA/β-TCP-collagen I/apatite on segmental bone defects in conjunction with combination with bone marrow mesenchymal stem cells (BMSCs. Materials and Methods: BMSCs were seeded into the hybrid RP scaffolds to repair 15 mm defect in the radius of rabbits. Radiograph, microcomputed tomography and histology were used to evaluate new bone formation. Results: Radiographic analysis done from 12 to 36 weeks postoperative period demonstrated that new bone formed at the radial defect site and continues to increase until the medullary cavity is recanalized and remodelling is complete. The bone defect remained unconnected in the original RP scaffolds (PLGA/β-TCP during the whole study. Histological observations conformed to the radiographic images. In hybrid RP scaffold group, woven bone united the radial defect at 12 weeks and consecutively remodeled into lamellar bone 24 weeks postoperation and finally matured into cortical bone with normal marrow cavity after another 12 weeks. No bone formation but connective tissue has been detected in RP scaffold at the same time. Conclusion: Collagen I/apatite sponge composite coating could improve new bone formation in vivo. The hybrid RP scaffold of PLGA/β-TCP skeleton with collagen I/apatite sponge composite coating is a promising candidate for bone tissue engineering.

  16. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying

    OpenAIRE

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-01-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The t...

  17. Inverted Apatite (U-Th)/He and Fission-track Dates from the Rae craton, Baffin Island, Canada and Implications for Apatite Radiation Damage-He Diffusivity Models

    Science.gov (United States)

    Ault, A. K.; Reiners, P. W.; Thomson, S. N.; Miller, G. H.

    2015-12-01

    Coupled apatite (U-Th)/He and fission-track (AFT) thermochronology data from the same sample can be used to decipher complex low temperature thermal histories and evaluate compatibility between these two methods. Existing apatite He damage-diffusivity models parameterize radiation damage annealing as fission-track annealing and yield inverted apatite He and AFT dates for samples with prolonged residence in the He partial retention zone. Apatite chemistry also impacts radiation damage and fission-track annealing, temperature sensitivity, and dates in both systems. We present inverted apatite He and AFT dates from the Rae craton, Baffin Island, Canada, that cannot be explained by apatite chemistry or existing damage-diffusivity and fission track models. Apatite He dates from 34 individual analyses from 6 samples range from 237 ± 44 Ma to 511 ± 25 Ma and collectively define a positive date-eU relationship. AFT dates from these same samples are 238 ± 15 Ma to 350 ± 20 Ma. These dates and associated track length data are inversely correlated and define the left segment of a boomerang diagram. Three of the six samples with 20-90 ppm eU apatite grains yield apatite He and AFT dates inverted by 300 million years. These samples have average apatite Cl chemistry of ≤0.02 wt.%, with no correlation between Cl content and Dpar. Thermal history simulations using geologic constraints, an apatite He radiation damage accumulation and annealing model, apatite He dates with the range of eU values, and AFT date and track length data, do not yield any viable time-temperature paths. Apatite He and AFT data modeled separately predict thermal histories with Paleozoic-Mesozoic peaks reheating temperatures differing by ≥15 °C. By modifying the parameter controlling damage annealing (Rmr0) from the canonical 0.83 to 0.5-0.6, forward models reproduce the apatite He date-eU correlation and AFT dates with a common thermal history. Results imply apatite radiation damage anneals at

  18. Imparting passivity to vapor deposited magnesium alloys

    Science.gov (United States)

    Wolfe, Ryan C.

    electron microscope. The corrosion rate of the nonequilibrium sputtered alloys, as determined by polarization resistance, is significantly reduced compared to the most corrosion resistant commercial magnesium alloys. The open circuit potentials of the sputter deposited alloys are significantly more noble compared to commercial, equilibrium phase magnesium alloys. Galvanic corrosion susceptibility has also been considerably reduced. Nonequilibrium magnesium-yttrium-titanium alloys have been shown to achieve passivity autonomously by alteration of the composition chemistry of the surface oxide/hydroxide layer. Self-healing properties are also evident, as corrosion propagation can be arrested after initial pitting of the material. A clear relationship exists between the corrosion resistance of sputter vapor deposited magnesium alloys and the amount of ion bombardment incurred by the alloy during deposition. Argon pressure, the distance between the source and the substrate, and alloy morphology play important roles in determining the ability of the alloy to develop a passive film. Thermal effects, both during and after alloy deposition, alter the stress state of the alloys, precipitation of second phases, and the mechanical stability of the passive film. An optimal thermal treatment has been developed in order to maximize the corrosion resistance of the magnesium-yttrium-titanium alloys. The significance of the results includes the acquisition of electrochemical data for these novel materials, as well as expanding the utilization of magnesium alloys by the improvement in their corrosion resistance. The magnesium alloys developed in this work are more corrosion resistant than any commercial magnesium alloy. Structural components comprised of these alloys would therefore exhibit unprecedented corrosion performance. Coatings of these alloys on magnesium components would provide a corrosion resistant yet galvanically-compatible coating. The broad impact of these contributions is

  19. Production method of burnable poison incorporated fuel pellet by coating

    International Nuclear Information System (INIS)

    Naito, Naoyoshi.

    1993-01-01

    A cylindrical member is formed with an organic material which is melted, decomposed or evaporated by heating. Such organic materials include polyethylene and polyvinyl alcohol, for example. A predetermined amount of burnable poisons are homogeneously incorporated in the cylindrical member by a means, such as melting before fabricating it into a cylindrical shape. UO 2 fuel pellets are inserted to the cylindrical member and heated, to scatter only the organic materials, so that non-volatile burnable poisons are homogeneously left on the surface of the pellets. It is preferred that the cylindrical member having pellets inserted therein is inserted to a cladding tube and applied with a heat treatment. With such procedures, a UO 2 pellet is coated with burnable poisons by a convenient and compact device. In addition, grinding step after the coating is unnecessary. (I.N.)

  20. Effect of cassava starch-based edible coating incorporated with lemongrass essential oil on the quality of papaya MJ9

    Science.gov (United States)

    Praseptiangga, D.; Utami, R.; Khasanah, L. U.; Evirananda, I. P.; Kawiji

    2017-02-01

    Edible films and coatings have emerged as an alternative packaging in food applications and have received much attention due to their advantages. The incorporation of essential oils in film matrices to give antimicrobial properties had been observed recently, and could be used as promising preservation technology. In this study, cassava starch-based edible coating incorporated with lemongrass essential oil (1%) was applied by spraying and dipping methods to preserve papaya MJ9 during storage at room temperature. The quality of papaya MJ9 was analyzed based on its physicochemical and microbiological properties. The addition of lemongrass essential oil (1%) significantly inhibited the microbial growth on papaya MJ9 by reducing the value of total yeast and mold as compared to the control. This study also showed that for parameters of weight loss, total soluble solid, vitamin C, and total titratable acid, papaya MJ9 with cassava starch-based edible coating incorporated with lemongrass essential oil (1%) had the lower values than control, however, they had the higher value than control on firmness parameter. These results indicate that cassava starch-based edible coating incorporated with lemongrass essential oil (1%) can be used as an alternative preservation for papaya MJ9.

  1. The Effect of Adding Corrosion Inhibitors into an Electroless Nickel Plating Bath for Magnesium Alloys

    Science.gov (United States)

    Hu, Rong; Su, Yongyao; Liu, Hongdong; Cheng, Jiang; Yang, Xin; Shao, Zhongcai

    2016-10-01

    In this work, corrosion inhibitors were added into an electroless nickel plating bath to realize nickel-phosphorus (Ni-P) coating deposition on magnesium alloy directly. The performance of five corrosion inhibitors was evaluated by inhibition efficiency. The results showed that only ammonium hydrogen fluoride (NH4HF2) and ammonium molybdate ((NH4)2MoO4) could be used as corrosion inhibitors for magnesium alloy in the bath. Moreover, compounding NH4HF2 and (NH4)2MoO4, the optimal concentrations were both at 1.5 ~ 2%. The deposition process of Ni-P coating was observed by using a scanning electron microscope (SEM). It showed corrosion inhibitors inhibited undesired dissolution of magnesium substrate during the electroless plating process. In addition, SEM observation indicated that the corrosion inhibition reaction and the Ni2+ replacement reaction were competitive at the initial deposition time. Both electrochemical analysis and thermal shock test revealed that the Ni-P coating exhibited excellent corrosion resistance and adhesion properties in protecting the magnesium alloy.

  2. Effects of pH and temperature on the deposition properties of stannate chemical conversion coatings formed by the potentiostatic technique on AZ91 D magnesium alloy

    International Nuclear Information System (INIS)

    Elsentriecy, Hassan H.; Azumi, Kazuhisa; Konno, Hidetaka

    2008-01-01

    The effects of pH and temperature of a stannate bath on the quality of stannate chemical conversion coatings formed on AZ91 D magnesium alloy by using the potentiostatic polarization technique at E = -1.1 V were investigated in order to improve uniformity and corrosion protection performance of the coating films. It was found that the uniformity and corrosion resistance of coating films deposited by potentiostatic polarization were closely associated with pH and temperature of the coating bath. The pH and temperature to obtain the best coating film were investigated as a function of corrosion protection performance evaluated by curves of potentiodynamic anodic polarization conducted in borate buffer solution. Scanning electron microscope observation and electrochemical corrosion tests of the stannate-coated samples confirmed significant improvement in uniformity and corrosion resistivity of coating films deposited by the potentiostatic technique by modifying the pH and temperature of the coating bath. It was also found that uniformity and corrosion resistivity of the coating films deposited by the potentiostatic technique were considerably improved compared to those of coatings deposited by the simple immersion method at the best conditions of pH and temperature of the coating bath

  3. Coating of hydroxyapatite doped Ag on commercially pure titanium surface; Recobrimento de hidroxiapatita dopada com Ag sobre superficie de titanio comercialmente puro

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Jonas de Oliveira; Vercik, Luci Cristina de Oliveira; Rigo, Eliana Cristina da Silva, E-mail: jonasvieira@usp.br [Universidade de Sao Paulo (USP), SP (Brazil)

    2012-07-01

    This paper presents results of bioactive coating on commercially pure titanium surface (CpTi) doped with Ag ions. The coating consists of 3 steps, in step 1- surface chemical treatment of the samples with NaOH, step 2 - immersing the substrate in question in a sodium silicate solution (SS) to the nucleation and step 3 - reimmersion these substrates in synthetic solution that simulates the blood serum for precipitation and growth of apatite layer. After the coating step the AgNO{sub 3} substrates were immersed in solutions with concentrations of 20 ppm and 100 ppm at 37 ° C for 48h. The substrates were characterized by scanning electron microscopy (SEM), infrared spectroscopy (IR) and X-ray diffraction (XRD). By the results verified the formation of an apatite layer with aspects of cells, on the surface of CpTi. The increase in Ag concentration causes an increase in Ag amount doped in apatite layer. With the results we concluded that it is possible to obtain an apatite layer on a metal surface as the CpTi doped with Ag ions.

  4. The formation of neodymium conversion coating and the influence of post-treatment

    Energy Technology Data Exchange (ETDEWEB)

    Cui Xiufang [School of Materials Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St., Harbin 150001 (China); Jin Guo, E-mail: jg97721@yahoo.com.cn [Center for Biomedical Materials and Engineering, School of Materials Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St., Harbin 150001 (China); Yang Yuyun; Liu Erbao; Lin Lili; Zhong Jinggao [Center for Biomedical Materials and Engineering, School of Materials Science and Chemical Engineering, Harbin Engineering University, 145 Nantong St., Harbin 150001 (China)

    2012-01-15

    In this paper, neodymium-based conversion coating is used as a substitute for toxic chromate conversion coating on AZ91D magnesium alloys. Its formation and growth were observed via SEM, EDS, XPS, electrochemical tests and weighting experiment. The influence of post-treatment on neodymium conversion coating was measured by FTIR and electrochemical experiments in terms of morphology, component, surface functional group and corrosion resistance. The dissolution of matrix and the deposition of neodymium/magnesium oxides compete with each other in initial time. Then the deposition of neodymium oxides dominates the process. Compact coating is obtained after 20 min immersion and it is mainly made of neodymium oxides and a small amount of magnesium oxides/hydroxides. The coating post-treated is rich in OH{sup -} and PO{sub 4}{sup 3+}. The post-treatment can improve the corrosion resistance of the neodymium conversion coating effectually examined by EIS.

  5. The formation of neodymium conversion coating and the influence of post-treatment

    International Nuclear Information System (INIS)

    Cui Xiufang; Jin Guo; Yang Yuyun; Liu Erbao; Lin Lili; Zhong Jinggao

    2012-01-01

    In this paper, neodymium-based conversion coating is used as a substitute for toxic chromate conversion coating on AZ91D magnesium alloys. Its formation and growth were observed via SEM, EDS, XPS, electrochemical tests and weighting experiment. The influence of post-treatment on neodymium conversion coating was measured by FTIR and electrochemical experiments in terms of morphology, component, surface functional group and corrosion resistance. The dissolution of matrix and the deposition of neodymium/magnesium oxides compete with each other in initial time. Then the deposition of neodymium oxides dominates the process. Compact coating is obtained after 20 min immersion and it is mainly made of neodymium oxides and a small amount of magnesium oxides/hydroxides. The coating post-treated is rich in OH - and PO 4 3+ . The post-treatment can improve the corrosion resistance of the neodymium conversion coating effectually examined by EIS.

  6. Development of strontium and magnesium substituted porous hydroxyapatite/poly(3,4-ethylenedioxythiophene) coating on surgical grade stainless steel and its bioactivity on osteoblast cells.

    Science.gov (United States)

    Gopi, D; Ramya, S; Rajeswari, D; Surendiran, M; Kavitha, L

    2014-02-01

    The present study deals with the successful development of bilayer coatings by electropolymerisation of poly(3,4-ethylenedioxythiophene) (PEDOT) on surgical grade stainless steel (316L SS) followed by the electrodeposition of strontium (Sr) and magnesium (Mg) substituted porous hydroxyapatite (Sr, Mg-HA). The bilayer coatings were characterised by Fourier transform infrared spectroscopy (FT-IR) and high resolution scanning electron microscopy (HRSEM). Corrosion resistance of the obtained coatings was investigated in Ringer's solution by electrochemical techniques and the results were in good agreement with those obtained from chemical analysis, namely inductively coupled plasma atomic emission spectrometry (ICP-AES). Also, the mechanical and biological properties of the bilayer coatings were analyzed. From the obtained results it was evident that the PEDOT/Sr, Mg-HA bilayer exhibited greater adhesion strength than the Sr, Mg-HA coated 316L SS. In vitro cell adhesion test of the Sr, Mg-HA coating on PEDOT coated specimen is found to be more bioactive compared to that of the single substituted hydroxyapatite (Sr or Mg-HA) on the PEDOT coated 316L SS. Thus, the PEDOT/Sr, Mg-HA bilayer coated 316L SS can serve as a prospective implant material for biomedical applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. OrbusNeich fully absorbable coronary stent platform incorporating dual partitioned coatings.

    Science.gov (United States)

    Cottone, Robert J; Thatcher, G Lawrence; Parker, Sherry P; Hanks, Laurence; Kujawa, David A; Rowland, Stephen M; Costa, Marco; Schwartz, Robert S; Onuma, Yoshinobu

    2009-12-15

    The field of stent based tissue engineering continues to revolutionise modern medicine by designing novel materials to restore vascular tissue function. Accordingly, the following discussion examines a novel, absorbable, polymeric scaffold engineered in combination with dual therapeutic coating, enabling locally administered temporary scaffolding in the coronary arteries for long term vascular patency and repair. This coronary stent platform consists of an absorbable polymeric material stent structure that incorporates a dual partitioned coating, by means of pro-healing EPC (endothelial progenitor cell) capture technology allowing for rapid endothelial coverage, and an absorbable polymer matrix with sustained elution of sirolimus, a drug controlling neointimal proliferation. This paper provides a brief overview of the various innovations developed by OrbusNeich to create this fully absorbable coronary device platform.

  8. Phenolic Modified Ceramic Coating on Biodegradable Mg Alloy: The Improved Corrosion Resistance and Osteoblast-Like Cell Activity

    Directory of Open Access Journals (Sweden)

    Hung-Pang Lee

    2017-06-01

    Full Text Available Magnesium alloys have great potential for developing orthopedic implants due to their biodegradability and mechanical properties, but the rapid corrosion rate of the currently-available alloys limits their clinical applications. To increase the corrosion resistance of the substrate, a protective ceramic coating is constructed by a micro-arc oxidation (MAO process on ZK60 magnesium alloy. The porous ceramic coating is mainly composed of magnesium oxide and magnesium silicate, and the results from cell cultures show it can stimulate osteoblastic cell growth and proliferation. Moreover, gallic acid, a phenolic compound, was successfully introduced onto the MAO coating by grafting on hydrated oxide and chelating with magnesium ions. The gallic acid and rough surface of MAO altered the cell attachment behavior, making it difficult for fibroblasts to adhere to the MAO coating. The viability tests showed that gallic acid could suppress fibroblast growth and stimulate osteoblastic cell proliferation. Overall, the porous MAO coating combined with gallic acid offered a novel strategy for increasing osteocompatibility.

  9. Composite polymer-containing coatings on Mg alloys perspective for industry and implant surgery

    Science.gov (United States)

    Gnedenkov, S. V.; Sinebryukhov, S. L.; Mashtalyar, D. V.; Imshinetskiy, I. M.; Gnedenkov, A. S.; Minaev, A. N.

    2017-09-01

    In order to improve the corrosion resistance of magnesium alloys the ways of composite protective coating formation were developed by means of plasma electrolytic oxidation (PEO) as well as electrophoretic deposition methods. Electrochemical, corrosion, tribological, and morphological properties of the MAS magnesium alloy composite coatings were studied. The composite polymer-containing coating decrease the corrosion current density values by three orders of magnitude (Ic = 2.0 . 10-10 A/cm2), in comparison with the base PEO-layer. These polymer-containing layers enable one to expand the practical usage area of Mg alloys. The application of such coatings provides the increasing the bioactivity and regulate the corrosion rate of resorbable magnesium implants.

  10. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Pharmaceutical Research Institute in Heilongjiang Province, Jiamusi University, Jiamusi 154007 (China); Wen, Zhaohui, E-mail: wenzhaohui1968@163.com [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zhao, Meng [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Guozhong, E-mail: hydlgz1962@163.com [Department of Neuro Intern, First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Dai, Changsong, E-mail: changsd@hit.edu.cn [School of Chemistry Engineering and Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2016-01-01

    CaP/chitosan/carbon nanotubes (CNTs) coating on AZ91D magnesium alloy was prepared via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The bonding between the layer and the substrate was studied by an automatic scratch instrument. The phase compositions and microstructures of the composite coatings were determined by using X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM). The element concentration and gentamicin concentration were respectively determined by inductively coupled plasma optical emission spectrometer (ICP-OES) test and ultraviolet spectrophotometer (UV). The cell counting kit (CCK) assay was used to evaluate the cytotoxicity of samples to SaOS-2 cells. The results showed that a few CNTs with their original tubular morphology could be found in the CaP/chitosan coating and they were beneficial for the crystal growth of phosphate and improvement of the coating bonding when the addition amount of CNTs in 500 ml of electrophoretic solution was from 0.05 g to 0.125 g. The loading amount of gentamicin increased and the releasing speed of gentamicin decreased after CNTs was added into the CaP/chitosan coating for immersion loading and EPD loading. The cell viability of Mg based CaP/chitosan/CNTs was higher than that of Mg based CaP/chitosan from 16 days to 90 days. - Highlights: • CaP/chitosan/CNTs coating on AZ91D was prepared. • The addition of CNTs could improve the performance of CaP/chitosan coating. • A new method of loading gentamicin by EPD was proposed.

  11. Effect of the addition CNTs on performance of CaP/chitosan/coating deposited on magnesium alloy by electrophoretic deposition.

    Science.gov (United States)

    Zhang, Jie; Wen, Zhaohui; Zhao, Meng; Li, Guozhong; Dai, Changsong

    2016-01-01

    CaP/chitosan/carbon nanotubes (CNTs) coating on AZ91D magnesium alloy was prepared via electrophoretic deposition (EPD) followed by conversion in a phosphate buffer solution (PBS). The bonding between the layer and the substrate was studied by an automatic scratch instrument. The phase compositions and microstructures of the composite coatings were determined by using X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM). The element concentration and gentamicin concentration were respectively determined by inductively coupled plasma optical emission spectrometer (ICP-OES) test and ultraviolet spectrophotometer (UV). The cell counting kit (CCK) assay was used to evaluate the cytotoxicity of samples to SaOS-2 cells. The results showed that a few CNTs with their original tubular morphology could be found in the CaP/chitosan coating and they were beneficial for the crystal growth of phosphate and improvement of the coating bonding when the addition amount of CNTs in 500 ml of electrophoretic solution was from 0.05 g to 0.125 g. The loading amount of gentamicin increased and the releasing speed of gentamicin decreased after CNTs was added into the CaP/chitosan coating for immersion loading and EPD loading. The cell viability of Mg based CaP/chitosan/CNTs was higher than that of Mg based CaP/chitosan from 16 days to 90 days. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Corrosion of Magnesium in Multimaterial System

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V.; Agnew, Sean

    2017-08-16

    The TMS Magnesium Committee has been actively involved in presenting cutting-edge research and development and the latest trends related to magnesium and its alloys to industry and academia. Topics including magnesium alloy development, applications, mechanism of deformation and corrosion, thermomechanical processing, modelling, etc. have been captured year after year through the Magnesium Technology symposium and conference proceedings at TMS and through special topics in JOM. Every year, based on the unanimous endorsement from the industry and academia, a topic is selected to address the latest developments within this subject in JOM. In continuation with last year’s coverage of Advances and Achievements in In-Situ Analysis of Corrosions and Structure–Property Relationship in Mg Alloys,[1] this year’s topic focuses on the Corrosion of Magnesium in Multimaterial Systems. Magnesium, the lightest of all the structural materials, has garnered much interest in the transportation, electronics packaging, defense equipments and industries alike and are more commonly being incorporated in multimaterial design concepts.[2-4] However, the application of the same is limited due to its highly corrosive nature, and understanding and mitigating the corrosion of magnesium has been a major research challenge.

  13. Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches

    Directory of Open Access Journals (Sweden)

    Quan Liu

    2013-01-01

    Full Text Available Biological apatite is an inorganic calcium phosphate salt in apatite form and nano size with a biological derivation. It is also the main inorganic component of biological hard tissues such as bones and teeth of vertebrates. Consequently, biological apatite has a wide application in dentistry and orthopedics by using as dental fillers and bone substitutes for bone reconstruction and regeneration. Given this, it is of great significance to obtain a comprehensive understanding of its physiochemical and biological properties. However, upon the previous studies, inconsistent and inadequate data of such basic properties as the morphology, crystal size, chemical compositions, and solubility of biological apatite were reported. This may be ascribed to the differences in the source of raw materials that biological apatite are made from, as well as the effect of the preparation approaches. Hence, this paper is to provide some insights rather than a thorough review of the physiochemical properties as well as the advantages and drawbacks of various preparation methods of biological apatite.

  14. Structural and corrosion characterization of hydroxyapatite/zirconium nitride-coated AZ91 magnesium alloy by ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kiahosseini, Seyed Rahim, E-mail: rkiahoseyni@yahoo.com [Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan (Iran, Islamic Republic of); Afshar, Abdollah [Department of Material Science and Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mojtahedzadeh Larijani, Majid [Radiation Applications Research School, Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Yousefpour, Mardali [Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, 35131-19111 (Iran, Islamic Republic of)

    2017-04-15

    Highlights: • The thickness of HA coatings increase by ion beam sputtering time. • The residual strain in HA structure decrease by deposition time increment. • Crystallite size of HA coatings increase by deposition time increment. • The best corrosion resistance occurs at intermediate deposition time. - Abstract: The adhesion of hydroxyapatite (HA) as a coating for the AZ91 magnesium alloy substrate can be improved by using the sputtering method and an intermediate layer, such as ZrN. In this study, HA coatings were applied on ZrN intermediate layers at a temperature of 300 °C for 180, 240, 300, 360, and 420 min by ion beam sputtering. A profilometer device was used to study the HA coating thickness, which changed from 2 μm for the 180-min deposition to 4.7 μm for 420-min deposition. The grazing incidence X-ray diffraction analysis method and the Williamson–Hall analysis were used for structural investigation. As the deposition time increased, the crystalline size increased from 50 nm to 690 nm. However, given sufficient time for stress relief on the coating structure, the lattice strain values were close to zero. Energy-dispersive X-ray spectroscopy results showed that the Ca/P ratio ranged from 1.73 to 1.81. The external indentation method was used to evaluate the coating adhesion to the substrate. The slope of curve for applied force changes versus the radius of cracks in the coating (dP/dr) varied in the range of 0.2–0.07 by the deposition time, indicating that the adhesion increased with the increase in coating thickness. The potentiodynamic polarization technique was used to study the corrosion behavior. With increasing deposition time, the corrosion potential of samples did not show a significant change, and the corrosion potential of all samples (coated and uncoated substrates) was more positive than approximately 55 mV. When the deposition time increased to 360 min, the corrosion current density decreased from 5.5 μA/cm{sup 2} to 0.33

  15. Calcium phosphate coatings modified with zinc- or copper- incorporation on Ti-40Nb alloy

    Science.gov (United States)

    Komarova, E. G.; Sedelnikova, M. B.; Sharkeev, Yu P.; Kazakbaeva, A. A.; Glukhov, I. A.; Khimich, M. A.

    2017-05-01

    The influence of the microarc oxidation parameters and electrolyte composition on the structure, properties and composition of CaP coatings modified with Zn- or Cu- incorporation on the Ti-40mas.%Nb (Ti-40Nb) alloy was investigated. The linear growth of thickness, roughness, and size of structural elements with process voltage increasing has been revealed. It was shown that the CaP coatings have the low contact angles with liquids and, consequently, high free surface energy. This indicates a high hydrophilicity of the coatings. X-ray diffraction analysis showed that the coatings have X-ray amorphous structure. The increase of the process voltage leads to the formation of such crystalline phases as CaHPO4 and β-Ca2P2O7 in the coatings. The maximum Ca/P atomic ratio was equal to 0.4, and Zn or Cu contents was equal to 0.3 or 0.2 at.%, respectively.

  16. Increased water hardness and magnesium levels may increase occurrence of urolithiasis in cows from the Burdur region (Turkey).

    Science.gov (United States)

    Sahinduran, S; Buyukoglu, T; Gulay, M S; Tasci, F

    2007-08-01

    Objectives of the study were to measure water hardness in Burdur, and to establish its possible association with urolithiasis in cattle. Water samples were obtained from different stables (n = 15). Water hardness and the concentrations of potassium, calcium, magnesium, sodium, iron, zinc, manganese and copper ions were calculated from these water samples. Total hardness of the samples (mean 285 ppm) exceeded the standards and the water was characterized by high content of magnesium ions. Kidneys (n = 500) were collected randomly from slaughterhouses and examined for urolithiasis. Urolithiasis was observed in 102 kidneys (20.4%). The weights of the stones were between 0.02 and 237.44 g and the colour varied from white to brown. The calculi collected had various shapes and composed of calcium apatite (42.45%), struvite (20.15%), magnesium carbonate (15.15%), calcium carbonate (12.12%), and calcium phosphate cystine (10.13%). It was concluded that high water hardness with high magnesium ion concentrations in water may contribute to urolithiasis and needs to be investigated further in future studies.

  17. Formation of a cerium conversion coating on magnesium alloy using ascorbic acid as additive. Characterisation and anticorrosive properties of the formed films

    OpenAIRE

    A.P. Loperena; I.L. Lehr; S.B. Saidman.

    2016-01-01

    Cerium-based conversion coatings were formed on AZ91D magnesium alloy by immersion of the substrate in solutions containing Ce(NO3)3, H2O2 and ascorbic acid (HAsc). The characterisation of the films was performed by electrochemical and surface analysis techniques such as SEM, EDS, X-ray diffraction and X-ray photoelectron spectroscopy (XPS). The degree of corrosion protection achieved was evaluated in simulated physiological solution by the open circuit potential monitoring, polarisation tech...

  18. SaOS-2 cell response to macro-porous boron-incorporated TiO{sub 2} coating prepared by micro-arc oxidation on titanium

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Qianli [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Elkhooly, Tarek A. [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Department of Ceramics, Inorganic Chemical Industries Division, National Research Centre, Dokki, 12622 Cairo (Egypt); Liu, Xujie [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Zhang, Ranran; Yang, Xing; Shen, Zhijian [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Feng, Qingling, E-mail: biomater@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-10-01

    The aims of the present study were to develop boron-incorporated TiO{sub 2} coating (B-TiO{sub 2} coating) through micro-arc oxidation (MAO) and subsequently evaluate the effect of boron incorporation on the in vitro biological performance of the coatings. The physicochemical properties of B-TiO{sub 2} coating and its response to osteoblast like cells (SaOS-2) were investigated compared to the control group without boron (TiO{sub 2} coating). The morphological and X-ray diffraction results showed that both coatings exhibited similar surface topography and phase composition, respectively. However, the incorporation of B led to an enhancement in the surface hydrophilicity of B-TiO{sub 2} coating. The spreading of SaOS-2 cells on B-TiO{sub 2} coating was faster than that on TiO{sub 2} coating. The proliferation rate of SaOS-2 cells cultured on B-TiO{sub 2} decreased after 5 days of culture compared to that on TiO{sub 2} coating. SaOS-2 cells cultured on B-TiO{sub 2} coating exhibited an enhanced alkaline phosphatase (ALP) activity, Collagen I synthesis and in vitro mineralization compared to those on TiO{sub 2} coating. The present findings suggest that B-TiO{sub 2} coating is a promising candidate surface for orthopedic implants. - Highlights: • SaOS-2 cell response to pure TiO{sub 2} and B-TiO{sub 2} coatings was investigated. • Initial cell spreading on B-TiO{sub 2} coating was accelerated compared to that on TiO{sub 2} coating. • Cell proliferation on B-TiO{sub 2} coating was inhibited compared to that on TiO{sub 2} coating. • Cell differentiation on B-TiO{sub 2} coating was enhanced compared to that on TiO{sub 2} coating.

  19. The Corrosion Protection of Magnesium Alloy AZ31B

    Science.gov (United States)

    Danford, M. D.; Mendrek, M. J.; Mitchell, M. L.; Torres, P. D.

    1997-01-01

    Corrosion rates for bare and coated Magnesium alloy AZ31B have been measured. Two coatings, Dow-23(Trademark) and Tagnite(Trademark), have been tested by electrochemical methods and their effectiveness determined. Electrochemical methods employed were the scanning reference electrode technique (SRET), the polarization resistance technique (PR) and the electrochemical impedance spectroscopy technique (EIS). In addition, general corrosion and stress corrosion methods were employed to examine the effectiveness of the above coatings in 90 percent humidity. Results from these studies are presented.

  20. Evaluation of resistant starch, glycemic index and fortificants content of premix rice coated with various concentrations and types of edible coating materials

    Science.gov (United States)

    Yulianto, W. A.; Susiati, A. M.; Adhini, H. A. N.

    2018-01-01

    The incidence of diabetes in Indonesia has been increasing year by year. Diets with a low glycemic index and high resistant starch foods can assist diabetics in controlling their blood glucose levels. Diabetics are known to have micro-nutrient deficiencies of chromium, magnesium and vitamin D that can be overcome by consuming parboiled rice fortified by use of a coating method. The fortification of parboiled rice (premix rice) can be achieved by coating with HPMC (hydroxypropyl methyl cellulose), MC (methyl cellulose), CMC (carboxyl methyl cellulose), gum arabic and rice starch. This research aimed to evaluate the levels of resistant starch, glycemic index and fortificants of premix rice coated with different concentrations and types of edible coating materials. This research used completely randomized design, with treatments to the concentrations and the types of edible coating (HPMC, CMC, MC, gum arabic and rice starch). The concentrations of edible coating were 0.15%, 0.2% and 0.25% for cellulose derivative coatings; 25%, 30%, 35% for gum arabic and 2%, 3.5% and 5% for rice starch. This research shows that fortified premix rice coated with various concentrations and types of edible coating materials is high in resistant starch and has a low glycemic index. The coating treatment affects the levels of magnesium and vitamin D, but does not affect the levels of chromium in parboiled rice. The premix rice with a low glycemic index and high nutrient content (chromium, magnesium and vitamin D) was premix rice coated by CMC 0.25% and HPMC 0.25% with glycemic indeces of 39.34 and 38.50, respectively.

  1. Investigation of the potential for direct compaction of a fine ibuprofen powder dry-coated with magnesium stearate.

    Science.gov (United States)

    Qu, Li; Zhou, Qi Tony; Gengenbach, Thomas; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Gamlen, Michael; Morton, David A V

    2015-05-01

    Intensive dry powder coating (mechanofusion) with tablet lubricants has previously been shown to give substantial powder flow improvement. This study explores whether the mechanofusion of magnesium stearate (MgSt), on a fine drug powder can substantially improve flow, without preventing the powder from being directly compacted into tablets. A fine ibuprofen powder, which is both cohesive and possesses a low-melting point, was dry coated via mechanofusion with between 0.1% and 5% (w/w) MgSt. Traditional low-shear blending was also employed as a comparison. No significant difference in particle size or shape was measured following mechanofusion. For the low-shear blended powders, only marginal improvement in flowability was obtained. However, after mechanofusion, substantial improvements in the flow properties were demonstrated. Both XPS and ToF-SIMS demonstrated high degrees of a nano-scale coating coverage of MgSt on the particle surfaces from optimized mechanofusion. The study showed that robust tablets were produced from the selected mechanofused powders, at high-dose concentration and tablet tensile strength was further optimized via addition of a Polyvinylpyrrolidone (PVP) binder (10% w/w). The tablets with the mechanofused powder (with or without PVP) also exhibited significantly lower ejection stress than those made of the raw powder, demonstrating good lubrication. Surprisingly, the release rate of drug from the tablets made with the mechanofused powder was not retarded. This is the first study to demonstrate such a single-step dry coating of model drug with MgSt, with promising flow improvement, flow-aid and lubrication effects, tabletability and also non-inhibited dissolution rate.

  2. Current status and manufacturing technologies of magnesium alloy parts in Japanese home electronics

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Y.; Takara, A. [Corporate Production Engineering Div., Matsushita Electric Industrial Co., Ltd., Osaka (Japan)

    2003-07-01

    The Japanese home electronics market has demanded that the newer products must be smaller, thinner and lighter. The use of magnesium alloys for Japanese home electronics has increased since the latter half of the 1990's. Magnesium alloys have been used mainly for the outer cases of portable electric products, because of their lightness and rigidness. Magnesium is also a promising material from the viewpoint of recycling. Magnesium alloy parts have been mass-produced for the outer cases of portable home electronics, such as, mini-disc player, notebook type personal computer or cell phone. The parts have the characteristics of high quality in appearance and thin walled, complicated shape with rib or boss. Most of them are formed by die-casting or injection molding technologies. After casting, the parts are treated precise machining to clear minute surface cracks or voids. Subsequently, they are operated anti-corrosion treatment and spray coating. Recycling have already carried out for magnesium alloy scraps to be cast again. Paint stripping before remelting is performed by alkali solutions or sandblast techniques for coated scraps. Finally, the development of promising press forming technologies is also introduced. (orig.)

  3. Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions

    International Nuclear Information System (INIS)

    Prosek, T.; Nazarov, A.; Bexell, U.; Thierry, D.; Serak, J.

    2008-01-01

    Recently, superior corrosion properties of zinc coatings alloyed with magnesium have been reported. Corrosion behaviour of model zinc-magnesium alloys was studied to understand better the protective mechanism of magnesium in zinc. Alloys containing from 1 to 32 wt.% magnesium, pure zinc, and pure magnesium were contaminated with sodium chloride and exposed to humid air for 28 days. Composition of corrosion products was analyzed using infrared spectroscopy (FTIR), ion chromatography (IC), and Auger electron spectroscopy (AES). The exposure tests were completed with scanning Kelvin probe (SKP) and electrochemical measurements. Weight loss of ZnMg alloys with 1-16 wt.% magnesium was lower than that of pure zinc. Up to 10-fold drop in weight loss was found for materials with 4-8 wt.% Mg in the structure. The improved corrosion stability of ZnMg alloys was connected to the presence of an Mg-based film adjacent to the metal surface. It ensured stable passivity in chloride environment and limited the efficiency of oxygen reduction

  4. Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam

    Directory of Open Access Journals (Sweden)

    Kanae Hara

    2016-08-01

    Full Text Available Carbonate apatite (CO3Ap foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO3Ap foam for bone replacement, CO3Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO3Ap foam was 74 kPa whereas that of the gelatin-reinforced CO3Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO3Ap foam.

  5. Plasma sprayed thermoregulating coatings

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Puzanov, A.A.; Zambrzhitskij, A.P.; Soboleva, V.V.

    1979-01-01

    Shown is the possibility of plasma spraying application for thermoregulating coating formation. Given are test results of service properties of BeO, Al 2 O 2 plasma coatings on the substrates of the MA2-1 magnesium alloy. Described is a device for studying durability of coating optical parameters under ultraviolet irradiation in deep vacuum. Dynamics of absorption coefficient, growth caused by an increase in absorption centers amount under such irradiation is investigated

  6. Carbon coated magnesium oxide based amperometric glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.L.; Mello, J.M.M.; Fiori, M.A.; Duarte, G.W. [Universidade Comunitaria Regional de Chapeco (UNICHAPECO), SC (Brazil); Fernandes, S.C. [Instituto Federal Catarinense (IFC), Blumenau, SC (Brazil); Riella, H.G. [Centro Universitario Barriga Verde (UNIBAVE), Orleans, SC (Brazil); Anzolin, C.; Figueiro, A.; Grando, M.C. [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2016-07-01

    Full text: Diabetes is a serious disease that is harmful to human health since it is related to cardiovascular and stroke events. Since the first glucose oxidase (GOx) sensor, different approaches have been explored. Carbon was used to cover nano-magnesium oxide (MgO-C) forming a core-shell which was used to improve its biocompatibility and chemical stability for the preparation of GOx biosensor. MgO nanostructures have been prepared by calcination of the gel formed by the reaction of magnesium acetate tetrahydrate dissolved in cetyltrimethylammonium with the addition of tartaric acid solution. MgO-C nanostructures were obtained by heating MgO nanoparticles previously prepared together with glucose and PEG dissolved in an aqueous suspension. Reaction conditions such as concentration of magnesium precursor, temperature and aging time show important roles in the size, morphology and growth process of the final products. The core-shell structure was evidenced by SEM/FEG and XRD and showed that the product appeared to have morphological forms of nanowires. GOx was spread onto the surface of a modified carbon paste electrode (CPE) doped with MgO-C and the effect on the biosensing properties investigated by comparing the electrochemical properties of the proposed biosensor with bare and modified CPEs by cyclic voltammetry. The amount of modifier in CPE (5-75 weight% with respect to graphite) influences the peak current and the influence of different experimental parameters (enzyme percentage, pH solution and amperometric methods) was also investigated. The results demonstrate that the GOx retains its biocatalytic activity and that the bioelectrode modified can be a possible use for other nanotechnological purposes including biomedical ones. (author)

  7. Carbon coated magnesium oxide based amperometric glucose biosensor

    International Nuclear Information System (INIS)

    Silva, L.L.; Mello, J.M.M.; Fiori, M.A.; Duarte, G.W.; Fernandes, S.C.; Riella, H.G.; Anzolin, C.; Figueiro, A.; Grando, M.C.

    2016-01-01

    Full text: Diabetes is a serious disease that is harmful to human health since it is related to cardiovascular and stroke events. Since the first glucose oxidase (GOx) sensor, different approaches have been explored. Carbon was used to cover nano-magnesium oxide (MgO-C) forming a core-shell which was used to improve its biocompatibility and chemical stability for the preparation of GOx biosensor. MgO nanostructures have been prepared by calcination of the gel formed by the reaction of magnesium acetate tetrahydrate dissolved in cetyltrimethylammonium with the addition of tartaric acid solution. MgO-C nanostructures were obtained by heating MgO nanoparticles previously prepared together with glucose and PEG dissolved in an aqueous suspension. Reaction conditions such as concentration of magnesium precursor, temperature and aging time show important roles in the size, morphology and growth process of the final products. The core-shell structure was evidenced by SEM/FEG and XRD and showed that the product appeared to have morphological forms of nanowires. GOx was spread onto the surface of a modified carbon paste electrode (CPE) doped with MgO-C and the effect on the biosensing properties investigated by comparing the electrochemical properties of the proposed biosensor with bare and modified CPEs by cyclic voltammetry. The amount of modifier in CPE (5-75 weight% with respect to graphite) influences the peak current and the influence of different experimental parameters (enzyme percentage, pH solution and amperometric methods) was also investigated. The results demonstrate that the GOx retains its biocatalytic activity and that the bioelectrode modified can be a possible use for other nanotechnological purposes including biomedical ones. (author)

  8. Biocorrosion of TiO2 nanoparticle coating of Ti–6Al–4V in DMEM under specific in vitro conditions

    International Nuclear Information System (INIS)

    Höhn, Sarah; Virtanen, Sannakaisa

    2015-01-01

    Highlights: • Possibility to fabricate a TiO 2 NP-coating on Ti–6Al–4V by a simple spin-coating method. • The NP-coating enhances biomimetic apatite formation on the surface immersed in DMEM. • The TiO 2 coating can efficiently reduce Al release from the alloy during immersion in DMEM. • TiO 2 NP-coating makes the surface more bioactive. - Abstract: A TiO 2 nanoparticle coating was prepared on a biomedical Ti–6Al–4V alloy using “spin-coating” technique with a colloidal suspension of TiO 2 nanopowders with the aim to optimize the surface morphology (e.g., roughness) for improved biocompatibility. The influence of a TiO 2 nanoparticle (NP) coating on the corrosion behavior, metal ion release, and biomimetic apatite formation was studied in DMEM, at 37.5 °C with a continuous supply of 5% CO 2 . Electrochemical impedance spectroscopy measurements indicate a formation of a new layer on the surface of the NP-coated sample upon 28 days immersion in DMEM. Scanning electron microscopy (SEM) and X-ray spectroscopy confirm that the surface of the NP-coated Ti–6Al–4V shows a complete coverage by a Ca–phosphate layer in contrast to the non-coated Ti–6Al–4V alloy. Hence, the TiO 2 -NP coating strongly enhances biomimetic apatite formation on the alloy surface. In addition, the TiO 2 -NP coating can efficiently reduce Al-release from the alloy, for which the bare Ti–6Al–4V alloy is significant for at least 28 days of immersion in DMEM

  9. Electrodeposition of zinc–silica composite coatings: challenges in incorporating functionalized silica particles into a zinc matrix

    Directory of Open Access Journals (Sweden)

    Tabrisur Rahman Khan, Andreas Erbe, Michael Auinger, Frank Marlow and Michael Rohwerder

    2011-01-01

    Full Text Available Zinc is a well-known sacrificial coating material for iron and co-deposition of suitable particles is of interest for further improving its corrosion protection performance. However, incorporation of particles that are well dispersible in aqueous electrolytes, such as silica particles, is extremely difficult. Here, we report a detailed study of Zn–SiO2 nanocomposite coatings deposited from a zinc sulfate solution at pH 3. The effect of functionalization of the silica particles on the electro-codeposition was investigated. The best incorporation was achieved for particles modified with SiO2–SH, dithiooxamide or cysteamine; these particles have functional groups that can strongly interact with zinc and therefore incorporate well into the metal matrix. Other modifications (SiO2–NH3+, SiO2–Cl and N,N-dimethyldodecylamine of the silica particles lead to adsorption and entrapment only.

  10. Ion-substituted calcium phosphate coatings deposited by plasma-assisted techniques: A review.

    Science.gov (United States)

    Graziani, Gabriela; Bianchi, Michele; Sassoni, Enrico; Russo, Alessandro; Marcacci, Maurilio

    2017-05-01

    One of the main critical aspects behind the failure or success of an implant resides in its ability to fast bond with the surrounding bone. To boost osseointegration, the ideal implant material should exhibit composition and structure similar to those of biological apatite. To this aim, the most common approach is to coat the implant surface with a coating of hydroxyapatite (HA), resembling the main component of mineralized tissues. However, bone apatite is a non-stoichiometric, multi-substituted poorly-crystalline apatite, containing significant amounts of foreign ions, with high biological relevance. Ion-substituted HAs can be deposited by so called "wet methods", which are however poorly reproducible and hardly industrially feasible; at the same time bioactive coatings realized by plasma assisted method, interesting for industrial applications, are generally made of stoichiometric (i.e. un-substituted) HA. In this work, the literature concerning plasma-assisted deposition methods used to deposit ion-substituted HA was reviewed and the last advances in this field discussed. The ions taken into exam are those present in mineralized tissues and possibly having biological relevance. Notably, literature about this topic is scarce, especially relating to in vivo animal and clinical trials; further on, available studies evaluate the performance of substituted coatings from different points of view (mechanical properties, bone growth, coating dissolution, etc.) which hinders a proper evaluation of the real efficacy of ion-doped HA in promoting bone regeneration, compared to stoichiometric HA. Moreover, results obtained for plasma sprayed coatings (which is the only method currently employed for deposition at the industrial scale) were collected and compared to those of novel plasma-assisted techniques, that are expected to overcome its limitations. Data so far available on the topic were discussed to highlight advantages, limitations and possible perspectives of these

  11. Preparation and corrosion resistance studies of nanometric sol-gel-based CeO2 film with a chromium-free pretreatment on AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Zhang Shiyan; Li Qing; Chen Bo; Yang Xiaokui

    2010-01-01

    Magnesium alloy, although valuable, is reactive and requires protection before it can be applied in many fields. In this study, a novel protective environmental-friendly gradient coating was performed on AZ91D magnesium alloy by non-chromate surface treatments, which consisted of phytic acid chemical conversion coating and the sol-gel-based CeO 2 thin film. The surface morphologies, microstructure and composition of the coatings were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The corrosion resistance of the coatings was evaluated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in 3.5 wt.% NaCl solution. The effects of the concentration, layers, temperature of heat treatment of CeO 2 sol on the anti-corrosion properties of the gradient coating for magnesium were also investigated. The results showed that the gradient coating was mainly composed of crystalline CeO 2 . According to the results of electrochemical tests, the corrosion resistance of AZ91D magnesium alloy was found to be greatly improved by means of this new environmental-friendly surface treatment.

  12. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Science.gov (United States)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-05-01

    An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO-PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (Rp) of the PEO-PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (icorr) of the pure Mg was reduced by 65% with the PEO coating, the PEO-PLLA coating reduced the icorr by almost 100%. As expected, the Rp of the PEO-PLLA Mg decreased with increase in exposure time. However, it was noted that the Rp of the PEO-PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  13. Effect of (NaPO3)6 concentrations on corrosion resistance of plasma electrolytic oxidation coatings formed on AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Luo Haihe; Cai Qizhou; Wei Bokang; Yu Bo; Li Dingjun; He Jian; Liu Ze

    2008-01-01

    Different plasma electrolytic oxidation (PEO) coatings were prepared on AZ91D magnesium alloy in electrolytes containing various concentrations of (NaPO 3 ) 6 . The morphologies, chemical compositions and corrosion resistance of the PEO coatings were characterized by environmental scanning electron microscopy (ESEM), X-ray diffractometer (XRD), energy dispersive analysis of X-rays (EDAX), potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) test. The results showed that the PEO coatings were mainly composed of MgO, Mg 2 SiO 4 , MgAl 2 O 4 and amorphous compounds. As the (NaPO 3 ) 6 concentrations increased from 0 to 10 g/l, the thickness and surface roughness of the coatings approximately linearly increased; the MgO and Mg 2 SiO 4 phase increased within the concentration range of 0-3 and 0-5 g/l, and then decreased within the range of 3-10 and 5-10 g/l, respectively, while the MgAl 2 O 4 phase gradually decreased. Moreover, the corrosion resistance of the coatings increased within the range of 0-5 g/l and then decreased within the range of 5-10 g/l. The best corrosion resistance coating was obtained in electrolyte containing 5 g/l (NaPO 3 ) 6 , it had the most compact microstructure. Besides, a reasonable equivalent circuit was established, and the fitting results were consistent with the results of the EIS test

  14. Nanocrystalline β-Ta Coating Enhances the Longevity and Bioactivity of Medical Titanium Alloys

    Directory of Open Access Journals (Sweden)

    Linlin Liu

    2016-09-01

    Full Text Available A β-Ta nanocrystalline coating was engineered onto a Ti-6Al-4V substrate using a double cathode glow discharge technique to improve the corrosion resistance and bioactivity of this biomedical alloy. The new coating has a thickness of ~40 μm and exhibits a compact and homogeneous structure composed of equiaxed β-Ta grains with an average grain size of ~22 nm, which is well adhered on the substrate. Nanoindentation and scratch tests indicated that the β-Ta coating exhibited high hardness combined with good resistance to contact damage. The electrochemical behavior of the new coating was systematically investigated in Hank’s physiological solution at 37 °C. The results showed that the β-Ta coating exhibited a superior corrosion resistance as compared to uncoated Ti-6Al-4V and commercially pure tantalum, which was attributed to a stable passive film formed on the β-Ta coating. The in vitro bioactivity was studied by evaluating the apatite-forming capability of the coating after seven days of immersion in Hank’s physiological solution. The β-Ta coating showed a higher apatite-forming ability than both uncoated Ti-6Al-4V and commercially pure Ta, suggesting that the β-Ta coating has the potential to enhance functionality and increase longevity of orthopaedic implants.

  15. Effect of Dissolved Silica on Immobilization of Boron by Magnesium Oxide

    Directory of Open Access Journals (Sweden)

    Shoko Nozawa

    2018-02-01

    Full Text Available The effect of silica on the immobilization reaction of boron by magnesium oxide was investigated by laboratory experiments. In the absence of silica, due to dissolution of the magnesium oxide, boron was removed from solutions by the precipitation of multiple magnesium borates. In the presence of silica, magnesium silica hydrate (M-S-H was formed as a secondary mineral, which takes up boron. Here 11B magic-angle spinning nuclear magnetic resonance (MAS-NMR and Fourier transform infrared spectrometer (FT-IR data show that a part of the boron would be incorporated into M-S-H structures by isomorphic substitution of silicon. Another experiment where magnesium oxide and amorphous silica were reacted beforehand and boron was added later showed that the shorter the reaction time of the preceding reaction, the higher the sorption ratio of boron. That is, boron was incorporated into the M-S-H mainly by coprecipitation. The experiments in the study here show that the sorption of boron in the presence of silica is mainly due to the incorporation of boron during the formation of the M-S-H structure, which suggests that boron would not readily leach out, and that stable immobilization of boron can be expected.

  16. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Yi [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Sun, Yuhua [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Chen, Xiaofang [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhu, Peizhi, E-mail: pzzhu@umich.edu [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Wei, Shicheng, E-mail: sc-wei@pku.edu.cn [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)

    2013-07-01

    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering. - Highlights: • Heparin was used as a template to synthesize needle-shaped nano-apatite. • Changing the pH value and concentration led to different properties of apatite. • Apatite prepared by heparin was more favorable to the osteogenic differentiation. • Possible synthesis mechanism of apatite templated by heparin was described.

  17. Process-Structure-Property Relationship in Magnesium-Based Biodegradable Alloy for Biomedical Applications

    Science.gov (United States)

    Trivedi, Pramanshu

    Magnesium alloys are considered to be the next generation of biomaterials because of their ability to degrade in the physiological environment. We elucidate here the impact of multiaxial forging of Mg-2Zn-2Gd alloy on grain refinement to sub-micron regime and relate the structure to mechanical properties and biological functionality. As-cast and annealed samples were multiaxial forged (MAF) for a total number of two passes with a true strain of 2/pass. Considering that the microstructure governs the biological response of materials, we studied the constituents of the microstructure in conjunction with the mechanical behavior. The antimicrobial behavior in a Mg-2Zn-2Gd alloy with different grain size in the range of 44 microm to 710 nm was studied by seeding. Surface energy and contact angle measurements using goniometer and wettability were assessed with water, SBF, n-Hexane, and DMEM. The structure-property relationship in Mg-2Zn-2Gd alloy to maintaining mechanical integrity during degradation was studied by seeding Escherichia coli ( E. coli). Furthermore, we studied the effect of degradation behavior in the presence and absence of cells. This was followed by the study of bioactivity in terms of phases present on the surface and degradation products in simulated body fluid (SBF). Magnesium coated with apatite using a biomimetic approach were placed in a 24-well culture plate with alpha-MEM media and the degradation behavior was studied in the absence and presence of cells (seeding density: 10,000 cells/cm2). The change in pH was monitored at regular intervals. Cell attachment was studied by seeding the cells for 4h and cell viability was studied by seeding the cells for up to 1, 3, and 7 days. The study underscores that the fine-grained alloys exhibited superior mechanical properties, antimicrobial resistance, and cell attachment. The degradation rate was also least for fine-grained alloy. The higher surface energy of ultrafine-grained Mg-2Zn-2Gd alloy led to the

  18. Effect of Zn content on the chemical conversion treatments of AZ91D magnesium alloy

    International Nuclear Information System (INIS)

    Hu Lifang; Meng Qingsen; Chen Shaoping; Wang Hao

    2012-01-01

    Highlights: ► The effect of Zn content on the chemical conversion process of Mg alloy was studied. ► The coating thickness grows up with the increase of the Zn content. ► The corrosion resistance of the coating is comparable if the Zn content below 2 wt.%. ► The corrosion resistance of the coating became poorer if the Zn content beyond 2 wt.%. - Abstract: In this study, four AZ91D magnesium plates with different Zn content were treated with chemical conversion treatments. The chemical conversion coating was examined using scanning electron microscope, optical microscope and glow discharge optical emission spectrometer. The testing results indicated that increase in Zn content produced a thicker chemical conversion coating. However, when the Zn content exceeded 2 wt.%, the thickness of the chemical conversion coating decreased. To investigate the chemical conversion mechanism, potentiodynamic polarization and electrochemical impedance spectroscopy were employed to evaluate the corrosion resistance of the magnesium substrate in 3.5 wt.% NaCl solution.

  19. A temporal record of pre-eruptive magmatic volatile contents at Campi Flegrei: Insights from texturally-constrained apatite analyses

    Science.gov (United States)

    Stock, Michael J.; Isaia, Roberto; Humphreys, Madeleine C. S.; Smith, Victoria C.; Pyle, David M.

    2016-04-01

    Apatite is capable of incorporating all major magmatic volatile species (H2O, CO2, S, Cl and F) into its crystal structure. Analysis of apatite volatile contents can be related to parental magma compositions through the application of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994). Once included within phenocrysts, apatite inclusions are isolated from the melt and preserve a temporal record of magmatic volatile contents in the build-up to eruption. In this work, we measured the volatile compositions of apatite inclusions, apatite microphenocrysts and pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy (Stock et al. 2016). These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to decipher pre-eruptive magmatic processes. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset at shallow levels during ascent. Given the high diffusivity of volatiles in apatite (Brenan, 1993), the preservation of volatile-undersaturated melt compositions in microphenocrysts suggests that saturation was only achieved 10 - 103 days before eruption. We suggest that late-stage transition into a volatile-saturated state caused an increase in magma chamber overpressure, which ultimately triggered the Astroni 1 eruption. This has major implications for monitoring of Campi Flegrei and other similar volcanic systems. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Stock et al., 2016, Nat. Geosci. Gualda et al., 2012. J. Pet., 53, 875

  20. Biocorrosion of TiO{sub 2} nanoparticle coating of Ti–6Al–4V in DMEM under specific in vitro conditions

    Energy Technology Data Exchange (ETDEWEB)

    Höhn, Sarah, E-mail: sarah.hoehn@fau.de; Virtanen, Sannakaisa, E-mail: virtanen@ww.uni-erlangen.de

    2015-02-28

    Highlights: • Possibility to fabricate a TiO{sub 2} NP-coating on Ti–6Al–4V by a simple spin-coating method. • The NP-coating enhances biomimetic apatite formation on the surface immersed in DMEM. • The TiO{sub 2} coating can efficiently reduce Al release from the alloy during immersion in DMEM. • TiO{sub 2} NP-coating makes the surface more bioactive. - Abstract: A TiO{sub 2} nanoparticle coating was prepared on a biomedical Ti–6Al–4V alloy using “spin-coating” technique with a colloidal suspension of TiO{sub 2} nanopowders with the aim to optimize the surface morphology (e.g., roughness) for improved biocompatibility. The influence of a TiO{sub 2} nanoparticle (NP) coating on the corrosion behavior, metal ion release, and biomimetic apatite formation was studied in DMEM, at 37.5 °C with a continuous supply of 5% CO{sub 2}. Electrochemical impedance spectroscopy measurements indicate a formation of a new layer on the surface of the NP-coated sample upon 28 days immersion in DMEM. Scanning electron microscopy (SEM) and X-ray spectroscopy confirm that the surface of the NP-coated Ti–6Al–4V shows a complete coverage by a Ca–phosphate layer in contrast to the non-coated Ti–6Al–4V alloy. Hence, the TiO{sub 2}-NP coating strongly enhances biomimetic apatite formation on the alloy surface. In addition, the TiO{sub 2}-NP coating can efficiently reduce Al-release from the alloy, for which the bare Ti–6Al–4V alloy is significant for at least 28 days of immersion in DMEM.

  1. Engineered polycaprolactone–magnesium hybrid biodegradable porous scaffold for bone tissue engineering

    Directory of Open Access Journals (Sweden)

    Hoi Man Wong

    2014-10-01

    Full Text Available In this paper, we describe the fabrication of a new biodegradable porous scaffold composed of polycaprolactone (PCL and magnesium (Mg micro-particles. The compressive modulus of PCL porous scaffold was increased to at least 150% by incorporating 29% Mg particles with the porosity of 74% using Micro-CT analysis. Surprisingly, the compressive modulus of this scaffold was further increased to at least 236% when the silane-coupled Mg particles were added. In terms of cell viability, the scaffold modified with Mg particles significantly convinced the attachment and growth of osteoblasts as compared with the pure PCL scaffold. In addition, the hybrid scaffold was able to attract the formation of apatite layer over its surface after 7 days of immersion in normal culture medium, whereas it was not observed on the pure PCL scaffold. This in vitro result indicated the enhanced bioactivity of the modified scaffold. Moreover, enhanced bone forming ability was also observed in the rat model after 3 months of implantation. Though bony in-growth was found in all the implanted scaffolds. High volume of new bone formation could be found in the Mg/PCL hybrid scaffolds when compared to the pure PCL scaffold. Both pure PCL and Mg/PCL hybrid scaffolds were degraded after 3 months. However, no tissue inflammation was observed. In conclusion, these promising results suggested that the incorporation of Mg micro-particles into PCL porous scaffold could significantly enhance its mechanical and biological properties. This modified porous bio-scaffold may potentially apply in the surgical management of large bone defect fixation.

  2. Topography, wetting, and corrosion responses of electrodeposited hydroxyapatite and fluoridated hydroxyapatite on magnesium.

    Science.gov (United States)

    Assadian, Mahtab; Jafari, Hassan; Ghaffari Shahri, Seyed Morteza; Idris, Mohd Hasbullah; Almasi, Davood

    2016-08-12

    In this study, different types of calcium-phosphate phases were coated on NaOH pre-treated pure magnesium. The coating was applied by electrodeposition method in order to provide higher corrosion resistance and improve biocompatibility for magnesium. Thickness, surface morphology and topography of the coatings were analyzed using optical, scanning electron and atomic-force microscopies, respectively. Composition and chemical bonding, crystalline structures and wettability of the coatings were characterized using energy-dispersive and attenuated total reflectance-Fourier transform infrared spectroscopies, grazing incidence X-ray diffraction and contact angle measurement, respectively. Degradation behavior of the coated specimens was also investigated by potentiodynamic polarization and immersion tests. The experiments proved the presence of a porous coating dominated by dicalcium-phosphate dehydrate on the specimens. It was also verified that the developed hydroxyapatite was crystallized by alkali post-treatment. Addition of supplemental fluoride to the coating electrolyte resulted in stable and highly crystallized structures of fluoridated hydroxyapatite. The coatings were found effective to improve biocompatibility combined with corrosion resistance of the specimens. Noticeably, the fluoride supplemented layer was efficient in lowering corrosion rate and increasing surface roughness of the specimens compared to hydroxyapatite and dicalcium-phosphate dehydrates layers.

  3. HOW TO MAKE MAGNESIUM ALLOYS BE RESISTANT TO OPERATIONAL RISKS

    Directory of Open Access Journals (Sweden)

    N. M. Chigrinova

    2016-01-01

    Full Text Available The paper studies regularities and mechanisms of structure and phase formation in the surface layers of magnesium alloys when they are processed by method of micro-arc oxidation [MAO]. It has been determined that the same specific features of structure formation, namely: existence of a thin dense inner sublayer and a thicker outer sublayer with developed porosity are common for all types of coatings on the surface of magnesium and aluminum alloys. Such structural state of a protective coating can not be considered as a guaranteed protection against operational impacts, taking into account the fields of their primary application that is aviation construction, automotive construction, instrumentation, building construction, etc. The paper has analyzed the effect of alkaline electrolytes with varying chemical composition due to additions of sodium fluoride or potassium on the structure and properties of these alloys as well as on the level of basic performance characteristics of the layers formed in such electrolytes. On the basis of the analysis a conclusion has been made that it is possible to extend their life-span under operational conditions. It has been revealed that the existing techniques and methods for process control of MAO aluminum and magnesium alloys, particularly processing modes and technological equipment capacity determine a nature of structure formation and changes in a phase composition of the formed coatings.

  4. Facile Method for Fabricating Superhydrophobic Surface on Magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mun Hee; Park, Yeon Hwa; Hyun, June Won; Ahn, Yong Hyun [Dankook Univ., Yongin (Korea, Republic of)

    2010-04-15

    In conclusion, we have developed a simple and inexpensive method for fabricating a superhydrophobic surface of magnesium by metal deposition and stearic acid coating. We fabricated a superhydrophobic surface on magnesium by nickel deposition and surface coating of stearic acid. The fabricated surfaces were stable against acidic and basic solutions. In recent times, technologies based on the imitation of nature have attracted considerable attention. Lotus leaves are known for their self-cleaning effect. The micrometer-scale papillae structure and the epicuticular wax on the lotus leaf contribute to this effect. In a manner similar to the self-cleaning property of lotus leaves, the wettability of solid surfaces is of great interest in daily life and industry.1-4 Wettability is controlled by both the geometrical structure of a surface and a low surface energy material coating. A superhydrophobic surface is satisfied with a water contact angle of more than 150 .deg. and a sliding angle of less than 10 .deg. On such a surface, a water drop has a perfectly spherical shape and it easily rolls off and removes deposited contaminants. A superhydrophobic surface thus protects a material from contamination, fogging, and snow deposition.

  5. Preparation and in vitro evaluation of plasma-sprayed bioactive akermanite coatings

    International Nuclear Information System (INIS)

    Yi, Deliang; Wu, Chengtie; Chang, Jiang; Ma, Xubing; Ji, Heng; Zheng, Xuebin

    2012-01-01

    Bioactive ceramic coatings on titanium (Ti) alloys play an important role in orthopedic applications. In this study, akermanite (Ca 2 MgSi 2 O 7 ) bioactive coatings are prepared through a plasma spraying technique. The bonding strength between the coatings and Ti-6Al-4V substrates is around 38.7–42.2 MPa, which is higher than that of plasma sprayed hydroxyapatite (HA) coatings reported previously. The prepared akermanite coatings reveal a distinct apatite-mineralization ability in simulated body fluid. Furthermore, akermanite coatings support the attachment and proliferation of rabbit bone marrow mesenchymal stem cells (BMSCs). The proliferation rate of BMSCs on akermanite coatings is obviously higher than that on HA coatings. (paper)

  6. NASA's Advanced Environmental Barrier Coatings Development for SiC/SiC Ceramic Matrix Composites: Understanding Calcium Magnesium Alumino-Silicate (CMAS) Degradations and Resistance

    Science.gov (United States)

    Zhu, Dongming

    2014-01-01

    Environmental barrier coatings (EBCs) and SiCSiC ceramic matrix composites (CMCs) systems will play a crucial role in next generation turbine engines for hot-section component applications because of their ability to significantly increase engine operating temperatures with improved efficiency, reduce engine weight and cooling requirements. The development of prime-reliant environmental barrier coatings is essential to the viability and reliability of the envisioned CMC engine component applications, ensuring integrated EBC-CMC system durability and designs are achievable for successful applications of the game-changing component technologies and lifing methodologies.This paper will emphasize recent NASA environmental barrier coating developments for SiCSiC turbine airfoil components, utilizing advanced coating compositions, state-of-the-art processing methods, and combined mechanical and environment testing and durability evaluations. The coating-CMC degradations in the engine fatigue-creep and operating environments are particularly complex; one of the important coating development aspects is to better understand engine environmental interactions and coating life debits, and we have particularly addressed the effect of Calcium-Magnesium-Alumino-Silicate (CMAS) from road sand or volcano-ash deposits on the durability of the environmental barrier coating systems, and how the temperature capability, stability and cyclic life of the candidate rare earth oxide and silicate coating systems will be impacted in the presence of the CMAS at high temperatures and under simulated heat flux conditions. Advanced environmental barrier coating systems, including HfO2-Si with rare earth dopant based bond coat systems, will be discussed for the performance improvements to achieve better temperature capability and CMAS resistance for future engine operating conditions.

  7. Hybrid Physical Chemical Vapor Deposition of Superconducting Magnesium Diboride Coatings for Large Scale Radio Frequency Cavities

    Science.gov (United States)

    Lee, Namhoon; Withanage, Wenura; Tan, Teng; Wolak, Matthaeus; Xi, Xiaoxing

    2016-03-01

    Magnesium diboride (MgB2) is considered to be a great candidate for next generation superconducting radio frequency (SRF) cavities due to its higher critical temperature Tc (40 K) and increased thermodynamic critical field Hc compared to other conventional superconductors. These properties significantly reduce the BCS surface resistance (RsBCS)and residual resistance (Rres) according to theoretical studies and suggest the possibility of an enhanced accelerating field (Eacc) . We have investigated the possibility of coating the inner surface of a 3 GHz SRF cavity with MgB2 by using a hybrid physical-vapor deposition (HPCVD) system which was modified for this purpose. To simulate a real 3 GHz SRF cavity, a stainless steel mock cavity has been employed for the study. The film quality was characterized on small substrates that were placed at selected locations within the cavity. MgB2 films on stainless steel foils, niobium pieces and SiC substrates showed transition temperatures of above 36 K. Dielectric resonance measurements resulted in promising Q values as obtained for the MgB2 films grown on the various substrates. By employing the HPCVD technique, a uniform film was achieved across the cavity interior, demonstrating the feasibility of HPCVD for MgB2 coatings for SRF cavities.

  8. Biological Behavior of Osteoblast Cell and Apatite Forming Ability of the Surface Modified Ti Alloys.

    Science.gov (United States)

    Zhao, Jingming; Hwang, K H; Choi, W S; Shin, S J; Lee, J K

    2016-02-01

    Titanium as one kind of biomaterials comes in direct contact with the body, making evaluation of biocompatibility an important aspect to biomaterials development. Surface chemistry of titanium plays an important role in osseointegration. Different surface modification alters the surface chemistry and result in different biological response. In this study, three kinds of mixed acid solutions were used to treat Ti specimens to induce Ca-P formation. Following a strong mixed acid activation process, Ca-P coating successfully formed on the Ti surfaces in simulated body fluid. Strong mixed acid increased the roughness of the metal surface, because the porous and rough surface allows better adhesion between Ca-P coatings and substrates. After modification of titanium surface by mixed acidic solution and subsequently H2O2/HCL treatment evaluation of biocompatibility was conducted from hydroxyapatite formation by biomimetic process and cell viability on modified titanium surface. Nano-scale modification of titanium surfaces can alter cellular and tissue responses, which may benefit osseointegration and dental implant therapy. Results from this study indicated that surface treatment methods affect the surface morphology, type of TiO2 layer formed and subsequent apatite deposition and biological responses. The thermo scientific alamarblue cell viability assay reagent is used to quantitatively measure the viability of mammalian cell lines, bacteria and fungi by incorporating a rapid, sensitive and reliable fluorometric/colorimetric growth indicator, without any toxic and side effect to cell line. In addition, mixed acid treatment uses a lower temperature and shorter time period than widely used alkali treatment.

  9. Can Polyphosphate Biochemistry Affect Biological Apatite Saturation?

    Science.gov (United States)

    Omelon, S. J.; Matsuura, N.; Gorelikov, I.; Wynnyckyj, C.; Grynpas, M. D.

    2010-12-01

    Phosphorus (P) is an important and limiting element for life. One strategy for storing ortho phosphates (Pi) is polymerization. Polymerized Pi's (polyphosphates: (PO3-)n: polyPs) serve as a Pi bank, as well as a catiion chelator, energy source, & regulator of responses to stresses in the stationary phase of culture growth and development1. PolyP biochemistry has been investigated in yeasts, bacteria & plants2. Bigeochemical cycling of P includes the condensation of Pi into pyro (P2O7-4), & polyPs, & the release of Pi from these compounds by the hydrolytic degradation of Pi from phosphomonoester bonds. Alkaline phosphatase (ALP) is one of the predominate enzymes for regenerating Pi in aquatic systems3, & it cleaves Pi from polyPs. ALP is also the enzyme associated with apatite biomineralization in vertebrates4. PolyP was proposed to be the ALP substrate in bone mineralization5. Where calcium ions are plentiful in many aquatic environments, there is no requirement for aquatic life to generate Ca-stores. However, terrestrial vertebrates benefit from a bioavailable Ca-store such as apatite. The Pi storage strategy of polymerizing PO4-3 into polyPs dovetails well with Ca-banking, as polyPs sequester Ca, forming a neutral calcium polyphosphate (Ca-polyP: (Ca(PO3)2)n) complex. This neutral complex represents a high total [Ca+2] & [PO4-3], without the threat of inadvertent apatite precipitation, as the free [Ca+2] & [PO4-3], and therefore apatite saturation, are zero. Recent identification of polyP in regions of bone resorption & calcifying cartilage5 suggests that vertebrates may use polyP chemistry to bank Ca+2 and PO4-3. In vitro experiments with nanoparticulate Ca-polyP & ALP were undertaken to determine if carbonated apatite could precipitate from 1M Ca-polyP in Pi-free “physiological fluid” (0.1 M NaCl, 2 mM Ca+2, 0.8 mM Mg+2, pH ~8.0 ±0.5, 37 °C), as this is estimated to generate the [Ca+2] & [PO4-3] required to form the apatite content of bone tissue

  10. Immobilization of uranium in contaminated soil by natural apatite addition

    International Nuclear Information System (INIS)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana

    2007-01-01

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P 2 O 5 in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P 2 O 5 in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

  11. Preparation of mica/apatite glass-ceramics biomaterials

    International Nuclear Information System (INIS)

    Liu Yong; Sheng Xiaoxian; Dan Xiaohong; Xiang Qijun

    2006-01-01

    Glass-ceramics have become more and more important biomaterials. In this work mica glass/apatite composites with various compositions were prepared by casting and subsequent heat treatments. The effects of composition, phase constitution and crystallinity on mechanical properties, including elastic modulus and transverse rupture strength (TRS), were investigated by using X-ray diffraction analyses (XRD), scanning electron microscopy (SEM) and mechanical tests. Results show that addition of apatite composition in mica glass accelerates the crystallization process and induces the formation of fluoroapatite phase, and the nucleation of apatite crystals occurs before that of mica crystals. The fuoroapatite in this work is needle-like, which is almost the same to that in human bone. The transverse rupture strength increases with the content of fluoroapatite and the crystallinity increasing, except that at a low apatite content the mechanical properties are lower than those of mica glass under the same processing conditions. The transverse rupture strength and elastic modulus obtained in this work fall in the range of those of human bone. SBF immersion test demonstrates good bioactivity of this biomaterial

  12. Monitoring tablet surface roughness during the film coating process

    DEFF Research Database (Denmark)

    Seitavuopio, Paulus; Heinämäki, Jyrki; Rantanen, Jukka

    2006-01-01

    The purpose of this study was to evaluate the change of surface roughness and the development of the film during the film coating process using laser profilometer roughness measurements, SEM imaging, and energy dispersive X-ray (EDX) analysis. Surface roughness and texture changes developing during...... the process of film coating tablets were studied by noncontact laser profilometry and scanning electron microscopy (SEM). An EDX analysis was used to monitor the magnesium stearate and titanium dioxide of the tablets. The tablet cores were film coated with aqueous hydroxypropyl methylcellulose, and the film...... coating was performed using an instrumented pilot-scale side-vented drum coater. The SEM images of the film-coated tablets showed that within the first 30 minutes, the surface of the tablet cores was completely covered with a thin film. The magnesium signal that was monitored by SEM-EDX disappeared after...

  13. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    International Nuclear Information System (INIS)

    Alabbasi, Alyaa; Mehjabeen, Afrin; Kannan, M. Bobby; Ye, Qingsong; Blawert, Carsten

    2014-01-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R p ) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i corr ) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i corr by almost 100%. As expected, the R p of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R p of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack

  14. Biodegradable polymer for sealing porous PEO layer on pure magnesium: An in vitro degradation study

    Energy Technology Data Exchange (ETDEWEB)

    Alabbasi, Alyaa; Mehjabeen, Afrin [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Kannan, M. Bobby, E-mail: bobby.mathan@jcu.edu.au [Biomaterials and Engineering Materials (BEM) Laboratory, James Cook University, Townsville 4811, Queensland (Australia); Ye, Qingsong [Discipline of Dentistry, James Cook University, Townsville 4811, Queensland (Australia); Blawert, Carsten [Magnesium Innovation Centre, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht 21502 (Germany)

    2014-05-01

    Graphical abstract: - Highlights: • Poly(L-lactide) was used to seal the porous PEO layer on Mg. • The dual-layer coating improved the in vitro degradation resistance of Mg. • Localized degradation was inhibited in the dual-layer coated Mg. - Abstract: An attempt was made to seal the porous silicate-based plasma electrolytic oxidation (PEO) layer on pure magnesium (Mg) with a biodegradable polymer, poly(L-lactide) (PLLA), to delay the localized degradation of magnesium-based implants in body fluid for better in-service mechanical integrity. Firstly, a silicate-based PEO coating on pure magnesium was performed using a pulsed constant current method. In order to seal the pores in the PEO layer, PLLA was coated using a two-step spin coating method. The performance of the PEO–PLLA Mg was evaluated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The EIS results showed that the polarization resistance (R{sub p}) of the PEO–PLLA Mg was close to two orders of magnitude higher than that of the PEO Mg. While the corrosion current density (i{sub corr}) of the pure Mg was reduced by 65% with the PEO coating, the PEO–PLLA coating reduced the i{sub corr} by almost 100%. As expected, the R{sub p} of the PEO–PLLA Mg decreased with increase in exposure time. However, it was noted that the R{sub p} of the PEO–PLLA Mg even after 100 h was six times higher than that of the PEO Mg after 48 h exposure, and did not show any visible localized attack.

  15. Optical characterization of magnesium incorporation in p-GaN layers for core–shell nanorod light-emitting diodes

    Science.gov (United States)

    Gîrgel, I.; Šatka, A.; Priesol, J.; Coulon, P.-M.; Le Boulbar, E. D.; Batten, T.; Allsopp, D. W. E.; Shields, P. A.

    2018-04-01

    III-nitride nanostructures are of interest for a new generation of light-emitting diodes (LEDs). However, the characterization of doping incorporation in nanorod (NR) structures, which is essential for creating the p-n junction diodes, is extremely challenging. This is because the established electrical measurement techniques (such as capacitance–voltage or Hall-effect methods) require a simple sample geometry and reliable ohmic contacts, both of which are difficult to achieve in nanoscale devices. The need for homogenous, conformal n-type or p-type layers in core–shell nanostructures magnifies these challenges. Consequently, we demonstrate how a combination of non-contact methods (micro-photoluminescence, micro-Raman and cathodoluminescence), as well as electron-beam-induced-current, can be used to analyze the uniformity of magnesium incorporation in core–shell NRs and make a first estimate of doping levels by the evolution of band transitions, strain and current mapping. These techniques have been used to optimize the growth of core–shell nanostructures for electrical carrier injection, a significant milestone for their use in LEDs.

  16. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Norhidayu Muhamad [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Kadir, Mohammed Rafiq Abdul, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-12-15

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  17. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    International Nuclear Information System (INIS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-01-01

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process

  18. Characterization of new bioactive coatings of hydroxyapatite and TiO2 obtained by High-Velocity Oxy-Fuel

    International Nuclear Information System (INIS)

    Melero, H.; Fernandez, J.; Dosta, S.; Guilemany, J. M.

    2011-01-01

    Hydroxyapatite (Hap: Ca 1 0(PO 4 ) 6 OH 2 ) is a biocompatible and bioactive ceramic material widely used as a coating on metal surfaces (dental implants, hip replacements ...), but the low adhesion between Hap and the substrate, due to differences in thermal expansion coefficients of both (very important in thermal spraying because of the fast cooling of the coating, which can produce a lost of adherence), and the degradation of Hap, have been tried to be improved through the incorporation of TiO 2 to get a good combination of mechanical properties. Therefore, the objective of this project is to produce coatings of Hap 80% TiO 2 and 20% (by weight) on Ti6Al4V by High-Speed Thermal Spray (HVOF). The study of the microstructure has been carried out using scanning electron microscopy and characterization of the crystalline phases by X-ray diffraction and Raman spectrometry. The coatings adhesion has been measured by tensile tests according to ASTM C633-01 (2008), and their bioactivity also has been evaluated through its immersion in simulated body fluid (SBF), in order to measure their capacity to form an apatite layer on their surface. (Author) 26 refs.

  19. Characterization of magnesium phosphate ceramics incorporating off-gas filters

    International Nuclear Information System (INIS)

    Yang, Jae Hwan; Lee, Chang Hwa; Heo, Chul Min; Jeon, Min Ku; Kang, Kweon Ho

    2011-01-01

    Radioactive cesium (Cs-137) and technetium (Tc-99) are discharged from the spent fuel as gaseous forms during the head-end process in pyroprocess. These off-gases are safely trapped via porous ceramic filters made of fly ash and calcium based material. Spent filters have to be treated, converted into proper waste forms in order to be disposed safely at a repository. Conventional technology used to make waste forms such as vitrification requires high temperature and complex process. In this study, we report a promising method to stabilize spent filters containing cesium and technetium using magnesium phosphate ceramics. Simulated spent filters were fabricated by vaporizing nonradioactive cesium and rhenium (a surrogate of Tc) through the voloxidizer. The crushed filters were mixed with raw materials of magnesium phosphate ceramics, to be stabilized in the phosphate ceramic matrix. Characterization of the waste forms was made by the compressive strength test, apparent porosity, XRD analysis, and SEM analysis. The sample containing filters showed the excellent mechanical property, with the highest compressive strength of 38.1 MPa in the sample with 30 wt% of Cs-filter. Microstructural analysis suggests that wastes are embedded in the crystalline phase formed by an acid-base reaction. (author)

  20. Formation mechanism and adhesive strength of a hydroxyapatite/TiO{sub 2} composite coating on a titanium surface prepared by micro-arc oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shimin, E-mail: lshm1216@163.com [Department of Gem and Material Technique, Tianjin University of Commerce, Tianjin 300134 (China); Li, Baoe; Liang, Chunyong; Wang, Hongshui [School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Qiao, Zhixia [School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134 (China)

    2016-01-30

    Graphical abstract: - Highlights: • Hydroxyapatite/TiO{sub 2} composite coating was prepared by one-step micro-arc oxidation. • The formation mechanism of composite coating was investigated. • Higher bonding strength between hydroxyapatite and TiO{sub 2} layer was obtained. - Abstract: A hydroxyapatite (HA)/TiO{sub 2} composite coating was prepared on a titanium surface by one-step micro-arc oxidation (MAO). The formation mechanism of the composite coating was investigated and the adhesion of the coating to the substrate was also measured. The results showed that flocculent structures could be obtained during the early stages of treatment. As the treatment period extended, increasing amounts of Ca–P precipitate appeared on the surface, and the flocculent morphology transformed into a plate-like morphology. Then the plate-like calcium and phosphate salt self-assembled to form flower-like apatite. The Ca/P atomic ratio gradually decreased, indicating that the amounts of Ca{sup 2+} ions which diffused into the coating decreased more rapidly than that of PO{sub 4}{sup 3−} or HPO{sub 4}{sup 2−}. The adhesive strength between the apatite and TiO{sub 2} coating was improved. This improvement is attributed to the interlocking effect between the apatite and TiO{sub 2} layer which formed simultaneously during the early stages of the one-step MAO. This study shows that it is a promising method to prepare bioactive coating on a titanium surface.