WorldWideScience

Sample records for magnesium hydroxide nanoparticles

  1. Novel synthesis of magnesium hydroxide nanoparticles modified with organic phosphate and their effect on the flammability of acrylonitrile-butadiene styrene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Nour F., E-mail: drnour2005@yahoo.com [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt); Goda, Emad S.; Nour, M.A. [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt); Sabaa, M.W. [Chemistry Department, Faculty of Science, Cairo University, NahdetMisr Street, Giza 12613 (Egypt); Hassan, M.A., E-mail: Mohamed_a_hassan@hotmail.com [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt)

    2015-11-15

    New and facile method for the synthesis and modification of magnesium hydroxide nanoparticles has been developed. The organic phosphate was used to facilitate the synthesis and wrapping of magnesium hydroxide nanoparticles with organic phosphate shell. The size of the nanoparticles wrapped with phosphate has an average diameter range from 46 to 125 nm. The preparation method has governed the nanoparticles diameter based on reaction time. Thermal stability and morphological properties of the new nanoparticles coated phosphates were investigated. The developed magnesium hydroxide nanoparticles-organic phosphate achieved a very good compatibility when dispersed in acrylonitrile-butadiene styrene polymer (ABS) produced dispersed nanocomposites. The flammability and thermal properties of the new polymer nanocomposites were studied. The rate of burning of the nanocomposites was reduced to 9.8 mm/min compared to 15, 21.9 and 42.5 mm/min for polymer-conventional magnesium hydroxide composite, polymer-conventional magnesium hydroxide-organic phosphate composite and virgin polymer, respectively. The peak heat release rate (PHRR) and total heat release (THR) of the new nanocomposites were recorded as 243.4 kW/m{sup 2} and 19.2 MJ/m{sup 2}, respectively, achieved 71% reduction for PHRR and 55% for THR. The synergism between magnesium hydroxide nanoparticles and organic phosphates shell was also studied. The developed nanoparticles suppressed the emission of toxic gases. The different materials were characterized using thermal gravimetric analysis, fourier transform infrared spectroscopy, transmission electron microscopy. The flammability properties were evaluated using UL94 horizontal method and cone calorimeter. The dispersion of magnesium hydroxide nanoparticles-organic phosphate in ABS was studied using scanning electron microscope. - Highlights: • Novel and facile nanoparticles synthesis and modification have developed. • Magnesium hydroxide nanoparticles size has

  2. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  3. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  4. Continuous synthesis of magnesium-hydroxide, zinc-oxide, and silver nanoparticles by microwave plasma in water

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Mukasa, Shinobu; Toyota, Hiromichi; Inoue, Toru; Nomura, Shinfuku

    2011-01-01

    Nanoparticles are continuously synthesized from submerged magnesium, zinc, and silver rods 1–2 mm in diameter by microwave plasma in pure water at 20 kPa. Magnesium-hydroxide nanoplates shaped as triangles, truncated triangles or hexagons with 25–125 nm in size are synthesized with a production rate of 60 g h −1 . Zinc-oxide nanoparticles formed as sharp sticks with diameters of 50 nm and lengths of 150–200 nm are synthesized with a production rate of 14 g h −1 . Silver nanoparticles with a diameter of approximately 6 nm are synthesized with a production rate of 0.8 g h −1 . The excitation temperature is estimated by applying the Boltzmann plot method in assumption of local thermodynamic equilibrium. The excitation temperatures obtained from hydrogen, magnesium, and zinc lines are 3300 ± 100 K, 4000 ± 500 K, and 3200 ± 500 K, respectively.

  5. Application of magnesium hydroxide and barium hydroxide for the ...

    African Journals Online (AJOL)

    Application of magnesium hydroxide and barium hydroxide for the removal of metals and sulphate from mine water. ... equivalent to the Ba(OH)2 dosage. During CO2-dosing, CaCO3 is precipitated to the saturation level of CaCO3. Keywords: Magnesium hydroxide; barium hydroxide; sulphate removal; water treatment ...

  6. Surface modification of magnesium aluminum hydroxide nanoparticles with poly(methyl methacrylate) via one-pot in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Guo Xiaojun, E-mail: guoxj6906@163.com [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China); Zhao Leihua; Zhang Li; Li Jing [College of Chemistry and Chemical Engineering, Northwest Normal University, 967 Anning East Road, Lanzhou 730070 (China)

    2012-01-15

    Hydrophobic magnesium aluminum hydroxide composite particles (PMMA-MAH) were obtained by means of grafting poly(methyl methacrylate) (PMMA) onto the surface of magnesium aluminum hydroxide(MAH) nanoparticles after a novel type of phosphate coupling agent (DN-27) modification. The introduction of functional double bonds was firstly conducted on the surface of nanoparticles by DN-27 modification, followed by one-pot in situ polymerization on the particles surface using methyl methacrylate (MMA) as monomer, azoisobutyronitrile (AIBN) as initiator and sodium dodecyl sulfate (SDS) as stabilizer to graft PMMA on the surface of DN-27-modified MAH particles. The obtained composite particles were characterized by field-emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), X-ray powder diffraction (XRD). The results show that the organic macromolecule PMMA could be successfully grafted on the surface of DN-27-modified MAH nanoparticles and the thermal stability of the PMMA-MAH composite particles had been improved. Compared with unmodified blank MAH sample, the product obtained with this method possesses better hydrophobic properties such as a higher water contact angle of 108 Degree-Sign and a well dispersion.

  7. Synthesis Magnesium Hydroxide Nanoparticles and Cellulose Acetate- Mg(OH2-MWCNT Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Ghorbanali

    2015-04-01

    Full Text Available Mg(OH2 nanoparticles were synthesized by a rapid microwave reaction. The effect of sodium dodecyl sulfonate (SDS as anionic surfactant and cetyl tri-methyl ammonium bromide (CTAB as cationic surfactant on the morphology of magnesium hydroxide nanostructures was investigated. Multi wall carbon nano tubes was organo-modified for better dispersion in cellulose acetate matrix. The influence of Mg(OH2 nanoparticles and modified multi wall carbon nano tubes (MWCNT on the thermal stability of the cellulose acetate (CA matrix was studied using thermo-gravimetric analysis (TGA. Nanostructures were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and Fourier transform infrared (FT-IR spectroscopy. Thermal decomposition of the nanocomposites shift towards higher temperature in the presence of Mg(OH2 nanostructures. The enhancement of thermal stability of nanocomposites is due to the endothermic decomposition of Mg(OH2 and release of water which dilutes combustible gases.

  8. Polystyrene/magnesium hydroxide nanocomposite particles prepared by surface-initiated in-situ polymerization

    International Nuclear Information System (INIS)

    Liu Hui; Yi Jianhong

    2009-01-01

    In order to avoid their agglomeration and incompatibility with hydrophobic polystyrene substrate, magnesium hydroxide nanoparticles were encapsulated by surface-initiated in-situ polymerization of styrene. The process contained two steps: electrostatic adsorption of initiator and polymerization of monomer on the surface of magnesium hydroxide. It was found that high adsorption ratio in the electrostatic adsorption of initiator could be attained only in acidic region, and the adsorption belonged to typical physical process. Compared to traditional in-situ polymerization, higher grafting ratio was obtained in surface-initiated in-situ polymerization, which can be attributed to weaker steric hindrance. Both Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) indicated that polystyrene/magnesium hydroxide nanocomposite particles had been successfully prepared by surface-initiated in-situ polymerization. The resulting samples were also analyzed and characterized by means of contact angle testing, dispersibility evaluation and thermogravimetric analysis

  9. Preparation of plate-shape nano-magnesium hydroxide from asbestos tailings

    International Nuclear Information System (INIS)

    Du Gaoxiang; Zheng Shuilin

    2009-01-01

    To prepare magnesium hydroxide is one of the effective methods to the comprehensive utilization of asbestos tailings. Nano-scale magnesium hydroxide was prepared and mechanisms of in-situ surface modification were characterized in the paper. Process conditions of preparation of magnesium hydroxide from purified hydrochloric acid leachate of asbestos tailings were optimized and in-situ surface modification of the product was carried out. Results showed that optimum process conditions for preparing nano-scale magnesium hydroxide were as follows: initial concentration of Mg 2+ in the leachate was 22.75g/L, precipitant was NaOH solution (mass concentration 20%), reaction temperature was 50 deg. C, and reaction time was 5min. The diameter and thickness of the plate nano-scale magnesium hydroxide powder prepared under optimal conditions were about 100 nm and 10 nm, respectively. However, particle agglomeration was obvious, the particle size increased to micron-grade. Dispersity of the magnesium hydroxide powder could be elevated by in-situ modification by silane FR-693, titanate YB-502 and polyethylene glycol and optimum dosages were 1.5%, 1.5% and 0.75% of the mass of magnesium hydroxide, respectively. All of the modifiers adsorbed chemically on surfaces of magnesium hydroxide particles, among which Si-O-Mg bonds formed among silane FR-693 and the particle surfaces and Ti-O-Mg among titanate YB-502 and the surfaces.

  10. Anticorrosive magnesium hydroxide coating on AZ31 magnesium alloy by hydrothermal method

    International Nuclear Information System (INIS)

    Zhu Yanying; Wu Guangming; Xing Guangjian; Li Donglin; Zhao Qing; Zhang Yunhong

    2009-01-01

    Magnesium alloys are potential biodegradable biomaterials in orthopedic surgery. However, the rapid degradation rate has limited their application in biomedical field. A great deal of studies have been done to improve the resistance of magnesium alloys. In this article, An anticorrosive magnesium hydroxide coating with a thickness of approximately 100μm was formed on an AZ31 magnesium alloy by hydrothermal method. The morphology of the coatings were observed by an optical microscope and SEM. And the samples were soaked in hank's solution (37 deg. C) to investigate the corrosion resistance. Magnesium alloy AZ31 with magnesium hydroxide coatings present superior corrosion resistance than untreated samples.

  11. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    Science.gov (United States)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  12. HYDROGEN PEROXIDE BLEACHING OF CMP PULP USING MAGNESIUM HYDROXIDE

    Directory of Open Access Journals (Sweden)

    Farhad Zeinaly

    2009-11-01

    Full Text Available Conventional bleaching of hardwood CMP pulp with magnesium hydroxide (Mg(OH2 show significant benefits over bleaching with sodium hydroxide (NaOH under various conditions. Magnesium hydroxide bleaching generate higher optical properties, higher pulp yield and lower effluent COD at the same chemical charge, but the physical properties were found to be similar for both processes. The initial freeness of the bleached pulps and refining value to reach a target freeness (about 350 ml. CSF were more for the Mg(OH2-based process. The residual peroxide of filtrate from the Mg(OH2-based process was very high as compared to conventional bleaching.

  13. Spider silk as a template for obtaining magnesium oxide and magnesium hydroxide fibers

    Directory of Open Access Journals (Sweden)

    Dmitrović Svetlana

    2018-01-01

    Full Text Available Spider silk fibers, collected from Pholcus Phalangioides spider were used as a template for obtaining magnesium oxide (MgO, periclase as well as magnesium hydroxide (Mg(OH2, brucite fibers. Magnesium oxide fibers were obtained in a simple manner by heat induced decomposition of magnesium salt (MgCl2 in the presence of the spider silk fibers, while magnesium hydroxide fibers were synthesized by hydration of MgO fibers at 50, 70 and 90 C, for 48 and 96 h. According to Scanning electron microscopy (SEM, dimensions of spider silk fibers determined the dimension of synthesized MgO fibers, while for Mg(OH2 fibers, the average diameter was increased with prolonging the hydration period. The surface of Mg(OH2 fibers was noticed to be covered with brucite in a form of plates. X-Ray diffraction (XRD analysis showed that MgO fibers were single-phased (the pure magnesium oxide fibers were obtained, while Mg(OH2 fibers were two- or single-phased brucite depending on incubation period, and/or incubation temperature. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 45012

  14. Honeywell Modular Automation System Computer Software Documentation for the Magnesium Hydroxide Precipitation Process

    International Nuclear Information System (INIS)

    STUBBS, A.M.

    2001-01-01

    The purpose of this Computer Software Document (CSWD) is to provide configuration control of the Honeywell Modular Automation System (MAS) in use at the Plutonium Finishing Plant (PFP) for the Magnesium Hydroxide Precipitation Process in Rm 230C/234-5Z. The magnesium hydroxide process control software Rev 0 is being updated to include control programming for a second hot plate. The process control programming was performed by the system administrator. Software testing for the additional hot plate was performed per PFP Job Control Work Package 2Z-00-1703. The software testing was verified by Quality Control to comply with OSD-Z-184-00044, Magnesium Hydroxide Precipitation Process

  15. ADSORPTION OF PITCH AND STICKIES ON MAGNESIUM ALUMINUM HYDROXIDES TREATED AT DIFFERENT TEMPERAURES

    Directory of Open Access Journals (Sweden)

    Guodong Li

    2011-04-01

    Full Text Available Magnesium aluminum hydroxides (MAH of nitrate and carbonate forms were prepared by co-precipitation, dried at different temperatures, and employed as an adsorbent for pitch and stickies in papermaking. Results indicated that MAH that had been heat-treated had higher adsorption capacity to model pitch and stickies at neutral pH. Low-temperature-dried magnesium aluminum hydroxides of nitrate form (MAH-NO3 had higher adsorption capacity to model pitch and model stickies than those of the carbonate form (MAH-CO3. Increasing the drying temperature of MAH reduced the difference of adsorption capacity between MAH-NO3 and MAH-CO3. Higher-temperature-dried magnesium aluminum hydroxides also showed higher adsorption capacity to model pitch and stickies when the drying temperature was lower than 550 oC. MAH displayed higher adsorption capacity while a lower initial adsorption rate of model stickies than of model pitch. The model pitch and stickies were adsorbed on MAH significantly by charge neutralization and distributed mainly on the surface of the platelets of magnesium aluminum hydroxides. The experimental isothermal adsorption data of model pitch and stickies on MAH dried at 500 oC fit well to the Freundlich and Dubinin–Radushkevich isotherm equations.

  16. Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xi [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China); Ma, Hongwen, E-mail: mahw@cugb.edu.cn [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Xiaoqian [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Zhouqing [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China)

    2014-08-15

    Highlights: • We use the anti-drop precipitation method for synthesis of magnesium hydroxide. • Boron mud which is solid waste from a borax factory is used as the magnesium source. • The magnesium hydroxide nanoflowers are prepared in a short time. • The as-prepared magnesium hydroxide can be used as an effective flame retardant. - Abstract: Using boron mud as the starting material, the flower-like magnesium hydroxide (MH) has been successfully prepared via anti-drop precipitation method. The effect of NH{sub 3}·H{sub 2}O concentration, aging time, and surfactant on the morphology of MH was investigated. The optimum precipitation conditions are dropping MgSO{sub 4} solution in 5% NH{sub 3}·H{sub 2}O solution, with 3% polyethylene glycol as surfactant, aging for 30 min. XRD, SEM, FI-IR, and TG/DTA have been employed to characterize the as-prepared samples. XRD reveals that MH with high purity has the brucite structure. SEM images show that the flower-like MH exists in the form of mono-disperse well uniform spherical aggregation with diameter of 3–5 μm. TG/DTA shows a total percentage of weight loss 33.6% with a well-defined endothermic peak near 381.3 °C corresponding to the decomposition of MH. Furthermore, it reports that the extremely fast primary nucleation is of significance for crystal growth of MH.

  17. Removal of Indigo Carmine Dye from Aqueous Solution Using Magnesium Hydroxide as an Adsorbent

    Directory of Open Access Journals (Sweden)

    Thimmasandra Narayan Ramesh

    2015-01-01

    Full Text Available Magnesium hydroxide is used as an adsorbent for the removal of indigo carmine dye from aqueous solution. We have investigated the effectiveness of removal of indigo carmine dye from aqueous solutions at pH 6-7 and 12-13 using magnesium hydroxide thereby varying the dose of the adsorbent, concentration of the dye, duration, and temperature. Structural transformations of adsorbent during the adsorption process at different pH values are monitored using powder X-ray diffraction and infrared spectroscopy. Different types of adsorption isotherm models were evaluated and it was found that Langmuir isotherm fits well at both pH values (6-7 and 12-13. Adsorption of indigo carmine onto magnesium hydroxide at pH 6-7/pH 12-13 follows pseudo-second order rate kinetics.

  18. Magnesium hydroxide as the neutralizing agent for radioactive hydrochloric acid solutions

    International Nuclear Information System (INIS)

    Palmer, M.J.; Fife, K.W.

    1995-10-01

    The current technology at Los Alamos for removing actinides from acidic chloride waste streams is precipitation with approximately 10 M potassium hydroxide. Although successful, there are many inherent drawbacks to this precipitation technique which will be detailed in this paper. Magnesium hydroxide (K sp = 1.3 x 10 -11 ) has limited solubility in water and as a result of the common ion effect, cannot generate a filtrate with a pH greater than 9. At a pH of 9, calcium (K sp = 5.5 x 10 -6 ) will not coprecipitate as the hydroxide. This is an important factor since many acidic chloride feeds to hydroxide precipitation contain significant amounts of calcium. In addition, neutralization with Mg(OH) 2 produces a more filterable precipitate because neutralization occurs as the Mg(OH) 2 is dissolved by the acid rather than as a result of the much faster liquid/liquid reaction of KOH with the waste acid. This slower solid/liquid reaction allows time for crystal growth to occur and produces more easily filterable precipitates. On the other hand, neutralization of spent acid with strong KOH that yields numerous hydroxide ions in solution almost instantaneously forming a much larger volume of small crystallites that result in gelatinous, slow-filtering precipitates. Magnesium hydroxide also offers a safety advantage. Although mildly irritating, it is a weak base and safe and easy to handle. From a waste minimization perspective, Mg(OH) 2 offers many advantages. First, the magnesium hydroxide is added as a solid. This step eliminates the diluent water used in KOH neutralizations. Secondly, because the particle size of the precipitate is larger, more actinides are caught on the filter paper resulting in a smaller amount of actinide being transferred to the TA-50 Liquid Waste Treatment Facility. Third, the amount of solids that must be reprocessed is significantly smaller resulting in less waste generation from the downstream processes

  19. Study of Structural, Morphological and Optical Properties of Magnesium Hydroxide Nanoplates Synthesized by Precipitation Route

    Directory of Open Access Journals (Sweden)

    S. yousefi

    2018-03-01

    Full Text Available In this paper, high purity magnesium hydroxide nanoplates were successfully synthesized by using brine rich in magnesium ions as precursor and NaOH as precipitating agent without using dispersant agent in the room temoerature. The study and characterization of various properties of obtained nanopowder was carried out by X-Ray Diffraction (XRD, Field Emission Scanning Electron Microscopy (FESEM, Energy Dispersive X-ray Fluorescence Spectrometer (EDX, Fourier Transform Infrared Spectrophotometer (FTIR and Ultraviolet–visible spectroscopy (UV-Vis. The FESEM and XRD analysis results showed that magnesium hydroxide powder had nanoplates with the average crystallite size 17.1nm and no impurity; that was in agreement with the result of EDX and FTIR perfectly. Furthermore, optical characteristics of magnesium hydroxide nanoplates by UV-Vis spectroscopy showed an optical band gap of 5.5 eV. This wide band gap can be a useful innovation in optoelectronic sub-micron devices.

  20. Utilization of Magnesium Hydroxide Produced by Magnesia Hydration as Fire Retardant for Nylon 6-6,6

    Directory of Open Access Journals (Sweden)

    Rocha Sônia D.F.

    2001-01-01

    Full Text Available The present work investigates the use of magnesium hydroxide, produced by magnesia hydration, as a fire retardant in polymers. The hydration was carried out in an autoclave, at temperature of 130°C for 1 hour, and the product was further submitted to cominution in a jet mill. The solids were characterized with regard to their chemical composition, particle size distribution, surface area and morphology. The performance evaluation of the hydroxide as a flame retardant for a copolymer of nylon 6-6,6 was carried out according to the UL94 specifications for vertical burning tests. V-0 flammability rating at 1.6 mm (60% magnesium hydroxide-filled nylon composite and at 3.2 mm (40% magnesium hydroxide filled nylon composite were achieved. Mechanical properties were maintained at the desired values. These results indicate that the hydroxide obtained from magnesia hydration can be successfully employed as a fire retardant for nylon 6-6,6.

  1. Preparation and characterization of poly(glycidyl methacrylate) grafted from magnesium hydroxide particles via SI-ATRP

    International Nuclear Information System (INIS)

    Liu Jianhui; Feng Na; Chang Suqin; Kang Hongliang

    2012-01-01

    In order to improve the compatibility of magnesium hydroxide particles [Mg(OH) 2 ] and polymer matrix, poly(glycidyl methacrylate) (PGMA) grafted from magnesium hydroxide particles were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP). In this work, two approaches for the immobilization of ATRP initiator on the magnesium hydroxide particles surface were compared and selected. The density of initiator was significantly increased by the method of introducing more hydroxyl groups via ATRP of 2-hydroxyethyl methacrylate (HEMA) on the surface. The percentage of bromine atom for the initiator-functionalized magnesium hydroxide particles [Mg(OH) 2 -g-PHEMA-Br] reached to 1.75%, compared to 0.48% for Mg(OH) 2 -Br determined by XPS analysis. The surface-initiated ATRP of glycidyl methacrylate (GMA) can be conducted in a controlled manner, as revealed by the linear kinetic plot, linear increase of number average molecular weight (M n ) with monomer conversions, and the relatively narrow molecular weight distributions (M w /M n ∼ 1.4) of PGMA chains. The percentage of grafting PG (%) and the thickness of the grafted polymer layer increased with the increasing of polymerization time and reached to 116.6% and 197.6 nm after 300 min respectively. As for the polymerization with different initial monomer concentration, the number average molecular weights (M n ) and weight average molecular weights (M w ) of PGMA increased with the increasing of initial monomer concentration. TGA indicated that the initial decomposition temperature of Mg(OH) 2 -g-PHEMA-PGMA composite particles (253 °C) was much lower than that of unmodified magnesium hydroxide particles (337 °C).

  2. Preparation and characterization of poly(glycidyl methacrylate) grafted from magnesium hydroxide particles via SI-ATRP

    Energy Technology Data Exchange (ETDEWEB)

    Liu Jianhui [School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034 (China); Feng Na, E-mail: fengna12@163.com [School of Textile and Materials Engineering, Dalian Polytechnic University, Dalian 116034 (China); Chang Suqin [China Leather and Footwear Industry Research Institute, Beijing 100015 (China); Kang Hongliang [State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Material, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China)

    2012-06-01

    In order to improve the compatibility of magnesium hydroxide particles [Mg(OH){sub 2}] and polymer matrix, poly(glycidyl methacrylate) (PGMA) grafted from magnesium hydroxide particles were synthesized via surface-initiated atom transfer radical polymerization (SI-ATRP). In this work, two approaches for the immobilization of ATRP initiator on the magnesium hydroxide particles surface were compared and selected. The density of initiator was significantly increased by the method of introducing more hydroxyl groups via ATRP of 2-hydroxyethyl methacrylate (HEMA) on the surface. The percentage of bromine atom for the initiator-functionalized magnesium hydroxide particles [Mg(OH){sub 2}-g-PHEMA-Br] reached to 1.75%, compared to 0.48% for Mg(OH){sub 2}-Br determined by XPS analysis. The surface-initiated ATRP of glycidyl methacrylate (GMA) can be conducted in a controlled manner, as revealed by the linear kinetic plot, linear increase of number average molecular weight (M{sub n}) with monomer conversions, and the relatively narrow molecular weight distributions (M{sub w}/M{sub n} {approx} 1.4) of PGMA chains. The percentage of grafting PG (%) and the thickness of the grafted polymer layer increased with the increasing of polymerization time and reached to 116.6% and 197.6 nm after 300 min respectively. As for the polymerization with different initial monomer concentration, the number average molecular weights (M{sub n}) and weight average molecular weights (M{sub w}) of PGMA increased with the increasing of initial monomer concentration. TGA indicated that the initial decomposition temperature of Mg(OH){sub 2}-g-PHEMA-PGMA composite particles (253 Degree-Sign C) was much lower than that of unmodified magnesium hydroxide particles (337 Degree-Sign C).

  3. Improving Corrosion Resistance and Biocompatibility of Magnesium Alloy by Sodium Hydroxide and Hydrofluoric Acid Treatments

    Directory of Open Access Journals (Sweden)

    Chang-Jiang Pan

    2016-12-01

    Full Text Available Owing to excellent mechanical property and biodegradation, magnesium-based alloys have been widely investigated for temporary implants such as cardiovascular stent and bone graft; however, the fast biodegradation in physiological environment and the limited surface biocompatibility hinder their clinical applications. In the present study, magnesium alloy was treated by sodium hydroxide (NaOH and hydrogen fluoride (HF solutions, respectively, to produce the chemical conversion layers with the aim of improving the corrosion resistance and biocompatibility. The results of attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR and X-ray photoelectron spectroscopy (XPS indicated that the chemical conversion layers of magnesium hydroxide or magnesium fluoride were obtained successfully. Sodium hydroxide treatment can significantly enhance the surface hydrophilicity while hydrogen fluoride treatment improved the surface hydrophobicity. Both the chemical conversion layers can obviously improve the corrosion resistance of the pristine magnesium alloy. Due to the hydrophobicity of magnesium fluoride, HF-treated magnesium alloy showed the relative better corrosion resistance than that of NaOH-treated substrate. According to the results of hemolysis assay and platelet adhesion, the chemical surface modified samples exhibited improved blood compatibility as compared to the pristine magnesium alloy. Furthermore, the chemical surface modified samples improved cytocompatibility to endothelial cells, the cells had better cell adhesion and proliferative profiles on the modified surfaces. Due to the excellent hydrophilicity, the NaOH-treated substrate displayed better blood compatibility and cytocompatibility to endothelial cells than that of HF-treated sample. It was considered that the method of the present study can be used for the surface modification of the magnesium alloy to enhance the corrosion resistance and biocompatibility.

  4. REGIOSELECTIVE REACTIONS OF 3-ALKYL-1-PHENYL-2-PYRAZOLIN-5-ONES WITH ACYL HALIDES IN THE PRECENCE OF NONOSIZED MAGNESIUM HYDROXIDE AS A HIGHLY EFFECTIVE HETEROGENOUS BASE CATALYST Regioselektive Reaktionen von 3-Alkyl-1-PHENYL-2-pyrazolin-5-ONES Mit Acylhalogeniden IN DER PRECENCE DER NONOSIZED MAGNESIUM HYDROXIDE als hochwirksame heterogene BASE CATALYST

    OpenAIRE

    Hassan Sheibani and Bahman Massomi Nejad

    2012-01-01

    4-Acyl-3-alkyl-1-phenyl-2-pyrazolin-5-one derivatives were prepared by the regioselective acylation of 3-alkyl-1-phenyl-2-pyrazolin-5-ones in the presence of base catalysts such as calcium hydroxide [Ca(OH)2], magnesium hydroxide [Mg(OH)2] and nanosized magnesium hydroxide. In the presence of nanosized magnesium hydroxide, excellent yields of products were obtained and reaction times were significantly reduced.

  5. Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Qiuying; Rudenko, Pavlo; Miller, Dean J.; Wen, Jianguo; Berman, Diana; Zhang, Yuepeng; Arey, Bruce; Zhu, Zihua; Erdemir, Ali

    2017-06-01

    The paper reports the operando and self-healing formation of DLC films at sliding contact surfaces by the addition of synthetic magnesium silicon hydroxide (MSH) nanoparticles to base oil. The formation of such films leads to a reduction of the coefficient of friction by nearly an order of magnitude and substantially reduces wear losses. The ultralow friction layer characterized by transmission electron microscope (TEM), electron energy loss spectroscopy (EELS), and Raman spectroscopy consists of amorphous DLC containing SiOx that forms in a continuous and self-repairing manner during operation. This environmentally benign and simple approach offers promise for significant advances in lubrication and reduced energy losses in engines and other mechanical systems.

  6. Biodegradable magnesium nanoparticle-enhanced laser hyperthermia therapy

    Directory of Open Access Journals (Sweden)

    Wang Q

    2012-08-01

    Full Text Available Qian Wang,1 Liping Xie,1 Zhizhu He,2 Derui Di,2 Jing Liu1,21Department of Biomedical Engineering, School of Medicine, Tsinghua University, 2Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, People's Republic of ChinaBackground: Recently, nanoparticles have been demonstrated to have tremendous merit in terms of improving the treatment specificity and thermal ablation effect on tumors. However, the potential toxicity and long-term side effects caused by the introduced nanoparticles and by expelling them out of the body following surgery remain a significant challenge. Here, we propose for the first time to directly adopt magnesium nanoparticles as the heating enhancer in laser thermal ablation to avoid these problems by making full use of the perfect biodegradable properties of this specific material.Methods: To better understand the new nano “green” hyperthermia modality, we evaluated the effects of magnesium nanoparticles on the temperature transients inside the human body subject to laser interstitial heating. Further, we experimentally investigated the heating enhancement effects of magnesium nanoparticles on a group of biological samples: oil, egg white, egg yolk, in vitro pig tissues, and the in vivo hind leg of rabbit when subjected to laser irradiation.Results: Both the theoretical simulations and experimental measurements demonstrated that the target tissues injected with magnesium nanoparticles reached much higher temperatures than tissues without magnesium nanoparticles. This revealed the enhancing behavior of the new nanohyperthermia method.Conclusion: Given the unique features of magnesium nanoparticles – their complete biological safety and ability to enhance heating – which most other advanced metal nanoparticles do not possess, the use of magnesium nanoparticles in hyperthermia therapy offers an important “green” nanomedicine modality for treating tumors

  7. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys

    Science.gov (United States)

    Guo, Lian; Zhang, Fen; Lu, Jun-Cai; Zeng, Rong-Chang; Li, Shuo-Qi; Song, Liang; Zeng, Jian-Min

    2018-04-01

    The magnesium aluminum and zinc aluminum layered double hydroxides intercalated with NO3 -(MgAl-NO3-LDH and ZnAl-NO3-LDH) were prepared by the coprecipitation method, and the magnesium aluminum and the zinc aluminum layered double hydroxides intercalated with VO x -(MgAl-VO x -LDH and ZnAl-VO x -LDH) were prepared by the anion-exchange method. Morphologies, microstructures and chemical compositions of LDHs were investigated by SEM, EDS, XRD, FTIR, Raman and TG analyses. The immersion tests were carried to determine the corrosion inhibition properties of MgAl-VO x -LDH and ZnAl-VO x -LDH on AZ31 Mg alloys. The results showed that ZnAl-VO x -LDH possesses the best anion-exchange and inhibition abilities. The influence of treatment parameters on microstructures of LDHs were discussed. Additionally, an inhibition mechanism for ZnAl-VO x -LDH on the AZ31 magnesium alloy was proposed and discussed.

  8. Coordination Structure of Aluminum in Magnesium Aluminum Hydroxide Studied by 27Al NMR

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The coordination structure of aluminum in magnesium aluminum hydroxide was studiedby 27Al NMR. The result showed that tetrahedral aluminum (AlⅣ) existed in magnesiumaluminum hydroxide, and the contents of AlⅣ increased with the increase of the ratio of Al/Mg andwith the peptizing temperature. AlⅣ originated from the so-called Al13 polymer with the structureof one Al tetrahedron surrounded by twelve Al octahedrons.

  9. Selective Aerobic Oxidation of 5-Hydroxymethylfurfural in Water Over Solid Ruthenium Hydroxide Catalysts with Magnesium-Based Supports

    DEFF Research Database (Denmark)

    Gorbanev, Yury; Kegnæs, Søren; Riisager, Anders

    2011-01-01

    Solid catalyst systems comprised of ruthenium hydroxide supported on magnesium-based carrier materials (spinel, magnesium oxide and hydrotalcite) were investigated for the selective, aqueous aerobic oxidation of the biomass-derived chemical 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid...

  10. Investigation of boron extraction process with aid magnesium hydroxide from mother liquor of boron production

    International Nuclear Information System (INIS)

    Balapanova, B.S.; Zhajmina, R.E.; Serazetdinov, D.Z.

    1988-01-01

    Conditions of boron - magnesium concentrate preparation from mother liquor by coprecipitation of borate - ions by magnesium hydroxide are investigated. It is shown that boron - magnesium concentrate and products of its heat treatment at 100 - 500 deg C in water are dissolved partially, and in ammonium citrate - practically completely. Suppositions are made on the composition of the product prepared, on the the structure of its crystal lattice and the processes taking place in it during heat treatment. The conclusion is made on the perspectiveness of processing of mother liquor of boron industry for boron - magnesium concentrate

  11. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, D., E-mail: david.chartier@cea.fr [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Muzeau, B. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France); Stefan, L. [AREVA NC/D& S - France/Technical Department, 1 place Jean Millier 92084 Paris La Défense (France); Sanchez-Canet, J. [Commissariat à l' Energie Atomique et aux Energies Alternatives, CEA, DEN, DTCD, SPDE, F-30207 Bagnols-sur-Cèze (France); Monguillon, C. [DEN-Service d’Etude du Comportement des Radionucléides (SECR), CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette (France)

    2017-03-15

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  12. Magnesium alloys and graphite wastes encapsulated in cementitious materials: Reduction of galvanic corrosion using alkali hydroxide activated blast furnace slag

    International Nuclear Information System (INIS)

    Chartier, D.; Muzeau, B.; Stefan, L.; Sanchez-Canet, J.; Monguillon, C.

    2017-01-01

    Highlights: • Embedded in cement, magnesium is corroded by residual water present in porosity of the matrix. • Corrosion is enhanced by galvanic phenomenon when magnesium is in contact with graphite. • Galvanic corrosion of magnesium in contact with graphite debris is shown to be severe with ordinary Portland cement. • Galvanic corrosion is significantly lowered in high alkali medium such as sodium hydroxide. • Sodium hydroxide activated blast furnace slag is a convenient binder to embed magnesium. - Abstract: Magnesium alloys and graphite from spent nuclear fuel have been stored together in La Hague plant. The packaging of these wastes is under consideration. These wastes could be mixed in a grout composed of industrially available cement (Portland, calcium aluminate…). Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of Brucite resulting in a slow corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, and the quality of wasteform, it is important to select a cement matrix capable of lowering the corrosion kinetics. Many types of calcium based cements have been tested and most of them have caused strong hydrogen production when magnesium alloys and graphite are conditioned together because of galvanic corrosion. Exceptions are binders based on alkali hydroxide activated ground granulated blast furnace slag (BFS) which are presented in this article.

  13. Sol – Gel synthesis and characterization of magnesium peroxide nanoparticles

    International Nuclear Information System (INIS)

    Jaison, J; Chan, Y S; Ashok raja, C; Balakumar, S

    2015-01-01

    Magnesium peroxide is an excellent source of oxygen in agriculture applications, for instance it is used in waste management as a material for soil bioremediation to remove contaminants from polluted underground water, biological wastes treatment to break down hydrocarbon, etc. In the present study, sol-gel synthesis of magnesium peroxide (MgO 2 ) nanoparticles is reported. Magnesium peroxide is odourless; fine peroxide which releases oxygen when reacts with water. During the sol-gel synthesis, the magnesium malonate intermediate is formed which was then calcinated to obtain MgO 2 nanoparticles. The synthesized nanoparticles were characterized using Thermo gravimetric -Differential Thermal Analysis (TG- DTA), X-Ray Diffraction studies (XRD) and High Resolution Transmission Electron Microscope (HRTEM). Our study provides a clear insight that the formation of magnesium malonate during the synthesis was due to the reaction between magnesium acetate, oxalic acid and ethanol. In our study, we can conclude that the calcination temperature has a strong influence on particle size, morphology, monodispersity and the chemistry of the particles. (paper)

  14. The effect of magnesium hydroxide, hydromagnesite and layered double hydroxide on the heat stability and fire performance of plasticized poly(vinyl chloride)

    CSIR Research Space (South Africa)

    Molefe, DM

    2015-09-01

    Full Text Available . The other samples contained, in addition, minor amounts of iron, manganese nickel and calcium as impurities. Table 2. XRF composition analysis data of samples roasted at 1000 C Concentration, wt.% SiO2 Al2O3 Fe2O3 MnO MgO CaO NiO MgAl-LDH 1.59 36.85 0... additives aluminium trihydrate, magnesium hydroxide (MH), hydromagnesite (HM) and layered double hydroxide (LDH) have utility as endothermic flame retardants and smoke suppressants for PVC as well as other polymers (10-14). Their flame retardant action...

  15. Effect of Magnesium Oxide Nanoparticles on Water Glass Structure

    Directory of Open Access Journals (Sweden)

    Bobrowski A.

    2012-09-01

    Full Text Available An attempt has been made to determine the effect of an addition of colloidal suspensions of the nanoparticles of magnesium oxide on the structure of water glass, which is a binder for moulding and core sands. Nanoparticles of magnesium oxide MgO in propanol and ethanol were introduced in the same mass content (5wt.% and structural changes were determined by measurement of the FT-IR absorption spectra.

  16. CSER 00-003: Criticality Safety Evaluation report for PFP Magnesium Hydroxide Precipitation Process for Plutonium Stabilization Glovebox 3

    International Nuclear Information System (INIS)

    LAN, J.S.

    2000-01-01

    This Criticality Safety Evaluation Report analyzes the stabilization of plutonium/uranium solutions in Glovebox 3 using the magnesium hydroxide precipitation process at PFP. The process covered are the receipt of diluted plutonium solutions into three precipitation tanks, the precipitation of plutonium from the solution, the filtering of the plutonium precipitate from the solution, the scraping of the precipitate from the filter into boats, and the initial drying of the precipitated slurry on a hot plate. A batch (up to 2.5 kg) is brought into the glovebox as plutonium nitrate, processed, and is then removed in boats for further processing. This CSER establishes limits for the magnesium hydroxide precipitation process in Glovebox 3 to maintain criticality safety while handling fissionable material

  17. Environment-friendly, flame retardant thermoplastic elastomer-magnesium hydroxide composites

    Science.gov (United States)

    Tang, Hao; Chen, Kunfeng; Li, Xiaonan; Ao, Man; Guo, Xinwen; Xue, Dongfeng

    Halogen-free and environment-friendly magnesium hydroxide (Mg(OH)2) was synthesized to enhance the flame retardant properties of thermoplastic elastomer (TPE). When the Mg(OH)2 content was optimized to 35wt.%, the TPE-Mg(OH)2 composites exhibited the best flame retardant properties. The results showed that there was a delay of ignition time of the samples containing Mg(OH)2; compared with the samples without Mg(OH)2, the heat release rate and total heat release decrease by 31.4% and 35.6%, while total smoke production and mass loss rate reduce by 56% and 34.2%, respectively. This work opens a door to manufacture fire-resistant polymer-based composites with environmental-friendly flame retardant additives by controllable crystallization and chemical strategies.

  18. Zinc-stearate-layered hydroxide nanohybrid material as a precursor to produce carbon nanoparticles

    International Nuclear Information System (INIS)

    Ghotbi, Mohammad Yeganeh; Bagheri, Narjes; Sadrnezhaad, S.K.

    2011-01-01

    Research highlights: → In this work, a new organic-clay nanohybrid material, in which the organic moiety is intercalated between the inorganic layers, was synthesized using stearate anion as a guest and zinc hydroxide nitrate as an inorganic layered host by ion-exchange technique. Carbon nanoparticles were obtained by heat treating of the nanohybrid material, zinc-stearate-layered hydroxide. The proposed method is very simple, the chemicals used in the synthesis are cheap and the manner is economic and suitable for a large scale production of nano-sized carbon nanoparticles. - Abstract: Zinc-stearate-layered hydroxide nanohybrid was prepared using stearate anion as an organic guest, and zinc layered hydroxide nitrate, as a layered inorganic host by the ion-exchange method. Powder X-ray diffraction patterns and Fourier transform infrared results indicated that the stearate anion was actually intercalated into the interlayer of zinc layered hydroxide nitrate and confirmed the formation of the host-guest nanohybrid material. Also, surface properties data showed that the intercalation process has changed the porosity for the as-prepared nanohybrid material in comparison with that of the parent material, zinc hydroxide nitrate. The nanohybrid material was heat-treated at 600 deg. C under argon atmosphere. Stearate anion was chosen as a carbonaceous reservoir in the nanohybrid to produce carbon nanoparticles after heat-treating of the nanohybrid and subsequently acid washing process.

  19. The Effects of Aluminium Hydroxide and Magnesium Hydroxide on the Mechanical Properties of Thermoplastic Polyurethane Materials

    Directory of Open Access Journals (Sweden)

    Erkin Akdoğan

    2015-12-01

    Full Text Available Thermoplastic polyurethane materials are widely used in automotive, clothing, electrical and electronics, medical, construction, machine industry due to excellent physical and chemical properties. Thermoplastic polyurethane materials combustion and resistance to high temperature characteristics are poor. Additives and fillers are added into the polyurethane matrix to improve those properties. Particularly adding these agents as a flame retardant are affect mechanical properties of polyurethane materials. Therefore, it is important to determinate the mechanical properties of these materials. In this study, 5% by weight of the thermoplastic polyurethane material, aluminium tri hydroxide (ATH, (Al2O3 3H2O and magnesium hydroxide (MgOH, (Mg(OH2 were added. Ammonium polyphosphate (APP as an intumescent flame retardant with inorganic flame retardants were added to increase the flame resistance of produced composite structure. Tensile test, tear test, hardness and Izod impact tests were made and compared of those produced composites. As a result of experiments the addition of ATH has lowered the tensile strength and tear strength contrast to this the addition of MgOH has improved those properties. Hardness and Izod impact test results were showed that both of the additives have no negative effect.

  20. Synthesis, characterization, and hydrogen uptake studies of magnesium nanoparticles by solution reduction method

    International Nuclear Information System (INIS)

    Rather, Sami ullah

    2014-01-01

    Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough, all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO

  1. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  2. Evaluation of the Magnesium Hydroxide Treatment Process for Stabilizing PFP Plutonium/Nitric Acid Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, Mark A.; Schmidt, Andrew J.; Delegard, Calvin H.; Silvers, Kurt L.; Baker, Aaron B.; Gano, Susan R.; Thornton, Brenda M.

    2000-09-28

    This document summarizes an evaluation of the magnesium hydroxide [Mg(OH)2] process to be used at the Hanford Plutonium Finishing Plant (PFP) for stabilizing plutonium/nitric acid solutions to meet the goal of stabilizing the plutonium in an oxide form suitable for storage under DOE-STD-3013-99. During the treatment process, nitric acid solutions bearing plutonium nitrate are neutralized with Mg(OH)2 in an air sparge reactor. The resulting slurry, containing plutonium hydroxide, is filtered and calcined. The process evaluation included a literature review and extensive laboratory- and bench-scale testing. The testing was conducted using cerium as a surrogate for plutonium to identify and quantify the effects of key processing variables on processing time (primarily neutralization and filtration time) and calcined product properties.

  3. Regeneration of Waste Edible Oil by the Use of Virgin and Calcined Magnesium Hydroxide as Adsorbents.

    Science.gov (United States)

    Ogata, Fumihiko; Kawasaki, Naohito

    2016-01-01

    In this study, we prepared virgin (S, L) and calcined (S-380, S-1000, L-380, L-1000) magnesium hydroxide for regeneration of waste edible oil. Deterioration of soybean oil, rapeseed oil, and olive oil was achieved by heat and aeration treatment. The properties of the different adsorbents were investigated using specific surface area measurements, scanning electron microscopy, X-ray diffraction analysis, thermogravimetric-differential thermal analysis, and surface pH measurement. Moreover, the relationship between the changes in acid value (AV) and carbonyl value (CV) and the adsorbent properties were evaluated. The specific surface areas of S-380 and L-380 were greater than that of other adsorbents. In addition, the XRD results show that S-380 and L-380 contain both magnesium hydroxide and magnesium oxide structures. The decreases in AV and CV using S-380 and L-380 were greater than achieved using other adsorbents. The correlation coefficients between the decrease in AV and CV and specific surface area were 0.947 for soybean oil, 0.649 for rapeseed oil, and 0.773 for olive oil, respectively. The results obtained in this study suggest that a physical property of the adsorbent, namely specific surface area, was primarily responsible for the observed decreases in AV and CV. Overall, the results suggest that S-380 and L-380 are useful for the regeneration of waste edible oil.

  4. Dissolution kinetics of magnesium hydroxide for CO{sub 2} separation from coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Bharadwaj, Hari Krishna [Chemical Engineering Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Lee, Joo-Youp, E-mail: joo.lee@uc.edu [Chemical Engineering Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Li, Xin; Liu, Zhouyang [Chemical Engineering Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Keener, Tim C. [Environmental Engineering Program, School of Energy, Environmental, Biological, and Medical Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States)

    2013-04-15

    Highlights: ► Magnesium hydroxide dissolution was found to be controlled by chemical reaction. ► The intrinsic kinetics has a fractional order between 0.20 and 0.31. ► The true activation energy value was found to have 76 ± 11 kJ/gmol. ► A shrinking-core model predicted experimental data with good accuracy. -- Abstract: The dissolution of magnesium hydroxide in water for the release of magnesium and hydroxyl ions into the solution to maintain suitable alkalinity is a crucial step in the Mg(OH){sub 2}-based CO{sub 2} absorption process. In this study, the rate of dissolution of Mg(OH){sub 2} was investigated under different operating conditions using a pH stat apparatus. The dissolution process was modeled using a shrinking core model and the overall Mg(OH){sub 2} dissolution process was found to be controlled by the surface chemical reaction of Mg(OH){sub 2} with H{sup +} ions. Under the chemical reaction control regime, the dissolution of Mg(OH){sub 2} in alkaline conditions was found not to follow a first-order reaction, and the fractional order of reaction was estimated to lie between 0.20 and 0.31. This suggests that the dissolution reaction is a non-elementary reaction, consisting of a sequence of elementary reactions, via most likely forming a surface magnesium complex. The true activation energy value of 76 ± 11 kJ/gmol was found to be almost twice as much as the observed activation energy value of 42 ± 6 kJ/gmol determined at pH 8.6, and was comparable with the previously reported values. The particle sizes predicted from the intrinsic kinetics determined from the model were in good agreement with the experimentally measured particle sizes during the dissolution process.

  5. Magnesium and iron nanoparticles production using microorganisms and various salts

    Science.gov (United States)

    Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C.

    2012-09-01

    Response of five fungi and two bacteria to different salts of magnesium and iron for production of nanoparticles was studied. Pochonia chlamydosporium, and Aspergillus fumigatus were exposed to three salts of magnesium while Curvularia lunata, Chaetomium globosum, A. fumigatus, A. wentii and the bacteria Alcaligenes faecalis and Bacillus coagulans were exposed to two salts of iron for nanoparticle production. The results revealed that P. chlamydosporium induces development of extracellular nanoparticles in MgCl2 solution while A. fumigatus produces also intracellular nanoparticles when exposed to MgSO4 solution. C. globosum was found as the most effective in producing nanoparticles when exposed to Fe2O3 solution. The FTIR analysis of the nanoparticles obtained from Fe2O3 solution showed the peaks similar to iron (Fe). In general, the species of the tested microbes were selective to different chemicals in their response for synthesis of nanoparticles. Further studies on their characterization and improving the efficiency of promising species of fungi need to be undertaken before tapping their potential as nanonutrients for plants.

  6. In vitro toxicity test of nano-sized magnesium oxide synthesized via solid-phase transformation

    Science.gov (United States)

    Zheng, Jun; Zhou, Wei

    2018-04-01

    Nano-sized magnesium oxide (MgO) has been a promising potential material for biomedical pharmaceuticals. In the present investigation, MgO nanoparticles synthesized through in-situ solid-phase transformation based on the previous work (nano-Mg(OH)2 prepared by precipitation technique) using magnesium nitrate and sodium hydroxide. The phase structure and morphology of the MgO nanoparticles are characterized by X-ray powder diffraction (XRD), selected area electronic diffraction (SAED) and transmission electron microscopy (TEM) respectively. In vitro hemolysis tests are adopted to evaluate the toxicity of the synthesized nano-MgO. The results evident that nano-MgO with lower concentration is slightly hemolytic, and with concentration increasing nano-MgO exhibit dose-responsive hemolysis.

  7. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    International Nuclear Information System (INIS)

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B.

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg +2 and Ca +2 ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg +2 and Ca +2 ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg +2 , calcium magnesium phosphates (CMPs) which release Mg +2 and Ca +2 , and hydroxyapatites (HAs) which release Ca +2 were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg + 2 and Ca +2 ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg 2+ and Ca 2+ ions in proliferation, and differentiation

  8. AC plasma electrolytic oxidation of magnesium with zirconia nanoparticles

    International Nuclear Information System (INIS)

    Arrabal, R.; Matykina, E.; Viejo, F.; Skeldon, P.; Thompson, G.E.; Merino, M.C.

    2008-01-01

    The incorporation of monoclinic zirconia nanoparticles and their subsequent transformation is examined for coatings formed on magnesium by plasma electrolytic oxidation under AC conditions in silicate electrolyte. The coatings are shown to comprise two main layers, with nanoparticles entering the coating at the coating surface and through short-circuit paths to the region of the interface between the inner and outer coating layers. Under local heating of microdischarges, the zirconia reacts with magnesium species to form Mg 2 Zr 5 O 12 in the outer coating layer. Relatively little zirconium is present in the inner coating layer. In contrast, silicon species are present in both coating layers, with reduced amounts in the inner layer

  9. Removal of aluminum turbidity from heavy water reactors by precipitation ion exchange using magnesium hydroxide

    International Nuclear Information System (INIS)

    Venkateswarlu, K.S.; Shanker, R.; Velmurugan, S.; Venkateswaran, G.; Rao, M.R.

    1988-01-01

    A special magnesium hydroxide MG(OH)/sub 2/ sorber, loaded onto an ion-exchange matrix has been developed to remove hydrated alumina turbidity in heavy water. This sorber was applied to the coolant/moderator system in the research reactor Dhruva. The sorber not only removed turbidity but also suspended uranium at parts per billion levels and associated β, γ activity. The sorption is based on the attraction between the positively charged Mg(OH)/sub 2/ surface and the negatively charged hydrated alumina particles

  10. Magnesium hydroxide extracted from a magnesium-rich mineral for CO2 sequestration in a gas-solid system.

    Science.gov (United States)

    Lin, Pao-Chung; Huang, Cheng-Wei; Hsiao, Ching-Ta; Teng, Hsisheng

    2008-04-15

    Magnesium hydroxide extracted from magnesium-bearing minerals is considered a promising agent for binding CO2 as a carbonate mineral in a gas-solid reaction. An efficient extraction route consisting of hydrothermal treatment on serpentine in HCl followed by NaOH titration for Mg(OH)2 precipitation was demonstrated. The extracted Mg(OH)2 powder had a mean crystal domain size as small as 12 nm and an apparent surface area of 54 m2/g. Under one atmosphere of 10 vol% CO2/N2, carbonation of the serpentine-derived Mg(OH)2 to 26% of the stoichiometric limit was achieved at 325 degrees C in 2 h; while carbonation of a commercially available Mg(OH)2, with a mean crystal domain size of 33 nm and an apparent surface area of 3.5 m2/g, reached only 9% of the stoichiometric limit. The amount of CO2 fixation was found to be inversely proportional to the crystal domain size of the Mg(OH)2 specimens. The experimental data strongly suggested that only a monolayer of carbonates was formed on the crystal domain boundary in the gas-solid reaction, with little penetration of the carbonates into the crystal domain.

  11. Surface modification and characterization of magnesium hydroxide sulfate hydrate nanowhiskers

    Energy Technology Data Exchange (ETDEWEB)

    Gao Chuanhui [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Li Xianguo, E-mail: chuanhuigao@foxmail.com [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China); Feng Lijuan; Lu Shaoyan; Liu Jinyan [Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100 (China)

    2010-03-01

    In order to enhance the compatibility with plastic polymers, magnesium hydroxide sulfate hydrate (MHSH) nanowhiskers were modified through grafting methyl methacrylate (MMA) on the surface of the nanowhiskers by emulsion polymerization. The influences of the reaction time, MMA monomer content, adding speed of monomer and the reaction temperature on the grafting ratio were investigated. Thermogravimetry (TG), Fourier transform infrared (FT-IR) spectroscopy, X-ray powder diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy and surface contact angle measurement were used to characterize the effect of surface modification. The results showed that the MHSH nanowhiskers were uniformly coated by polymethyl methacrylate (PMMA), and a well-defined core-shell hybrid structure of MHSH/PMMA was obtained. The surface contact angle of the hybrid whiskers increased to 87.32 deg. from 12.71 deg. and the whiskers surface was changed from hydrophilic to lipophilic.

  12. Thermal Analysis On The Kinetics Of Magnesium-Aluminum Layered Double Hydroxides In Different Heating Rates

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available The thermal decomposition of magnesium-aluminum layered double hydroxides (LDHs was investigated by thermogravimetry analysis and differential scanning calorimetry (DSC methods in argon environment. The influence of heating rates (including 2.5, 5, 10, 15 and 20K/min on the thermal behavior of LDHs was revealed. By the methods of Kissinger and Flynn-Wall-Ozawa, the thermal kinetic parameters of activation energy and pre-exponential factor for the exothermic processes under non-isothermal conditions were calculated using the analysis of corresponding DSC curves.

  13. Insitu grown superhydrophobic Zn-Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Science.gov (United States)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-05-01

    A hierarchical superhydrophobic zinc-aluminum layered double hydroxides (Zn-Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn-Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn-Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  14. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei, E-mail: kwgao@yahoo.com

    2015-05-15

    Highlights: • Hierarchical superhydrophobic Zn–Al LDHs film has been fabricated on a magnesium alloy substrate. • The superhydrophobic surface has good long-term stability under atmospheric environment. • The superhydrophobic surface can provide a stable corrosion protection for the Mg alloys. - Abstract: A hierarchical superhydrophobic zinc–aluminum layered double hydroxides (Zn–Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn–Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn–Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution.

  15. Insitu grown superhydrophobic Zn–Al layered double hydroxides films on magnesium alloy to improve corrosion properties

    International Nuclear Information System (INIS)

    Zhou, Meng; Pang, Xiaolu; Wei, Liang; Gao, Kewei

    2015-01-01

    Highlights: • Hierarchical superhydrophobic Zn–Al LDHs film has been fabricated on a magnesium alloy substrate. • The superhydrophobic surface has good long-term stability under atmospheric environment. • The superhydrophobic surface can provide a stable corrosion protection for the Mg alloys. - Abstract: A hierarchical superhydrophobic zinc–aluminum layered double hydroxides (Zn–Al LDHs) film has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method following chemical modification. The characteristics of the films were investigated by X-ray diffraction (XRD), scanning electronic microscope (SEM), and energy dispersive spectroscopy (EDS). XRD patterns and SEM images showed that the micro/nanoscale hierarchical LDHs film surfaces composed of ZnO nanorods and Zn–Al LDHs nanowalls structures. The static contact angle (CA) for the prepared surfaces was observed at around 165.6°. The corrosion resistance of the superhydrophobic films was estimated by electrochemical impedance spectroscopy (EIS) and potentiondynamic polarization measurement. EIS and polarization measurements revealed that the superhydrophobic Zn–Al LDHs coated magnesium alloy had better corrosion resistance in neutral 3.5 wt.% NaCl solution

  16. Optical properties of cerium oxide (CeO2) nanoparticles synthesized by hydroxide mediated method

    Science.gov (United States)

    Ali, Mawlood Maajal; Mahdi, Hadeel Salih; Parveen, Azra; Azam, Ameer

    2018-05-01

    The nanoparticles of cerium oxide have been successfully synthesized by hydroxide mediated method, using cerium nitrate and sodium hydroxide as precursors. The microstructural properties were analyzed by X-ray diffraction technique (XRD). The X-ray diffraction results show that the cerium oxide nanoparticles were in cubic structure. The optical absorption spectra of cerium oxide were recorded by UV-VIS spectrophotometer in the range of 320 to 600 nm and photoluminescence spectra in the range of 400-540 nm and have been presented. The energy band gap was determined by Tauc relationship. The crystallite size was determined from Debye-Scherer equation and came out to be 6.4 nm.

  17. Hydrophilic block copolymer-directed growth of lanthanum hydroxide nano-particles

    Energy Technology Data Exchange (ETDEWEB)

    Bouyer, F.; Sanson, N.; Gerardin, C. [Laboratoire de Materiaux Catalytiques et Catalyse en Chimie Organique, UMR 5618 CNRS-ENSCM-UM1, FR 1878, Institut Gerhardt, 34 - Montpellier (France); Destarac, M. [Centre de Recherches Rhodia Aubervilliers, 93 - Aubervilliers (France)

    2006-03-15

    Stable hairy lanthanum hydroxide nano-particles were synthesized in water by performing hydrolysis and condensation reactions of lanthanum cations in the presence of double hydrophilic poly-acrylic acid-b-polyacrylamide block copolymers (PAA-b-PAM). In the first step, the addition of asymmetric PAA-b-PAM copolymers (M{sub w,PAA} {<=} M{sub w,PAM}) to lanthanum salt solutions, both at pH = 5.5, induces the formation of monodispersed micellar aggregates, which are predominantly isotropic. The core of the hybrid aggregates is constituted of a lanthanum polyacrylate complex whose formation is due to bidentate coordination bonding between La{sup 3+} and acrylate groups, as shown by ATR-FTIR experiments and pH measurements. The size of the micellar aggregates depends on the molecular weight of the copolymer but is independent of the copolymer to metal ratio in solution. In the second step, the hydrolysis of lanthanum ions is induced by addition of a strong base such as sodium hydroxide. Either flocculated suspensions or stable anisotropic or spherical nano-particles of lanthanum hydrolysis products were obtained depending on the metal complexation ratio [acrylate]/[La]. The variation of that parameter also enables the control of the size of the core-corona nano-particles obtained by lanthanum hydroxylation. The asymmetry degree of the copolymer was shown to influence both the size and the shape of the particles. Elongated particles with a high aspect ratio, up to 10, were obtained with very asymmetric copolymers (M{sub w,PAM}/M{sub w,PAA}{>=}10) while shorter rice grain-like particles were obtained with a less asymmetric copolymer. The asymmetry degree also influences the value of the critical metal complexation degree required to obtain stable colloidal suspensions of polymer-stabilized lanthanum hydroxide. (authors)

  18. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    International Nuclear Information System (INIS)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-01-01

    Highlights: • Zn-Al LDHs film loaded nitrate anions has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method. • The Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs film were obtained based on anion-exchange mechanism. • The Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs film could effectively protect magnesium alloy. - Abstract: Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO_3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VO_x LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  19. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei, E-mail: kwgao@yahoo.com

    2017-05-15

    Highlights: • Zn-Al LDHs film loaded nitrate anions has been fabricated on a magnesium alloy substrate via a facile hydrothermal crystallization method. • The Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs film were obtained based on anion-exchange mechanism. • The Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs film could effectively protect magnesium alloy. - Abstract: Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO{sub 3} LDHs, Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VO{sub x} LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  20. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles.

    Science.gov (United States)

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun

    2015-12-24

    Magnesium is a light metal, with a density two-thirds that of aluminium, is abundant on Earth and is biocompatible; it thus has the potential to improve energy efficiency and system performance in aerospace, automobile, defence, mobile electronics and biomedical applications. However, conventional synthesis and processing methods (alloying and thermomechanical processing) have reached certain limits in further improving the properties of magnesium and other metals. Ceramic particles have been introduced into metal matrices to improve the strength of the metals, but unfortunately, ceramic microparticles severely degrade the plasticity and machinability of metals, and nanoparticles, although they have the potential to improve strength while maintaining or even improving the plasticity of metals, are difficult to disperse uniformly in metal matrices. Here we show that a dense uniform dispersion of silicon carbide nanoparticles (14 per cent by volume) in magnesium can be achieved through a nanoparticle self-stabilization mechanism in molten metal. An enhancement of strength, stiffness, plasticity and high-temperature stability is simultaneously achieved, delivering a higher specific yield strength and higher specific modulus than almost all structural metals.

  1. Nanoparticles for cultural heritage conservation: calcium and barium hydroxide nanoparticles for wall painting consolidation.

    Science.gov (United States)

    Giorgi, Rodorico; Ambrosi, Moira; Toccafondi, Nicola; Baglioni, Piero

    2010-08-16

    Nanotechnology provides new concepts and materials for the consolidation and protection of wall paintings. In particular, humble calcium and barium hydroxide nanoparticles offer a versatile and highly efficient tool to combat the main degradation processes altering wall paintings. Clear example of the efficacy and potentiality of nanotechnology is represented by the conservation in situ of Maya wall paintings in the archaeological area in Calakmul (Mexico).

  2. Synthesis Of Magnesium-Aluminum Layered Double Hydroxides By Mechanochemical Method And Its Solid State Reaction Kinetics

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available A mechanochemical method is developed in preparing magnesium-aluminum-layered double hydroxides (MgAl-LDHs. This approach includes activation process and diffusion process. In order to verify the LDHs structure and study the reaction kinetics, X-ray diffraction (XRD patterns, inductively coupled plasma(ICP and physical adsorption instrument were characterized. The results show that activation time can change the surface of particles and affect the reaction grade. During the diffusion process, reaction time is the most important factor. The reaction energy (ΔQ was calculated that is 6kJ/mol.

  3. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu [School of Resources and Environment Engineering, Wuhan University of Technology, Wuhan 430070 (China); Liu, Xinzhong [College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118 (China)

    2017-01-15

    Al(OH){sub 3} and Ca(OH){sub 2} powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C{sub 3}A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C{sub 3}A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO{sub 4} LDH product. Ca-Al-CrO{sub 4} LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl{sub 2} LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.

  4. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    International Nuclear Information System (INIS)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH) 3 and Ca(OH) 2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. - Graphical abstract: Activated Ca-Al hydroxides (C 3 A) transformed into Ca-Al-OH compound when agitated in water. Ca-Al precursor (C 3 A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO 4 LDH product. Ca-Al-CrO 4 LDH phase occurred preferentially to Ca-Al-MCl 2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. - Highlights: • Activated Ca-Al hydroxides transformed into LDH when agitated in water with some inorganic substances. • Hexavalent Cr was incorporated in the LDH structure at high adsorption capacity. • Ca-Al-Cr LDH phase occurred preferentially to Ca-Al-MCl 2 LDH phases with coexistence. • The prepared Ca-Al hydroxides had high performance as adsorbent even with high salinity of the solution.

  5. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  6. 21 CFR 184.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or carbonate...

  7. Design and fabrication of enhanced corrosion resistance Zn-Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys

    Science.gov (United States)

    Zhou, Meng; Yan, Luchun; Ling, Hao; Diao, Yupeng; Pang, Xiaolu; Wang, Yanlin; Gao, Kewei

    2017-05-01

    Layered double hydroxides (LDHs) with brucite-like layer structure and the facile exchangeability of intercalated anions had attracted tremendous interest in many fields because of their great importance for both fundamental studies and practical applications. Herein zinc-aluminum layered double hydroxides (Zn-Al LDHs) films intercalated with nitrate anions on the magnesium alloy substrate were designed and fabricated via a facile hydrothermal crystallization method. In order to obtain better corrosion resistance, chloride and vanadate anions were intercalated into the LDHs interlayers via the anion-exchange reaction. X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electronic microscopy (SEM) were used to examine structure, composition and morphology of the Zn-Al-NO3 LDHs, Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films. The corrosion resistance of the Zn-Al LDHs with different anion films was estimated by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurement. EIS and polarization curves measurements revealed that the magnesium alloy could be effectively protected by the Zn-Al-Cl LDHs and Zn-Al-VOx LDHs films due to the blocking effect of chloride anions and the control-release ability of vanadate anions.

  8. Ionic Strength-Controlled Mn (Hydr)oxide Nanoparticle Nucleation on Quartz: Effect of Aqueous Mn(OH)2.

    Science.gov (United States)

    Jung, Haesung; Jun, Young-Shin

    2016-01-05

    The early formation of manganese (hydr)oxide nanoparticles at mineral-water interfaces is crucial in understanding how Mn oxides control the fate and transport of heavy metals and the cycling of nutrients. Using atomic force microscopy, we investigated the heterogeneous nucleation and growth of Mn (hydr)oxide under varied ionic strengths (IS; 1-100 mM NaNO3). Experimental conditions (i.e., 0.1 mM Mn(2+) (aq) concentration and pH 10.1) were chosen to be relevant to Mn remediation sites. We found that IS controls Mn(OH)2 (aq) formation, and that the controlled Mn(OH)2 (aq) formation can affect the system's saturation and subsequent Mn(OH)2 (s) and further Mn3O4 (s) nanoparticle formation. In 100 mM IS system, nucleated Mn (hydr)oxide particles had more coverage on the quartz substrate than those in 1 mM and 10 mM IS systems. This high IS also resulted in low supersaturation ratio and thus favor heterogeneous nucleation, having better structural matching between nucleating Mn (hydr)oxides and quartz. The unique information obtained in this work improves our understanding of Mn (hydr)oxide formation in natural as well as engineered aqueous environments, such as groundwater contaminated by natural leachate and acid mine drainage remediation.

  9. A facile one-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica: Aqueous hydration of nitriles to amides

    Science.gov (United States)

    One-pot synthesis of ruthenium hydroxide nanoparticles on magnetic silica is described which involve the in situ generation of magnetic silica (Fe3O4@ SiO2) and ruthenium hydroxide immobilization; the hydration of nitriles occurs in high yield and excellent selectivity using this...

  10. Layered double hydroxide nanoparticles in gene and drug delivery.

    Science.gov (United States)

    Ladewig, Katharina; Xu, Zhi Ping; Lu, Gao Qing Max

    2009-09-01

    Layered double hydroxides (LDHs) have been known for many decades as catalyst and ceramic precursors, traps for anionic pollutants, catalysts and additives for polymers, but their successful synthesis on the nanometer scale a few years ago opened up a whole new field for their application in nanomedicine. The delivery of drugs and other therapeutic/bioactive molecules (e.g., peptides, proteins, nucleic acids) to mammalian cells is an area of research that is of tremendous importance to medicine and provides manifold applications for any new developments in the area of nanotechnology. Among the many different nanoparticles that have been shown to facilitate gene and/or drug delivery, LDH nanoparticles have attracted particular attention owing to their many desirable properties. This review aims to report recent progress in gene and drug delivery using LDH nanoparticles. It summarizes the advantages and disadvantages of using LDH nanoparticles as carriers for nucleic acids and drugs against the general background of bottlenecks that are encountered by cellular delivery systems. It describes further the models that have been proposed for the internalization of LDH nanoparticles into cells so far and discusses the intracellular fate of the particles and their cargo. The authors offer some remarks on how this field of research will progress in the near future and which challenges need to be overcome before LDH nanoparticles can be used in a clinical setting.

  11. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Gajadhar Bhakta

    2014-01-01

    Full Text Available The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein-encapsulated PEGylated (meaning polyethylene glycol coated magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-γ and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP. Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation.

  12. The effect of Sodium hydroxide catalyst in formation of Ni nanoparticles at room temperature

    International Nuclear Information System (INIS)

    Shahbahrami, N.; Reyhani, A.; Afshari, N.; Mortazavi, Z.; Norouzian, Sh.; Hojabri, A.; Novinrooz, A. J.

    2007-01-01

    In this paper, Ni nanoparticles growth is studies by spontaneous auto catalytic reduction in an alcohol- water solution in present NaOH catalysis with various ratio at room temperature. The scanning electron microscopy and XRD analyses have been used for investigation diameter and structure of Ni nanoparticles. Investigation of the analyses show that have not formed Ni Nanoparticles in Ph values 8, 9, 10 and 13, but in Ph values 11 and 12 have formed Ni Nanoparticles with average diameter of about 65 and 90 nm, respectively. The XRD patterns show that samples have face-centered cubic structure with (111),(200).(222) planes. The results show that sodium hydroxide value is very effect on the Ni nanoparticles growth.

  13. Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR spectroscopy

    DEFF Research Database (Denmark)

    Boisen Staal, Line; Lipton, Andrew S.; Zorin, Vadim

    2014-01-01

    Ordering of gallium(III) in a series of magnesium gallium (MgGa) layered double hydroxides (LDHs), [Mg1−xGax(OH)2(NO3)x·yH2O] was investigated using solid-state 1H and 71Ga NMR spectroscopy as well as powder X-ray diffraction. Three different proton environments from Mg3single bondOH, Mg2Gasingle...... analysis show that the synthesized MgGa LDH׳s had a lower Mg:Ga ratio than that of the starting reactant solution. The origin of this is the formation of soluble [Ga(OH)4]− complexes formed during synthesis, and not due to formation of insoluble gallium (oxy)hydroxides. No sign of Gasingle bondOsingle bond...

  14. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-01-01

    Graphical abstract: Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH) 2 nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH) 2 nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH) 2 ) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH) 2 nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes

  15. Magnesium ferrite nanoparticles: a rapid gas sensor for alcohol

    Science.gov (United States)

    Godbole, Rhushikesh; Rao, Pratibha; Bhagwat, Sunita

    2017-02-01

    Highly porous spinel MgFe2O4 nanoparticles with a high specific surface area have been successfully synthesized by a sintering free auto-combustion technique and characterized for their structural and surface morphological properties using XRD, BET, TEM and SEM techniques. Their sensing properties to alcohol vapors viz. ethanol and methanol were investigated. The site occupation of metal ions was investigated by VSM. The as-synthesized sample shows the formation of sponge-like porous material which is necessary for gas adsorption. The gas sensing characteristics were obtained by measuring the gas response as a function of operating temperature, concentration of the gas, and the response-recovery time. The response of magnesium ferrite to ethanol and methanol vapors was compared and it was revealed that magnesium ferrite is more sensitive and selective to ethanol vapor. The sensor operates at a substantially low vapor concentration of about 1 ppm of alcohol vapors, exhibits fantastic response reproducibility, long term reliability and a very fast response and recovery property. Thus the present study explored the possibility of making rapidly responding alcohol vapor sensor based on magnesium ferrite. The sensing mechanism has been discussed in co-relation with magnetic and morphological properties. The role of occupancy of Mg2+ ions in magnesium ferrite on its gas sensing properties has also been studied and is found to influence the response of magnesium ferrite ethanol sensor.

  16. Kinetics of intercalation of fluorescent probes in magnesium-aluminium layered double hydroxide within a multiscale reaction-diffusion framework

    Science.gov (United States)

    Saliba, Daniel; Al-Ghoul, Mazen

    2016-11-01

    We report the synthesis of magnesium-aluminium layered double hydroxide (LDH) using a reaction-diffusion framework (RDF) that exploits the multiscale coupling of molecular diffusion with chemical reactions, nucleation and growth of crystals. In an RDF, the hydroxide anions are allowed to diffuse into an organic gel matrix containing the salt mixture needed for the precipitation of the LDH. The chemical structure and composition of the synthesized magnesium-aluminium LDHs are determined using powder X-ray diffraction (PXRD), thermo-gravimetric analysis, differential scanning calorimetry, solid-state nuclear magnetic resonance (SSNMR), Fourier transform infrared and energy dispersive X-ray spectroscopy. This novel technique also allows the investigation of the mechanism of intercalation of some fluorescent probes, such as the neutral three-dimensional rhodamine B (RhB) and the negatively charged two-dimensional 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS), using in situ steady-state fluorescence spectroscopy. The incorporation of these organic dyes inside the interlayer region of the LDH is confirmed via fluorescence microscopy, solid-state lifetime, SSNMR and PXRD. The activation energies of intercalation of the corresponding molecules (RhB and HPTS) are computed and exhibit dependence on the geometry of the involved probe (two or three dimensions), the charge of the fluorescent molecule (anionic, cationic or neutral) and the cationic ratio of the corresponding LDH. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  17. Preparation and evaluation of PEGylated phospholipid membrane coated layered double hydroxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Mina Yan

    2016-06-01

    Full Text Available The aim of the present study was to develop layered double hydroxide (LDH nanoparticles coated with PEGylated phospholipid membrane. By comparing the size distribution and zeta potential, the weight ratio of LDH to lipid materials which constitute the outside membrane was identified as 2:1. Transmission electron microscopy photographs confirmed the core-shell structure of PEGylated phospholipid membrane coated LDH (PEG-PLDH nanoparticles, and cell cytotoxicity assay showed their good cell viability on Hela and BALB/C-3T3 cells over the concentration range from 0.5 to 50 μg/mL.

  18. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    Science.gov (United States)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  19. Doping magnesium hydroxide with sodium nitrate: a new approach to tune the dehydration reactivity of heat-storage materials.

    Science.gov (United States)

    Shkatulov, Alexandr; Krieger, Tamara; Zaikovskii, Vladimir; Chesalov, Yurii; Aristov, Yuri

    2014-11-26

    Thermochemical energy storage (TES) provides a challenging approach for improving the efficiency of various energy systems. Magnesium hydroxide, Mg(OH)2, is known as a suitable material for TES at temperature T>300 °C. In this work, the thermal decomposition of Mg(OH)2 in the absence and presence of sodium nitrate (NaNO3) is investigated to adapt this material for TES at T300 °C in vapor atmosphere) than a pure Mg(OH)2; (3) the morphology of the dehydration product (MgO) dramatically changes. Differential scanning calorimetry, high-resolution transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and vibrational spectroscopy (IR and Raman) are used to study the observed effects and to elucidate possible ways the NaNO3 influences the Mg(OH)2 dehydration and morphology of the dehydration product. The mechanism involving a chemical interaction between the salt and the hydroxide accompanied by nitrate embedding into brucite layers is discussed.

  20. Lightweight magnesium nanocomposites: electrical conductivity of liquid magnesium doped by CoPd nanoparticles

    Science.gov (United States)

    Yakymovych, Andriy; Slabon, Adam; Plevachuk, Yuriy; Sklyarchuk, Vasyl; Sokoliuk, Bohdan

    2018-04-01

    The effect of monodisperse bimetallic CoPd NP admixtures on the electrical conductivity of liquid magnesium was studied. Temperature dependence of the electrical conductivity of liquid Mg98(CoPd)2, Mg96(CoPd)4, and Mg92(CoPd)8 alloys was measured in a wide temperature range above the melting point by a four-point method. It was shown that the addition of even small amount of CoPd nanoparticles to liquid Mg has a significant effect on the electrical properties of the melts obtained.

  1. Photodegradation of 2,4,6-trinitrophenol catalyzed by Zn/MgO nanoparticles prepared in aqueous-organic medium

    International Nuclear Information System (INIS)

    Ali, Shaista; Farrukh, Muhammad Akhyar; Khaleeq-ur-Rahman, Muhammad

    2013-01-01

    Synthesis of Magnesium oxide (MgO) nanoparticles and zinc deposited magnesium oxide (Zn/MgO) nanoparticles was carried out using hydrothermal and deposition-precipitation method with the variation of 1-Propanol (organic solvent) concentration, sodium hydroxide and urea concentration. The nanoparticles were characterized by using FTIR, TGA, SEM-EDX, TEM and XRD. The photocatalytic efficiency of MgO and Zn/MgO nanoparticles was studied by degradation of 2,4,6-trinitrophenol (TNP), which is highly acute and toxic and causes skin and eyes diseases, liver malfunction and tumor formation. Photodegradation of TNP was carried out under UV irradiation and confirmed by using HPLC and GC-MS. MgO and Zn/MgO nanoparticles that were synthesized by using urea showed higher first-order rate constant (k) value and percentage degradation as compared to nanoparticles that were synthesized using NaOH. It was observed that the concentration of solvent has direct relation with the k value of degradation of TNP

  2. Photodegradation of 2,4,6-trinitrophenol catalyzed by Zn/MgO nanoparticles prepared in aqueous-organic medium

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Shaista; Farrukh, Muhammad Akhyar; Khaleeq-ur-Rahman, Muhammad [GC University Lahore, Lahore (Pakistan)

    2013-11-15

    Synthesis of Magnesium oxide (MgO) nanoparticles and zinc deposited magnesium oxide (Zn/MgO) nanoparticles was carried out using hydrothermal and deposition-precipitation method with the variation of 1-Propanol (organic solvent) concentration, sodium hydroxide and urea concentration. The nanoparticles were characterized by using FTIR, TGA, SEM-EDX, TEM and XRD. The photocatalytic efficiency of MgO and Zn/MgO nanoparticles was studied by degradation of 2,4,6-trinitrophenol (TNP), which is highly acute and toxic and causes skin and eyes diseases, liver malfunction and tumor formation. Photodegradation of TNP was carried out under UV irradiation and confirmed by using HPLC and GC-MS. MgO and Zn/MgO nanoparticles that were synthesized by using urea showed higher first-order rate constant (k) value and percentage degradation as compared to nanoparticles that were synthesized using NaOH. It was observed that the concentration of solvent has direct relation with the k value of degradation of TNP.

  3. Critically designing today’s melt processed bulk magnesium alloys using boron rich nanoparticles

    International Nuclear Information System (INIS)

    Paramsothy, Muralidharan; Gupta, Manoj

    2015-01-01

    Highlights: • B 4 C nanoparticles increased the tensile ductility of Mg–Al alloy to about 25%. • SiB 6 nanoparticles increased the tensile ductility of Mg–Zn alloy to about 23%. • ZrB 2 nanoparticles increased the tensile strength of Mg–RE alloy to above 400 MPa. • Hypothetically, 5–10% cold working could significantly increase tensile strength. • Hypothetically, 5–10% cold working could maintain tensile ductility above 10%. - Abstract: In this work, boron rich nanoparticles (B 4 C, SiB 6 and ZrB 2 ) were added to bulk melt processed Mg–Al, Mg–Zn and Mg–RE (Rare Earth) series contemporary magnesium alloys, respectively. The most obvious positive effect when adding B 4 C nanoparticles to the Mg–Al alloy was the significant increase in tensile ductility (to about 25%). Here, there was no significant change in grain size or crystallographic texture due to nanoparticle addition. However, it was observed that stacking faults formed more easily in the magnesium matrix due to nanoparticle addition. Also, it was observed that coarser nanoparticles broke down high strain zones (HSZs) during tensile deformation. The addition of SiB 6 to Mg–Zn alloy also resulted in similar significant increase in tensile ductility (to about 23%). Tensile deformation induced alignment of more rounded and spherical nanoparticles was observed. Stacking faults forming more easily in the alloy matrix was also observed. However, the formation of nanograins (nanoscale recrystallization) during room temperature tensile deformation was observed in this system. This implied that nanograin rotation during deformation was also responsible for the observed enhanced tensile ductility. When ZrB 2 was added to Mg–RE alloy, the tensile strength was significantly enhanced (yield strength >400 MPa) after thermal ageing. Here, the ZrB 2 nanoparticles induced the formation of thermal ageing resistant long period stacking/ordered (LPSO) nanograins and nanolayers in the Mg

  4. Palladium nanoparticles supported on layered hydroxide salts and their use in carbon-carbon coupling organic reactions

    OpenAIRE

    Martínez,Maby; Ocampo,Rogelio; Rios,Luz Amalia; Ramírez,Alfonso; Giraldo,Oscar

    2011-01-01

    Palladium nanoparticles supported on zinc hydroxide salts were prepared by intercalation of [PdCl6]2- and its further reduction with ethanol under reflux. All the materials were completely characterized by atomic absorption spectroscopy (AAS), X-ray diffraction (XRD), thermogravimetric/derivative thermogravimetric (TG/DTG) analyses, scanning electron microscopy (SEM), UV-Visible spectrometry and transmission electron microscopy (TEM). TEM analysis confirmed that the palladium nanoparticles we...

  5. Effective Production of Sorbitol and Mannitol from Sugars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide

    Directory of Open Access Journals (Sweden)

    Rodiansono Rodiansono

    2013-06-01

    Full Text Available Effective production of hexitols (sorbitol and mannitol was achieved from sugars by means of nickel nanoparticles supported on aluminium hydroxide (NiNPs/AlOH catalyst. NiNPs/AlOH catalyst was prepared by a simple and benign environmentally procedure using less amount of sodium hydroxide. ICP-AES and XRD analyses confirmed that the NiNPs/AlOH catalysts comprised a large amount of remained aluminium hydroxide (i.e. bayerite and gibbsite. The presence of aluminium hydroxide caused a high dispersion Ni metal species. The average Ni crystallite sizes that derived from the Scherrer`s equation for former R-Ni and NiNPs/AlOH were 8.6 nm and 4.1 nm, respectively. The catalyst exhibited high activity and selectivity both hydrogenolysis of disaccharides (sucrose and cellobiose and monosaccharides (glucose, fructose, and xylose at 403 K for 24 h. The NiNPs/AlOH catalyst was found to be reusable for at least five consecutive runs without any significant loss of activity and selectivity. © 2013 BCREC UNDIP. All rights reservedReceived: 21st December 2012; Revised: 7th February 2013; Accepted: 10th February 2013[How to Cite: Rodiansono, R., Shimazu, S. (2013. Effective Production of Sorbitol and Mannitol from Sug-ars Catalyzed by Ni Nanoparticles Supported on Aluminium Hydroxide. Bulletin of Chemical Reaction Engineering & Catalysis, 8 (1: 40-46. (doi:10.9767/bcrec.8.1.4290.40-46][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.8.1.4290.40-46] | View in  |

  6. Synthesis and Characterization of Nanoparticles and Nanocomposite of ZnO and MgO by Sonochemical Method and their Application for Zinc Polycarboxylate Dental Cement Preparation

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Karimi

    2011-01-01

    Full Text Available This paper discusses the synthesis of nanoparticles of ZnO and MgO and ZnO/MgO nanocomposite by the sonochemical method. At first, nanoparticles were synthesized by the reaction of Zn(CHCOO32 and Mg(CHCOO32 with tetramethylammonium hydroxide (TMAH in the presence of polyvinyl pyrrolidone (PVP and constant frequency ultrasonic waves (sonochemical method. Then, ZnO/MgO nanocomposite was prepared through reaction of magnesium acetate with TMAH in the presence of ZnO nanoparticles and PVP as structure director using ultrasonic assisted method. After filtration, the synthesized solution was obtained containing magnesium hydroxide in the presence of ZnO nanoparticles. It was calcinated at the temperature of 550 ºC, so that ZnO/MgO nanocomposite could be produced. The effects of different parameters on particle size and morphology of final ZnO and MgO powders and ZnO/MgO nanocomposite were optimized by ‘‘one at a time’’ method. Under optimum conditions, spongy shaped, uniformed and homogeneous nanostructured zinc oxide and magnesium oxide powders were obtained with particle sizes of 25–50 and 30-60 nm, respectively. ZnO/MgO nanocomposite was also obtained with more spongy morphology and particle size about 65 nm. Both synthesized ZnO and MgO nanoparticles and ZnO/MgO nanocomposite were successfully applied to the preparation of zinc polycarboxylate dental cement.

  7. Calcium hydroxide nanoparticles for the conservation of cultural heritage: new formulations for the deacidification of cellulose-based artifacts

    Science.gov (United States)

    Poggi, G.; Toccafondi, N.; Melita, L. N.; Knowles, J. C.; Bozec, L.; Giorgi, R.; Baglioni, P.

    2014-03-01

    Alkaline earth metal hydroxide nanoparticles dispersions have demonstrated to be efficient for the preservation of cellulose-based artifacts, providing a stable neutral environment and, if in excess, turning into mild alkaline species. New formulations tailored for specific conservation issues have been recently obtained via a solvothermal reaction, starting from bulk metal, and short chain alcohols. Using this synthetic procedure, stable, and high concentrated calcium hydroxide nanoparticles dispersions can be obtained. The characterization of nanoparticles was carried out by dynamic light scattering, transmission electron microscopy and X-ray powder diffraction and showed that the dispersed systems are particularly suitable for the application on porous substrates. In a direct application of this technology, acidic paper and canvas samples were artificially aged after deacidification using calcium hydroxide nanoparticles dispersed in short chain alcohols. Cellulose viscosimetric polymerization degree (DPv), cellulose pyrolysis temperature, and samples' pH were evaluated upon the aging and in terms of protective action arising from the applied treatment. In particular, determinations of DPv clearly showed that the degradation of acidic paper and canvas samples proceeds at higher rates with respect to deacidified samples. These evidences were also confirmed by the thermogravimetric analysis of samples, in which the benefits due to the deacidification treatments are measured in terms of pyrolysis temperature of cellulose. These new formulations of nanoparticles dispersions expand the palette of available tools for the conservation of cellulose-based works of art, such as easel paintings, and manuscripts, potentially opening the way for the intervention on parchment and leather, whose preservation is a particularly challenging task.

  8. The influence of zeta potential and yield stress on the filtration characteristics of a magnesium hydroxide simulant

    International Nuclear Information System (INIS)

    Biggs, Simon; Nabi, Rafiq; Poole, Colin; Patel, Ashok

    2007-01-01

    In the UK, irradiated fuels from Magnox reactors are often stored in water-filled ponds under alkaline conditions, so as to minimise corrosion of fuel cladding. This is important to prevent or reduce leakage of soluble fission products and actinides to the pond water. A variety of intermediate level wastes derived from Magnox materials are stored at power stations. Under these alkaline conditions, various species of magnesium are formed, of which magnesium hydroxide is the dominant material. The particle-fluid interactions are significant for the design and operation of facilities for hydraulic retrieval, filtration, dewatering and ion exchange treatment of fuel storage pond water and stored wet Magnox wastes. Here we describe a study of particulate properties and filtration characteristics of oxide particle simulants under laboratory conditions. Cake and medium resistance data were correlated across a range of pH conditions with electro-acoustic zeta potential and shear yield stress measurements, as a function of particle volume fractions. The influence of zeta potential on filtration properties arises directly from the interaction of particles within the sediment cake. (authors)

  9. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  10. Solidification of aqueous radioactive waste using insoluble compounds of magnesium oxide

    International Nuclear Information System (INIS)

    Carlson, J.E.

    1986-01-01

    A process is described for the treatment of radioactive waste which comprises: (a) first adding, under continuous agitation, a sufficient amount of a powdered magnesium oxide or magnesium hydroxide to an aqueous radioactive waste solution containing boric acid, the temperature of the water solution being 55-95 degrees C. to produce a magnesium borate derivative; (b) adding cement, under continuous agitation, to the magnesium borate derivative; and (c) then adding, under continuous agitation, after the cement has been dispersed, a sufficient amount of a compound selected from the group consisting of calcium oxide and calcium hydroxide to (b) to produce a gel matrix structure

  11. Impurity characterization of magnesium diuranate using simultaneous TG–DTA–FTIR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Raje, Naina, E-mail: nraje@barc.gov.in [Analytical Chemistry Division, B.A.R.C., Mumbai 400 085 (India); Ghonge, Darshana K. [Analytical Chemistry Division, B.A.R.C., Mumbai 400 085 (India); Hemantha Rao, G.V.S. [NFC, ECIL Post, Hyderabad (India); Reddy, A.V.R. [Analytical Chemistry Division, B.A.R.C., Mumbai 400 085 (India)

    2013-05-15

    Current studies describe the application of simultaneous thermogravimetry–differential thermal analysis – evolved gas analysis techniques for the compositional characterization of magnesium diuranate (MDU) with respect to the impurities present in the matrix. The stoichiometric composition of MDU was identified as MgU{sub 2}O{sub 7}⋅3H{sub 2}O. Presence of carbonate and sulphate as impurities in the matrix was confirmed through the evolved gas analysis using Fourier Transformation Infrared Spectrometry detection. Carbon and magnesium hydroxide content present as impurities in magnesium diuranate have been determined quantitatively using TG and FTIR techniques and the results are in good agreement. Powder X-ray diffraction analysis of magnesium diuranate suggests the presence of magnesium hydroxide as impurity in the matrix. Also these studies confirm the formation of magnesium uranate, uranium sesquioxide and uranium dioxide above 1000 °C, due to the decomposition of magnesium diuranate.

  12. Rapid green synthesis of ZnO nanoparticles using a hydroelectric cell without an electrolyte

    Science.gov (United States)

    Shah, Jyoti; Kumar Kotnala, Ravinder

    2017-09-01

    In this study, zinc oxide (ZnO) nanoparticles were synthesized using a novel environmentally friendly hydroelectric cell without an electrolyte or external current source. The hydroelectric cell comprised a nanoporous Li substituted magnesium ferrite pellet in contact with two electrodes, with zinc as the anode and silver as an inert cathode. The surface unsaturated cations and oxygen vacancies in the nanoporous ferrite dissociated water molecules into hydronium and hydroxide ions when the hydroelectric cell was dipped into deionized water. Hydroxide ions migrated toward the zinc electrode to form zinc hydroxide and the hydronium ions were evolved as H2 gas at the silver electrode. The zinc hydroxide collected as anode mud was converted into ZnO nanoparticles by heating at 250 °C. Structural analysis using Raman spectroscopy indicated the good crystallinity of the ZnO nanoparticles according to the presence of a high intensity E2-(high) mode. The nanoparticle size distribution was 5-20 nm according to high resolution transmission electron microscopy. An indirect band gap of 2.75 eV was determined based on the Tauc plot, which indicated the existence of an interstitial cation level in ZnO. Near band edge and blue emissions were detected in photoluminescence spectral studies. The blue emissions obtained from the ZnO nanoparticles could potentially have applications in blue lasers and LEDs. The ZnO nanoparticles synthesized using this method had a high dielectric constant value of 5 at a frequency of 1 MHz, which could be useful for fabricating nano-oscillators. This facile, clean, and cost-effective method obtained a significant yield of 0.017 g for ZnO nanoparticles without applying an external current source.

  13. Crystal Analysis of Multi Phase Calcium Phosphate Nanoparticles Containing Different amount of Magnesium

    Science.gov (United States)

    Gozalian, Afsaneh; Behnamghader, Ali Asghar; Moshkforoush, Arash

    In this study, Mg doped hydroxyapatite [(Ca, Mg)10(PO4)6(OH)2] and β-tricalcium phosphate nanoparticles were synthesized via sol gel method. Triethyl phosphite, calcium nitrate tetrahydrate and magnesium nitrate hexahydrate were used as P, Ca and Mg precursors. The ratio of (Ca+Mg)/P and the amount of magnesium (x) were kept constant at 1.67 and ranging x = 0 up to 3 in molecular formula of Ca10-xMgx (PO4)6(OH)2, respectively. Phase composition and chemical structure were performed using X-ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). Phase percentages, crystallite size, degree of crystallinity and lattice parameters were investigated. The presence of magnesium led to form the Mg doped tricalcium phosphate (β-TCMP) and Mg doped hydroxyapatite (Mg-HA). Based on the results of this study, lattice parameters, degree of crystallinity and crystallite size decreased with magnesium content. In addition, with increasing magnesium content, the amount of CaO phase decreased whereas the amount of MgO phase increased significantly. Obtained results can be used for new biomaterials design.

  14. Layered double hydroxides for preparing CoMn_2O_4 nanoparticles as anodes of lithium ion batteries

    International Nuclear Information System (INIS)

    Pan, Xu; Ma, Jingjing; Yuan, Ruo; Yang, Xia

    2017-01-01

    In the field of lithium-ion batteries, CoMn_2O_4 as an anode material has attracted a wide attention because it inherited the splendid electrochemical performances of Mn and Co-based metal oxides. Compared to graphite, Co-based oxides have a higher capacity which is about twice of the graphite. Moreover, Mn-based oxides have lower operating voltages and manganese exists abundantly in nature. Layered double hydroxides (LDHs), similar with brucite structure, were used as precursor for CoMn_2O_4 nanoparticles in this work. Under high temperature process, the LDHs decomposed to CoMn_2O_4 nanoparticles. When evaluated as anode materials for lithium ion batteries, the CoMn_2O_4 nanoparticles behaved good electrochemical performance with the discharge and charge capacity of 733 mAh g"-"1 and 721 mAh g"-"1 at current density of 200 mA g"-"1 after 100 cycles. This method for preparing CoMn_2O_4 nanoparticles is easy, which may provide a way for synthesis of other bimetallic oxides and anodes of lithium ion batteries. - Highlights: • Layered double hydroxides were employed as precursors to synthesize CoMn_2O_4. • The CoMn_2O_4 nanoparticles behaved good electrochemical performance. • This study provides a guideline for preparing bimetallic oxides.

  15. Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition

    KAUST Repository

    Tan, Hua

    2012-09-01

    In this work, Ru nanoparticles confined in the channels of ordered mesoporous alumina (MA) and magnesium oxide-modified ordered MA are prepared for the first time via a two-solvent technique, combined with the amorphous citrate route. Structural characterizations reveal that uniform 2-3 nm Ru nanoparticles are highly dispersed in the blockage-free channels of mesoporous supports. The Ru nanoparticles confined in MA modified with 20% molar ratio magnesium oxide exhibited a high catalytic activity and stability during ammonia decomposition due to the optimized particle size, basic support, lack of chlorine, and confined space provided by the channels of the mesoporous supports. © 2012 Elsevier B.V. All rights reserved.

  16. Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition

    KAUST Repository

    Tan, Hua; Li, Kun; Sioud, Salim; Cha, Dong Kyu; Amad, Maan H.; Hedhili, Mohamed N.; Al-Talla, Zeyad

    2012-01-01

    In this work, Ru nanoparticles confined in the channels of ordered mesoporous alumina (MA) and magnesium oxide-modified ordered MA are prepared for the first time via a two-solvent technique, combined with the amorphous citrate route. Structural characterizations reveal that uniform 2-3 nm Ru nanoparticles are highly dispersed in the blockage-free channels of mesoporous supports. The Ru nanoparticles confined in MA modified with 20% molar ratio magnesium oxide exhibited a high catalytic activity and stability during ammonia decomposition due to the optimized particle size, basic support, lack of chlorine, and confined space provided by the channels of the mesoporous supports. © 2012 Elsevier B.V. All rights reserved.

  17. Mechanistic Study of Magnesium Carbonate Semibatch Reactive Crystallization with Magnesium Hydroxide and CO2

    DEFF Research Database (Denmark)

    Han, B.; Qu, H. Y.; Niemi, H.

    2014-01-01

    This work investigates semibatch precipitation of magnesium carbonate at ambient temperature and pressure using Mg(OH)(2) and CO2 as starting materials. A thermal analysis method was developed that reflects the dissolution rate of Mg(OH)(2) and the formation of magnesium carbonate. The method...... the liquid and solid phases. A stirring rate of 650 rpm was found to be the optimum speed as the flow rate of CO2 was 1 L/min. Precipitation rate increased with gas flow rate, which indicates that mass transfer of CO2 plays a critical role in this precipitation case. Magnesium carbonate trihydrate...

  18. Coating magnesium hydroxide on surface of carbon microspheres and interface binding with poly (ethylene terephthalate) matrix

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Baoxia [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Niu, Mei, E-mail: niumei@tyut.edu.cn [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Yang, Yongzhen, E-mail: yyztyut@126.com [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center on Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Bai, Jie; Song, Yinghao; Peng, Yun [College of Textile Engineering, Taiyuan University of Technology, Yuci 030600 (China); Liu, Xuguang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China)

    2017-08-01

    Highlights: • Magnesium hydroxide (MH) as a capsule wall was firstly coated on the surface of carbon microspheres (CMSs) to obtain MH@CMSs by liquid phase deposition method. • An organic layer of 3-Aminopropyltriethoxysilane (APTS) was then introduced on the surface of MH@CMSs. • The formed two layers provided the FMH@CMSs/PET with good mechanical and flame-retardant properties. - Abstract: In this account, magnesium hydroxide (MH) employed as a capsule wall was firstly coated on the surface of carbon microspheres (CMSs) to obtain MH@CMSs using liquid phase deposition, then was modified by 3-Aminopropyltriethoxysilane (APTS) to form FMH@CMSs. To investigate the interface binding forces, a series of PET composites was prepared by melt compounding with MH@CMSs or FMH@CMSs. Field-emission scanning electron microscopy (FESEM), Transmission electron microscopy (TEM), Fourier-transform Infrared spectrometry (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, chemical structure, and effect of functionalization of CMSs. The coating degree and thermal stability were investigated by thermogravimetry analysis. The results showed that CMSs were coated by an inorganic shell layer of MH as a capsule wall. On the other hand, MH@CMSs were coated with an organic layer of APTS. When compared to MH@CMSs, the interface binding forces between FMH@CMSs and PET matrix were significantly improved, and the tensile strength of FMH@CMSs/PET was higher than that of MH@CMSs/PET. At 1 wt% mass fraction of FMH@CMSs, the limiting oxygen index (LOI) value of PET composites increased from 21% to 27.6% following a V-0 rating. The tensile strength of FMH@CMSs/PET increased by 66.2% to reach 47.20 MPa, a value nearly similar to that of PET. Overall, the formed two layers provided the FMH@CMSs/PET with good mechanical and flame-retardant properties, which would broaden their scope of application.

  19. Transparent ‘solution’ of ultrathin magnesium hydroxide nanocrystals for flexible and transparent nanocomposite films

    International Nuclear Information System (INIS)

    Wang, Jie-Xin; Sun, Qian; Chen, Bo; Zeng, Xiao-Fei; Zhang, Cong; Chen, Jian-Feng; Wu, Xi; Zou, Hai-Kui

    2015-01-01

    Transparent solutions of nanocrystals exhibit many unique properties, and are thus attractive materials for numerous applications. However, the synthesis of transparent nanocrystal solutions of magnesium hydroxide (MH) with wide applications is yet to be realized. Here, we report a facile two-step process, which includes a direct reactive precipitation in alcohol phase instead of aqueous phase combined with a successive surface modification, to prepare transparent alcohol solutions containing lamellar MH nanocrystals with an average size of 52 nm and an ultrathin thickness of 1–2 nm, which is the thinnest MH nanoplatelet reported in the literatures. Further, highly flexible and transparent nanocomposite films are fabricated with a solution mixing method by adding the transparent MH nanocrystal solutions into PVB solution. Considering the simplicity of the fabrication process, high transparency and good flexibility, this MH/polymer nanocomposite film is promising for flame-resistant applications in plastic electronics and optical devices with high transparency, such as flexible displays, optical filters, and flexible solar cells. (paper)

  20. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  1. Luminescent materials based on Tb, Eu-containing layered double hydroxides

    International Nuclear Information System (INIS)

    Zhuravleva, N.G.; Eliseev, A.A.; Lukashin, A.V.; Kinast, U.; Tret'yakov, Yu.D.

    2004-01-01

    Luminescent materials on the basis of magnesium-aluminium layered double hydroxides with intercalated anionic complexes of terbium and europium picolinates were synthesized. Relying on data of spectroscopy, elementary and X-ray phase analyses, the change in the rare earth complex structure and metal/ligand ratio, depending on the hydroxide layer charge, determined by Mg/Al ratio in the double hydroxide, were ascertained. The values of quantum yields of luminescence for terbium-containing samples amounted to 30-50% [ru

  2. Gas-phase synthesis of magnesium nanoparticles : A high-resolution transmission electron microscopy study

    NARCIS (Netherlands)

    Kooi, B.J.; Palasantzas, G.; de Hosson, J.T.M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg{1010} facets. Oxidation of Mg yields a MgO shell (similar to 3 nm

  3. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    International Nuclear Information System (INIS)

    Li, Shuo; Bhushan, Bharat

    2016-01-01

    Highlights: • Mg/Al-, Zn/Al- and Zn/Mg/Al-layered double hydroxide were synthesized. • Mg/Al-LDH had superior tribological performance compared to other LDHs. • The best thermal stability of Mg/Al-LDH was responsible for its friction property. - Abstract: Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  4. Lubrication performance and mechanisms of Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxide nanoparticles as lubricant additives

    Energy Technology Data Exchange (ETDEWEB)

    Li, Shuo [School of Materials Science and Technology, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian Distract, Beijing 100083 (China); Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue Columbus, OH 43210-1142 (United States); Bhushan, Bharat, E-mail: bhushan.2@osu.edu [Nanoprobe Laboratory for Bio- & Nanotechnology and Biomimetics (NLBB), The Ohio State University, 201 W. 19th Avenue Columbus, OH 43210-1142 (United States)

    2016-08-15

    Highlights: • Mg/Al-, Zn/Al- and Zn/Mg/Al-layered double hydroxide were synthesized. • Mg/Al-LDH had superior tribological performance compared to other LDHs. • The best thermal stability of Mg/Al-LDH was responsible for its friction property. - Abstract: Solid lubricant particles are commonly used as oil additives for low friction and wear. Mg/Al-, Zn/Al-, and Zn/Mg/Al-layered double hydroxides (LDH) were synthesized by coprecipitation method. The benefits of LDH nanoparticles are that they can be synthesized using chemical methods where size and shape can be controlled, and can be modified organically to allow dispersal in fluids. The LDH nanoparticles were characterized by X-ray diffraction, scanning electron microscope, thermogravimetry, and differential scanning calorimetry. A pin-on-disk friction and wear tester was used for evaluating the friction and wear properties of LDH nanoparticles as lubricant additives. LDH nanoparticles have friction-reducing and anti-wear properties compared to oil without LDHs. Mg/Al-LDH has the best lubrication, possibly due to better thermal stability in severe conditions.

  5. Synthesis and Characterization of Nanoparticles and Nanocomposite of ZnO and MgO by Sonochemical Method and their Application for Zinc Polycarboxylate Dental Cement Preparation

    OpenAIRE

    Mohammad Ali Karimi; Saeed Haghdar Roozbahani; Reza Asadiniya; Abdolhamid Hatefi-Mehrjardi; Mohammad Hossein Mashhadizadeh; Reza Behjatmanesh-Ardakani; Mohammad Mazloum-Ardakani; Hadi Kargar; Seyed Mojtaba Zebarjad

    2011-01-01

    This paper discusses the synthesis of nanoparticles of ZnO and MgO and ZnO/MgO nanocomposite by the sonochemical method. At first, nanoparticles were synthesized by the reaction of Zn(CHCOO3)2 and Mg(CHCOO3)2 with tetramethylammonium hydroxide (TMAH) in the presence of polyvinyl pyrrolidone (PVP) and constant frequency ultrasonic waves (sonochemical method). Then, ZnO/MgO nanocomposite was prepared through reaction of magnesium acetate with TMAH in the presence of ZnO nanoparticles and PVP as...

  6. Effect of Zinc Oxide Nanoparticles and Sodium Hydroxide on the Self-Cleaning and Antibacterial Properties of Polyethylene Terephthalate

    Directory of Open Access Journals (Sweden)

    Mohammad Mirjalili

    2017-12-01

    Full Text Available In this study, the synthesis of zinc oxide nanoparticles was carried out, together with the hydrolysis of polyethylene terephthalate, using sodium hydroxide to increase surface activity and enhance nanoparticle adsorption. Polyester fabrics were treated with zinc acetate and sodium hydroxide in an ultrasonic bath, resulting in the formation of ZnO nanospheres. The presence of zinc oxide on the surface of the polyethylene terephthalate was confi rmed using scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDS. The self-cleaning property of treated fabrics was evaluated through discolouring using methylene blue stain under solar irradiation. The antibacterial activities of the samples against common pathogenic bacteria, including Escherichia coli and Staphylococcus aureus, were also assessed. The results indicated that the photocatalytic and antibacterial activities of the ultrasound-treated polyethylene terephthalate improved significantly.

  7. Microbial Precipitation of Cr(III)-Hydroxide and Se(0) Nanoparticles During Anoxic Bioreduction of Cr(VI)- and Se(VI)-Contaminated Water.

    Science.gov (United States)

    Kim, Yumi; Oh, Jong-Min; Roh, Yul

    2017-04-01

    This study examined the microbial precipitations of Cr(III)-hydroxide and Se(0) nanoparticles during anoxic bioreductions of Cr(VI) and Se(VI) using metal-reducing bacteria enriched from groundwater. Metal-reducing bacteria enriched from groundwater at the Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT), Daejeon, S. Korea were used. Metal reduction and precipitation experiments with the metal-reducing bacteria were conducted using Cr(VI)- and Se(VI)-contaminated water and glucose as a carbon source under an anaerobic environment at room temperature. XRD, SEM-EDX, and TEM-EDX analyses were used to characterize the mineralogy, crystal structure, chemistry, shape, and size distribution of the precipitates. The metal-reducing bacteria reduced Cr(VI) of potassium chromate (K₂CrO₄) to Cr(III) of chromium hydroxide [Cr(OH)3], and Se(VI) of sodium selenate (Na₂SeO₄) to selenium Se(0), with changes of color and turbidity. XRD, SEM-EDX, and TEM-EDX analyses revealed that the chromium hydroxide [Cr(OH)₃] was formed extracellularly with nanoparticles of 20–30 nm in size, and elemental selenium Se(0) nanoparticles had a sphere shape of 50–250 nm in size. These results show that metal-reducing bacteria in groundwater can aid or accelerate precipitation of heavy metals such as Cr(VI) and Se(VI) via bioreduction processes under anoxic environments. These results may also be useful for the recovery of Cr and Se nanoparticles in natural environments.

  8. EFFECTS OF MAGNESIUM PEMOLINE UPON HUMAN LEARNING, MEMORY, AND PERFORMANCE TESTS.

    Science.gov (United States)

    SMITH, RONALD G.

    THIS STUDY WAS CONDUCTED DURING 1966 TO DETERMINE THE EFFECTS OF MAGNESIUM PEMOLINE (A COMBINATION OF 2-IMINO-5-PHENYL-4-OXAZOLIDINONE AND MAGNESIUM HYDROXIDE) ON A VARIETY OF HUMAN LEARNING, MEMORY, AND PERFORMANCE TASKS. MAGNESIUM PEMOLINE (25 OR 37.5 MG) OR A PLACEBO WAS ADMINISTERED ORALLY ON A DOUBLE-BLIND BASIS TO INTELLIGENCE-MATCHED GROUPS…

  9. The effect of magnesium on partial sulphate removal from mine water as gypsum.

    Science.gov (United States)

    Tolonen, Emma-Tuulia; Rämö, Jaakko; Lassi, Ulla

    2015-08-15

    The aim of this research was to investigate the effect of magnesium on the removal efficiency of sulphate as gypsum from mine water. The precipitation conditions were simulated with MINEQL + software and the simulation results were compared with the results from laboratory jar test experiments. Both the simulation and the laboratory results showed that magnesium in the mine water was maintaining sulphate in a soluble form as magnesium sulphate (MgSO4) at pH 9.6. Thus magnesium was preventing the removal of sulphate as gypsum (CaSO4·2H2O). However, change in the lime precipitation pH from 9.6 to 12.5 resulted in magnesium hydroxide (Mg(OH)2) precipitation and improved sulphate removal. Additionally, magnesium hydroxide could act as seed crystals for gypsum precipitation or co-precipitate sulphate further enhancing the removal of sulphate from mine water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Immune responses induced in rabbits after oral administration of bovine serum albumin in combination with different adjuvants (herb extracts, aluminium hydroxide and platinum nanoparticles

    Directory of Open Access Journals (Sweden)

    G. Bižanov

    2016-12-01

    Full Text Available The aim of the current study was to evaluate the immunostimulatory activity of 10 different herbal extracts from Vitex agnus-castus, Vinca major, Aloe arborescens and the polyherbal product containing extracts from Sambucus nigra, Primula versis, Pinus alba, Gentiana lutea, Cetraria islandica, Eucaliptus globulus, Citrus limon and aluminium hydroxide, as well as platinum nanoparticles. Rabbits were immunized three times orally with bovine serum albumin (BSA in combination with the components mentioned above. BSA-specific IgA antibodies in saliva and IgG antibodies in serum were examined by ELISA. It was found that the rabbits immunized with BSA in combination with either platinum nanoparticles or aluminium hydroxide had higher titres of BSA-specific IgA antibodies in their saliva at day 56 of observation. Likewise, rabbits treated with BSA and Vinca major or Aloe arborescens extracts showed higher levels of BSA-specific IgG antibodies in the serum at the end of observation. These results suggest that some plant extracts, aluminium hydroxide and platinum nanoparticles components could be used as oral adjuvants or as immunomodulators for rabbits.

  11. On reactions of polymerization of p-element hydroxides in aqueous solutions

    International Nuclear Information System (INIS)

    Tikavyj, V.F.; Lesnikovich, A.I.

    1978-01-01

    The tendency of p-element hydroxides towards polymerization in aqueous solutions has been considered with respect to their location in the Periodic Table. Stable hydroxides of d-elements are practically all polymerized; among s-elements only berillium and magnesium hydroxides polymerize as the least dissociated ones. Hydroxides of the elements located to the right of the 4 Group and above the 5-th Period do not polymerize in aqueous solutions. The structure and tendency towards polymerization of In, Te, and I compounds have been studied. The tendency to polymerization of all hydroxides of p-elements located below the 4-th Period is explained from the standpoint of electron structure and the simplest thermodynamic analysis (entropy, enthalpy)

  12. Corrosion resistance of multilayered magnesium phosphate/magnesium hydroxide film formed on magnesium alloy using steam-curing assisted chemical conversion method

    International Nuclear Information System (INIS)

    Ishizaki, Takahiro; Kudo, Ruriko; Omi, Takeshi; Teshima, Katsuya; Sonoda, Tsutomu; Shigematsu, Ichinori; Sakamoto, Michiru

    2012-01-01

    Anticorrosive multilayered films were successfully prepared on magnesium alloy AZ31 by chemical conversion treatment, followed by steam curing treatment. The crystal structures, chemical composition, surface morphologies, chemical bonding states of the film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscope (FE-SEM) measurements. All the films had thicknesses of ranging from 24 to 32 μm. The film had two layers that were composed of crystalline NH 4 MgPO 4 ·H 2 O, Mg 2 PO 4 OH·3H 2 O, Mg(OH) 2 and amorphous MgO. The outer layers include magnesium, oxygen, and phosphorous, and the inner layers include magnesium and oxygen. The corrosion resistant performances of the multilayered films in 5 wt% NaCl aqueous solution were investigated by electrochemical and gravimetric measurements. The potentiodynamic polarization curves revealed that the corrosion current density (j corr ) of all the film coated magnesium alloys decreased by more than four orders of magnitude as compared to that of the bare magnesium alloy, indicating that all the films had an inhibiting effect of corrosion reaction. Gravimetric measurements showed that the average corrosion rates obtained from the weight loss rates were estimated to be in the ranges of ca. 0.085–0.129 mm/y. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test revealed that the adhesion of our anticorrosive multilayered film to the magnesium alloy surface was very good.

  13. Investigation of magnesium oxychloride cement at the initial hardening stage

    Directory of Open Access Journals (Sweden)

    Averina Galina

    2018-01-01

    Full Text Available The paper investigates the process of variation of magnesium oxychloride cement deformations at the initial hardening stage depending on the activity of magnesium oxide powder which is determined by the parameters of the source material burning. Investigation is focused on magnesium cements obtained from pure magnesium hydroxide. Source materials were burnt at various temperatures with the purpose to obtain magnesium oxide powder with different activity. Regular content of hydrated phases was determined in hardened magnesium cement prepared on the basis of binders with different activity. The study reveals the influence of magnesium oxide powder activity on the process of deformation occurrence in hardened magnesium cement and its tendency to crack formation.

  14. Gold nanoparticles supported on magnesium oxide for CO oxidation

    Science.gov (United States)

    Carabineiro, Sónia Ac; Bogdanchikova, Nina; Pestryakov, Alexey; Tavares, Pedro B.; Fernandes, Lisete Sg; Figueiredo, José L.

    2011-06-01

    Au was loaded (1 wt%) on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH)2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved). The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

  15. Gold nanoparticles supported on magnesium oxide for CO oxidation

    Directory of Open Access Journals (Sweden)

    Bogdanchikova Nina

    2011-01-01

    Full Text Available Abstract Au was loaded (1 wt% on a commercial MgO support by three different methods: double impregnation, liquid-phase reductive deposition and ultrasonication. Samples were characterised by adsorption of N2 at -96°C, temperature-programmed reduction, high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction. Upon loading with Au, MgO changed into Mg(OH2 (the hydroxide was most likely formed by reaction with water, in which the gold precursor was dissolved. The size range for gold nanoparticles was 2-12 nm for the DIM method and 3-15 nm for LPRD and US. The average size of gold particles was 5.4 nm for DIM and larger than 6.5 for the other methods. CO oxidation was used as a test reaction to compare the catalytic activity. The best results were obtained with the DIM method, followed by LPRD and US. This can be explained in terms of the nanoparticle size, well known to determine the catalytic activity of gold catalysts.

  16. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  17. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  18. Layered double hydroxides for preparing CoMn{sub 2}O{sub 4} nanoparticles as anodes of lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xu; Ma, Jingjing; Yuan, Ruo, E-mail: yuanruo@swu.edu.cn; Yang, Xia, E-mail: xiayang2@swu.edu.cn

    2017-06-15

    In the field of lithium-ion batteries, CoMn{sub 2}O{sub 4} as an anode material has attracted a wide attention because it inherited the splendid electrochemical performances of Mn and Co-based metal oxides. Compared to graphite, Co-based oxides have a higher capacity which is about twice of the graphite. Moreover, Mn-based oxides have lower operating voltages and manganese exists abundantly in nature. Layered double hydroxides (LDHs), similar with brucite structure, were used as precursor for CoMn{sub 2}O{sub 4} nanoparticles in this work. Under high temperature process, the LDHs decomposed to CoMn{sub 2}O{sub 4} nanoparticles. When evaluated as anode materials for lithium ion batteries, the CoMn{sub 2}O{sub 4} nanoparticles behaved good electrochemical performance with the discharge and charge capacity of 733 mAh g{sup -1} and 721 mAh g{sup -1} at current density of 200 mA g{sup -1} after 100 cycles. This method for preparing CoMn{sub 2}O{sub 4} nanoparticles is easy, which may provide a way for synthesis of other bimetallic oxides and anodes of lithium ion batteries. - Highlights: • Layered double hydroxides were employed as precursors to synthesize CoMn{sub 2}O{sub 4}. • The CoMn{sub 2}O{sub 4} nanoparticles behaved good electrochemical performance. • This study provides a guideline for preparing bimetallic oxides.

  19. The effectiveness of sodium hydroxide (NaOH) and sodium carbonate (Na2CO3) on the impurities removal of saturated salt solution

    Science.gov (United States)

    Pujiastuti, C.; Ngatilah, Y.; Sumada, K.; Muljani, S.

    2018-01-01

    Increasing the quality of salt can be done through various methods such as washing (hydro-extraction), re-crystallization, ion exchange methods and others. In the process of salt quality improvement by re-crystallization method where salt product diluted with water to form saturated solution and re-crystallized through heating process. The quality of the salt produced is influenced by the quality of the dissolved salt and the crystallization mechanism applied. In this research is proposed a concept that before the saturated salt solution is recrystallized added a chemical for removal of the impurities such as magnesium ion (Mg), calcium (Ca), potassium (K) and sulfate (SO4) is contained in a saturated salt solution. The chemical reagents that used are sodium hydroxide (NaOH) 2 N and sodium carbonate (Na2CO3) 2 N. This research aims to study effectiveness of sodium hydroxide and sodium carbonate on the impurities removal of magnesium (Mg), calcium (Ca), potassium (K) and sulfate (SO4). The results showed that the addition of sodium hydroxide solution can be decreased the impurity ions of magnesium (Mg) 95.2%, calcium ion (Ca) 45%, while the addition of sodium carbonate solution can decreased magnesium ion (Mg) 66.67% and calcium ion (Ca) 77.5%, but both types of materials are not degradable sulfate ions (SO4). The sodium hydroxide solution more effective to decrease magnesium ion than sodium carbonate solution, and the sodium carbonate solution more effective to decrease calcium ion than sodium hydroxide solution.

  20. Promotion Effect of Alkali Metal Hydroxides on Polymer-Stabilized Pd Nanoparticles for Selective Hydrogenation of C–C Triple Bonds in Alkynols

    OpenAIRE

    Nikoshvili, Linda Zh.; Bykov, Alexey V.; Khudyakova, Tatiana E.; Lagrange, Thomas; Héroguel, Florent; Luterbacher, Jeremy S.; Matveeva, Valentina G.; Sulman, Esther M.; Dyson, Paul J.; Kiwi-Minsker, Lioubov

    2017-01-01

    Postimpregnation of Pd nanoparticles (NPs) stabilized within hyper-cross-linked polystyrene with sodium or potassium hydroxides of optimal concentration was found to significantly increase the catalytic activity for the partial hydrogenation of the C–C triple bond in 2-methyl-3-butyn-2-ol at ambient hydrogen pressure. The alkali metal hydroxide accelerates the transformation of the residual Pd(II) salt into Pd(0) NPs and diminishes the reaction induction period. In addition, the selectivity t...

  1. Application of nanodimensional particles and aluminum hydroxide nanostructures for cancer diagnosis and therapy

    Science.gov (United States)

    Korovin, M. S.; Fomenko, A. N.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less researchers' attention has been paid to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However, recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with different aluminum oxide/hydroxide nanoparticles and nanostructures.

  2. Synthesis, Characterization, and In Vitro Drug Delivery Capabilities of (Zn, Al-Based Layered Double Hydroxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vinay J. Nagaraj

    2015-01-01

    Full Text Available There is an urgent need for the development of alternative strategies for effective drug delivery to improve the outcome of patients suffering from deadly diseases such as cancer. Nanoparticles, in particular layered double hydroxide (LDH nanoparticles, have great potential as nanocarriers of chemotherapeutic molecules. In this study, we synthesized (Zn, Al-LDH nanoparticles and report their enhanced pH-dependent stability in comparison to the commonly used (Mg, Al-LDH nanoparticles. Fluorescein isothiocyanate (FITC and valproate (VP were intercalated into (Zn, Al-LDH nanoparticles to study cellular uptake, biocompatibility, and drug delivery capabilities using cultured pancreatic adenocarcinoma BxPC3 cells. Fluorescence measurements indicated that FITC-intercalated LDH nanoparticles showed a greater degree of energy-dependent uptake rather than passive uptake by BxPC3 cells, especially at high concentrations of nanoparticles. Tetrazolium-based colorimetric assays indicated that BxPC3 cells treated with VP-intercalated LDH nanoparticles showed a significant reduction in cell viability along with about 30-fold reduction in IC50 compared to the drug alone. In contrast, the non-drug-intercalated LDH nanoparticles did not affect the cell viability indicating very low innate cytotoxicity. Our research indicates that the superior properties of (Zn, Al-LDH nanoparticles make them ideal candidates for further development as in vivo chemotherapy drug delivery agents.

  3. Nanocomposite hydrogels stabilized by self-assembled multivalent bisphosphonate-magnesium nanoparticles mediate sustained release of magnesium ion and promote in-situ bone regeneration.

    Science.gov (United States)

    Zhang, Kunyu; Lin, Sien; Feng, Qian; Dong, Chaoqun; Yang, Yanhua; Li, Gang; Bian, Liming

    2017-12-01

    Hydrogels are appealing biomaterials for applications in regenerative medicine due to their tunable physical and bioactive properties. Meanwhile, therapeutic metal ions, such as magnesium ion (Mg 2+ ), not only regulate the cellular behaviors but also stimulate local bone formation and healing. However, the effective delivery and tailored release of Mg 2+ remains a challenge, with few reports on hydrogels being used for Mg 2+ delivery. Bisphosphonate exhibits a variety of specific bioactivities and excellent binding affinity to multivalent cations such as Mg 2+ . Herein, we describe a nanocomposite hydrogel based on hyaluronic acid and self-assembled bisphosphonate-magnesium (BP-Mg) nanoparticles. These nanoparticles bearing acrylate groups on the surface not only function as effective multivalent crosslinkers to strengthen the hydrogel network structure, but also promote the mineralization of hydrogels and mediate sustained release of Mg 2+ . The released Mg 2+ ions facilitate stem cell adhesion and spreading on the hydrogel substrates in the absence of cell adhesion ligands, and promote osteogenesis of the seeded hMSCs in vitro. Furthermore, the acellular porous hydrogels alone can support in situ bone regeneration without using exogenous cells and inductive agents, thereby greatly simplifying the approaches of bone regeneration therapy. In this study, we developed a novel bioactive nanocomposite hydrogel based on hyaluronic acid and self-assembled bisphosphonate-magnesium (BP-Mg) nanoparticles. Such hydrogels are stabilized by the multivalent crosslinking domains formed by the aggregation of Ac-BP-Mg NPs, and therefore show enhanced mechanical properties, improved capacity for mineralization, and controlled release kinetics of Mg 2+ . Moreover, the released Mg 2+ can enhance cell adhesion and spreading, and further promote the osteogenic differentiation of hMSCs. Owing to these unique properties, these acellular hydrogels alone can well facilitate the in vivo

  4. The characteristics of laser welded magnesium alloy using silver nanoparticles as insert material

    International Nuclear Information System (INIS)

    Ishak, M.; Maekawa, K.; Yamasaki, K.

    2012-01-01

    Highlights: ► Ag nanoparticles are used as insert material for welding Mg alloy with laser. ► We examine the microstructure and mechanical properties of welded Mg alloys. ► Nananoparticle promote grain refinement to the weld structure. ► Finer nanoparticle produces high weld efficiency and mechanical properties. - Abstract: This paper describes the characteristics of the laser welding of thin-sheet magnesium alloys using silver (Ag) nanoparticles as an insert material. The experiment was conducted using nanoparticles with 5 nm and 100 nm diameters that were welded with a Nd:YAG laser. The microstructure and mechanical properties of the specimens welded using inserts with different sizes of nanoparticles and without an insert material, were examined. Electron probe micro-analyzer (EPMA) analysis was conducted to confirm the existence of Ag in the welded area. The introduction of the Ag nanoparticle insert promoted large area of fine grain and broadened the acceptable range of scanning speed parameters compared to welds without an insert. Welds with 5 nm nanoparticles yielded the highest fracture load of up to 818 N while the lowest fracture load was found for weld specimens with 100 nm nanoparticles. This lower fracture load was due to larger voids and a smaller throat length, which contributed to a lower fracture load when using larger nanoparticles.

  5. Precipitation of PEG/Carboxyl-Modified Gold Nanoparticles with Magnesium Pyrophosphate: A New Platform for Real-Time Monitoring of Loop-Mediated Isothermal Amplification.

    Science.gov (United States)

    Qin, Ailin; Fu, Lok Tin; Wong, Jacky K F; Chau, Li Yin; Yip, Shea Ping; Lee, Thomas M H

    2017-03-29

    Gold nanoparticles have proven to be promising for decentralized nucleic acid testing by virtue of their simple visual readout and absorbance-based quantification. A major challenge toward their practical application is to achieve ultrasensitive detection without compromising simplicity. The conventional strategy of thermocycling amplification is unfavorable (because of both instrumentation and preparation of thermostable oligonucleotide-modified gold nanoparticle probes). Herein, on the basis of a previously unreported co-precipitation phenomenon between thiolated poly(ethylene glycol)/11-mercaptoundecanoic acid co-modified gold nanoparticles and magnesium pyrophosphate crystals (an isothermal DNA amplification reaction byproduct), a new ultrasensitive and simple DNA assay platform is developed. The binding mechanism underlying the co-precipitation phenomenon is found to be caused by the complexation of carboxyl and pyrophosphate with free magnesium ions. Remarkably, poly(ethylene glycol) does not hinder the binding and effectively stabilizes gold nanoparticles against magnesium ion-induced aggregation (without pyrophosphate). In fact, a similar phenomenon is observed in other poly(ethylene glycol)- and carboxyl-containing nanomaterials. When the gold nanoparticle probe is incorporated into a loop-mediated isothermal amplification reaction, it remains as a red dispersion for a negative sample (in the absence of a target DNA sequence) but appears as a red precipitate for a positive sample (in the presence of a target). This results in a first-of-its-kind gold nanoparticle-based DNA assay platform with isothermal amplification and real-time monitoring capabilities.

  6. Interaction of natural borates with potassium hydroxide solution

    International Nuclear Information System (INIS)

    Azarova, L.A.; Vinogradov, E.E.; Kudinov, I.B.; Panasyuk, G.P.; Danilov, V.P.

    2000-01-01

    Interaction of natural borates - inyoite, ulexite and hydroboracite MgCa[B 3 O 4 (OH) 3 ] 2 ·3H 2 O with KOH solution is studied at 50 Deg C by the methods of chemical, x- ray phase, differential thermal analyses and IR spectroscopy. IR spectra points out on island character of forming borates and confirms the data of x-ray phase and chemical analyses about presence of asharite and calcium hydrous borate in resulting products. Hydroboracite (chain structure) under the action of potassium hydroxide passes into borates of magnesium and calcium with island structure and in this case boron transforms partially into liquid phase. When potassium hydroxide interacts with inyoite and ulexite calcium hydroxide and roentgenoamorphous boron-containing product precipitate [ru

  7. Reverse microemulsion synthesis of layered gadolinium hydroxide nanoparticles

    Science.gov (United States)

    Xu, Yadong; Suthar, Jugal; Egbu, Raphael; Weston, Andrew J.; Fogg, Andrew M.; Williams, Gareth R.

    2018-02-01

    A reverse microemulsion approach has been explored for the synthesis of layered gadolinium hydroxide (LGdH) nanoparticles in this work. This method uses oleylamine as a multifunctional agent, acting as surfactant, oil phase and base. 1-butanol is additionally used as a co-surfactant. A systematic study of the key reaction parameters was undertaken, including the volume ratio of surfactant (oleylamine) to water, the reaction time, synthesis temperature, and the amount of co-surfactant (1-butanol) added. It proved possible to obtain pristine LGdH materials at temperatures of 120 °C or below with an oleylamine: water ratio of 1:4. Using larger amounts of surfactant or higher temperatures caused the formation of Gd(OH)3, either as the sole product or as a major impurity phase. The LGdH particles produced have sizes of ca. 200 nm, with this size being largely independent of temperature or reaction time. Adjusting the amount of 1-butanol co-surfactant added permits the size to be varied between 200 and 300 nm.

  8. A Simple Approach for the Synthesis of Gold Nanoparticles Mediated by Layered Double Hydroxide

    OpenAIRE

    Silva, Aires da Conceição; de Souza, Andréa Luzia Ferreira; Simão, Renata Antoun; Brum Malta, Luiz Fernando

    2013-01-01

    The present work introduces a new procedure to obtain gold nanoparticles (AuNPs). AuNPs (77–213 nm) were obtained in the absence of any classical reducing agents in a medium containing Mg2+/Al3+ layered double hydroxide (LDH) and N,N-dimethylformamide. XRD analysis showed the presence of crystalline phases of gold in the Au/LDH composite. The 2θ values of peaks corresponding to the LDH interlayer distance indicated that metallic NPs were deposited on the surface of the material. Furthermore, ...

  9. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    Science.gov (United States)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation. Ca-Al precursor (C3A) was agitated in a hexavalent chromium (Cr(VI)) solution to form Al-Ca-CrO4 LDH product. Ca-Al-CrO4 LDH phase occurred preferentially to Ca-Al-MCl2 LDH phases in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist.

  10. Nanostructured magnesium oxide as cure activator for polychloroprene rubber.

    Science.gov (United States)

    Kar, Sritama; Bhowmick, Anil K

    2009-05-01

    The aim of this research was to synthesize magnesium oxide nanoparticles and to use them as cure activator for polychloroprene rubber (CR). The effects of counterions of magnesium salts on the homogeneous phase precipitation reaction to control size, monodispersity, crystallinity, and morphology of Mg(OH)2 nanoparticles were also investigated. Magnesium oxide nanoparticles were synthesized by optimizing the calcination temperature of Mg(OH)2 nanoparticles. Finally, the MgO nanoparticles were dispersed in polychloroprene rubber (CR) solution along with zinc oxide (ZnO) powder. The influence of MgO nanoparticles on the mechanical, dynamic mechanical and thermal properties of the resulting nanocomposites was quantified. The modulus and strength of ZnO-cured polychloroprene rubber with 4% MgO nanoparticles appeared to be superior to those with ZnO particles or ZnO with rubber grade MgO particles. These composites were further characterized by transmission electron microscopy and infrared spectroscopy in order to understand the morphology of the resulting system and the load transfer mechanism.

  11. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Ai Shiyun, E-mail: ashy@sdau.edu.cn [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China); Liu Yinping [College of Chemistry and Material Science, Shandong Agricultural University, Taian 271018, Shandong (China)

    2011-11-30

    Highlights: > A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. > This sensor exhibited excellent electrocatalytic oxidation to nitrite. > This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 {mu}M and with a detection limit of 0.5 {mu}M. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  12. Electro-oxidation nitrite based on copper calcined layered double hydroxide and gold nanoparticles modified glassy carbon electrode

    International Nuclear Information System (INIS)

    Cui Lin; Meng Xiaomeng; Xu Minrong; Shang Kun; Ai Shiyun; Liu Yinping

    2011-01-01

    Highlights: → A nitrite sensor fabricated based on copper calcined layered double hydroxides and gold nanoparticles modified electrode. → This sensor exhibited excellent electrocatalytic oxidation to nitrite. → This nitrite sensor exhibited very good analytical performance with low cost, convenient preparation and rapid detection. - Abstract: In this paper, a novel nitrite sensor was constructed based on electrodeposition of gold nanoparticles (AuNPs) on a copper calcined layered double hydroxide (Cu-CLDH) modified glassy carbon electrode. Electrochemical experiments showed that AuNPs/CLDH composite film exhibited excellent electrocatalytic oxidation activity with nitrite due to the synergistic effect of the Cu-CLDH with AuNPs. The fabricated sensor exhibited excellent performance for nitrite detection within a wide concentration interval of 1-191 μM and with a detection limit of 0.5 μM. The superior electrocatalytic response to nitrite was mainly attributed to the large surface area, minimized diffusion resistance, and enhanced electron transfer of the Cu-CLDH and AuNPs composition film. This platform offers a novel route for nitrite sensing with wide analytical applications and will supply the practical applications for a variety of simple, robust, and easy-to-manufacture analytical approaches in the future.

  13. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pakawanit, Phakkhananan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wipatanawin, Angkana [Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe{sub 2}O{sub 4} core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe{sub 2}O{sub 4} core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe{sub 2}O{sub 4} core. Both of MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles • In vitro cytotoxicity study of complete coated MgFe{sub 2}O{sub 4}-Au core

  14. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    International Nuclear Information System (INIS)

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-01-01

    In this work, the core-magnesium ferrite (MgFe_2O_4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe_2O_4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe_2O_4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe_2O_4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe_2O_4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe_2O_4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe_2O_4 core. Both of MgFe_2O_4 and MgFe_2O_4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe_2O_4-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe_2O_4 nanoparticles • In vitro cytotoxicity study of complete coated MgFe_2O_4-Au core-shell nanoparticles

  15. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Fengxia; Liang, Jun, E-mail: jliang@licp.cas.cn; Peng, Zhenjun; Liu, Baixing

    2014-09-15

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion.

  16. Electrochemical deposition and characterization of Zn-Al layered double hydroxides (LDHs) films on magnesium alloy

    International Nuclear Information System (INIS)

    Wu, Fengxia; Liang, Jun; Peng, Zhenjun; Liu, Baixing

    2014-01-01

    Highlights: • Zn-Al LDHs film was prepared on AZ91D Mg alloy by electrochemical deposition. • The Zn-Al LDHs film was uniform and dense with some small flaws and cracks. • The Zn-Al LDHs film had high adhesion and good corrosion protection to Mg alloy. - Abstract: A zinc-aluminum layered double hydroxides (Zn-Al LDHs) film was prepared on AZ91D magnesium (Mg) alloy substrate by electrochemical deposition method. The characteristics of the film were investigated by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) and scanning electronic microscope (SEM). It was found that the electrodeposited film was composed of crystalline Zn-Al LDHs with nitrate intercalation. The Zn-Al LDHs film was uniform and dense though there also presented some small flaws and cracks. The cross cut tape test showed that the film adhered well to the substrate. Polarization and EIS measurements revealed that the LDHs coated Mg alloy had better corrosion resistance compared to that of the uncoated one in 3.5 wt.% NaCl solution, indicating that the Zn-Al LDHs film could effectively protect Mg alloy from corrosion

  17. Ionic elastomers based on carboxylated nitrile rubber (XNBR and magnesium aluminum layered double hydroxide (hydrotalcite

    Directory of Open Access Journals (Sweden)

    A. Laskowska

    2014-06-01

    Full Text Available The presence of carboxyl groups in carboxylated nitrile butadiene rubber (XNBR allows it to be cured with different agents. This study considers the effect of crosslinking of XNBR by magnesium aluminum layered double hydroxide (MgAl-LDH, known also as hydrotalcite (HT, on rheometric, mechano-dynamical and barrier properties. Results of XNBR/HT composites containing various HT loadings without conventional curatives are compared with XNBR compound crosslinked with commonly used zinc oxide. Hydrotalcite acts as an effective crosslinking agent for XNBR, as is particularly evident from rheometric and Fourier transform infrared spectroscopy (FTIR studies. The existence of ionic crosslinks was also detected by dynamic mechanical analysis (DMA of the resulting composites. DMA studies revealed that the XNBR/HT composites exhibited two transitions – one occurring at low temperature is associated to the Tg of elastomer and the second at high temperature corresponds to the ionic transition temperature Ti. Simultaneous application of HT as a curing agent and a filler may deliver not only environmentally friendly, zinc oxide-free rubber product but also ionic elastomer composite with excellent mechanical, barrier and transparent properties.

  18. A mechanochemical approach to get stunningly uniform particles of magnesium-aluminum-layered double hydroxides

    Science.gov (United States)

    Zhang, Xiaoqing; Qi, Fenglin; Li, Shuping; Wei, Shaohua; Zhou, Jiahong

    2012-10-01

    A mechanochemical approach is developed in preparing a series of magnesium-aluminum-layered double hydroxides (Mg-Al-LDHs). This approach includes a mechanochemical process which involved manual grinding of solid salts in an agate mortar and afterwards peptization process. In order to verify the LDHs structure synthesized in the grinding process, X-ray diffraction (XRD) patterns, transmission electron microscopy (TEM) photos and thermogravimetry/differential scanning calorimetry (TG-DSC) property of the product without peptization were characterized and the results show that amorphous particles with low crystallinity and poor thermal stability are obtained, and the effect of peptization is to improve the properties, more accurately, regular particles with high crystallinity and good thermal stability can be gained after peptization. Furthermore, the fundamental experimental parameters including grinding time, the molar ratio of Mg to Al element (defined as R value) and the water content were systematically examined in order to control the size and morphologies of LDHs particles, regular hexagonal particles or the spherical nanostructures can be efficiently obtained and the particle sizes were controlled in the range of 52-130 nm by carefully adjusting these parameters. At last, stunningly uniform Mg-Al-LDHs particles can be synthesized under proper R values, suitable grinding time and high degree of supersaturation.

  19. Dislocation, crystallite size distribution and lattice strain of magnesium oxide nanoparticles

    Science.gov (United States)

    Sutapa, I. W.; Wahid Wahab, Abdul; Taba, P.; Nafie, N. L.

    2018-03-01

    The oxide of magnesium nanoparticles synthesized using sol-gel method and analysis of the structural properties was conducted. The functional groups of nanoparticles has been analysed by Fourier Transform Infrared Spectroscopy (FT-IR). Dislocations, average size of crystal, strain, stress, the energy density of crystal, crystallite size distribution and morphologies of the crystals were determined based on X-ray diffraction profile analysis. The morphological of the crystal was analysed based on the image resulted from SEM analysis. The crystallite size distribution was calculated with the contention that the particle size has a normal logarithmic form. The most orientations of crystal were determined based on the textural crystal from diffraction data of X-ray diffraction profile analysis. FT-IR results showed the stretching vibration mode of the Mg-O-Mg in the range of 400.11-525 cm-1 as a broad band. The average size crystal of nanoparticles resulted is 9.21 mm with dislocation value of crystal is 0.012 nm-2. The strains, stress, the energy density of crystal are 1.5 x 10-4 37.31 MPa; 0.72 MPa respectively. The highest texture coefficient value of the crystal is 0.98. This result is supported by morphological analysis using SEM which shows most of the regular cubic-shaped crystals. The synthesis method is suitable for simple and cost-effective synthesis model of MgO nanoparticles.

  20. Nanostructures based on alumina hydroxides inhibit tumor growth

    Science.gov (United States)

    Fomenko, A. N.; Korovin, M. S.

    2017-09-01

    Nanoparticles and nanostructured materials are one of the most promising developments for cancer therapy. Gold nanoparticles, magnetic nanoparticles based on iron and its oxides and other metal oxides have been widely used in diagnosis and treatment of cancer. Much less research attention has been payed to nanoparticles and nanostructures based on aluminum oxides and hydroxides as materials for cancer diagnosis and treatment. However recent investigations have shown promising results regarding these objects. Here, we review the antitumor results obtained with AlOOH nanoparticles.

  1. Efficacy of calcium oxide and calcium hydroxide nanoparticles on the elimination of Enterococcus faecalis in human root dentin.

    Science.gov (United States)

    Louwakul, Phumisak; Saelo, Attapon; Khemaleelakul, Saengusa

    2017-04-01

    The objective of this study was to compare the antibacterial effect of calcium oxide nanoparticles (CONPs) and calcium hydroxide nanoparticles (CHNPs) against Enterococcus faecalis in a dentinal block model. E. faecalis strain JCM 7783 was introduced into dentinal tubules of semicylindrical dentin specimens by centrifugation and incubated for 1 week. Fifty microliters of CONPs or CHNPs was placed on the root canal side of the infected dentin specimens. The specimens were then incubated in aerobic condition at 37 °C and 100 % relative humidity for 1 week. The treated dentin specimens were subjected to fluorescent staining and confocal laser scanning microscopy (CLSM) to analyze the proportions of non-vital and vital bacterial cells inside the dentinal tubules. Scanning electron microscopy (SEM) was used to confirm the effect of the medicaments on the bacteria in the dentinal tubules. Calcium oxide (CO) and calcium hydroxide (CH) were used as controls. Based on the CLSM and SEM analyses, CHNPs were more efficient than CONPs in the elimination of the bacteria in the dentinal tubules. CONPs significantly killed more E. faecalis than CO and CH (P < .05). Neither CO nor CH was able to kill the bacteria. CHNPs were more effective than CONPs in the elimination of E. faecalis in dentinal tubules. CHNPs are effective nanoparticles in killing endodontic bacteria present in dentinal tubules. They have potential as an intracanal medicament, which may be beneficial in root canal therapy.

  2. Determination of calcium and magnesium in nuclear grade alumina by ion chromatography technique

    International Nuclear Information System (INIS)

    Hespanhol, E.C.B.; Pires, M.A.F.; Atalla, L.T.

    1987-07-01

    A simple method for solubilization of alumina and separation of magnesium and calcium from alumina matrix was developed by initial coprecipitation of those elements with iron(III) hydroxide. Calcium and magnesium were later separated from iron chloride anionic complex in a Dowex 1-X 10 anionic exchange resin. The ion chromatography tecnnique was employed for the analysis of calcium and magnesium. One hundred percent recovery for calcium and magnesium was obtained in their separation from alumina. A precision of 6% and 10% for magnesium and calcium, respectively, was obtained in alumina samples analysis which contain less than 0,02% of magnesium and less than 0,08% of calcium. (Author) [pt

  3. Standard test method for laboratory evaluation of magnesium sacrificial anode test specimens for underground applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1997-01-01

    1.1 This test method covers a laboratory procedure that measures the two fundamental performance properties of magnesium sacrificial anode test specimens operating in a saturated calcium sulfate, saturated magnesium hydroxide environment. The two fundamental properties are electrode (oxidation potential) and ampere hours (Ah) obtained per unit mass of specimen consumed. Magnesium anodes installed underground are usually surrounded by a backfill material that typically consists of 75 % gypsum (CaSO4·2H2O), 20 % bentonite clay, and 5 % sodium sulfate (Na2SO4). The calcium sulfate, magnesium hydroxide test electrolyte simulates the long term environment around an anode installed in the gypsum-bentonite-sodium sulfate backfill. 1.2 This test method is intended to be used for quality assurance by anode manufacturers or anode users. However, long term field performance properties may not be identical to property measurements obtained using this laboratory test. Note 1—Refer to Terminology G 15 for terms used ...

  4. A Simple Approach for the Synthesis of Gold Nanoparticles Mediated by Layered Double Hydroxide

    Directory of Open Access Journals (Sweden)

    Aires da Conceição Silva

    2013-01-01

    Full Text Available The present work introduces a new procedure to obtain gold nanoparticles (AuNPs. AuNPs (77–213 nm were obtained in the absence of any classical reducing agents in a medium containing Mg2+/Al3+ layered double hydroxide (LDH and N,N-dimethylformamide. XRD analysis showed the presence of crystalline phases of gold in the Au/LDH composite. The 2θ values of peaks corresponding to the LDH interlayer distance indicated that metallic NPs were deposited on the surface of the material. Furthermore, atomic force microscopy (AFM analysis showed that AuNPs tend to agglomerate in a nonclassical halter-like shape.

  5. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: an eco-friendly approach

    Science.gov (United States)

    Raliya, Ramesh; Tarafdar, J. C.

    2014-02-01

    In the present study, zinc (Zn), magnesium (Mg) and titanium (Ti) nanoparticles synthesized using fungus by employing various precursor salts of sulfate salts, nitrate salts, chloride salts and oxide salts. To access the nanoparticle production potential, over a hundreds of fungi were isolated from the soil and tested with precursor salts of the Zn, Mg and Ti. Out of which, only 14 fungal isolates were identified, having potential to reduce metal salt into metal nanoparticles. Upon molecular identification, six were identified as Aspergillus flavus, two each as Aspergillus terreus and Aspergillus tubingensis and one each as Aspergillus niger, Rhizoctonia bataticola, Aspergillus fumigatus, and Aspergillus oryzae. Factors responsible for more production of monodispersed Zn, Mg and Ti nanoparticles were optimized. It was concluded that 0.01 mM precursor salt concentration, 72 h of incubation at pH 5.5 and temperature 28 °C resulted smaller nanoparticles obtained. The biosynthesized functional Zn and Ti nanoparticles can be stored up to 90 days and Mg nanoparticles up to 105 days in its nanoform. Bio-transformed products were analyzed using valid characterization technique i.e. dynamic light scattering, transmission electron microscopy, atomic force microscopy, energy dispersive X-ray spectroscopy to confirm size, shape, surface morphology and elemental composition. It was found that the average size of developed nano Zn was 8.2 nm, with surface charge of -5.70 mV and 98 % particles were of Zn metal only. Similarly, the average size of Mg nanoparticles was 6.4 nm with surface charge of -6.66 and 97.4 % Mg metal yield, whereas, Ti nanoparticles size were found in the ranges between 1.5 and 30 nm with surface charge of -6.25 mV and 98.6 % Ti metal yield.

  6. Ultrasound-assisted activation of zero-valent magnesium for nitrate denitrification: identification of reaction by-products and pathways.

    Science.gov (United States)

    Ileri, Burcu; Ayyildiz, Onder; Apaydin, Omer

    2015-07-15

    Zero-valent magnesium (Mg(0)) was activated by ultrasound (US) in an aim to promote its potential use in water treatment without pH control. In this context, nitrate reduction was studied at batch conditions using various doses of magnesium powder and ultrasound power. While neither ultrasound nor zero-valent magnesium alone was effective for reducing nitrate in water, their combination removed up to 90% of 50 mg/L NO3-N within 60 min. The rate of nitrate reduction by US/Mg(0) enhanced with increasing ultrasonic power and magnesium dose. Nitrogen gas (N2) and nitrite (NO2(-)) were detected as the major reduction by-products, while magnesium hydroxide Mg(OH)2 and hydroxide ions (OH(-)) were identified as the main oxidation products. The results from SEM-EDS measurements revealed that the surface oxide level decreased significantly when the samples of Mg(0) particles were exposed to ultrasonic treatment. The surface passivation of magnesium particles was successfully minimized by mechanical forces of ultrasound, which in turn paved the way to sustain the catalyst activity toward nitrate reduction. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Magnesium Oxide Nanoparticles: Effective Agricultural Antibacterial Agent Against Ralstonia solanacearum

    Directory of Open Access Journals (Sweden)

    Lin Cai

    2018-04-01

    Full Text Available Magnesium (Mg is an essential mineral element for plants and is nontoxic to organisms. In this study, we took advantage of nanotechnologies to systematically investigate the antibacterial mechanisms of magnesium oxide nanoparticles (MgONPs against the phytopathogen Ralstonia solanacearum (R. solanacearum in vitro and in vivo for the first time. R. solanacearum has contributed to catastrophic bacterial wilt, which has resulted in the world-wide reduction of tobacco production. The results demonstrated that MgONPs possessed statistically significant concentration-dependent antibacterial activity, and the minimum inhibitory concentration (MIC and minimum bactericidal concentration (MBC were measured as 200 and 250 μg/mL, respectively. Additional studies, aimed at understanding the toxicity mechanism of MgONPs, indicated that physical injury occurred to the cell membranes, along with decreased motility and biofilm formation ability of R. solanacearum, due to the direct attachment of MgONPs to the surfaces of the bacterial cells, which was observed by scanning electron microscopy (SEM and transmission electron microscopy (TEM. Reactive oxygen species (ROS accumulation could also be an important reason for the antibacterial action, inducing DNA damage. The toxicity assessment assay under greenhouse conditions demonstrated that the MgONPs had exerted a large effect on tobacco bacterial wilt, reducing the bacterial wilt index. Altogether, the results suggest that the development of MgONPs as alternative antibacterial agents will become a new research subject.

  8. Synthesis of Nickel and Nickel Hydroxide Nanopowders by Simplified Chemical Reduction

    Directory of Open Access Journals (Sweden)

    Jeerapan Tientong

    2014-01-01

    Full Text Available Nickel nanopowders were synthesized by a chemical reduction of nickel ions with hydrazine hydrate at pH ~12.5. Sonication of the solutions created a temperature of 54–65°C to activate the reduction reaction of nickel nanoparticles. The solution pH affected the composition of the resulting nanoparticles. Nickel hydroxide nanoparticles were formed from an alkaline solution (pH~10 of nickel-hydrazine complexed by dropwise titration. X-ray diffraction of the powder and the analysis of the resulting Williamson-Hall plots revealed that the particle size of the powders ranged from 12 to 14 nm. Addition of polyvinylpyrrolidone into the synthesis decreased the nickel nanoparticle size to approximately 7 nm. Dynamic light scattering and scanning electron microscopy confirmed that the particles were in the nanometer range. The structure of the synthesized nickel and nickel hydroxide nanoparticles was identified by X-ray diffraction and Fourier transform infrared spectroscopy.

  9. Real-time tracking of hydrogen peroxide secreted by live cells using MnO{sub 2} nanoparticles intercalated layered doubled hydroxide nanohybrids

    Energy Technology Data Exchange (ETDEWEB)

    Asif, Muhammad; Aziz, Ayesha [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Dao, Anh Quang [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Hue Industrial College, 70 Nguyen Hue, Hue, Thua Thien Hue, 531081 (Viet Nam); Hakeem, Abdul; Wang, Haitao; Dong, Shuang; Zhang, Guoan [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Xiao, Fei [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China); Liu, Hongfang, E-mail: liuhf@hust.edu.cn [Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074 (China); Shenzhen Institute of Huazhong University of Science & Technology, Shenzhen, 518000 (China)

    2015-10-22

    We report a facile and green method for the fabrication of new type of electrocatalysts based on MnO{sub 2} nanoparticles incorporated on MgAl LDH P-type semiconductive channel and explore its practical applications as high-performance electrode materials for electrochemical biosensor. A series of MgAl layered doubled hydroxide (LDH) nanohybrids with fixed Mg/Al (M{sup 2+}/M{sup 3+} atomic ratio of 3) and varied amount of MnCl{sub 2}.4H{sub 2}O are fabricated by a facile co-precipitation method. This approach demonstrates the combination of distinct properties including excellent intercalation features of LDH for entrapping nanoparticles and high loading of MnO{sub 2} nanoparticles in the host layers of LDH. Among all samples, Mn5–MgAl with 0.04% loaded manganese has a good crystalline morphology. A well-dispersed MnO{sub 2} nanoparticles encapsulated into the host matrix of hydrotalcite exhibit enhanced electrocatalytic activity towards the reduction of H{sub 2}O{sub 2} as well as excellent stability, selectivity and reproducibility due to synergistic effect of good catalytic ability of MnO{sub 2} and conductive MgAl LDH. Glass carbon electrode (GCE) modified with Mn5–MgAl possesses a wide linear range of 0.05–78 mM, lowest detection limit 5 μM (S/N = 3) and detection sensitivity of 0.9352 μAmM{sup −1}. This outstanding performance enables it to be used for real-time tracking of H{sub 2}O{sub 2} secreted by live HeLa cells. This work may provide new insight in clinical diagnosis, on-site environmental analysis and point of care testing devices. - Highlights: • MnO{sub 2}MgAl nanohybrids have been fabricated by a facile and robust co-precipitation approach. • MgAl layered doubled hydroxide can be used for the intercalation of MnO{sub 2} nanoparticles. • MgAl layered doubled hydroxide nanohybrid serves as p-type semiconductive channel for efficient electrocatalysis. • The nanohybrid electrode demonstrates excellent electrochemical performance

  10. Synthesis of Nickel and Nickel Hydroxide Nano powders by Simplified Chemical Reduction

    International Nuclear Information System (INIS)

    Tientong, J.; Garcia, S.; Thurber, C.R.; Golden, T.D.

    2014-01-01

    Nickel nano powders were synthesized by a chemical reduction of nickel ions with hydrazine hydrate at ph ∼ 12.5. Sonication of the solutions created a temperature of 54-65 °C to activate the reduction reaction of nickel nanoparticles. The solution ph affected the composition of the resulting nanoparticles. Nickel hydroxide nanoparticles were formed from an alkaline solution (ph ∼10) of nickel-hydrazine complexed by dropwise titration. X-ray diffraction of the powder and the analysis of the resulting Williamson-Hall plots revealed that the particle size of the powders ranged from 12 to 14 nm. Addition of polyvinylpyrrolidone into the synthesis decreased the nickel nanoparticle size to approximately 7 nm. Dynamic light scattering and scanning electron microscopy confirmed that the particles were in the nanometer range. The structure of the synthesized nickel and nickel hydroxide nanoparticles was identified by X-ray diffraction and Fourier transform infrared spectroscopy.

  11. Evaluation of Anticonvulsive ٍEffect of Magnesium Oxide Nanoparticles in Comparison with Conventional MgO in Diabetic and Non-diabetic Male Mice

    Directory of Open Access Journals (Sweden)

    Leila Jahangiri

    2014-05-01

    Full Text Available Introduction: Some studies show magnesium has anticonvulsive effect in some animal models. Despite of the availability of well-studied anticonvulsant drugs, this evaluation was not carried on new kind of magnesium supplement, magnesium oxide nanoparticles (nMgO. According to the interaction between magnesium and convulsion, this study was designed to evaluate the effect of nMgO on strychnine-induced convulsive model in compared to its conventional in diabetic and normal mice. Methods: Healthy male albino mice were divided to 10 groups. Diabete mellitus was induced by streptozocin in 5 groups. Conventional and nanoparticle MgO (5&10mg/kg in presence and absence diabetes injected to mice, then strychnine injected and onset of convulsions and time of death were measured after strychnine administration. Results: Convulsive parameters did not change in normal and diabetic mice. cMgO pretreatment did not have anticonvulsant effect in strychnine-induced convulsion in normal and diabetic mice. But nMgO significantly changed convulsion onset and death time after strychnine administration in normal and diabetic status. Discussion: According to our results It seems that nMgO may be important in prevention or treatment of epilepsy and has more efficacy than its conventional form to showing anticonvulsive effect that probably is related to the physicochemical properties of nMgO, specially in diabetic subjects, a point that need to further investigation.

  12. Gas-phase synthesis of magnesium nanoparticles: A high-resolution transmission electron microscopy study

    International Nuclear Information System (INIS)

    Kooi, B. J.; Palasantzas, G.; De Hosson, J. Th. M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg(1010) facets. Oxidation of Mg yields a MgO shell (∼3 nm thick), which has an orientation relation with the Mg. Inhomogeneous facet oxidation influences their growth kinetics resulting in a relatively broad size and shape distribution. Faceted voids between Mg and MgO shells indicate a fast outward diffusion of Mg and vacancy rearrangement into voids. The faceting of polar (220) planes is assisted by electron irradiation

  13. Effects of nano-particles strengthening activating flux on the microstructures and mechanical properties of TIG welded AZ31 magnesium alloy joints

    International Nuclear Information System (INIS)

    Xie, Xiong; Shen, Jun; Cheng, Liang; Li, Yang; Pu, Yayun

    2015-01-01

    Highlights: • Increased nano-particles strengthening activating flux degraded TIGed seams. • The reaction between SiC particles and Mg alloy produced Al 4 C 3 and Mg 2 Si phases. • Al 4 C 3 and SiC particles promoted the nucleation and suppressed the growth of α-Mg. • Refined α-Mg grains, precipitated phase and SiC particles enhanced TIGed joints. - Abstract: In this paper, AZ31 magnesium alloy joints were processed by nano-particles strengthening activating flux tungsten inert gas (NSA-TIG) welding, which was achieved by the mixed TiO 2 and nano-SiC particles coated on the samples before welding tests. The macro/micro structural observation and mechanical properties evaluation of the welding joints were conducted by using optical microscope, scanning electron microscope, energy dispersive X-ray spectroscopy, X-ray diffraction and tension and microhardness tests. The results showed that nano-particles strengthening activating flux effective improved the microstructure, microhardness in fusion zone, ultimate tensile strength of the TIG welding joints. In addition, the chemical reaction between part of SiC particles and AZ31 magnesium alloy produced Al 4 C 3 and Mg 2 Si in the joints. The Al 4 C 3 performed as nucleating agents for α-Mg and the dispersed Mg 2 Si and SiC particles enhanced the mechanical properties of the NSA-TIG welding joints. However, large heat input induced by the increase of the surface coating density of the nano-particles strengthening activating flux, increased the α-Mg grain sizes and weakened the mechanical properties of the welded joints. Therefore, the grain size of α-Mg, distribution of β-Mg 17 Al 12 , Mg 2 Si and SiC particles together influenced the evolution of the mechanical properties of the NSA-TIG welded AZ31 magnesium alloy joints

  14. Gadolinium-Doped Gallic Acid-Zinc/Aluminium-Layered Double Hydroxide/Gold Theranostic Nanoparticles for a Bimodal Magnetic Resonance Imaging and Drug Delivery System

    Science.gov (United States)

    Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Ahmad Saad, Fathinul Fikri

    2017-01-01

    We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO3)3 as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment. PMID:28858229

  15. Gadolinium-Doped Gallic Acid-Zinc/Aluminium-Layered Double Hydroxide/Gold Theranostic Nanoparticles for a Bimodal Magnetic Resonance Imaging and Drug Delivery System.

    Science.gov (United States)

    Sani Usman, Muhammad; Hussein, Mohd Zobir; Fakurazi, Sharida; Masarudin, Mas Jaffri; Ahmad Saad, Fathinul Fikri

    2017-08-31

    We have developed gadolinium-based theranostic nanoparticles for co-delivery of drug and magnetic resonance imaging (MRI) contrast agent using Zn/Al-layered double hydroxide as the nanocarrier platform, a naturally occurring phenolic compound, gallic acid (GA) as therapeutic agent, and Gd(NO₃)₃ as diagnostic agent. Gold nanoparticles (AuNPs) were grown on the system to support the contrast for MRI imaging. The nanoparticles were characterized using techniques such as Hi-TEM, XRD, ICP-ES. Kinetic release study of the GA from the nanoparticles showed about 70% of GA was released over a period of 72 h. The in vitro cell viability test for the nanoparticles showed relatively low toxicity to human cell lines (3T3) and improved toxicity on cancerous cell lines (HepG2). A preliminary contrast property test of the nanoparticles, tested on a 3 Tesla MRI machine at various concentrations of GAGZAu and water (as a reference) indicates that the nanoparticles have a promising dual diagnostic and therapeutic features to further develop a better future for clinical remedy for cancer treatment.

  16. Porous layered double hydroxides synthesized using oxygen generated by decomposition of hydrogen peroxide

    NARCIS (Netherlands)

    Gonzalez Rodriguez, P.; de Ruiter, M.P.; Wijnands, Tom; ten Elshof, Johan E.

    2017-01-01

    Porous magnesium-aluminium layered double hydroxides (LDH) were prepared through intercalation and decomposition of hydrogen peroxide (H2O2). This process generates oxygen gas nano-bubbles that pierce holes in the layered structure of the material by local pressure build-up. The decomposition of the

  17. Coagulation of highly turbid suspensions using magnesium hydroxide: effects of slow mixing conditions.

    Science.gov (United States)

    Ayoub, George M; BinAhmed, Sara W; Al-Hindi, Mahmoud; Azizi, Fouad

    2014-09-01

    Laboratory experiments were carried out to study the effects of slow mixing conditions on magnesium hydroxide floc size and strength and to determine the turbidity and total suspended solid (TSS) removal efficiencies during coagulation of highly turbid suspensions. A highly turbid kaolin clay suspension (1,213 ± 36 nephelometric turbidity units (NTU)) was alkalized to pH 10.5 using a 5 M NaOH solution; liquid bittern (LB) equivalent to 536 mg/L of Mg(2+) was added as a coagulant, and the suspension was then subjected to previously optimized fast mixing conditions of 100 rpm and 60 s. Slow mixing speed (20, 30, 40, and 50 rpm) and time (10, 20, and 30 min) were then varied, while the temperature was maintained at 20.7 ± 1 °C. The standard practice for coagulation-flocculation jar test ASTM D2035-13 (2013) was followed in all experiments. Relative floc size was monitored using an optical measuring device, photometric dispersion analyzer (PDA 2000). Larger and more shear resistant flocs were obtained at 20 rpm for both 20- and 30-min slow mixing times; however, given the shorter duration for the former, the 20-min slow mixing time was considered to be more energy efficient. For slow mixing camp number (Gt) values in the range of 8,400-90,000, it was found that the mixing speed affected floc size and strength more than the time. Higher-turbidity removal efficiencies were achieved at 20 and 30 rpm, while TSS removal efficiency was higher for the 50-rpm slow mixing speed. Extended slow mixing time of 30 min yielded better turbidity and TSS removal efficiencies at the slower speeds.

  18. Concentration-dependent behaviors of bone marrow derived mesenchymal stem cells and infectious bacteria toward magnesium oxide nanoparticles.

    Science.gov (United States)

    Wetteland, Cheyann Lee; Nguyen, Nhu-Y Thi; Liu, Huinan

    2016-04-15

    This article reports the quantitative relationship between the concentration of magnesium oxide (MgO) nanoparticles and its distinct biological activities towards mammalian cells and infectious bacteria for the first time. The effects of MgO nanoparticles on the viability of bone marrow derived mesenchymal stem cells (BMSCs) and infectious bacteria (both gram-negative Escherichia coli and gram-positive Staphylococcus epidermidis) showed a concentration-dependent behavior in vitro. The critical concentrations of MgO nanoparticles identified in this study provided valuable guidelines for biomaterial design toward potential clinical translation. BMSCs density increased significantly when cultured in 200μg/mL of MgO in comparison to the Cells Only control without MgO. The density of BMSCs decreased significantly after culture in the media with 500μg/mL or more of MgO. Concentrations at or above 1000μg/mL of MgO resulted in complete BMSCs death. Quantification of colony forming units (CFU) revealed that the minimum bactericidal concentration (MBC) of MgO for E. coli and S. epidermidis was 1200μg/mL. The addition of MgO nanoparticles into the cultures increased the pH and Mg(2+) ion concentration in the respective culture media, which might have played a role in the observed cell responses but not the main factors. E. coli and S. epidermidis still proliferated significantly at alkaline pH up to 10 or with supplemental Mg(2+) dosages up to 50mM, indicating bactericidal properties of MgO are beyond the effects of increased media pH and Mg(2+) ion concentrations. MgO nanoparticles at a concentration of 200μg/mL provided dual benefits of promoting BMSC proliferation while reducing bacterial adhesion, which should be further studied for potential medical implant applications. The use of free MgO nanoparticles yielded detrimental effects to BMSCs in concentrations above 300μg/mL. We recommend further study into MgO nanoparticle as a coating material or as a part of a

  19. Precipitation of iron (III) using magnesium oxide in fluidized bed

    International Nuclear Information System (INIS)

    Esteban-Bocardo, P. A.; Ferreira-Rocha, S. D.

    2006-01-01

    A process for iron (III) removal by hydroxide precipitation from and acid synthetic inorganic effluent using magnesium oxide as an alternative precipitant agent in a fluidized bed was developed. An acid synthetic inorganic effluent containing 100 and 200 mg/l of ferric ions (pH=1.0) was continuously fed up to the acrylic column (30 cm high and 2 cm diameter) during 180 minutes. Magnesium oxide pulp (3% v/v) was injected at the beginning of the experiment in order to allow the iron hydroxides precipitation. The concentration and pH profiles agreed in their curves, while the pH profile rose,the concentration profile decreased and a high percentage of iron removal /higher to 99%) was reached. Extremely low iron concentrations have been reached, thus permitting to attend to the environmental standard of 10.0 mg/l for discharge of effluent containing ferric ions established by the law DN 10/86 of COPAM (Conselho de Politica Ambiental do Estado de Minas Gerais-Brazil). (Author)

  20. Layered double hydroxide nanosheet as a two-dimensional support of dense platinum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hyo Gyoung; Cho, Se Hee; Ji, Hong Geun [H and A PharmaChem, R and D center, Bucheon (Korea, Republic of); Lee, Jong Hyeon [Dept. of Chemistry, The Catholic University of Korea, Bucheon (Korea, Republic of)

    2017-02-15

    Transition metal nanoparticles (NPs) with a narrow size distribution have been intensively synthesized on various solid supports for anti-agglomeration, and high catalytic activity and selectivity. Layered double hydroxides (LDH) are currently attracting intense interest in the field of heterogeneous catalysis as catalyst supports. In order to obtain a well-crystallized LDH nanosheet, the as-synthesize d carbonate form of LDH was hydrothermally treated according to a reported procedure, and further reacted by anion-exchange with an aqueous solution of NaNO{sub 3} and acetate buffer to give the nitrate form of LDH. Dense and uniform Pt NPs were synthesized on the exfoliated LDH nanosheets through precursor exchange and thermal reduction of the precursor ions. In this nanocomposite, the Pt Nps were uniformly grown on the surface of the LDH nano sheet and the average size of Pt Nps was 2nm.

  1. Hydrothermal synthesis and formation mechanism of hexagonal yttrium hydroxide fluoride nanobundles

    International Nuclear Information System (INIS)

    Tian, Li; Sun, QiLiang; Zhao, RuiNi; He, HuiLin; Xue, JianRong; Lin, Jun

    2013-01-01

    Graphical abstract: The formation of yttrium hydroxide fluorides nanobundles can be expressed as a precipitation transformation from cubic NaYF 4 to hexagonal NaYF 4 and to hexagonal Y(OH) 2.02 F 0.98 owing to ion exchange. - Highlights: • Novel Y(OH) 2.02 F 0.98 nanobundles have been successfully prepared by hydrothermal method. • The branched nanobundles composed of numerous oriented-attached nanoparticles has been studied. • The growth mechanism is proposed to be ion exchange and precipitation transformation. - Abstract: This article presents the fabrication of hexagonal yttrium hydroxide fluoride nanobundles via one-pot hydrothermal process, using yttrium nitrate, sodium hydroxide and ammonia fluoride as raw materials to react in propanetriol solvent. The X-ray diffraction pattern clearly reveals that the grown product is pure yttrium hydroxide fluoride, namely Y(OH) 2.02 F 0.98 . The morphology and microstructure of the synthesized product is testified to be nanobundles composed of numerous oriented-attached nanoparticles as observed from the field emission scanning electron microscopy (FESEM). The chemical composition was analyzed by the energy dispersive spectrum (EDS), confirming the phase transformation of the products which was clearly consistent with the result of XRD analysis. It is proposed that the growth of yttrium hydroxide fluoride nanobundles be attributed to ion exchange and precipitation transformation

  2. Effect of gamma irradiation on linear low density polyethylene/magnesium hydroxide/sepiolite composite

    International Nuclear Information System (INIS)

    Shafiq, Muhammad; Yasin, Tariq

    2012-01-01

    Radiation crosslinking is generally used to improve the thermo-mechanical properties of the composites. A study has been carried out to investigate the effect of gamma radiation on the thermo-mechanical properties of linear low density polyethylene containing magnesium hydroxide (MH) and sepiolite (SP) as non-halogenated flame retardant additives. The developed composites are irradiated at different doses upto maximum of 150 kGy. Infrared spectra of the irradiated composites reveal the reduction in the intensity of O-H band with increase in the absorbed doses, thus indicates a distinct structural change in MH at higher doses. The thermogravimetric analysis results of unirradiated and composites irradiated at low doses (≤75 kGy) show two steps weight loss, which is changed to single step at higher doses with lower thermal stability. The melting temperature (T m ) and crystallization temperature (T c ) of irradiated composites are lowered with irradiation whereas Vicat softening temperature (VST) is increased. The increasing trend in gel content with increase in the absorbed dose confirms the presence of crosslinked network. The mechanical properties, results show significant improvement in the modulus of irradiated composites. The results also confirm that MH gradually loses its OH functionality with irradiation. - Highlights: → We have studied the effect of γ radiation on LLDPE containing Mg(OH) 2 and sepiolite. → IR spectra of the irradiated composites show reduction in the intensity of O-H band. → Reduction in OH band show a distinct structural change in Mg(OH) 2 at higher doses. → TGA results show two steps weight loss at low doses and one step at higher doses. → These results confirm that MH gradually loses its OH functionality with irradiation.

  3. Synthesis and Adsorption Property of SiO2@Co(OH2 Core-Shell Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yongde Meng

    2015-04-01

    Full Text Available Silica nanoparticles were directly coated with cobalt hydroxide by homogeneous precipitation of slowly decomposing urea in cobalt nitrate solution. The cobalt hydroxide was amorphous, and its morphology was nanoflower-like. The BET (Brunauer-Emmett-Teller surface area of the core-shell composite was 221 m2/g. Moreover, the possible formation procedure is proposed: the electropositive cobalt ions were first adsorbed on the electronegative silica nanoparticles surface, which hydrolyzed to form cobalt hydroxide nanoparticles. Then, the cobalt hydroxide nanoparticles were aggregated to form nanoflakes. Finally, the nanoflakes self-assembled, forming cobalt hydroxide nanoflowers. Adsorption measurement showed that the core-shell composite exhibited excellent adsorption capability of Rhodamine B (RB.

  4. Studies on the extraction of nuclear pure magnesium from sea bittern

    International Nuclear Information System (INIS)

    Isaack, S.L.

    1979-01-01

    This investigation is devoted to the extraction of nuclear grade magnesium from sea bittern. It comprises three main parts: The first is pertaining to examine the effect of bittern evaporation on both its physical and chemical properties. It a second part , a brief comparative study on magnesium extraction from bittern by use of lime, dolime, solvent extraction and precipitation with ammonia solution and gas as also with ammonia carbon dioxide gas mixture, has been attempted. The precipitation approach by ammonia-carbon dioxide mixture was the mean adopted. A careful systematic examination of various parameters affecting precipitation was undertaken on economic basis. Recovery and purity of magnesium hydroxide, have been taken into account by the study of magnesium concentration in the bittern, its temperature, flow rate of precipitant, ... etc. Since the produced magnesium compound contained 100 ppm of boron, it has to be minimized to less than 1 ppm to agree with the nuclear specifications

  5. Graphitic encapsulation of MgO and Fe3C nanoparticles in the reaction of iron pentacarbonyl with magnesium

    International Nuclear Information System (INIS)

    Dyjak, Sławomir; Cudziło, Stanisław; Polański, Marek; Budner, Bogusław; Bystrzycki, Jerzy

    2013-01-01

    A simple method to produce highly ordered carbon nanostructures by combustion synthesis is presented. Graphite-encapsulated magnesium oxide, iron carbide nanoparticles and carbon nanobelts were synthesized by the one-step reduction of iron pentacarbonyl with magnesium. High-resolution transmission electron microscopy analysis of the products revealed nanocrystalline MgO and Fe 3 C particles surrounded by a well-crystallized, tight graphite film. The possible formation mechanism is presented and discussed. - Highlights: • We present a simple method to produce highly ordered carbon nanostructures by combustion synthesis. • The cubic MgO particles are completely coated by tight graphitic shells. • The mechanism of formation a distant carbon film on MgO surface has been discussed. • The presented method can be applied to synthesis of other core-shell structures

  6. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    KAUST Repository

    Arratia-Quijada, Jenny

    2015-10-23

    A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  7. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    KAUST Repository

    Arratia-Quijada, Jenny; Sá nchez Jimé nez, Cecilia; Gurinov, Andrei; Pé rez Centeno, Armando; Ceja Andrade, Israel; Carbajal Arí zaga, Gregorio Guadalupe

    2015-01-01

    A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  8. The corrosion behaviour of rare-earth containing magnesium alloys in borate buffer solution

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, R. [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon (Portugal); Ferreira, M.G.S. [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon (Portugal); CICECO, Universidade de Aveiro (Portugal); Carmezim, M.J. [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon (Portugal); Instituto Politecnico de Setubal, ESTSetubal, DEM (Portugal); Montemor, M.F., E-mail: mfmontemor@ist.utl.p [ICEMS, Instituto Superior Tecnico, Technical University of Lisbon (Portugal)

    2011-01-01

    In this work, the corrosion behaviour of magnesium alloys ZK31, EZ33 and WE54 was studied in sodium borate buffer solution at pH 9.2. The electrochemical processes were studied by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The composition and morphology of the alloys and corrosion products formed were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The experimental findings highlighted the differences in the corrosion mechanisms of the different alloys tested. The results showed that the presence of rare-earth elements (RE) only increases the corrosion resistance when present in solid solution, as is the case of the WE54 alloy. At pH 9.2, an amorphous yttrium oxide/hydroxide thick film was formed, which possesses greater stability when compared to magnesium oxide/hydroxide. The role of RE in the corrosion mechanism was discussed.

  9. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    International Nuclear Information System (INIS)

    Lopez-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernandez-Valle, M.E.; Alvarez de Buergo, M.; Fort, R.

    2010-01-01

    Slaked lime (Ca(OH) 2 ) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH) 2 ) into vaterite (CaCO 3 ), monohydrocalcite (CaCO 3 . H 2 O) and calcite (CaCO 3 ), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  10. Influence of porosity and relative humidity on consolidation of dolostone with calcium hydroxide nanoparticles: Effectiveness assessment with non-destructive techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Arce, P., E-mail: plopezar@geo.ucm.es [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain); Gomez-Villalba, L.S. [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain); Pinho, L. [Center of Construction Studies, Engineering Faculty, Oporto University, Oporto 4200-465 (Portugal); Fernandez-Valle, M.E. [Research Assistance Center, Nuclear Magnetic Resonance (Pluridisciplinar Institute), Complutense University of Madrid (UCM), Madrid 28040 (Spain); Alvarez de Buergo, M.; Fort, R. [Group of Applied Petrology to Heritage Conservation, Institute of Economic Geology (CSIC-UCM), Madrid 28040 (Spain)

    2010-02-15

    Slaked lime (Ca(OH){sub 2}) nanoparticles were exposed at 33% and 75% relative humidity (RH) to consolidate dolostone samples used in historical buildings. Non-destructive techniques (NDT) were applied to determine the chemical, morphological, physical and hydric properties of the stone samples, before and after 20 days treatment. Morphological and mineralogical characterisation of the nanoparticles was performed. 75% RH favors the consolidation process studied under Environmental Scanning Electron Microscopy (ESEM-EDS), spectrophotometry, capillarity, water absorption under vacuum, ultrasound velocity, Nuclear Magnetic Resonance (imaging and relaxometry) and Optical Surface Roughness analyses. At 75% RH the nanoparticles fill the pores and inter-crystalline dolomite grain contacts but do not favor calcite re-crystallization as it occurs at 33% RH. The ESEM, XRD and TEM analyses under 75% RH reveal the fast transformation of portlandite (Ca(OH){sub 2}) into vaterite (CaCO{sub 3}), monohydrocalcite (CaCO{sub 3} . H{sub 2}O) and calcite (CaCO{sub 3}), and eventually the physical and hydric properties of the stones significantly improve. New insights are provided for the assessment of consolidation effectiveness of porous carbonate stones with calcium hydroxide nanoparticles under optimum RH conditions combining several NDT.

  11. Convenient method of simultaneously analyzing aluminum and magnesium in pharmaceutical dosage forms using californium-252 thermal neutron activation

    International Nuclear Information System (INIS)

    Landolt, R.R.; Hem, S.L.

    1983-01-01

    A commercial antacid suspension containing aluminum hydroxide and magnesium hydroxide products was used as a model sample to study the use of a californium-252 thermal neutron activation as a method for quantifying aluminum content as well as for the simultaneous assay of aluminum and magnesium. A 3.5-micrograms californium-252 source was used for the activation, and the induced aluminum-28 and magnesium-27 activity was simultaneously measured by sodium iodide crystal gamma-ray spectrometry using dual single-channel analyzers and scalers. The antacid suspension was contained in a chamber designed with the unique capability of serving as the container for counting the induced radioactivity in addition to being the irradiation chamber itself. This pilot study demonstrated that use of more intense californium-252 sources, which are commonly available, would provide a method that is competitive with the ethylenediaminetetraacetic acid titration method in precision and in other aspects as well

  12. Fabrication of gadolinium hydroxide nanoparticles using ion-exchange resin and their MRI property

    Directory of Open Access Journals (Sweden)

    Y. Kobayashi

    2016-03-01

    Full Text Available This paper describes a method to fabricate gadolinium hydroxide (Gd(OH3 nanoparticles. An opaque solution was prepared by adding basic anion exchange resin (BAER to a Gd(NO33 aqueous solution at room temperature and aging the solution for 12–24 h; the solution became basic because of the exchange of H2O with OH−. The particles in the opaque solution have a needle structure, and their crystal structure was hexagonal Gd(OH3. Their longitudinal and lateral average particle sizes tend to increase in the ranges of 175.0–222.1 and 33.9–52.3 nm when the aging time increases from 12 to 24 h, respectively. The relaxivity value for T1-weighted imaging was 0.79 mM−1 s−1 for the solution that was prepared at the aging time of 18 h, which was ca. 20% of that for a commercial Gd complex contrast agent.

  13. Synthesis and characterization of magnesium oxide nanocrystallites and probing the vacancy-type defects through positron annihilation studies

    Science.gov (United States)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.

    2016-09-01

    Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.

  14. Modified magnetic and optical properties of manganese nanoparticles incorporated europium doped magnesium borotellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Siti Maisarah; Sahar, M.R., E-mail: mrahim057@gmail.com; Ghoshal, S.K.

    2017-02-01

    This paper reports the modified optical and magnetic properties of europium (Eu{sup 3+}) ions doped and Manganese nanoparticles (NPs) embedded Magnesium Borotellurite glass synthesized via melt quenching method. The influence of varying Mn NPs concentrations on the magnetic, absorption and emission properties of such glass samples are determined. Stables, transparent and amorphous glasses are obtained. The observed modification of the electronic polarizability is interpreted in terms of the generation of non-bridging oxygen (NBO) and bridging oxygen (BO) in the amorphous network. TEM images manifested the growth of Mn NPs with average diameter 11±1 nm. High-resolution TEM reveals that the lattice spacing of manganese nanoparticles is 0.308 nm at (112) plane. The emission spectra revealed four prominent peaks centered at 587 nm, 610 nm, 651 nm and 700 nm assigned to the transition from {sup 5}D{sub 0} →{sup 7}F{sub J} (J=1, 2, 3, 4) states of Eu{sup 3+} ion. A significant drop in the luminescence intensity due to the incorporation of Mn NPs is ascribed to the enhanced energy transfer from the Eu{sup 3+} ion to NPs. Prepared glass systems exhibited paramagnetic behavior. - Highlights: • The europium doped magnesium borotellurite glasses embedded Mn NPs prepared using the conventional melt-quenching method. • The TEM result reveals the size of Mn NPs while its planar spacing has been determined by HRTEM. • The luminescence properties of TeO{sub 2}–B{sub 2}O{sub 3}–MgO–Eu{sub 2}O{sub 3}–Mn{sub 3}O{sub 4} glasses have been investigated as effect of Mn NPs content. • The magnetization measurement of glass sample is carried out using vibrating sample magnetometer (VSM)

  15. Multi-functional magnesium alloys containing interstitial oxygen atoms.

    Science.gov (United States)

    Kang, H; Choi, H J; Kang, S W; Shin, S E; Choi, G S; Bae, D H

    2016-03-15

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (alloys are expected to open a new paradigm in commercial alloy design.

  16. An alternative magnesium-based root canal disinfectant: Preliminary study of its efficacy against Enterococcus faecalis and Candida albicans in vitro

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    2014-10-01

    Full Text Available Organisms invading root canal systems result in serious pulpal and periapical disease. To eliminate microorganisms and restrain secondary infections, dental materials with antibacterial properties are urgently needed in endodontics. Magnesium is considered as a promising biodegradable and biocompatible implant material. However, there are barely researches about its application in endodontic therapy. This work investigated the in vitro efficacy of magnesium powder against Enterococcus faecalis and Candida albicans compared with a common disinfectant, calcium hydroxide. With Calcium hydroxide served as a comparison it demonstrated the qualified antibacterial and anti-fungus properties of Mg as root canal disinfectant due to its high alkalinity of degradation, and the antimicrobial efficacy enhanced with the decreasing powder size.

  17. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Science.gov (United States)

    Chi, Huibo; Gu, Yan; Xu, Tingting; Cao, Feng

    2017-01-01

    To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH) nanosheets with active targeting to peptide transporter-1 (PepT-1) were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC) and retinal pigment epithelial (ARPE-19) cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. PMID:28280329

  18. Iron oxide hydroxide nanoflower assisted removal of arsenic from water

    Energy Technology Data Exchange (ETDEWEB)

    Raul, Prasanta Kumar, E-mail: prasanta.drdo@gmail.com [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India); Devi, Rashmi Rekha; Umlong, Iohborlang M. [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India); Thakur, Ashim Jyoti [Department of Chemical Sciences, Tezpur University, Napaam, Tezpur 784028, Assam (India); Banerjee, Saumen; Veer, Vijay [Defence Research Laboratory, Post Bag No. 2, Tezpur 784001, Assam (India)

    2014-01-01

    Graphical abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. TEM image clearly reveals that the nanoparticle looks flower like morphology with average particle size less than 20 nm. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature and the data fitted to different isotherm models indicate the heterogeneity of the adsorbent surface. The material can be regenerated up to 70% using dilute hydrochloric acid and it would be utilized for de-arsenification purposes. - Highlights: • The work includes synthesis of iron oxide hydroxide nanoflower and its applicability for the removal of arsenic from water. • The nanoparticle was characterized using modern instrumental methods like FESEM, TEM, BET, XRD, etc. • The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic at room temperature. • The sorption is multilayered on the heterogeneous surface of the nano adsorbent. • The mechanism of arsenic removal of IOH nanoflower follows both adsorption and ion-exchange. - Abstract: Non-magnetic polycrystalline iron oxide hydroxide nanoparticle with flower like morphology is found to play as an effective adsorbent media to remove As(III) from 300 μg L{sup −1} to less than 10 μg L{sup −1} from drinking water over wide range of pH. The nanoparticle was characterized by X-ray powder diffraction analysis (XRD), BET surface area, FTIR, FESEM and TEM images. TEM image clearly reveals flower like morphology with average particle size less than 20 nm. The nanoflower morphology is also supported by FESEM images. The maximum sorption capacity of the sorbent is found to be 475 μg g{sup −1} for arsenic and the data fitted to different isotherm models indicate the

  19. COMPARISON OF SELECTED PHYSICAL PROPERTIES OF TESTED NANOSUSPENSIONS – THE RESULTS OF THE EXPERIMENTAL RESEARCH OF THE DEGREE OF SEDIMENTATION AND THE DEPTH OF PENETRATION IN REFERENCE MATERIALS IN LABORATORY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Klára Kroftová

    2017-10-01

    Full Text Available Between used and already verified technologies for the reinforcement of plasters mainly include nanosuspension containing nanoparticles of calcium hydroxide and nanomaterials based on magnesium hydroxide and barium carbonate. Individual lime nanosuspension, which consists of nanoparticles of calcium hydroxide, are dispersed in an alcoholic environment and they differ from each concentration and type of alcohol. When the material is cured, carbonatation occurs, as well as in the case of fresh plaster, where the calcium hydroxide reacts with atmospheric carbon dioxide to produce calcium carbonate. Due to the deposition of calcium carbonate in the damaged material, occurs re-strengthened ties and its hardening. The undoubted advantage of the consolidation of plaster using nanolime is the low number of impregnation cycles, where after a few applications nanosuspension occurs to the reinforcement of degraded material.

  20. Electrosynthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electrooxidation in Alkaline Media

    Directory of Open Access Journals (Sweden)

    Biuck Habibi

    2017-04-01

    Full Text Available In this study, Ni-Al layered double hydroxide (LDH-Pt nanoparticles (PtNPs as an inorganic nano-composite was electrosynthesized on the glassy carbon electrode (GCE by a facile and fast two-step electrochemical process. Structure and physicochemical properties of PtNPs/Ni-Al LDH/GCE were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry and electrochemical methods. Then, electrocatalytic and stability characterizations of the PtNPs/Ni-Al LDH/GCE for methanol oxidation in alkaline media were investigated in detail by cyclic voltammetry, chronoamperometry, and chronopotentiometry measurements. PtNPs/Ni-Al LDH/GCE exhibited higher electrocatalytic activity than PtNPs/GCE and Ni-Al LDH/GCE. Also, the resulted chronoam-perograms indicated that the PtNPs/Ni-Al LDH/GCE has a better stability. Copyright © 2017 BCREC GROUP. All rights reserved Received: 30th March 2016; Revised: 29th July 2016; Accepted: 9th September 2016 How to Cite: Habibi, B., Ghaderi, S. (2017. Electro Synthesized Ni-Al Layered Double Hydroxide-Pt Nanoparticles as an Inorganic Nanocomposite and Potentate Anodic Material for Methanol Electro-Oxidation in Alkaline Media. Bulletin of Chemical Reaction Engineering & Catalysis, 12(1: 1-13 (doi:10.9767/bcrec.12.1.460.1-13 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.1.460.1-13

  1. Determination of Magnesium in Needle Biopsy Samples of Muscle Tissue by Means of Neutron Activation Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brune, D; Sjoeberg, H E

    1964-07-15

    Magnesium has been determined by means of neutron-activation analysis in needle biopsy samples of the order of magnitude 1 mg dry weight. The procedure applied was to extract the Mg-27 activity from irradiated muscle tissue with concentrated hydrochloric acid followed by a fast hydroxide precipitation and gamma-spectrometric measurements. The Mg activity was recovered in the muscle tissue samples to (97 {+-} 2) per cent. The sensitivity for the magnesium determination is estimated as 0.3 {mu}g.

  2. Economic Evaluation of the Production Magnesium Oxide Nanoparticles via Liquid-Phase Route

    Science.gov (United States)

    Nandiyanto, A. B. D.; Fariansyah, R.; Ramadhan, M. F.; Abdullah, A. G.; Widiaty, I.

    2018-02-01

    The purpose of this study was to evaluate the production of magnesium oxide (MgO) nanoparticles. The evaluation was done in two perspectives: engineering and economic evaluation. The engineering perspective concerned about the analysis of the production rate based on the available apparatuses and raw materials, completed with mass balance calculation. The economic analysis was conducted based on several economic parameters: gross profit margin (GPM), internal return rate (IRR), payback period (PBP), cumulative net present value (CNPV), break even point (BEP), and profit to investment (PI). The engineering perspective showed that the production of MgO is feasibly done in small scale industry. This is verified by the potential production using current available apparatuses and raw materials in the market. Economic analysis obtained that the present project is profitable. But, for some cases, further studies must be done to get the present production process is attractive for investor.

  3. Formation of a Spinel Coating on AZ31 Magnesium Alloy by Plasma Electrolytic Oxidation

    Science.gov (United States)

    Sieber, Maximilian; Simchen, Frank; Scharf, Ingolf; Lampke, Thomas

    2016-03-01

    Plasma electrolytic oxidation (PEO) is a common means for the surface modification of light metals. However, PEO of magnesium substrates in dilute electrolytes generally leads to the formation of coatings consisting of unfavorable MgO magnesium oxide. By incorporation of electrolyte components, the phase constitution of the oxide coatings can be modified. Coatings consisting exclusively of MgAl2O4 magnesium-aluminum spinel are produced by PEO in an electrolyte containing hydroxide, aluminate, and phosphate anions. The hardness of the coatings is 3.5 GPa on Martens scale on average. Compared to the bare substrate, the coatings reduce the corrosion current density in dilute sodium chloride solution by approx. one order of magnitude and slightly shift the corrosion potential toward more noble values.

  4. Corrosion resistance of zinc-magnesium coated steel

    International Nuclear Information System (INIS)

    Hosking, N.C.; Stroem, M.A.; Shipway, P.H.; Rudd, C.D.

    2007-01-01

    A significant body of work exists in the literature concerning the corrosion behaviour of zinc-magnesium coated steel (ZMG), describing its enhanced corrosion resistance when compared to conventional zinc-coated steel. This paper begins with a review of the literature and identifies key themes in the reported mechanisms for the attractive properties of this material. This is followed by an experimental programme where ZMG was subjected to an automotive laboratory corrosion test using acidified NaCl solution. A 3-fold increase in time to red rust compared to conventional zinc coatings was measured. X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy were used to characterize the corrosion products formed. The corrosion products detected on ZMG included simonkolleite (Zn 5 Cl 2 (OH) 8 . H 2 O), possibly modified by magnesium uptake, magnesium hydroxide (Mg(OH) 2 ) and a hydroxy carbonate species. It is proposed that the oxygen reduction activity at the (zinc) cathodes is reduced by precipitation of alkali-resistant Mg(OH) 2 , which is gradually converted to more soluble hydroxy carbonates by uptake of atmospheric carbon dioxide. This lowers the surface pH sufficiently to allow thermodynamically for general precipitation of insoluble simonkolleite over the corroding surface thereby retarding the overall corrosion reactions, leaving only small traces of magnesium corrosion products behind. Such a mechanism is consistent with the experimental findings reported in the literature

  5. Immunological evaluation of chitosan nanoparticles loaded with tetanus toxoid.

    Science.gov (United States)

    Ghalavand, M; Saadati, M; Ahmadi, A; Abbasi, E; Salimian, J

    2018-01-01

    The present study was aimed at comparing tetanus toxoid (TT)‑loaded-chitosan nanoparticles with aluminum hydroxide as a common vaccine adjuvant. Tetanus remains to be a major public health problem. Nanoparticles have been extensively used as immune adjuvants. Tetanus toxoid (TT) encapsulated in chitosan nanoparticles is considered to be a promising tetanus vaccine candidate. TT‑loaded chitosan nanoparticles were prepared by the ionic gelation method. The nanoparticles were studied by SEM for their size and morphology. In vivo study was conducted to evaluate the immunity response using mice divided into 4 groups and injected with encapsulated toxoid. The immune responses were then measured using indirect ELISA. The purity and integrity of antigen were confirmed by SDS-PAGE electrophoresis. The size of nanoparticles was estimated at 100 nm. As a result, the IgG antibody levels were 1.9, 1.76, and 0.87 in chitosan nanoparticles, aluminum hydroxide, and TT alone groups, respectively. Also, the immune responses were significantly higher in immunized groups compared to control groups vaccinated with free adjuvant vaccines (p chitosan nanoparticles were reasonable. It enhanced the immune responses as much as aluminum hydroxide adjuvant does and thus may be a good alternative candidate (Tab. 1, Fig. 3, Ref. 16).

  6. Fabrication of Coatings on the Surface of Magnesium Alloy by Plasma Electrolytic Oxidation Using ZrO2 and SiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    S. V. Gnedenkov

    2015-01-01

    Full Text Available Results of investigation of the incorporation of zirconia and silica nanoparticles into the coatings formed on magnesium alloy by plasma electrolytic oxidation are presented. Comprehensive research of electrochemical and mechanical properties of obtained coatings was carried out. It was established that the polarization resistance of the samples with a coating containing zirconia nanoparticles is two times higher than that for the sample with base PEO layer. One of the important reasons for improving the protective properties of coatings formed in electrolytes containing nanoparticles consists in enhanced morphological characteristics, in particular, the porosity decrease and increase of thickness and resistivity (up to two orders of magnitude for ZrO2-containing coating of porousless sublayer in comparison with base PEO layer. Incorporation of silica and zirconia particles into the coating increases the mechanical performances. The layers containing nanoparticles have greater hardness and are more wear resistant in comparison with the coatings formed in the base electrolyte.

  7. Surface modification of magnesium hydroxide sulfate hydrate whiskers using a silane coupling agent by dry process

    International Nuclear Information System (INIS)

    Zhu, Donghai; Nai, Xueying; Lan, Shengjie; Bian, Shaoju; Liu, Xin; Li, Wu

    2016-01-01

    Highlights: • Dry process was adopted to modify the surface of MHSH whiskers using silane. • Si−O−Mg bonds were formed directly by the reaction between Si−OC 2 H 5 and −OH of MHSH. • Dispersibility and compatibility of modified whiskers greatly improved in organic phase. • Thermal stability of whiskers was enhanced after modified. - Abstract: In order to improve the compatibility of magnesium hydroxide sulfate hydrate (MHSH) whiskers with polymers, the surface of MHSH whiskers was modified using vinyltriethoxysilane (VTES) by dry process. The possible mechanism of the surface modification and the interfacial interactions between MHSH whiskers and VTES, as well as the effect of surface modification, were studied. Scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and X-ray powder diffraction (XRD) analyses showed that the agglomerations were effectively separated and a thin layer was formed on the surface of the whiskers after modification. Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS) analyses showed that the VTES molecules were bound to the surface of MHSH whiskers after modification. Chemical bonds (Si−O−Mg) were formed by the reaction between Si−OC 2 H 5 or Si−OH and the hydroxyl group of MHSH whiskers. The effect of surface modification was evaluated by sedimentation tests, contact angle measurements and thermogravimetric analysis (TGA). The results showed that the surface of MHSH whiskers was transformed from hydrophilic to hydrophobic, and the dispersibility and the compatibility of MHSH whiskers were significantly improved in the organic phase. Additionally, the thermal stability of the VTES-modified MHSH whiskers was improved significantly.

  8. Arsenic adsorption in pre-treatment natural zeolite with magnesium oxides

    International Nuclear Information System (INIS)

    Mejia Z, F.; Valenzuela G, J. L.; Aguayo S, S.; Meza F, D.

    2009-01-01

    A methodology was developed to modify a natural zeolite (chabazite) with magnesium oxide in order to remove arsenic (As +5 ) from water for human consumption. It is proposed a magnesium oxide while regarded as an efficient adsorbent for removing metals in water. X-ray diffraction analyses show significant changes in the chabazite due to the presence of oxides and amorphous hydroxides incorporated during the pre-treatment. Experimental design results show an efficiency greater than 90% of As +5 adsorbed in five minutes. The results indicate that the most significant variables affecting the adsorption of As +5 are the initial concentration of As and the solid/liquid ratio. Experimental data fitted better to Freundlich isotherm with a 20.17 mg/g adsorption capability. (Author)

  9. Synthesis of Binary Magnesium-Transition Metal Oxides via Inverse Coprecipitation

    Science.gov (United States)

    Yagi, Shunsuke; Ichikawa, Yuya; Yamada, Ikuya; Doi, Takayuki; Ichitsubo, Tetsu; Matsubara, Eiichiro

    2013-02-01

    Synthesis of binary magnesium-transition metal oxides, MgM2O4 (M: Cr, Mn, Fe, Co) and MgNiO2, was performed by calcination at relatively low temperatures of 500 and 750 °C for 24 h through inverse coprecipitation of carbonate hydroxide precursors. The important roles of the precipitation agent, sodium carbonate, were clarified by considering equilibria in an aqueous solution. The structure parameters of the obtained binary magnesium-transition metal oxide powders, specifically the occupancy of atomic sites, were evaluated from synchrotron X-ray diffraction (XRD) profiles by Rietveld refinement in addition to the magnetic properties at room temperature. The present work provides general guidelines for low-cost and high-volume synthesis of complex oxides, which are easily decomposed at high temperatures.

  10. Photoluminescence and photostability of YVO{sub 4}:Eu{sup 3+} nanoparticle/layered double hydroxide multilayer films prepared via layer-by-layer assembly

    Energy Technology Data Exchange (ETDEWEB)

    Onishi, Wataru; Takeshita, Satoru, E-mail: takeshita@applc.keio.ac.jp; Iso, Yoshiki; Isobe, Tetsuhiko, E-mail: isobe@applc.keio.ac.jp

    2016-07-15

    Layered double hydroxides (LDHs) consist of positively charged brucite-like layers with interlayer anions for charge compensation. Delaminated cationic LDH nanosheets can be used as building blocks to fabricate functional nanocomposites. In this study, we fabricated photoluminescent multilayer films containing positively charged LDH nanosheets and negatively charged YVO{sub 4}:Eu{sup 3+} nanoparticles on quartz glass substrates through a layer-by-layer assembly technique. The absorbance and photoluminescence (PL) intensity of the YVO{sub 4}:Eu{sup 3+} nanoparticles in the multilayer films were proportional to the number of deposition cycles. These linear relationships indicate that constant amounts of LDH nanosheets and YVO{sub 4}:Eu{sup 3+} nanoparticles were alternately deposited on the substrate. The change in intensity of the 620 nm emission of the YVO{sub 4}:Eu{sup 3+} nanoparticle powder and the multilayer film (LDH/YVO{sub 4}:Eu{sup 3+}){sub 10} under continuous 270 nm excitation was measured to compare both photostabilities. The PL intensity of the YVO{sub 4}:Eu{sup 3+} nanoparticle powder decreased to 7% of the initial intensity and then gradually recovered to 19%. In contrast, the PL intensity of the multilayer film (LDH/YVO{sub 4}:Eu{sup 3+}){sub 10} decreased to 36% of the initial intensity and then recovered to 139%. The photo-degradation and recovery are discussed.

  11. Mg(OH){sub 2} nanoparticles produced at room temperature by an innovative, facile, and scalable synthesis route

    Energy Technology Data Exchange (ETDEWEB)

    Taglieri, Giuliana, E-mail: giuliana.taglieri@univaq.it; Felice, Benito; Daniele, Valeria; Ferrante, Fabiola [University of L’Aquila, Department of Industrial and Information Engineering and Economics (Italy)

    2015-10-15

    Nanoparticles form the fundamental building blocks for many exciting applications in various scientific disciplines. However, the problem of the large-scale synthesis of nanoparticles remains challenging. An original, eco-friendly, single step, and scalable method to produce magnesium hydroxide nanoparticles in aqueous suspensions is here presented. The method, based on an exchange ion process, is extremely simple and rapid (few minutes). It employs cheap or renewable reactants, operates at room temperature and does not require intermediate steps (washings/purifications) to eliminate undesired compounds. Moreover, it is possible to regenerate the exchange material and to reuse it for new operation of synthesis, according to a cyclic procedure, providing potential aptitudes of scalability of nanoparticles production. Some of the synthesis parameters are varied, and structural and morphological features of the produced nanoparticles, after few seconds from the beginning of the synthesis up to the ending time, are investigated by means of several techniques, such as X-ray diffraction (profile fitting and Rietveld refinement), transmission electron microscopy, infrared spectroscopy, thermal analyses, and surface area measurements. In any case, pure and stable suspensions are produced, characterized by crystalline and mesoporous Mg(OH){sub 2} nanoparticles, with lamellar morphology. In particular, the nanolamellas appeared constituted by a superimposition of hexagonally plated and crystalline nanosized precursors (2–3 nm in dimensions), crystallographically oriented.

  12. PEO-b-P4VP/Yttrium Hydroxide Hybrid Nanotubes as Supporter for Catalyst Gold Nanoparticles

    Science.gov (United States)

    Yang, Qian; Chen, Dao-yong

    2012-06-01

    The adsorption of poly (ethylene oxide)-b-poly(4-vinylpyridine)(PEO-b-P4VP) micelles onto the surface of yttrium hydroxide nanotubes (YNTs) resulted in the hybrid nanotubes with a dense P4VP inner layer and a stretched PEO outer layer surrounding YNTs. The dense P4VP layer was further stabilized by the crosslinking using 1,4-dibromobutane as the crosslinker. Then, the crosslinked hybrid nanotubes (CHNTs) were used as a novel nano supporter for loading the catalyst gold nanoparticles (GNPs) within the crosslinked P4VP layer. The resultant GNPs/CHNTs (GNTs loaded on CHNTs) were applied to catalyze the reduction reaction of p-nitrophenol. The results indicate that this novel nano supporter has advantages such as good dispersity in the suspension, high capacity in loading GNPs (0.87 mmol/g), high catalytic activity of the loaded GNPs (12.9 μmol-1min-1), and good reusability of GNTs/CHNTs.

  13. Gold Nanoparticles Supported on a Layered Double Hydroxide as Efficient Catalysts for the One-Pot Synthesis of Flavones.

    Science.gov (United States)

    Yatabe, Takafumi; Jin, Xiongjie; Yamaguchi, Kazuya; Mizuno, Noritaka

    2015-11-02

    Flavones are a class of natural products with diverse biological activities and have frequently been synthesized by step-by-step procedures using stoichiometric amounts of reagents. Herein, a catalytic one-pot procedure for the synthesis of flavone and its derivatives is developed. In the presence of gold nanoparticles supported on a Mg-Al layered double hydroxide (Au/LDH), various kinds of flavones can be synthesized starting from 2'-hydroxyacetophenones and benzaldehydes (or benzyl alcohols). The present one-pot procedure consists of a sequence of several reactions, and Au/LDH can catalyze all these different types of reactions. The catalysis is shown to be truly heterogeneous, and Au/LDH can be readily recovered and reused. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Mass Transfer and Kinetics Study of Heterogeneous Semi-Batch Precipitation of Magnesium Carbonate

    DEFF Research Database (Denmark)

    Han, B.; Qu, H. Y.; Niemi, H.

    2014-01-01

    Precipitation kinetics and mass transfer of magnesium carbonate (MgCO3) hydrates from a reaction of magnesium hydroxide (Mg(OH)(2)) and CO2 were analyzed. The effect of CO2 flow rate and mixing intensity on precipitation was investigated under ambient temperature and atmospheric pressure. Raman...... on the dissolution of Mg(OH)(2). In the researched system, the main driver of the precipitation kinetics was the mass transfer of CO2. Nesquehonite (MgCO3 center dot 3H(2)O), as needle-like crystals, was precipitated as the main product. Raman spectroscopy can serve as a potential tool to monitor the carbonation...

  15. Development of Drug Delivery Systems Based on Layered Hydroxides for Nanomedicine

    Directory of Open Access Journals (Sweden)

    Farahnaz Barahuie

    2014-05-01

    Full Text Available Layered hydroxides (LHs have recently fascinated researchers due to their wide application in various fields. These inorganic nanoparticles, with excellent features as nanocarriers in drug delivery systems, have the potential to play an important role in healthcare. Owing to their outstanding ion-exchange capacity, many organic pharmaceutical drugs have been intercalated into the interlayer galleries of LHs and, consequently, novel nanodrugs or smart drugs may revolutionize in the treatment of diseases. Layered hydroxides, as green nanoreservoirs with sustained drug release and cell targeting properties hold great promise of improving health and prolonging life.

  16. Synthesis and characterization of Zn-doped MgAl-layered double hydroxide nanoparticles as PVC heat stabilizer

    International Nuclear Information System (INIS)

    Wang, Gongling; Yang, Mei; Li, Zhiwen; Lin, Kaifeng; Jin, Quan; Xing, Chaojian; Hu, Zhudong; Wang, Dan

    2013-01-01

    Zn-doped MgAl-layered double hydroxides (LDHs) with M 2+ /M 3+ = 2 and different molar ratios of Mg/Zn have been synthesized by modified homogeneous co-precipitation method and characterized by powder X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectrum and thermogravimetry, and differential thermal analysis techniques. The thermal stabilizing effects of different LDHs on PVC were studied by Congo red test and thermal aging test. All of the nanoparticles show plate-like morphology and the average diameter of particles is around 90 nm. Results show that the introduction of Zn increased the average bond length and area of the layers of LDHs, therefore enhanced the adsorption ability on HCl gas which was generated during degradation of PVC to improve the thermal stability of PVC. LDHs with molar ratio of Mg/Zn = 1.0 shows the best thermal stabilizing effect on PVC

  17. Synthesis and characterization of Zn-doped MgAl-layered double hydroxide nanoparticles as PVC heat stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gongling; Yang, Mei [Chinese Academy of Sciences, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (China); Li, Zhiwen; Lin, Kaifeng [Harbin Institute of Technology, Academy of Fundamental Interdisciplinary Sciences (China); Jin, Quan; Xing, Chaojian; Hu, Zhudong [Chinese Academy of Sciences, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering (China); Wang, Dan, E-mail: danwang@mail.ipe.ac.cn [Harbin Institute of Technology, Academy of Fundamental Interdisciplinary Sciences (China)

    2013-09-15

    Zn-doped MgAl-layered double hydroxides (LDHs) with M{sup 2+}/M{sup 3+} = 2 and different molar ratios of Mg/Zn have been synthesized by modified homogeneous co-precipitation method and characterized by powder X-ray diffraction, Transmission electron microscopy, Fourier transform infrared spectrum and thermogravimetry, and differential thermal analysis techniques. The thermal stabilizing effects of different LDHs on PVC were studied by Congo red test and thermal aging test. All of the nanoparticles show plate-like morphology and the average diameter of particles is around 90 nm. Results show that the introduction of Zn increased the average bond length and area of the layers of LDHs, therefore enhanced the adsorption ability on HCl gas which was generated during degradation of PVC to improve the thermal stability of PVC. LDHs with molar ratio of Mg/Zn = 1.0 shows the best thermal stabilizing effect on PVC.

  18. In vivo pharmacological evaluation and efficacy study of methotrexate-encapsulated polymer-coated layered double hydroxide nanoparticles for possible application in the treatment of osteosarcoma.

    Science.gov (United States)

    Ray, Sayantan; Saha, Suman; Sa, Biswanath; Chakraborty, Jui

    2017-04-01

    Considering the existing drawbacks of methotrexate (MTX) with respect to its solubility and toxicity, we incorporated it in a nanoceramic matrix, Mg-Al-layered double hydroxide (LDH) to form LDH-MTX nanoparticles, and the same was in turn encapsulated in a nontoxic and biodegradable polymer, poly (D,L-lactide-co-glycolide) (PLGA), to arrest the initial burst release and dose-dumping-related toxicity, already reported by our group. Our present study was designed to evaluate the pharmacokinetics, tissue distribution, survival rate of the test animals, and antitumor efficacy of the PLGA-LDH-MTX nanoparticles and its counterpart without LDH, PLGA-MTX nanoparticles compared with bare MTX. The median lethal dose (LD 50 ) of the former was higher, compared with bare MTX, using Balb/c nude mice, indicating it to be completely safe for use. Also, a comparative pharmacokinetic and antitumour efficacy study using MTX, PLGA-MTX, and PLGA-LDH-MTX nanoparticles in osteosarcoma-induced Balb/c nude mice in vivo demonstrated superiority of PLGA-LDH-MTX as compared to PLGA-MTX and bare MTX. The results suggest that PLGA-LDH-MTX nanoparticles might exhibit potential advantages over the present-day chemotherapy over bare MTX, for the possibility of treatment of osteosarcoma.

  19. Gold-nanoparticle-based catalysts for the oxidative esterification of 1,4-butanediol into dimethyl succinate.

    Science.gov (United States)

    Brett, Gemma L; Miedziak, Peter J; He, Qian; Knight, David W; Edwards, Jennifer K; Taylor, Stuart H; Kiely, Christopher J; Hutchings, Graham J

    2013-10-01

    The oxidation of 1,4-butanediol and butyrolactone have been investigated by using supported gold, palladium and gold-palladium nanoparticles. The products of such reactions are valuable chemical intermediates and, for example, can present a viable pathway for the sustainable production of polymers. If both gold and palladium were present, a significant synergistic effect on the selective formation of dimethyl succinate was observed. The support played a significant role in the reaction, with magnesium hydroxide leading to the highest yield of dimethyl succinate. Based on structural characterisation of the fresh and used catalysts, it was determined that small gold-palladium nanoalloys supported on a basic Mg(OH)2 support provided the best catalysts for this reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sodium Hydroxide and Calcium Hydroxide Hybrid Oxygen Bleaching with System

    Science.gov (United States)

    Doelle, K.; Bajrami, B.

    2018-01-01

    This study investigates the replacement of sodium hydroxide in the oxygen bleaching stage using a hybrid system consisting of sodium hydroxide calcium hydroxide. Commercial Kraft pulping was studied using yellow pine Kraft pulp obtained from a company in the US. The impact of sodium hydroxide, calcium hydroxide hybrid system in regard to concentration, reaction time and temperature for Kraft pulp was evaluated. The sodium hydroxide and calcium hydroxide dosage was varied between 0% and 15% based on oven dry fiber content. The bleaching reaction time was varied between 0 and 180 minutes whereas the bleaching temperature ranged between 70 °C and 110 °C. The ability to bleach pulp was measured by determining the Kappa number. Optimum bleaching results for the hybrid system were achieved with 4% sodium hydroxide and 2% calcium hydroxide content. Beyond this, the ability to bleach pulp decreased.

  1. Investigation of gel formation and volatilization of acetate acid in magnesium acetate droplets by the optical tweezers.

    Science.gov (United States)

    Lv, Xi-Juan; Wang, Yang; Cai, Chen; Pang, Shu-Feng; Ma, Jia-Bi; Zhang, Yun-Hong

    2018-07-05

    Hygroscopicity and volatility of single magnesium acetate (MgAc 2 ) aerosol particles at various relative humidities (RHs) are studied by a single-beam optical tweezers, and refractive indices (RIs) and morphology are characterized by cavity enhanced Raman spectroscopy. Gel formation and volatilization of acetate acid (HAc) in MgAc 2 droplets are observed. Due to the formation of amorphous gel structure, water transposition in droplets at RH magnesium hydroxide (Mg(OH) 2 ) inclusions are formed in MgAc 2 droplets due to the volatilization of HAc, and whispering gallery modes (WGMs) of MgAc 2 droplets in the Raman spectrum quench after 50,000 s. In sharp contrast, after 86,000 s at RH ≈ 70%, NaAc droplets are in well-mixed liquid states, containing soluble sodium hydroxide (NaOH). At this state, the RI of NaAc droplet is increased, and the quenching of WGMs is not observable. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Studies on the ageing of a magnesium-strontium nitrate pyrotechnic composition using isothermal microcalorimetry and thermal analysis techniques

    International Nuclear Information System (INIS)

    Tuukkanen, I.; Brown, S.D.; Charsley, E.L.; Goodall, S.J.; Rooney, J.J.; Griffiths, T.T.; Lemmetyinen, H.

    2004-01-01

    The ageing behaviour of a pyrotechnic composition containing equal parts by mass of magnesium and strontium nitrate has been followed by isothermal microcalorimetry. The measurements were carried out on the samples at 50 deg. C and 65% relative humidity in air using closed ampoules. The results have been compared to those obtained for magnesium powder under the same conditions. Following an initial induction period, the pyrotechnic compositions reacted at a much faster rate than magnesium powder alone. The main reaction products were found to be magnesium hydroxide and strontium nitrite; the amounts formed have been correlated with the cumulative heats of ageing. In addition, the influence of the ageing process on the pyrotechnic reaction has been studied by high temperature differential scanning calorimetry (DSC) and by modulated temperature DSC

  3. Gold Nanoparticles on Layered Double Hydroxide Nanosheets and Its Electrocatalysis for Glucose Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Hye Ran; Lee, Jong Hyeon [The Catholic University of Korea, Bucheon (Korea, Republic of); Cho, Se Hee; Ji, Hong Geun [H and A PharmaChem, Bucheon (Korea, Republic of)

    2016-03-15

    We developed a new way to form the well-defined nanocomposite of Au NPs and exfoliated LDH nanosheet by in situ chemical reduction with NaBH{sub 4}. The optical and structural studies indicate that the Au NPs are highly dispersed and immobilized on the surface of LDH nanosheets. The Au/LDH nanosheet exhibited an excellent electrocatalysis toward glucose oxidation reaction. The results strongly demonstrate that the nanoscopic natures and dense positive charges of LDH nanosheet effectively stabilized the Au NPs to maintain their inherent properties during the synthesis and the electrocatalysis. The use of the double hydroxide nanosheets as nanoscopic support materials for the transition-metal NPs will dramatically improve their functionalities in heterogeneous catalysis. Recently, two-dimensional nanosheet of exfoliated layered double hydroxide (LDH) has emerged as a new type of solid support to immobilize the diverse metal NPs because of the large metal hydroxide area, good biochemical stability, and highly charged positive potential of 1- to 2-nm thick LDH layers. LDHs consist of a continuous stack of positively charged metal hydroxide layers with counter anions and water molecules placed in interlayer spaces.

  4. Role of magnesium on the biomimetic deposition of calcium phosphate

    Science.gov (United States)

    Sarma, Bimal K.; Sarma, Bikash

    2016-10-01

    Biomimetic depositions of calcium phosphate (CaP) are carried out using simulated body fluid (SBF), calcifying solution and newly developed magnesium containing calcifying solution. Calcium phosphate has a rich phase diagram and is well known for its excellent biocompatibility and bioactivity. The most common phase is hydroxyapatite (HAp), an integral component of human bone and tooth, widely used in orthopedic and dental applications. In addition, calcium phosphate nanoparticles show promise for the targeted drug delivery. The doping of calcium phosphate by magnesium, zinc, strontium etc. can change the protein uptake by CaP nanocrystals. This work describes the role of magnesium on the nucleation and growth of CaP on Ti and its oxide substrates. X-ray diffraction studies confirm formation of HAp nanocrystals which closely resemble the structure of bone apatite when grown using SBF and calcifying solution. It has been observed that magnesium plays crucial role in the nucleation and growth of calcium phosphate. A low magnesium level enhances the crystallinity of HAp while higher magnesium content leads to the formation of amorphous calcium phosphate (ACP) phase. Interestingly, the deposition of ACP phase is rapid when magnesium ion concentration in the solution is 40% of calcium plus magnesium ions concentration. Moreover, high magnesium content alters the morphology of CaP films.

  5. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Anne Marie, E-mail: Anne.M.Cooper@asu.edu [Environmental Technology, College of Technology and Innovation. Arizona State University - Polytechnic Campus, 6075 South Williams Campus Loop West, Mesa, AZ 85212 (United States); Hristovski, Kiril D., E-mail: Kiril.Hristovski@asu.edu [Environmental Technology, College of Technology and Innovation, Arizona State University - Polytechnic Campus, 6073 South Backus Mall, Mesa, AZ 85212 (United States); Moeller, Teresia, E-mail: tmoller@solmetex.com [SolmeteX - Division of Layne Christiansen, 50 Bearfoot Road, Northborough, MA 01532 (United States); Westerhoff, Paul, E-mail: p.westerhoff@asu.edu [School of Sustainable Engineering and the Built Environment, Arizona State University, Box 5306, Tempe, AZ 85287-5306 (United States); Sylvester, Paul, E-mail: psylvester@solmetex.com [SolmeteX - Division of Layne Christiansen, 50 Bearfoot Road, Northborough, MA 01532 (United States)

    2010-11-15

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove {approx}6.3 L g{sup -1} dry media and {approx}4 L g{sup -1} dry media of water contaminated with 30 {mu}g L{sup -1} TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only {approx}0.2 L/g dry media for TCE and {approx}2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant.

  6. The effect of carbon type on arsenic and trichloroethylene removal capabilities of iron (hydr)oxide nanoparticle-impregnated granulated activated carbons

    International Nuclear Information System (INIS)

    Cooper, Anne Marie; Hristovski, Kiril D.; Moeller, Teresia; Westerhoff, Paul; Sylvester, Paul

    2010-01-01

    This study investigates the impact of the type of virgin granular activated carbon (GAC) media used to synthesize iron (hydr)oxide nanoparticle-impregnated granular activated carbon (Fe-GAC) on its properties and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Two Fe-GAC media were synthesized via a permanganate/ferrous ion synthesis method using bituminous and lignite-based virgin GAC. Data obtained from an array of characterization techniques (pore size distribution, surface charge, etc.) in correlation with batch equilibrium tests, and continuous flow modeling suggested that GAC type and pore size distribution control the iron (nanoparticle) contents, Fe-GAC synthesis mechanisms, and contaminant removal performances. Pore surface diffusion model calculations predicted that lignite Fe-GAC could remove ∼6.3 L g -1 dry media and ∼4 L g -1 dry media of water contaminated with 30 μg L -1 TCE and arsenic, respectively. In contrast, the bituminous Fe-GAC could remove only ∼0.2 L/g dry media for TCE and ∼2.8 L/g dry media for As of the same contaminated water. The results show that arsenic removal capability is increased while TCE removal is decreased as a result of Fe nanoparticle impregnation. This tradeoff is related to several factors, of which changes in surface properties and pore size distributions appeared to be the most dominant.

  7. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    Energy Technology Data Exchange (ETDEWEB)

    Arratia-Quijada, Jenny [Departamento de Ciencias de la Salud, Centro Universitario Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, C.P. 48525, Tonalá, Jalisco (Mexico); Sánchez Jiménez, Cecilia [Departamento de Química, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Gurinov, Andrey [Research Resources Center for Magnetic Resonance, St. Petersburg State University, Universitetskiy pr. 26, 198504 St. Petersburg (Russian Federation); NMR Core Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900 (Saudi Arabia); Pérez Centeno, Armando; Ceja Andrade, Israel [Departamento de Física, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico); Carbajal Arízaga, Gregorio Guadalupe, E-mail: gregoriocarbajal@yahoo.com.mx [Departamento de Química, Universidad de Guadalajara, Boulevard Marcelino García Barragán 1421, C.P. 44430, Guadalajara, Jalisco (Mexico)

    2016-01-15

    Graphical abstract: - Highlights: • LDH structure including dysprosium was prepared by co-precipitation. • LDH was capable to produce contrast in the T1 mode of MRI. • LDH were intercalated with folate, ibuprofen and gallate ions. - Abstract: A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  8. Dysprosium-containing layered double hydroxides nanoparticles intercalated with biologically active species as an approach for theranostic systems

    International Nuclear Information System (INIS)

    Arratia-Quijada, Jenny; Sánchez Jiménez, Cecilia; Gurinov, Andrey; Pérez Centeno, Armando; Ceja Andrade, Israel; Carbajal Arízaga, Gregorio Guadalupe

    2016-01-01

    Graphical abstract: - Highlights: • LDH structure including dysprosium was prepared by co-precipitation. • LDH was capable to produce contrast in the T1 mode of MRI. • LDH were intercalated with folate, ibuprofen and gallate ions. - Abstract: A layered double hydroxide structure including dysprosium cations was prepared by co-precipitation. The nanoparticles showed a linear relationship with the reciprocal relaxation spin-lattice (T1) time of water protons which is reflected as contrast in aqueous suspensions analyzed by magnetic resonance imaging. The interlayer space of dysprosium containing LDH was successfully intercalated with folate, ibuprofen and gallate ions, which are key molecules for recognition of some cancer cells and treatment of diseases. The paramagnetic property of the dysprosium-containing LDH detected in this work beside the ability to transport drugs open up the opportunity to design theranostic materials in a single crystal phase with nanometric dimensions.

  9. Imparting passivity to vapor deposited magnesium alloys

    Science.gov (United States)

    Wolfe, Ryan C.

    electron microscope. The corrosion rate of the nonequilibrium sputtered alloys, as determined by polarization resistance, is significantly reduced compared to the most corrosion resistant commercial magnesium alloys. The open circuit potentials of the sputter deposited alloys are significantly more noble compared to commercial, equilibrium phase magnesium alloys. Galvanic corrosion susceptibility has also been considerably reduced. Nonequilibrium magnesium-yttrium-titanium alloys have been shown to achieve passivity autonomously by alteration of the composition chemistry of the surface oxide/hydroxide layer. Self-healing properties are also evident, as corrosion propagation can be arrested after initial pitting of the material. A clear relationship exists between the corrosion resistance of sputter vapor deposited magnesium alloys and the amount of ion bombardment incurred by the alloy during deposition. Argon pressure, the distance between the source and the substrate, and alloy morphology play important roles in determining the ability of the alloy to develop a passive film. Thermal effects, both during and after alloy deposition, alter the stress state of the alloys, precipitation of second phases, and the mechanical stability of the passive film. An optimal thermal treatment has been developed in order to maximize the corrosion resistance of the magnesium-yttrium-titanium alloys. The significance of the results includes the acquisition of electrochemical data for these novel materials, as well as expanding the utilization of magnesium alloys by the improvement in their corrosion resistance. The magnesium alloys developed in this work are more corrosion resistant than any commercial magnesium alloy. Structural components comprised of these alloys would therefore exhibit unprecedented corrosion performance. Coatings of these alloys on magnesium components would provide a corrosion resistant yet galvanically-compatible coating. The broad impact of these contributions is

  10. Chemical conversion coating for protecting magnesium alloys from corrosion

    Science.gov (United States)

    Bhargava, Gaurang; Allen, Fred M.; Skandan, Ganesh; Hornish, Peter; Jain, Mohit

    2016-01-05

    A chromate-free, self-healing conversion coating solution for magnesium alloy substrates, composed of 10-20 wt. % Mg(NO.sub.3).sub.2.6H.sub.2O, 1-5 wt. % Al(NO.sub.3).sub.3.9H.sub.2O, and less than 1 wt. % of [V.sub.10O.sub.28].sup.6- or VO.sub.3.sup.- dissolved in water. The corrosion resistance offered by the resulting coating is in several hundreds of hours in salt-spray testing. This prolonged corrosion protection is attributed to the creation of a unique structure and morphology of the conversion coating that serves as a barrier coating with self-healing properties. Hydroxoaluminates form the backbone of the barrier protection offered while the magnesium hydroxide domains facilitate the "slow release" of vanadium compounds as self-healing moieties to defect sites, thus providing active corrosion protection.

  11. Nickel hydroxide electrode. 3: Thermogravimetric investigations of nickel (II) hydroxides

    Science.gov (United States)

    Dennstedt, W.; Loeser, W.

    1982-01-01

    Water contained in Ni hydroxide influences its electrochemical reactivity. The water content of alpha and beta Ni hydroxides is different with respect to the amount and bond strength. Thermogravimetric experiments show that the water of the beta Ni hydroxides exceeding the stoichiometric composition is completely removed at 160 deg. The water contained in the interlayers of the beta hydroxide, however, is removed only at higher temperatures, together with the water originating from the decomposition of the hydroxide. These differences are attributed to the formation of II bonds within the interlayers and between interlayers and adjacent main layers. An attempt is made to explain the relations between water content and the oxidizability of the Ni hydroxides.

  12. Effect of zinc oxide nanoparticles synthesized by a precipitation

    Indian Academy of Sciences (India)

    ZnO nanoparticles were synthesized by a precipitation method in aqueous media from zinc nitrate hexahydrate and sodium hydroxide. The synthesized ZnO nanoparticles exhibited a crystalline structure with hexagonal structure of the wurtzite. The morphology of the synthesized ZnO nanoparticles presented a spherical ...

  13. Porphyrin-layered double hydroxide/polymer composites as novel ecological photoactive surfaces

    Czech Academy of Sciences Publication Activity Database

    Káfuňková, Eva; Lang, Kamil; Kubát, Pavel; Klementová, Mariana; Mosinger, Jiří; Šlouf, Miroslav; Troutier-Thuilliez, A. L.; Leroux, F.; Verney, V.; Taviot-Guého, Ch.

    2010-01-01

    Roč. 20, č. 42 (2010), s. 9423-9432 ISSN 0959-9428 R&D Projects: GA ČR GAP207/10/1447 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40400503; CEZ:AV0Z40500505 Keywords : porphyrins * nanoparticles * hydroxide/polymer composites Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 5.101, year: 2010

  14. Magnesium-Based Corrosion Nano-Cells For Reductive Transformation Of Contaminants

    Science.gov (United States)

    Magnesium, with its potential to reduce a variety of aqueous contaminants, unique self-limiting corrosion behavior affording long active life times, natural abundance, low cost, and environmentally friendly nature, promises to be an effective technology. However, nanoparticles o...

  15. The analysis of magnesium oxide hydration in three-phase reaction system

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaojia; Guo, Lin; Chen, Chen; Liu, Quan; Li, Tie; Zhu, Yimin, E-mail: ntp@dlmu.edu.cn

    2014-05-01

    In order to investigate the magnesium oxide hydration process in gas–liquid–solid (three-phase) reaction system, magnesium hydroxide was prepared by magnesium oxide hydration in liquid–solid (two-phase) and three-phase reaction systems. A semi-empirical model and the classical shrinking core model were used to fit the experimental data. The fitting result shows that both models describe well the hydration process of three-phase system, while only the semi-empirical model right for the hydration process of two-phase system. The characterization of the hydration product using X-Ray diffraction (XRD) and scanning electron microscope (SEM) was performed. The XRD and SEM show hydration process in the two-phase system follows common dissolution/precipitation mechanism. While in the three-phase system, the hydration process undergo MgO dissolution, Mg(OH){sub 2} precipitation, Mg(OH){sub 2} peeling off from MgO particle and leaving behind fresh MgO surface. - Graphical abstract: There was existence of a peeling-off process in the gas–liquid–solid (three-phase) MgO hydration system. - Highlights: • Magnesium oxide hydration in gas–liquid–solid system was investigated. • The experimental data in three-phase system could be fitted well by two models. • The morphology analysis suggested that there was existence of a peel-off process.

  16. Precipitation of plutonium from acidic solutions using magnesium oxide

    International Nuclear Information System (INIS)

    Jones, S.A.

    1994-01-01

    Plutonium (IV) is only marginally soluble in alkaline solution. Precipitation of plutonium using sodium or potassium hydroxide to neutralize acidic solutions produces a gelatinous solid that is difficult to filter and an endpoint that is difficult to control. If the pH of the solution is too high, additional species precipitate producing an increased volume of solids separated. The use of magnesium oxide as a reagent has advantages. It is added as a solid (volume of liquid waste produced is minimized), the pH is self-limiting (pH does not exceed about 8.5), and the solids precipitated are more granular (larger particle size) than those produced using KOH or NaOH. Following precipitation, the raffinate is expected to meet criteria for disposal to tank farms. The solid will be heated in a furnace to dry it and convert any hydroxide salts to the oxide form. The material will be cooled in a desiccator. The material is expected to meet vault storage criteria

  17. Multifunctional organic–inorganic hybrid nanoparticles and nanosheets based on chitosan derivative and layered double hydroxide: cellular uptake mechanism and application for topical ocular drug delivery

    Directory of Open Access Journals (Sweden)

    Chi H

    2017-02-01

    Full Text Available Huibo Chi,1,2,* Yan Gu,1,* Tingting Xu,1 Feng Cao1 1Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, 2State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research Co., Ltd., Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: To study the cellular uptake mechanism of multifunctional organic–inorganic hybrid nanoparticles and nanosheets, new chitosan–glutathione–valine–valine-layered double hydroxide (CG-VV-LDH nanosheets with active targeting to peptide transporter-1 (PepT-1 were prepared, characterized and further compared with CG-VV-LDH nanoparticles. Both organic–inorganic hybrid nanoparticles and nanosheets showed a sustained release in vitro and prolonged precorneal retention time in vivo, but CG-VV-LDH nanoparticles showed superior permeability in the isolated cornea of rabbits than CG-VV-LDH nanosheets. Furthermore, results of cellular uptake on human corneal epithelial primary cells (HCEpiC and retinal pigment epithelial (ARPE-19 cells indicated that both clathrin-mediated endocytosis and active transport of PepT-1 are involved in the internalization of CG-VV-LDH nanoparticles and CG-VV-LDH nanosheets. In summary, the CG-VV-LDH nanoparticle may be a promising carrier as a topical ocular drug delivery system for the treatment of ocular diseases of mid-posterior segments, while the CG-VV-LDH nanosheet may be suitable for the treatment of ocular surface diseases. Keywords: LDH nanoparticles, LDH nanosheets, ocular drug delivery, human corneal epithelial primary cell, retinal pigment cell, ARPE-19, active targeting

  18. The in vitro sustained release profile and antitumor effect of etoposide-layered double hydroxide nanohybrids

    Directory of Open Access Journals (Sweden)

    Qin LL

    2013-05-01

    Full Text Available Lili Qin,1 Mei Wang,2 Rongrong Zhu,3 Songhui You,1 Ping Zhou,1 Shilong Wang31Department of Physical Education, Tongji University, Shanghai, People's Republic of China; 2Department of Chemistry, Tongji University, Shanghai, People's Republic of China; 3School of Life Science and Technology, Tongji University, Shanghai, People's Republic of ChinaAbstract: Magnesium-aluminum layered double hydroxides intercalated with antitumor drug etoposide (VP16 were prepared for the first time using a two-step procedure. The X-ray powder diffraction data suggested the intercalation of VP16 into layers with the increased basal spacing from 0.84–1.18 nm was successful. Then, it was characterized by X-ray powder diffraction, Fourier transform infrared spectroscopy, thermogravimetry and differential thermal analysis, and transmission electron microscopy. The prepared nanoparticles, VP16-LDH, showed an average diameter of 62.5 nm with a zeta potential of 20.5 mV. Evaluation of the buffering effect of VP16-LDH indicated that the nanohybrids were ideal for administration of the drugs that treat human stomach irritation. The loading amount of intercalated VP16 was 21.94% and possessed a profile of sustained release. The mechanism of VP16-LDH release in the phosphate buffered saline solution at pH 7.4 is likely controlled by the diffusion of VP16 anions from inside to the surface of LDH particles. The in vitro cytotoxicity and antitumor assays indicated that VP16-LDH hybrids were less toxic to GES-1 cells while exhibiting better antitumor efficacy on MKN45 and SGC-7901 cells. These results imply that VP16-LDH is a potential antitumor drug for a broad range of gastric cancer therapeutic applications.Keywords: layered double hydroxides, etoposide, drug delivery, antitumor effect, sustained release

  19. Formation of a hydrophobic and corrosion resistant coating on magnesium alloy via a one-step hydrothermal method.

    Science.gov (United States)

    Zheng, Tianxu; Hu, Yaobo; Zhang, Yuxin; Pan, Fusheng

    2017-11-01

    A hydrophobic coating was fabricated on the surface of magnesium alloy using a simple one-step hydrothermal method with the use of environmentally friendly agent. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle test were used to characterize the surfaces. Corrosion behavior in a 3.5wt.% NaCl solution was evaluated using OCP time curves test, potentiodynamic polarization test and EIS analysis. The findings show that the substrate is covered by the coating of magnesium hydroxide and magnesium stearate, reaching a contact angle of around 146°. Corrosion behavior show huge improvement, the progress with increase of treatment time could be related to the increased growth rate of coating. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. How the dispersion of magnesium oxide nanoparticles effects on the viscosity of water-ethylene glycol mixture: Experimental evaluation and correlation development

    Science.gov (United States)

    Afrand, Masoud; Abedini, Ehsan; Teimouri, Hamid

    2017-03-01

    In this paper, the effect of dispersion of magnesium oxide nanoparticles on viscosity of a mixture of water and ethylene glycol (50-50% vol.) was examined experimentally. Experiments were performed for various nanofluid samples at different temperatures and shear rates. Measurements revealed that the nanofluid samples with volume fractions of less than 1.5% had Newtonian behavior, while the sample with volume fraction of 3% showed non-Newtonian behavior. Results showed that the viscosity of nanofluids enhanced with increasing nanoparticles volume fraction and decreasing temperature. Results of sensitivity analysis revealed that the viscosity sensitivity of nanofluid samples to temperature at higher volume fractions is more than that of at lower volume fractions. Finally, because of the inability of the existing model to predict the viscosity of MgO/EG-water nanofluid, an experimental correlation has been proposed for predicting the viscosity of the nanofluid.

  1. Precipitation of iron (III) using magnesium oxide in fluidized bed; Precipitacion de hierro (III) utilizando oxido de magnesio en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Esteban-Bocardo, P. A.; Ferreira-Rocha, S. D.

    2006-07-01

    A process for iron (III) removal by hydroxide precipitation from and acid synthetic inorganic effluent using magnesium oxide as an alternative precipitant agent in a fluidized bed was developed. An acid synthetic inorganic effluent containing 100 and 200 mg/l of ferric ions (pH=1.0) was continuously fed up to the acrylic column (30 cm high and 2 cm diameter) during 180 minutes. Magnesium oxide pulp (3% v/v) was injected at the beginning of the experiment in order to allow the iron hydroxides precipitation. The concentration and pH profiles agreed in their curves, while the pH profile rose,the concentration profile decreased and a high percentage of iron removal (higher to 99%) was reached. Extremely low iron concentrations have been reached, thus permitting to attend to the environmental standard of 10.0 mg/l for discharge of effluent containing ferric ions established by the law DN 10/86 of COPAM (Conselho de Politica Ambiental do Estado de Minas Gerais-Brazil). (Author)

  2. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    "Properties of Magnesium Composites for Material Scientists, Engineers and Selectors is the first book-length reference to provide an insight into current and future magnesium-based materials in terms...

  3. Preliminary studies of consolidation of wall paintings: synthesis and characterisation of nanolime

    Directory of Open Access Journals (Sweden)

    Penka I. Girginova

    2016-01-01

    Full Text Available In this publication, we report the synthesis and characterization of calcium and magnesium hydroxides nanoparticles for consolidation of mural paintings. Some preliminary results are discussed. This research is the initial part of our ongoing project which aims to develop new synthetic strategies towards novel and innovative materials for preservation and restoration of old renders.

  4. Corrosion and hydrogen permeation of A216 Grade WCA steel in hydrothermal magnesium-containing brines

    International Nuclear Information System (INIS)

    Haberman, J.H.; Frydrych, D.J.; Westerman, R.E.

    1988-03-01

    Corrosion rates determined at 1 month in 150/degree/C brine increased with magnesium concentration. The structure of the corrosion product, as determined by x-ray diffraction, depended upon the magnesium concentration. In brines with less than 10,000 ppM magnesium, the primary corrosion product had a spinel structure characteristic of magnetite or magnesioferrite. In brines containing magnesium concentrations greater than 20,000 ppM, the primary corrosion product had the amakinite structure characteristic of a complex iron-magnesium hydroxide. The high corrosion rates observed in brines containing high magnesium concentrations suggest that the corrosion products having the amakinite structure is less protective than corrosion products having the spinel structure. Corrosion rates in high-magnesium (inclusion) brine determined over a 6-month test duration were essentially constant. Hydrogen permeation rates observed in exposing mild steel to high-Mg/sup 2/plus// brine at 150/degree/C could be potentially damaging to a mild steel waste package container. The rate of hydrogen permeation was proportional to the brine flow rate in the autoclave. Thiourea additions to the brine increased the hydrogen permeation rate; sulfate and bromide ion additions did not. The maximum gaseous hydrogen pressure attainable is not known (based on 3Fe /plus/ 4H 2 O /plus/ Fe(sub 3)O /plus/ 4H 2 , would be /approximately/900 atmospheres), and the dependence of permeation rate on temperature is not known. 8 refs., 13 figs., 3 tabs

  5. Radioactive Air Emissions Notice of Construction for the Magnesium Hydroxide Precipitation Process at the Plutonium Finishing Plant (PFP)

    International Nuclear Information System (INIS)

    JANSKY, M.T.

    1999-01-01

    The following description and any attachments and references are provided to the Washington State Department of Health (WDOH), Division of Radiation Protection, Air Emissions and Defense Waste (WAC) 246-247, Radiation Protection-Air Emissions. The WAC 246-247-060, ''Applications, registration, and licensing'', states ''This section describes the information requirements for approval to construct, modify, and operate an emission unit. Any NOC requires the submittal of information listed in Appendix A.'' Appendix A (WAC 246-247-1 10) lists the requirements that must be addressed. Additionally, the following description, attachments and references are provided to the US Environmental Protection Agency (EPA) as an NOC, in accordance with Title 40, Code of Federal Regulations (CFR), Part 61, ''National Emission Standards for Hazardous Air Pollutants.'' The information required for submittal to the EPA is specified in 40 CFR 61.07. The potential emissions from this activity are estimated to provide greater than 0.1 millirem per year total effective dose equivalent (TEDE) to the hypothetical offsite maximally exposed individual (MEI), and commencement is needed within a short time. Therefore, this application also is intended to provide notification of the anticipated date of initial startup in accordance with the requirement listed in 40 CFR 61.09(a)(1), and it is requested that approval of this application also will constitute EPA acceptance of this initial startup notification. Written notification of the actual date of initial startup, in accordance with the requirement listed in 40 CFR 61.09(a)(2) will be provided at a later date. This NOC covers the activities associated with the Construction and operation activities involving the magnesium hydroxide precipitation process of plutonium solutions within the Plutonium Finishing Plant (PFP)

  6. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    International Nuclear Information System (INIS)

    Wang Ji; Wei Min; Rao Guoying; Evans, D.G.; Duan Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation

  7. Structure and thermal decomposition of sulfated β-cyclodextrin intercalated in a layered double hydroxide

    Science.gov (United States)

    Wang, Ji; Wei, Min; Rao, Guoying; Evans, David G.; Duan, Xue

    2004-01-01

    The sodium salt of hexasulfated β-cyclodextrin has been synthesized and intercalated into a magnesium-aluminum layered double hydroxide by ion exchange. The structure, composition and thermal decomposition behavior of the intercalated material have been studied by variable temperature X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), inductively coupled plasma emission spectroscopy (ICP), and thermal analysis (TG-DTA) and a model for the structure has been proposed. The thermal stability of the intercalated sulfated β-cyclodextrin is significantly enhanced compared with the pure form before intercalation.

  8. Self-assembly of gas-phase synthesized magnesium nanoparticles on room temperature substrates

    International Nuclear Information System (INIS)

    Venturi, F; Calizzi, M; Pasquini, L; Bals, S; Perkisas, T

    2015-01-01

    Magnesium nanoparticles (NPs) with initial size in the 10–50 nm range were synthesized by inert gas condensation under helium flow and deposited on room temperature substrates. The morphology and crystal structure of the NPs ensemble were investigated as a function of the deposition time by complementary electron microscopy techniques, including high resolution imaging and chemical mapping. With increasing amount of material, strong coarsening phenomena were observed at room temperature: small NPs disappeared while large faceted NPs developed, leading to a 5-fold increase of the average NPs size within a few minutes. The extent of coarsening and the final morphology depended also on the nature of the substrate. Furthermore, large single-crystal NPs were seen to arise from the self-organization of primary NPs units, providing a mechanism for crystal growth. The dynamics of the self-assembly process involves the basic steps of NPs sticking, diffusion on substrate, coordinated rotation and attachment/coalescence. Key features are the surface energy anisotropy, reflected by the faceted shape of the NPs, and the low melting point of the material. The observed phenomena have strong implications in relation to the synthesis and stability of nanostructures based on Mg or other elements with similar features. (paper)

  9. Aluminum Hydroxide

    Science.gov (United States)

    Aluminum hydroxide is used for the relief of heartburn, sour stomach, and peptic ulcer pain and to ... Aluminum hydroxide comes as a capsule, a tablet, and an oral liquid and suspension. The dose and ...

  10. Novel low temperature synthesis of spinel nano-magnesium chromites from secondary resources

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, S.M., E-mail: selsheikh2001@gmail.com [Nanostructured Materials Laboratory, Advanced Material Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt); Rabbah, M., E-mail: mahmoud.rabah@ymail.com [Electrochemical and Chemical Treatment Laboratory, Minerals Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt)

    2013-09-20

    Graphical abstract: FE-SEM micrograph and TEM image of magnesium chromite sample heated at 500 °C. - Highlights: • No study has been reported to prepare spinel magnesium chromite form waste resources. • Novel low synthesis temperature of magnesium chromite. • Selective removal of Ca ions from industrial waste tannery solution is rarely reported. • The method applied is simple and safe. - Abstract: A novel low temperature method for synthesis of nano-crystalline magnesium chromites from the tannery waste solution was investigated. Magnesium and chromium hydroxides gel was co-precipitated at pH 8.5 using ammonia solution. MgCr{sub 2}O{sub 4} was obtained by heating the gel formed at different temperatures 300–500 °C for to 8 h. FT-IR, TG-DTG-DTA, FE-SEM and TEM were used to investigate the produced materials. XRD patterns of the primary oxides revealed the formation of amorphous oxide phase by heating at 300 °C. Heating at 400 °C produces nano-crystallite magnesium chromites partly having the structure MgCrO{sub 4} and mainly MgCr{sub 2}O{sub 4} and traces of Cr{sub 2}O{sub 3}{sup +} 500 °C MgCrO{sub 4} mostly decomposed into MgCr{sub 2}O{sub 4} structure{sub .} After 8 h of heating at 500 °C, Cr{sub 2}O{sub 3} completely disappeared. A high surface area about 42.6 m{sup 2}/g and mesoporous structure was obtained for the produced sample at 500 °C for 8 h. A thermodynamic model has been suggested to explain the findings.

  11. Novel environmentally friendly synthesis of superparamagnetic magnetite nanoparticles using mechanochemical effect

    International Nuclear Information System (INIS)

    Iwasaki, Tomohiro; Kosaka, Kazunori; Watano, Satoru; Yanagida, Takeshi; Kawai, Tomoji

    2010-01-01

    A novel method for synthesizing superparamagnetic magnetite nanoparticles in water system via coprecipitation under an environmentally friendly condition has been developed. In this method, an almost neutral suspension containing ferrous hydroxide and goethite is used as the starting suspension and subjected to a ball-milling treatment. The product was characterized by transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy, dynamic light scattering, superconducting quantum interference device magnetometry, and Moessbauer spectroscopy. The mechanochemical effect generated by the ball-milling treatment promoted the reaction between ferrous hydroxide and goethite even at room temperature, resulting in the formation of homogeneous magnetite nanoparticles. Simultaneously, it also contributed to crystallize the formed magnetite nanoparticles while inhibiting the particle growth. This resulted in the formation of ultrafine magnetite nanoparticles of about 10 nm having a single crystal structure. This method could provide ferromagnetic magnetite nanoparticles with superparamagnetism under the moderate condition without neither heating nor any additives such as surfactant and organic solvent.

  12. Optical investigations on indium oxide nano-particles prepared through precipitation method

    International Nuclear Information System (INIS)

    Seetha, M.; Bharathi, S.; Dhayal Raj, A.; Mangalaraj, D.; Nataraj, D.

    2009-01-01

    Visible light emitting indium oxide nanoparticles were synthesized by precipitation method. Sodium hydroxide dissolved in ethanol was used as a precipitating agent to obtain indium hydroxide precipitates. Precipitates, thus formed were calcined at 600 deg. C for 1 h to obtain indium oxide nanoparticles. The structure of the particles as determined from the X-Ray diffraction pattern was found to be body centered cubic. The phase transformation of the prepared nanoparticles was analyzed using thermogravimetry. Surface morphology of the prepared nanoparticles was analyzed using high resolution-scanning electron microscopy and transmission electron microscopy. The results of the analysis show cube-like aggregates of size around 50 nm. It was found that the nanoparticles have a strong emission at 427 nm and a weak emission at 530 nm. These emissions were due to the presence of singly ionized oxygen vacancies and the nature of the defect was confirmed through Electron paramagnetic resonance analysis.

  13. Oxide films on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Shih, T.-S.; Liu, J.-B.; Wei, P.-S.

    2007-01-01

    Magnesium alloys are very active and readily ignite during heating and melting. In this study, we discuss the combustion of magnesium and magnesium alloys and propose prospective anti-ignition mechanisms for magnesium alloys during the heating process. When magnesium and magnesium alloys were heated in air, the sample surfaces produced layers of thermally formed oxides. These thermally formed oxides played an important role in affecting the combustion of the magnesium and magnesium alloys. When magnesium was heated in air, brucite that formed in the early stage was then transformed into periclase by dehydroxylation. By extending the heating time, more periclase formed and increased in thickness which was associated with microcracks formation. When magnesium was heated in a protective atmosphere (SF 6 ), a film of MgF 2 formed at the interface between the oxide layer and the Mg substrate. This film generated an anti-ignition behavior which protected the substrate from oxidation. When solution-treated AZ80 alloy was heated, spinel developed at the interface between the thermally formed oxide layer and the Mg substrate, improving the anti-ignition properties of the substrate. In addition, we also explain the effects of beryllium in an AZB91 alloy on the ignition-proofing behavior

  14. Research on the removal of radium from uranium effluent by air-aeration hydrated manganese hydroxide adsorption

    International Nuclear Information System (INIS)

    Zhang Jianguo; Chen Shaoqing; Qi Jing

    2002-01-01

    In the acidic leaching uranium process, pyrolusite or manganese oxide (MnO 2 ) powder is often used as an oxidizer. In the processed effluent, manganese ion present as a contaminant in addition to U, Ra, Th, As, Zn, Cu, F, SO 4 2- , etc. Manganese ion content is about 100∼200 mg/1 in effluent. In this case, a new process technique can be developed to treat the effluent using the Mn 2+ present in the effluent. The approach is as follows: The effluent is neutralized by lime milk to pH about 11. As a result, most contaminants are precipitated to meet the uranium effluent discharge standards (U, Th, Mn, SO 4 2- etc.), but radium is still present in the effluent. In this process, manganese ion forms manganese hydroxide Mn(OH) 2 . The manganese hydroxide is easily to oxide to form MnO(OH) 2 by air aeration. This hydrated manganese hydroxide complex can then be used to adsorb radium in effluent. The experiments show: (1) Effluent pH, manganese concentration in effluent, and aeration strength and time etc. influence the radium removal efficiency. Under the test conditions, when manganese in effluent is between 100∼300 mg/l, and pH is over 10.5, radium can be reduced to lower 1.11 Bq/1 in the processed effluent. Higher contents of impurity elements such as aluminum, silicon and magnesium in the effluent affect the removal efficiency; (2) Under the experimental conditions, the lime precipitation air-aeration formed hydrated manganese hydroxide complex sludge is stable. There is no obvious release of radium from the adsorbed hydrated manganese hydroxide complex sludge; (3) The current experiments show that hydrated manganese hydroxide complex sludge has a very good re-adsorption ability for removal of radium from uranium effluent. Some experimental parameters have been measured. (author)

  15. Magnesium alloy and graphite wastes encapsulated in cementitious materials - Experimental approach

    International Nuclear Information System (INIS)

    Chartier, D.; Sanchez-Canet, J.; Muzeau, B.; Monguillon, C.; Stefan, L.

    2015-01-01

    Magnesium alloys (Mg-0.8%Zr and Mg-1.2%Mn) and graphite from spent nuclear fuel, that have been used in the former French gas cooled reactors, have been stored together in AREVA La Hague plant. The recovery and packaging of these wastes is currently studied and several solutions are under consideration. One of the developed solutions would be to mix these wastes in a grout composed of industrially available cement, e.g. OPC (Ordinary Portland Cement), OPC blended with blast furnace slag or aluminous cement. Within the alkaline pore solution of these matrixes, magnesium alloys are imperfectly protected by a layer of magnesium hydroxide (Mg(OH) 2 , Brucite) resulting in a slow process of corrosion releasing hydrogen. As the production of this gas must be considered for the storage safety, it is important to select a cement matrix capable of lowering the corrosion kinetics of magnesium alloys. This is especially true when magnesium alloys are conditioned together with graphite wastes. Indeed, galvanic coupling phenomena may increase early age corrosion of the mixed waste, as magnesium and graphite will be found in electrical contact in the same electrolyte. Many types of common cements have been tested. All of them have shown strong hydrogen production when magnesium alloys and graphite are conditioned together into such cement pastes. Corrosion patterns, observed and analyzed by SEM/EDS, at the metal-binder interfaces, reveal important corrosion products layers as well as bubbles and cracks in the binder. Attempts to reduce corrosion by lowering water to cement ratio have been performed. W/C ratios as low as 0.2 have been tested but galvanic corrosion is not significantly reduced at early age when compared to a common ratio of 0.4. Best results were obtained by the use of laboratory synthesized tricalcium silicate (C 3 S) with an ordinary W/C ratio of 0.4 and also with white Portland clinker ground without additives such as gypsum and grinding agent. (authors)

  16. Investigation of Combination Effect of Magnesium Oxide and Iron Oxide Nanoparticles on the Growth And Morphology of the Bacteria Staphylococcus Aureus and Escherichia Coli in Juice

    Directory of Open Access Journals (Sweden)

    mahdi torabi zarchi

    2017-02-01

    Full Text Available Introduction: Nanoparticles (NPs are one of the antibacterial substances, among them nanoparticles type MgO and Fe2O3 are less toxic to mammalian cells. So, the aim of this study was investigation of combination effects of iron oxide and magnesium oxide nanoparticles on the growth of Staphylococcus aureus and Escherichia coli (E.coli to achieve the optimum combination of nanoparticles inhibit the growth of Staphylococcus aureus and Escherichia coli in food (juice. Methods: In this experimental research, the effect of MgO and Fe2O3 Nanoparticles compound on Staphylococcus aureus and Escherichia coli bacteria in liquid environment was investigated, and then their effect was investigated separately in juices of carrot, pomegranate and apple via colony count approach. Also, scanning electron microscopy was used to characterize the morphological changes of Staphylococcus aureus and Escherichia coli after antimicrobial treatments. The results of the research were analyzed using one way ANNOVA. Results: The results of the research indicated that in liquid medium, these nanoparticles lead to reduce the growth of both bacteria. compound of 1.5Mg+0.5Fe2O3 was introduced as the most appropriate antibacterial compounds; Staphylococcus aureus sensitivity to Escherichia coli was higher against nanoparticles. The findings of research about the juices revealed that the combined effect of nanoparticles reduced the growth of both bacteria. the combined effect of Fe2o3 and MgO nanoparticles treatments distorted and damaged the cell membrane, resulting in a leakage of intracellular contents and eventually the death of bacterial cells. Conclusion: Nanoparticles in the allowed concentrations have significant effect on Staphylococcus aureus and Escherichia coli bacteria.

  17. Polyethylene Nanocomposites for the Next Generation of Ultralow-Transmission-Loss HVDC Cables: Insulation Containing Moisture-Resistant MgO Nanoparticles.

    Science.gov (United States)

    Pourrahimi, Amir Masoud; Pallon, Love K H; Liu, Dongming; Hoang, Tuan Anh; Gubanski, Stanislaw; Hedenqvist, Mikael S; Olsson, Richard T; Gedde, Ulf W

    2016-06-15

    The use of MgO nanoparticles in polyethylene for cable insulation has attracted considerable interest, although in humid media the surface regions of the nanoparticles undergo a conversion to a hydroxide phase. A facile method to obtain MgO nanoparticles with a large surface area and remarkable inertness to humidity is presented. The method involves (a) low temperature (400 °C) thermal decomposition of Mg(OH)2, (b) a silicone oxide coating to conceal the nanoparticles and prevent interparticle sintering upon exposure to high temperatures, and (c) heat treatment at 1000 °C. The formation of the hydroxide phase on these silicone oxide-coated MgO nanoparticles after extended exposure to humid air was assessed by thermogravimetry, infrared spectroscopy, and X-ray diffraction. The nanoparticles showed essentially no sign of any hydroxide phase compared to particles prepared by the conventional single-step thermal decomposition of Mg(OH)2. The moisture-resistant MgO nanoparticles showed improved dispersion and interfacial adhesion in the LDPE matrix with smaller nanosized particle clusters compared with conventionally prepared MgO. The addition of 1 wt % moisture-resistant MgO nanoparticles was sufficient to decrease the conductivity of polyethylene 30 times. The reduction in conductivity is discussed in terms of defect concentration on the surface of the moisture-resistant MgO nanoparticles at the polymer/nanoparticle interface.

  18. Kinetics of sodium borohydride direct oxidation and oxygen reduction in sodium hydroxide electrolyte

    International Nuclear Information System (INIS)

    Chatenet, Marian; Micoud, Fabrice; Roche, Ivan; Chainet, Eric

    2006-01-01

    The direct oxidation of sodium borohydride in concentrated sodium hydroxide medium has been studied by cyclic and linear voltammetry, chronoamperometry and chronopotentiometry for silver and gold electrocatalysts, either bulk and polycrystalline or nanodispersed over high area carbon blacks. Gold and silver yield rather complete utilisation of the reducer: around 7.5 electrons are delivered on these materials, versus 4 at the most for platinum as a result of the BH 4 - non-negligible hydrolysis taking place on this latter material. The kinetic parameters for the direct borohydride oxidation are better for gold than for silver. A strong influence of the ratio of sodium hydroxide versus sodium borohydride is found: whereas the theoretical stoichiometry does forecast that eight hydroxide ions are needed for each borohydride ion, our experimental results prove that a larger excess hydroxide ion is necessary in quasi-steady state conditions. When the above-mentioned ratio is unity (1 M NaOH and 1 M NaBH 4 ), the tetrahydroborate ions direct oxidation is limited by the hydroxide concentration, and their hydrolysis is no longer negligible. The hydrolysis products are probably BH 3 OH - ions, for which gold displays a rather good oxidation activity. Additionally, silver, which is a weak BH 4 - oxidation electrocatalyst, exhibits the best activity of all the studied materials towards the BH 3 OH - direct oxidation. Finally, carbon-supported gold nanoparticles seem promising as anode material to be used in direct borohydride fuel cells

  19. Formation of Lanthanum Hydroxide nano structures: Effect of NaOH and KOH solvents

    International Nuclear Information System (INIS)

    Mazloumi, M.; Zanganeh, S.; Kajbafvala, A.; Shayegh, M. R.; Sadrnezhaad, S. K.

    2008-01-01

    Lanthanum hydroxide (La(OH) 3 ) nano structures, including elliptical nanoparticles, octahedral rods and irregular nanoparticles were prepared chemically in NaOH and KOH solutions with 10 M concentration. The obtained powders were characterized with x-ray diffraction, scanning electron microscopy, transmission electron microscopy and differential thermal analysis. Crystallinities, morphologies and thermal behavior of the obtained nano structure powders were investigated under the influence of above mentioned solvents. The effect of chemical's temperature was also determined in one of the solvents (i.e. NaOH). The formation of growth in nano structure mechanism under the influence of alkali solutions (i.e., KOH and NaOH) have been discussed considerably in this paper

  20. Preparation of poly(ethylene terephthalate/layered double hydroxide nanocomposites by in-situ polymerization and their thermal property

    Directory of Open Access Journals (Sweden)

    Q. Jiao

    2012-06-01

    Full Text Available Terephthalate (TA intercalated layered double hydroxides (LDHs were synthesized using hydroxides as raw materials, and poly(ethylene terephthalate (PET/LDH nanocomposites with different contents of TA intercalated LDHs were prepared by in-situ polymerization. The structure, morphology and thermal property of PET/LDH nanocomposites were investigated. The TA intercalated LDHs were partially exfoliated and well dispersed in PET matrix. The PET/LDH nanocomposites exhibit enhanced thermal stability relative to pure PET, confirmed by the thermogravimetric analysis results. The results of differential scanning calorimetry suggest that LDH nanoparticles could effectively promote the nucleation and crystallization of PET.

  1. Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate.

    Science.gov (United States)

    Oumar, Dia; Patrick, Drogui; Gerardo, Buelna; Rino, Dubé; Ihsen, Ben Salah

    2016-10-01

    In this research paper, a combination of biofiltration (BF) and electrocoagulation (EC) processes was used for the treatment of sanitary landfill leachate. Landfill leachate is often characterized by the presence of refractory organic compounds (BOD/COD < 0.13). BF process was used as secondary treatment to remove effectively ammonia nitrogen (N-NH4 removal of 94%), BOD (94% removed), turbidity (95% removed) and phosphorus (more than 98% removed). Subsequently, EC process using magnesium-based anode was used as tertiary treatment. The best performances of COD and color removal from landfill leachate were obtained by applying a current density of 10 mA/cm(2) through 30 min of treatment. The COD removal reached 53%, whereas 85% of color removal was recorded. It has been proved that the alkalinity had a negative effect on COD removal during EC treatment. COD removal efficiencies of 52%, 41% and 27% were recorded in the presence of 1.0, 2.0 and 3.0 g/L of sodium bicarbonate (NaHCO3), respectively. Hydroxide ions produced at the cathode electrode reacted with the bicarbonate ions to form carbonates. The presence of bicarbonates in solution hampered the increase in pH, so that the precipitation of magnesium hydroxides could not take place to effectively remove organic pollutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Individual and combined effects of chloride, sulfate, and magnesium ions on hydrated Portland-cement paste

    International Nuclear Information System (INIS)

    Poole, T.S.; Wakeley, L.D.; Young, C.L.

    1994-03-01

    Ground water with a high concentration of magnesium ion is known to cause deterioration to portland cement concretes. A proposed mechanism for this deterioration process published previously involves an approximate 1:1 replacement of Ca ions by Mg ions in the crystalline phases of hydrated cement. The current study was undertaken to determine which ions, among magnesium, chloride, and sulfate, cause deterioration; whether their deleterious action is individual or interdependent; and to relate this mechanism of deterioration to the outlook for a 100-yr service life of concretes used in mass placements at the Waste Isolation Pilot Plant. Loss of Ca ion by cement pastes was found to be strongly related to the concentration of Mg ion in simulated ground-water solutions in which the paste samples were aged. This was true of both salt- containing and conventional cement pastes. No other ion in the solutions exerted a strong effect on Ca loss. Ca ion left first from calcium hydroxide in the pastes, depleting all calcium hydroxide by 60 days. Some calcium silicate hydrate remained even after 90 days in the solutions with the highest concentration of Mg ion, while the paste samples deteriorated noticeably. The results indicated a mechanism that involves dissolution of Ca phases and transport of Ca ions to the surface of the sample, followed by formation of Mg-bearing phases at this reaction surface rather than directly by substitution within the microstructure of hydrated cement. Given that calcium hydroxide and calcium silicate hydrate are the principal strength-giving phases of hydrated cement, this mechanism indicates the likelihood of significant loss of integrity of a concrete exposed to Mg-bearing ground water at the WIPP. The rate of deterioration ultimately will depend on Mg-ion concentration, the microstructure materials of the concrete exposed to that groundwater, and the availability of brine

  3. Calcium hydroxide poisoning

    Science.gov (United States)

    Hydrate - calcium; Lime milk; Slaked lime ... Calcium hydroxide ... These products contain calcium hydroxide: Cement Limewater Many industrial solvents and cleaners (hundreds to thousands of construction products, flooring strippers, brick cleaners, cement ...

  4. Layered double hydroxide nanoparticles promote self-renewal of mouse embryonic stem cells through the PI3K signaling pathway

    Science.gov (United States)

    Wu, Youjun; Zhu, Rongrong; Zhou, Yang; Zhang, Jun; Wang, Wenrui; Sun, Xiaoyu; Wu, Xianzheng; Cheng, Liming; Zhang, Jing; Wang, Shilong

    2015-06-01

    Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles have shown promising applications in directing the stem cell fate. Herein, we investigated the cellular effects of layered double hydroxide nanoparticles (LDH NPs) on mouse ESCs (mESCs) and the associated molecular mechanisms. Mg-Al-LDH NPs with an average diameter of ~100 nm were prepared by hydrothermal methods. To determine the influences of LDH NPs on mESCs, cellular cytotoxicity, self-renewal, differentiation potential, and the possible signaling pathways were explored. Evaluation of cell viability, lactate dehydrogenase release, ROS generation and apoptosis demonstrated the low cytotoxicity of LDH NPs. The alkaline phosphatase activity and the expression of pluripotency genes in mESCs were examined, which indicated that exposure to LDH NPs could support self-renewal and inhibit spontaneous differentiation of mESCs under feeder-free culture conditions. The self-renewal promotion was further proved to be independent of the leukemia inhibitory factor (LIF). Furthermore, cells treated with LDH NPs maintained the potential to differentiate into all three germ layers both in vitro and in vivo through formation of embryoid bodies and teratomas. In addition, we observed that LDH NPs initiated the activation of the PI3K/Akt pathway, while treatment with the PI3K inhibitor LY294002 could block the effects of LDH NPs on mESCs. The results confirmed that the promotion of self-renewal by LDH NPs was associated with activation of the PI3K/Akt signaling pathway. Altogether, our studies identified a new role of LDH NPs in maintaining self-renewal of mouse ES cells which could potentially be applied in stem cell research.Embryonic stem cells (ESCs) hold great potential for regenerative medicine due to their two unique characteristics: self-renewal and pluripotency. Several groups of nanoparticles

  5. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourdanesh, Fereydoun [Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 8916733754 (Iran, Islamic Republic of); Jebali, Ali, E-mail: alijebal2011@gmail.com [Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hekmatimoghaddam, Seyedhossein [Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd (Iran, Islamic Republic of); Allaveisie, Azra [Department of Genetics, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd (Iran, Islamic Republic of)

    2014-07-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. - Highlights: • The effect of various nanoparticles like as Ca{sub 3}(PO{sub 4}){sub 2}, hydroxyapatite, and MgO was studied. • HDPE/TCP/HA/MgO nanocomposite was biocompatible. • The effect of nanoparticles showed high antibacterial property.

  6. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles

    International Nuclear Information System (INIS)

    Pourdanesh, Fereydoun; Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Allaveisie, Azra

    2014-01-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca 3 (PO 4 ) 2 ) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. - Highlights: • The effect of various nanoparticles like as Ca 3 (PO 4 ) 2 , hydroxyapatite, and MgO was studied. • HDPE/TCP/HA/MgO nanocomposite was biocompatible. • The effect of nanoparticles showed high antibacterial property

  7. Sodium hydroxide poisoning

    Science.gov (United States)

    Sodium hydroxide is a very strong chemical. It is also known as lye and caustic soda. This ... poisoning from touching, breathing in (inhaling), or swallowing sodium hydroxide. This article is for information only. Do ...

  8. Enhanced Wound Healing Using Topically Administered Nanoparticle Encapsulated siRNA

    Science.gov (United States)

    2013-11-01

    as guar or xanthan gum , inorganic gelatinizing agents, such as aluminum hydroxide or bentonites (termed thixotropic gel-formers), polyacrylic acid...agent for preparing a suitable base, or cellulose derivatives, such as guar or xanthan gum , inorganic gelatinizing agents, such as aluminum hydroxide...coconut oil; ii) preparation of a fine powder version of the coconut oil plus nanoparticles that melts on contact with living tissue; iii

  9. Magnesium Gluconate

    Science.gov (United States)

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  10. Multifunctional gold coated rare-earth hydroxide fluoride nanotubes for simultaneous wastewater purification and quantitative pollutant determination

    International Nuclear Information System (INIS)

    Zhang, Da-Quan; Sun, Tian-Ying; Yu, Xue-Feng; Jia, Yue; Chen, Ming; Wang, Jia-Hong; Huang, Hao; Chu, Paul K.

    2014-01-01

    Highlights: • The morphology and properties of Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) were investigated. • YHF:Ce NTs were conjugated with Au nanoparticles to produce Au-YHF:Ce nanocomposites. • Au-YHF:Ce NTs showed excellent capability and efficiency in removing Congo red from solutions. • Au-YHF:Ce NTs were utilized to determine the concentration of Congo red based on SERS. - Abstract: Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) with large surface area are synthesized and conjugated with Au nanoparticles (NPs) to produce Au-YHF:Ce nanocomposites. The Au-YHF:Ce NTs have a hollow structure, rough surface, polymer coating, and good surface-enhanced Raman spectroscopy (SERS) properties. They are applied to wastewater treatment to remove Congo red as a typical pollutant. The materials not only remove pollutants rapidly from the wastewater, but also detect trace amounts of the pollutants quantitatively. The multifunctional Au-YHF:Ce NTs have commercial potential as nano-absorbents and nano-detectors in water treatment and environmental monitoring

  11. Multifunctional gold coated rare-earth hydroxide fluoride nanotubes for simultaneous wastewater purification and quantitative pollutant determination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Da-Quan; Sun, Tian-Ying [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Yu, Xue-Feng, E-mail: yxf@whu.edu.cn [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Jia, Yue; Chen, Ming; Wang, Jia-Hong [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Huang, Hao [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K., E-mail: paul.chu@cityu.edu.hk [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

    2014-04-01

    Highlights: • The morphology and properties of Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) were investigated. • YHF:Ce NTs were conjugated with Au nanoparticles to produce Au-YHF:Ce nanocomposites. • Au-YHF:Ce NTs showed excellent capability and efficiency in removing Congo red from solutions. • Au-YHF:Ce NTs were utilized to determine the concentration of Congo red based on SERS. - Abstract: Ce-doped yttrium hydroxide fluoride nanotubes (YHF:Ce NTs) with large surface area are synthesized and conjugated with Au nanoparticles (NPs) to produce Au-YHF:Ce nanocomposites. The Au-YHF:Ce NTs have a hollow structure, rough surface, polymer coating, and good surface-enhanced Raman spectroscopy (SERS) properties. They are applied to wastewater treatment to remove Congo red as a typical pollutant. The materials not only remove pollutants rapidly from the wastewater, but also detect trace amounts of the pollutants quantitatively. The multifunctional Au-YHF:Ce NTs have commercial potential as nano-absorbents and nano-detectors in water treatment and environmental monitoring.

  12. Corrosion resistance of biomimetic calcium phosphate coatings on magnesium due to varying pretreatment time

    Energy Technology Data Exchange (ETDEWEB)

    Waterman, J., E-mail: jay.waterman@pg.canterbury.ac.nz [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Pietak, A. [Department of Anatomy and Structural Biology, University of Otago, Dunedin (New Zealand); Birbilis, N. [Department of Materials Engineering, Monash University (Australia); Woodfield, T. [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand); Department of Orthopaedic Surgery, University of Otago, Christchurch (New Zealand); Dias, G. [Department of Anatomy and Structural Biology, University of Otago, Dunedin (New Zealand); Staiger, M.P., E-mail: mark.staiger@canterbury.ac.nz [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand)

    2011-12-15

    Calcium phosphate coatings were prepared on magnesium substrates via a biomimetic coating process. The effects of a magnesium hydroxide pretreatment on the formation and the ultimate corrosion protection of the coatings were studied. The pretreatment layer was found to affect the amount of defects present in the coatings. Corrosion resistance of the coatings was studied in vitro using two simulated body fluids, 0.8% NaCl and Hanks solution. In NaCl, the resistance to corrosion of all samples decreases with time as corrosion proceeded through cracks and other defects in the coatings. Samples with no pretreatment displayed the highest corrosion resistance as these samples had the fewest defects in the coating. However, in Hanks solution, corrosion resistance increased with time due to additional nucleation of calcium phosphate from the fluid on to the substrate. In this solution, additional pretreatment time was beneficial to the overall corrosion resistance.

  13. Synthesis of manganese spinel nanoparticles at room temperature by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Giovannelli, F., E-mail: fabien.giovannelli@univ-tours.fr [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Autret-Lambert, C.; Mathieu, C.; Chartier, T.; Delorme, F. [GREMAN, UMR 7347 CNRS-CEA, Universite Francois Rabelais, 15 rue de la chocolaterie, 41000 BLOIS (France); Seron, A [BRGM, 3 Avenue Claude Guillemin, BP 36009, 45060 ORLEANS Cedex 2 (France)

    2012-08-15

    This paper is focused on a new route to synthesize Mn{sub 3}O{sub 4} nanoparticles by alkalisation by sodium hydroxide on a manganeous solution at room temperature. The precipitates obtained at different pH values have been characterized by XRD and TEM. Since the first addition of sodium hydroxide, a white Mn(OH){sub 2} precipitate appears. At pH=7, {gamma}-MnOOH phase is predominant with needle like shaped particles. At pH=10, hausmanite nanoparticles, which exhibits well defined cubic shape in the range 50-120 nm are obtained. This new precipitation route is a fast and easy environmentally friendly process to obtain well crystallized hausmanite nanoparticles. - Graphical abstract: TEM image showing Mn{sub 3}O{sub 4} particles after a precipitation at pH=10. Highlights: Black-Right-Pointing-Pointer A new route to synthesize Mn{sub 3}O{sub 4} nanoparticles has been demonstrated. Black-Right-Pointing-Pointer Synthesis has been performed by precipitation at room temperature. Black-Right-Pointing-Pointer The size of the Mn{sub 3}O{sub 4} nanoparticles is between 50 and 120 nm.

  14. Chromium and yttrium-doped magnesium aluminum oxides prepared from layered double hydroxides

    Science.gov (United States)

    García-García, J. M.; Pérez-Bernal, M. E.; Ruano-Casero, R. J.; Rives, V.

    2007-12-01

    Layered double hydroxides with the hydrotalcite-like structures, containing Mg 2+ and Al 3+, doped with Cr 3+ and Y 3+, have been prepared by precipitation at constant pH. The weight percentages of Cr 3+ and Y 3+ were 1, 2, or 3%, and 0.5 or 1%, respectively. Single phases were obtained in all cases, whose crystallinity decreased as the content in Cr and Y was increased. The solids have been characterised by element chemical analysis, powder X-ray diffraction, thermal analyses (differential, thermogravimetric and programmed reduction), FT-IR and UV-vis spectroscopies; the specific surface areas have been determined from nitrogen adsorption isotherms at -196 °C. Upon calcination at 1200 °C for 5 h in air all solids display a mixed structure (spinel and rock salt for MgO); these solids have also been characterised by these techniques and their chromatic coordinates (CIE - L∗a∗b∗) have been determined. Their pink colour makes these solids suitable for being used as ceramic pigments.

  15. CO2 fixation using magnesium silicate minerals part 1: Process description and performance

    International Nuclear Information System (INIS)

    Fagerlund, Johan; Nduagu, Experience; Romão, Inês; Zevenhoven, Ron

    2012-01-01

    This paper describes a staged carbonation process for magnesium silicate mineral carbonation. This carbon dioxide capture and storage (CCS) alternative involves the production of magnesium hydroxide, followed by its carbonation in a pressurised fluidised bed (PFB) reactor. The goal is to utilise the heat of the carbonation reaction to drive the Mg(OH) 2 production step. The results show that Mg(OH) 2 can be produced successfully (up to 78% Mg extraction extent achieved so far) and efficiently from different serpentinite minerals from locations worldwide (Finland, Lithuania, Australia, Portugal…). From the extraction step, ammonium sulphate is recovered while iron oxides (from the mineral) are obtained as by-products. The carbonation step, while still being developed, resulted in >50%-wt conversion in 10 min (500 °C, 20 bar) for > 300 μm serpentinite-derived Mg(OH) 2 particles. Thus the reaction rate achieved so far is much faster than what is currently being considered fast in the field of mineral carbonation. -- Highlights: ► Magnesium silicate-based rock can sequester CO 2 as stable magnesium carbonate. ► Abundance of rock material offers a larger capacity than other CCS methods. ► Mg(OH) 2 production is followed by its carbonation in a pressurised fluidised bed. ► Carbonation reaches >50% in around 10 min for >0.3 mm particles. ► Mg(OH) 2 produced from different rock material show the same performance.

  16. Anti-microbial and skin wound dressing application of molecular iodine nanoparticles

    Science.gov (United States)

    Viswanathan, Kaliyaperumal; Bharathi Babu, Divya; Jayakumar, Gomathi; Dhinakar Raj, Gopal

    2017-10-01

    In this study, iodine nanoparticles were synthesized without use of any stabilizer by a new co-precipitation process using polyvinyl pyrolidone, calcium lactate, disodium hydrogen phosphate and iodine solution as precursor and the reaction was catalyzed by sodium hydroxide. Ten mg of the synthesized nanoparticles killed 95% of bacteria and inhibited 90% of bio film formation. Assays on membrane disintegration activities of the nanoparticles indicated that these nanoparticles destroyed the extracellular membrane of the bacteria. The wound healing application evaluated using mice model showed that it was hastened by iodine nanoparticles.

  17. Evaluation of a consolidation treatment in dolostones by mean of calcium hydroxide nanoparticles in high relative humidity conditions

    International Nuclear Information System (INIS)

    Gomez-Villalba, L. s.; Lopez-Arce, P.; Zornoza, A.; Alvares de Buergo, M.; Fort, R.

    2011-01-01

    In this article, the results of a treatment applied to dolomitic stones using an isopropyl colloidal solution based on calcium hydroxide nanoparticles with a concentration of 2.0g/l are presented. The consolidation process in the stone has been checked before and after 28 days of exposure to 75% relative humidity. Morphologic and structural studies of the consolidating product confirmed the carbonation process. X ray diffraction, electron microscopy (TEM and ESEM), and electron diffraction carried out on the consolidating product have confirmed the transformation of portlandite phase to calcium carbonate polymorph, calcite, aragonite and vaterite. Petrophysical tests performed on the stone before and after the application of the product have shown the improvement in the physical and hydrical properties due to the increase in the ultrasound velocity and density of the material, and a decrease in the capillarity coefficient and open porosity without significant changes in colour and brightness. The application of the consolidating product in the proposed experimental conditions is a natural method, compatible with the petrological characteristics of the substrate, without secondary damages on the stone, being an effective method to improve the durability of carbonate stones. (Author) 26 refs.

  18. High efficient photocatalytic activity of Zn-Al-Ti layered double hydroxides nanocomposite

    Directory of Open Access Journals (Sweden)

    Amor F.

    2018-01-01

    Full Text Available This work establishes a simple method for synthesising layered double hydroxides (LDHs powders with coprecipitation. The characteristics of the samples were investigated y X-ray diffraction (XRD, scanning electron microscopy (SEM and spectrophotometer UV–Vis (DRS. Non-uniform distribution was shown for LDHs samples by SEM. Photocatalytic efficiencies were tested using methylene blue (MB dye as a model contaminant under UV irradiation. In particular, Zn–Al-Ti LDH exhibited an excellent performance towards MB degradation compared with commercial TiO2 nanoparticles. Methylene blue removal percentage was reached at almost 100%, whereas commercial TiO2 reached a removal rate of only 66% under the same conditions within 20 min. The aim of the current work is to prepare Zn-Al-Ti layered double hydroxides nanocomposite and to evaluate their photocatalytic activity in the removal of methylene blue under UV irradiation.

  19. Preparation of Silica Nanoparticles and Its Beneficial Role in Cementitious Materials

    Directory of Open Access Journals (Sweden)

    S. Ahalawat

    2011-07-01

    Full Text Available Spherical silica nanoparticles (n‐SiO2 with controllable size have been synthesized using tetraethoxysilane as starting material and ethanol as solvent by sol‐gel method. Morphology and size of the particles was controlled through surfactants. Sorbitan monolaurate, sorbitain monopalmitate and sorbitain monostearate produced silica nanoparticles of varying sizes (80‐150 nm, indicating the effect of chain length of the surfactant. Increase in chain length of non‐ionic surfactant resulted in decreasing particle size of silica nanoparticles. Further, the size of silica particles was also controlled using NH3 as base catalyst. These silica nanoparticles were incorporated into cement paste and their role in accelerating the cementitious reactions was investigated. Addition of silica nanoparticles into cement paste improved the microstructure of the paste and calcium leaching is significantly reduced as n‐SiO2 reacts with calcium hydroxide and form additional calcium‐ silicate‐hydrate (C‐S‐H gel. It was found that calcium hydroxide content in silica nanoparticles incorporated cement paste reduced ~89% at 1 day and up to ~60% at 28 days of hydration process. Synthesized silica particles and cement paste samples were characterized using scanning electron microscopy (SEM, powder X‐ray diffraction (XRD, infrared spectroscopy (IR and thermogravimetric analysis (TGA.

  20. The Effect of Nano Loading and Ultrasonic Compounding of EVA/LDPE/Nano-magnesium Hydroxide on Mechanical Properties and Distribution of Nano Particles

    Science.gov (United States)

    Azman, I. A.; Salleh, R. M.; Alauddin, S. M.; Shueb, M. I.

    2018-05-01

    Blends of Ethylene Vinyl Acetate (EVA) and Low-Density Polyethylene (LDPE) are promising composite which have good mechanical properties to environmental stress cracking. However, they lack fire resistant properties, which limits it usage in wire and cable industry. In order to improve flame retardancy ability, a range of nano-magnesium hydroxide (nano-MH) loading which is from 0 phr to maximum of 20 phr with ultrasonic extrusion 0-100 kHz frequencies have been introduced. Ultrasonic extrusion was used to improve the distribution of nano-MH. It was found that, 10 phr of nano loading with 100 kHz ultrasonic assisted has greater tensile strength compared to the nanocomposite without ultrasonication. Further increase of nano MH loading, will decrease the tensile properties. Better elongation at break was observed at10 phr nano-MH with the frequency of 50 kHz. The sample of 20 phr of nanoMH assisted with 50 kHz ultrasonic exhibits good flexural properties while 10 phr of nano-MH without the ultrasonic assisted demonstrates good in izod impact properties. From the evaluation of mechanical properties studied, it was found that 10 phr of nano-MH has shown the best performance among all the samples tested for EVA/LDPE/nano-MH composites. Transmission Electron Microscopy (TEM) has been conducted on 10 phr sample with different frequencies in order to observe the distribution of nano-MH particles. The sample with 100 kHz frequency shows more uniform dispersion of nano-MH in EVA/LDPE composites. This investigation indicates that the ultrasonic technology can enhance the mechanical properties studied as well as the dispersion of nano particles in the composite.

  1. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

    Science.gov (United States)

    Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet

    2018-04-21

    Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

  2. Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina

    International Nuclear Information System (INIS)

    Thakur, Sanjay Kumar; Srivatsan, T.S.; Gupta, Manoj

    2007-01-01

    Carbon nanotubes reinforced magnesium based composites were prepared with diligence and care using the powder metallurgy route coupled with rapid microwave sintering. Nanometer-sized particles of alumina were used to hybridize the carbon nanotubes reinforcement in the magnesium matrix so as to establish the intrinsic influence of hybridization on mechanical behavior of the resultant composite material. The yield strength, tensile strength and strain-to-failure of the carbon nanotubes-magnesium composites were found to increase with the addition of nanometer-sized alumina particles to the composite matrix. Scanning electron microscopy observations of the fracture surfaces of the samples deformed and failed in uniaxial tension revealed the presence of cleavage-like features on the fracture surface indicative of the occurrence of locally brittle fracture mechanism in the composite microstructure

  3. 21 CFR 184.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Potassium hydroxide. 184.1631 Section 184.1631 Food... Specific Substances Affirmed as GRAS § 184.1631 Potassium hydroxide. (a) Potassium hydroxide (KOH, CAS Reg... pellets, flakes, sticks, lumps, and powders. Potassium hydroxide is obtained commercially from the...

  4. Use of MgO to Promote the Oxyethylation Reaction of Lauryl Alcohol

    Directory of Open Access Journals (Sweden)

    Pilarska Agnieszka

    2014-06-01

    Full Text Available Synthesis of magnesium hydroxide was performed by the precipitation method with the use of magnesium sulfate and sodium hydroxide. The infiuence of temperature and ratio of reagents was studied. Magnesium hydroxides, and the magnesium oxides obtained from them by thermal decomposition, were analyzed to determine their bulk density, polydispersity and particle size. The magnesium oxide with the largest surface area was tested as a catalyst in the oxyethylation of lauryl alcohol, and shown to be selective but poorly reactive in comparison with commercially available catalysts. Further studies are needed to improve its reactivity.

  5. Formation of Zr(IV)-nanoparticles on muscovite (001). Effect of background electrolyte

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Canrong; Schmidt, Moritz [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). HGF Young Investigator Group; Stubbs, J.E.; Eng, P.J. [Chicago Univ., IL (United States). Center for Advanced Radiation Sources

    2017-06-01

    The formation of Zr(IV) oxo-hydroxide nanoparticles on the muscovite (001) surface was investigated as a function of ionic strength (NaCl) using X-ray surface diffraction techniques. The best fit model revealed a structural ordering of Zr nanoparticles that extends up to ∝ 3 nm above substrate surface and increases with NaCl concentrations. We propose a plausible mechanism to explain the Zr nanoparticle aggregation process.

  6. In situ loading of well-dispersed silver nanoparticles on nanocrystalline magnesium oxide for real-time monitoring of catalytic reactions by surface enhanced Raman spectroscopy.

    Science.gov (United States)

    Zhang, Kaige; Li, Gongke; Hu, Yuling

    2015-10-28

    The surface-enhanced Raman spectroscopy (SERS) technique is of great importance for insight into the transient reaction intermediates and mechanistic pathways involved in heterogeneously catalyzed chemical reactions under actual reaction conditions, especially in water. Herein, we demonstrate a facile method for in situ synthesis of nanocrystalline magnesium oxide-Ag(0) (nano MgO-Ag(0)) hybrid nanomaterials with dispersed Ag nanoparticles (Ag NPs) on the surface of nanocrystalline magnesium oxide (nano MgO) via Sn(2+) linkage and reduction. As a benefit from the synergy effect of nano MgO and Ag NPs, the nano MgO-Ag(0) exhibited both excellent SERS and catalytic activities for the reduction of 4-nitrothiophenol in the presence of NaBH4. The nano MgO-Ag(0) was used for real-time monitoring of the catalytic reaction process of 4-nitrothiophenol to 4-aminothiophenol in an aqueous medium by observing the SERS signals of the reactant, intermediate and final products. The intrinsic reaction kinetics and reaction mechanism of this reaction were also investigated. This SERS-based synergy technique provides a novel approach for quantitative in situ monitoring of catalytic chemical reaction processes.

  7. Magnesium and Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ferda Özdemir

    2004-03-01

    Full Text Available Osteoporosis (OP is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass. OP depends on the interaction of genetic, hormonal, environmental and nutritional factors. Chronic low intakes of vitamin D and possibly magnesium, zinc, fluoride and vitamins K, B12, B6 and folic acid may predispose to osteoporosis. Magnesium is a mineral needed by every cell of your body. It helps maintain normal muscle and nerve function, keeps heart rhythm steady, and bones strong. Mg serves as co-factors for enzymes that help build bone matrix. Magnesium deficiency occurs due to excessive loss of magnesium in urine, gastrointestinal system disorders that cause a loss of magnesium or limit magnesium absorption, or a chronic low intake of magnesium. Signs of magnesium deficiency include confusion, disorientation, loss of appetite, depression, muscle contractions and cramps, tingling, numbness, abnormal heart rhythms, coronary spasm, and seizures. Magnesium deficiency alters calcium metabolism and the hormones that regulates calcium. Several studies have suggested that magnesium supplementation may improve bone mineral density and prevent fractures.

  8. Membrane interactions and antimicrobial effects of layered double hydroxide nanoparticles

    DEFF Research Database (Denmark)

    Malekkhaiat Häffner, S; Nyström, L; Nordström, R

    2017-01-01

    Membrane interactions are critical for the successful use of inorganic nanoparticles as antimicrobial agents and as carriers of, or co-actives with, antimicrobial peptides (AMPs). In order to contribute to an increased understanding of these, we here investigate effects of particle size (42-208 nm...... into size-dependent synergistic effects with the antimicrobial peptide LL-37. Due to strong interactions with anionic lipopolysaccharide and peptidoglycan layers, direct membrane disruption of both Gram-negative and Gram-positive bacteria is suppressed. However, LDH nanoparticles cause size-dependent charge...

  9. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  10. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    International Nuclear Information System (INIS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-01-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO_2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  11. Carbonation acceleration of calcium hydroxide nanoparticles: induced by yeast fermentation

    Science.gov (United States)

    Lopez-Arce, Paula; Zornoza-Indart, Ainara

    2015-09-01

    Carbonation of Ca(OH)2 nanoparticles and consolidation of limestone are accelerated by high humidity and a yeast fermentation system that supplies a saturated atmosphere on CO2, H2O vapor and ethanol during 28 days. Nanoparticles were analyzed by X-ray diffraction and differential thermal analyses with thermogravimetry. Spectrophotometry, scanning electron microscopy analyses, and hydric and mechanical tests were also performed in stones specimens. Samples exposed to the yeast environment achieve 100 % relative CaCO3 yield, whereas at high humidity but without the yeast and under laboratory environment, relative yields of 95 % CaCO3 and 15 % CaCO3 are, respectively, reached, with white crusts and glazing left on the stone surfaces when the nanoparticles are applied at a concentration of 25 g/l. The largest increase in the drilling resistance and surface hardness values with slight increase in the capillarity absorption and desorption coefficients and with lesser stone color changes are produced at a concentration of 5 g/l, in the yeast system environment. This especially happens in stone specimens initially with bimodal pore size distributions, more amounts of pores with diameters between 0.1 and 1 µm, higher open porosity values and faster capillary coefficients. An inexpensive and reliable method based on water and yeast-sugar solution is presented to speed up carbonation of Ca(OH)2 nanoparticles used as a consolidating product to improve the mechanical properties of decayed limestone from archaeological and architectural heritage.

  12. Formation of mixed hydroxides in the thorium chloride-iron chloride-sodium hydroxide system

    International Nuclear Information System (INIS)

    Krivokhatskij, A.S.; Prokudina, A.F.; Sapozhnikova, T.V.

    1976-01-01

    The process of formation of mixed hydroxides in the system thorium chloride-iron chloride-NaOH was studied at commensurate concentrations of Th and Fe in solution (1:1 and 1:10 mole fractions, respectively) with ionic strength 0.3, 2.1, and 4.1, created with the electrolyte NaCl, at room temperature 22+-1degC. By the methods of chemical, potentiometric, thermographic, and IR-spectrometric analyses, it was shown that all the synthesized precipitates are mechanical mixtures of two phases - thorium hydroxide and iron hydroxide - and not a new hydrated compound. The formal solubility of the precipitates of mixed hydroxides was determined. It was shown that the numerical value of the formal solubility depends on the conditions of formation and age of the precipitates

  13. Arsenic adsorption in pre-treatment natural zeolite with magnesium oxides; Adsorcion de arsenico en zeolita natural pretratada con oxidos de magnesio

    Energy Technology Data Exchange (ETDEWEB)

    Mejia Z, F. [Universidad Autonoma de Baja California, Instituto de Ingenieria, Blvd. Benito Juarez s/n, 21900 Mexicali, Baja California (Mexico); Valenzuela G, J. L.; Aguayo S, S.; Meza F, D., E-mail: fleridam@iq.uson.m [Universidad de Sonora, Departamentos de Geologia e Ingenieria Quimica y Metalurgia, Blvd. Luis Encinas y Rosales s/n, Col. Centro, 83000 Hermosillo, Sonora (Mexico)

    2009-07-01

    A methodology was developed to modify a natural zeolite (chabazite) with magnesium oxide in order to remove arsenic (As{sup +5}) from water for human consumption. It is proposed a magnesium oxide while regarded as an efficient adsorbent for removing metals in water. X-ray diffraction analyses show significant changes in the chabazite due to the presence of oxides and amorphous hydroxides incorporated during the pre-treatment. Experimental design results show an efficiency greater than 90% of As{sup +5} adsorbed in five minutes. The results indicate that the most significant variables affecting the adsorption of As{sup +5} are the initial concentration of As and the solid/liquid ratio. Experimental data fitted better to Freundlich isotherm with a 20.17 mg/g adsorption capability. (Author)

  14. Layered-metal-hydroxide nanosheet arrays with controlled nanostructures to assist direct electronic communication at biointerfaces.

    Science.gov (United States)

    An, Zhe; Lu, Shan; Zhao, Liwei; He, Jing

    2011-10-18

    In this work, ordered vertical arrays of layered double hydroxide (LDH) nanosheets have been developed to achieve electron transfer (eT) at biointerfaces in electrochemical devices. It is found that tailoring the gap size of LDH nanosheet arrays could significantly promote the eT rate. This research has successfully extended nanomaterials for efficient modifications of electrode surfaces from nanoparticles, nanowires, nanorods, and nanotubes to nanosheets. © 2011 American Chemical Society

  15. Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis.

    Science.gov (United States)

    Zhang, Tingting; Zhao, Hongyu; He, Shengnan; Liu, Kai; Liu, Hongyang; Yin, Yadong; Gao, Chuanbo

    2014-07-22

    Ultrasmall gold nanoparticles (us-AuNPs, gold hydroxide nanoparticles, which have excellent affinity to silica, then carrying out controllable silica coating in reverse micelles, and finally converting gold hydroxide particles into well-protected us-AuNPs. With a single-core/shell configuration that prevents sintering of nearby us-AuNPs and amino group modification of the Au/SiO2 interface that provides additional coordinating interactions, the resulting us-AuNP@SiO2 nanospheres are highly stable at high temperatures and show high activity in catalytic CO oxidation reactions. A dramatic and continuous increase in the catalytic activity has been observed when the size of the us-AuNPs decreases from 2.3 to 1.5 nm, which reflects the intrinsic size effect of the Au nanoparticles on an inert support. The synthesis scheme described in this work is believed to be extendable to many other ultrasmall metal@oxide nanostructures for much broader catalytic applications.

  16. Voltammetric sensing of paracetamole, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide

    International Nuclear Information System (INIS)

    Yin, H.; Shang, K.; Meng, X.; Ai, S.

    2011-01-01

    A differential pulse voltammetric method was developed for the simultaneous determination of paracetamole, 4-aminophenol and dopamine at pH 7.0 using a glassy carbon electrode (GCE) coated with gold nanoparticles (AuNPs) and a layered double hydroxide sodium modified with dodecyl sulfate (SDS-LDH). The modified electrode displays excellent redox activity towards paracetamole, and the redox current is increased (and the corresponding over-potential decreased) compared to those of the bare GCE, the AuNPs-modified GCE, and the SDS-LDH-modified GCE. The modified electrode enables the determination of paracetamole in the concentration range from 0.5 to 400 μM, with a detection limit of 0.13 μM (at an S/N of 3). The sensor was successfully applied to the simultaneous determination of paracetamole and dopamine, and of paracetamole and 4-aminophenol, respectively, in pharmaceutical tablets and in spiked human serum samples. (author)

  17. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  18. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  19. Sonochemical synthesis and photocatalytic property of zinc oxide nanoparticles doped with magnesium(II)

    International Nuclear Information System (INIS)

    Lu, Xianyong; Liu, Zhaoyue; Zhu, Ying; Jiang, Lei

    2011-01-01

    Highlights: → Mg-doped ZnO nanoparticles were synthesized by sonochemical strategy. → Mg-doped ZnO nanoparticles present good photocatalytic properties. → The change of band gap contributes to their high efficiency in photocatalyst. -- Abstract: Mg-doped ZnO nanoparticles were successfully synthesized by sonochemical method. The products were characterized by scan electron microscopy (SEM) and X-ray powder diffraction (XRD). SEM images revealed that ZnO doped with Mg(II) nanoparticles and ZnO nanoparticles synthesized by the same strategy all had spherical topography. XRD patterns showed that the doped nanoparticles had the same crystals structures as the pure ZnO nanoparticles. The Mg-doped ZnO nanoparticles had larger lattice volume than the un-doped nanoparticles. X-ray photoelectron spectroscopy (XPS) not only demonstrated the moral ratio of Mg and Zn element on the surface of nanoparticles, but their valence in nanoparticles as well. The Mg-doped ZnO nanoparticles presented good properties in photocatalyst compared with pure ZnO nanoparticles.

  20. Studies on structural and magnetic properties of ternary cobalt magnesium zinc (CMZ) Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kaur, Manpreet, E-mail: manpreetchem@pau.edu; Jain, Palak; Singh, Mandeep

    2015-07-15

    In this paper we report the variation in structural and magnetic properties of ternary ferrite nanoparticles (NPs) having stoichiometery Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4} Fe{sub 2}O{sub 4} (x = 0.0, 0.2, 0.4, 0.6) and pure spinel ferrites MFe{sub 2}O{sub 4} (M = Mg, Co). NPs with average particle diameter of 25–45 nm were synthesized employing self-propagating oxalyl dihydrazide - metal nitrate combustion method. The products were characterized using X-ray diffraction (XRD), Vibrating sample magnetometer (VSM), Transmission electron microscopy (TEM) and FT-IR spectroscopy. FT-IR spectral analysis revealed two bands centered at 560 and 440 cm{sup −1} for tetrahedral and octahedral metal–oxygen bond stretching. Zinc doping caused red shift in the frequency band of tetrahedral M−O stretching. XRD powder diffraction patterns confirmed the formation of spinel ferrite nanoparticles, expansion of the lattice on zinc doping and enhancement of spinel phase purity in the doped ferrites. Cobalt ferrite displayed lowering of the magnetic parameters on zinc doping which further decreased in ternary ferrites Co{sub 0.6-x}Mg{sub x}Zn{sub 0.4}Fe{sub 2}O{sub 4} on replacing cobalt ions with non-magnetic magnesium ions up to x = 0.4. At x = 0.6 reverse trend was observed and Ms was enhanced. Magnesium zinc ferrite Mg{sub 0.6}Zn{sub 0.4} Fe{sub 2}O{sub 4} with high value of Ms was obtained. Combustion process employed in the present studies serves as a low temperature facile route for the synthesis and structural analysis of ternary doped ferrite nanoparticles. - Highlights: • Ternary doped cobalt magnesium zinc ferrite nanoparticles are synthesized. • FT-IR displayed red shift in tetrahedral stretching band on Zinc doping. • Expansion of lattice and enhancement of spinel phase purity on zinc doping. • The variation in saturation magnetization (Ms) on doping is explained.

  1. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Laboratory evaluation of PAH oxidation by magnesium peroxides and iron oxides mixtures as reactive material for groundwater remediation

    International Nuclear Information System (INIS)

    Valderrama, C.; Gamisans, X.; Cortina, J.L.; Farran, A.; Marti, V.

    2005-01-01

    contaminant(s) of concern; 2) the total oxidant requirements, pH dependence and relative reaction rate, and 3) the reaction by-products formed. The main goal of this work the evaluation of mixtures of magnesium peroxide and iron oxides as reactive materials for Poly-aromatic Hydrocarbons (PAH) degradation reagents in permeable reactive barriers or zones. One goal of this study is to examine and determine the release rate of hydrogen peroxide from magnesium peroxide by means of laboratory experiments. The magnesium peroxide from two different sources (i.e. Regenesis and Solvay) will be compared. Another objective is to study how a catalyst such as iron speeds up the degradation of PAHs. Not only the release rate will be studied, but also the dissolution process of magnesium peroxide. The experiments mentioned above will be carried out in both batch and continuous reactors. The results of this study showed that the magnesium peroxide from Solvay can release more hydrogen peroxide than the magnesium peroxide from Regenesis. The oxidation factors for the two preparations are quite similar, even though the release of hydrogen peroxide differs greatly. Another point, which ought to be considered, is the minor effect of iron oxides in the degradation of PAHs. The dissolution process of magnesium peroxide is a complex process with magnesium hydroxide as the main reaction by product. So, magnesium peroxides can be used as a hydrogen peroxide releasing compound. Further studies on the removal mechanisms should be performed to identify the oxidation products as well as the sorption properties of magnesium hydroxide. The heterogeneous oxidation of a family of poly-aromatic hydrocarbons (anthracene, pyrene, fluorene and naphthalene) proceeds with a highly efficiency ratio and following a first order kinetic

  3. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun; Liu, Junyao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Lei, Ting, E-mail: tlei@mail.csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Xiao, Tao [2nd Xiangya Hospital, Central South University, Changsha 410011 (China)

    2015-10-30

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V{sup 5+}, V{sup 4+} and Mg(OH){sub 2}. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  4. Optimization of process factors for self-healing vanadium-based conversion coating on AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Li, Kun; Liu, Junyao; Lei, Ting; Xiao, Tao

    2015-01-01

    Highlights: • The optimum operating conditions were determined by an orthogonal experiment. • The coating is composed of oxides and hydroxides of V"5"+, V"4"+ and Mg(OH)_2. • The self-healing performance was investigated by cross-cut immersion test. • The vanadia conversion coating provided active corrosion protection to AZ31 alloy. - Abstract: A self-healing vanadium-based conversion coating was prepared on AZ31 magnesium alloy. The optimum operating conditions including vanadia solution concentration, pH and treating temperature for obtaining the best corrosion protective vanadia coatings and improved localized corrosion resistance to the magnesium substrate were determined by an orthogonal experiment design. Surface morphology and composition of the resultant conversion coatings were investigated by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The self-healing behavior of the coating was investigated by cross-cut immersion test and electrochemical impedance spectroscopy (EIS) measurements in 3.5% NaCl solution.

  5. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications

    Directory of Open Access Journals (Sweden)

    Gh. Barati Darband

    2017-03-01

    Full Text Available Plasma Electrolyte Oxidation (PEO process has increasingly been employed to improve magnesium surface properties by fabrication of an MgO-based coating. Originating from conventional anodizing procedures, this high-voltage process produces an adhesive ceramic film on the surface. The present article provides a comprehensive review around mechanisms of PEO coatings fabrication and their different properties. Due to complexity of PEO coatings formation, a complete explanation regarding fabrication mechanisms of PEO coatings has not yet been proposed; however, the most important advancements in the field of fabrication mechanisms of PEO coatings were gathered in this work. Mechanisms of PEO coatings fabrication on magnesium were reviewed considering voltage–time plots, optical spectrometry, acoustic emission spectrometry and electronic properties of the ceramic film. Afterwards, the coatings properties, affecting parameters and improvement strategies were discussed. In addition, corrosion resistance of coatings, important factors in corrosion resistance and methods for corrosion resistance improvement were considered. Tribological properties (important factors and improvement methods of coatings were also studied. Since magnesium and its alloys are broadly used in biological applications, the biological properties of PEO coatings, important factors in their biological performance and existing methods for improvement of coatings were explained. Addition of ceramic based nanoparticles and formation of nanocomposite coatings may considerably influence properties of plasma electrolyte oxidation coatings. Nanocomposite coatings properties and nanoparticles adsorption mechanisms were included in a separate sector. Another method to improve coatings properties is formation of hybrid coatings on PEO coatings which was discussed in the end.

  6. Magnesium in pregnancy.

    Science.gov (United States)

    Dalton, Lynne M; Ní Fhloinn, Deirdre M; Gaydadzhieva, Gergana T; Mazurkiewicz, Ola M; Leeson, Heather; Wright, Ciara P

    2016-09-01

    Magnesium deficiency is prevalent in women of childbearing age in both developing and developed countries. The need for magnesium increases during pregnancy, and the majority of pregnant women likely do not meet this increased need. Magnesium deficiency or insufficiency during pregnancy may pose a health risk for both the mother and the newborn, with implications that may extend into adulthood of the offspring. The measurement of serum magnesium is the most widely used method for determining magnesium levels, but it has significant limitations that have both hindered the assessment of deficiency and affected the reliability of studies in pregnant women. Thus far, limited studies have suggested links between magnesium inadequacy and certain conditions in pregnancy associated with high mortality and morbidity, such as gestational diabetes, preterm labor, preeclampsia, and small for gestational age or intrauterine growth restriction. This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  7. Quasi-exact thermodynamic properties of a relativistic spin-zero system under Cornell and generalized Morse potentials

    OpenAIRE

    YAZARLOO, Bentol Hoda; HASSANABADI, Hassan; ZARRINKAMAR, Saber

    2013-01-01

    In this paper, the formation process of magnesium hydroxide unit cells, as well as the structural characteristics and growth morphology of magnesium hydroxide, is discussed from the perspective of growth units. The growth process of the hexagonal structure of the magnesium hydroxide is as follows: the growth units are first incorporated into a larger hexagonal dimension unit on the same plane, and then the hexagonal layers connect to each other in the z-axis direction for the hexagonal magnes...

  8. Precipitation of Zinc Oxide Nanoparticles in Bicontinuous Microemulsions

    Directory of Open Access Journals (Sweden)

    Liliana E. Romo

    2011-01-01

    Full Text Available Zinc oxide nanoparticles were obtained directly, avoiding the calcination step, by precipitation at 70°C in bicontinuous microemulsions stabilized with a mixture of surfactants sodium bis (2-ethylhexyl sulfosuccinate/sodium dodecyl sulfate (2/1, wt./wt. containing 0.7 M zinc nitrate aqueous solution. Two concentrations of aqueous solution of precipitating agent sodium hydroxide were used under different dosing times on microemulsion. Characterization by X-ray diffraction and electron microscopy allowed us to identify particles with an acicular rod-like morphology and a hexagonal wurtzite crystal structure as small as 8.5 and 30 nm in average diameter and length, respectively. Productivities much higher than those typical in the preparation of zinc oxide nanoparticles via reverse microemulsions were obtained. Particle size was the same at the two studied sodium hydroxide concentrations, while it increases as dosing time of the precipitant agent increases. It is believed that the surfactant film on the microemulsion channels restricts the particle diameter growth.

  9. 21 CFR 582.1631 - Potassium hydroxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Potassium hydroxide. 582.1631 Section 582.1631 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1631 Potassium hydroxide. (a) Product. Potassium hydroxide. (b) Conditions of use. This...

  10. Magnesium stannide as a high-capacity anode for magnesium-ion batteries

    Science.gov (United States)

    Nguyen, Dan-Thien; Song, Seung-Wan

    2017-11-01

    Driven by the limited global resources of lithium, magnesium metal batteries are considered as potential energy storage systems. The battery chemistry of magnesium metal anode, however, limits the selection of electrolytes, cathode materials and working temperature, making the realization of magnesium metal batteries complicated. Herein, we report the development of a new magnesium-insertion anode, magnesium stannide (Mg2Sn), and demonstrate reversible electrochemical Mg2+-extraction and insertion of Mg2Sn anode at 0.2 V versus Mg, delivering discharge capacity of 270 mAhg-1 in a half-cell with the electrolyte of PhMgCl/THF and enabling of room temperature magnesium-ion batteries with Mg2Sn anode combined with Mg-free oxide cathode and conventional-type electrolyte of Mg(TFSI)2/diglyme. The combination of Mg2Sn anode with various cathodes and electrolytes holds great promise for enabling room temperature magnesium-ion batteries.

  11. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat.

    OpenAIRE

    Carney, S L; Wong, N L; Quamme, G A; Dirks, J H

    1980-01-01

    Recollection of micropuncture experiments were performed on acutely thyroparathyroidectomized rats rendered magnesium deficient by dietary deprivation. Urinary magnesium excretion fell from a control of 15 to 3% of the filtered load after magnesium restriction. The loop of Henle, presumably the thick ascending limb, was the major modulator for renal magnesium homeostasis. The transport capacity for magnesium, however, was less in deficient rats than control animals. Absolute magnesium reabsor...

  12. Synthesising methods of layered double hydroxides and its use in the fabrication of dye Sensitised solar cell (DSSC): A short review

    Science.gov (United States)

    George, Giphin; Saravanakumar, M. P.

    2017-11-01

    The layered double hydroxides (LDH) which are anionic clay substances comprising of stacked cationic layers and interlayer anions. The cationic sheets contain octahedral structure consisting the divalent and trivalent ions in the center and hydroxyl bunches in the corners, gathered by three bonding with the neighbouring octahedra on every side of the layer. The ratio between the quantity of cations and OH- ions is 2:1, so a positive charge shows up on the layer because of the presence of trivalent cations. The interlayer space gives the compensation anions and water molecules, assuring a balanced out layered structure. The LDH materials were successfully synthesised from magnesium, aluminium, zinc and chromium chloride salts utilizing the co-precipitation technique. A Zn-Al LDH was researched as a potential sorbent material. This article reviews the recent advances in the preparation and intercalation of layered double hydroxides and its application in the fabrication of Dye Sensitized Solar Cell (DSSC).

  13. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    .... With the popularity of magnesium-based materials in the automotive, aerospace, electronics, and sports equipment industries, and its unique role as a lightweight, energy-saving and high-performance...

  14. Manganese oxide nanoparticles, methods and applications

    Science.gov (United States)

    Abruna, Hector D.; Gao, Jie; Lowe, Michael A.

    2017-08-29

    Manganese oxide nanoparticles having a chemical composition that includes Mn.sub.3O.sub.4, a sponge like morphology and a particle size from about 65 to about 95 nanometers may be formed by calcining a manganese hydroxide material at a temperature from about 200 to about 400 degrees centigrade for a time period from about 1 to about 20 hours in an oxygen containing environment. The particular manganese oxide nanoparticles with the foregoing physical features may be used within a battery component, and in particular an anode within a lithium battery to provide enhanced performance.

  15. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  16. Enhancement in magnetic properties of magnesium substituted bismuth ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianlong; Xie, Dan, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn; Teng, Changjiu; Zhang, Xiaowen; Zhang, Cheng; Sun, Yilin; Ren, Tian-Ling, E-mail: xiedan@mail.tsinghua.edu.cn, E-mail: RenTL@mail.tsinghua.edu.cn [Institute of Microelectronics, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing 100084 (China); Zeng, Min; Gao, Xingsen [Institute for Advanced Materials and Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, Guangzhou 510006 (China); Zhao, Yonggang [Department of Physics and State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China)

    2015-06-14

    We report a potential way to effectively improve the magnetic properties of BiFeO{sub 3} (BFO) nanoparticles through Mg{sup 2+} ion substitution at the Fe-sites of BFO lattice. The high purity and structural changes induced by Mg doping are confirmed by X-ray powder diffractometer and Raman spectra. Enhanced magnetic properties are observed in Mg substituted samples, which simultaneously exhibit ferromagnetic and superparamagnetic properties at room temperature. A physical model is proposed to support the observed ferromagnetism of Mg doped samples, and the superparamagnetic properties are revealed by the temperature dependent magnetization measurements. The improved magnetic properties and soft nature obtained by Mg doping in BFO nanoparticles demonstrate the possibility of BFO nanoparticles to practical applications.

  17. Low magnesium level

    Science.gov (United States)

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  18. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    Science.gov (United States)

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  19. Preparation and properties of UV curable organic/inorganic hybrid nanocomposites based on layered double hydroxides

    International Nuclear Information System (INIS)

    Shichang Lv; Wenfang Shi

    2007-01-01

    The organo-modified layered double hydroxides (LDHs), M-LDH and N-LDH, were obtained by the ionic exchange reaction of a magnesium-aluminium nitrate LDH with modifiers. The LDHs/acrylate organic/inorganic hybrid nanocomposites were prepared from organo-modified LDHs, and aliphatic polyurethane acrylate oligomer and an acrylate monomer, through a bulk photopolymerization process at the presence of a photoinitiator. The effects of LDHs content in the resin on the dispersion, and the properties of UV cured nanocomposites film were investigated by using X-ray diffraction, FTIR, thermal analysis, pendulum/pencil hardness measurement. With the good solubility in acrylate resins, the organo-modified LDHs are hopefully to be used in adhesives, coating, inks as toughness modifiers, fire-retardant additives. (Author)

  20. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  1. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  2. Spectroscopic attributes of Sm3+ doped magnesium zinc sulfophosphate glass: Effects of silver nanoparticles inclusion

    Science.gov (United States)

    Ahmadi, F.; Hussin, R.; Ghoshal, S. K.

    2017-11-01

    We report the modified optical properties of Sm3+ doped magnesium zinc sulfophosphate glass system with silver nanoparticles (Ag NPs) inclusion. Three glass samples were prepared using melt quenching method and characterized. TEM images revealed the nucleation of Ag NPs with average diameter ≈12.50 nm. The UV-Vis-NIR spectra showed thirteen absorption bands. The surface plasmon resonance (SPR) band of Ag NPs was manifested at 446 nm. FTIR spectra disclosed the bonding vibrations for P-O bonds, P-O-P linkages, and PO2 units. Ag NPs concentration dependent bonding parameters and Judd-Ofelt (JO) intensity parameters were calculated. The JO parameter Ω2 was reduced with the increase of Ag NPs contents, indicating the ionicity and symmetry enhancement between Sm3+ ions with their surrounding ligands. The emission spectra of all samples under the excitation wavelength of 402 nm exhibited four significant peaks centered at 562, 599, 644 and 702 nm which are allocated to 4G5/2 →6H5/2, 6H7/2, 6H9/2 and 6H11/2 transitions, respectively. Inclusion of Ag NPs was discerned to augment the luminescence intensity by a factor of two, which was majorly ascribed to the local field effect of Ag NPs and subsequent energy transfer from the NPs to Sm3+ ions.

  3. Nanosized Magnesium Electrochemically Deposited on a Carbon Nanotubes Suspension: Synthesis and Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chaoqi; Aguey-Zinsou, Kondo-Francois, E-mail: f.aguey@unsw.edu.au [MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2017-10-17

    Herein, we report on a novel method for deposition of magnesium (Mg) nanoparticles at the surface of carbon materials. Through the suspension of carbon nanotubes (CNTs) in an electrolyte containing di-n-butylmagnesium as a precursor, Mg nanoparticles were effectively deposited at the surface of the CNTs as soon as these touched the working electrode. Through this process, CNTs supported Mg particles as small as 1 nm were synthesized and the distribution of the nanoparticles was found to be influenced by the concentration of the CNTs in the electrolyte. Hydrogenation of these nanoparticles at 100°C was found to lead to low temperature hydrogen release starting at 150°C, owing to shorter diffusion paths and higher hydrogen mobility in small Mg particles. However, these hydrogen properties drastically degraded as soon as the hydrogenation temperature exceeded 200°C and this may be related to the low melting temperature of ultrasmall Mg particles.

  4. Nanosized Magnesium Electrochemically Deposited on a Carbon Nanotubes Suspension: Synthesis and Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chaoqi Shen

    2017-10-01

    Full Text Available Herein, we report on a novel method for deposition of magnesium (Mg nanoparticles at the surface of carbon materials. Through the suspension of carbon nanotubes (CNTs in an electrolyte containing di-n-butylmagnesium as a precursor, Mg nanoparticles were effectively deposited at the surface of the CNTs as soon as these touched the working electrode. Through this process, CNTs supported Mg particles as small as 1 nm were synthesized and the distribution of the nanoparticles was found to be influenced by the concentration of the CNTs in the electrolyte. Hydrogenation of these nanoparticles at 100°C was found to lead to low temperature hydrogen release starting at 150°C, owing to shorter diffusion paths and higher hydrogen mobility in small Mg particles. However, these hydrogen properties drastically degraded as soon as the hydrogenation temperature exceeded 200°C and this may be related to the low melting temperature of ultrasmall Mg particles.

  5. The Chemical Composition and Structure of Supported Sulfated Zirconia with Regulated Size Nanoparticles

    Science.gov (United States)

    Kanazhevskiy, V. V.; Shmachkova, V. P.; Kotsarenko, N. S.; Kochubey, D. I.; Vedrine, J. C.

    2007-02-01

    A set of model skeletal isomerization catalysts — sulfated zirconia nanoparticles of controlled thickness anchored on different supports — was prepared using colloidal solutions of Zr salt on titania as support. The nanoparticles of zirconia (1-5 nm) are epitaxially connected to the support surface, with S/Zr ratio equals to 1.3-1.5. It was shown by EXAFS that nanoparticles of non-stoichiometric zirconium sulfate Zr(SO4)1+x, where xlayers as zirconium hydroxide undergoes sulfation followed by thermal treatment.

  6. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, Robert W. [Univ. of California, Berkeley, CA (United States); Muller, Rolf H. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 - 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  7. Structural transformation of nickel hydroxide films during anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Crocker, R.W.; Muller, R.H.

    1992-05-01

    The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

  8. In vitro studies on magnesium uptake by rumen epithelium using magnesium-28

    International Nuclear Information System (INIS)

    Martens, H.; Harmeyer, J.; Breves, G.

    1976-01-01

    Magnesium-28 transfer across the rumen epithelium has been studied using surviving epithelia in an in vitro system. Net absorption of magnesium in the direction from lumen to blood could be observed as the result of two opposite unidirectional fluxes of different magnitude. Net uptake of magnesium occurred against an electrical potential difference, and was associated with the presence of an unaltered transmural potential difference in the mucosal tissue. Both the net transfer of magnesium and the transmural potential difference decreased during two hours of incubation. Unidirectional fluxes of magnesium and net efflux from the lumen were markedly reduced although not completely inhibited by the addition of ouabain (10 -4 mol/l). The findings suggest that the mechanism of magnesium absorption by the rumen epithelium can be considered as an active transport process, and that the rumen is the main area of magnesium absorption in the living animal. (author)

  9. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    ... of science, characteristics, and applications. It emphasizes the properties of magnesium-based composites and the effects of different types of reinforcements, from micron length to nanometer scale, on the properties of the resulting composites...

  10. One step facile synthesis of ferromagnetic magnetite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Suppiah, Durga Devi; Abd Hamid, Sharifah Bee, E-mail: sharifahbee@um.edu.my

    2016-09-15

    The ferromagnetic properties of magnetite (Fe{sub 3}O{sub 4}) were influenced by the nanoparticle size, hence importance were given to the synthesis method. This paper clearly shows that magnetite nanoparticles were successfully synthesized by employing one step controlled precipitation method using a single salt (Iron(II) sulfate) iron precursor. The acquired titration curve from this method provides vital information on the possible reaction mechanism leading to the magnetite (Fe{sub 3}O{sub 4}) nanoparticles formation. Goethite (α-FeOOH) was obtained at pH 4, while the continuous addition of hydroxyl ions (OH{sup −}) forms iron hydroxides (Fe(OH){sub 2}). This subsequently reacts with the goethite, producing magnetite (Fe{sub 3}O{sub 4}) at pH 10. Spectroscopy studies validate the magnetite phase existence while structural and morphology analysis illustrates cubic shaped magnetite with an average size of 35 nm was obtained. The synthesized magnetite might be superparamagnetic though lower saturation magnetization (67.5 emu/g) measured at room temperature as compared to bulk magnetite. However the nanoparticles surface anisotropy leads to higher remanence (12 emu/g) and coercivity (117.7 G) making the synthesized magnetite an excellent candidate to be utilized in recording devices. The understanding of the magnetite synthesis mechanism can not only be used to achieve even smaller magnetite nanoparticles but also to prepare different types of iron oxides hydroxides using different iron precursor source. - Highlights: • Magnetite strong magnetism properties make it versatile in various applications including biomedical and electromagnetic materials. • Sulfate (SO{sub 4}{sup 2−}) anion plays a major role in the structure control of iron oxide during synthesis. • Phase pure magnetite nanoparticles with high magnetism properties can be obtained using a single salt (SO{sub 4}{sup 2−}) method.

  11. Electro-precipitation of magnetite nanoparticles: an electrochemical study

    OpenAIRE

    Ibrahim, Mona; Groenen-Serrano, Karine; Noé, Laure; Garcia, Cécile; Verelst, Marc

    2009-01-01

    Nanoparticles of magnetites (Fe3O4) are synthesized with a new process based on electro-precipitation in ethanol medium. A mechanism pathway is proposed consisting of a Fe(OH)3 precipitation followed by the reduction of iron hydroxide to magnetite in the presence of hydroxyl ions which are enerated at the cathode.

  12. Dissolution mechanism of aluminum hydroxides in acid media

    Science.gov (United States)

    Lainer, Yu. A.; Gorichev, I. G.; Tuzhilin, A. S.; Gololobova, E. G.

    2008-08-01

    The effects of the concentration, temperature, and potential at the hydroxide/electrolyte interface on the aluminum hydroxide dissolution in sulfuric, hydrochloric, and perchloric acids are studied. The limiting stage of the aluminum hydroxide dissolution in the acids is found to be the transition of the complexes that form on the aluminum hydroxide surface from the solid phase into the solution. The results of the calculation of the acid-base equilibrium constants at the oxide (hydroxide)/solution interface using the experimental data on the potentiometric titration of Al2O3 and AlOOH suspensions are analyzed. A mechanism is proposed for the dissolution of aluminum hydroxides in acid media.

  13. Tuning the luminescence of ZnO:Eu nanoparticles for applications in biology and medicine

    Science.gov (United States)

    Kaszewski, Jarosław; Kiełbik, Paula; Wolska, Ewelina; Witkowski, Bartłomiej; Wachnicki, Łukasz; Gajewski, Zdzisław; Godlewski, Marek; Godlewski, Michał M.

    2018-06-01

    Zinc oxide nanoparticles were synthesized with microwave hydrothermal technique and tested as luminescent contrast for biological imaging. Luminescence was activated by Eu3+ ions embedded in the nanoparticle matrix in the increasing concentrations of 1, 5 and 10 %mol. It was found that europium did not create a separate crystalline phase up to the concentration as high as 5 %mol. However, Eu3+ ions did not substitute Zn2+ in the host lattice, but allocated in the low symmetry environment. It was proposed that europium was locating in the inter-grain space or on the surface of nanoparticles. The luminescence intensity in ZnO:Eu, as well as the size of particles, increased with the Eu ion concentration. Moreover, in 10 %mol Eu sample, the separate phase of Eu-hydroxide was identified with crystals of micrometre length. Interestingly, in vivo study revealed, that contrary to the in silico experiments, following gastric gavage, the brightest nanoparticle-related luminescence signal was observed at 1 %mol. concentration of Eu. Since the alimentary uptake of nanoparticles was related to their size, we concluded that the increase in luminescence at 5 and 10 %mol. Eu concentrations was associated with the largest ZnO:Eu and Eu-hydroxide particles that did not cross the gastrointestinal barrier.

  14. Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites

    Science.gov (United States)

    Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou

    2017-11-01

    Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.

  15. Mg-Fe-mixed oxides derived from layered double hydroxides: A study of the surface properties

    Directory of Open Access Journals (Sweden)

    Marinković-Nedučin Radmila P.

    2011-01-01

    Full Text Available The influence of surface properties on the selectivity of the synthesized catalysts was studied, considering that their selectivity towards particular hydrocarbons is crucial for their overall activity in the chosen Fischer- -Tropsch reaction. Magnesium- and iron-containing layered double hydroxides (LDH, with the general formula: [Mg1-xFex(OH2](CO3x/2?mH2O, x = = n(Fe/(n(Mg+n(Fe, synthesized with different Mg/Fe ratio and their thermally derived mixed oxides were investigated. Magnesium was chosen because of its basic properties, whereas iron was selected due to its well-known high Fischer-Tropsch activity, redox properties and the ability to form specific active sites in the layered LDH structure required for catalytic application. The thermally less stable multiphase system (synthesized outside the optimal single LDH phase range with additional Fe-phase, having a lower content of surface acid and base active sites, a lower surface area and smaller fraction of smaller mesopores, showed higher selectivity in the Fischer-Tropsch reaction. The results of this study imply that the metastability of derived multiphase oxides structure has a greater influence on the formation of specific catalyst surface sites than other investigated surface properties.

  16. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties.

    Science.gov (United States)

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-08-01

    This paper reports the synthesis, characterization, and electrochemical performance of nickel-cobalt hydroxide nanosheets. The hydroxide nanosheets of approximately 0.7nm thickness were prepared by delamination of layered nickel-cobalt hydroxide lactate in water and formed transparent colloids that were stable for months. The nanosheets were deposited on highly oriented pyrolytic graphite by spin coating, and their electrochemical behavior was investigated by cyclic voltammetry in potassium hydroxide electrolyte. Our method of electrode preparation allows for studying the electrochemistry of nanosheets where the majority of the active centers can participate in the charge transfer reaction. The observed electrochemical response was ascribed to mutual compensation of the cobalt and nickel response via electron sharing between these metals in the hydroxide nanosheets, a process that differentiates the behavior of nickel-cobalt hydroxide nanosheets from single nickel hydroxide or cobalt hydroxide nanosheets or their physical mixture. The presence of cobalt in the nickel-cobalt hydroxide nanosheets apparently decreases the time of electrochemical activation of the nanosheet layer, which for the nickel hydroxide nanosheets alone requires more potential sweeps. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effect of Nitrogen, Potassium, Magnesium and Zinc Sulfates on Yield and Some Characteristics of Biodiesel Produced from Safflower

    Directory of Open Access Journals (Sweden)

    M. Ranjbar

    2012-08-01

    Full Text Available In order to evaluate the effect of different amounts of nitrogen fertilizer, potassium sulfate, magnesium sulfate and zinc sulfate on biodiesel produced from safflower, a field experiment was carried out as completely randomized blocks design with three replications, at Research Farm of Shahrekord University in 2010. Treatments included nitrogen fertilizer at three levels (150, 200 and 300 kg/ha, potassium, magnesium and zinc sulfates at 150, 100 and 50 kg/ha, respectively, and control (no fertilizer application. By nourishing the safflower plants, the seed yield and biodiesel traits such as density, iodine value and saponification value were measured. The results showed that the seed yield under treatment of 300 kg/ha nitrogen (913 kg/ha was greater than other treatments. Magnesium sulfate and potassium sulfate produced the highest oil percentage (32.84 and 32.5, respectively. The biodiesel production under utilization of potassium sulfate had greater density, iodine value and saponification value (867.25 kg/m3, 139.7 mg iodine per 100 g oil, and 190.6 mg sodium hydroxide per g oil, respectively compared to other treatments. In general, it was concluded that application of micronutrient fertilizers (especially potassium sulfate improves seed-oil and biodiesel characteristics of safflower.

  18. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls

    Directory of Open Access Journals (Sweden)

    Li Chunfang

    2011-01-01

    Full Text Available Abstract The citrate reduction method for the synthesis of gold nanoparticles (GNPs has known advantages but usually provides the products with low nanoparticle concentration and limits its application. Herein, we report a facile method to synthesize GNPs from concentrated chloroauric acid (2.5 mM via adding sodium hydroxide and controlling the temperature. It was found that adding a proper amount of sodium hydroxide can produce uniform concentrated GNPs with low size distribution; otherwise, the largely distributed nanoparticles or instable colloids were obtained. The low reaction temperature is helpful to control the nanoparticle formation rate, and uniform GNPs can be obtained in presence of optimized NaOH concentrations. The pH values of the obtained uniform GNPs were found to be very near to neutral, and the pH influence on the particle size distribution may reveal the different formation mechanism of GNPs at high or low pH condition. Moreover, this modified synthesis method can save more than 90% energy in the heating step. Such environmental-friendly synthesis method for gold nanoparticles may have a great potential in large-scale manufacturing for commercial and industrial demand.

  19. Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls

    Science.gov (United States)

    Li, Chunfang; Li, Dongxiang; Wan, Gangqiang; Xu, Jie; Hou, Wanguo

    2011-07-01

    The citrate reduction method for the synthesis of gold nanoparticles (GNPs) has known advantages but usually provides the products with low nanoparticle concentration and limits its application. Herein, we report a facile method to synthesize GNPs from concentrated chloroauric acid (2.5 mM) via adding sodium hydroxide and controlling the temperature. It was found that adding a proper amount of sodium hydroxide can produce uniform concentrated GNPs with low size distribution; otherwise, the largely distributed nanoparticles or instable colloids were obtained. The low reaction temperature is helpful to control the nanoparticle formation rate, and uniform GNPs can be obtained in presence of optimized NaOH concentrations. The pH values of the obtained uniform GNPs were found to be very near to neutral, and the pH influence on the particle size distribution may reveal the different formation mechanism of GNPs at high or low pH condition. Moreover, this modified synthesis method can save more than 90% energy in the heating step. Such environmental-friendly synthesis method for gold nanoparticles may have a great potential in large-scale manufacturing for commercial and industrial demand.

  20. FOCUS ON MAGNESIUM BASED DRUGS

    Directory of Open Access Journals (Sweden)

    I. I. Esenova

    2011-01-01

    Full Text Available Magnesium deficiency in the organism is one of the most common human deficiency states. The prevalence of magnesium deficiency is about 15%, and suboptimal magnesium level is observed more than in 30% of people in the general population. Clinical signs of hypomagnesaemia are observed in 40% of patients in general care hospitals, in 70% of patients - in intensive care units, and magnesium deficiency occurs in 90% of patients with acute coronary syndrome. Magnesium metabolic disorders in the organism accelerate significantly development of complications of coronary heart disease, hypertension, type 2 diabetes, asthma and a number of neurological and psychiatric diseases. The value of this macro in the body is well studied, and its daily need is identified depending on age and sex. It is known that magnesium intake with the food does not cover an organism need. It is a rationale for preventive and therapeutic use of magnesium based drugs in various diseases. Organic salts of magnesium are recommended for these purposes. Magnesium metabolic disorders, approaches to pharmacotherapeutic correction of magnesium deficiency, advantages of magnesium salts of orotic acid are reviewed.

  1. 21 CFR 73.2326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.2326 Section 73.2326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2326 Chromium hydroxide green. (a) Identity and specifications.The color additive chromium hydroxide green shall conform in identity and specifications to the...

  2. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    Science.gov (United States)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong

    2016-01-01

    KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 ÿ 1017 cm⿿3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  3. Ion Implantation of Calcium and Zinc in Magnesium for Biodegradable Implant Applications

    Directory of Open Access Journals (Sweden)

    Sahadev Somasundaram

    2018-01-01

    Full Text Available In this study, magnesium was implanted with calcium-ion and zinc-ion at fluences of 1015, 1016, and 1017 ion·cm−2, and its in vitro degradation behaviour was evaluated using electrochemical techniques in simulated body fluid (SBF. Rutherford backscattering spectrometry (RBS revealed that the implanted ions formed layers within the passive magnesium-oxide/hydroxide layers. Electrochemical impedance spectroscopy (EIS results demonstrated that calcium-ion implantation at a fluence of 1015 ions·cm−2 increased the polarisation resistance by 24%, but higher fluences showed no appreciable improvement. In the case of zinc-ion implantation, increase in the fluence decreased the polarisation resistance. A fluence of 1017 ion·cm−2 decreased the polarisation resistance by 65%, and fluences of 1015 and 1016 showed only marginal effect. Similarly, potentiodynamic polarisation results also suggested that low fluence of calcium-ion decreased the degradation rate by 38% and high fluence of zinc-ion increased the degradation rate by 61%. All the post-polarized ion-implanted samples and the bare metal revealed phosphate and carbonate formation. However, the improved degradative behaviour in calcium-ion implanted samples can be due to a relatively better passivation, whereas the reduction in degradation resistance in zinc-ion implanted samples can be attributed to the micro-galvanic effect.

  4. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some people use it as ... one to four times daily depending on which brand is used and what condition you have. Follow ...

  5. Turkevich method for silver/titanium dioxide nanoparticles with antimicrobial application in polymers systems

    International Nuclear Information System (INIS)

    Olyveira, Gabriel Molina de; Pessan, Luiz Antonio

    2009-01-01

    Titanium dioxide nanoparticles were covered with silver nanoparticles using Turkevich Method or citrate reduction method. Silver and titanium dioxide has proved antimicrobial properties then the nanocomposite can be successful incorporated in polymer systems. Silver nitrate was reduced by sodium citrate in the presence of poly(vinyl pyrrolidone)(PVP) resulting in nano-Ag/TiO 2 stabilized suspension. It was tested ammonia hydroxide in the synthesis to avoid the nanoparticles growth. The Ag/TiO 2 nanoparticles were characterized with X-ray diffraction (XRD), Scanning electron microscopy (SEM) and x-ray photoelectron spectroscopy (XPS). The best system of coloidal nanoparticles was that one with Poly(vinyl pyrrolidone) and ammonia in the synthesis. (author)

  6. Percolation Magnetism in Ferroelectric Nanoparticles

    Science.gov (United States)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  7. Percolation Magnetism in Ferroelectric Nanoparticles.

    Science.gov (United States)

    Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N

    2017-12-01

    Nanoparticles of potassium tantalate (KTaO 3 ) and potassium niobate (KNbO 3 ) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe 3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  8. 21 CFR 73.1326 - Chromium hydroxide green.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Chromium hydroxide green. 73.1326 Section 73.1326... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1326 Chromium hydroxide green. (a) Identity. (1) The color additive chromium hydroxide green is principally hydrated chromic sesquioxide (Cr2O3·XH2O...

  9. Using coal mine saline water to produce chlorine

    Energy Technology Data Exchange (ETDEWEB)

    Gnot, W; Turek, M; Walburg, Z

    1979-01-01

    Utilizing hard coal mine waters with salt concentration reaching 140 kg/mat3 in the chemical industry would significantly reduce the cost of protecting the natural environment from salt. The Institute of Chemistry and Inorganic Technology of the Silesian Technical University in Gliwice developed an efficient technology of producing chorine from underground black coal mine waters. A scheme of the technology is explained: double stage brine purification with magnesium hydroxide as by-product. During the first stage magnesium is precipitated using sodium hydroxide; after increasing salt content in the brine calcium and a low percentage of magnesium are removed by lye-sodium method. During the second stage sedimentation rate increases to 1.4 mm/s, and volume of sludge is only 1%. Magnesium hydroxide is removed using a method patented in Poland (after adding a flocculant magnesium hydroxide is left untouched). Only at a later stage does sedimentation occur. The proposed technology of utilizing mine water will be tested in an experimental plant which will be built at the Ziemowit black coal mine. (7 refs.) (In Polish)

  10. Sol–gel synthesis of SnO2–MgO nanoparticles and their photocatalytic activity towards methylene blue degradation

    International Nuclear Information System (INIS)

    Bayal, Nisha; Jeevanandam, P.

    2013-01-01

    Graphical abstract: - Highlights: • A simple sol–gel method for the synthesis of SnO 2 –MgO nanoparticles is reported. • Band gap of SnO 2 can be tuned by varying the magnesium content in SnO 2 –MgO. • SnO 2 –MgO shows good photocatalytic activity towards degradation of methylene blue. - Abstract: SnO 2 –MgO mixed metal oxide nanoparticles were prepared by a simple sol–gel method. The nanoparticles were characterized by power X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The XRD results indicate the formation of mixed metal oxide nanoparticles and also a decrease of SnO 2 crystallite size in the mixed metal oxide nanoparticles with increasing magnesium oxide content. The reflectance spectroscopy results show a blue shift of the band gap of SnO 2 in the mixed metal oxide nanoparticles. The photocatalytic activity of the SnO 2 –MgO nanoparticles was tested using the photodegradation of aqueous methylene blue in the presence of sunlight. The results indicate that the mixed metal oxide nanoparticles possess higher efficiency for the photodegradation of methylene blue compared to pure SnO 2 nanoparticles

  11. Plasmonic photocatalysts based on silver nanoparticles - layered double hydroxides for efficient removal of toxic compounds using solar light

    Science.gov (United States)

    Gilea, Diana; Radu, Teodora; Muresanu, Mihaela; Carja, Gabriela

    2018-06-01

    Plasmon-enhanced photocatalysis holds important promise for chemical processes and outcomes. We present here the self-assemblies of silver nanoparticles (AgNP)/layered double hydroxides (LDHs: MeAlLDHs with Me2+ = Zn2+;Mg2+) and their derived AgNP/MMOs (type AgNP/MgAl2O4; AgNP/ZnO/ZnAl2O4) as novel plasmonic photocatalysts exhibiting activity for phenol photodegradation from aqueous solution by solar-light. The fabrication procedure of AgNP/LDHs assemblies is simple and cost effective and is based on the in-situ synthesis of AgNP on the LDHs matrices during the reconstruction of MgAlLDH and ZnAlLDH in the aqueous solution of Ag2SO4. The tested catalysts were thoroughly investigated - techniques to obtain information on their crystalline structure (XRD), surface properties (XPS), morphological features (TEM) and optical properties (UV-vis). The results show that the solar photocatalytic response of the catalysts is ascribed to the plasmonic response of AgNP though the catalytic efficiency is strongly influenced by the composition of the MeAlLDHs. The best photocatalytic performance was obtained on AgNP/ZnAlLDH750 catalyst that degraded 100% of phenol after 80 min of irradiation with solar light. The results reveal the high potential to tailor AgNP/LDHs and AgNP/MMOs as efficient photo-functional plasmonic hybrids for waste-water cleaning.

  12. Magnesium motorcycle applications

    International Nuclear Information System (INIS)

    Jianyong Cao; Zonghe Zhang; Dongxia Xiang; Jun Wang

    2005-01-01

    Magnesium, the lightest engineering structural metal, has been comprehensively used in castings of aviation and aerospace, communication and transportation, and IT components. This paper introduced the history, advantages and difficulties of magnesium castings for motorcycle application as well as its application state in China. It also indicated the production situation of magnesium motorcycle components in CQMST and difficulties need to overcome for further development. (orig.)

  13. Reduction of biselenites into polyselenides in interlayer space of layered double hydroxides

    Science.gov (United States)

    Kim, Myeong Shin; Lee, Yongju; Park, Yong-Min; Cha, Ji-Hyun; Jung, Duk-Young

    2018-06-01

    A selenous acid (H2SeO3) precursor was intercalated as biselenite (HSeO3-) ions into the interlayer gallery of carbonated magnesium aluminum layered double hydroxide (MgAl-LDH) in aqueous solution. Reduction reaction of selenous ions by aqueous hydrazine solution produced polyselenide intercalated LDHs which were consecutively exchanged with iodide through redox reaction under iodine vapor. The polyselenide containing LDHs adsorbed iodine vapor spontaneously and triiodide was incorporated in the interlayer space followed by formation of selenium polycrystalline phase. Two dimensional framework of MgAl-LDH is strong enough to resist against the reducing power of hydrazine as well as oxidation condition of iodine. The SEM data demonstrated that the shapes of LDH polycrystalline have little changed after the above redox reactions. The polyselenide and iodide LDH products were analyzed by XRD, Infrared and Raman spectra which strongly suggested the horizontal arrangement of polyselenide and triiodide in gallery space of LDHs.

  14. Facile synthesis of biocompatible gold nanoparticles with organosilicone-coated surface properties

    Energy Technology Data Exchange (ETDEWEB)

    Xia Lijin; Yi Sijia; Lenaghan, Scott C.; Zhang Mingjun, E-mail: mjzhang@utk.edu [University of Tennessee, Department of Mechanical, Aerospace and Biomedical Engineering (United States)

    2012-07-15

    In this study, a simple method for one-step synthesis of gold nanoparticles has been developed using an organosilicone surfactant, Silwet L-77, as both a reducing and capping agent. Synthesis of gold nanoparticles using this method is rapid and can be conducted conveniently at ambient temperature. Further refinement of the method, through the addition of sodium hydroxide and/or silver nitrate, allowed fine control over the size of spherical nanoparticles produced. Coated on the surface with organosilicone, the as-prepared gold nanoparticles were biocompatible and stable over the pH range from 5 to 12, and have been proven effective at transportation into MC3T3 osteoblast cells. The proposed method is simple, fast, and can produce size-controlled gold nanoparticles with unique surface properties for biomedical applications.

  15. Facile synthesis of biocompatible gold nanoparticles with organosilicone-coated surface properties

    International Nuclear Information System (INIS)

    Xia Lijin; Yi Sijia; Lenaghan, Scott C.; Zhang Mingjun

    2012-01-01

    In this study, a simple method for one-step synthesis of gold nanoparticles has been developed using an organosilicone surfactant, Silwet L-77, as both a reducing and capping agent. Synthesis of gold nanoparticles using this method is rapid and can be conducted conveniently at ambient temperature. Further refinement of the method, through the addition of sodium hydroxide and/or silver nitrate, allowed fine control over the size of spherical nanoparticles produced. Coated on the surface with organosilicone, the as-prepared gold nanoparticles were biocompatible and stable over the pH range from 5 to 12, and have been proven effective at transportation into MC3T3 osteoblast cells. The proposed method is simple, fast, and can produce size-controlled gold nanoparticles with unique surface properties for biomedical applications.

  16. Facile synthesis of biocompatible gold nanoparticles with organosilicone-coated surface properties

    Science.gov (United States)

    Xia, Lijin; Yi, Sijia; Lenaghan, Scott C.; Zhang, Mingjun

    2012-07-01

    In this study, a simple method for one-step synthesis of gold nanoparticles has been developed using an organosilicone surfactant, Silwet L-77, as both a reducing and capping agent. Synthesis of gold nanoparticles using this method is rapid and can be conducted conveniently at ambient temperature. Further refinement of the method, through the addition of sodium hydroxide and/or silver nitrate, allowed fine control over the size of spherical nanoparticles produced. Coated on the surface with organosilicone, the as-prepared gold nanoparticles were biocompatible and stable over the pH range from 5 to 12, and have been proven effective at transportation into MC3T3 osteoblast cells. The proposed method is simple, fast, and can produce size-controlled gold nanoparticles with unique surface properties for biomedical applications.

  17. Magnesium sulfate reduces formalin-induced orofacial pain in rats with normal magnesium serum levels.

    Science.gov (United States)

    Srebro, Dragana P; Vučković, Sonja M; Dožić, Ivan S; Dožić, Branko S; Savić Vujović, Katarina R; Milovanović, Aleksandar P; Karadžić, Branislav V; Prostran, Milica Š

    2018-02-01

    In humans, orofacial pain has a high prevalence and is often difficult to treat. Magnesium is an essential element in biological a system which controls the activity of many ion channels, neurotransmitters and enzymes. Magnesium produces an antinociceptive effect in neuropathic pain, while in inflammatory pain results are not consistent. We examined the effects of magnesium sulfate using the rat orofacial formalin test, a model of trigeminal pain. Male Wistar rats were injected with 1.5% formalin into the perinasal area, and the total time spent in pain-related behavior (face rubbing) was quantified. We also spectrophotometrically determined the concentration of magnesium and creatine kinase activity in blood serum. Magnesium sulfate administered subcutaneously (0.005-45mg/kg) produced significant antinociception in the second phase of the orofacial formalin test in rats at physiological serum concentration of magnesium. The effect was not dose-dependent. The maximum antinociceptive effect of magnesium sulfate was about 50% and was achieved at doses of 15 and 45mg/kg. Magnesium did not affect increase the levels of serum creatine kinase activity. Preemptive systemic administration of magnesium sulfate as the only drug can be used to prevent inflammatory pain in the orofacial region. Its analgesic effect is not associated with magnesium deficiency. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  18. Function of magnesium aluminate hydrate and magnesium nitrate ...

    Indian Academy of Sciences (India)

    MgO was added both as spinel (MgAl2O4) forming precursor i.e. magnesium aluminate hydrate, and magnesium nitrate. Sintering investigations were conducted in the temperature range 1500–1600°C with 2 h soaking. Structural study of sintered pellets was carried out by extensive XRD analysis. Scanning electron mode ...

  19. Temperature behavior of electrical properties of high-k lead-magnesium-niobium titanate thin-films

    Energy Technology Data Exchange (ETDEWEB)

    Chen Wenbin, E-mail: cwb0201@163.com [Electromechanical Engineering College, Guilin University of Electronic Technology (China); McCarthy, Kevin G. [Department of Electrical and Electronic Engineering, University College Cork (Ireland); Copuroglu, Mehmet; O' Brien, Shane; Winfield, Richard; Mathewson, Alan [Tyndall National Institute, University College Cork (Ireland)

    2012-05-01

    This paper reports on the temperature dependence of the electrical properties of high-k lead-magnesium-niobium titanate thin films processed with different compositions (with and without nanoparticles) and with different annealing temperatures (450 Degree-Sign C and 750 Degree-Sign C). These characterization results support the ongoing investigation of the material's electrical properties which are necessary before the dielectric can be used in silicon-based IC applications.

  20. Polyelectrolyte-modified cowpea mosaic virus for the synthesis of gold nanoparticles.

    Science.gov (United States)

    Aljabali, Alaa A A; Evans, David J

    2014-01-01

    Polyelectrolyte surface-modified cowpea mosaic virus (CPMV) can be used for the templated synthesis of narrowly dispersed gold nanoparticles. Cationic polyelectrolyte, poly(allylamine) hydrochloride, is electrostatically bound to the external surface of the virus capsid. The polyelectrolyte-coated CPMV promotes adsorption of aqueous gold hydroxide anionic species, prepared from gold(III) chloride and potassium carbonate, that are easily reduced to form CPMV-templated gold nanoparticles. The process is simple and environmentally benign using only water as solvent at ambient temperature.

  1. Flow method for rapid production of Batio3 nanoparticles in supercritical water

    International Nuclear Information System (INIS)

    Atashfaraz, M.; Shariati-Niassar, M.; Ohara, Satoshi; Takami, S.; Umetsu, M.; Naka, T.; Adschiri, T.

    2006-01-01

    Fine BaTiO 3 nanoparticles were obtained by hydrothermal synthesis under supercritical conditions with batch and flow type experimental methods. Mixture of barium hydroxide and titanium oxide starting solution was treated in the supercritical wafer at 400 d eg C and 30 MPa. The size of nanoparticles synthesized in the flow type experiment was smaller than that in the batch type. Rapid heating in a flow, reactor is effective to synthesize smaller size and narrower particle size distribution for the BaTiO 3 , nanoparticles. The mechanism for this result was discussed based on the solubility of titanium oxide

  2. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    International Nuclear Information System (INIS)

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO 2 from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide [Ba(OH) 2 ] or calcium hydroxide [Ca(OH) 2 ]. Such a process would be applied to scrub 14 CO 2 from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH) 2 slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH) 2 . Overall reaction mechanisms are postulated

  3. The effect of magnesium supplementation on vascular calcification in chronic kidney disease-a randomised clinical trial (MAGiCAL-CKD)

    DEFF Research Database (Denmark)

    Bressendorff, Iain; Hansen, Ditte; Schou, Morten

    2017-01-01

    INTRODUCTION: Chronic kidney disease (CKD) is associated with an increased risk of cardiovascular disease and mortality, which is thought to be caused by increased propensity towards vascular calcification (VC). Magnesium (Mg) inhibits phosphate-induced VC in vitro and in animal models and serum Mg...... the progression of coronary artery calcification (CAC) in subjects with predialysis CKD. METHODS AND ANALYSIS: We will randomise 250 subjects with estimated glomerular filtration rate of 15 to 45 mL/min/1.73 m2 to 12 months treatment with either slow-release Mg hydroxide 30 mmol/day or matching placebo in a 1...

  4. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  5. Catalytic Combustion of Low Concentration Methane over Catalysts Prepared from Co/Mg-Mn Layered Double Hydroxides

    Directory of Open Access Journals (Sweden)

    Hongfeng Liu

    2014-01-01

    Full Text Available A series of Co/Mg-Mn mixed oxides were synthesized through thermal decomposition of layered double hydroxides (LDHs precursors. The resulted catalysts were then subjected for catalytic combustion of methane. Experimental results revealed that the Co4.5Mg1.5Mn2LDO catalyst possessed the best performance with the T90=485°C. After being analyzed via XRD, BET-BJH, SEM, H2-TPR, and XPS techniques, it was observed that the addition of cobalt had significantly improved the redox ability of the catalysts whilst certain amount of magnesium was essential to guarantee the catalytic activity. The presence of Mg was helpful to enhance the oxygen mobility and, meanwhile, improved the dispersion of Co and Mn oxides, preventing the surface area loss after calcination.

  6. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  7. Interactions between iron(III)-hydroxide polymaltose complex and commonly used medications / laboratory studies in rats.

    Science.gov (United States)

    Funk, Felix; Canclini, Camillo; Geisser, Peter

    2007-01-01

    Simple iron salts, such as iron sulphate, often interact with food and other medications reducing bioavailability and tolerability. Iron(III)-hydroxide polymaltose complex (IPC, Maltofer) provides a soluble form of non-ionic iron, making it an ideal form of oral iron supplementation. The physicochemical properties of IPC predict a low potential for interactions. The effects of co-administration with aluminium hydroxide (CAS 21645-51-2), acetylsalicylic acid (CAS 50-78-2), bromazepam (CAS 1812-30-2), calcium acetate (CAS 62-54-4), calcium carbonate (CAS 471-34-1), auranofin (CAS 34031-32-8), magnesium-L-aspartate hydrochloride (CAS 28184-71-6), methyldopa sesquihydrate (CAS 41372-08-1), paracetamol (CAS 103-90-2), penicillamine (CAS 52-67-5), sulfasalazine (CAS 599-79-1), tetracycline hydrochloride (CAS 64-75-5), calcium phosphate (CAS 7757-93-9) in combination with vitamin D3 (CAS 67-97-0), and a multi-vitamin preparation were tested in rats fed an iron-deficient diet. Uptake of iron from radiolabelled IPC with and without concomitant medications was compared. None of the medicines tested had a significant effect on iron uptake. Iron-59 retrieval from blood and major storage organs was 64-76% for IPC alone compared with 59-85% following co-administration with other medications. It is concluded that, under normal clinical conditions, IPC does not interact with these medications.

  8. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    International Nuclear Information System (INIS)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F.

    2016-01-01

    Terbium layered hydroxide nanoparticles (Tb_2(OH)_5NO_3) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb_2(OH)_5NO_3 resulted in the preparation of two optimized nanoparticles. In particular, Tb_2(OH)_5NO_3:Eu and Tb_2(OH)_5NO_3-FA were prepared when Tb_2(OH)_5NO_3 was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb_2(OH)_5NO_3, could render these nanoparticles appropriate for biomedical applications.

  9. Surface properties of calcium and magnesium oxide nanopowders grafted with unsaturated carboxylic acids studied with inverse gas chromatography.

    Science.gov (United States)

    Maciejewska, Magdalena; Krzywania-Kaliszewska, Alicja; Zaborski, Marian

    2012-09-28

    Inverse gas chromatography (IGC) was applied at infinite dilution to evaluate the surface properties of calcium and magnesium oxide nanoparticles and the effect of surface grafted unsaturated carboxylic acid on the nanopowder donor-acceptor characteristics. The dispersive components (γ(s)(D)) of the free energy of the nanopowders were determined by Gray's method, whereas their tendency to undergo specific interactions was estimated based on the electron donor-acceptor approach presented by Papirer. The calcium and magnesium oxide nanoparticles exhibited high surface energies (79 mJ/m² and 74 mJ/m², respectively). Modification of nanopowders with unsaturated carboxylic acids decreased their specific adsorption energy. The lowest value of γ(s)(D) was determined for nanopowders grafted with undecylenic acid, approximately 55 mJ/m². The specific interactions were characterised by the molar free energy (ΔG(A)(SP)) and molar enthalpy (ΔH(A)(SP)) of adsorption as well as the donor and acceptor interaction parameters (K(A), K(D)). Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xinhua, E-mail: xhxu_tju@eyou.com [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Lu Ping; Guo Meiqing; Fang Mingzhong [Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China)

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  11. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    International Nuclear Information System (INIS)

    Xu Xinhua; Lu Ping; Guo Meiqing; Fang Mingzhong

    2010-01-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly(DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  12. Cross-linked gelatin/nanoparticles composite coating on micro-arc oxidation film for corrosion and drug release

    Science.gov (United States)

    Xu, Xinhua; Lu, Ping; Guo, Meiqing; Fang, Mingzhong

    2010-02-01

    A composite coating which could control drug release and biocorrosion of magnesium alloy stent materials WE42 was prepared. This composite coating was fabricated on the surface of the micro-arc oxidation (MAO) film of the magnesium alloy, WE42, by mixing different degrees of cross-linked gelatin with well-dispersed poly( DL-lactide-co-glycolide) (PLGA) nanoparticles. The PLGA nanoparticles were prepared by emulsion solvent evaporation/extraction technique. Nano ZS laser diffraction particle size analyzer detected that the size of the nanoparticles to be 150-300 nm. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) was used to analyze the morphology of the nanoparticles and the composite coating. Potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) were used to evaluate the corrosion behavior of the composite coating. Drug release was determined by ultraviolet-visible (UV-vis) spectrophotometer. The corrosion resistance of the composite coating was improved by preventing the corrosive ions from diffusing to the MAO films. The drug release rate of paclitaxel (PTX) exhibited a nearly linear sustained-release profile with no significant burst releases.

  13. Gold nanoparticles prepared by electro-exploding wire technique in aqueous solutions

    Science.gov (United States)

    Kumar, Lalit; Kapoor, Akanksha; Meghwal, Mayank; Annapoorni, S.

    2016-05-01

    This article presents an effective approach for the synthesis of Au nanoparticles via an environmentally benevolent electro-exploding wire (EEW) technique. In this process, Au nanoparticles evolve through the plasma generated from the parent Au metal. Compared to other typical chemical methods, electro-exploding wire technique is a simple and economical technique which normally operates in water or organic liquids under ambient conditions. Efficient size control was achieved using different aqueous medium like (1mM) NaCl, deionized water and aqueous solution of sodium hydroxide (NaOH, pH 9.5) using identical electro-exploding conditions. The gold nanoparticles exhibited the UV-vis absorption spectrum with a maximum absorption band at 530 nm, similar to that of gold nanoparticles chemically prepared in a solution. The mechanism of size variation of Au nanoparticles is also proposed. The results obtained help to develop methodologies for the control of EEW based nanoparticle growth and the functionalization of nanoparticle surfaces by specific interactions.

  14. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    International Nuclear Information System (INIS)

    Djebbi, Mohamed Amine; Braiek, Mohamed; Namour, Philippe; Ben Haj Amara, Abdesslem; Jaffrezic-Renault, Nicole

    2016-01-01

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  15. Layered double hydroxide materials coated carbon electrode: New challenge to future electrochemical power devices

    Energy Technology Data Exchange (ETDEWEB)

    Djebbi, Mohamed Amine, E-mail: mohamed.djebbi@etu.univ-lyon1.fr [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Braiek, Mohamed [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Namour, Philippe [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France); Irstea, 5 rue de la Doua, 69100 Villeurbanne (France); Ben Haj Amara, Abdesslem [Laboratoire de Physique des Matériaux Lamellaires et Nano-Matériaux Hybrides, Faculté des Sciences de Bizerte, Université de Carthage, 7021 Bizerte (Tunisia); Jaffrezic-Renault, Nicole [Institut des Sciences Analytiques UMR CNRS 5280, Université Claude Bernard-Lyon 1, 5 rue de la Doua, 69100 Villeurbanne (France)

    2016-11-15

    Highlights: • MgAl and ZnAl LDH nanosheets were chemically synthesized and deposited over carbon electrode materials. • Catalytic performance of both LDHs was investigated for Fe(II) reduction reaction. • Satisfactory results have been achieved with the MgAl LDH material. • MgAl and ZnAl LDH modified carbon felt were applied in MFC as an efficient anode catalyst. • The LDH-modified anode significantly increased power performance of MFC. - Abstract: Layered double hydroxides (LDHs) have been widely used in the past years due to their unique physicochemical properties and promising applications in electroanalytical chemistry. The present paper is going to focus exclusively on magnesium-aluminum and zinc-aluminum layered double hydroxides (MgAl & ZnAl LDHs) in order to investigate the property and structure of active cation sites located within the layer structure. The MgAl and ZnAl LDH nanosheets were prepared by the constant pH co-precipitation method and uniformly supported on carbon-based electrode materials to fabricate an LDH electrode. Characterization by powder x-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and transmission electron microscopy revealed the LDH form and well-crystallized materials. Wetting surface properties (hydrophilicity and hydrophobicity) of both prepared LDHs were recorded by contact angle measurement show hydrophilic character and basic property. The electrochemical performance of these hybrid materials was investigated by mainly cyclic voltammetry, electrochemical impedance spectroscopy and chronoamperometry techniques to identify the oxidation/reduction processes at the electrode/electrolyte interface and the effect of the divalent metal cations in total reactivity. The hierarchy of the modified electrode proves that the electronic conductivity of the bulk material is considerably dependent on the divalent cation and affects the limiting parameter of the overall redox process. However

  16. 21 CFR 73.1010 - Alumina (dried aluminum hydroxide).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Alumina (dried aluminum hydroxide). 73.1010... GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1010 Alumina (dried aluminum hydroxide). (a) Identity. (1) The color additive alumina (dried aluminum hydroxide) is a white, odorless...

  17. Investigation into interaction of copper, magnesium, zinc, cadmium and nickel acetates with sodium hydroxide in aqueous solutions

    International Nuclear Information System (INIS)

    Gyunner, Eh.A.; Mel'nichenko, L.M.; Yakhkind, N.D.; Bobryshev, V.G.; Katseva, G.N.

    1978-01-01

    The composition of poorly soluble reaction products in five systems MA 2 -NaOH-H 2 O (A - -CH 3 COO - ; M 2+ -Cu 2+ , Mg 2+ , Zn 2+ , Cd 2+ , and Ni 2+ ) was determined by measuring the residual concentrations of M 2+ and OH - and the refraction index of the mother liquor (isomolal series). It was established that in systems with CuA 2 , ZnA 2 , and NiA 2 the formation of hydroxides is preceded by precipitation of hydroxoacetates Cu 2 (OH 3 )A, Zn 3 (OH) 5 A, and Ni 5 (OH) 9 A, MgA 2 and CdA 2 react with NaOH, forming only Mg(OH) 2 or Cd(OH) 2

  18. Magnesium-based implants: a mini-review.

    Science.gov (United States)

    Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit-Römer, Regine

    2014-01-01

    The goal of this review is to bring to the attention of the readership of Magnesium Research another facet of the importance of magnesium, i.e. magnesium-based biomaterials. A concise history of biomaterials and magnesium are thus presented. In addition, historical and current, clinical magnesium-based applications are presented.

  19. Oxidation of Dodecanoate Intercalated Iron(II)–Iron(III) Layered Double Hydroxide to Form 2D Iron(III) (Hydr)oxide Layers

    DEFF Research Database (Denmark)

    Huang, Li‐Zhi; Ayala‐Luis, Karina B.; Fang, Liping

    2013-01-01

    hydroxide planar layer were preserved during the oxidation, as shown by FTIR spectroscopy. The high positive charge in the hydroxide layer produced by the oxidation of iron(II) to iron(III) is partially compensated by the deprotonation of hydroxy groups, as shown by X‐ray photoelectron spectroscopy...... between the alkyl chains of the intercalated dodecanoate anions play a crucial role in stabilizing the structure and hindering the collapse of the iron(II)–iron(III) (hydr)oxide structure during oxidation. This is the first report describing the formation of a stable planar layered octahedral iron......(III) (hydr)oxide. oxGRC12 shows promise as a sorbent and host for hydrophobic reagents, and as a possible source of single planar layers of iron(III) (hydr)oxide....

  20. Ionized magnesium in plasma and erythrocytes for the assessment of low magnesium status in alcohol dependent patients.

    Science.gov (United States)

    Ordak, Michal; Maj-Zurawska, Magdalena; Matsumoto, Halina; Bujalska-Zadrozny, Magdalena; Kieres-Salomonski, Ilona; Nasierowski, Tadeusz; Muszynska, Elzbieta; Wojnar, Marcin

    2017-09-01

    Studies on the homeostasis of magnesium in alcohol-dependent patients have often been characterized by low hypomagnesemia detection rates. This may be due to the fact that the content of magnesium in blood serum constitutes only 1% of the average magnesium level within the human body. However, the concentration of ionized magnesium is more physiologically important and makes up 67% of the total magnesium within a human organism. There are no data concerning the determination of the ionized fraction of magnesium in patients addicted to alcohol and its influence on mental health status. This study included 100 alcohol-dependent patients and 50 healthy subjects. The free magnesium fraction was determined using the potentiometric method by means of using ion-selective electrodes. The total magnesium level was determined by using a biochemical Indiko Plus analyzer. In this study, different psychometric scales were applied. Our results confirm the usefulness of ionized magnesium concentrations in erythrocytes and plasma as a diagnostic parameter of low magnesium status in alcohol-dependent patients. The lower the concentration of ionized magnesium, the worse the quality of life an alcohol-dependent person might experience. In the case of total magnesium, no such correlation was determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Mechanisms of mineral membrane fouling growth modulated by pulsed modes of current during electrodialysis: evidences of water splitting implications in the appearance of the amorphous phases of magnesium hydroxide and calcium carbonate.

    Science.gov (United States)

    Cifuentes-Araya, Nicolás; Astudillo-Castro, Carolina; Bazinet, Laurent

    2014-07-15

    Experiments revealed the fouling nature evolutions along different electrodialysis (ED) trials, and how it disappears when current pulsation acts repetitively on the interfaces of ion-exchange membranes (IEMs). Fouling was totally controlled on the diluate side of cation-exchange membrane (CEM) by the repetitive pulsation frequency of the higher on-duty ratios applied. They created steady water splitting proton-barriers that neutralized OH(-) leakage through the membrane, decreasing the interfacial pH, and fouling of the concentrate side. The anion-exchange membrane (AEM) on the diluate side was similarly protected, but it was fouled once water splitting OH(-) generation became either intense enough or excessively weak. Interestingly, amorphous magnesium hydroxide (AMH) stemmed on the CEM-diluate side from brucite under intense water splitting OH(-) generation, and/or strong OH(-) leakage electromigration through the membrane. Water dissociation and overlimiting current regimes triggered drastic water molecule removal from crystal lattices through an accelerated cascade water splitting reaction. Also, amorphous calcium carbonate (ACC) appeared on CEM under intense water splitting reaction, and disappeared once intense OH(-) leakage was allowed by the water splitting proton-barrier dissipation. Our findings have implications for membrane fouling control, as well as for the understanding of the growth behavior of CaCO3 and Mg(OH)2 species on electromembrane interfaces. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calcium hydroxide cavity liner. 872.3250 Section... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a...

  3. Choline Magnesium Trisalicylate

    Science.gov (United States)

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  4. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    International Nuclear Information System (INIS)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando

    2016-01-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO 4 2− /g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO 4 2− /g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  5. EFFECT OF SODIUM SILICATE TO SODIUM HYDROXIDE RATIOS ON DURABILITY OF GEOPOLYMER MORTARS CONTAINING NATURAL AND ARTIFICIAL POZZOLANS

    Directory of Open Access Journals (Sweden)

    F. Nurhayat Degirmenci

    2017-09-01

    Full Text Available This study aims to provide the experimental data on the sulphate and acid performance of geopolymer mortar containing pozzolanic materials such as fly ash (FA, ground granulated blast furnace slag (GGBS and natural zeolite (NZ. The alkaline solution was the combination of sodium silicate and sodium hydroxide solution with the ratio (Na ₂SiO₃/NaOH of 1.0, 2.0 and 3.0. The molarity of sodium hydroxide was fixed as 10. The performances of geopolymer mortar were measured in terms of sodium and magnesium sulphate resistance and sulphuric and hydrochlorich acid resistance with 5% and 10 % concentration after 24 weeks. The evaluations were measured as visual observation, measurement of weight change and residual compressive strength. It has been observed that Na ₂SiO₃/NaOH ratio is effective on residual compressive strength of geopolymer mortar in both sulphate and acid exposure. The higher ratio of Na ₂SiO₃/NaOH results in a higher residual compressive strength. The GGBS based geopolymer mortar has a very good resistance in acid media in terms of weight loss and residual compressive strength. The inclusion of FA in the GGBS based geopolymer mixture was found to be a suitable base of geopolymer mortar under ambient curing conditions.

  6. Sol–gel synthesis of SnO{sub 2}–MgO nanoparticles and their photocatalytic activity towards methylene blue degradation

    Energy Technology Data Exchange (ETDEWEB)

    Bayal, Nisha; Jeevanandam, P., E-mail: jeevafcy@iitr.ernet.in

    2013-10-15

    Graphical abstract: - Highlights: • A simple sol–gel method for the synthesis of SnO{sub 2}–MgO nanoparticles is reported. • Band gap of SnO{sub 2} can be tuned by varying the magnesium content in SnO{sub 2}–MgO. • SnO{sub 2}–MgO shows good photocatalytic activity towards degradation of methylene blue. - Abstract: SnO{sub 2}–MgO mixed metal oxide nanoparticles were prepared by a simple sol–gel method. The nanoparticles were characterized by power X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The XRD results indicate the formation of mixed metal oxide nanoparticles and also a decrease of SnO{sub 2} crystallite size in the mixed metal oxide nanoparticles with increasing magnesium oxide content. The reflectance spectroscopy results show a blue shift of the band gap of SnO{sub 2} in the mixed metal oxide nanoparticles. The photocatalytic activity of the SnO{sub 2}–MgO nanoparticles was tested using the photodegradation of aqueous methylene blue in the presence of sunlight. The results indicate that the mixed metal oxide nanoparticles possess higher efficiency for the photodegradation of methylene blue compared to pure SnO{sub 2} nanoparticles.

  7. Au–ZnO prepared by simple in situ reduction and spontaneous of gold nanoparticles on the surface of the layered zinc hydroxide using a novel one-pot method

    Energy Technology Data Exchange (ETDEWEB)

    Prolo Massola, Bruna Cristina; Pereira de Souza, Natasha Maiara; Stachack, Fernando Ferrari Frutuoso; Rodrigues da Silva Oliveira, Everton Willian [Department of Chemistry, Federal University of Mato Grosso, Cuiabá 78060-900, MT (Brazil); Germino, José Carlos [Chemistry Institute, State University of Campinas, POB 6154, Campinas 13084-971, SP (Brazil); Terezo, Ailton José [Department of Chemistry, Federal University of Mato Grosso, Cuiabá 78060-900, MT (Brazil); Quites, Fernando Júnior, E-mail: fquites@ufmt.br [Department of Chemistry, Federal University of Mato Grosso, Cuiabá 78060-900, MT (Brazil)

    2015-11-01

    This work reports on a reproducible and simple approach to the synthesis of nanocomposites based on gold metal nanoparticles (AuNPs) and layered compounds. Layered zinc hydroxide (ZHL-layered), a layered inorganic material, was used as host for the deposition of the gold nanoparticles. It was demonstrated that gold nanoparticles were rapidly formed when ZHL-layered was added to the ethanol chloroauric acid solution at room temperature. In this system, the ethyl alcohol acted as a solvent of the gold precursor and as a reducing agent, where the Au (III) ions were mainly reduced via redox reaction between the metallic precursor and the solvent. Measurements from gas chromatography/mass spectrometry showed that the AuNPs are produced with the formation of acetaldehyde. X-ray powder diffraction (XRD) indicated that the AuNPs were adsorbed on the surface of the ZHL-layered support. The structural, morphologic and optical properties of the nanocomposites based on AuNPs and ZHL-layered (Au-ZHL) were also investigated. According to UV–vis spectroscopy and transmission electron microscopy (TEM), the resulting nanoparticles were homogeneous, spherically shaped and highly stable with no aggregation dispersed in the ZHL-layered. This simple method indicates that Au (III) ions can be easily reduced, without the use of external reducing agents, in the presence of ZHL-layered and ethyl alcohol. Finally, we also demonstrated that Au-ZHL nanocomposites can be employed as templates for the preparation of zinc oxide decorated with AuNPs (hereafter named as Au–ZnO) using phase transformation at lower temperatures. - Highlights: • Facile synthesis of the AuNPs on the surface of ZHL-layered. • Au{sup 3+} ions were reduced by visible-light irradiation in ethanol and ZHL-layered. • Formation mechanism of in situ reduction from Au{sup 3+} ions to AuNPs was discussed. • Phase transformation (at low temperature) from Au-ZHL to Au–ZnO nanocomposites. • Synthetic strategy used

  8. Au–ZnO prepared by simple in situ reduction and spontaneous of gold nanoparticles on the surface of the layered zinc hydroxide using a novel one-pot method

    International Nuclear Information System (INIS)

    Prolo Massola, Bruna Cristina; Pereira de Souza, Natasha Maiara; Stachack, Fernando Ferrari Frutuoso; Rodrigues da Silva Oliveira, Everton Willian; Germino, José Carlos; Terezo, Ailton José; Quites, Fernando Júnior

    2015-01-01

    This work reports on a reproducible and simple approach to the synthesis of nanocomposites based on gold metal nanoparticles (AuNPs) and layered compounds. Layered zinc hydroxide (ZHL-layered), a layered inorganic material, was used as host for the deposition of the gold nanoparticles. It was demonstrated that gold nanoparticles were rapidly formed when ZHL-layered was added to the ethanol chloroauric acid solution at room temperature. In this system, the ethyl alcohol acted as a solvent of the gold precursor and as a reducing agent, where the Au (III) ions were mainly reduced via redox reaction between the metallic precursor and the solvent. Measurements from gas chromatography/mass spectrometry showed that the AuNPs are produced with the formation of acetaldehyde. X-ray powder diffraction (XRD) indicated that the AuNPs were adsorbed on the surface of the ZHL-layered support. The structural, morphologic and optical properties of the nanocomposites based on AuNPs and ZHL-layered (Au-ZHL) were also investigated. According to UV–vis spectroscopy and transmission electron microscopy (TEM), the resulting nanoparticles were homogeneous, spherically shaped and highly stable with no aggregation dispersed in the ZHL-layered. This simple method indicates that Au (III) ions can be easily reduced, without the use of external reducing agents, in the presence of ZHL-layered and ethyl alcohol. Finally, we also demonstrated that Au-ZHL nanocomposites can be employed as templates for the preparation of zinc oxide decorated with AuNPs (hereafter named as Au–ZnO) using phase transformation at lower temperatures. - Highlights: • Facile synthesis of the AuNPs on the surface of ZHL-layered. • Au"3"+ ions were reduced by visible-light irradiation in ethanol and ZHL-layered. • Formation mechanism of in situ reduction from Au"3"+ ions to AuNPs was discussed. • Phase transformation (at low temperature) from Au-ZHL to Au–ZnO nanocomposites. • Synthetic strategy used can be

  9. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    Science.gov (United States)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  10. Carbon coated magnesium oxide based amperometric glucose biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Silva, L.L.; Mello, J.M.M.; Fiori, M.A.; Duarte, G.W. [Universidade Comunitaria Regional de Chapeco (UNICHAPECO), SC (Brazil); Fernandes, S.C. [Instituto Federal Catarinense (IFC), Blumenau, SC (Brazil); Riella, H.G. [Centro Universitario Barriga Verde (UNIBAVE), Orleans, SC (Brazil); Anzolin, C.; Figueiro, A.; Grando, M.C. [Universidade Federal de Santa Catarina (UFSC), SC (Brazil)

    2016-07-01

    Full text: Diabetes is a serious disease that is harmful to human health since it is related to cardiovascular and stroke events. Since the first glucose oxidase (GOx) sensor, different approaches have been explored. Carbon was used to cover nano-magnesium oxide (MgO-C) forming a core-shell which was used to improve its biocompatibility and chemical stability for the preparation of GOx biosensor. MgO nanostructures have been prepared by calcination of the gel formed by the reaction of magnesium acetate tetrahydrate dissolved in cetyltrimethylammonium with the addition of tartaric acid solution. MgO-C nanostructures were obtained by heating MgO nanoparticles previously prepared together with glucose and PEG dissolved in an aqueous suspension. Reaction conditions such as concentration of magnesium precursor, temperature and aging time show important roles in the size, morphology and growth process of the final products. The core-shell structure was evidenced by SEM/FEG and XRD and showed that the product appeared to have morphological forms of nanowires. GOx was spread onto the surface of a modified carbon paste electrode (CPE) doped with MgO-C and the effect on the biosensing properties investigated by comparing the electrochemical properties of the proposed biosensor with bare and modified CPEs by cyclic voltammetry. The amount of modifier in CPE (5-75 weight% with respect to graphite) influences the peak current and the influence of different experimental parameters (enzyme percentage, pH solution and amperometric methods) was also investigated. The results demonstrate that the GOx retains its biocatalytic activity and that the bioelectrode modified can be a possible use for other nanotechnological purposes including biomedical ones. (author)

  11. Carbon coated magnesium oxide based amperometric glucose biosensor

    International Nuclear Information System (INIS)

    Silva, L.L.; Mello, J.M.M.; Fiori, M.A.; Duarte, G.W.; Fernandes, S.C.; Riella, H.G.; Anzolin, C.; Figueiro, A.; Grando, M.C.

    2016-01-01

    Full text: Diabetes is a serious disease that is harmful to human health since it is related to cardiovascular and stroke events. Since the first glucose oxidase (GOx) sensor, different approaches have been explored. Carbon was used to cover nano-magnesium oxide (MgO-C) forming a core-shell which was used to improve its biocompatibility and chemical stability for the preparation of GOx biosensor. MgO nanostructures have been prepared by calcination of the gel formed by the reaction of magnesium acetate tetrahydrate dissolved in cetyltrimethylammonium with the addition of tartaric acid solution. MgO-C nanostructures were obtained by heating MgO nanoparticles previously prepared together with glucose and PEG dissolved in an aqueous suspension. Reaction conditions such as concentration of magnesium precursor, temperature and aging time show important roles in the size, morphology and growth process of the final products. The core-shell structure was evidenced by SEM/FEG and XRD and showed that the product appeared to have morphological forms of nanowires. GOx was spread onto the surface of a modified carbon paste electrode (CPE) doped with MgO-C and the effect on the biosensing properties investigated by comparing the electrochemical properties of the proposed biosensor with bare and modified CPEs by cyclic voltammetry. The amount of modifier in CPE (5-75 weight% with respect to graphite) influences the peak current and the influence of different experimental parameters (enzyme percentage, pH solution and amperometric methods) was also investigated. The results demonstrate that the GOx retains its biocatalytic activity and that the bioelectrode modified can be a possible use for other nanotechnological purposes including biomedical ones. (author)

  12. Production development and utilization of Zimmer Station wet FGD by-products. Final report. Volume 6, Field study conducted in fulfillment of Phase 3 titled. Use of FGD by-product gypsum enriched with magnesium hydroxide as a soil amendment

    Energy Technology Data Exchange (ETDEWEB)

    Bigham, J. M. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center; Soto, U. I. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center; Stehouwer, R. C. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center; Yibirin, H. [Ohio State Univ., Wooster, OH (United States). Ohio Agricultural Research Development Center

    1999-04-30

    A variety of flue gas desulfurization (FGD) technologies have been developed to meet environmental restrictions imposed by the federal Clean Air Act and its amendments. These technologies include wet scrubber systems that dramatically reduce sulfur dioxide (SO2) emissions. Although such systems are effective, they also produce large volumes of sludge that must be dewatered, stabilized, and disposed of in landfills. Disposal is an expensive and environmentally questionable process for which suitable alternatives are needed. Wet scrubbing of flue gases with magnesium (Mg)-enhanced lime has the potential to become a leading FGD technology. When combined with aforced oxidation system, the wet sludges resulting from this process can be modified and refined to produce gypsum (CaS04∙2H2O) and magnesium hydroxide [Mg(OH)2] of sufficient purity for beneficial re-use in the construction (wallboard) and pharmaceutical industries. The pilot plant at the CINERGY Zimmer Station near Cincinnati can also produce gypsum by-products formulated to contain varying amounts of Mg(OH)2- Such materials may have value to the agriculture, forestry, and lawn-care industries as soil "conditioners", liming agents, and nutritional supplements capable of supplying calcium (Ca), Mg, and sulfur (S) for plant growth. This report describes three field studies designed to evaluate by-product gypsum and Mg-gypsum from the Zimmer Station power plant as amendments for improving the quality of mine spoils and agricultural soils that were unproductive because of phytotoxic levels of dissolved aluminum (Al) and low pH. The technical literature suggests that gypsum may be more effective than agricultural limestone for ameliorating Al toxicity below the immediate zone of application. Such considerations are important for deep-rooted plant species that attempt to utilize water and nutrients occurring at depth in the spoil/soil.

  13. Combustion and extinction of magnesium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  14. Magnesium deficiency: What is our status

    Science.gov (United States)

    Low magnesium intake has been implicated in a broad range of cardiometabolic conditions, including diabetes, hypertension, and cardiovascular disease. Dietary magnesium and total body magnesium status have a widely-used but imperfect biomarker in serum magnesium. Despite serum magnesium’s limitation...

  15. Nucleation and growth kinetics of zirconium hydroxide by precipitation with ammonium hydroxide

    International Nuclear Information System (INIS)

    Carleson, T.E.; Chipman, N.A.

    1987-01-01

    The results of a study of the nucleation and growth kinetics of the precipitation of zirconium hydroxide from the reaction of hexafluorozirconate solution with ammonium hydroxide are reported. The McCabe linear growth rate model was used to correlate the results. The growth rate decreased with residence time and supersaturation for studies with 7 residence times (3.5 - 90 minutes and two supersaturation ratios (0.03 - 0.04, and 0.4). The nucleation rate increased with residence time and supersaturation. A negative kinetic order of nucleation was observed that may be due to the inhibition of particle growth by adsorption of reacting species on the crystal surfaces

  16. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bortolaz de Oliveira, Henrique; Wypych, Fernando, E-mail: wypych@ufpr.br

    2016-11-15

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO{sub 4}{sup 2−}/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO{sub 4}{sup 2−}/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated. - Highlights: • Zinc hydroxide nitrate and Zn/Ni hydroxide nitrate or acetate were synthesized. • The interlayer anions were replaced by chromate anions at pH=8.0. • Only Zn/Ni hydroxide nitrate or acetate have the structure preserved after exchange. • Fast exchange reaction and high capacity of chromate removal were observed. • Magnetic materials were obtained to facilitate the solids removal the from solutions.

  17. Antimicrobial Activity of Calcium Hydroxide in Endodontics: A Review

    Science.gov (United States)

    Shalavi, S; Yazdizadeh, M

    2012-01-01

    The purpose of endodontic therapy is to preserve the patient's natural teeth without compromising the patient's local or systemic health. Calcium hydroxide has been included in several materials and antimicrobial formulations that are used in several treatment modalities in endodontics, such as inter-appointment intracanal medicaments. The purpose of this article was to review the antimicrobial properties of calcium hydroxide in endodontics. Calcium hydroxide has a high pH (approximately 12.5-12.8) and is classified chemically as a strong base. The lethal effects of calcium hydroxide on bacterial cells are probably due to protein denaturation and damage to DNA and cytoplasmic membranes. Calcium hydroxide has a wide range of antimicrobial activity against common endodontic pathogens but is less effective against Enterococcus faecalis and Candida albicans. Calcium hydroxide is also a valuable anti-endotoxin agent. However, its effect on microbial biofilms is controversial. PMID:23323217

  18. Investigations of white light emitting europium doped zinc oxide nanoparticles

    International Nuclear Information System (INIS)

    Ashtaputre, S S; Nojima, A; Marathe, S K; Matsumura, D; Ohta, T; Tiwari, R; Dey, G K; Kulkarni, S K

    2008-01-01

    Europium doped zinc oxide nanoparticles have been synthesized using a chemical route. The amount of doped europium was varied which shows the changes in the photoluminescence (PL) intensity. The post synthesis annealing effect on the properties of ZnO nanoparticles has also been investigated. In general, PL is broad and a white light is emitted which originates from ZnO and the intra-4f transitions of Eu 3+ ions. The x-ray diffraction patterns do not show any Eu-related peaks for as-synthesized ZnO nanoparticles as well as for annealed samples. X-ray absorption spectroscopy reveals that europium ions are present on the surface of the core of ZnO and inside the shell of zinc hydroxide [Zn(OH 2 )] after annealing

  19. Rare earth fluorescent nanoparticles for specific cancer cell targeting

    Energy Technology Data Exchange (ETDEWEB)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F., E-mail: ghanotakis@uoc.gr [University of Crete, Department of Chemistry (Greece)

    2016-07-15

    Terbium layered hydroxide nanoparticles (Tb{sub 2}(OH){sub 5}NO{sub 3}) were synthesized by a one-pot coprecipitation method. The characterization of this preparation revealed highly oriented fluorescent nanoparticles. An attempt to improve the properties of Tb{sub 2}(OH){sub 5}NO{sub 3} resulted in the preparation of two optimized nanoparticles. In particular, Tb{sub 2}(OH){sub 5}NO{sub 3}:Eu and Tb{sub 2}(OH){sub 5}NO{sub 3}-FA were prepared when Tb{sub 2}(OH){sub 5}NO{sub 3} was doped with Europium and when the surface was modified with folic acid (FA), respectively. The size of the above nanoparticles was below 100 nm, and thus they have the potential to be used for biomedical applications. The interaction of nanoparticles with human cells was studied using confocal microscopy. This study revealed that only the nanoparticles modified with folic acid have the ability to be targeted to HeLa cells. This specific identification of cancer cells, in combination with the fluorescent properties of Tb{sub 2}(OH){sub 5}NO{sub 3}, could render these nanoparticles appropriate for biomedical applications.

  20. Synthesis, characterization and optical band gap of Pirochromite (MgCr2O4 Nanoparticles by Stearic Acid Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    Ehsan Jafarnejad

    2016-09-01

    Full Text Available Pirochromite (MgCr2O4 nanoparticles were successfully prepared in this study. During synthesis of the pirochromite nanoparticles, a sol-gel was prepared by using magnesium acetate and potassium dichromate as magnesium and chromium sources and by using stearic acid as the network. Infrared spectroscopy (FT-IR, X-ray diffraction (XRD, transmission electron microscope (TEM, scanning electron microscope (SEM, and energy-dispersive X-ray spectroscopy (EDX were used for the elemental analysis, and diffuse reflectance spectroscopy (DRS and vibrating sample magnetometer (VSM were used in order to identify, provide a fuzzy diagnosis, and determine the size and morphology of the particles, as well as to analyze the optical and magnetic properties of the particles. The particle size of MgCr2O4 nanoparticles was observed to fall within a range of 39 nm–71 nm.

  1. A study on the treatment process of industrial wastewater related to heavy metal wastewater

    International Nuclear Information System (INIS)

    Park, J. J.; Shin, J. M.; Kim, J. H.; Yang, M. S.; Kim, M. J.; Son, J. S.; Park, H. S.

    1999-08-01

    The supernatant from metal wastewater by using magnesium hydroxide and dolomite was used to treat dyeing wastewater. In the case of magnesium hydroxide. In the case of magnesium hydroxide, the optimum dosage was 10 % (v/v) for supernatant A and 3 % (v/v) for separation B. Color turbidity and COD removal was 99 to 100 % , 85 to 97 % and 43 to 53 %, respectively. In the case of dolomite, the optimum dosage was 30 % (v/v) for supernatant A and 3% for supernatant B. Color, turbidity and COD removal was 96 to 99 %, 62 to 91 % and 52 to 53 %, respectively. In dyeing wastewater treatment by using supernatant from metal wastewater, the cost of chemicals was reduced by about 80 %

  2. Magnesium Technology : Preface

    NARCIS (Netherlands)

    Sillekens, W.H.; Agnew, S.R.; Neelameggham, N.R.; Mathaudhu, S.N.

    2011-01-01

    The Magnesium Technology Symposium, which takes place every year at the TMS Annual Meeting & Exhibition, is one of the largest yearly gatherings of magnesium specialists in the world. Papers are presented in all aspects of the field, ranging from primary production to applications to recycling.

  3. The Corrosion of Magnesium and of the Magnesium Aluminum Alloys Containing Manganese

    Science.gov (United States)

    Boyer, J A

    1927-01-01

    The extensive use of magnesium and its alloys in aircraft has been seriously handicapped by the uncertainties surrounding their resistance to corrosion. This problem has been given intense study by the American Magnesium Corporation and at the request of the Subcommittee on Materials for Aircraft of the National Advisory Committee for Aeronautics this report was prepared on the corrosion of magnesium. The tentative conclusions drawn from the experimental facts of this investigation are as follows: the overvoltage of pure magnesium is quite high. On immersion in salt water the metal corrodes with the liberation of hydrogen until the film of corrosion product lowers the potential to a critical value. When the potential reaches this value it no longer exceeds the theoretical hydrogen potential plus the overvoltage of the metal. Rapid corrosion consequently ceases. When aluminum is added, especially when in large amounts, the overvoltage is decreased and hydrogen plates out at a much lower potential than with pure magnesium. The addition of small amount of manganese raises the overvoltage back to practically that of pure metal, and the film is again negative.

  4. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation.

    Science.gov (United States)

    Kum, Chang Hun; Cho, Youngjin; Seo, Seong Ho; Joung, Yoon Ki; Ahn, Dong June; Han, Dong Keun

    2014-09-24

    Biodegradable polymers such as poly(L-lactide) (PLLA) have been widely utilized as materials for biomedical applications. However, the relatively poor mechanical properties of PLLA and its acid-induced cell inflammation brought about by the acidic byproducts during biodegradation pose severe problems. In this study, these drawbacks of PLLA are addressed using a stereocomplex structure, where oligo-D-lactide-grafted magnesium hydroxide (MgO-ODLA) is synthesized by grafting d-lactide onto the surface of magnesium hydroxide, which is then blended with a PLLA film. The structure, morphology, pH change, thermal and mechanical properties, in-vitro cytotoxicity, and inflammation effect of the MgO-ODLAs and their PLLA composites are evaluated through various analyses. The PLLA/MgO70-ODLA30 (0-20 wt%) composite with a stereocomplex structure shows a 20% increase in its tensile strength and an improvement in the modulus compared to its oligo-L-lactide (PLLA/MgO70-OLLA30) counterpart. The interfacial interaction parameter of PLLA/MgO70-ODLA30 (5.459) has superior properties to those of PLLA/MgO70-OLLA30 (4.013) and PLLA/Mg(OH)2 (1.774). The cell cytotoxicity and acid-induced inflammatory response are suppressed by the neutralizing effect of the MgO-ODLAs. In addition, the inflammatory problem caused by the rapid acidification of the stereocomplex structure is also addressed. As a result, the stereocomplex structure of the MgO-ODLA/PLLA composite can be used to overcome the problems associated with the biomedical applications of PLLA films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Layered zinc hydroxide salts: Delamination, preferred orientation of hydroxide lamellae, and formation of ZnO nanodiscs

    Czech Academy of Sciences Publication Activity Database

    Demel, Jan; Pleštil, Josef; Bezdička, Petr; Janda, Pavel; Klementová, Mariana; Lang, Kamil

    2011-01-01

    Roč. 360, č. 2 (2011), s. 532-539 ISSN 0021-9797 R&D Projects: GA MŠk ME09058; GA ČR GAP207/10/1447 Institutional research plan: CEZ:AV0Z40320502; CEZ:AV0Z40500505; CEZ:AV0Z40400503 Keywords : layered zinc hydroxide * delamination * exfoliation * hydroxide layer * ZnO Subject RIV: CA - Inorganic Chemistry Impact factor: 3.070, year: 2011

  6. Vacuum FTIR study on the hygroscopicity of magnesium acetate aerosols

    Science.gov (United States)

    Wang, Na; Cai, Chen; He, Xiang; Pang, Shu-Feng; Zhang, Yun-Hong

    2018-03-01

    Hygroscopicity and volatility of secondary organic aerosol (SOA) are two important properties, which determine the composition, concentration, size, phase state of SOA and thus chemical and optical properties for SOA. In this work, magnesium acetate (Mg(Ac)2) aerosol was used as a simple SOA model in order to reveal relationship between hygroscopicity and volatility. A novel approach was set up based on a combination of a vacuum FTIR spectrometer and a home-made relative humidity (RH) controlling system. The striking advantage of this approach was that the RH and the compositions of aerosols could be obtained from a same IR spectrum, which guaranteed the synchronism between RH and spectral features on a sub-second scale. At the constant RH of 90% and 80% for 3000 s, the water content within Mg(Ac)2 aerosol particles decreased about 19.0% and 9.4% while there were 13.4% and 6.0% of acetate loss. This was attributed to a cooperation between volatile of acetic acid and Mg2 + hydrolysis in Mg(Ac)2 aerosols, which greatly suppressed the hygroscopicity of Mg(Ac)2 aerosols. When the RH changed with pulsed mode between 70% and 90%, hygroscopicity relaxation was observed for Mg(Ac)2 aerosols. Diffuse coefficient of water in the relaxation process was estimated to be 5 × 10- 12 m2·s- 1 for the Mg(Ac)2 aerosols. Combining the IR spectra analysis, the decrease in the diffuse coefficient of water was due to the formation of magnesium hydroxide accompanying acetic acid evaporation in the aerosols.

  7. Size control of MnFe2O4 nanoparticles in electric double layered magnetic fluid synthesis

    International Nuclear Information System (INIS)

    Aquino, R.; Tourinho, F.A.; Itri, R.; E Lara, M.C.F.L.; Depeyrot, J.

    2002-01-01

    We propose a method based on the pH of the synthesis to control the nanoparticle size during the ferrofluid elaboration. The particle diameter is determined by means of X-ray diffraction experiments. The measured mean size depends on the type of buffer used during the coprecipitation process. The results therefore confirm that the nanoparticle size can be monitored by the hydroxide concentration and suggest to consider the induced interplay between nucleation and crystal growth

  8. Polysulfide intercalated layered double hydroxides for metal capture applications

    Energy Technology Data Exchange (ETDEWEB)

    Kanatzidis, Mercouri G.; Ma, Shulan

    2017-04-04

    Polysulfide intercalated layered double hydroxides and methods for their use in vapor and liquid-phase metal capture applications are provided. The layered double hydroxides comprise a plurality of positively charged host layers of mixed metal hydroxides separated by interlayer spaces. Polysulfide anions are intercalated in the interlayer spaces.

  9. Sunlight-assisted synthesis of colloidal silver nanoparticles using chitosan as reducing agent

    Science.gov (United States)

    Susilowati, E.; Maryani; Ashadi

    2018-04-01

    The present study we explore an environmentally friendly colloidal silver nanoparticles preparation using chitosan as reducing agent and stabilizer. It develops a new strategy on preparation of silver nanoparticles through the gel phase using sodium hydroxide (NaOH) as accelerator reagent. Sunlight irradiation was employed to assisted reducing process of silver ions to silver nanoparticles. Localized surface plasmon resonance (LSPR) phenomenon of silver nanoparticles was investigated using UV-Vis spectrophotometer. The shape and size of silver particles were analyzed using TEM. The formation of silver nanoparticles was confirmed by the appearance of LSPR absorption peak at 396.0–412.0 nm. The absorption peak of LSPR were affected by NaOH amount, time of sulight irradiation and concentration of AgNO3. The produced silver nanoparticles were spherical with dominant size range of 5 to 8 nm as shown by TEM images. All colloidals were stable without any aggregation for 30 days after preparation.

  10. Parallel nano-assembling of a multifunctional GO/HapNP coating on ultrahigh-purity magnesium for biodegradable implants

    Science.gov (United States)

    Santos, C.; Piedade, C.; Uggowitzer, P. J.; Montemor, M. F.; Carmezim, M. J.

    2015-08-01

    This work reports the one-step fabrication of a novel coating on ultra high purity magnesium using a parallel nano assembling process. The multifunctional biodegradable surface was obtained by adding hydroxyapatite nanoparticles (HapNP) plus graphene oxide (GO). The coating was characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), micro-Raman spectroscopy. The thin phosphate coating (thickness of 1 μm) reveals a uniform coverage with cypress like structures. The incorporation of HapNP and GO promotes the hydrophilic behavior of the coating surface. The results revealed that the proposed coating can be used to tailor the surface properties such as wettability by adjusting the contents of HapNP and GO. The in vitro degradation rate of the coated magnesium suggests that the presence of HapNP and GO/HapNP in the phosphate coating decreased the current density compared to the single phosphate coating and uncoated magnesium. This study also reveals the HapNP/GO/phosphate coating induces apatite formation, showing suitable degradability that makes it a promising coating candidate for enhanced bone regeneration.

  11. Exposure to titanium dioxide and other metallic oxide nanoparticles induces cytotoxicity on human neural cells and fibroblasts

    Directory of Open Access Journals (Sweden)

    James C K Lai

    2008-12-01

    Full Text Available James C K Lai1, Maria B Lai1, Sirisha Jandhyam1, Vikas V Dukhande1, Alok Bhushan1, Christopher K Daniels1, Solomon W Leung21Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, and Biomedical Research Institute; 2Department of Civil and Environmental Engineering, College of Engineering and Biomedical Research Institute, Idaho State University, Pocatello, ID, USAAbstract: The use of titanium dioxide (TiO2 in various industrial applications (eg, production of paper, plastics, cosmetics, and paints has been expanding thereby increasing the occupational and other environmental exposure of these nanoparticles to humans and other species. However, the health effects of exposure to TiO2 nanoparticles have not been systematically assessed even though recent studies suggest that such exposure induces inflammatory responses in lung tissue and cells. Because the effects of such nanoparticles on human neural cells are unknown, we have determined the putative cytotoxic effects of these nanoparticles on human astrocytes-like astrocytoma U87 cells and compared their effects on normal human fibroblasts. We found that TiO2 micro- and nanoparticles induced cell death on both human cell types in a concentration-related manner. We further noted that zinc oxide (ZnO nanoparticles were the most effective, TiO2 nanoparticles the second most effective, and magnesium oxide (MgO nanoparticles the least effective in inducing cell death in U87 cells. The cell death mechanisms underlying the effects of TiO2 micro- and nanoparticles on U87 cells include apoptosis, necrosis, and possibly apoptosis-like and necrosis-like cell death types. Thus, our findings may have toxicological and other pathophysiological implications on exposure of humans and other mammalian species to metallic oxide nanoparticles.Keywords: cytotoxicity of titanium dioxide micro- and nanoparticles, cytotoxicity of zinc oxide and magnesium oxide nanoparticles, human neural cells

  12. Discovery of the mineral brucite (magnesium hydroxide) in the tropical calcifying alga Polystrata dura (Peyssonneliales, Rhodophyta).

    Science.gov (United States)

    Nash, Merinda C; Russell, Bayden D; Dixon, Kyatt R; Liu, Minglu; Xu, Huifang

    2015-06-01

    Red algae of the family Peyssonneliaceae typically form thin crusts impregnated with aragonite. Here, we report the first discovery of brucite in a thick red algal crust (~1 cm) formed by the peyssonnelioid species Polystrata dura from Papua New Guinea. Cells of P. dura were found to be infilled by the magnesium-rich mineral brucite [Mg(OH)2 ]; minor amounts of magnesite and calcite were also detected. We propose that cell infill may be associated with the development of thick (> ~5 mm) calcified red algal crusts, integral components of tropical biotic reefs. If brucite infill within the P. dura crust enhances resistance to dissolution similarly to crustose coralline algae that infill with dolomite, then these crusts would be more resilient to future ocean acidification than crusts without infill. © 2015 Phycological Society of America.

  13. Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: a selective and sustainable oxidation protocol with high turnover number

    Science.gov (United States)

    A magnetic nanoparticle-supported ruthenium hydroxide catalyst was readily prepared from inexpensive starting materials and shown to catalyze hydration of nitriles with excellent yield in benign aqueous medium. Catalyst recovery using an external magnetic field, superior activity...

  14. Two-dimensional magnesium oxide nanosheets reinforced epoxy nanocomposites for enhanced fracture toughness

    Science.gov (United States)

    Balguri, Praveen Kumar; Harris Samuel, D. G.; Guruvishnu, T.; Aditya, D. B.; Mahadevan, S. M.; Thumu, Udayabhaskararao

    2018-01-01

    Metal oxide nanoparticles have been used as excellent reinforcements to enhance mechanical properties of polymers, natural composites, and ceramics. To date, a major portion of metal oxides used as nanofillers is three dimensional spherical nanoparticles. In the last decade, two-dimensional (2D) materials such as graphene have been widely investigated to improve the mechanical and electrical properties of polymer materials. In this paper, 2D Magnesium oxide (MgO) nanosheets reinforced epoxy composites (0.1, 0.2 and 0.4 wt%) are fabricated and studied for their ability to resist the propagation of preexisting flaw by conducting fracture toughness test for K IC, critical stress intensity factor. This property is an important mechanical property for designing applications in various engineering technologies. Our results show that the MgO with 0.2 wt% is the optimized level to improve the fracture toughness of the epoxy polymer by 47%.

  15. Dynamic recovery and optical properties changes in He-implanted ZnO nanoparticles

    International Nuclear Information System (INIS)

    Lee, J.-K.; Harriman, T.A.; Lucca, D.A.; Jung, H.S.; Ryan, D.B.; Nastasi, M.

    2007-01-01

    A study of the effects of ion-implanted He + on the photoluminescence (PL) of ZnO nanoparticles is presented. This investigation is motivated by the need to further understand the effects of damage resulting from the implantation process on the luminescence response of the nanoparticles. ZnO nanoparticles were synthesized by reacting zinc acetate with lithium hydroxide. The nanoparticle suspension was then dip coated on SiO 2 substrates producing thin films of ZnO nanoparticles, which were then implanted with He + ions at either room temperature or 400 deg. C. Following implantation, the PL spectrum of the ZnO nanoparticles was investigated and compared to that obtained from He-implanted bulk ZnO. Change in the overall luminescence efficiency was found to depend on both the size of the nanoparticles and the implantation temperature, and is attributed to the dynamic recovery of collision cascades in the ZnO nanoparticles. In addition, a comparison of He + -implanted ZnO nanoparticles with He + -implanted ZnO single crystals indicates that the origin of the green luminescence occurring from the ZnO nanoparticles is near-surface complex defects

  16. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution ... Having tremendous load bearing capacity, it can withstand .... retention coefficients for similar concrete compositions.

  17. Mineral resource of the month: magnesium

    Science.gov (United States)

    Kramer, Deborah A.

    2012-01-01

    Magnesium is the eighthmost abundant element in Earth’s crust, and the second-most abundant metal ion in seawater. Although magnesium is found in more than 60 minerals, only brucite, dolomite, magnesite and carnallite are commercially important for their magnesium content. Magnesium and its compounds also are recovered from seawater, brines found in lakes and wells, and bitterns (salts).

  18. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... hydrochloric acid solution and crystallizing out magnesium chloride hexahydrate. (b) The ingredient meets the...

  19. Color stable phosphors for LED lamps and methods for preparing them

    Science.gov (United States)

    Murphy, James Edward; Setlur, Anant Achyut; Camardello, Samuel Joseph

    2013-11-26

    An LED lamp includes a light source configured to emit radiation with a peak intensity at a wavelength between about 250 nm and about 550 nm; and a phosphor composition configured to be radiationally coupled to the light source. The phosphor composition includes particles of a phosphor of formula I, said particles having a coating composition disposed on surfaces thereof; ((Sr.sub.1-zM.sub.z).sub.1-(x+w)A.sub.wCe.sub.x).sub.3(Al.sub.1-ySi.sub.y-)O.sub.4+y+3(x-w)F.sub.1-y-3(x-w) I wherein the coating composition comprises a material selected from aluminum oxide, magnesium oxide, calcium oxide, barium oxide, strontium oxide, zinc oxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, strontium hydroxide, zinc hydroxide, aluminum phosphate, magnesium phosphate, calcium phosphate, barium phosphate, strontium phosphate, and combinations thereof; and A is Li, NA, K, or Rb, or a combination thereof; M is Ca, Ba, Mg, Zn, or a combination thereof; and 0

  20. Preparation of Metal Nanoparticles via Sonochemical Reduction

    OpenAIRE

    Saura Puig, Oriol

    2011-01-01

    Pure nickel, copper and zinc nanoparticles were prepared from chlorides of these elements using ultrasound with three different reducing agents (zinc, aluminum and magnesium). In the second part, syntheses of nickel-copper alloy and nickel-zinc using ultrasound were investigated. The products were characterized by powder X-ray diffraction. The reaction parameters, such as sonification time, the amount of reagents and reaction conditions were modified to observe variations in...

  1. Calcium hydroxide suppresses Porphyromonas endodontalis lipopolysaccharide-induced bone destruction.

    Science.gov (United States)

    Guo, J; Yang, D; Okamura, H; Teramachi, J; Ochiai, K; Qiu, L; Haneji, T

    2014-05-01

    Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS-induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS-suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS-induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS-induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.

  2. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites.

    Science.gov (United States)

    Nedim Ay, Ahmet; Konuk, Deniz; Zümreoglu-Karan, Birgul

    2011-02-03

    A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.

  3. Influence Of Carboxymethyl Cellulose For The Transport Of Titanium Dioxide Nanoparticles In Clean Silica And Mineral-Coated Sands

    Science.gov (United States)

    The transport properties of titanium dioxide (anatase polymorph) nanoparticles encapsulated by carboxymethyl cellulose (CMC) were evaluated as a function of changes in the solute chemical properties in clean quartz, amorphous aluminum and iron hydroxide-coated sands. While prist...

  4. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    International Nuclear Information System (INIS)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn 5 (OH) 8 Cl 2 ·2H 2 O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C. - Graphical abstract: The zinc hydroxide chloride (ZHC) with formula Zn 5 (OH) 8 Cl 2 ·2H 2 O was tested as intercalation matrix. In comparison with the well-known zinc hydroxide nitrate (ZHN) and layered double hydroxides (LDH), ZHC was the best matrix for thermal protection of Asp combustion, presenting exothermic peaks even at 452 °C, while the highest exothermic event in ZHN was at 366 °C, and in the LDH it was at 276 °C. Highlights: ► Zinc hydroxide chloride (ZHC) was tested as intercalation matrix for the first time. ► ZHC has higher chemical and thermal stability than zinc hydroxide nitrate and LDH. ► NH 3 molecules can be intercalated into ZHC. ► The amino group of amino acids limits the intercalation by ion-exchange.

  5. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  6. 21 CFR 862.1495 - Magnesium test system.

    Science.gov (United States)

    2010-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of magnesium). (b) Classification. Class I. ...

  7. Corrosion Resistance of the Superhydrophobic Mg(OH2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys

    Directory of Open Access Journals (Sweden)

    Fen Zhang

    2016-04-01

    Full Text Available Coatings of the Mg(OH2/Mg-Al layered double hydroxide (LDH composite were formed by a combined co-precipitation method and hydrothermal process on the AZ31 alloy substrate in alkaline condition. Subsequently, a superhydrophobic surface was successfully constructed to modify the composite coatings on the AZ31 alloy substrate using stearic acid. The characteristics of the composite coatings were investigated by means of X-ray diffractometer (XRD, Fourier transform infrared spectroscopy (FTIR, X-ray photoelectron spectroscopy (XPS, scanning electronic microscope (SEM and contact angle (CA. The corrosion resistance of the coatings was assessed by potentiodynamic polarization, the electrochemical impedance spectrum (EIS, the test of hydrogen evolution and the immersion test. The results showed that the superhydrophobic coatings considerably improved the corrosion resistant performance of the LDH coatings on the AZ31 alloy substrate.

  8. Radioactive 210Po in magnesium supplements

    International Nuclear Information System (INIS)

    Struminska-Parulska, Dagmara Ida

    2016-01-01

    The aim of this pioneer study was to determine polonium 210 Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring 210 Po activity concentrations in magnesium supplements, find the correlations between 210 Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest 210 Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g -1 (sample Mg17). The highest annual radiation dose from 210 Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year -1 respectively.

  9. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  10. XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures

    International Nuclear Information System (INIS)

    Sunding, M.F.; Hadidi, K.; Diplas, S.; Lovvik, O.M.; Norby, T.E.; Gunnaes, A.E.

    2011-01-01

    Highlights: → Gold particles deposited in vacuum as energy reference for insulating samples in XPS. → Separation of La 3d and MNN peaks in XP spectra acquired with Al Kα radiation. → We describe the spectral differences between lanthanum oxide and lanthanum hydroxide. → A doublet in O 1s of La 2 O 3 is ascribed to two distinct oxygen sites in the crystal. - Abstract: A technique is described for deposition of gold nanoparticles under vacuum, enabling consistent energy referencing of X-ray photoelectron spectra obtained from lanthanum hydroxide La(OH) 3 and in situ treated lanthanum oxide La 2 O 3 powders. A method is also presented for the separation of the overlapping lanthanum 3d and MNN peaks in X-ray photoelectron spectra acquired with Al Kα radiation. The lower satellite intensity in La(OH) 3 compared to La 2 O 3 is related to the higher ionicity of the La-O bond in the former compared to the latter compound. The presence of an additional peak in the valence band spectrum of the hydroxide compared to the oxide is attributed to the O-H bond as indicated by density functional theory based calculations. A doublet in the O 1s peak of lanthanum oxide is associated to the presence of two distinct oxygen sites in the crystal structure of this compound.

  11. Nanostructured magnesium increases bone cell density.

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  12. Calcium and magnesium determination

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.

    1982-01-01

    The roles of calcium and magnesium in human health and disease have been extensively studied. Calcium and magnesium have been determined in biological specimens by atomic absorption spectroscopy using stiochiometric nitrous oxide-acetylene flame

  13. Studying the mechanism of hybrid nanoparticle EUV photoresists

    KAUST Repository

    Zhang, Ben; Li, Li; Jiang, Jing; Neisser, Mark; Chun, Jun Sung; Ober, Christopher K.; Giannelis, Emmanuel P.

    2015-01-01

    This work focuses on the investigation of dual tone patterning mechanism with hybrid inorganic/organic photoresists. Hafnium oxide (HfO2) modified with acrylic acid was prepared and the influence of electrolyte solutions as well as pH on its particle size change was investigated. The average particle size and zeta potential of the nanoparticles in different electrolyte solutions were measured. The results show that addition of different concentrations of electrolytes changed the hydrodynamic diameter of nanoparticles in water. Increased concentration of tetramethyl ammonium hydroxide (TMAH) caused the zeta potential of nanoparticles to change from positive to negative and its hydrodynamic diameter to increase from 40 nm to 165 nm. In addition, increasing concentration of triflic acid led to the decrease of particle size and zeta potential. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  14. Studying the mechanism of hybrid nanoparticle EUV photoresists

    KAUST Repository

    Zhang, Ben

    2015-03-23

    This work focuses on the investigation of dual tone patterning mechanism with hybrid inorganic/organic photoresists. Hafnium oxide (HfO2) modified with acrylic acid was prepared and the influence of electrolyte solutions as well as pH on its particle size change was investigated. The average particle size and zeta potential of the nanoparticles in different electrolyte solutions were measured. The results show that addition of different concentrations of electrolytes changed the hydrodynamic diameter of nanoparticles in water. Increased concentration of tetramethyl ammonium hydroxide (TMAH) caused the zeta potential of nanoparticles to change from positive to negative and its hydrodynamic diameter to increase from 40 nm to 165 nm. In addition, increasing concentration of triflic acid led to the decrease of particle size and zeta potential. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  15. Photoemission study of metallic iron nanoparticles surface aging in biological fluids. Influence on biomolecules adsorption

    International Nuclear Information System (INIS)

    Canivet, L.; Denayer, F.O.; Champion, Y.; Cenedese, P.; Dubot, P.

    2014-01-01

    Iron nanoparticles (nFe) prepared by vaporization and cryogenic condensation process (10–100 nm) has been exposed to Hank's balanced salt solution (HBSS) and the B-Ali cell growth fluids. These media can be used for cellular growth to study nFe penetration through cell membrane and its induced cytotoxicity. Surface chemistry of nFe exposed to such complex fluids has been characterized as the nanoparticles surface can be strongly changed by adsorption or corrosion processes before reaching intracellular medium. Particle size and surface chemistry have been characterized by scanning electron microscopy (SEM) and high-resolution X-ray photoelectron spectroscopy (HR-XPS). Exposition of nFe particles to growth and differentiation media leads to the formation of an oxy-hydroxide layer containing chlorinated species. We found that the passivated Fe 2 O 3 layer of the bare nFe particles is rapidly transformed into a thicker oxy-hydroxide layer that has a greater ability to adsorb molecular ions or ionic biomolecules like proteins or DNA.

  16. Biocorrosion and osteoconductivity of PCL/nHAp composite porous film-based coating of magnesium alloy

    Science.gov (United States)

    Abdal-hay, Abdalla; Amna, Touseef; Lim, Jae Kyoo

    2013-04-01

    The present study was aimed at designing a novel porous hydroxyapatite/poly(ɛ-caprolactone) (nHAp/PCL) hybrid nanocomposite matrix on a magnesium substrate with high and low porosity. The coated samples were prepared using a dip-coating technique in order to enhance the bioactivity and biocompatibility of the implant and to control the degradation rate of magnesium alloys. The mechanical and biocompatible properties of the coated and uncoated samples were investigated and an in vitro test for corrosion was conducted by electrochemical polarization and measurement of weight loss. The corrosion test results demonstrated that both the pristine PCL and nHAp/PCL composites showed good corrosion resistance in SBF. However, during the extended incubation time, the composite coatings exhibited more uniform and superior resistance to corrosion attack than pristine PCL, and were able to survive severe localized corrosion in physiological solution. Furthermore, the bioactivity of the composite film was determined by the rapid formation of uniform CaP nanoparticles on the sample surfaces during immersion in SBF. The mechanical integrity of the composite coatings displayed better performance (˜34% higher) than the uncoated samples. Finally, our results suggest that the nHAp incorporated with novel PCL composite membranes on magnesium substrates may serve as an excellent 3-D platform for cell attachment, proliferation, migration, and growth in bone tissue. This novel as-synthesized nHAp/PCL membrane on magnesium implants could be used as a potential material for orthopedic applications in the future.

  17. Flame synthesis of nanoparticles - Applications in catalysis and product/process engineering

    DEFF Research Database (Denmark)

    Johannessen, Tue; Jensen, Joakim R.; Mosleh, Majid

    2004-01-01

    High-temperature flame processes for the production of nanoparticles can be applied in chemical product and process engineering. As an example one can produce well-defined spinel structures, e.g. zinc aluminate spinel (ZnAl2O4) and magnesium aluminate spinel (MgAl2O4) with high specific surface a...

  18. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    International Nuclear Information System (INIS)

    Hörst, S. M.; Brown, M. E.

    2013-01-01

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  19. Direct Precipitation and Characterization of ZnO Nanoparticles

    Directory of Open Access Journals (Sweden)

    A. H. Moharram

    2014-01-01

    Full Text Available ZnO nanoparticles are prepared through hydrolysis and condensation of zinc acetate dihydrate by potassium hydroxide in alcoholic medium at low temperatures. Thermal gravimetric analysis (TGA of the precursor is made in order to specify the temperature range over which the weight loss and thermal effect are significant. X-ray diffraction of the as-prepared specimens shows that the hexagonal (a=3.2459 Å, c=5.1999 Å structure is the predominant crystallographic structure. According to Scherer’s formula, the average size of the nanoparticles is 22.4 ± 0.6 nm. The structural properties of the synthesized ZnO nanoparticles have been confirmed using the TEM micrographs. The optical energy gap of the ZnO nanoparticles, as obtained from applying Tauc’s equation, is equal to 3.52 eV, which is higher than that of the bulk material. Absorption peak of the as-prepared sample is 298 nm which is highly blue shifted as compared to the bulk (360 nm. Large optical energy gap and highly blue shifted absorption edge confirm that the prepared ZnO nanoparticle exhibits strong quantum confinement effect.

  20. Cucurbit[7]uril as a tool in the green synthesis of gold nanoparticles.

    Science.gov (United States)

    Premkumar, Thathan; Geckeler, Kurt E

    2010-12-03

    A simple, green, one-pot synthesis of gold nanoparticles was achieved through the reaction of an aqueous mixture of potassium tetrachloroaurate(III) and the macrocycle cucurbit[7]uril in the presence of sodium hydroxide at room temperature without introducing any kind of traditional reducing agents and/or external energy. The as-prepared gold nanoparticles showed catalytic activity for the reduction reaction of 4-nitrophenol in the presence of NaBH(4), which has been established by visual inspection and UV/Vis spectroscopy. This report is the first for the preparation of gold nanoparticles using cucurbit[7]uril in aqueous media through chemical reduction without employing conventional reducing agents and/or external energy.

  1. Corrosion of magnesium and some magnesium alloys in gas cooled reactors

    International Nuclear Information System (INIS)

    Caillat, R.; Darras, R.

    1958-01-01

    The results of corrosion tests on magnesium and some magnesium alloys (Mg-Zr and Mg-Zr-Zn) in moist air (like G1 reactor) and in CO 2 : (like G2, G3, EDF1 reactors) are reported. The maximum temperature for exposure of magnesium to moist air without any risk of corrosion is 350 deg. C. Indeed, the oxidation rate follows a linear law above 350 deg. C although it reaches a constant level and keeps on very low under 350 deg. C. However, as far as corrosion is concerned this temperature limit can be raised up to 500 deg. C if moist air is very slightly charged with fluorinated compounds. Under pressure of CO 2 , these three materials oxidate much more slowly even if 500 deg. C is reached. The higher is the temperature, the higher is the constant level of the weight increase and the quicker is reached this one. However, Mg-Zr alloy behaves quite better than pure magnesium and especially than Mg-Zr-Zn alloy. (author) [fr

  2. High corrosion resistance of electroless composite plating coatings on AZ91D magnesium alloys

    International Nuclear Information System (INIS)

    Song, Y.W.; Shan, D.Y.; Han, E.H.

    2008-01-01

    The process of electroless plating Ni-P on AZ91D magnesium alloys was improved. The Ni-P-ZrO 2 composite coatings and multilayer coatings were investigated based on the new electroless plating process. The coatings surface and cross-section morphologies were observed with scanning electron microscopy (SEM). The chemical compositions were analyzed by EDXS. The corrosion behaviors were evaluated by immersion, salt spray and electrochemical tests. The experimental results indicated that the Ni-P-ZrO 2 composite coatings suffered attack in NaCl solution but displayed passivation characteristics in NaOH and Na 2 SO 4 solutions. The corrosion resistance of Ni-P-ZrO 2 coatings was superior to Ni-P coatings due to the effect of ZrO 2 nano-particle. The multilayer coatings consisting of Ni-P-ZrO 2 /electroplating nickel/Ni-P (from substrate to surface) can protect magnesium alloys from corroding more than 1000 h for the salt spray test

  3. Magnetic behavior of nickel ferrite nanoparticles prepared by co-precipitation route

    International Nuclear Information System (INIS)

    Maaz, K.; Mashiatullah, A.; Javed, T.; Ali, G.; Karim, S.

    2008-01-01

    Magnetic nanoparticles of nickel ferrite (NiFe/sub 2/O/sub 4/) have been synthesized by co-precipitation route using stable ferric and nickel salts with sodium hydroxide as the precipitating agent and oleic acid as the surfactant. X-ray Diffraction (XRD) and Transmission Electron Microscope (TEM) analyses confirmed the formation of single phase nickel ferrite nanoparticles in the range 8-28 nm. The size of the particles was observed to be increasing linearly with increasing annealing temperature of the sample. Typical blocking effects were observed below -225 K for all the prepared samples. The superparamagnetic blocking temperature was found to be continuously increasing with increasing particle sizes that has been attributed to the increased effective anisotropy of the nanoparticles. The saturation moment of all the samples was found much below the bulk value of nickel ferrite that has been attributed to the disordered surface spins of these nanoparticles. (author)

  4. A systemic study on key parameters affecting nanocomposite coatings on magnesium substrates.

    Science.gov (United States)

    Johnson, Ian; Wang, Sebo Michelle; Silken, Christine; Liu, Huinan

    2016-05-01

    Nanocomposite coatings offer multiple functions simultaneously to improve the interfacial properties of magnesium (Mg) alloys for skeletal implant applications, e.g., controlling the degradation rate of Mg substrates, improving bone cell functions, and providing drug delivery capability. However, the effective service time of nanocomposite coatings may be limited due to their early delamination from the Mg-based substrates. Therefore, the objective of this study was to address the delamination issue of nanocomposite coatings, improve the coating properties for reducing the degradation of Mg-based substrates, and thus improve their cytocompatibility with bone marrow derived mesenchymal stem cells (BMSCs). The surface conditions of the substrates, polymer component type of the nanocomposite coatings, and post-deposition processing are the key parameters that contribute to the efficacy of the nanocomposite coatings in regulating substrate degradation and bone cell responses. Specifically, the effects of metallic surface versus alkaline heat-treated hydroxide surface of the substrates on coating quality were investigated. For the nanocomposite coatings, nanophase hydroxyapatite (nHA) was dispersed in three types of biodegradable polymers, i.e., poly(lactic-co-glycolic acid) (PLGA), poly(l-lactic acid) (PLLA), or poly(caprolactone) (PCL) to determine which polymer component could provide integrated properties for slowest Mg degradation. The nanocomposite coatings with or without post-deposition processing, i.e., melting, annealing, were compared to determine which processing route improved the properties of the nanocomposite coatings most significantly. The results showed that optimizing the coating processes addressed the delamination issue. The melted then annealed nHA/PCL coating on the metallic Mg substrates showed the slowest degradation and the best coating adhesion, among all the combinations of conditions studied; and, it improved the adhesion density of BMSCs

  5. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution

    Science.gov (United States)

    Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang

    2011-12-01

    A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.

  6. Nanostructured magnesium increases bone cell density

    International Nuclear Information System (INIS)

    Weng, Lucy; Webster, Thomas J

    2012-01-01

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH − which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied. (paper)

  7. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  8. Nickel and cobalt bimetallic hydroxide catalysts for urea electro-oxidation

    International Nuclear Information System (INIS)

    Yan Wei; Wang Dan; Botte, Gerardine G.

    2012-01-01

    Nickel–Cobalt bimetallic hydroxide electrocatalysts, synthesized through a one-step electrodeposition method, were evaluated for the oxidation of urea in alkaline conditions with the intention of reducing the oxidation overpotential for this reaction. The Nickel–Cobalt bimetallic hydroxide catalysts were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDXS), Raman spectroscopy, cyclic voltammetry (CV), and polarization techniques. A significant reduction in the overpotential (150 mV) of the reaction was observed with the Nickel–Cobalt bimetallic hydroxide electrode (ca. 43% Co content) when compared to a nickel hydroxide electrode. The decrease of the urea oxidation potential on the Nickel–Cobalt bimetallic hydroxide electrodes reveals great potential for future applications of urea electro-oxidation, including wastewater remediation, hydrogen production, sensors, and fuel cells.

  9. Evaluation of layered zinc hydroxide nitrate and zinc/nickel double hydroxide salts in the removal of chromate ions from solutions

    Science.gov (United States)

    de Oliveira, Henrique Bortolaz; Wypych, Fernando

    2016-11-01

    Layered zinc hydroxide nitrate (ZnHN) and Zn/Ni layered double hydroxide salts were synthesized and used to remove chromate ions from solutions at pH 8.0. The materials were characterized by many instrumental techniques before and after chromate ion removal. ZnHN decomposed after contact with the chromate solution, whereas the layered structure of Zn/Ni hydroxide nitrate (Zn/NiHN) and Zn/Ni hydroxide acetate (Zn/NiHA) remained their layers intact after the topotactic anionic exchange reaction, only changing the basal distances. ZnHN, Zn/NiHN, and Zn/NiHA removed 210.1, 144.8, and 170.1 mg of CrO42-/g of material, respectively. Although the removal values obtained for Zn/NiHN and Zn/NiHA were smaller than the values predicted for the ideal formulas of the solids (194.3 and 192.4 mg of CrO42-/g of material, respectively), the measured capacities were higher than the values achieved with many materials reported in the literature. Kinetic experiments showed the removal reaction was fast. To facilitate the solid/liquid separation process after chromium removal, Zn/Ni layered double hydroxide salts with magnetic supports were also synthesized, and their ability to remove chromate was evaluated.

  10. Preparation of antimony-doped nanoparticles by hydrothermal method

    Institute of Scientific and Technical Information of China (English)

    JIANG Ming-xi; YANG Tian-zu; GU Ying-ying; DU Zuo-juan; LIU Jian-ling

    2005-01-01

    Antimony-doped tin oxide(ATO) nanoparticles were prepared by the mild hydrothermal method at 200 ℃ using sodium stannate, antimony oxide, sodium hydroxide and sulfuric acid as the starting materials. The doped powders were examined by differential thermal analysis(DTA), X-ray diffractometry(XRD) and transmission electron microscopy(TEM). The doping levels of antimony were determined by volumetric method and iodimetry.The results show that antimony is incorporated into the crystal lattice of tin oxide and the doping levels of antimony in the resulting powders are 2.4%, 4.3 % and 5.1 % (molar fraction). The mean particle size of ATO nanoparticles is in the range of 25 - 30 nm. The effects of antimony doping level on the crystalline size and crystallinity were also discussed.

  11. Iodine Sequestration Using Delafossites and Layered Hydroxides

    International Nuclear Information System (INIS)

    J.D. Pless; J.B. Chwirka; J.L. Krumhansl

    2006-01-01

    The objective of this document is to report on early success for sequestering 129 I. Sorption coefficients (K d ) for I - and IO 3 - onto delafossites, spinels and layered metal hydroxides were measured in order to compare their applicability for sequestering 129 I. The studies were performed using a dilute fluid composition representative of groundwater indigenous to the Yucca mountain area. Delafossites generally exhibited relatively poor sorption coefficients ( 1.7 mL/g). In contrast, the composition of the layered hydroxides significantly affects their ability to sorb I. Cu/Al and Cu/Cr layered hydroxide samples exhibit K d 's greater than 10 3 mL/g for both I - and IO 3 -

  12. Magnesium-DNA interactions and the possible relation of magnesium to carcinogenesis. Irradiation and free radicals.

    Science.gov (United States)

    Anastassopoulou, J; Theophanides, T

    2002-04-01

    Magnesium deficiency causes renal complications. The appearance of several diseases is related to its depletion in the human body. In radiotherapy, as well as in chemotherapy, especially in treatment of cancers with cis-platinum, hypomagnesaemia is observed. The site effects of chemotherapy that are due to hypomagnesaemia are decreased using Mg supplements. The role of magnesium in DNA stabilization is concentration dependent. At high concentrations there is an accumulation of Mg binding, which induces conformational changes leading to Z-DNA, while at low concentration there is deficiency and destabilization of DNA. The biological and clinical consequences of abnormal concentrations are DNA cleavage leading to diseases and cancer. Carcinogenesis and cell growth are also magnesium-ion concentration dependent. Several reports point out that the interaction of magnesium in the presence of other metal ions showed that there is synergism with Li and Mn, but there is magnesium antagonism in DNA binding with the essential metal ions in the order: Zn>Mg>Ca. In the case of toxic metals such as Cd, Ga and Ni there is also antagonism for DNA binding. It was found from radiolysis of deaerated aqueous solutions of the nucleoside 5'-guanosine monophosphate (5'-GMP) in the presence as well as in the absence of magnesium ions that, although the addition of hydroxyl radicals (*OH) has been increased by 2-fold, the opening of the imidazole ring of the guanine base was prevented. This effect was due to the binding of Mg2+ ions to N7 site of the molecule by stabilizing the five-member ring imitating cis-platinum. It was also observed using Fourier Transform Infrared spectroscopy, Raman spectroscopy and Fast Atom Bombardment mass spectrometry that *OH radicals subtract H atoms from the C1', C4' and C5' sites of the nucleotide. Irradiation of 5'-GMP in the presence of oxygen (2.5 x 10(-4) M) shows that magnesium is released from the complex. There is spectroscopic evidence that

  13. Nickel-cobalt hydroxide nanosheets: Synthesis, morphology and electrochemical properties

    Czech Academy of Sciences Publication Activity Database

    Schneiderová, Barbora; Demel, Jan; Zhigunov, Alexander; Bohuslav, Jan; Tarábková, Hana; Janda, Pavel; Lang, Kamil

    2017-01-01

    Roč. 499, AUG (2017), s. 138-144 ISSN 0021-9797 Institutional support: RVO:61388980 ; RVO:61389013 ; RVO:61388955 Keywords : Hydroxide nanosheets * Delamination * Exfoliation * Layered nickel hydroxide * Layered cobalt hydroxide * Electrode material Subject RIV: CA - Inorganic Chemistry; CF - Physical ; Theoretical Chemistry (UFCH-W); CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Inorganic and nuclear chemistry; Physical chemistry (UFCH-W); Polymer science (UMCH-V) Impact factor: 4.233, year: 2016

  14. Prolate spheroidal hematite particles equatorially belt with drug-carrying layered double hydroxide disks: Ring Nebula-like nanocomposites

    Directory of Open Access Journals (Sweden)

    Nedim Ay Ahmet

    2011-01-01

    Full Text Available Abstract A new nanocomposite architecture is reported which combines prolate spheroidal hematite nanoparticles with drug-carrying layered double hydroxide [LDH] disks in a single structure. Spindle-shaped hematite nanoparticles with average length of 225 nm and width of 75 nm were obtained by thermal decomposition of hydrothermally synthesized hematite. The particles were first coated with Mg-Al-NO3-LDH shell and then subjected to anion exchange with salicylate ions. The resulting bio-nanohybrid displayed a close structural resemblance to that of the Ring Nebula. Scanning electron microscope and transmission electron microscopy images showed that the LDH disks are stacked around the equatorial part of the ellipsoid extending along the main axis. This geometry possesses great structural tunability as the composition of the LDH and the nature of the interlayer region can be tailored and lead to novel applications in areas ranging from functional materials to medicine by encapsulating various guest molecules.

  15. Ligand-Doped Copper Oxo-hydroxide Nanoparticles are Effective Antimicrobials

    Science.gov (United States)

    Bastos, Carlos A. P.; Faria, Nuno; Ivask, Angela; Bondarenko, Olesja M.; Kahru, Anne; Powell, Jonathan

    2018-04-01

    Bacterial resistance to antimicrobial therapies is an increasing clinical problem. This is as true for topical applications as it is for systemic therapy. Topically, copper ions may be effective and cheap antimicrobials that act through multiple pathways thereby limiting opportunities to bacteria for resistance. However, the chemistry of copper does not lend itself to facile formulations that will readily release copper ions at biologically compatible pHs. Here, we have developed nanoparticulate copper hydroxide adipate tartrate (CHAT) as a cheap, safe, and readily synthesised material that should enable antimicrobial copper ion release in an infected wound environment. First, we synthesised CHAT and showed that this had disperse aquated particle sizes of 2-5 nm and a mean zeta potential of - 40 mV. Next, when diluted into bacterial medium, CHAT demonstrated similar efficacy to copper chloride against Escherichia coli and Staphylococcus aureus, with dose-dependent activity occurring mostly around 12.5-50 mg/L of copper. Indeed, at these levels, CHAT very rapidly dissolved and, as confirmed by a bacterial copper biosensor, showed identical intracellular loading to copper ions derived from copper chloride. However, when formulated at 250 mg/L in a topically applied matrix, namely hydroxyethyl cellulose, the benefit of CHAT over copper chloride was apparent. The former yielded rapid sustained release of copper within the bactericidal range, but the copper chloride, which formed insoluble precipitates at such concentration and pH, achieved a maximum release of 10 ± 7 mg/L copper by 24 h. We provide a practical formulation for topical copper-based antimicrobial therapy. Further studies, especially in vivo, are merited.

  16. Aluminum hydroxide issue closure package

    International Nuclear Information System (INIS)

    Bergman, T.B.

    1998-01-01

    Aluminum hydroxide coatings on fuel elements stored in aluminum canisters in K West Basin were measured in July and August 1998. Good quality data was produced that enabled statistical analysis to determine a bounding value for aluminum hydroxide at a 99% confidence level. The updated bounding value is 10.6 kg per Multi-Canister Overpack (MCO), compared to the previously estimated bounding value of 8 kg/MCO. Thermal analysis using the updated bounding value, shows that the MCO generates oxygen concentrate that are below the lower flammability limits during the 40-year interim storage period and are, therefore, acceptable

  17. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China); Tjiu, Weng Weei [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602 (Singapore); Liu Tianxi, E-mail: txliu@fudan.edu.cn [State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433 (China)

    2012-06-15

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  18. Electrospun fibers of layered double hydroxide/biopolymer nanocomposites as effective drug delivery systems

    International Nuclear Information System (INIS)

    Miao, Yue-E.; Zhu Hong; Chen Dan; Wang Ruiyu; Tjiu, Weng Weei; Liu Tianxi

    2012-01-01

    Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on a combination of LDH-IBU with two kinds of biopolymers (i.e. PCL and PLA), to act as effective drug delivery systems. Ibuprofen (IBU) is chosen as a model drug, which is intercalated in MgAl-LDH by coprecipitation. Poly(oxyethylene-b-oxypropylene-b-oxyethylene) (Pluronic) is also added into PLA-based fibers as hydrophilicity enhancer and release modulator. LDH-IBU nanoparticles are uniformly dispersed throughout the nanocomposite fibers, as evidenced by transmission electron microscopy (TEM) observations. In vitro drug release studies show that initial IBU liberation from LDH-IBU/PCL composite fibers is remarkably slower than that from IBU/PCL fibers due to the sustained release property of LDH-IBU and heterogeneous nucleation effect of LDH-IBU on PCL chain segments. Surprisingly, the initial IBU release from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers is faster than that from the corresponding IBU/PLA and IBU/PLA/Pluronic fibers. This effect can be attributed to the strong interaction between alkyl groups in IBU molecules and methyl substituent groups of PLA as well as the hydrophilicity of LDH-IBU, which lead to an easier diffusion of water with a faster release of IBU from LDH-IBU/PLA and LDH-IBU/PLA/Pluronic composite fibers. - Graphical abstract: Ibuprofen intercalated layered double hydroxide (LDH-IBU)/polycaprolactone (PCL) and LDH-IBU/polylactide (PLA) nanocomposite fibers are electrospun based on the combination of LDHs with two kinds of biopolymers (i.e. PCL and PLA). LDH-IBU nanoparticles are uniformly dispersed throughout all the electrospun nanocomposite fibers even at a high loading level of 5 wt%. By combining the tunable drug release property of LDHs and electrospinning technique, the new drug delivery system is anticipated for effective loading and sustained release of drugs

  19. Synthesis, characterization, and immune efficacy of layered double hydroxide@SiO2 nanoparticles with shell-core structure as a delivery carrier for Newcastle disease virus DNA vaccine

    Directory of Open Access Journals (Sweden)

    Zhao K

    2015-04-01

    Full Text Available Kai Zhao,1,* Guangyu Rong,1,2,* Chen Guo,1 Xiaomei Luo,1 Hong Kang,1 Yanwei Sun,1,3 Chunxiao Dai,4 Xiaohua Wang,1 Xin Wang,1 Zheng Jin,4 Shangjin Cui,3 Qingshen Sun1 1Key Laboratory of Microbiology, School of Life Science, Heilongjiang University, Harbin, People’s Republic of China; 2Department of Avian Infectious Disease, Shanghai Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Shanghai, People’s Republic of China; 3Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China; 4Key Laboratory of Chemical Engineering Process and Technology for High-efficiency Conversion, Heilongjiang University, Harbin, People’s Republic of China *These authors contributed equally to this work Abstract: Layered double hydroxide (LDH@SiO2 nanoparticles were developed as a delivery carrier for the plasmid DNA expressing the Newcastle disease virus F gene. The LDH was hydrotalcite-like materials. The plasmid DNA encapsulated in the LDH@SiO2 nanoparticles (pFDNA-LDH@SiO2-NPs was prepared by the coprecipitation method, and the properties of pFDNA-LDH@SiO2-NPs were characterized by transmission electron microscopy, zeta potential analyzer, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. The results demonstrated that the pFDNA-LDH@SiO2-NPs had a regular morphology and high stability with a mean diameter of 371.93 nm, loading capacity of 39.66%±0.45%, and a zeta potential of +31.63 mV. A release assay in vitro showed that up to 91.36% of the total plasmid DNA could be sustainably released from the pFDNA-LDH@SiO2-NPs within 288 hours. The LDH@SiO2 nanoparticles had very low toxicity. Additionally, their high transfection efficiency in vitro was detected by fluorescent microscopy. Intranasal immunization of specific pathogen-free chickens with pFDNA-LDH@SiO2-NPs

  20. Porous bioresorbable magnesium as bone substitute

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.E.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Mabuchi, M. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan)

    2003-07-01

    Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X-ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35% and/or with the small pore size of about 70 {mu}m are close to those of human cancellous bones. (orig.)

  1. Small for Gestational Age and Magnesium: Intrauterine magnesium deficiency may induce metabolic syndrome in later life

    Directory of Open Access Journals (Sweden)

    Junji Takaya

    2015-12-01

    Full Text Available Magnesium deficiency during pregnancy as a result of insufficient or low intake of magnesium is common in developing and developed countries. Previous reports have shown that intracellular magnesium of cord blood platelets is lower among small for gestational age (SGA groups than that of appropriate for gestational age (AGA groups, suggesting that intrauterine magnesium deficiency may result in SGA. Additionally, the risk of adult-onset diseases such as insulin resistance syndrome is greater among children whose mothers were malnourished during pregnancy, and who consequently had a low birth weight. In a number of animal models, poor nutrition during pregnancy leads to offspring that exhibit pathophysiological changes similar to human diseases. The offspring of pregnant rats fed a magensium restricted diet have developed hypermethylation in the hepatic 11β-hydroxysteroid dehydrogenase-2 promoter. These findings indicate that maternal magnesium deficiencies during pregnancy influence regulation of non-imprinted genes by altering the epigenetic regulation of gene expression, thereby inducing different metabolic phenotypes. Magnesium deficiency during pregnancy may be responsible for not only maternal and fetal nutritional problems, but also lifelong consequences that affect the offspring throughout their life. Epidemiological, clinical, and basic research on the effects of magnesium deficiency now indicates underlying mechanisms, especially epigenetic processes.

  2. Magnesium in Prevention and Therapy

    Science.gov (United States)

    Gröber, Uwe; Schmidt, Joachim; Kisters, Klaus

    2015-01-01

    Magnesium is the fourth most abundant mineral in the body. It has been recognized as a cofactor for more than 300 enzymatic reactions, where it is crucial for adenosine triphosphate (ATP) metabolism. Magnesium is required for DNA and RNA synthesis, reproduction, and protein synthesis. Moreover, magnesium is essential for the regulation of muscular contraction, blood pressure, insulin metabolism, cardiac excitability, vasomotor tone, nerve transmission and neuromuscular conduction. Imbalances in magnesium status—primarily hypomagnesemia as it is seen more common than hypermagnesemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Based on magnesium’s many functions within the human body, it plays an important role in prevention and treatment of many diseases. Low levels of magnesium have been associated with a number of chronic diseases, such as Alzheimer’s disease, insulin resistance and type-2 diabetes mellitus, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, and attention deficit hyperactivity disorder (ADHD). PMID:26404370

  3. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    International Nuclear Information System (INIS)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong; Zhao, Degang; Zhang, Baolin; Du, Guotong

    2016-01-01

    Graphical abstract: - Highlights: • Effects of Mg doping on wet etching of N-polar GaN are illustrated and analysed. • Etching process model of Mg-doped N-polar GaN in KOH solution is purposed. • It is found that Mg doping can induce tensile strain in N-polar GaN film. • N-polar p-GaN film with a hole concentration of 2.4 × 10"1"7 cm"−"3 is obtained. - Abstract: KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 × 10"1"7 cm"−"3 was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  4. Kinetic-limited etching of magnesium doping nitrogen polar GaN in potassium hydroxide solution

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Junyan; Zhang, Yuantao; Chi, Chen; Yang, Fan; Li, Pengchong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun 130012 (China); Zhao, Degang [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Science, PO Box 912, Beijing 100083 (China); Zhang, Baolin; Du, Guotong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Qianjin Street 2699, Changchun 130012 (China)

    2016-01-01

    Graphical abstract: - Highlights: • Effects of Mg doping on wet etching of N-polar GaN are illustrated and analysed. • Etching process model of Mg-doped N-polar GaN in KOH solution is purposed. • It is found that Mg doping can induce tensile strain in N-polar GaN film. • N-polar p-GaN film with a hole concentration of 2.4 × 10{sup 17} cm{sup −3} is obtained. - Abstract: KOH based wet etchings were performed on both undoped and Mg-doped N-polar GaN films grown by metal-organic chemical vapor deposition. It is found that the etching rate for Mg-doped N-polar GaN gets slow obviously compared with undoped N-polar GaN. X-ray photoelectron spectroscopy analysis proved that Mg oxide formed on N-polar GaN surface is insoluble in KOH solution so that kinetic-limited etching occurs as the etching process goes on. The etching process model of Mg-doped N-polar GaN in KOH solution is tentatively purposed using a simplified ideal atomic configuration. Raman spectroscopy analysis reveals that Mg doping can induce tensile strain in N-polar GaN films. Meanwhile, p-type N-polar GaN film with a hole concentration of 2.4 × 10{sup 17} cm{sup −3} was obtained by optimizing bis-cyclopentadienyl magnesium flow rates.

  5. Corrosion of Magnesium in Multimaterial System

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V.; Agnew, Sean

    2017-08-16

    The TMS Magnesium Committee has been actively involved in presenting cutting-edge research and development and the latest trends related to magnesium and its alloys to industry and academia. Topics including magnesium alloy development, applications, mechanism of deformation and corrosion, thermomechanical processing, modelling, etc. have been captured year after year through the Magnesium Technology symposium and conference proceedings at TMS and through special topics in JOM. Every year, based on the unanimous endorsement from the industry and academia, a topic is selected to address the latest developments within this subject in JOM. In continuation with last year’s coverage of Advances and Achievements in In-Situ Analysis of Corrosions and Structure–Property Relationship in Mg Alloys,[1] this year’s topic focuses on the Corrosion of Magnesium in Multimaterial Systems. Magnesium, the lightest of all the structural materials, has garnered much interest in the transportation, electronics packaging, defense equipments and industries alike and are more commonly being incorporated in multimaterial design concepts.[2-4] However, the application of the same is limited due to its highly corrosive nature, and understanding and mitigating the corrosion of magnesium has been a major research challenge.

  6. Aluminium hydroxide-induced granulomas in pigs

    DEFF Research Database (Denmark)

    Valtulini, S; Macchi, C; Ballanti, P

    2005-01-01

    The effect of intramuscular injection of 40 mg/2 ml aluminium hydroxide in the neck of pigs was examined in a number of ways. The investigation followed repeated slaughterhouse reports, according to which 64.8% of pigs from one particular farm were found at slaughter to have one or more nodules...... in the muscles of the neck (group slaughtered). The pigs had been injected with a vaccine containing 40 mg/2 ml dose of aluminium hydroxide as adjuvant. Research consisted of two phases: first, an epidemiological study was carried out, aimed at determining the risk factors for the granulomas. The results...... and adjuvant) to pigs inoculated twice with apyrogenic bi-distilled water (group water) and to pigs inoculated once with the adjuvant and once with apyrogenic bi-distilled water (group adjuvant/water). Both studies agreed in their conclusions, which indicate that the high amount of aluminium hydroxide...

  7. Carboxyterfenadine antacid interaction monitoring by UV spectrophotometry and RP-HPLC techniques

    Directory of Open Access Journals (Sweden)

    Hina Shehnaz

    2014-11-01

    Full Text Available Carboxyterfenadine, a primary metabolite of terfenadine, a second generation antihistaminic compound was introduced in therapy as a successor of terfenadine due to its cardiac arrhythmia. There are number of drug interactions of fexofenadine with erythromycin, ketoconazole and alike reported in the literature. In this paper, fexofenadine antacid interaction has been studied in presence of sodium bicarbonate, megaldrate, calcium carbonate, magnesium carbonate, aluminum hydroxide, magnesium hydroxide, magnesium trisilicate, simethicone (dimethylpolysiloxane and calcium hydroxide by UV–Vis spectrophotometer and high performance liquid chromatography (HPLC. These in vitro fexofenadine–antacid interactions were carried out in simulated gastric and intestinal juices and in buffer of pH 7.4 (simulating blood pH on BP 2005 dissolution apparatus. The results show non-concordant availability of fexofenadine envisaged due to formation of unstable charge transfer complexes.

  8. The reference range of serum, plasma and erythrocyte magnesium

    Directory of Open Access Journals (Sweden)

    Suzanna Immanuel

    2006-12-01

    Full Text Available The interest in the clinical importance of serum magnesium level has just recently begun with the analysis and findings of abnormal magnesium level in cardiovascular, metabolic and neuromuscular disorder. Although the serum level does not reflect the body magnesium level, but currently, only serum magnesium determination is widely used. Erythrocyte magnesium is considered more sensitive than serum magnesium as it reflects intracellular magnesium status. According to NCCLS (National Committee for Clinical Laboratory Standards every laboratory is recommended to have its own reference range for the tests it performs, including magnesium determination. The reference range obtained is appropriate for the population and affected by the method and technique. This study aimed to find the reference range of serum and plasma magnesium and also intracellular magnesium i.e. erythrocyte magnesium by direct method, and compare the results of serum and plasma magnesium. Blood was taken from 114-blood donor from Unit Transfusi Darah Daerah (UTDD Budhyarto Palang Merah Indonesia (PMI DKI Jakarta, consisted of 57 male and 57 female, aged 17 – 65 years, clinically healthy according to PMI donor criteria. Blood was taken from blood set, collected into 4 ml vacuum tube without anticoagulant for serum magnesium determination and 3 ml vacuum tube with lithium heparin for determination of erythrocyte and plasma magnesium Determination of magnesium level was performed with clinical chemistry auto analyzer Hitachi 912 by Xylidil Blue method colorimetrically. This study showed no significant difference between serum and heparinized plasma extra cellular magnesium. The reference range for serum or plasma magnesium was 1.30 – 2.00 mEq/L and for erythrocyte magnesium was 4.46 - 7.10 mEq/L. (Med J Indones 2006; 15:229-35Keywords: Reference range, extracellular magnesium, intracellular magnesium

  9. Magnesium Tube Hydroforming

    International Nuclear Information System (INIS)

    Liewald, M.; Pop, R.; Wagner, S.

    2007-01-01

    Magnesium alloys can be considered as alternative materials towards achieving light weight structures with high material stiffness. The formability of two magnesium alloys, viz. AZ31 and ZM21 has been experimentally tested using the IHP forming process. A new die set up for hot IHP forming has been designed and the process experimentally investigated for temperatures up to 400 deg. C. Both alloys exhibit an increase in formability with increasing forming temperature. The effect of annealing time on materials forming properties shows a fine grained structure for sufficient annealing times as well as deterioration with a large increase at the same time. The IHP process has also been used to demonstrate practicability and feasibility for real parts from manufacture a technology demonstrator part using the magnesium alloy ZM21

  10. Behavior of hydroxide at the water/vapor interface

    Science.gov (United States)

    Winter, Bernd; Faubel, Manfred; Vácha, Robert; Jungwirth, Pavel

    2009-06-01

    Hydroxide and hydronium, which represent the ionic products of water autolysis, exhibit a peculiar surface behavior. While consensus has been established that the concentration of hydronium cations is enhanced at the surface with respect to the bulk, the affinity of hydroxide anions for the water/vapor interface has been a subject of an ongoing controversy. On the one hand, electrophoretic and titration measurements of air bubbles or oil droplets in water have been interpreted in terms of a dramatic interfacial accumulation of OH -. On the other hand, surface-selective non-linear spectroscopies, surface tension measurements, and molecular simulations show no or at most a weak surface affinity of hydroxide ions. Here, we summarize the current situation and provide new evidence for the lack of appreciable surface enhancement of OH -, based on photoelectron spectroscopy from a liquid jet and on molecular dynamics simulations with polarizable potentials at varying hydroxide concentrations.

  11. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  12. TiO2 Deposition on AZ31 Magnesium Alloy Using Plasma Electrolytic Oxidation

    Directory of Open Access Journals (Sweden)

    Leon White

    2013-01-01

    Full Text Available Plasma electrolytic oxidation (PEO has been used in the past as a useful surface treatment technique to improve the anticorrosion properties of Mg alloys by forming protective layer. Coatings were prepared on AZ31 magnesium alloy in phosphate electrolyte with the addition of TiO2 nanoparticles using plasma electrolytic oxidation (PEO. This present work focuses on developing a TiO2 functional coating to create a novel electrophotocatalyst while observing the surface morphology, structure, composition, and corrosion resistance of the PEO coating. Microstructural characterization of the coating was investigated by X-ray diffraction (XRD and scanning electron microscopy (SEM followed by image analysis and energy dispersive spectroscopy (EDX. The corrosion resistance of the PEO treated samples was evaluated with electrochemical impedance spectroscopy (EIS and DC polarization tests in 3.5 wt.% NaCl. The XRD pattern shows that the components of the oxide film include Mg from the substrate as well as MgO and Mg2TiO4 due to the TiO2 nanoparticle addition. The results show that the PEO coating with TiO2 nanoparticles did improve the corrosion resistance when compared to the AZ31 substrate alloy.

  13. Layered double hydroxides

    DEFF Research Database (Denmark)

    López Rayo, Sandra; Imran, Ahmad; Hansen, Hans Chr. Bruun

    2017-01-01

    A novel zinc (Zn) fertilizer concept based on Zn doped layered double hydroxides (Zn-doped Mg-Fe-LDHs) has been investigated. Zn-doped Mg-Fe-LDHs were synthetized, their chemical composition was analyzed and their nutrient release was studied in buffered solutions with different pH values. Uptake...

  14. Magnesium deficiency and increased inflammation: current perspectives

    Directory of Open Access Journals (Sweden)

    Nielsen FH

    2018-01-01

    Full Text Available Forrest H Nielsen Research Nutritionist Consultant, Grand Forks, ND, USA Abstract: Animal studies have shown that magnesium deficiency induces an inflammatory response that results in leukocyte and macrophage activation, release of inflammatory cytokines and acute-phase proteins, and excessive production of free radicals. Animal and in vitro studies indicate that the primary mechanism through which magnesium deficiency has this effect is through increasing cellular Ca2+, which is the signal that results in the priming of cells to give the inflammatory response. Primary pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL-1; the messenger cytokine IL-6; cytokine responders E-selectin, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1; and acute-phase reactants C-reactive protein and fibrinogen have been determined to associate magnesium deficiency with chronic low-grade inflammation (inflammatory stress. When magnesium dietary intake, supplementation, and/or serum concentration suggest/s the presence of magnesium deficiency, it often is associated with low-grade inflammation and/or with pathological conditions for which inflammatory stress is considered a risk factor. When magnesium intake, supplementation, and/or serum concentration suggest/s an adequate status, magnesium generally has not been found to significantly affect markers of chronic low-grade inflammation or chronic disease. The consistency of these findings can be modified by other nutritional and metabolic factors that affect inflammatory and oxidative stress. In spite of this, findings to date provide convincing evidence that magnesium deficiency is a significant contributor to chronic low-grade inflammation that is a risk factor for a variety of pathological conditions such as cardiovascular disease, hypertension, and diabetes. Because magnesium deficiency commonly occurs in countries where foods rich in magnesium are not consumed in

  15. Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique

    International Nuclear Information System (INIS)

    Palanisamy, Prakash; Raichur, Ashok M.

    2009-01-01

    Spherical nickel oxide nanoparticles were synthesized by microemulsion technique using rhamnolipids as the surfactant along with n-heptane and water. Nickel hydroxide (Ni(OH) 2 ) particles were first formed which were then calcined to obtain nickel oxide (NiO) particles. Scanning Electron Microscopy (SEM) studies revealed that the synthesized nickel hydroxide particles were spherical in shape with stacked lamellar sheets. Nickel hydroxide was converted to nickel oxide by calcinations at 600 deg. C for 3 h and was confirmed by X-ray Diffraction (XRD) analysis. Transmission Electron Microscopy (TEM) showed that the nickel oxide particles were crystalline and of uniform size. The effect of pH on particle size was investigated and it was found that the particle size decreased from 86 ± 8 nm at pH 11.6 to 47 ± 5 nm at pH 12.5. A novel method using rhamnolipid biosurfactant for microemulsion synthesis has been demonstrated which offers an eco-friendly alternative to conventional microemulsion technique based on organic surfactants

  16. Effect of Magnesium Hydride on the Corrosion Behavior of Pure Magnesium in 0.1 M NaCl Solution

    OpenAIRE

    Xu, Shanna; Dong, Junhua; Ke, Wei

    2010-01-01

    The effect of magnesium hydride on the corrosion behavior of pure magnesium in 0.1 M NaCl solution was investigated using the gas collection method, potentiostatic current decay test, and in situ Raman spectrum. The formation of magnesium hydride (MgH2, Mg2H4) was observed at the cathodic region. Applying anodic potential leads to decomposition of magnesium hydride. Magnesium hydride plays an important role on the negative difference effect (NDE) in both the cathodic and anodic regions.

  17. Corrosion and protection of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, E. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining and Metallurgy

    2000-07-01

    The oxide film on magnesium offers considerable surface protection in rural and some industrial environments and the corrosion rate lies between that of aluminum and low carbon steels. Galvanic coupling of magnesium alloys, high impurity content such as Ni, Fe, Cu and surface contamination are detrimental for corrosion resistance of magnesium alloys. Alloying elements can form secondary particles which are noble to the Mg matrix, thereby facilitating corrosion, or enrich the corrosion product thereby possibly inhibiting the corrosion rate. Bimetallic corrosion resistance can be increased by fluxless melt protection, choice of compatible alloys, insulating materials, and new high-purity alloys. Magnesium is relatively insensible to oxygen concentration. Pitting, corrosion in the crevices, filiform corrosion are observed. Granular corrosion of magnesium alloys is possible due to the cathodic grain-boundary constituent. More homogeneous microstructures tend to improve corrosion resistance. Under fatigue loading conditions, microcrack initiation in Mg alloys is related to slip in preferentially oriented grains. Coating that exclude the corrosive environments can provide the primary defense against corrosion fatigue. Magnesium alloys that contain neither aluminum nor zinc are the most SCC resistant. Compressive surface residual stresses as that created by short peening increase SCC resistance. Cathodic polarization or cladding with a SCC resistant sheet alloy are good alternatives. Effective corrosion prevention for magnesium alloy components and assemblies should start at the design stage. Selective surface preparation, chemical treatment and coatings are recommended. Oil application, wax coating, anodizing, electroplating, and painting are possible alternatives. Recently, it is found that a magnesium hydride layer, created on the magnesium surface by cathodic charging in aqueous solution is a good base for painting. (orig.)

  18. In situ formation deposited ZnO nanoparticles on silk fabrics under ultrasound irradiation.

    Science.gov (United States)

    Khanjani, Somayeh; Morsali, Ali; Joo, Sang W

    2013-03-01

    Deposition of zinc(II) oxide (ZnO) nanoparticles on the surface of silk fabrics was prepared by sequential dipping steps in alternating bath of potassium hydroxide and zinc nitrate under ultrasound irradiation. This coating involves in situ generation and deposition of ZnO in a one step. The effects of ultrasound irradiation, concentration and sequential dipping steps on growth of the ZnO nanoparticles have been studied. Results show a decrease in the particles size as increasing power of ultrasound irradiation. Also, increasing of the concentration and sequential dipping steps increase particle size. The physicochemical properties of the nanoparticles were determined by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and wavelength dispersive X-ray (WDX). Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Single sheet metal oxides and hydroxides

    DEFF Research Database (Denmark)

    Huang, Lizhi

    The synthesis of layered double hydroxides (LDHs) provides a relatively easy and traditional way to build versatile chemical compounds with a rough control of the bulk structure. The delamination of LDHs to form their single host layers (2D nanosheets) and the capability to reassemble them offer......) Delamination of the LDHs structure (oxGRC12) with the formation of single sheet iron (hydr)oxide (SSI). (3) Assembly of the new 2D nanosheets layer by layer to achieve desired functionalities....

  20. Effect of Magnesium Hydride on the Corrosion Behavior of Pure Magnesium in 0.1 M NaCl Solution

    Directory of Open Access Journals (Sweden)

    Shanna Xu

    2010-01-01

    Full Text Available The effect of magnesium hydride on the corrosion behavior of pure magnesium in 0.1 M NaCl solution was investigated using the gas collection method, potentiostatic current decay test, and in situ Raman spectrum. The formation of magnesium hydride (MgH2, Mg2H4 was observed at the cathodic region. Applying anodic potential leads to decomposition of magnesium hydride. Magnesium hydride plays an important role on the negative difference effect (NDE in both the cathodic and anodic regions.

  1. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    Science.gov (United States)

    Biswick, Timothy; Jones, William; Pacuła, Aleksandra; Serwicka, Ewa

    2006-01-01

    Anion exchange reactions of four structurally related hydroxy salts, Cu 2(OH) 3NO 3, Mg 2(OH) 3NO 3, Ni 2(OH) 3NO 3 and Zn 3(OH) 4(NO 3) 2 are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides.

  2. 21 CFR 582.5431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  3. 21 CFR 582.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance is...

  4. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  5. Synthesis of polymer nanocomposites using layered hydroxide salts (LHS)

    International Nuclear Information System (INIS)

    Machado, Paula F. de M.P.B.; Lona, Liliane M.F.; Marangoni, Rafael; Wypych, Fernando

    2011-01-01

    In this work latexes of poly (methyl methacrylate) were synthesized via emulsion polymerization using layered hydroxide salts (LHS) as reinforcements: zinc hydroxide nitrate (Zn 5 (OH) 8 (NO 3 ) 2 ·2H 2 O) and copper hydroxide acetate (Cu 2 (OH) 3 CH 3 COO.H 2 O). The LHSs were characterized by X-ray powder diffraction (XRPD). Mastersizer analysis indicated the particle diameter of the latexes. Molecular weights and conversion data were also obtained. (author)

  6. Direct large-scale synthesis of perovskite barium strontium titanate nano-particles from solutions

    International Nuclear Information System (INIS)

    Qi Jianquan; Wang Yu; Wan Pingchen; Long Tuli; Chan, Helen Lai Wah

    2005-01-01

    This paper reports a wet chemical synthesis technique for large-scale fabrication of perovskite barium strontium titanate nano-particles near room temperature and under ambient pressure. The process employs titanium alkoxide and alkali earth hydroxides as starting materials and involves very simple operation steps. Particle size and crystallinity of the particles are controllable by changing the processing parameters. Observations by X-ray diffraction, scanning electron microscopy and transmission electron microscopy TEM indicate that the particles are well-crystallized, chemically stoichiometric and ∼50nm in diameter. The nanoparticles can be sintered into ceramics at 1150 deg. C and show typical ferroelectric hysteresis loops

  7. XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sunding, M.F., E-mail: m.f.sunding@fys.uio.no [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Hadidi, K. [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Diplas, S. [Department of Chemistry and Centre for Material Science and Nanotechnology (SMN), University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo (Norway); SINTEF Materials and Chemistry, P.O. Box 124 Blindern, NO-0314 Oslo (Norway); Lovvik, O.M. [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); SINTEF Materials and Chemistry, P.O. Box 124 Blindern, NO-0314 Oslo (Norway); Norby, T.E. [Department of Chemistry and Centre for Material Science and Nanotechnology (SMN), University of Oslo, P.O. Box 1033 Blindern, NO-0315 Oslo (Norway); Gunnaes, A.E. [Department of Physics, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway)

    2011-07-15

    Highlights: {yields} Gold particles deposited in vacuum as energy reference for insulating samples in XPS. {yields} Separation of La 3d and MNN peaks in XP spectra acquired with Al K{alpha} radiation. {yields} We describe the spectral differences between lanthanum oxide and lanthanum hydroxide. {yields} A doublet in O 1s of La{sub 2}O{sub 3} is ascribed to two distinct oxygen sites in the crystal. - Abstract: A technique is described for deposition of gold nanoparticles under vacuum, enabling consistent energy referencing of X-ray photoelectron spectra obtained from lanthanum hydroxide La(OH){sub 3} and in situ treated lanthanum oxide La{sub 2}O{sub 3} powders. A method is also presented for the separation of the overlapping lanthanum 3d and MNN peaks in X-ray photoelectron spectra acquired with Al K{alpha} radiation. The lower satellite intensity in La(OH){sub 3} compared to La{sub 2}O{sub 3} is related to the higher ionicity of the La-O bond in the former compared to the latter compound. The presence of an additional peak in the valence band spectrum of the hydroxide compared to the oxide is attributed to the O-H bond as indicated by density functional theory based calculations. A doublet in the O 1s peak of lanthanum oxide is associated to the presence of two distinct oxygen sites in the crystal structure of this compound.

  8. Discharge Characteristics of the Nickel Hydroxide Electrode in 30% KOH

    International Nuclear Information System (INIS)

    Kim, Young Jin

    1989-01-01

    The discharge behavior of the nickel hydroxide electrode has been investigated in 30% KOH at 25 .deg. C. Two voltage plateaus are displayed on the discharge curve of C/20. It is shown that the impedance of the nickel hydroxide electrode increases with decrease of the discharge potential. The discharge behavior of the nickel hydroxide electrode has been investigated in 30% KOH indicating the reduction of the β-NiOOH to the β-Ni(OH) 2 by proton diffusion process and hence the electronic conductivity change of the nickel hydroxide electrode. Furthermore, the γ-NiOOH, produced by prolonged oxidation of the β-NiOOH in 30% KOH, discharges at a slightly lower potential than the β-Ni(OH) 2 that could result in the life-limiting factor of several alkaline electrolyte storage batteries using the nickel hydroxide electrode as the positive plate

  9. Adsorption of procion red using layer double hydroxide Mg/Al

    Directory of Open Access Journals (Sweden)

    Muhammad Imron

    2017-07-01

    Full Text Available Layer double hydroxide Mg/Al was synthesized by inorganic synthetic method. Material was characterized using FTIR and XRD analyses and used as adsorbent of procion red dye in aqueous medium.  Factors that affect the adsorption process are adsorption time as the kinetic parameter; and the temperature and concentration of procion red as the thermodynamic parameter. FTIR spectra of layer double hydroxides showed unique vibration at wavenumber 1300 cm-1 and 1600 cm-1. Characterization using XRD shows diffraction angles at 29o, 27o, and 28o, which are typical of Mg/Al double layer hydroxides. Adsorption of procion red using layer double hydroxide Mg/Al resulted adsorption rate 7.1 minutes-1, maximum adsorption capacity 111.1 mg/g at 60 oC with increasing energy by increasing adsorption temperature.   Keywords: Layered double hydroxides, adsorption, procion red.

  10. Intercalation studies of zinc hydroxide chloride: Ammonia and amino acids

    Science.gov (United States)

    Arízaga, Gregorio Guadalupe Carbajal

    2012-01-01

    Zinc hydroxide chloride (ZHC) is a layered hydroxide salt with formula Zn5(OH)8Cl2·2H2O. It was tested as intercalation matrix for the first time and results were compared with intercalation products of the well-known zinc hydroxide nitrate and a Zn/Al layered double hydroxide. Ammonia was intercalated into ZHC, while no significant intercalation occurred in ZHN. Aspartic acid intercalation was only achieved by co-precipitation at pH=10 with ZHC and pH=8 with zinc hydroxide nitrate. Higher pH resistance in ZHC favored total deprotonation of both carboxylic groups of the Asp molecule. ZHC conferred more thermal protection against Asp combustion presenting exothermic peaks even at 452 °C while the exothermic event in ZHN was 366 °C and in the LDH at 276 °C.

  11. Separation of magnesium from magnesium chloride and zirconium and/or hafnium subchlorides in the production of zirconium and/or hafnium sponge metal

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Adams, R.J.; Kearl, S.R.

    1992-01-01

    This patent describes the producing of a refractory metal wherein a sponge refractory metal is produced as an intermediate product by the use of magnesium with the incidental production of magnesium chloride, and wherein residual magnesium is separated from the magnesium chloride and from refractory metal to a vacuum distillation step which fractionally distills the magnesium, the magnesium chloride, and the metal sub-chlorides; the steps of: recovering fractionally distilled vapors of magnesium chloride and metal sub-chlorides from a sponge refractory metal; separately condensing the vapors as separately recovered; and recycling the separately recovered magnesium at a purity of at least about 96%

  12. Preparation of MgFe2O4 nanoparticles by microemulsion method and their characterization

    Czech Academy of Sciences Publication Activity Database

    Holec, Petr; Plocek, Jiří; Nižňanský, D.; Vejpravová, J.P.

    2009-01-01

    Roč. 51, č. 3 (2009), s. 301-305 ISSN 0928-0707 R&D Projects: GA ČR GA106/07/0949 Institutional research plan: CEZ:AV0Z40320502 Keywords : magnesium ferrite * microemulsion * nanoparticles Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.393, year: 2009

  13. Sono-chemical Synthesis Fe3O4-Mg(OH2 Nanocomposite and Its Photo-catalyst Investigation in Methyl Orange Degradation

    Directory of Open Access Journals (Sweden)

    G. Nabiyouni

    2014-10-01

    Full Text Available In this work firstly Fe3O4 nanoparticles were synthesized via a sono-chemical method. At the second step magnesium hydroxide shell was synthesized on the magnetite-core under ultrasonic waves. For preparation Fe3O4-MgO the product was calcinated at 400 ºC for 2h. Properties of the product were examined by X-ray diffraction pattern (XRD, scanning electron microscope (SEM and Fourier transform infrared (FT-IR spectroscopy. Vibrating sample magnetometer (VSM shows nanoparticles exhibit super-paramagnetic behavior. The photo-catalytic behavior of Fe3O4-Mg(OH2  nanocomposite was evaluated using the degradation of a methyl orange (MeO aqueous solution under ultraviolet (UV light irradiation. The results show that Fe3O4-Mg(OH2 nanocomposites have applicable magnetic and photo-catalytic performance.

  14. Assessment of serum magnesium levels and its outcome in neonates of eclamptic mothers treated with low-dose magnesium sulfate regimen

    Science.gov (United States)

    Das, Monalisa; Chaudhuri, Patralekha Ray; Mondal, Badal C.; Mitra, Sukumar; Bandyopadhyay, Debasmita; Pramanik, Sushobhan

    2015-01-01

    Objectives: Magnesium historically has been used for treatment and/or prevention of eclampsia. Considering the low body mass index of Indian women, a low-dose magnesium sulfate regime has been introduced by some authors. Increased blood levels of magnesium in neonates is associated with increased still birth, early neonatal death, birth asphyxia, bradycardia, hypotonia, gastrointestinal hypomotility. The objective of this study was to assess safety of low-dose magnesium sulfate regimen in neonates of eclamptic mothers treated with this regimen. Materials and Methods: This was a cross-sectional observational study of 100 eclampsia patients and their neonates. Loading dose and maintenance doses of magnesium sulfate were administered to patients by combination of intravenous and intramuscular routes. Maternal serum and cord blood magnesium levels were estimated. Neonatal outcome was assessed. Results: Bradycardia was observed in 18 (19.15%) of the neonates, 16 (17.02%) of the neonates were diagnosed with hypotonia. Pearson Correlation Coefficient showed Apgar scores decreased with increase in cord blood magnesium levels. Unpaired t-test showed lower Apgar scores with increasing dose of magnesium sulfate. The Chi-square/Fisher's exact test showed significant increase in hypotonia, birth asphyxia, intubation in delivery room, Neonatal Intensive Care Unit (NICU) care requirement, with increasing dose of magnesium sulfate. (P ≤ 0.05). Conclusion: Several neonatal complications are significantly related to increasing serum magnesium levels. Overall, the low-dose magnesium sulfate regimen was safe in the management of eclamptic mothers, without toxicity to their neonates. PMID:26600638

  15. Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-06-25

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  16. Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Proefrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  17. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  18. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles

    International Nuclear Information System (INIS)

    Primc, Darinka; Belec, Blaž; Makovec, Darko

    2016-01-01

    Composite nanoparticles can be synthesized by coating a shell made of one material onto core nanoparticles made of another material. Here we report on a novel method for coating a magnetic iron oxide onto the surface of core nanoparticles in an aqueous suspension. The method is based on the heterogeneous nucleation of an initial product of Fe"3"+/Fe"2"+ co-precipitation on the core nanoparticles. The close control of the supersaturation of the precipitating species required for an exclusively heterogeneous nucleation and the growth of the shell were achieved by immobilizing the reactive Fe"3"+ ions in a nitrate complex with urea ([Fe((CO(NH_2)_2)_6](NO_3)_3) and by using solid Mg(OH)_2 as the precipitating reagent. The slow thermal decomposition of the complex at 60 °C homogeneously releases the reactive Fe"3"+ ions into the suspension of the core nanoparticles. The key stage of the process is the thermal hydrolysis of the released Fe"3"+ ions prior to the addition of Mg(OH)_2. The thermal hydrolysis results in the formation of γ-FeOOH, exclusively at the surfaces of the core nanoparticles. After the addition of the solid hydroxide Mg(OH)_2, the pH increases and at pH ~ 5.7 the Fe"2"+ precipitates and reacts with the γ-FeOOH to form magnetic iron oxide with a spinel structure (spinel ferrite) at the surfaces of the core nanoparticles. The proposed low-temperature method for the synthesis of composite nanoparticles is capable of forming well-defined interfaces between the two components, important for the coupling of the different properties. The procedure is environmentally friendly, inexpensive, and appropriate for scaling up to mass production.Graphical abstract

  19. Magnesium balances and 28Mg studies in man

    International Nuclear Information System (INIS)

    Spencer, H.; Schwartz, R.; Osis, D.

    1988-01-01

    The intestinal absorption of magnesium was determined under strictly controlled dietary conditions in patients with normal renal function and also in patients with chronic renal failure. The average net absorption of magnesium of patients with normal renal function, expressed as percent of the magnesium intake, was 48.5%, while that of patients with chronic renal failure was significantly lower, 17%. Increasing the calcium intake from a low calcium intake of 200 mg/day to different higher intake levels up to 2000 mg/day did not change the magnesium balance nor the net absorption of magnesium of both types of patients. The lack of effect of the higher calcium intake on the absorption of magnesium was confirmed in 28 Mg studies in which an oral dose of 28 Mg, as the chloride, was given. The excretion of the absorbed magnesium into the intestine, the endogenous fecal magnesium, was low. Also, increasing the phosphorus intake up to 2000 mg/day in subjects with normal renal function did not affect the magnesium balance, regardless of the calcium intake

  20. 40 CFR 268.42 - Treatment standards expressed as specified technologies.

    Science.gov (United States)

    2010-07-01

    ... such as copper, zinc, nickel, gold, and sulfur that result in a nonliquid, semi-solid amalgam and..., hydroxides, carbonates, sulfides, sulfates, chlorides, flourides, or phosphates. The following reagents (or... hydroxides of calcium and/or magnesium; (2) caustic (i.e., sodium and/or potassium hydroxides; (3) soda ash...

  1. Enhanced photocatalytic properties of the 3D flower-like Mg-Al layered double hydroxides decorated with Ag{sub 2}CO{sub 3} under visible light illumination

    Energy Technology Data Exchange (ETDEWEB)

    Ao, Yanhui, E-mail: andyao@hhu.edu.cn; Wang, Dandan; Wang, Peifang; Wang, Chao; Hou, Jun; Qian, Jin

    2016-08-15

    Highlights: • 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite was prepared. • The nanocomposites exhibited high photocatalytic activities on different organic pollutants. • The mechanism of the enhanced activity were investigated. - Abstract: A facile anion-exchange precipitation method was employed to synthesize 3D flower-like Ag{sub 2}CO{sub 3}/Mg-Al layered double hydroxide composite photocatalyst. Results showed that Ag{sub 2}CO{sub 3} nanoparticles dispersed uniformly on the petals of the flower-like Mg-Al LDH. The obtained nanocomposites exhibited high photocatalytic activities on different organic pollutants (cationic and anionic dyes, phenol) under visible light illumination. The high photocatalytic activity can be ascribed to the special structure which accomplishes the wide-distribution of Ag{sub 2}CO{sub 3} nanoparticles on the surfaces of the 3D flower-like nanocomposites. Therefore, it can provide much more active sites for the degradation of organic pollutant. Then the photocatalytic mechanism was also verified by reactive species trapping experiments in detail. The work would pave a facile way to prepare LDHs based hierarchical photocatalysts with high activity for the degradation of wide range organic pollutants under visible light irradiation.

  2. Reactivity of ferrihydrite and ferritin in relation to surface structure, size, and nanoparticle formation studied for phosphate and arsenate

    NARCIS (Netherlands)

    Hiemstra, T.; Zhao, Wei

    2016-01-01

    Ferritin (Ftn) is a natural protein that can store metal (hydr)oxide nanoparticles of tunable size in its cavity and bind oxyanions. This quality can be used in water purification by applying nanotechnology. As our study suggests, the adsorption behavior of engineered ferritin strongly resembles

  3. Serum magnesium levels in patients with pre-eclampsia and eclampsia with different regimens of magnesium sulphate

    Directory of Open Access Journals (Sweden)

    Arpita Singh

    2013-01-01

    Full Text Available Background Pre-eclampsia and the subsequent eclampsia account for a common cause of maternal mortality worldwide and efforts aimed at reducing its menace are vital. Objective To estimate the serum magnesium levels in pre-eclampsia and eclampsia and to study the effect of using different regimens of magnesium sulphate. Methods 70 cases of pre-eclampsia and eclampsia and 35 normal pregnant women as controls were studied. Serum magnesium levels were estimated using Atomic Absorption Spectrophotometer (Model AAS-4139 at baseline and at frequent intervals during gestation and the overall parameters were meticulously observed. Results Majority(60%ofstudiedcaseswasnulliparawithgestationageof36-40 weeks. Statistically significant reduction of mean diastolic blood pressure and protein-urea was observed after using both intramuscular and intravenous regimens of magnesium sulphate. Mean initial serum magnesium level (mg/dl±SD was 1.81±0.58 in group A,1.55±0.41 in group B and 1.49±0.41 in group C. Mean serum magnesium levels during first 4 hours after therapy were statistically significant between intramuscular and intravenous regimen groups while same were statistically insignificant at 8,12,16,24 and 32 hours. Besides, few minor side effects including headache, vomiting, reduced tendon reflexes and thrombocytopenia, no severe side effects and no maternal mortality were seen. Conclusion Hypomagnesemia occurs during states of preeclampsia and eclampsia, and, administration of magnesium sulphate is effective and safe in preventing maternal mortality.

  4. Serum magnesium levels in patients with pre-eclampsia and eclampsia with different regimens of magnesium sulphate

    Directory of Open Access Journals (Sweden)

    Arpita Singh

    2013-03-01

    Full Text Available Background Pre-eclampsia and the subsequent eclampsia account for a common cause of maternal mortality worldwide and efforts aimed at reducing its menace are vital. Objective To estimate the serum magnesium levels in pre-eclampsia and eclampsia and to study the effect of using different regimens of magnesium sulphate. Methods 70 cases of pre-eclampsia and eclampsia and 35 normal pregnant women as controls were studied. Serum magnesium levels were estimated using Atomic Absorption Spectrophotometer (Model AAS-4139 at baseline and at frequent intervals during gestation and the overall parameters were meticulously observed. Results Majority (60% of studied cases was nullipara with gestation age of 36-40 weeks. Statistically significant reduction of mean diastolic blood pressure and protein-urea was observed after using both intramuscular and intravenous regimens of magnesium sulphate. Mean initial serum magnesium level (mg/dl±SD was 1.81±0.58 in group A,1.55±0.41 in group B and 1.49±0.41 in group C. Mean serum magnesium levels during first 4 hours after therapy were statistically significant between intramuscular and intravenous regimen groups while same were statistically insignificant at 8,12,16,24 and 32 hours. Besides, few minor side effects including headache, vomiting, reduced tendon reflexes and thrombocytopenia, no severe side effects and no maternal mortality were seen. Conclusion Hypomagnesemia occurs during states of preeclampsia and eclampsia, and, administration of magnesium sulphate is effective and safe in preventing maternal mortality.

  5. Photoemission study of metallic iron nanoparticles surface aging in biological fluids. Influence on biomolecules adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Canivet, L.; Denayer, F.O. [Université de Lille 2, Droit et Santé, 42 rue P. Duez, 59000 Lille (France); Champion, Y.; Cenedese, P. [CNRS-ICMPE, 2 rue H. Dunant, 94320 Thiais (France); Dubot, P., E-mail: pdubot@icmpe.cnrs.fr [CNRS-ICMPE, 2 rue H. Dunant, 94320 Thiais (France)

    2014-07-01

    Iron nanoparticles (nFe) prepared by vaporization and cryogenic condensation process (10–100 nm) has been exposed to Hank's balanced salt solution (HBSS) and the B-Ali cell growth fluids. These media can be used for cellular growth to study nFe penetration through cell membrane and its induced cytotoxicity. Surface chemistry of nFe exposed to such complex fluids has been characterized as the nanoparticles surface can be strongly changed by adsorption or corrosion processes before reaching intracellular medium. Particle size and surface chemistry have been characterized by scanning electron microscopy (SEM) and high-resolution X-ray photoelectron spectroscopy (HR-XPS). Exposition of nFe particles to growth and differentiation media leads to the formation of an oxy-hydroxide layer containing chlorinated species. We found that the passivated Fe{sub 2}O{sub 3} layer of the bare nFe particles is rapidly transformed into a thicker oxy-hydroxide layer that has a greater ability to adsorb molecular ions or ionic biomolecules like proteins or DNA.

  6. Computational micromechanics of bioabsorbable magnesium stents.

    Science.gov (United States)

    Grogan, J A; Leen, S B; McHugh, P E

    2014-06-01

    Magnesium alloys are a promising candidate material for an emerging generation of absorbable metal stents. Due to its hexagonal-close-packed lattice structure and tendency to undergo twinning, the deformation behaviour of magnesium is quite different to that of conventional stent materials, such as stainless steel 316L and cobalt chromium L605. In particular, magnesium exhibits asymmetric plastic behaviour (i.e. different yield behaviours in tension and compression) and has lower ductility than these conventional alloys. In the on-going development of absorbable metal stents it is important to assess how the unique behaviour of magnesium affects device performance. The mechanical behaviour of magnesium stent struts is investigated in this study using computational micromechanics, based on finite element analysis and crystal plasticity theory. The plastic deformation in tension and bending of textured and non-textured magnesium stent struts with different numbers of grains through the strut dimension is investigated. It is predicted that, unlike 316L and L605, the failure risk and load bearing capacity of magnesium stent struts during expansion is not strongly affected by the number of grains across the strut dimensions; however texturing, which may be introduced and controlled in the manufacturing process, is predicted to have a significant influence on these measures of strut performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Magnesium fluoride recovery method

    International Nuclear Information System (INIS)

    Gay, R.L.; McKenzie, D.E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag formed in the production of metallic uranium by the reduction of depleted uranium tetrafluoride with metallic magnesium in a retort wherein the slag contains the free metals magnesium and uranium and also oxides and fluorides of the metals. The slag having a radioactivity level of at least about 7,000 rhoCi/gm. The method comprises the steps of: grinding the slag to a median particle size of about 200 microns; contacting the ground slag in a reaction zone with an acid having a strength of from about 0.5 to 1.5 N for a time of from about 4 to about 20 hours in the presence of a catalytic amount of iron; removing the liquid product; treating the particulate solid product; repeating the last two steps at least one more time to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 rhoCi/gm

  8. Rapid collection of iron hydroxide for determination of Th isotopes in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, Ayako, E-mail: okubo.ayako@jaea.go.jp [Japan Atomic Energy Agency, Research Group for Analytical Chemistry (Japan); Obata, Hajime, E-mail: obata@aori.u-tokyo.ac.jp [Atmosphere Ocean Research Institute, The University of Tokyo (Japan); Magara, Masaaki, E-mail: magara.masaaki@jaea.go.jp [Japan Atomic Energy Agency, Research Group for Analytical Chemistry (Japan); Kimura, Takaumi, E-mail: kimura.takaumi@jaea.go.jp [Japan Atomic Energy Agency, Research Group for Analytical Chemistry (Japan); Ogawa, Hiroshi, E-mail: hogawa@aori.u-tokyo.ac.jp [Atmosphere Ocean Research Institute, The University of Tokyo (Japan)

    2013-12-04

    Graphical abstract: -- Highlights: •DIAION CR-20 chelating resin has successfully collected iron-hydroxide with Th isotopes. •Ferric ions in the iron hydroxide were bonded to functional groups of the chelating resin. •The time of preconcentration step was markedly reduced from a few days to 3–4 h. -- Abstract: This work introduces a novel method of recovery of iron hydroxide using a DIAION CR-20 chelating resin column to determine Th isotopes in seawater with a sector field (SF) inductively coupled plasma mass spectrometer (ICP-MS). Thorium isotopes in seawater were co-precipitated with iron hydroxide, and this precipitate was sent to chelating resin column. Ferric ions in the iron hydroxide were bonded to functional groups of the chelating resin directly, resulting in a pH increase of the effluent by release of hydroxide ion from the iron hydroxide. The co-precipitated thorium isotopes were quantitatively collected within the column, which indicated that thorium was retained on the iron hydroxide remaining on the chelating column. The chelating column quantitatively collected {sup 232}Th with iron hydroxide in seawater at flow rates of 20–25 mL min{sup −1}. Based on this flow rate, a 5 L sample was processed within 3–4 h. The >20 h aging of iron hydroxide tends to reduce the recovery of {sup 232}Th. The rapid collection method was successfully applied to the determination of {sup 230}Th and {sup 232}Th in open-ocean seawater samples.

  9. Acid mine water neutralisation with ammonium hydroxide and ...

    African Journals Online (AJOL)

    This study showed that NH4OH can be used for treatment of acid mine drainage rich in sulphates and NH4OH can be recycled in the process. Hydrated lime treatment resulted in removal of the remaining ammonia using a rotary evaporator. Keywords: acid mine water, ammonium hydroxide, barium hydroxide, sulphate ...

  10. Radioactive {sup 210}Po in magnesium supplements

    Energy Technology Data Exchange (ETDEWEB)

    Struminska-Parulska, Dagmara Ida [Gdansk Univ. (Poland). Environmental Chemistry and Radiochemistry Chair

    2016-08-01

    The aim of this pioneer study was to determine polonium {sup 210}Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring {sup 210}Po activity concentrations in magnesium supplements, find the correlations between {sup 210}Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest {sup 210}Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g{sup -1} (sample Mg17). The highest annual radiation dose from {sup 210}Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year{sup -1} respectively.

  11. Distinction between magnesium diboride and tetraboride by kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Kim, Du-Na; Caron, Arnaud; Park, Hai Woong

    2016-01-01

    We analyze mixtures of magnesium diboride and tetraboride synthesized with magnesium powders of different shapes. To distinguish between magnesium diboride and tetraboride we use the contrast of kelvin probe force microscopy. The microstructural morphology strongly depends on the shape of the magnesium powders used in the reaction between magnesium and magnesium tetraboride to form magnesium diboride. With spherical magnesium powder an equiaxed microstructure of magnesium diboride is formed with residual magnesium tetraboride at the grain boundaries. With plate-like magnesium powders elongated magnesium diboride grains are formed. In this case, residual magnesium tetraboride is found to agglomerate.

  12. Influences of ultrasonic irradiation on the morphology and structure of nanoporous Co nanoparticles during chemical dealloying

    Directory of Open Access Journals (Sweden)

    Hui Li

    2016-12-01

    Full Text Available The Co-61.8 wt% Al nanoparticles of 45 nm were prepared by hydrogen plasma-metal reaction (HPMR method. The nanoparticles display core shell structure with Al13Co4 and CoAl core and aluminum oxide shell (about 2 nm. Under ultrasonic irradiation, nanoporous fcc-Co nanoparticles were produced successfully by chemically dealloying the Co-Al nanoparticles at room temperature, whereas, without ultrasonic irradiation CoAl phase could hardly react with sodium hydroxide solution. At 323 K the Co-Al nanoparticles could be dealloyed to fcc-Co and hcp-Co phases even without ultrasonic irradiation. The surface area of the dealloyed nanoparticles under ultrasonic irradiation was larger than that of the dealloyed sample without ultrasonic irradiation at the same temperature. It is believed that the microjet and shock-wave induced by ultrasonic irradiation give rise to particles size reduction, interparticle collision and surface cleaning, and accelerate the dealloying process and the phase transformation.

  13. Synthesis and controlled release properties of 2,4-dichlorophenoxy acetate–zinc layered hydroxide nanohybrid

    International Nuclear Information System (INIS)

    Bashi, Abbas M.; Hussein, Mohd Zobir; Zainal, Zulkarnain; Tichit, Didier

    2013-01-01

    Direct reaction of ZnO with 2,4-dichlorophenoxyacetic acid (24D) solutions of different concentrations allows obtaining new organic–inorganic nanohybrid materials formed by intercalation of 24D into interlayers of zinc layered hydroxide (ZLH). XRD patterns show a progressive evolution of the structure as 24D concentration increases. The nanohybrid obtained at higher 24D concentration (24D–ZLH(0.4)) reveals a well ordered layered structure with two different basal spacings at 25.2 Å and 24 Å. The FTIR spectrum showing the vibrations bands of the functional groups of 24D and of the ZLH confirms the intercalation. SEM images are in agreement with the structural evolution observed by XRD and reveal the ribbon morphology of the nanohybrids. The release studies of 24D showed a rapid release of 94% for the first 100 min governed by the pseudo-second order kinetic model. - Graphical abstract: The phenomenon indicates that the optical energy gap is enlarged with the increase of molar concentrations in 2,4-dichlorophenoxy acetate anion content into ZnO to create a ZLH–24D nanohybrid. - Highlights: • Nanohybrid was synthesized from 2,4-dichlorophenoxy acetate with-Zinc LHD, using wet chemistry. • Characterized using SEM, TEM, EDX, FTIR, XRD and TGA. • Ribbon-shaped 24D–Zn-layered hydroxide nanoparticles with (003) diffractions of 2.5 nm phase were synthesized

  14. Dehydration-rehydration behaviour of zirconium hydroxide and aluminium hydroxide coprecipitated hydrogel

    International Nuclear Information System (INIS)

    Mitra, N.K.; Guha, P.; Basumajumdar, A.

    1989-01-01

    Equilibrium dehydration loss experiments on zirconium and aluminium hydroxide coprecipitated hyrogels were carried out up to 600deg and the above heat treated samples were subjected to rehydration at various humidities in order to study the structural flexibilties of the above hydrogel with respect to orientation of water molecules. (author). 6 refs., 3 tabs

  15. Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions.

    Science.gov (United States)

    Callahan, Karen M; Casillas-Ituarte, Nadia N; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J

    2010-04-22

    Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturation concentrations. This is not typical of most ions. There has been disagreement in the molecular dynamics literature concerning the existence of ion pairing in magnesium chloride solutions. Using a force field developed during this study, we show that contact ion pairing is not energetically favorable. Additionally, we present a concentration-dependent Raman spectroscopic study of the Mg-O(water) hexaaquo stretch that clearly supports the absence of ion pairing in MgCl(2) solutions, although a transition occurring in the spectrum between 0.06x and 0.09x suggests a change in solution structure. Finally, we compare experimental and calculated observables to validate our force field as well as two other commonly used magnesium force fields, and in the process show that ion pairing of magnesium clearly is not observed at higher concentrations in aqueous solutions of magnesium chloride, independent of the choice of magnesium force field, although some force fields give better agreement to experimental results than others.

  16. Intradermal administration of magnesium sulphate and magnesium chloride produces hypesthesia to mechanical but hyperalgesia to heat stimuli in humans

    Directory of Open Access Journals (Sweden)

    Ikemoto Tatsunori

    2009-08-01

    Full Text Available Abstract Background Although magnesium ions (Mg2+ are known to display many similar features to other 2+ charged cations, they seem to have quite an important and unique role in biological settings, such as NMDA blocking effect. However, the role of Mg2+ in the neural transmission system has not been studied as sufficiently as calcium ions (Ca2+. To clarify the sensory effects of Mg2+ in peripheral nervous systems, sensory changes after intradermal injection of Mg2+ were studied in humans. Methods Magnesium sulphate, magnesium chloride and saline were injected into the skin of the anterior region of forearms in healthy volunteers and injection-induced irritating pain ("irritating pain", for short, tactile sensation, tactile pressure thresholds, pinch-pain changes and intolerable heat pain thresholds of the lesion were monitored. Results Flare formation was observed immediately after magnesium sulphate or magnesium chloride injection. We found that intradermal injections of magnesium sulphate and magnesium chloride transiently caused irritating pain, hypesthesia to noxious and innocuous mechanical stimulations, whereas secondary hyperalgesia due to mechanical stimuli was not observed. In contrast to mechanical stimuli, intolerable heat pain-evoking temperature was significantly decreased at the injection site. In addition to these results, spontaneous pain was immediately attenuated by local cooling. Conclusion Membrane-stabilizing effect and peripheral NMDA-blocking effect possibly produced magnesium-induced mechanical hypesthesia, and extracellular cation-induced sensitization of TRPV1 channels was thought to be the primary mechanism of magnesium-induced heat hyperalgesia.

  17. Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution

    International Nuclear Information System (INIS)

    Chen Jian; Dong Junhua; Wang Jianqiu; Han Enhou; Ke Wei

    2008-01-01

    The effect of magnesium hydride on the corrosion behavior of an as-cast AZ91 alloy in 3.5 wt.% NaCl solution was investigated using gas collection method and potentiostatic test. The Pourbaix diagram of Mg-H 2 O system was built using thermodynamic calculation. It was possible that magnesium hydride could form in the whole pH range in theory. The experimental results showed that at cathodic region, magnesium hydride formed on surface, which was the controlling process for the corrosion behavior of AZ91 alloy; at anodic region and free corrosion potential, magnesium hydride model and partially protective film model, monovalent magnesium ion model and particle undermining model were responsible for the corrosion process of AZ91 alloy

  18. Hydrothermal Synthesis of Fe3O4 Nanoparticles and Flame Resistance Magnetic Poly styrene Nanocomposite

    Directory of Open Access Journals (Sweden)

    Kambiz Hedayati

    2017-01-01

    Full Text Available Fe3O4 nanostructures were synthesized via a facile hydrothermal reaction. The effect of various surfactants such as cationic and anionic on the morphology of the product was investigated. Magnetic nanoparticles were added to poly styrene for preparation of magnetic nanocomposite. Nanostructures were then characterized using X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. The magnetic properties of the samples were also investigated using vibrating sample magnetometer. The magnesium ferrite nanoparticles exhibit super paramagnetic behaviour at room temperature, with a saturation magnetization of 66 emu/g and a coercivity less than 5 Oe. Distribution of the magnetic nanoparticles into poly styrene matrix increases the coercivity. Nanoparticles appropriately enhanced flame retardant property of the PS matrix. Nanoparticles act as barriers which decrease thermal transport and volatilization during decomposition of the polymer.

  19. Synthesis of CuO-NiO core-shell nanoparticles by homogeneous precipitation method

    International Nuclear Information System (INIS)

    Bayal, Nisha; Jeevanandam, P.

    2012-01-01

    Highlights: ► CuO-NiO core-shell nanoparticles have been synthesized using a simple homogeneous precipitation method for the first time. ► Mechanism of the formation of core-shell nanoparticles has been investigated. ► The synthesis route may be extended for the synthesis of other mixed metal oxide core-shell nanoparticles. - Abstract: Core-shell CuO–NiO mixed metal oxide nanoparticles in which CuO is the core and NiO is the shell have been successfully synthesized using homogeneous precipitation method. This is a simple synthetic method which produces first a layered double hydroxide precursor with core-shell morphology which on calcination at 350 °C yields the mixed metal oxide nanoparticles with the retention of core-shell morphology. The CuO–NiO mixed metal oxide precursor and the core-shell nanoparticles were characterized by powder X-ray diffraction, FT-IR spectroscopy, thermal gravimetric analysis, elemental analysis, scanning electron microscopy, transmission electron microscopy, and diffuse reflectance spectroscopy. The chemical reactivity of the core-shell nanoparticles was tested using catalytic reduction of 4-nitrophenol with NaBH 4 . The possible growth mechanism of the particles with core-shell morphology has also been investigated.

  20. Higher dietary magnesium intake and higher magnesium status are associated with lower prevalence of coronary heart disease in patients with type 2 diabetes

    NARCIS (Netherlands)

    Gant, C.M.; Soedamah-Muthu, S.S.; Binnenmars, S.H.; Bakker, S.J.L.; Navis, G.; Laverman, G.D.

    2018-01-01

    In type 2 diabetes mellitus (T2D), the handling of magnesium is disturbed. Magnesium deficiency may be associated with a higher risk of coronary heart disease (CHD). We investigated the associations between (1) dietary magnesium intake; (2) 24 h urinary magnesium excretion; and (3) plasma magnesium