WorldWideScience

Sample records for magnesium hydrides

  1. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  2. Reactions of zinc hydride and magnesium hydride with pyridine; synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes are described. Zinc hydride and magnesium hydride dissolve in and react with pyridine, and the reaction has been studied in detail in the case of zinc hydride. Evaporation of the solvent after 1–2 hours at 0°C

  3. Effect of Magnesium Hydride on the Corrosion Behavior of Pure Magnesium in 0.1 M NaCl Solution

    OpenAIRE

    Xu, Shanna; Dong, Junhua; Ke, Wei

    2010-01-01

    The effect of magnesium hydride on the corrosion behavior of pure magnesium in 0.1 M NaCl solution was investigated using the gas collection method, potentiostatic current decay test, and in situ Raman spectrum. The formation of magnesium hydride (MgH2, Mg2H4) was observed at the cathodic region. Applying anodic potential leads to decomposition of magnesium hydride. Magnesium hydride plays an important role on the negative difference effect (NDE) in both the cathodic and anodic regions.

  4. Effect of Magnesium Hydride on the Corrosion Behavior of Pure Magnesium in 0.1 M NaCl Solution

    Directory of Open Access Journals (Sweden)

    Shanna Xu

    2010-01-01

    Full Text Available The effect of magnesium hydride on the corrosion behavior of pure magnesium in 0.1 M NaCl solution was investigated using the gas collection method, potentiostatic current decay test, and in situ Raman spectrum. The formation of magnesium hydride (MgH2, Mg2H4 was observed at the cathodic region. Applying anodic potential leads to decomposition of magnesium hydride. Magnesium hydride plays an important role on the negative difference effect (NDE in both the cathodic and anodic regions.

  5. Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution

    International Nuclear Information System (INIS)

    Chen Jian; Dong Junhua; Wang Jianqiu; Han Enhou; Ke Wei

    2008-01-01

    The effect of magnesium hydride on the corrosion behavior of an as-cast AZ91 alloy in 3.5 wt.% NaCl solution was investigated using gas collection method and potentiostatic test. The Pourbaix diagram of Mg-H 2 O system was built using thermodynamic calculation. It was possible that magnesium hydride could form in the whole pH range in theory. The experimental results showed that at cathodic region, magnesium hydride formed on surface, which was the controlling process for the corrosion behavior of AZ91 alloy; at anodic region and free corrosion potential, magnesium hydride model and partially protective film model, monovalent magnesium ion model and particle undermining model were responsible for the corrosion process of AZ91 alloy

  6. Hydrogen storage in metallic hydrides: the hydrides of magnesium-nickel alloys

    International Nuclear Information System (INIS)

    Silva, E.P. da.

    1981-01-01

    The massive and common use of hydrogen as an energy carrier requires an adequate solution to the problem of storing it. High pressure or low temperatures are not entirely satisfactory, having each a limited range of applications. Reversible metal hydrides cover a range of applications intermediate to high pressure gas and low temperature liquid hydrogen, retaining very favorable safety and energy density characteristics, both for mobile and stationary applications. This work demonstrates the technical viability of storing hydrogen in metal hydrides of magnesium-nickel alloys. Also, it shows that technology, a product of science, can be generated within an academic environment, of the goal is clear, the demand outstanding and the means available. We review briefly theoretical models relating to metal hydride properties, specially the thermodynamics properties relevant to this work. We report our experimental results on hydrides of magnesium-nickel alloys of various compositions including data on structure, hydrogen storage capacities, reaction kinetics, pressure-composition isotherms. We selected a promising alloy for mass production, built and tested a modular storage tank based on the hydrides of the alloy, with a capacity for storing 10 Nm sup(3) of hydrogen of 1 atm and 20 sup(0)C. The tank weighs 46,3 Kg and has a volume of 21 l. (author)

  7. A novel magnesium-vanadium hydride synthesized by a gigapascal-high-pressure technique

    Energy Technology Data Exchange (ETDEWEB)

    Kyoi, Daisuke; Sato, Toyoto; Roennebro, Ewa; Tsuji, Yasufumi; Kitamura, Naoyuki; Ueda, Atsushi; Ito, Mikio; Katsuyama, Shigeru; Hara, Shigeta; Noreus, Dag; Sakai, Tetsuo

    2004-07-28

    A magnesium-based vanadium-doped hydride was prepared in a high-pressure anvil cell by reacting a MgH{sub 2}-25%V molar mixture at 8 GPa and 873 K. The new magnesium-vanadium hydride has a cubic F-centred substructure (a=4.721(1) Angst), with an additional superstructure, which could be described by a doubling of the cubic cell axis and a magnesium atom framework, including an ordered arrangement of both vanadium atoms and vacancies (a=9.437(3) Angst, space group Fm3-bar m (no. 225), Z=4, V=840.55 Angst{sup 3}). The metal atom structure is related to the Ca{sub 7}Ge type structure but the refined metal atom composition with vacancies on one of the magnesium sites corresponding to Mg{sub 6}V nearly in line with EDX analysis. The thermal properties of the new compound were also studied by TPD analysis and TG-DTA. The onset of the hydrogen desorption for the new Mg{sub 6}V hydride occurred at a 160 K lower temperature when compared to magnesium hydride at a heating rate of 10 K/min.

  8. Characterization of the whiskerlike products formed by hydriding magnesium metal powders

    DEFF Research Database (Denmark)

    Herley, P. J.; Jones, W.; Vigeholm, Bjørn

    1985-01-01

    The structure of filamentary crystals produced during the hydriding of magnesium powder has been studies in detail. The needles of small dimensions (typically 0.5 μm in diameter) have been identified by electron analytical techniques to be oriented microcrystals of metallic magnesium. Their forma......The structure of filamentary crystals produced during the hydriding of magnesium powder has been studies in detail. The needles of small dimensions (typically 0.5 μm in diameter) have been identified by electron analytical techniques to be oriented microcrystals of metallic magnesium....... Their formation has been ascribed to the melting of localized aluminum impurities within the bulk magnesium to form a liquid eutectic. In the presence of sublimed magnesium vapor and hydrogen (as a carrier gas) a vapor-liquid-solid mechanism operates to produce a rapid unidirectional extension followed...

  9. Magnesium hydrides and their phase transitions

    Czech Academy of Sciences Publication Activity Database

    Paidar, Václav

    2016-01-01

    Roč. 41, č. 23 (2016), s. 9769-9773 ISSN 0360-3199 R&D Projects: GA MŠk(CZ) LD13069 Institutional support: RVO:68378271 Keywords : hydrogen * magnesium and transition metal hydrides * crystal structure stability * displacive phase transformations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.582, year: 2016

  10. Room temperature and thermal decomposition of magnesium hydride/deuteride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R.; Leardini, F.; Bodega, J.; Macia, M.D.; Diaz-Chao, P.; Ferrer, I.J.; Fernandez, J.F.; Sanchez, C. [Universidad Autonoma de Madrid (Spain). Lab. de Materiales de Interes en Energias Renovables

    2010-07-01

    Magnesium hydride (MgH{sub 2}) can be considered an interesting material to store hydrogen as long as two main drawbacks were solved: (i) its high stability and (ii) slow (de)hydriding kinetics. In that context, magnesium hydride films are an excellent model system to investigate the influence of structure, morphology and dimensionality on kinetic and thermodynamic properties. In the present work, we show that desorption mechanism of Pd-capped MgH{sub 2} at room temperature is controlled by a bidimensional interphase mechanism and a similar rate step limiting mechanism is observed during thermal decomposition of MgH{sub 2}. This mechanism is different to that occurring in bulk MgH{sub 2} (nucleation and growth) and obtained activation energies are lower than those reported in bulk MgH{sub 2}. We also investigated the Pd-capping properties upon H-absorption/desorption by means of RBS and isotope experiments. (orig.)

  11. Catalytic effect of halide additives ball milled with magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Malka, I.E.; Bystrzycki, J. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); Czujko, T. [Department of Advanced Materials and Technologies, Military University of Technology, Kaliskiego 2, 00-908 Warsaw (Poland); CanmetENERGY, Hydrogen Fuel Cells and Transportation Energy, Natural Resources (Canada)

    2010-02-15

    The influence of various halide additives milled with magnesium hydride (MgH{sub 2}) on its decomposition temperature was studied. The optimum amount of halide additive and milling conditions were evaluated. The MgH{sub 2} decomposition temperature and energy of activation reduction were measured by temperature programmed desorption (TPD) and differential scanning calorimetry (DSC). The difference in catalytic efficiency between chlorides and fluorides of the various metals studied is presented. The effects of oxidation state, valence and position in the periodic table for selected halides on MgH{sub 2} decomposition temperature were also studied. The best catalysts, from the halides studied, for magnesium hydride decomposition were ZrF{sub 4}, TaF{sub 5}, NbF{sub 5}, VCl{sub 3} and TiCl{sub 3}. (author)

  12. A new ternary magnesium-titanium hydride Mg{sub 7}TiH{sub x} with hydrogen desorption properties better than both binary magnesium and titanium hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Kyoi, Daisuke; Sato, Toyoto; Roennebro, Ewa; Kitamura, Naoyuki; Ueda, Atsushi; Ito, Mikio; Katsuyama, Shigeru; Hara, Shigeta; Noreus, Dag; Sakai, Tetsuo

    2004-06-09

    A magnesium based titanium doped hydride was prepared in a high-pressure anvil cell by reacting a mixture of MgH{sub 2} and TiH{sub 1.9} at 8 GPa and 873 K. The metal structure has a Ca{sub 7}Ge type structure (a=9.532(2) A, space group Fm3-barm (no. 225), Z=4, V=866.06 A{sup 3}). The refined metal atom composition Mg{sub 7}Ti was almost in line with EDS analysis. This means that the new magnesium-titanium hydride has a structure that is more related to TiH{sub 1.9} than to MgH{sub 2}. The thermal properties of the new compound were also studied by TPD analysis. The new hydride, Mg{sub 7}TiH{sub x} exhibits 5.5 mass% (x{approx}12.7) and decomposes into Mg and TiH{sub 1.9} upon releasing 4.7 mass% of hydrogen around 605 K, that is at a 130 and 220 K lower desorption temperature compared to MgH{sub 2} and TiH{sub 1.9}, respectively.

  13. Dehydrogenation kinetics of pure and nickel-doped magnesium hydride investigated by in situ time-resolved powder X-ray diffraction

    DEFF Research Database (Denmark)

    Jensen, T.R.; Andreasen, A.; Vegge, Tejs

    2006-01-01

    The dehydrogenation kinetics of pure and nickel (Ni)-doped (2w/w%) magnesium hydride (MgH2) have been investigated by in situ time-resolved powder X-ray diffraction (PXD). Deactivated samples, i.e. air exposed, are investigated in order to focus on the effect of magnesium oxide (MgO) surface layers......, which might be unavoidable for magnesium (Mg)-based storage media for mobile applications. A curved position-sensitive detector covering 120 degrees in 20 and a rotating anode X-ray source provide a time resolution of 45 s and up to 90 powder pattems collected during an experiment under isothermal...... by the Johnson-Mehi-Avrami formalism in order to derive rate constants at different temperatures. The apparent activation energies for dehydrogenation of pure and Ni-doped magnesium hydride were E-A approximate to 300 and 250 kJ/mol, respectively. Differential scanning calorimetry gave, E-A = 270 k...

  14. Chemical Hydride Slurry for Hydrogen Production and Storage

    Energy Technology Data Exchange (ETDEWEB)

    McClaine, Andrew W

    2008-09-30

    The purpose of this project was to investigate and evaluate the attractiveness of using a magnesium chemical hydride slurry as a hydrogen storage, delivery, and production medium for automobiles. To fully evaluate the potential for magnesium hydride slurry to act as a carrier of hydrogen, potential slurry compositions, potential hydrogen release techniques, and the processes (and their costs) that will be used to recycle the byproducts back to a high hydrogen content slurry were evaluated. A 75% MgH2 slurry was demonstrated, which was just short of the 76% goal. This slurry is pumpable and storable for months at a time at room temperature and pressure conditions and it has the consistency of paint. Two techniques were demonstrated for reacting the slurry with water to release hydrogen. The first technique was a continuous mixing process that was tested for several hours at a time and demonstrated operation without external heat addition. Further work will be required to reduce this design to a reliable, robust system. The second technique was a semi-continuous process. It was demonstrated on a 2 kWh scale. This system operated continuously and reliably for hours at a time, including starts and stops. This process could be readily reduced to practice for commercial applications. The processes and costs associated with recycling the byproducts of the water/slurry reaction were also evaluated. This included recovering and recycling the oils of the slurry, reforming the magnesium hydroxide and magnesium oxide byproduct to magnesium metal, hydriding the magnesium metal with hydrogen to form magnesium hydride, and preparing the slurry. We found that the SOM process, under development by Boston University, offers the lowest cost alternative for producing and recycling the slurry. Using the H2A framework, a total cost of production, delivery, and distribution of $4.50/kg of hydrogen delivered or $4.50/gge was determined. Experiments performed at Boston

  15. Use of reversible hydrides for hydrogen storage

    Science.gov (United States)

    Darriet, B.; Pezat, M.; Hagenmuller, P.

    1980-01-01

    The addition of metals or alloys whose hydrides have a high dissociation pressure allows a considerable increase in the hydrogenation rate of magnesium. The influence of temperature and hydrogen pressure on the reaction rate were studied. Results concerning the hydriding of magnesium rich alloys such as Mg2Ca, La2Mg17 and CeMg12 are presented. The hydriding mechanism of La2Mg17 and CeMg12 alloys is given.

  16. Hydrogen storage systems based on magnesium hydride: from laboratory tests to fuel cell integration

    Science.gov (United States)

    de Rango, P.; Marty, P.; Fruchart, D.

    2016-02-01

    The paper reviews the state of the art of hydrogen storage systems based on magnesium hydride, emphasizing the role of thermal management, whose effectiveness depends on the effective thermal conductivity of the hydride, but also depends of other limiting factors such as wall contact resistance and convective exchanges with the heat transfer fluid. For daily cycles, the use of phase change material to store the heat of reaction appears to be the most effective solution. The integration with fuel cells (1 kWe proton exchange membrane fuel cell and solid oxide fuel cell) highlights the dynamic behaviour of these systems, which is related to the thermodynamic properties of MgH2. This allows for "self-adaptive" systems that do not require control of the hydrogen flow rate at the inlet of the fuel cell.

  17. Dehydrogenation kinetics for pure and nickel-doped magnesium hydride investigated by in-situ, time-resolved powder diffraction (poster)

    DEFF Research Database (Denmark)

    Jensen, T.R.; Andreasen, A.; Vegge, T.

    2004-01-01

    temperatures. Apparent activation energies were calculated from Arrhenius plots revealing values of ca. 300 and 250 kJ/mol for the dehydrogenationof pure and nickel-doped magnesium hydride, respectively, in accord with EA= 270 kJ/mol measured by thermal desorption spectroscopy for these non-activated materials...

  18. Hydrogen storage as a hydride. Citations from the International Aerospace Abstracts data base

    Science.gov (United States)

    Zollars, G. F.

    1980-01-01

    These citations from the international literature concern the storage of hydrogen in various metal hydrides. Binary and intermetallic hydrides are considered. Specific alloys discussed are iron titanium, lanthanium nickel, magnesium copper and magnesium nickel among others.

  19. On the hydrogenation mechanism in magnesium I

    DEFF Research Database (Denmark)

    Pedersen, A.S.; Kjøller, John; Larsen, Bent

    1985-01-01

    The first time hydriding of spherical magnesium particles covered by a thin oxide layer and sieve-fractionated into narrow size distributions within the range 40–90 μm was followed by microgravimetry. The size distributions of the fractions were determined by semiautomatic image analysis....... The hydridings were run at 402°C and 3 MPa hydrogen pressure after heating in helium. A dependence of the rate of hydriding on the heat treatment prior to reaction was observed and it is proposed that the heat treatment causes oxygen atoms to diffuse into the bulk metal and thereby break up the protective oxide...... generalizing results from the hydriding of magnesium powders....

  20. Mechanochemical synthesis of nanostructured chemical hydrides in hydrogen alloying mills

    International Nuclear Information System (INIS)

    Wronski, Z.; Varin, R.A.; Chiu, C.; Czujko, T.; Calka, A.

    2007-01-01

    Mechanical alloying of magnesium metal powders with hydrogen in specialized hydrogen ball mills can be used as a direct route for mechanochemical synthesis of emerging chemical hydrides and hydride mixtures for advanced solid-state hydrogen storage. In the 2Mg-Fe system, we have successfully synthesized the ternary complex hydride Mg 2 FeH 6 in a mixture with nanometric Fe particles. The mixture of complex magnesium-iron hydride and nano-iron released 3-4 wt.%H 2 in a thermally programmed desorption experiment at the range 285-295 o C. Milling of the Mg-2Al powder mixture revealed a strong competition between formation of the Al(Mg) solid solution and the β-MgH 2 hydride. The former decomposes upon longer milling as the Mg atoms react with hydrogen to form the hydride phase, and drive the Al out of the solid solution. The mixture of magnesium dihydride and nano-aluminum released 2.1 wt.%H 2 in the temperature range 329-340 o C in the differential scanning calorimetry experiment. The formation of MgH 2 was suppressed in the Mg-B system; instead, a hydrogenated amorphous phase (Mg,B)H x , was formed in a mixture with nanometric MgB 2 . Annealing of the hydrogen-stabilized amorphous mixture produced crystalline MgB 2

  1. Hydrogen storage in the form of metal hydrides

    Science.gov (United States)

    Zwanziger, M. G.; Santana, C. C.; Santos, S. C.

    1984-01-01

    Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/ nickel alloy may provide a means for storing hydrogen fuel. A demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.

  2. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage.

    Science.gov (United States)

    Shinde, S S; Kim, Dong-Hyung; Yu, Jin-Young; Lee, Jung-Ho

    2017-06-01

    The rational design of stable, inexpensive catalysts with excellent hydrogen dynamics and sorption characteristics under realistic environments for reversible hydrogen storage remains a great challenge. Here, we present a simple and scalable strategy to fabricate a monodispersed, air-stable, magnesium hydride embedded in three-dimensional activated carbon with periodic synchronization of transition metals (MHCH). The high surface area, homogeneous distribution of MgH 2 nanoparticles, excellent thermal stability, high energy density, steric confinement by carbon, and robust architecture of the catalyst resulted in a noticeable enhancement of the hydrogen storage performance. The resulting MHCH-5 exhibited outstanding hydrogen storage performance, better than that of most reported Mg-based hydrides, with a high storage density of 6.63 wt% H 2 , a rapid kinetics loading in hydrogenation compared to that of commercial MgH 2 . The origin of the intrinsic hydrogen thermodynamics was elucidated via solid state 1 H NMR. This work presents a readily scaled-up strategy towards the design of realistic catalysts with superior functionality and stability for applications in reversible hydrogen storage, lithium ion batteries, and fuel cells.

  3. Study on the effects of titanium oxide based nanomaterials as catalysts on the hydrogen sorption kinetics of magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Anderson de Farias; Jardim, Paula Mendes; Santos, Dilson Silva dos, E-mail: anderso.n@poli.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil); Conceicao, Monique Osorio Talarico da [Centro Universitario de Volta Redonda (UniFOA), RJ (Brazil)

    2016-07-01

    Full text: Magnesium hydride is highly attractive for hydrogen storage in solid state in reason of its high gravimetric capacity (7,6 wt% of H{sub 2}) and low density (1,7 g/cm³), making it a promissory candidate for mobile applications [1]. However, its low sorption kinetics and desorption temperature are the main obstacles for its application. In the present study the catalytic role of TiO{sub 2} based nanomaterials with different morphologies on the sorption kinetics of MgH{sub 2} was evaluated. The additions consisted on titanate nanotubes (TTNT-Low), TiO{sub 2} nanorods (TTNT-550) and nanoparticles (KA-100, TTNT-ACID). Transmission and Scanning Transmission Electron Microscopy (S/TEM) associated with X-ray Energy Dispersive Spectroscopy (XEDS) mapping was used to characterize the catalysts' morphology and crystalline structure and their dispersion within magnesium hydride, altogether with other characterization techniques such as X-ray diffraction (XRD) and BET technique for structure and surface area analysis. The sorption kinetics were evaluated by means of a volumetric gas absorption/desorption (Sievert-type) apparatus. The results indicated that all additives improved the sorption kinetics of MgH{sub 2}, but the samples with TTNT-550 (TiO{sub 2} nanorods) and TTNT-ACID (TiO{sub 2} nanoparticles) presented the best and the second best performances, respectively, suggesting that the 1D morphology may promote a slightly superior kinetics than particulate catalysts. (author)

  4. An extremely bulky tris(pyrazolyl)methanide: a tridentate ligand for the synthesis of heteroleptic magnesium(II) and ytterbium(II) alkyl, hydride, and iodide complexes.

    Science.gov (United States)

    Lalrempuia, Ralte; Stasch, Andreas; Jones, Cameron

    2015-02-01

    The tris(pyrazolyl)methane compound HC(3-Ad-5-Mepz)3 [1, 3-Ad-5-Mepz=3-(1-adamantyl)-5-methylpyrazolyl] and its regioisomer, HC(3-Ad-5-Mepz)2 (3-Me-5-Adpz), were synthesized and crystallographically characterized. Deprotonation of 1 with MeLi afforded the lithium complex [{κ(3) -N-C(3-Ad-5-Mepz)3 }Li(thf)], which incorporates a tris(pyrazolyl)methanide ligand of unprecedented bulk. Reaction of 1 with MeMgI gave the ionic coordination complex [{κ(3) -N-HC(3-Ad-5-Mepz)3 }MgMe]I, which was readily deprotonated to afford the neutral compound [{κ(3) -N-C(3-Ad-5-Mepz)3 }MgMe]. The related magnesium butyl compound [{κ(3) -N-C(3-Ad-5-Mepz)3 }MgBu] was prepared from the reaction of 1 and MgBu2 . Treating this with LiAlH4 or LiAlD4 led to rare examples of terminal magnesium hydride/deuteride complexes, [{κ(3) -N-C(3-Ad-5-Mepz)3 }MgH/D]. All neutral magnesium alkyl and hydride compounds were crystallographically authenticated. Reaction of [{κ(3) κN-C(3-Ad-5-Mepz)3 }Li(thf)] with [YbI2 (thf)2 ] yielded the first structurally characterized f-block tris(pyrazolyl)methanide complex, [{κ(3) -N-C(3-Ad-5-Mepz)3 }YbI(thf)]. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Magnesium Hydride for Load Levelling Energy Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.

    Some of the magnesium properties essential to the applicability of the reaction Mg+H2⇆MgH2 as a hydrogen storage system have been investigated. Three magnesium powders with particle size smaller than 50 μm average diameter were cycled, over 31, 71 and 151 cycles respectively, at 675K (400°C...

  6. Hydrogen storage properties of Mg-23.3wt.%Ni eutectic alloy prepared via hydriding combustion synthesis followed by mechanical milling

    International Nuclear Information System (INIS)

    Liquan Li; Yunfeng Zhu; Xiaofeng Liu

    2006-01-01

    A Mg-23.3wt.%Ni eutectic alloy was prepared by the process of hydriding combustion synthesis followed by mechanical milling (HCS+MM). The product showed a high hydriding rate at 373 K and the dehydrogenation started at temperature as low as 423 K. Several reasons contributing to the improvement in hydrogen storage properties were presented. The result of this study will provide attractive information for mobile applications of magnesium hydrogen storage materials, and the process of HCS+MM developed in this study showed its potential for synthesizing magnesium based hydrogen storage materials with novel hydriding/de-hydriding properties. (authors)

  7. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    Science.gov (United States)

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  8. Unexpected formation of hydrides in heavy rare earth containing magnesium alloys

    Directory of Open Access Journals (Sweden)

    Yuanding Huang

    2016-09-01

    Full Text Available Mg–RE (Dy, Gd, Y alloys show promising for being developed as biodegradable medical applications. It is found that the hydride REH2 could be formed on the surface of samples during their preparations with water cleaning. The amount of formed hydrides in Mg–RE alloys is affected by the content of RE and heat treatments. It increases with the increment of RE content. On the surface of the alloy with T4 treatment the amount of formed hydride REH2 is higher. In contrast, the amount of REH2 is lower on the surfaces of as-cast and T6-treated alloys. Their formation mechanism is attributed to the surface reaction of Mg–RE alloys with water. The part of RE in solid solution in Mg matrix plays an important role in influencing the formation of hydrides.

  9. Effect of Nano-Magnesium Hydride on the Thermal Decomposition Behaviors of RDX

    International Nuclear Information System (INIS)

    Yao, M.; Chen, L.; Rao, G.; Peng, J.; Zou, J.; Zeng, X.

    2013-01-01

    In order to improve the detonation performance of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) explosive, addictive with high heat values were used, and magnesium hydride (MgH 2 ) is one of the candidates. However, it is important to see whether MgH 2 is a safe addictive. In this paper, the thermal and kinetic properties of RDX and mixture of RDX/MgH 2 were investigated by differential scanning calorimeter (DSC) and accelerating rate calorimeter (ARC), respectively. The apparent activation energy (E) and frequency factor (A) of thermal explosion were calculated based on the data of DSC experiments using the Kissinger and Ozawa approaches. The results show that the addition of MgH 2 decreases both E and A of RDX, which means that the mixture of RDX/MgH 2 has a lower thermal stability than RDX, and the calculation results obtained from the ARC experiments data support this too. Besides, the most probable mechanism functions about the decomposition of RDX and RDX/MgH 2 were given in this paper which confirmed the change of the decomposition mechanism.

  10. Nanostructured, complex hydride systems for hydrogen generation

    Directory of Open Access Journals (Sweden)

    Robert A. Varin

    2015-02-01

    Full Text Available Complex hydride systems for hydrogen (H2 generation for supplying fuel cells are being reviewed. In the first group, the hydride systems that are capable of generating H2 through a mechanical dehydrogenation phenomenon at the ambient temperature are discussed. There are few quite diverse systems in this group such as lithium alanate (LiAlH4 with the following additives: nanoiron (n-Fe, lithium amide (LiNH2 (a hydride/hydride system and manganese chloride MnCl2 (a hydride/halide system. Another hydride/hydride system consists of lithium amide (LiNH2 and magnesium hydride (MgH2, and finally, there is a LiBH4-FeCl2 (hydride/halide system. These hydride systems are capable of releasing from ~4 to 7 wt.% H2 at the ambient temperature during a reasonably short duration of ball milling. The second group encompasses systems that generate H2 at slightly elevated temperature (up to 100 °C. In this group lithium alanate (LiAlH4 ball milled with the nano-Fe and nano-TiN/TiC/ZrC additives is a prominent system that can relatively quickly generate up to 7 wt.% H2 at 100 °C. The other hydride is manganese borohydride (Mn(BH42 obtained by mechano-chemical activation synthesis (MCAS. In a ball milled (2LiBH4 + MnCl2 nanocomposite, Mn(BH42 co-existing with LiCl can desorb ~4.5 wt.% H2 at 100 °C within a reasonable duration of dehydrogenation. Practical application aspects of hydride systems for H2 generation/storage are also briefly discussed.

  11. Hydrogen Storage in Porous Materials and Magnesium Hydrides

    NARCIS (Netherlands)

    Grzech, A.

    2013-01-01

    In this thesis representatives of two different types of materials for potential hydrogen storage application are presented. Usage of either nanoporous materials or metal hydrides has both operational advantages and disadvantages. A main objective of this thesis is to characterize the hydrogen

  12. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1980-01-01

    The reaction of hydrogen with commercially pure magnesium powder (above 99.7%) was investigated in the temperature range 250–400 °C. Hydrogen is readily sorbed above the dissociation pressure. During the initial exposure the magnesium powder sorbs hydrogen slowly below 400 °C but during the second...... that the particles do not disintegrate is explained by a sintering process at the working temperatures. Exposure to air does not impair the sorption ability; on the contrary, it appears that surface oxidation plays an important role in the reaction. Some handling problems, e.g. the reaction of the hydride with water...

  13. Hydrogenations of alloys and intermetallic compounds of magnesium

    International Nuclear Information System (INIS)

    Gavra, Z.

    1981-08-01

    A kinetic and thermodynamic study of the hydrogenation of alloys and intermetallic compounds of magnesium is presented. It was established that the addition of elements of the IIIA group (Al, Ga, In) to magnesium catalyses its hydrogenation. This is explained by the mechanism of diffusion of magnesium cation vacancies. The hydride Mg 2 NiH 4 was characterized by thermal analysis, x-ray diffraction and NMR measurements. The possibility of forming pseudo-binary compounds of Mg 2 Ni by the substitution of nickel or magnesium was examined. The hydrogenation of the inter-metallic compounds of the Mg-Al system was investigated. It was found that the addition of indium and nickel affected the hydrogenation kinetics. A preliminary study of the hydrogenation of various binary and ternary alloys of magnesium was carried out. (Author)

  14. Effect of multi-wall carbon nanotubes supported nano-nickel and TiF{sub 3} addition on hydrogen storage properties of magnesium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Su, Wei; Zhu, Yunfeng, E-mail: yfzhu@njtech.edu.cn; Zhang, Jiguang; Liu, Yana; Yang, Yang; Mao, Qifeng; Li, Liquan

    2016-06-05

    Multi-wall carbon nanotubes supported nano-nickel (Ni/MWCNTs) with superior catalytic effects was introduced to magnesium hydride by the process of hydriding combustion synthesis (HCS) and mechanical milling (MM). The effect of different Ni/MWCNTs contents (5 wt.%, 10 wt.%, 15 wt.%, 20 wt.%) on the hydrogenation and dehydrogenation properties of the composite was investigated systematically. It is revealed that Mg{sub 85}-(Ni/MWCNTs){sub 15} composite shows the best comprehensive hydrogen storage properties, which absorbs 5.68 wt.% hydrogen within 100 s at 373 K and releases 4.31 wt.% hydrogen within 1800 s at 523 K under initial hydrogen pressures of 3.0 and 0.005 MPa, respectively. The in situ formed nano-Mg{sub 2}Ni and MWCNTs have excellent catalytic effect on the hydrogenation and dehydrogenation performances of MgH{sub 2}. To further improve the hydrogen absorption/desorption properties, TiF{sub 3} was added to the Mg–Ni/MWCNTs system. The result shows that TiF{sub 3} addition has little influence on the thermodynamic performance, but affects greatly the kinetic properties. The Mg{sub 85}-(Ni/MWCNTs){sub 15}-TiF{sub 3} composite exhibits an appreciably enhanced hydrogen desorption performance at low temperature, and the hydrogen desorption capacity within 1800 s at 473 K for the TiF{sub 3}-added composite is approximately four times the capacity of Mg{sub 85}-(Ni/MWCNTs){sub 15} under the same condition. The catalytic effects during hydrogenation and dehydrogenation have been discussed in the study. - Highlights: • The nanosized Ni/MWCNTs catalyst was successfully prepared. • Ni/MWCNTs shows superior catalytic effect on H absorption/desorption of Mg. • Mg{sub 85}-(Ni/MWCNTs){sub 15} composite shows the best hydrogen storage properties. • Ni/MWCNTs coupling with TiF{sub 3} improves the hydriding/dehydriding properties largely.

  15. Interaction of electrons with light metal hydrides in the transmission electron microscope.

    Science.gov (United States)

    Wang, Yongming; Wakasugi, Takenobu; Isobe, Shigehito; Hashimoto, Naoyuki; Ohnuki, Somei

    2014-12-01

    Transmission electron microscope (TEM) observation of light metal hydrides is complicated by the instability of these materials under electron irradiation. In this study, the electron kinetic energy dependences of the interactions of incident electrons with lithium, sodium and magnesium hydrides, as well as the constituting element effect on the interactions, were theoretically discussed, and electron irradiation damage to these hydrides was examined using in situ TEM. The results indicate that high incident electron kinetic energy helps alleviate the irradiation damage resulting from inelastic or elastic scattering of the incident electrons in the TEM. Therefore, observations and characterizations of these materials would benefit from increased, instead decreased, TEM operating voltage. © The Author 2014. Published by Oxford University Press on behalf of The Japanese Society of Microscopy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Influence of uranium hydride oxidation on uranium metal behaviour

    International Nuclear Information System (INIS)

    Patel, N.; Hambley, D.; Clarke, S.A.; Simpson, K.

    2013-01-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  17. Influence of uranium hydride oxidation on uranium metal behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

    2013-07-01

    This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

  18. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    International Nuclear Information System (INIS)

    Surrey, Alexander; Schultz, Ludwig; Rellinghaus, Bernd

    2017-01-01

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH_2, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  19. Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Surrey, Alexander, E-mail: a.surrey@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Schultz, Ludwig [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany); Rellinghaus, Bernd, E-mail: b.rellinghaus@ifw-dresden.de [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany)

    2017-04-15

    Highlights: • Multislice HRTEM contrast simulations of a windowed environmental cell. • Study of Mg and MgH2 nanocrystals as model system in hydrogen at ambient pressure. • Investigation of spatial resolution and contrast depending on specimen thickness, defocus, and hydrogen pressure. • Atomic resolution is expected for specimens as thin as 5  nm. - Abstract: The use of transmission electron microscopy (TEM) for the structural characterization of many nanostructured hydrides, which are relevant for solid state hydrogen storage, is hindered due to a rapid decomposition of the specimen upon irradiation with the electron beam. Environmental TEM allows to stabilize the hydrides by applying a hydrogen back pressure of up to 4.5 bar in a windowed environmental cell. The feasibility of high-resolution TEM (HRTEM) investigations of light weight metals and metal hydrides in such a “nanoreactor” is studied theoretically by means of multislice HRTEM contrast simulations using Mg and its hydride phase, MgH{sub 2}, as model system. Such a setup provides the general opportunity to study dehydrogenation and hydrogenation reactions at the nanoscale under technological application conditions. We analyze the dependence of both the spatial resolution and the HRTEM image contrast on parameters such as the defocus, the metal/hydride thickness, and the hydrogen pressure in order to explore the possibilities and limitations of in-situ experiments with windowed environmental cells. Such simulations may be highly valuable to pre-evaluate future experimental studies.

  20. Corrosion and protection of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, E. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining and Metallurgy

    2000-07-01

    The oxide film on magnesium offers considerable surface protection in rural and some industrial environments and the corrosion rate lies between that of aluminum and low carbon steels. Galvanic coupling of magnesium alloys, high impurity content such as Ni, Fe, Cu and surface contamination are detrimental for corrosion resistance of magnesium alloys. Alloying elements can form secondary particles which are noble to the Mg matrix, thereby facilitating corrosion, or enrich the corrosion product thereby possibly inhibiting the corrosion rate. Bimetallic corrosion resistance can be increased by fluxless melt protection, choice of compatible alloys, insulating materials, and new high-purity alloys. Magnesium is relatively insensible to oxygen concentration. Pitting, corrosion in the crevices, filiform corrosion are observed. Granular corrosion of magnesium alloys is possible due to the cathodic grain-boundary constituent. More homogeneous microstructures tend to improve corrosion resistance. Under fatigue loading conditions, microcrack initiation in Mg alloys is related to slip in preferentially oriented grains. Coating that exclude the corrosive environments can provide the primary defense against corrosion fatigue. Magnesium alloys that contain neither aluminum nor zinc are the most SCC resistant. Compressive surface residual stresses as that created by short peening increase SCC resistance. Cathodic polarization or cladding with a SCC resistant sheet alloy are good alternatives. Effective corrosion prevention for magnesium alloy components and assemblies should start at the design stage. Selective surface preparation, chemical treatment and coatings are recommended. Oil application, wax coating, anodizing, electroplating, and painting are possible alternatives. Recently, it is found that a magnesium hydride layer, created on the magnesium surface by cathodic charging in aqueous solution is a good base for painting. (orig.)

  1. A review on on-board challenges of magnesium-based hydrogen storage materials for automobile applications

    Science.gov (United States)

    Rahman, Md. Wasikur

    2017-06-01

    The attempt of the review is to realize on-board hydrogen storage technologies concerning magnesium based solid-state matrix to allow fuel cell devices to facilitate sufficient storage capacity, cost, safety and performance requirements to be competitive with current vehicles. Hydrogen, a potential and clean fuel, can be applied in the state-of-the-art technology of `zero emission' vehicles. Hydrogen economy infrastructure both for stationary and mobile purposes is complicated due to its critical physico-chemical properties and materials play crucial roles in every stage of hydrogen production to utilization in fuel cells in achieving high conversion efficiency, safety and robustness of the technologies involved. Moreover, traditional hydrogen storage facilities are rather complicated due to its anomalous properties such as highly porous solids and polymers have intrinsic microporosity, which is the foremost favorable characteristics of fast kinetics and reversibility, but the major drawback is the low storage capacity. In contrast, metal hydrides and complex hydrides have high hydrogen storage capacity but thermodynamically unfavorable. Therefore, hydrogen storage is a real challenge to realize `hydrogen economy' that will solve the critical issues of humanity such as energy depletion, greenhouse emission, air pollution and ultimately climate change. Magnesium based materials, particularly magnesium hydride (MgH2) has been proposed as a potential hydrogen storage material due to its high gravimetric and volumetric capacity as well as environmentally benign properties to work the grand challenge out.

  2. Electrolytic hydriding and hydride distribution in zircaloy-4

    International Nuclear Information System (INIS)

    Gomes, M.H.L.

    1974-01-01

    A study has been made of the electrolytic hydriding of zircaloy-4 in the range 20-80 0 C, for reaction times from 5 to 30 hours, and the effect of potential, pH and dissolved oxygen has been investigated. The hydriding reaction was more sensitive to time and temperature conditions than to the electrochemical variables. It has been shown that a controlled introduction of hydrides in zircaloy is feasible. Hydrides were found to be plate like shaped and distributed mainly along grain-boundaries. It has been shown that hydriding kinetics do not follow a simple law but may be described by a Johnson-Mehl empirical equation. On the basis of this equation an activation energy of 9.400 cal/mol has been determined, which is close to the activation energy for diffusion of hydrogen in the hydride. (author)

  3. Predicting Hydride Donor Strength via Quantum Chemical Calculations of Hydride Transfer Activation Free Energy.

    Science.gov (United States)

    Alherz, Abdulaziz; Lim, Chern-Hooi; Hynes, James T; Musgrave, Charles B

    2018-01-25

    We propose a method to approximate the kinetic properties of hydride donor species by relating the nucleophilicity (N) of a hydride to the activation free energy ΔG ⧧ of its corresponding hydride transfer reaction. N is a kinetic parameter related to the hydride transfer rate constant that quantifies a nucleophilic hydridic species' tendency to donate. Our method estimates N using quantum chemical calculations to compute ΔG ⧧ for hydride transfers from hydride donors to CO 2 in solution. A linear correlation for each class of hydrides is then established between experimentally determined N values and the computationally predicted ΔG ⧧ ; this relationship can then be used to predict nucleophilicity for different hydride donors within each class. This approach is employed to determine N for four different classes of hydride donors: two organic (carbon-based and benzimidazole-based) and two inorganic (boron and silicon) hydride classes. We argue that silicon and boron hydrides are driven by the formation of the more stable Si-O or B-O bond. In contrast, the carbon-based hydrides considered herein are driven by the stability acquired upon rearomatization, a feature making these species of particular interest, because they both exhibit catalytic behavior and can be recycled.

  4. Desorption of hydrogen from magnesium hydride: in-situ electron diffraction study

    International Nuclear Information System (INIS)

    Paik, B.; Jones, I.P.; Walton, A.; Mann, V.; Book, D.; Harris, I.R.

    2009-01-01

    The dynamics of a phase change has been studied where electron beam in Transmission Electron Microscope (TEM) has been used to transform MgH 2 into magnesium. A combination of in-situ Electron Diffraction (ED) and an in-situ Electron Energy Loss Spectroscopy (EELS) study under ED mode describes the phase transformation in terms of, respectively, change in the crystal structure and Plasmon energy shift. The orientation relation [001] MgH2 //[-2110] Mg and (-110) MgH2 //(0001) Mg , obtained from the ED study, has been used to propose a model for the movements of magnesium atoms in the structural change to describe the dynamics of the process. The in-situ EELS study has been compared with the existing H-desorption model. The study aims to describe the sorption dynamics of hydrogen in MgH 2 which is a base material for a number of promising hydrogen storage systems. (author)

  5. Linear Dimerization of Terminal Alkynes by Bis( tetramethylphenylcyclopentadienyl) Titanium-Magnesium Hydride and Acetylide Complexes

    Czech Academy of Sciences Publication Activity Database

    Mach, Karel; Gyepes, R.; Horáček, Michal; Petrusová, Lidmila; Kubišta, Jiří

    2003-01-01

    Roč. 68, č. 10 (2003), s. 1877-1896 ISSN 0010-0765 R&D Projects: GA ČR GA203/02/0774; GA ČR GA203/02/0436 Institutional research plan: CEZ:AV0Z4040901 Keywords : titanium * alkynes * hydrides Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.041, year: 2003

  6. The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters

    Science.gov (United States)

    2016-01-04

    AFRL-AFOSR-VA-TR-2016-0075 The Oxidation Products of Aluminum Hydride and Boron Aluminum Hydride Clusters KIT BOWEN JOHNS HOPKINS UNIV BALTIMORE MD...2. REPORT TYPE Final Performance 3. DATES COVERED (From - To) 30-09-2014 to 29-09-2015 4. TITLE AND SUBTITLE The Oxidation Products of Aluminum ...Hydride and Boron Aluminum Hydride Clusters 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-14-1-0324 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S) KIT

  7. Catalitic effect of Co on hydrogen desorption form nanostucturated magnesium hydride

    Directory of Open Access Journals (Sweden)

    Matović Ljiljana Lj.

    2008-01-01

    Full Text Available To study the influence of 3d transition metal addition on desorption kinetics of MgH2 ball milling of MgH2-Co blends was performed under Ar. Microstructural and morphological characterization, performed by XRD and SEM, show a huge correlation with thermal stability and hydrogen desorption properties investigated by DSC. A complex desorption behavior is correlated with the dispersion of the metal additive particles on hydride matrix. The activation energy for H2 desorption from MgH2-Co composite was calculated from both non-isothermal and isothermal methods to be 130 kJ/mol which means that mutually diffusion and nucleation and growth of new phase control the dehydration process.

  8. High-pressure hydriding of Zircaloy

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1996-01-01

    The hydriding characteristics of Zircaloy-2(Zry), sponge zirconium (as a liner on Zry plate), and crystal-bar zirconium exposed to pure H 2 at 0.1 MPa or 7 MPa and 400 C were determined in a thermogravimetric apparatus. The morphology of the hydrided specimens was also examined by optical microscopy. For all specimen types, the rate of hydriding in 7 MPa H 2 was two orders of magnitude greater than in 0.1 MPa H 2 . For Zry, uniform bulk hydriding was revealed by hydride precipitates at room temperature and on one occasion, a sunburst hydride. In addition, all specimen types exhibited a hydride surface layer. In a duplex Zry/sponge-Zr specimen, Zry is more heavily hydrided than the sponge Zr layer. (orig.)

  9. Hydrogen generation using silicon nanoparticles and their mixtures with alkali metal hydrides

    Science.gov (United States)

    Patki, Gauri Dilip

    mole of Si. We compare our silicon nanoparticles (˜10nm diameter) with commercial silicon nanopowder (rate upon decreasing the particle size to 10 nm was even greater than would be expected based upon the increase in surface area. While specific surface area increased by a factor of 6 in going from rate increased by a factor of 150. However, in all cases, silicon requires a base (e.g. NaOH, KOH, hydrazine) to catalyze its reaction with water. Metal hydrides are also promising hydrogen storage materials. The optimum metal hydride would possess high hydrogen storage density at moderate temperature and pressure, release hydrogen safely and controllably, and be stable in air. Alkali metal hydrides have high hydrogen storage density, but exhibit high uncontrollable reactivity with water. In an attempt to control this explosive nature while maintaining high storage capacity, we mixed our silicon nanoparticles with the hydrides. This has dual benefits: (1) the hydride- water reaction produces the alkali hydroxide needed for base-catalyzed silicon oxidation, and (2) dilution with 10nm coating by, the silicon may temper the reactivity of the hydride, making the process more controllable. Initially, we analyzed hydrolysis of pure alkali metal hydrides and alkaline earth metal hydrides. Lithium hydride has particularly high hydrogen gravimetric density, along with faster reaction kinetics than sodium hydride or magnesium hydride. On analysis of hydrogen production we found higher hydrogen yield from the silicon nanoparticle—metal hydride mixture than from pure hydride hydrolysis. The silicon-hydride mixtures using our 10nm silicon nanoparticles produced high hydrogen yield, exceeding the theoretical yield. Some evidence of slowing of the hydride reaction rate upon addition of silicon nanoparticles was observed.

  10. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4

    International Nuclear Information System (INIS)

    Racine, A.

    2005-09-01

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  11. PREDICTION OF THE SPECTROSCOPIC PARAMETERS OF NEW IRON COMPOUNDS: HYDRIDE OF IRON CYANIDE/ISOCYANIDE, HFeCN/HFeNC

    Energy Technology Data Exchange (ETDEWEB)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio, E-mail: predondo@qf.uva.es [Departamento de Química Física y Química Inorgánica Facultad de Ciencias, Universidad de Valladolid Campus Miguel Delibes Paseo de Belén 7, E-47011, Valladolid (Spain)

    2016-09-01

    Iron is the most abundant transition metal in space. Its abundance is similar to that of magnesium, and until today only, FeO and FeCN have been detected. However, magnesium-bearing compounds such as MgCN, MgNC, and HMgNC are found in IRC+10216. It seems that the hydrides of iron cyanide/isocyanide could be good candidates to be present in space. In the present work we carried out a characterization of the different minima on the quintet and triplet [C, Fe, H, N] potential energy surfaces, employing several theoretical approaches. The most stable isomers are predicted to be hydride of iron cyanide HFeCN, and isocyanide HFeNC, in their {sup 5}Δ states. Both isomers are found to be quasi-isoenergetics. The HFeNC isomer is predicted to lie about 0.5 kcal/mol below HFeCN. The barrier for the interconversion process is estimated to be around 6.0 kcal/mol, making this process unfeasible under low temperature conditions, such as those in the interstellar medium. Therefore, both HFeCN and HFeNC could be candidates for their detection. We report geometrical parameters, vibrational frequencies, and rotational constants that could help with their experimental characterization.

  12. PREDICTION OF THE SPECTROSCOPIC PARAMETERS OF NEW IRON COMPOUNDS: HYDRIDE OF IRON CYANIDE/ISOCYANIDE, HFeCN/HFeNC

    International Nuclear Information System (INIS)

    Redondo, Pilar; Barrientos, Carmen; Largo, Antonio

    2016-01-01

    Iron is the most abundant transition metal in space. Its abundance is similar to that of magnesium, and until today only, FeO and FeCN have been detected. However, magnesium-bearing compounds such as MgCN, MgNC, and HMgNC are found in IRC+10216. It seems that the hydrides of iron cyanide/isocyanide could be good candidates to be present in space. In the present work we carried out a characterization of the different minima on the quintet and triplet [C, Fe, H, N] potential energy surfaces, employing several theoretical approaches. The most stable isomers are predicted to be hydride of iron cyanide HFeCN, and isocyanide HFeNC, in their 5 Δ states. Both isomers are found to be quasi-isoenergetics. The HFeNC isomer is predicted to lie about 0.5 kcal/mol below HFeCN. The barrier for the interconversion process is estimated to be around 6.0 kcal/mol, making this process unfeasible under low temperature conditions, such as those in the interstellar medium. Therefore, both HFeCN and HFeNC could be candidates for their detection. We report geometrical parameters, vibrational frequencies, and rotational constants that could help with their experimental characterization.

  13. States and transport of hydrogen in the corrosion process of an AZ91 magnesium alloy in aqueous solution

    International Nuclear Information System (INIS)

    Chen Jian; Wang Jianqiu; Han Enhou; Dong Junhua; Ke Wei

    2008-01-01

    Mott-Schottky measurement and secondary ion mass spectroscopy (SIMS) were used to investigate the states and transport of hydrogen during the corrosion behavior of an AZ91 magnesium alloy in 0.1 M sodium sulfate solution. The results showed that when samples were immersed or charged in solution, hydrogen atoms diffused into the film and reacted with vacancy to cause the increases of the carrier concentration (excess electron or hole carrier) and diffusion rate of hydrogen. Some hydrogen atoms diffused to interior of matrix and enriched in β phase while others resorted in the corrosive film. With the increase of immersion or charging time, magnesium hydride would be brittle fractured when the inner stress caused by hydrogen pressure and expansion stress of formation of magnesium hydride was above the fracture strength, which provided the direct experimental evidence of the hydrogen embrittlement (HE) mechanism of magnesium and its alloys. After immersion in solution, the transfer of excess electrons to the interfaces of corrosion film and solution would destroy the charge equilibrium in the film and stimulate the adsorption of SO 4 2- , which resulted in the initiation of localized corrosion; after cathodic charging and then immersion, the enrichment of hydrogen atoms at interior of corrosion film would combine into hydrogen gas to form high pressure and result in the rupture of corrosion film, and localized corrosion initiated and developed at surface. Therefore, localized corrosion nucleated earlier on the charged samples than on the uncharged samples. Hydrogen invasion accelerated the corrosion of matrix

  14. Hydride embrittlement in zircaloy components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Castagnet, Mariano, E-mail: rmlobo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Zirconium alloys are used in nuclear reactor cores under high-temperature water environment. During service, hydrogen is generated by corrosion processes, and it is readily absorbed by these materials. When hydrogen concentration exceeds the terminal solid solubility, the excess hydrogen precipitates as zirconium hydride (ZrH{sub 2}) platelets or needles. Zirconium alloys components can fail by hydride cracking if they contain large flaws and are highly stressed. Zirconium alloys are susceptible to a mechanism for crack initiation and propagation termed delayed hydride cracking (DHC). The presence of brittle hydrides, with a K{sub Ic} fracture toughness of only a few MPa{radical}m, results in a severe loss in ductility and toughness when platelet normal is oriented parallel to the applied stress. In plate or tubing, hydrides tend to form perpendicular to the thickness direction due to the texture developed during fabrication. Hydrides in this orientation do not generally cause structural problems because applied stresses in the through-thickness direction are very low. However, the high mobility of hydrogen in a zirconium lattice enables redistribution of hydrides normal to the applied stress direction, which can result in localized embrittlement. When a platelet reaches a critical length it ruptures. If the tensile stress is sufficiently great, crack initiation starts at some of these hydrides. Crack propagation occurs by repeating the same process at the crack tip. Delayed hydride cracking can degrade the structural integrity of zirconium alloys during reactor service. The paper focuses on the fracture mechanics and fractographic aspects of hydride material. (author)

  15. Conference 'Chemistry of hydrides' Proceedings

    International Nuclear Information System (INIS)

    1991-07-01

    This collection of thesis of conference of Chemistry hydrides presents the results of investigations concerning of base questions of chemistry of nonorganic hydrides, including synthesis questions, studying of physical and chemical properties, thermodynamics, analytical chemistry, investigation of structure, equilibriums in the systems of metal-hydrogen, behaviour of nonorganic hydrides in non-water mediums and applying investigations in the chemistry area and technology of nonorganic hydrides

  16. Hydrogen Outgassing from Lithium Hydride

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, L N; Schildbach, M A; Smith, R A; Balazs1, B; McLean II, W

    2006-04-20

    Lithium hydride is a nuclear material with a great affinity for moisture. As a result of exposure to water vapor during machining, transportation, storage and assembly, a corrosion layer (oxide and/or hydroxide) always forms on the surface of lithium hydride resulting in the release of hydrogen gas. Thermodynamically, lithium hydride, lithium oxide and lithium hydroxide are all stable. However, lithium hydroxides formed near the lithium hydride substrate (interface hydroxide) and near the sample/vacuum interface (surface hydroxide) are much less thermally stable than their bulk counterpart. In a dry environment, the interface/surface hydroxides slowly degenerate over many years/decades at room temperature into lithium oxide, releasing water vapor and ultimately hydrogen gas through reaction of the water vapor with the lithium hydride substrate. This outgassing can potentially cause metal hydriding and/or compatibility issues elsewhere in the device. In this chapter, the morphology and the chemistry of the corrosion layer grown on lithium hydride (and in some cases, its isotopic cousin, lithium deuteride) as a result of exposure to moisture are investigated. The hydrogen outgassing processes associated with the formation and subsequent degeneration of this corrosion layer are described. Experimental techniques to measure the hydrogen outgassing kinetics from lithium hydride and methods employing the measured kinetics to predict hydrogen outgassing as a function of time and temperature are presented. Finally, practical procedures to mitigate the problem of hydrogen outgassing from lithium hydride are discussed.

  17. Mechanical properties and fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Koketsu, Hideyuki; Taniyama, Yoshihiro; Yonezu, Akio; Cho, Hideo; Ogawa, Takeshi; Takemoto, Mikio; Nakayama, Gen

    2006-01-01

    Titanium hydrides tend to suffer fracture when their thicknesses reach a critical thickness. Morphology and mechanical property of the hydrides are, however, not well known. The study aims to reveal the hydride morphology and fracture types of the hydrides. Chevron shaped plate hydrides were found to be produced on the surface of pure titanium (Grade 1) and Grade 7 titanium absorbing hydrogen. There were tree types of fracture of the hydrides, i.e., crack in hydride layer, exfoliation of the layer and shear-type fracture of the hydride plates, during the growth of the hydrides and deformation. We next estimated the true stress-strain curves of the hydrides on Grade 1 and 7 titanium using the dual Vickers indentation method, and the critical strain causing the Mode-I fine crack by indentation. Fracture strength and strain of the hydrides in Grade 1 titanium were estimated as 566 MPa and 4.5%, respectively. Those of the hydride in Grade 7 titanium were 498 MPa and 16%. Though the fracture strains estimated from the plastic instability of true stress-strain curves were approximately the half of those estimated by finite element method, the titanium hydrides were estimated to possess some extent of toughness or plastic deformation capability. (author)

  18. Magnesium-based hydrogen alloy anodes for a nickel metal hydrides secondary battery

    Energy Technology Data Exchange (ETDEWEB)

    Cui, N.; Luan, B.; Zhao, H.J.; Liu, H.K.; Dou, S.X. [Univ of Wollongong, Wollongong, NSW (Australia). Centre for Superconducting and Electronic Materials

    1996-12-31

    Extensive work has been carried out in our group to try utilizing magnesium-based hydrogen storage alloys as a low cost and high performance anode materials for Ni-MH battery. It was found that the modified Mg{sub 2}Ni alloy anodes were able to be charged-discharged effectively in a KOH aqueous solution at ambient temperature. The discharge capacity and cycle have been substantially improved in four ways: (1) by partial substitution of La, Ti, V, Zr, Ca for Mg and Fe, Co, Cu, Al, Si, Y, Mn for Ni in Mg{sub 2}Ni; (2) by composite of Mg{sub 2}Ni with another hydrogen storage alloys; (3) by room-temperature surface microencapsulation and, (4) by ultrasound treatment of alloy powders. A discharge capacity of 170 mAh/g has been obtained from the modified Mg{sub 2}Ni-type alloy electrode, and the cycle life has exceeded 350 cycles. The high rate dischargeability was also significantly improved by the modification. It was concluded that magnesium-based hydrogen storage alloys would become promising anode materials for Ni- MH secondary battery with further improvement of discharge capacity and cycling performance

  19. Magnesium-based hydrogen alloy anodes for a nickel metal hydrides secondary battery

    International Nuclear Information System (INIS)

    Cui, N.; Luan, B.; Zhao, H.J.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Extensive work has been carried out in our group to try utilizing magnesium-based hydrogen storage alloys as a low cost and high performance anode materials for Ni-MH battery. It was found that the modified Mg 2 Ni alloy anodes were able to be charged-discharged effectively in a KOH aqueous solution at ambient temperature. The discharge capacity and cycle have been substantially improved in four ways: (1) by partial substitution of La, Ti, V, Zr, Ca for Mg and Fe, Co, Cu, Al, Si, Y, Mn for Ni in Mg 2 Ni; (2) by composite of Mg 2 Ni with another hydrogen storage alloys; (3) by room-temperature surface microencapsulation and, (4) by ultrasound treatment of alloy powders. A discharge capacity of 170 mAh/g has been obtained from the modified Mg 2 Ni-type alloy electrode, and the cycle life has exceeded 350 cycles. The high rate dischargeability was also significantly improved by the modification. It was concluded that magnesium-based hydrogen storage alloys would become promising anode materials for Ni- MH secondary battery with further improvement of discharge capacity and cycling performance

  20. Fundamental experiments on hydride reorientation in zircaloy

    Science.gov (United States)

    Colas, Kimberly B.

    In the current study, an in-situ X-ray diffraction technique using synchrotron radiation was used to follow directly the kinetics of hydride dissolution and precipitation during thermomechanical cycles. This technique was combined with conventional microscopy (optical, SEM and TEM) to gain an overall understanding of the process of hydride reorientation. Thus this part of the study emphasized the time-dependent nature of the process, studying large volume of hydrides in the material. In addition, a micro-diffraction technique was also used to study the spatial distribution of hydrides near stress concentrations. This part of the study emphasized the spatial variation of hydride characteristics such as strain and morphology. Hydrided samples in the shape of tensile dog-bones were used in the time-dependent part of the study. Compact tension specimens were used during the spatial dependence part of the study. The hydride elastic strains from peak shift and size and strain broadening were studied as a function of time for precipitating hydrides. The hydrides precipitate in a very compressed state of stress, as measured by the shift in lattice spacing. As precipitation proceeds the average shift decreases, indicating average stress is reduced, likely due to plastic deformation and morphology changes. When nucleation ends the hydrides follow the zirconium matrix thermal contraction. When stress is applied below the threshold stress for reorientation, hydrides first nucleate in a very compressed state similar to that of unstressed hydrides. After reducing the average strain similarly to unstressed hydrides, the average hydride strain reaches a constant value during cool-down to room temperature. This could be due to a greater ease of deforming the matrix due to the applied far-field strain which would compensate for the strains due to thermal contraction. Finally when hydrides reorient, the average hydride strains become tensile during the first precipitation regime and

  1. A Study on the Radial Hydride Assisted Delayed Hydride Cracking of Zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jin-Ho; Lee, Ji-Min; Kim, Yong-Soo [Hanyang University, Seoul (Korea, Republic of)

    2015-05-15

    Extensive studies have been done on understanding of DHC(Delayed hydride cracking) phenomenon since several zirconium alloy pressure tubes failed in nuclear reactor in the 1970s. Recently, long-term dry storage strategy has been considered seriously in order to manage spent nuclear fuel in Korea and other countries around the world. Consequentially, many researches have been investigated the degradation mechanisms which will threaten the spent fuel integrity during dry storage and showed that hydrogen related phenomenon such as hydride reorientation and DHC are the critical factors. Especially, DHC is the direct cracking mechanism which can cause not only a through-wall defect but also a radiation leak to the environment. In addition, DHC can be enhanced by radial hydride as reported by Kim who demonstrate that radial hydrides clearly act as crack linkage path. This phenomenon is known as the radial hydride assisted DHC (RHA-DHC). Therefore, study on DHC is essential to ensure the safety of spent fuel. Finite element analysis will be carried out for the stress gradient evaluation around notch tip. A variation in thermal cycle which leads to change in hydrogen solid solution trajectory may be required. If the radial hydride precipitates at notch tip, we will investigate what conditions should be met. Ultimately, we will suggest the regulation criteria for long-term dry storage of spent nuclear fuel.

  2. gamma-Zr-Hydride Precipitate in Irradiated Massive delta- Zr-Hydride

    DEFF Research Database (Denmark)

    Warren, M. R.; Bhattacharya, D. K.

    1975-01-01

    During examination of A Zircaloy-2-clad fuel pin, which had been part of a test fuel assembly in a boiling water reactor, several regions of severe internal hydriding were noticed in the upper-plenum end of the pin. Examination of similar fuel pins has shown that hydride of this type is caused by...... to irradiation-induced swelling....

  3. Effects of δ-hydride precipitation at a crack tip on crack propagation in delayed hydride cracking of Zircaloy-2

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, T., E-mail: kubo@nfd.co.jp [Nippon Nuclear Fuel Development Co., Ltd., 2163 Narita-cho, Oarai-machi, Ibaraki 311-1313 (Japan); Kobayashi, Y. [M.O.X. Co., Ltd., 1828-520 Hirasu-cho, Mito, Ibaraki 311-0853 (Japan)

    2013-08-15

    Highlights: • Steady state crack velocity of delayed hydride cracking in Zircaloy-2 was analyzed. • A large stress peak is induced at an end of hydride by volume expansion of hydride. • Hydrogen diffuses to the stress peak, thereby accelerating steady hydride growth. • Crack velocity was estimated from the calculated hydrogen flux into the stress peak. • There was good agreement between calculation results and experimental data. -- Abstract: Delayed hydride cracking (DHC) of Zircaloy-2 is one possible mechanism for the failure of boiling water reactor fuel rods in ramp tests at high burnup. Analyses were made for hydrogen diffusion around a crack tip to estimate the crack velocity of DHC in zirconium alloys, placing importance on effects of precipitation of δ-hydride. The stress distribution around the crack tip is significantly altered by precipitation of hydride, which was strictly analyzed using a finite element computer code. Then, stress-driven hydrogen diffusion under the altered stress distribution was analyzed by a differential method. Overlapping of external stress and hydride precipitation at a crack tip induces two stress peaks; one at a crack tip and the other at the front end of the hydride precipitate. Since the latter is larger than the former, more hydrogen diffuses to the front end of the hydride precipitate, thereby accelerating hydride growth compared with that in the absence of the hydride. These results indicated that, after hydride was formed in front of the crack tip, it grew almost steadily accompanying the interaction of hydrogen diffusion, hydride growth and the stress alteration by hydride precipitation. Finally, crack velocity was estimated from the calculated hydrogen flux into the crack tip as a function of temperature, stress intensity factor and material strength. There was qualitatively good agreement between calculation results and experimental data.

  4. Hydride effect on crack instability of Zircaloy cladding

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, Che-Chung, E-mail: cctseng@iner.gov.tw [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Sun, Ming-Hung [Institute of Nuclear Energy Research, No. 1000, Wunhua Road, Jiaan Village, Lungtan, Township, Taoyuan County 32546, Taiwan (China); Chao, Ching-Kong [Department of Mechanical Engineering, National Taiwan University of Science and Technology, 43 Keelung Road, Section 4, Taipei 106, Taiwan (China)

    2014-04-01

    Highlights: • Radial hydrides near the crack tip had a significant effect on crack propagation. • For radial hydrides off the crack line vertically, the effect on crack propagation was notably reduced. • The longer hydride platelet resulted in a remarkable effect on crack propagation. • A long split in the radial hydride precipitate would enhance crack propagation. • The presence of circumferential hydride among radial hydrides may play an important role in crack propagation. - Abstract: A methodology was proposed to investigate the effect of hydride on the crack propagation in fuel cladding. The analysis was modeled based on an outside-in crack with radial hydrides located near its crack tip. The finite element method was used in the calculation; both stress intensity factor K{sub I} and J integral were applied to evaluate the crack stability. The parameters employed in the analysis included the location of radial hydride, hydride dimensions, number of hydrides, and the presence of circumferential hydride, etc. According to our study, the effective distance between a radial hydride and the assumed cladding surface crack for the enhancement of crack propagation proved to be no greater than 0.06 mm. For a hydride not on the crack line, it would induce a relatively minor effect on crack propagation if the vertical distance was beyond 0.05 mm. However, a longer hydride precipitate as well as double radial hydrides could have a remarkable effect on crack propagation. A combined effect of radial and circumferential hydrides was also discussed.

  5. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    Science.gov (United States)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500 mAh, AAA size type 900 mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material.

  6. Experimental investigation of strain, damage and failure of hydrided zircaloy-4 with various hydride orientations

    International Nuclear Information System (INIS)

    Racine, A; Catherine, C.S.; Cappelaere, C.; Bornert, M.; Caldemaison, D.

    2005-01-01

    This experimental investigation is devoted to the influence of the orientation of hydrides on the mechanical response of Zircaloy-4. Ring tensile tests are performed on unirradiated CWSR Zircaloy-4, charged with about 200 or 500wppm hydrogen. Hydrides are oriented either parallel ('tangential'), or perpendicular ('radial') to the circumferential tensile direction. Tangential hydrides are usually observed in cladding tubes, however, hydrides can be reoriented after cooling under stress to become radial and then trigger brittle behavior. In this investigation, we perform, 'macroscopic' or SEM in-situ tensile tests on smooth rings, at room temperature. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. The results lead to the following conclusions: neither the tensile stress-strain response nor the strain modes are affected by hydrogen content or hydride orientation, but the failure modes are. Indeed, only 200wppm radial hydrides embrittle Zy-4: sample fails in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases samples reach at least 750 MPa before failure, with ductile or brittle mode. (authors)

  7. Isotopic Exchange in Porous and Dense Magnesium Borohydride.

    Science.gov (United States)

    Zavorotynska, Olena; Deledda, Stefano; Li, Guanqiao; Matsuo, Motoaki; Orimo, Shin-ichi; Hauback, Bjørn C

    2015-09-01

    Magnesium borohydride (Mg(BH4)2) is one of the most promising complex hydrides presently studied for energy-related applications. Many of its properties depend on the stability of the BH4(-) anion. The BH4(-) stability was investigated with respect to H→D exchange. In situ Raman measurements on high-surface-area porous Mg(BH4 )2 in 0.3 MPa D2 have shown that the isotopic exchange at appreciable rates occurs already at 373 K. This is the lowest exchange temperature observed in stable borohydrides. Gas-solid isotopic exchange follows the BH4(-) +D˙ →BH3D(-) +H˙ mechanism at least at the initial reaction steps. Ex situ deuteration of porous Mg(BH4)2 and its dense-phase polymorph indicates that the intrinsic porosity of the hydride is the key behind the high isotopic exchange rates. It implies that the solid-state H(D) diffusion is considerably slower than the gas-solid H→D exchange reaction at the surface and it is a rate-limiting steps for hydrogen desorption and absorption in Mg(BH4)2. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rechargeable metal hydrides for spacecraft application

    Science.gov (United States)

    Perry, J. L.

    1988-01-01

    Storing hydrogen on board the Space Station presents both safety and logistics problems. Conventional storage using pressurized bottles requires large masses, pressures, and volumes to handle the hydrogen to be used in experiments in the U.S. Laboratory Module and residual hydrogen generated by the ECLSS. Rechargeable metal hydrides may be competitive with conventional storage techniques. The basic theory of hydride behavior is presented and the engineering properties of LaNi5 are discussed to gain a clear understanding of the potential of metal hydrides for handling spacecraft hydrogen resources. Applications to Space Station and the safety of metal hydrides are presented and compared to conventional hydride storage. This comparison indicates that metal hydrides may be safer and require lower pressures, less volume, and less mass to store an equivalent mass of hydrogen.

  9. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  10. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Roberts, C.B.

    1975-01-01

    A process is described for preparing beryllium hydride by the direct reaction of beryllium borohydride and aluminum hydride trimethylamine adduct. Volatile by-products and unreacted reactants are readily removed from the product mass by sublimation and/or evaporation. (U.S.)

  11. Magnesium mechanical alloys for hydrogen storage

    International Nuclear Information System (INIS)

    Ivanov, E.; Konstanchuk, I.; Stepanov, A.; Boldyrev, V.

    1985-01-01

    Metal hybrides are currently being used to store and handle hydrogen and its isotopes. They are also being tested in hydrogen compressors and in heat energy, refrigerators and in hydrogen and thermal storage devices. Metal hydrides have been proposed as one of the possible media for hydrogen storage to overcome the limitations of other techniques in regard to safety hydrogen weight and volume ration. The suitability of metal hybrides as a hydrogen storage media depends on a number of factors such as storage capacity, reactivity with hydrogen at various pressures and temperatures, and the cost of base materials. Magnesium based alloys are promising materials for storing hydrogen. They are generally made by argon melting and no attention has been payed to other fabrication techniques such as mechanical alloying or powder technique

  12. Cyclopentadiene-mediated hydride transfer from rhodium complexes.

    Science.gov (United States)

    Pitman, C L; Finster, O N L; Miller, A J M

    2016-07-12

    Attempts to generate a proposed rhodium hydride catalytic intermediate instead resulted in isolation of (Cp*H)Rh(bpy)Cl (1), a pentamethylcyclopentadiene complex, formed by C-H bond-forming reductive elimination from the fleeting rhodium hydride. The hydride transfer ability of diene 1 was explored through thermochemistry and hydride transfer reactions, including the reduction of NAD(+).

  13. Air and metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Lampinen, M.; Noponen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Applied Thermodynamics

    1998-12-31

    The main goal of the air and metal hydride battery project was to enhance the performance and manufacturing technology of both electrodes to such a degree that an air-metal hydride battery could become a commercially and technically competitive power source for electric vehicles. By the end of the project it was possible to demonstrate the very first prototype of the air-metal hydride battery at EV scale, achieving all the required design parameters. (orig.)

  14. Development of high-capacity nickel-metal hydride batteries using superlattice hydrogen-absorbing alloys

    International Nuclear Information System (INIS)

    Yasuoka, Shigekazu; Magari, Yoshifumi; Murata, Tetsuyuki; Tanaka, Tadayoshi; Ishida, Jun; Nakamura, Hiroshi; Nohma, Toshiyuki; Kihara, Masaru; Baba, Yoshitaka; Teraoka, Hirohito

    2006-01-01

    New R-Mg-Ni (R: rare earths) superlattice alloys with higher-capacity and higher-durability than the conventional Mm-Ni alloys with CaCu 5 structure have been developed. The oxidation resistibility of the superlattice alloys has been improved by optimizing the alloy composition by such as substituting aluminum for nickel and optimizing the magnesium content in order to prolong the battery life. High-capacity nickel-metal hydride batteries for the retail market, the Ni-MH2500/900 series (AA size type 2500mAh, AAA size type 900mAh), have been developed and commercialized by using an improved superlattice alloy for negative electrode material. alized by using an improved superlattice alloy for negative electrode material. (author)

  15. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  16. Nanoindentation measurements of the mechanical properties of zirconium matrix and hydrides in unirradiated pre-hydrided nuclear fuel cladding

    International Nuclear Information System (INIS)

    Rico, A.; Martin-Rengel, M.A.; Ruiz-Hervias, J.; Rodriguez, J.; Gomez-Sanchez, F.J.

    2014-01-01

    It is well known that the mechanical properties of the nuclear fuel cladding may be affected by the presence of hydrides. The average mechanical properties of hydrided cladding have been extensively investigated from a macroscopic point of view. In addition, the mechanical and fracture properties of bulk hydride samples fabricated from zirconium plates have also been reported. In this paper, Young’s modulus, hardness and yield stress are measured for each phase, namely zirconium hydrides and matrix, of pre-hydrided nuclear fuel cladding. To this end, nanoindentation tests were performed on ZIRLO samples in as-received state, on a hydride blister and in samples with 150 and 1200 ppm of hydrogen homogeneously distributed along the hoop direction of the cladding. The results show that the measured mechanical properties of the zirconium hydrides and ZIRLO matrix (Young’s modulus, hardness and yield stress) are rather similar. From the experimental data, the hydride volume fraction in the cladding samples with 150 and 1200 ppm was estimated and the average mechanical properties were calculated by means of the rule of mixtures. These values were compared with those obtained from ring compression tests. Good agreement between the results obtained by both methods was found

  17. The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components Delayed Hydride Cracking

    CERN Document Server

    Puls, Manfred P

    2012-01-01

    By drawing together the current theoretical and experimental understanding of the phenomena of delayed hydride cracking (DHC) in zirconium alloys, The Effect of Hydrogen and Hydrides on the Integrity of Zirconium Alloy Components: Delayed Hydride Cracking provides a detailed explanation focusing on the properties of hydrogen and hydrides in these alloys. Whilst the focus lies on zirconium alloys, the combination of both the empirical and mechanistic approaches creates a solid understanding that can also be applied to other hydride forming metals.   This up-to-date reference focuses on documented research surrounding DHC, including current methodologies for design and assessment of the results of periodic in-service inspections of pressure tubes in nuclear reactors. Emphasis is placed on showing that our understanding of DHC is supported by progress across a broad range of fields. These include hysteresis associated with first-order phase transformations; phase relationships in coherent crystalline metallic...

  18. Identification and characterization of a new Zirconium hydride

    International Nuclear Information System (INIS)

    Zhao, Z.

    2007-01-01

    In order to control the integrity of the fuel clad, alloy of zirconium, it is necessary to predict the behavior of zirconium hydrides in the environment (temperature, stress...), at a microscopic scale. A characterization study by TEM of hydrides has been realized. It shows little hydrides about 500 nm, in hydride Zircaloy 4. Then a more detailed study identified a new hydride phase presented in this paper. (A.L.B.)

  19. Metal hydride compositions and lithium ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Young, Kwo; Nei, Jean

    2018-04-24

    Heterogeneous metal hydride (MH) compositions comprising a main region comprising a first metal hydride and a secondary region comprising one or more additional components selected from the group consisting of second metal hydrides, metals, metal alloys and further metal compounds are suitable as anode materials for lithium ion cells. The first metal hydride is for example MgH.sub.2. Methods for preparing the composition include coating, mechanical grinding, sintering, heat treatment and quenching techniques.

  20. Hydride formation on deformation twin in zirconium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju-Seong [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong-gu, Daejeon, 305-353 (Korea, Republic of); Kim, Sung-Dae [Korea Institute of Material Science (KIMS), 797 Changwondaero, Changwon, Gyeongnam, 642-831 (Korea, Republic of); Yoon, Jonghun, E-mail: yooncsmd@gmail.com [Department of Mechanical Engineering, Hanyang University, 1271 Sa3-dong, Sangrok-gu, Ansan-si, Gyeonggi-do, 426-791 (Korea, Republic of)

    2016-12-15

    Hydrides deteriorate the mechanical properties of zirconium (Zr) alloys used in nuclear reactors. Intergranular hydrides that form along grain boundaries have been extensively studied due to their detrimental effects on cracking. However, it has been little concerns on formation of Zr hydrides correlated with deformation twins which is distinctive heterogeneous nucleation site in hexagonal close-packed metals. In this paper, the heterogeneous precipitation of Zr hydrides at the twin boundaries was visualized using transmission electron microscopy. It demonstrates that intragranular hydrides in the twinned region precipitates on the rotated habit plane by the twinning and intergranular hydrides precipitate along the coherent low energy twin boundaries independent of the conventional habit planes. Interestingly, dislocations around the twin boundaries play a substantial role in the nucleation of Zr hydrides by reducing the misfit strain energy.

  1. Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PIII)

    Energy Technology Data Exchange (ETDEWEB)

    Bakkar, A. [Institut fuer Materialpruefung und Werkstofftechnik, Dr. Doelling und Dr. Neubert GmbH, Freiberger Strasse 1, 38678 Clausthal (Germany); Department of Metallurgy and Materials Engineering, Suez Canal University, P.O. Box 43721, Suez (Egypt); Neubert, V. [Institut fuer Materialpruefung und Werkstofftechnik, Dr. Doelling und Dr. Neubert GmbH, Freiberger Strasse 1, 38678 Clausthal (Germany)]. E-mail: volkmar.neubert@tu-clausthal.de

    2005-05-01

    Magnesium-based hydrides are well known that they have a high hydrogen-storage capacity. In this study, two different methods have been provided for hydrogen surface modification of high purity magnesium (hp Mg) and AZ91 magnesium alloy. One was electrochemical ion reduction (EIR) of hydrogen from an alkaline electrolyte on such Mg-based cathode. The other was plasma immersion ion implantation (PIII or PI{sup 3}) into Mg-based substrate. The depth profile of H-modified surfaces was described by Auger electron spectroscopy (AES) and by secondary ion mass spectrometry (SIMS) measurements. Corrosion testing was carried out in Avesta cell by potentiodynamic polarisation in chloride-containing aqueous solutions of pH 7 and pH 12. A greatly significant improvement in the corrosion resistance of H-modified surfaces was verified.

  2. Improving corrosion resistance of magnesium-based alloys by surface modification with hydrogen by electrochemical ion reduction (EIR) and by plasma immersion ion implantation (PIII)

    International Nuclear Information System (INIS)

    Bakkar, A.; Neubert, V.

    2005-01-01

    Magnesium-based hydrides are well known that they have a high hydrogen-storage capacity. In this study, two different methods have been provided for hydrogen surface modification of high purity magnesium (hp Mg) and AZ91 magnesium alloy. One was electrochemical ion reduction (EIR) of hydrogen from an alkaline electrolyte on such Mg-based cathode. The other was plasma immersion ion implantation (PIII or PI 3 ) into Mg-based substrate. The depth profile of H-modified surfaces was described by Auger electron spectroscopy (AES) and by secondary ion mass spectrometry (SIMS) measurements. Corrosion testing was carried out in Avesta cell by potentiodynamic polarisation in chloride-containing aqueous solutions of pH 7 and pH 12. A greatly significant improvement in the corrosion resistance of H-modified surfaces was verified

  3. Predicting formation enthalpies of metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, A.

    2004-12-01

    In order for the hydrogen based society viz. a society in which hydrogen is the primary energy carrier to become realizable an efficient way of storing hydrogen is required. For this purpose metal hydrides are serious candidates. Metal hydrides are formed by chemical reaction between hydrogen and metal and for the stable hydrides this is associated with release of heat ({delta}H{sub f} ). The more thermodynamically stable the hydride, the larger {delta}H{sub f}, and the higher temperature is needed in order to desorp hydrogen (reverse reaction) and vice versa. For practical application the temperature needed for desorption should not be too high i.e. {delta}H{sub f} should not be too large. If hydrogen desorption is to be possible below 100 deg C (which is the ultimate goal if hydrogen storage in metal hydrides should be used in conjunction with a PEM fuel cell), {delta}H{sub f} should not exceed -48 kJ/mol. Until recently only intermetallic metal hydrides with a storage capacity less than 2 wt.% H{sub 2} have met this criterion. However, discovering reversible hydrogen storage in complex metal hydrides such as NaAlH{sub 4} (5.5 wt. % reversible hydrogen capacity) have revealed a new group of potential candiates. However, still many combination of elements from the periodic table are yet to be explored. Since experimental determination of thermodynamic properties of the vast combinations of elements is tedious it may be advantagous to have a predictive tool for this task. In this report different ways of predicting {delta}H{sub f} for binary and ternary metal hydrides are reviewed. Main focus will be on how well these methods perform numerically i.e. how well experimental results are resembled by the model. The theoretical background of the different methods is only briefly reviewed. (au)

  4. Simultaneous determination of hydride and non-hydride forming elements by inductively coupled plasma optical emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Benzo, Z. [Instituto Venezolano de Investigaciones Cientificas, IVIC, Altos de Pipe, Caracas (Venezuela, Bolivarian Republic of); Matos-Reyes, M.N.; Cervera, M.L.; Guardia, M. de la, E-mail: m.luisa.cervera@uv.es [Department of Analytical Chemistry, University of Valencia, Valencia (Spain)

    2011-09-15

    The operating characteristics of a dual nebulization system were studied including instrumental and chemical conditions for the hydride generation and analytical figures of merit for both, hydride and non hydride forming elements. Analytical performance of the nebulization system was characterized by detection limits from 0.002 to 0.0026 {mu}g mL{sup -1} for the hydride forming elements and between 0.0034 and 0.0121 {mu}g mL{sup -1} for the non-hydride forming elements, relative standard deviation for 10 replicate measurements at 0.25 mg L{sup -1} level and recovery percentages between 97 and 103%. The feasibility of the system was demonstrated in the simultaneous determination of Ca, Cd, Co, Cr, Cu, Fe, Mg, Mn, Mo, Ni, Zn, As, Bi, Sb, Se, and Te in the NIST 1549 (non-fat milk powder), NIST 1570a (spinach leaves), DORM-2 (dogfish muscle) and TORT-2 (lobster hepatopancreas) certified samples for trace elements. Results found were in good agreement with the certified ones. (author)

  5. Disposal of tritium-exposed metal hydrides

    International Nuclear Information System (INIS)

    Nobile, A.; Motyka, T.

    1991-01-01

    A plan has been established for disposal of tritium-exposed metal hydrides used in Savannah River Site (SRS) tritium production or Materials Test Facility (MTF) R ampersand D operations. The recommended plan assumes that the first tritium-exposed metal hydrides will be disposed of after startup of the Solid Waste Disposal Facility (SWDF) Expansion Project in 1992, and thus the plan is consistent with the new disposal requiremkents that will be in effect for the SWDF Expansion Project. Process beds containing tritium-exposed metal hydride powder will be disposed of without removal of the powder from the bed; however, disposal of tritium-exposed metal hydride powder that has been removed from its process vessel is also addressed

  6. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    "Properties of Magnesium Composites for Material Scientists, Engineers and Selectors is the first book-length reference to provide an insight into current and future magnesium-based materials in terms...

  7. Anodematerials for Metal Hydride Batteries

    DEFF Research Database (Denmark)

    Jensen, Jens Oluf

    1997-01-01

    This report describes the work on development of hydride forming alloys for use as electrode materials in metal hydride batteries. The work has primarily been concentrated on calcium based alloys derived from the compound CaNi5. This compound has a higher capacity compared with alloys used in today......’s hydride batteries, but a much poorer stability towards repeated charge/discharge cycling. The aim was to see if the cycleability of CaNi5 could be enhanced enough by modifications to make the compound a suitable electrode material. An alloying method based on mechanical alloying in a planetary ball mill...

  8. Preparation and chemical crystallographic study of new hydrides and hydro-fluorides of ionic character; Preparation et etude cristallochimique de nouveaux hydrures et fluorohydrures a caractere ionique

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyung-Ho

    1988-07-22

    Within the context of a growing interest in the study of reversible hydrides with the perspective of their application in hydrogen storage, this research thesis more particularly addressed the case of ternary hydrides and fluorides, and of hydro-fluorides. The author reports the development of a method of preparation of alkaline hydrides, of alkaline earth hydrides and of europium hydride, and then the elaboration of ternary hydrides. He addresses the preparation of caesium fluorides and of calcium or nickel fluorides, of Europium fluorides, and of ternary fluorides. Then, he addresses the preparation of hydro-fluorides (caesium, calcium, europium fluorides, and caesium and nickel fluorides). The author presents the various experimental techniques: chemical analysis, radio-crystallographic analysis, volumetric mass density measurement, magnetic measurements, ionic conductivity measurements, Moessbauer spectroscopy, and nuclear magnetic resonance. He reports the crystallographic study of some ternary alkaline and alkaline-earth hydrides (KH-MgH{sub 2}, RbH-CaH{sub 2}, CsH-CaH{sub 2}, RbH-MgH{sub 2} and CsH-MgH{sub 2}) and of some hydro-fluorides (CsCaF{sub 2}H, EuF{sub 2}H, CsNiF{sub 2}H) [French] Dans une premiere partie, de nouveaux hydrures ternaires ont ete prepares et caracterises. Les systemes etudies sont AH-MH 2 (A = K, Rb, Cs et M = Mg, Ca). Dans les systemes AH-MgH 2 l'evolution structurale a ete discutee en fonction du caractere iono-covalent de la liaison magnesium-hydrogene. Dans une deuxieme partie, plusieurs nouveaux fluorohydrures ont ete mis en evidence. L'effet de la substitution de l'hydrogene au fluor dans ces phases a ete etudiee en utilisant la RMN, la spectroscopie Moessbauer, la conductivite ionique et les mesures magnetiques.

  9. Characterisation of hydrides in a zirconium alloy, by EBSD

    International Nuclear Information System (INIS)

    Ubhi, H.S.; Larsen, K.

    2012-01-01

    Zirconium alloys are used in nuclear reactors owing to their low capture cross-section for thermal neutrons and good mechanical and corrosion properties. However, they do suffer from delayed hydrogen cracking (DHC) due to formation of hydride particles. This study shows how the electron back-scatter diffraction (EBSD) technique can be used to characterise hydrides and their orientation relationship with the matrix. Hydrided EB weld specimens were prepared by electro-polishing, characterised using Oxford instruments AZtecHKL EBSD apparatus and software attached to a FEG SEM. Hydrides were found to exist as fine intra granular plates and having the Blackburn orientation relationship, i.e. (0002)Zr//(111)hydride and (1120)Zr//(1-10)hydride. The hydrides were also found to contain sigma 3 boundaries as well as local misorientations. (author)

  10. Blistering and hydride embrittlement

    International Nuclear Information System (INIS)

    Louthan, M.R. Jr.

    1975-01-01

    The effects of hydrogen on the mechanical properties of metals have been categorized into several groups. Two of the groups, hydrogen blistering and hydride embrittlement, are reasonably well understood, and problems relating to their occurrence may be avoided if that understanding is used as a basis for selecting alloys for hydrogen service. Blistering and hydride embrittlement are described along with several techniques of materials selection and used to minimize their adverse effects. (U.S.)

  11. SYNTHESIS AND STRUCTURE OF BIS(PHENYLTETRAMETHYLCYCLOPENTADIENYL)TITANIUM(III) HYDRIDE - THE FIRST MONOMERIC BIS(CYCLOPENTADIENYL)TITANIUM(III) HYDRIDE : The First Monomeric Bis(cyclopentadienyl)titanium(III) Hydride

    NARCIS (Netherlands)

    de Wolf, J.M.; Meetsma, A.; Teuben, J.H

    1995-01-01

    The first structurally characterized monomeric bis(cyclopentadienyl)titanium(III) hydride, (C(5)PhMe(4))(2)TiH (4), was synthesized by hydrogenolysis of (C(5)PhMe(4))(2)TiMe (5). Hydride 4 was found to be a monomeric bent sandwich by X-ray diffraction methods, and the pentamethylcyclopentadienyl

  12. Metal hydrides based high energy density thermal battery

    International Nuclear Information System (INIS)

    Fang, Zhigang Zak; Zhou, Chengshang; Fan, Peng; Udell, Kent S.; Bowman, Robert C.; Vajo, John J.; Purewal, Justin J.; Kekelia, Bidzina

    2015-01-01

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH 2 and TiMnV as a working pair. • High energy density can be achieved by the use of MgH 2 to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH 2 as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV 0.62 Mn 1.5 alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles

  13. Sodium-based hydrides for thermal energy applications

    Science.gov (United States)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  14. Preferred hydride growth orientations on oxide-coated gadolinium surfaces

    International Nuclear Information System (INIS)

    Benamar, G.M.; Schweke, D.; Kimmel, G.; Mintz, M.H.

    2012-01-01

    Highlights: ► The preferred hydride growth orientations on gadolinium metal coated by a thin oxide layer are presented. ► A preferred growth of the (1 0 0) h plane of the face centered cubic (FCC) GdH 2 is observed for the hydride spots forming below the oxidation layer. ► A change to the (1 1 1) h plane of the cubic hydride dominates for the hydride's Growth Centers. ► The texture change is attributed to the surface normal compressive stress component exerted by the oxidation layer on the developing hydride. - Abstract: The initial development of hydrides on polycrystalline gadolinium (Gd), as on some other hydride forming metals, is characterized by two sequential steps. The first step involves the rapid formation of a dense pattern of small hydride spots (referred to as the “small family” of hydrides) below the native oxidation layer. The second stage takes place when some of the “small family” nucleants (referred to as “growth centers”, GCs) break the oxide layer, leading to their rapid growth and finally to the massive hydriding of the sample. In the present study, the texture of the two hydride families was studied, by combining X-ray diffraction (XRD) analysis with a microscopic analysis of the hydride, using scanning electron microscopy (SEM) and atomic force microscopy (AFM). It has been observed that for the “small family”, a preferred growth of the (1 0 0) h plane of the cubic GdH 2 takes place, whereas for the GCs, a change to the (1 1 1) h plane of the cubic hydride dominates. These preferred growth orientations were analyzed by their structure relation with the (0 0 .1) m basal plane of the Gd metal. It has been concluded that the above texture change is due to the surface normal compressive stress component exerted by the oxidation overlayer on the developing hydride, preventing the (0 0 .1) m ||(1 1 1) h growth orientation. This stress is relieved upon the rupture of that overlayer and the development of the GCs, leading to

  15. Metal hydrides for hydrogen storage in nickel hydrogen batteries

    International Nuclear Information System (INIS)

    Bittner, H.F.; Badcock, C.C.; Quinzio, M.V.

    1984-01-01

    Metal hydride hydrogen storage in nickel hydrogen (Ni/H 2 ) batteries has been shown to increase battery energy density and improve battery heat management capabilities. However the properties of metal hydrides in a Ni/H 2 battery environment, which contains water vapor and oxygen in addition to the hydrogen, have not been well characterized. This work evaluates the use of hydrides in Ni/H 2 batteries by fundamental characterization of metal hydride properties in a Ni/H 2 cell environment. Hydrogen sorption properties of various hydrides have been measured in a Ni/H 2 cell environment. Results of detailed thermodynamic and kinetic studies of hydrogen sorption in LaNi 5 in a Ni/H 2 cell environment are presented. Long-term cycling studies indicate that degradation of the hydride can be minimized by cycling between certain pressure limits. A model describing the mechanism of hydride degradation is presented

  16. A comparison of the smeared-dislocation and super-dislocation description of a hydrided region in the context of modelling delayed hydride cracking initiation

    International Nuclear Information System (INIS)

    Smith, E.

    1994-01-01

    In quantifying the stress distribution within a hydrided region in the context of modelling delayed hydride cracking (DHC) initiation in zirconium alloys, this paper highlights the desirability of accounting for image effects, i.e. the interaction between the hydrided region and any free surface, for example a sharp crack, blunt notch or planar surface. The super-dislocation representation of a finite thickness hydrided region is ideal for accounting for image effects. It also adequately accounts for the finite thickness, t, of a hydrided region provided, as is the case in practice, we are concerned with the stress value within the hydride at distances ≥ 0.25 t from an end of the region. (Author)

  17. Metal hydrides based high energy density thermal battery

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhigang Zak, E-mail: zak.fang@utah.edu [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Zhou, Chengshang; Fan, Peng [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Udell, Kent S. [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States); Bowman, Robert C. [Department of Metallurgical Engineering, The University of Utah, 135 South 1460 East, Room 412, Salt Lake City, UT 84112-0114 (United States); Vajo, John J.; Purewal, Justin J. [HRL Laboratories, LLC, 3011 Malibu Canyon Road, Malibu, CA 90265 (United States); Kekelia, Bidzina [Department of Metallurgical Engineering, The University of Utah, 50 S. Central Campus Dr., Room 2110, Salt Lake City, UT 84112-0114 (United States)

    2015-10-05

    Highlights: • The principle of the thermal battery using advanced metal hydrides was demonstrated. • The thermal battery used MgH{sub 2} and TiMnV as a working pair. • High energy density can be achieved by the use of MgH{sub 2} to store thermal energy. - Abstract: A concept of thermal battery based on advanced metal hydrides was studied for heating and cooling of cabins in electric vehicles. The system utilized a pair of thermodynamically matched metal hydrides as energy storage media. The pair of hydrides that was identified and developed was: (1) catalyzed MgH{sub 2} as the high temperature hydride material, due to its high energy density and enhanced kinetics; and (2) TiV{sub 0.62}Mn{sub 1.5} alloy as the matching low temperature hydride. Further, a proof-of-concept prototype was built and tested, demonstrating the potential of the system as HVAC for transportation vehicles.

  18. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H.M.; Daum, R.S.; Hiller, J.M.; Billone, M.C.

    2002-01-01

    Transmission electron microscopy (TEM) was used to examine Zircaloy fuel cladding, either discharged from several PWRs and a BWR after irradiation to fluence levels of 3.3 to 8.6 X 10 21 n cm -2 (E > 1 MeV) or hydrogen-charged and heat-treated under stress to produce radial hydrides; the goal was to determine the microstructural and crystallographic characteristics of hydride precipitation. Morphologies, distributions, and habit planes of various types of hydrides were determined by stereo-TEM. In addition to the normal macroscopic hydrides commonly observed by optical microscopy, small 'microscopic' hydrides are present in spent-fuel cladding in number densities at least a few orders of magnitude greater than that of macroscopic hydrides. The microscopic hydrides, observed to be stable at least up to 333 deg C, precipitate in association with -type dislocations. While the habit plane of macroscopic tangential hydrides in the spent-fuel cladding is essentially the same as that of unirradiated unstressed Zircaloys, i.e., the [107] Zr plane, the habit plane of tangential hydrides that precipitate under high tangential stress is the [104] Zr plane. The habit plane of radial hydrides that precipitate under tangential stress is the [011] Zr pyramidal plane, a naturally preferred plane for a cladding that has 30 basal-pole texture. Effects of texture on the habit plane and the threshold stress for hydride reorientation are also discussed. (authors)

  19. Initiation of delayed hydride cracking in zirconium-2.5 wt% niobium

    International Nuclear Information System (INIS)

    Shalabi, A.F.; Meneley, D.A.

    1990-01-01

    Delayed hydride cracking in zirconium alloys is caused by the repeated precipitation and cracking of brittle hydrides. The growth kinetic of the hydrides have been measured to evaluate the critical hydride length for crack initiation. Hydride growth leading to crack initiation follows an approximate (time) 1/3 law on the average; crack propagation proceeds in a stepwise fashion. The critical length of hydride for crack initiation increases with stress and temperature. The fracture criterion for crack initiation predicts the critical hydride length at a give stress level and temperature. The fracture initiation mechanism of the hydride confirms the temperature effects for heating and cooling cycles under services loads. (orig.)

  20. Ductile zirconium powder by hydride-dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, T S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA); CHAUDHARY, S [NUCLEAR FUEL COMPLEX, HYDERABAD (INDIA)

    1976-09-01

    The preparation of ductile zirconium powder by the hydride-dehydride process has been described. In this process massive zirconium obtained from Kroll reduction of ZrCl/sub 4/ is first rendered brittle by hydrogenation and the hydride crushed and ground in a ball mill to the required particle size. Hydrogen is then hot vacuum extracted to yield the metal powder. The process has been successfully employed for the production of zirconium powders with low oxygen content and having hardness values in the range of 115-130 BHN, starting from a zirconium sponge of 100-120 BHN hardness. Influence of surface characteristics of the starting metal on its hydriding behaviour has been studied and the optimum hydriding-dehydriding conditions established.

  1. Alkali metal hydride formation

    International Nuclear Information System (INIS)

    1976-01-01

    The present invention relates to a method of producing alkali metal hydrides by absorbing hydrogen gas under pressure into a mixture of lower alkyl mono amines and alkali metal alkyl amides selected from sodium and potassium amides formed from said amines. The present invention also includes purification of a mixture of the amines and amides which contain impurities, such as is used as a catalytic exchange liquid in the enrichment of deuterium, involving the formation of the alkali metal hydride

  2. Activated aluminum hydride hydrogen storage compositions and uses thereof

    Science.gov (United States)

    Sandrock, Gary; Reilly, James; Graetz, Jason; Wegrzyn, James E.

    2010-11-23

    In one aspect, the invention relates to activated aluminum hydride hydrogen storage compositions containing aluminum hydride in the presence of, or absence of, hydrogen desorption stimulants. The invention particularly relates to such compositions having one or more hydrogen desorption stimulants selected from metal hydrides and metal aluminum hydrides. In another aspect, the invention relates to methods for generating hydrogen from such hydrogen storage compositions.

  3. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.; Gribaudo, Luis M. J.; Hermida, Jorge D.; Ovejero, Jose; Rubiolo, Gerardo H.; Vicente, Eduardo E.

    2000-01-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-α phase to transform to UH 3 : a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert γ -phase to α -phase. Subsequent hydriding transforms this α -phase to UH 3 . The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  4. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  5. Oxide films on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Shih, T.-S.; Liu, J.-B.; Wei, P.-S.

    2007-01-01

    Magnesium alloys are very active and readily ignite during heating and melting. In this study, we discuss the combustion of magnesium and magnesium alloys and propose prospective anti-ignition mechanisms for magnesium alloys during the heating process. When magnesium and magnesium alloys were heated in air, the sample surfaces produced layers of thermally formed oxides. These thermally formed oxides played an important role in affecting the combustion of the magnesium and magnesium alloys. When magnesium was heated in air, brucite that formed in the early stage was then transformed into periclase by dehydroxylation. By extending the heating time, more periclase formed and increased in thickness which was associated with microcracks formation. When magnesium was heated in a protective atmosphere (SF 6 ), a film of MgF 2 formed at the interface between the oxide layer and the Mg substrate. This film generated an anti-ignition behavior which protected the substrate from oxidation. When solution-treated AZ80 alloy was heated, spinel developed at the interface between the thermally formed oxide layer and the Mg substrate, improving the anti-ignition properties of the substrate. In addition, we also explain the effects of beryllium in an AZB91 alloy on the ignition-proofing behavior

  6. Isotope exchange between gaseous hydrogen and uranium hydride powder

    International Nuclear Information System (INIS)

    Shugard, Andrew D.; Buffleben, George M.; Johnson, Terry A.; Robinson, David B.

    2014-01-01

    Highlights: • Isotope exchange between hydrogen gas and uranium hydride powder can be rapid and reversible. • Gas–solid exchange rate is controlled by transport within ∼0.7 μm hydride particles. • Gas chromatographic separation of hydrogen isotopes using uranium hydride is feasible. - Abstract: Isotope exchange between gaseous hydrogen and solid uranium hydride has been studied by flowing hydrogen (deuterium) gas through packed powder beds of uranium deuteride (hydride). We used a residual gas analyzer system to perform real-time analysis of the effluent gas composition. We also developed an exchange and transport model and, by fitting it to the experimental data, extracted kinetic parameters for the isotope exchange reaction. Our results suggest that, from approximately 70 to 700 kPa and 25 to 400 °C, the gas-to-solid exchange rate is controlled by hydrogen and deuterium transport within the ∼0.7 μm diameter uranium hydride particles. We use our kinetic parameters to show that gas chromatographic separation of hydrogen and deuterium using uranium hydride could be feasible

  7. Sorption properties of nanocrystalline metal hydrides for the storage of hydrogen; Sorptionseigenschaften von nanokristallinen Metallhydriden fuer die Wasserstoffspeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Oelerich, W.

    2000-07-01

    For the utilisation of hydrogen in emission-free automobiles new nanostructured Mg-based metal hydrides were developed. These materials show significantly faster absorption and desorption kinetics, which can be even further enhanced by additions of suitable catalysts. Contrary to conventional magnesium powder, hydrogenation at room temperature is demonstrated for the first time. During dehydrogenation at 250 C a desorption rate of 3 to 8 kW/kg with a capacity of 2.5 kWh/kg is achieved, that fulfills the technical requirements for automobile application. (orig.) [German] Im Hinblick auf den Einsatz von Wasserstoff in emissionsfreien Kraftfahrzeugen wurden neuartige nanostrukturierte Metallhydride auf Basis von Magnesium hergestellt. Diese Materialien zeigen eine deutlich schnellere Absorptions- und Desorptionskinetik, die sich durch den Zusatz von geeigneten Katalysatoren noch weiter steigern laesst. Im Gegensatz zu konventionellem Magnesiumpulver konnte erstmals eine Hydrierung bei Raumtemperatur demonstriert werden. Bei der Dehydrierung bei 250 C wird eine Desorptionsrate von 3 bis 8 kW/kg bei einer Kapazitaet von 2,5 kWh/kg erreicht, die die technischen Leistungsanforderungen von Kraftfahrzeugen erfuellt. (orig.)

  8. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  9. Manufacture of titanium and zirconium hydrides

    International Nuclear Information System (INIS)

    Mares, F.; Hanslik, T.

    1973-01-01

    A method is described of manufacturing titanium and zirconium hydrides by hydrogenation of said metals characterized by the reaction temperature ranging between 250 to 500 degC, hydrogen pressure of 20 to 300 atm and possibly by the presence of a hydride of the respective metal. (V.V.)

  10. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Lowrance, B.R.

    1975-01-01

    A process is described for the preparation of beryllium hydride which comprises pyrolyzing, while in solution in a solvent inert under the reaction conditions, with respect to reactants and products and at a temperature in the range of about 100 0 to about 200 0 C, sufficient to result in the formation of beryllium hydride, a di-t-alkyl beryllium etherate wherein each tertiary alkyl radical contains from 4 to 20 carbon atoms. The pyrolysis is carried out under an atmosphere inert under the reaction conditions, with respect to reactants and products. (U.S.)

  11. Hydrogen adsorption on palladium and palladium hydride at 1 bar

    DEFF Research Database (Denmark)

    Johansson, Martin; Skulason, Egill; Nielsen, Gunver

    2010-01-01

    strongly to Pd hydride than to Pd. The activation barrier for desorption at a H coverage of one mono layer is slightly lower on Pd hydride, whereas the activation energy for adsorption is similar on Pd and Pd hydride. It is concluded that the higher sticking probability on Pd hydride is most likely caused...

  12. Hydride observations using the neutrography technique

    International Nuclear Information System (INIS)

    Meyer, G.; Baruj, A.; Borzone, E.M.; Cardenas, R.; Szames, E.; Somoza, J.; Rivas, S.; Sanchez, F.A.; Marin, J.

    2012-01-01

    Neutron radiography observations were performed at the RA-6 experimental nuclear facility in Bariloche. Images from a prototype of a hydride-based hydrogen storage device have been obtained. The technique allows visualizing the inner hydride space distribution. The hydride appeared compacted at the lower part of the prototype after several cycles of hydrogen charge and discharge. The technique has also been applied to the study of Zr/ZrH 2 samples. There is a linear relation between the sample width/hydrogen concentration and the photograph grey scale. This information could be useful for the study of nuclear engineering materials and to determine their possible degradation by hydrogen pick up (author)

  13. Hydride heat pump with heat regenerator

    Science.gov (United States)

    Jones, Jack A. (Inventor)

    1991-01-01

    A regenerative hydride heat pump process and system is provided which can regenerate a high percentage of the sensible heat of the system. A series of at least four canisters containing a lower temperature performing hydride and a series of at least four canisters containing a higher temperature performing hydride is provided. Each canister contains a heat conductive passageway through which a heat transfer fluid is circulated so that sensible heat is regenerated. The process and system are useful for air conditioning rooms, providing room heat in the winter or for hot water heating throughout the year, and, in general, for pumping heat from a lower temperature to a higher temperature.

  14. Electronic structure, bonding and chemisorption in metallic hydrides

    International Nuclear Information System (INIS)

    Ward, J.W.

    1980-01-01

    Problems that can arise during the cycling steps for a hydride storage system usually involve events at surfaces. Chemisorption and reaction processes can be affected by small amounts of contaminants that may act as catalytic poisons. The nature of the poisoning process can vary greatly for the different metals and alloys that form hydrides. A unifying concept is offered, which satisfactorily correlates many of the properties of transition-metal, rare-earth and actinide hydrides. The metallic hydrides can be differentiated on the basis of electronegativity, metallic radius (valence) and electronic structure. For those systems where there are d (transition metals) or f (early actinides) electrons near the Fermi level a broad range of chemical and catalytic behaviors are found, depending on bandwidth and energy. The more electropositive metals (rare-earths, actinides, transition metals with d > 5) dissolve hydrogen and form hydrides by an electronically somewhat different process, and as a class tend to adsorb electrophobic molecules. The net charge-transfer in either situation is subtle; however, the small differences are responsible for many of the observed structural, chemical, and catalytic properties in these hydride systems

  15. High pressure hydriding of sponge-Zr in steam-hydrogen mixtures

    International Nuclear Information System (INIS)

    Kim, Y.S.

    1997-01-01

    Hydriding kinetics of thin sponge-Zr layers metallurgically bonded to a Zircaloy disk has been studied by thermogravimetry in the temperature range 350-400 C in 7 MPa hydrogen-steam mixtures. Some specimens were prefilmed with a thin oxide layer prior to exposure to the reactant gas; all were coated with a thin layer of gold to avoid premature reaction at edges. Two types of hydriding were observed in prefilmed specimens, viz., a slow hydrogen absorption process that precedes an accelerated (massive) hydriding. At 7 MPa total pressure, the critical ratio of H 2 /H 2 O above which massive hydriding occurs at 400 C is ∝200. The critical H 2 /H 2 O ratio is shifted to ∝2.5 x 10 3 at 350 C. The slow hydriding process occurs only when conditions for hydriding and oxidation are approximately equally favorable. Based on maximum weight gain, the specimen is completely converted to δ-ZrH 2 by massive hydriding in ∝5 h at a hydriding rate of ∝10 -6 mol H/cm 2 s. Incubation times of 10-20 h prior to the onset of massive hydriding increases with prefilm oxide thickness in the range of 0-10 μm. By changing to a steam-enriched gas, massive hydriding that initially started in a steam-starved condition was arrested by re-formation of a protective oxide scale. (orig.)

  16. A study of stress reorientation of hydrides in zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Yourong, Jiang; Bangxin, Zhou [Nuclear Power Inst. of China, Chengdu, SC (China)

    1994-10-01

    Under the conditions of circumferential tensile stress from 70 to 180 MPa for Zircaloy tubes or the tensile stress from 55 to 180 MPa for Zircaloy-4 plates and temperature cycling between 150 and 400 degree C, the effects of stress and the number of temperature cycling on hydride reorientation in Zircaloy-4 tubes and plates and Zircaloy-2 tubes containing about 220 {mu}g/g hydrogen have been investigated. With the increase of stress and/or the number of temperature cycling, the level of hydride reorientation increases. When hydride reorientation takes place, there is a threshold stress concerned with the number of temperature cycling. Below the threshold stress, hydride reorientation is not obvious. When applied stress is higher than the threshold stress, the level of hydride reorientation increases with the increase of stress and the number of temperature cycling. Hydride reorientation in Zircaloy-4 tubes develops gradually from the outer surface to inner surface. It might be related to the difference of texture between outer surface and inner surface. The threshold stress is affected by both the texture and the value of B. So controlling texture could still restrict hydride reorientation under tensile stress.

  17. A procedure for preparing alkali metal hydrides

    International Nuclear Information System (INIS)

    Lemieux, R.U.; Sanford, C.E.; Prescott, J.F.

    1976-01-01

    A plain low cost, procedure for the continuous, low temperature preparation of sodium or potassium hydrides using cheap reagents is presented. Said invention is especially concerned with a process of purifying of a catalytic exchange liquid used for deuterium enrichment, in which an alkali metal hydride is produced as intermediate product. The procedure for producing the sodium and potassium hydrides consists in causing high pressure hydrogen to be absorbed by a mixture of at least a lower monoalkylamine and an alkylamide of an alkali metal from at least one of said amines [fr

  18. Electrocatalytic hydride-forming compounds for rechageable batteries

    NARCIS (Netherlands)

    Notten, P.H.L.; Einerhand, R.E.F.

    1991-01-01

    Non-toxic intermetallic hydride-forming compounds are attractive alternatives to cadmium as the negative electrode materials in the new generation of Ni/metal hydride rechargeable batteries. High exchange currents and discharge efficiencies even at low temperatures can be achieved using highly

  19. In situ hydride formation in titanium during focused ion milling.

    Science.gov (United States)

    Ding, Rengen; Jones, Ian P

    2011-01-01

    It is well known that titanium and its alloys are sensitive to electrolytes and thus hydrides are commonly observed in electropolished foils. In this study, focused ion beam (FIB) milling was used to prepare thin foils of titanium and its alloys for transmission electron microscopy. The results show the following: (i) titanium hydrides were observed in pure titanium, (ii) the preparation of a bulk sample in water or acid solution resulted in the formation of more hydrides and (iii) FIB milling aids the precipitation of hydrides, but there were never any hydrides in Ti64 and Ti5553.

  20. Economic analysis of hydride fueled BWR

    International Nuclear Information System (INIS)

    Ganda, F.; Shuffler, C.; Greenspan, E.; Todreas, N.

    2009-01-01

    The economic implications of designing BWR cores with hydride fuels instead of conventional oxide fuels are analyzed. The economic analysis methodology adopted is based on the lifetime levelized cost of electricity (COE). Bracketing values (1970 and 3010 $/kWe) are used for the overnight construction costs and for the power scaling factors (0.4 and 0.8) that correlate between a change in the capital cost to a change in the power level. It is concluded that a newly constructed BWR reactor could substantially benefit from the use of 10 x 10 hydride fuel bundles instead of 10 x 10 oxide fuel bundles design presently in use. The cost saving would depend on the core pressure drop constraint that can be implemented in newly constructed BWRs - it is between 2% and 3% for a core pressure drop constraint as of the reference BWR, between 9% and 15% for a 50% higher core pressure drop, and between 12% and 21% higher for close to 100% core pressure. The attainable cost reduction was found insensitive to the specific construction cost but strongly dependent on the power scaling factor. The cost advantage of hydride fuelled cores as compared to that of the oxide reference core depends only weakly on the uranium and SWU prices, on the 'per volume base' fabrication cost of hydride fuels, and on the discount rate used. To be economically competitive, the uranium enrichment required for the hydride fuelled core needs to be around 10%.

  1. Multidimensional simulations of hydrides during fuel rod lifecycle

    International Nuclear Information System (INIS)

    Stafford, D.S.

    2015-01-01

    In light water reactor fuel rods, waterside corrosion of zirconium-alloy cladding introduces hydrogen into the cladding, where it is slightly soluble. When the solubility limit is reached, the hydrogen precipitates into crystals of zirconium hydride which decrease the ductility of the cladding and may lead to cladding failure during dry storage or transportation events. The distribution of the hydride phase and the orientation of the crystals depend on the history of the spatial temperature and stress profiles in the cladding. In this work, we have expanded the existing hydride modeling capability in the BISON fuel performance code with the goal of predicting both global and local effects on the radial, azimuthal and axial distribution of the hydride phase. We compare results from 1D simulations to published experimental data. We demonstrate the new capability by simulating in 2D a fuel rod throughout a lifecycle that includes irradiation, short-term storage in the spent fuel pool, drying, and interim storage in a dry cask. Using the 2D simulations, we present qualitative predictions of the effects of the inter-pellet gap and the drying conditions on the growth of a hydride rim. - Highlights: • We extend BISON fuel performance code to simulate lifecycle of fuel rods. • We model hydrogen evolution in cladding from reactor through dry storage. • We validate 1D simulations of hydrogen evolution against experiments. • We show results of 2D axisymmetric simulations predicting hydride formation. • We show how our model predicts formation of a hydride rim in the cladding.

  2. Magnesium Gluconate

    Science.gov (United States)

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  3. Creating nanoshell on the surface of titanium hydride bead

    Directory of Open Access Journals (Sweden)

    PAVLENKO Vyacheslav Ivanovich

    2016-12-01

    Full Text Available The article presents data on the modification of titanium hydride bead by creating titanium nanoshell on its surface by ion-plasma vacuum magnetron sputtering. To apply titanium nanoshell on the titanium hydride bead vacuum coating plant of multifunctional nanocomposite coatings QVADRA 500 located in the center of high technology was used. Analysis of the micrographs of the original surface of titanium hydride bead showed that the microstructure of the surface is flat, smooth, in addition the analysis of the microstructure of material surface showed the presence of small porosity, roughness, mainly cavities, as well as shallow longitudinal cracks. The presence of oxide film in titanium hydride prevents the free release of hydrogen and fills some micro-cracks on the surface. Differential thermal analysis of both samples was conducted to determine the thermal stability of the initial titanium hydride bead and bead with applied titanium nanoshell. Hydrogen thermal desorption spectra of the samples of the initial titanium hydride bead and bead with applied titanium nanoshell show different thermal stability of compared materials in the temperature range from 550 to 860о C. Titanium nanoshells applied in this way allows increasing the heat resistance of titanium hydride bead – the temperature of starting decomposition is 695о C and temperature when decomposition finishes is more than 1000о C. Modified in this way titanium hydride bead can be used as a filler in the radiation protective materials used in the construction or upgrading biological protection of nuclear power plants.

  4. High H⁻ ionic conductivity in barium hydride.

    Science.gov (United States)

    Verbraeken, Maarten C; Cheung, Chaksum; Suard, Emmanuelle; Irvine, John T S

    2015-01-01

    With hydrogen being seen as a key renewable energy vector, the search for materials exhibiting fast hydrogen transport becomes ever more important. Not only do hydrogen storage materials require high mobility of hydrogen in the solid state, but the efficiency of electrochemical devices is also largely determined by fast ionic transport. Although the heavy alkaline-earth hydrides are of limited interest for their hydrogen storage potential, owing to low gravimetric densities, their ionic nature may prove useful in new electrochemical applications, especially as an ionically conducting electrolyte material. Here we show that barium hydride shows fast pure ionic transport of hydride ions (H(-)) in the high-temperature, high-symmetry phase. Although some conductivity studies have been reported on related materials previously, the nature of the charge carriers has not been determined. BaH2 gives rise to hydride ion conductivity of 0.2 S cm(-1) at 630 °C. This is an order of magnitude larger than that of state-of-the-art proton-conducting perovskites or oxide ion conductors at this temperature. These results suggest that the alkaline-earth hydrides form an important new family of materials, with potential use in a number of applications, such as separation membranes, electrochemical reactors and so on.

  5. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  6. Understanding hydride formation in Zr-1Nb alloy through microstructural characterization

    International Nuclear Information System (INIS)

    Neogy, S.; Srivastava, D.; Tewari, R.; Singh, R.N.; Dey, G.K.; De, P.K.; Banerjee, S.

    2003-07-01

    In this study the experimental results of hydride formation and their microstructure evolution in Zr-1Nb alloy is presented. This Zr-1Nb binary alloy and other Zr-1 Nb based ternary and quaternary alloys are being used as fuel tube materials and have the potential for meeting the requirement of high burn up fuel. Hydriding of Zr-1Nb alloy having a microstructure comprising equiaxed α grains and a uniform distribution of spherical particles of the β phase has been carried out in this study. The specimens have been hydrided by gaseous charging method to different hydrogen levels. The microstructures of hydrided samples were examined as a function of hydrogen content. The formation of δ hydride in slow cooled specimens and formation of γ hydride in rapidly cooled specimens has been studied with their morphology, habit plane and orientation relationship with the α matrix in view. The habit planes of either type of hydride phase has been determined and compared with those observed in other Zr-Nb alloys. The orientation relationship between the α matrix and the δ hydride was found to be the following: (0001) α // (111) δ and [1120] α // [110] δ . The orientation relationship between the α matrix and the γ hydride was of the following type: (0001) α // (111) γ and [1120] α // [110] γ . The internal structure of both types of hydride has been examined. The effect of the presence of the spherical β phase particles in the a matrix on the growth of the hydride plates has been investigated. (author)

  7. Development of zirconium hydride highly effective moderator materials

    International Nuclear Information System (INIS)

    Yin Changgeng

    2005-10-01

    The zirconium hydride with highly content of hydrogen and low density is new efficient moderator material for space nuclear power reactor. Russia has researched it to use as new highly moderator and radiation protection materials. Japanese has located it between the top of pressure vessel and the main protection as a shelter, the work temperature is rach to 220 degree C. The zirconium hydride moderator blocks are main parts of space nuclear power reactor. Development of zirconium hydride moderator materials have strength research and apply value. Nuclear Power Research and Design Instituteoh China (NPIC) has sep up the hydrogenation device and inspect systems, and accumurate a large of experience about zirconium hydride, also set up a strict system of QA and QC. (authors)

  8. Hydriding of metallic thorium

    International Nuclear Information System (INIS)

    Miyake, Masanobu; Katsura, Masahiro; Matsuki, Yuichi; Uno, Masayoshi

    1983-01-01

    Powdered thorium is usually prepared through a combination of hydriding and dehydriding processes of metallic thorium in massive form, in which the hydriding process consists of two steps: the formation of ThH 2 , and the formation of Th 4 H 15 . However, little has yet been known as to on what stage of hydriding process the pulverization takes place. It is found in the present study that the formation of Th 4 H 15 by the reaction of ThH 2 with H 2 is responsible for pulverization. Temperature of 70 deg C adopted in this work for the reaction of formation Th 4 H 15 seems to be much more effective for production of powdered thorium than 200 - 300 deg C in the literature. The pressure-composition-temperature relationships for Th-H system are determined at 200, 300, 350, and 800 deg C. From these results, a tentative equilibrium phase diagram for the Th-H system is proposed, attention being focused on the two-phase region of ThH 2 and Th 4 H 15 . Pulverization process is discussed in terms of the tentative phase diagram. (author)

  9. An AC impedance study of self-discharge mechanism of nickel-metal hydride (Ni-MH) battery using Mg{sub 2}Ni-type hydrogen storage alloy anode

    Energy Technology Data Exchange (ETDEWEB)

    Cui, N.; Luo, J.L. [University of Alberta, Edmonton, Alberta (Canada). Department of Chemical and Materials Engineering

    2000-07-01

    The self-discharge mechanism during storage in open-circuit states of a Ni-MH battery using a Mg{sub 2}Ni-type hydrogen storage alloy anode was investigated by electrochemical impedance spectroscopy (EIS) and X-ray diffraction (XRD). The loss of discharge capacity for this battery can be ascribed to two causes: (i) desorption of hydrogen from the Mg{sub 1.95}Y{sub 0.05}Ni{sub 0.92}Al{sub 0.08} hydride anode; and (ii) anode surface degradation resulting from oxidation of the magnesium alloy in the electrolyte. At the higher open-circuit voltages (OCV), the former was mainly responsible for a high self-discharge rate, while the latter might dominate the loss of capacity at the lower OCV. XRD results confirmed that Mg(OH){sub 2} formed on the magnesium alloy anode after storage in an open-circuit condition for 20 days. (author)

  10. Artificial exomuscle investigations for applications-metal hydride

    International Nuclear Information System (INIS)

    Crevier, Marie-Charlotte; Richard, Martin; Rittenhouse, D Matheson; Roy, Pierre-Olivier; Bedard, Stephane

    2007-01-01

    In pursuing the development of bionic devices, Victhom identified a need for technologies that could replace current motorized systems and be better integrated into the human body motion. The actuators used to obtain large displacements are noisy, heavy, and do not adequately reproduce human muscle behavior. Subsequently, a project at Victhom was devoted to the development of active materials to obtain an artificial exomuscle actuator. An exhaustive literature review was done at Victhom to identify promising active materials for the development of artificial muscles. According to this review, metal hydrides were identified as a promising technology for artificial muscle development. Victhom's investigations focused on determining metal hydride actuator potential in the context of bionics technology. Based on metal hydride properties and artificial muscle requirements such as force, displacement and rise time, an exomuscle was built. In addition, a finite element model, including heat and mass transfer in the metal hydride, was developed and implemented in FEMLAB software. (review article)

  11. The growth of crystals of erbium hydride

    International Nuclear Information System (INIS)

    Grimshaw, J.A.; Spooner, F.J.; Wilson, C.G.; McQuillan, A.D.

    1981-01-01

    Crystals of the rare-earth hydride ErH 2 have been produced with face areas greater than a square millimetre and corresponding volumes exceeding those of earlier crystals by orders of magnitude. The hydride, which was produced in bulk polycrystalline form by hydriding erbium metal at 950 0 C, has been examined by optical and X-ray techniques. For material of composition ErH 2 and ErHsub(1.8) the size of the grains and their degree of strain appears to depend more on oxygen contamination during formation and on the subsequent cooling procedure, than on the size of erbium metal crystals in the starting material. (author)

  12. Identification of the zirconium hydrides metallography in zircaloy-2

    International Nuclear Information System (INIS)

    Garcia Gonzalez, F.

    1968-01-01

    Technique for the Identification of the zirconium hydrides in metallographic specimens have been developed. Microhardness, quantitative estimation and relative orientation of the present hydrides as well as grain size determination of the different Zircaloy-2 tube specimens have also been made. The specimens used were corrosion- tested in water during various periods of time at 300 degree castrating, prior to the metallographic examination. Reference specimens, as received, and heavily hydride specimens in a hydrogen atmosphere at 800 degree centigrees, have been used in the previous stages of the work. No difficulties have been met in this early stage of acquaintanceship with the zirconium hydrides. (Author) 5 refs

  13. Internal friction study of hydrides in zirconium at low hydrogen contents

    International Nuclear Information System (INIS)

    Peretti, H.A.; Corso, H.L.; Gonzalez, O.A.; Fernandez, L.; Ghilarducci, A.A.; Salva, H.R.

    1999-01-01

    Full text: Internal friction and shear modulus measurements were carried out on crystal bar zirconium in the as received and hydride conditions using an inverted forced pendulum. Hydriding was achieved in two ways: inside and out of the pendulum. The final hydrogen content determined by fusion analysis in the 'in situ' hydride sample was of 36 ppm. Another sample was hydride by the cathodic charge method with 25 ppm. The thermal solid solubility (TSS) phase boundary presents hysteresis between the precipitation (TSSP) and the dissolution (TSSD) temperatures for the zirconium hydrides. During the first thermal cycling the anelastic effects could be attributed to the δ, ε and metastable γ zirconium hydrides. After 'in situ' annealing at 490 K, these peaks completely disappear in the electrolytically charged sample, while in the 'in situ' hydride, the peaks remain with decreasing intensity. This effect can be understood in terms of the different surface conditions of the samples. (author)

  14. Hydrogen storage in thin film magnesium-scandium alloys

    International Nuclear Information System (INIS)

    Niessen, R.A. H.; Notten, P.H. L.

    2005-01-01

    Thorough electrochemical materials research has been performed on thin films of novel magnesium-scandium hydrogen storage alloys. It was found that palladium-capped thin films of Mg x Sc (1-x) with different compositions (ranging from x=0.50 -0.90) show an increase in hydrogen storage capacity of more than 5-20% as compared to their bulk equivalents using even higher discharge rates. The maximum reversible hydrogen storage capacity at the optimal composition (Mg 80 Sc 20 ) amounts to 1795-bar mAh/g corresponding to a hydrogen content of 2.05 H/M or 6.7-bar wt.%, which is close to five times that of the commonly used hydride-forming materials in commercial NiMH batteries. Galvanostatic intermittent titration technique (GITT) measurements show that the equilibrium pressure during discharge is lower than that of bulk powders by one order of magnitude (10 -7 -bar mbar versus 10 -6 -bar mbar, respectively)

  15. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  16. The use of metal hydrides in fuel cell applications

    Directory of Open Access Journals (Sweden)

    Mykhaylo V. Lototskyy

    2017-02-01

    Full Text Available This paper reviews state-of-the-art developments in hydrogen energy systems which integrate fuel cells with metal hydride-based hydrogen storage. The 187 reference papers included in this review provide an overview of all major publications in the field, as well as recent work by several of the authors of the review. The review contains four parts. The first part gives an overview of the existing types of fuel cells and outlines the potential of using metal hydride stores as a source of hydrogen fuel. The second part of the review considers the suitability and optimisation of different metal hydrides based on their energy efficient thermal integration with fuel cells. The performances of metal hydrides are considered from the viewpoint of the reversible heat driven interaction of the metal hydrides with gaseous H2. Efficiencies of hydrogen and heat exchange in hydrogen stores to control H2 charge/discharge flow rates are the focus of the third section of the review and are considered together with metal hydride – fuel cell system integration issues and the corresponding engineering solutions. Finally, the last section of the review describes specific hydrogen-fuelled systems presented in the available reference data.

  17. Getting metal-hydrides to do what you want them to

    International Nuclear Information System (INIS)

    Gruen, D.M.

    1981-01-01

    With the discovery of AB 5 compounds, intermetallic hydrides with unusual properties began to be developed (H dissociation pressures of one to several atmospheres, extremely rapid and reversible adsorption/desorption very large amounts of H adsorbed). This paper reviews the factors that must be controlled in order to modify these hydrides to make them useful. The system LaNi 5 + H 2 is used as example. Use of AB 5 hydrides to construct a chemical heat pumps is discussed. Results of a systematic study substituting Al for Ni are reported; the HYCSOS pump is described briefly. Use of hydrides as hydrogen getters (substituted ZrV 2 ) is also discussed. Finally, possible developments in intermetallic hydride research in the 1980's and the hydrogen economy are discussed. 10 figures

  18. Growth and decomposition of Lithium and Lithium hydride on Nickel

    DEFF Research Database (Denmark)

    Engbæk, Jakob; Nielsen, Gunver; Nielsen, Jane Hvolbæk

    2006-01-01

    In this paper we have investigated the deposition, structure and decomposition of lithium and lithium-hydride films on a nickel substrate. Using surface sensitive techniques it was possible to quantify the deposited Li amount, and to optimize the deposition procedure for synthesizing lithium......-hydride films. By only making thin films of LiH it is possible to study the stability of these hydride layers and compare it directly with the stability of pure Li without having any transport phenomena or adsorbed oxygen to obscure the results. The desorption of metallic lithium takes place at a lower...... temperature than the decomposition of the lithium-hydride, confirming the high stability and sintering problems of lithium-hydride making the storage potential a challenge. (c) 2006 Elsevier B.V. All rights reserved....

  19. The influence of hydride on fracture toughness of recrystallized Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Hsiao-Hung, E-mail: 175877@mail.csc.com.tw [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China); China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chiang, Ming-Feng [China Steel Corporation, Hsiao Kang District, Kaohsiung 81233, Taiwan, ROC (China); Chen, Yen-Chen [Institute of Nuclear Energy Research (INER), Lungtan Township, Taoyuan County 32546, Taiwan, ROC (China)

    2014-04-01

    In this work, RXA cladding tubes were hydrogen-charged to target hydrogen content levels between 150 and 800 wppm (part per million by weight). The strings of zirconium hydrides observed in the cross sections are mostly oriented in the circumferential direction. The fracture toughness of hydrided RXA Zircaloy-4 cladding was measured to evaluate its hydride embrittlement susceptibility. With increasing hydrogen content, the fracture toughness of hydrided RXA cladding decreases at both 25 °C and 300 °C. Moreover, highly localized hydrides (forming a hydride rim) aggravate the degradation of the fracture properties of RXA Zircaloy-4 cladding at both 25 °C and 300 °C. Brittle features in the form of quasi-cleavages and secondary cracks were observed on the fracture surface of the hydride rim, even for RXA cladding tested at 300 °C.

  20. Ultra-sonic observation in niobium hydride precipitation

    International Nuclear Information System (INIS)

    Florencio, O.; Pinatti, Dyonisio G.

    1982-01-01

    The hidrogen embrittlement of exothermic ocluders, had been considered as due to applied stress induced hydride precipitates leading to brittle fracture. The results of simultaneous measurements of macroscopic deformation and elastic change due to hydride precipitation, using the ultrasonic pulse-echo technique are showed. THen it was tested the possibility of kinectis precipitation parameters evoluation. (Author) [pt

  1. Morphology study on the depleted uranium as hydriding/dehydriding cycles

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dong-you, E-mail: dongyou@nfri.re.kr [National Fusion Research Institute, Daejeon (Korea, Republic of); Yun, Sei-Hun; Kang, Hyun-Goo; Chang, Min Ho; Oh, Yun Hee [National Fusion Research Institute, Daejeon (Korea, Republic of); Kang, Kweon Ho; Woo, Yoon Myung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Depleted Uranium (DU) is one of the strongest candidates as a getter material of hydrogen isotopes in the nuclear fusion reactor. In this work, small DU lump specimen with 99.8% purity was prepared for observation of morphology variation as hydriding/dehydriding cycles. Hydriding/dehydriding of DU was carried out more than 10 cycles for powder preparation. The pulverized DU specimen was safely handled in the glove box under Argon gas condition to minimize contact with oxygen and humidity. The morphology change according to hydriding/dehydriding cycles was observed by visual cell reactor, optical microscope and scanning electron microscope. The first hydriding of the small DU sample has progressed slowly with surface enlargement and volume expansion as time passes. After third hydriding/dehydriding cycles, most of DU was pulverized. The powder fineness of DU developed as hydriding/dehydriding cycle progresses. But the agglomerates of fine DU particles were observed. It was confirmed that the DU particles exist as porous agglomerates. And the particle agglomerate shows poor fluidity and even has the cohesive force.

  2. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

    Science.gov (United States)

    Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet

    2018-04-21

    Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

  3. Trapping interference effects of arsenic, antimony and bismuth hydrides in collection of selenium hydride within iridium-modified transversally-heated graphite tube atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Furdikova, Zuzana [Department of Environmental Chemistry and Technology, Faculty of Chemistry, Brno University of Technology, Purkynova 118, CZ-61200 Brno (Czech Republic); Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic); Docekal, Bohumil [Institute of Analytical Chemistry of the Academy of Sciences of the Czech Republic v.v.i., Veveri 97, CZ-60200, Brno (Czech Republic)], E-mail: docekal@iach.cz

    2009-04-15

    Interference effects of co-generated hydrides of arsenic, antimony and bismuth on trapping behavior of selenium hydride (analyte) within an iridium-modified, transversely heated graphite tube atomizer (THGA) were investigated. A twin-channel hydride generation system was used for independent separate generation and introduction of analyte and interferent hydrides, i.e. in a simultaneous and/or sequential analyte-interferent and interferent-analyte mode of operation. The influence of the analyte and modifier mass, interferent amount, trapping temperature and composition of the gaseous phase was studied. A simple approach for the elimination of mutual interference effects by modification of the gaseous phase with oxygen in a substoichiometric ratio to chemically generated hydrogen is proposed and the suppression of these interference effects is demonstrated. A hypothesis on the mechanism of trapping and mutual interference effects is drawn.

  4. Influence of temperature on δ-hydride habit plane in α-Zirconium

    International Nuclear Information System (INIS)

    Singh, R. N.; Stahle, P.; Banerjee, S.; Ristmanaa, Matti; Sauramd, K.

    2008-01-01

    Dilute Zr-alloy with hcp α-Zr as major phase is used as pressure boundary for hot coolant in CANDU, PHWR and RBMK reactors. Hydrogen / deuterium ingress during service makes the pressure boundary components like pressure tubes of the aforementioned reactors susceptible to hydride embrittlement. Hydride acquires plate shaped morphology and the broad face of the hydride plate coincides with certain crystallographic plane of α-Zr crystal, which is called habit plane. Hydride plate oriented normal to tensile stress significantly increases the degree of embrittlement. Thus key to mitigating the damage due to hydride embrittlement is to avoid the formation of hydride plates normal to tensile stress. Two different theoretical approaches are used to determine the habit plane of precipitates viz., geometrical and solid mechanics. For the geometrical approach invariant plane and invariant-line criteria have been applied successfully and for the solid mechanics approach strain energy minimization criteria have been used successfully. Solid mechanics approach using strain energy computed by FEM technique has been applied to hydride precipitation in Zr-alloys, but the emphasis has been to understand the solvus hysteresis. The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25, 300, 400 and 450 .deg. C. using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out

  5. Investigation process of alcoholysis of hydride aluminium-adobe

    International Nuclear Information System (INIS)

    Numanov, M.I.; Normatov, I.Sh.; Mirsaidov, U.M.

    2001-01-01

    Considering of that process of acid treatment of aluminium-adobe hydride realizes in the ethyl alcohol media it was necessary study the process of alcoholysis of AlH 3 and aluminium additives. In the end of article authors became to conclusion that deficiency of spontaneous alcoholysis of AlH 3 in adobe caused by protective action of fiber; solvate ability of LiCl and alkoxy aluminium hydride of lithium-LiCl·CO 2 H 5 OH, Li Al(OC 2 H 5 ) 4 ·nC 2 H 5 OH decreasing the expectancy of responding of alcohol with aluminium hydride

  6. Magnesium and Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ferda Özdemir

    2004-03-01

    Full Text Available Osteoporosis (OP is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass. OP depends on the interaction of genetic, hormonal, environmental and nutritional factors. Chronic low intakes of vitamin D and possibly magnesium, zinc, fluoride and vitamins K, B12, B6 and folic acid may predispose to osteoporosis. Magnesium is a mineral needed by every cell of your body. It helps maintain normal muscle and nerve function, keeps heart rhythm steady, and bones strong. Mg serves as co-factors for enzymes that help build bone matrix. Magnesium deficiency occurs due to excessive loss of magnesium in urine, gastrointestinal system disorders that cause a loss of magnesium or limit magnesium absorption, or a chronic low intake of magnesium. Signs of magnesium deficiency include confusion, disorientation, loss of appetite, depression, muscle contractions and cramps, tingling, numbness, abnormal heart rhythms, coronary spasm, and seizures. Magnesium deficiency alters calcium metabolism and the hormones that regulates calcium. Several studies have suggested that magnesium supplementation may improve bone mineral density and prevent fractures.

  7. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  8. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  9. Observations on Hydride Structures at the Tip of Arrested Cracks Grown under Conditions of Delayed Hydride Cracking

    International Nuclear Information System (INIS)

    Pettersson, Kjell; Oskarsson, Magnus; Bergqvist, Hans

    2003-04-01

    One sample of Zr2.5%Nb and one sample of cold worked and stress relieved Zircaloy-4 which have been tested for hydrogen induced crack growth have been examined in the crack tip region with the aim of determining the mechanism behind the growth of cracks. The proposed mechanisms are brittle failure of a crack tip hydride and hydrogen enhanced localized shear. The examinations were done by TEM and SEM. However attempts to produce a TEM specimen with a thinned region at the tip of the crack were unsuccessful in both samples. One feature observed in the Zr2.5%Nb material may however be an indication of intense shear deformation at the tip of the crack. On the other hand all observations on the Zircaloy-4 sample indicate precipitation of hydrides ahead of the crack tip and the presence of hydrides on the crack flanks

  10. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  11. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  12. Regenerative Hydride Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    1992-01-01

    Hydride heat pump features regenerative heating and single circulation loop. Counterflow heat exchangers accommodate different temperatures of FeTi and LaNi4.7Al0.3 subloops. Heating scheme increases efficiency.

  13. Developments in delayed hydride cracking in zirconium alloys

    International Nuclear Information System (INIS)

    Puls, Manfred P.

    2008-01-01

    Delayed hydride cracking (DHC) is a process of diffusion assisted localized hydride embrittlement at flaws or regions of high stress. Models of DHC propagation and initiation have been developed that capture the essential elements of this phenomenon in terms of parameters describing processes occurring at the micro-scale. The models and their predictions of experimental results applied to Zr alloys are assessed. The propagation model allows rationalization of the effect of direction of approach to temperature and of the effect of the state and morphology of the beta phase in Zr-2.5Nb on DHC velocity. The K I dependence of the DHC velocity can only be approximately rationalized by the propagation models. This is thought to be because these models approximate the DHC velocity by a constant and shape-invariant rate of growth of the hydride at the flaw and have not incorporated a coupling between the applied stress field due to the flaw alone and the precipitated hydrides that would result in a variation of the shape and density of the hydrided region with K I . Separately, models have been developed for DHC initiation at cracks and blunt flaws. Expressions are obtained for the threshold stress intensity factor, K IH , for DHC initiation at a crack. A model for K IH has been used to rationalize the experimental result that DHC initiation is not possible above a certain temperature, even when hydrides can form at the crack tip. For blunt flaws with root radii in the μm range, and engineering process zone procedure has been derived to determine the initiation conditions requiring that both a critical stress and a critical flaw tip displacement must be achieved for hydride fracture. The engineering process zone procedure takes account of the dependence of DHC initiation on the flaw's root radius. Although all of the foregoing models are capable of describing the essential features of DHC, they are highly idealized and in need of further refinement. (author)

  14. HYDRIDE-RELATED DEGRADATION OF SNF CLADDING UNDER REPOSITORY CONDITIONS

    International Nuclear Information System (INIS)

    McCoy, K.

    2000-01-01

    The purpose and scope of this analysis/model report is to analyze the degradation of commercial spent nuclear fuel (CSNF) cladding under repository conditions by the hydride-related metallurgical processes, such as delayed hydride cracking (DHC), hydride reorientation and hydrogen embrittlement, thereby providing a better understanding of the degradation process and clarifying which aspects of the process are known and which need further evaluation and investigation. The intended use is as an input to a more general analysis of cladding degradation

  15. On the Chemistry of Hydrides of N Atoms and O+ Ions

    Science.gov (United States)

    Awad, Zainab; Viti, Serena; Williams, David A.

    2016-08-01

    Previous work by various authors has suggested that the detection by Herschel/HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H2 formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O+ ions detected by Herschel/HIFI that are present along many sight lines in the Galaxy. The O+ hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion-molecule reactions.

  16. Hydrogen isotope exchange in metal hydride columns

    International Nuclear Information System (INIS)

    Wiswall, R.; Reilly, J.; Bloch, F.; Wirsing, E.

    1977-01-01

    Several metal hydrides were shown to act as chromatographic media for hydrogen isotopes. The procedure was to equilibrate a column of hydride with flowing hydrogen, inject a small quantity of tritium tracer, and observe its elution behavior. Characteristic retention times were found. From these and the extent of widening of the tritium band, the heights equivalent to a theoretical plate could be calculated. Values of around 1 cm were obtained. The following are the metals whose hydrides were studied, together with the temperature ranges in which chromatographic behavior was observed: vanadium, 0 to 70 0 C; zirconium, 500 to 600 0 C; LaNi 5 , -78 to +30 0 C; Mg 2 Ni, 300 to 375 0 C; palladium, 0 to 70 0 C. A dual-temperature isotope separation process based on hydride chromatography was demonstrated. In this, a column was caused to cycle between two temperatures while being supplied with a constant stream of tritium-traced hydrogen. Each half-cycle was continued until ''breakthrough,'' i.e., until the tritium concentration in the effluent was the same as that in the feed. Up to that point, the effluent was enriched or depleted in tritium, by up to 20%

  17. Spectrophotometric determination of volautile inorganic hydrides in binary gaseous mixtures

    International Nuclear Information System (INIS)

    Rezchikov, V.G.; Skachkova, I.N.; Kuznetsova, T.S.; Khrushcheva, V.V.

    1985-01-01

    A study was made on possibility of single and continuons analysis of binary mixtures (hydride-gas) for the content of volatile inorganic hydrides (VIH) from absorption spectra in the 185-280 nm band. Dependences of the percentage of VIH transmission on the wavelength are presented. It is shown that the maximum of their absorption depends on the element-hydrogen the bond length and binding energy. Detection limit for boron hydride was established to be n x 10 -3 % vol at 185-190 nm wavelength. Technique for spectrophotometric hydride determination in binary mixtures with hydrogen, argon, helium was developed. The technique provides the continuous control of gaseous mixture composition

  18. Pyrophoric behaviour of uranium hydride and uranium powders

    Science.gov (United States)

    Le Guyadec, F.; Génin, X.; Bayle, J. P.; Dugne, O.; Duhart-Barone, A.; Ablitzer, C.

    2010-01-01

    Thermal stability and spontaneous ignition conditions of uranium hydride and uranium metal fine powders have been studied and observed in an original and dedicated experimental device placed inside a glove box under flowing pure argon. Pure uranium hydride powder with low amount of oxide (Oxidation mechanisms are proposed.

  19. NMR study of hydride systems

    International Nuclear Information System (INIS)

    Peretz, M.

    1980-02-01

    The hydrides of thorium (ThH 2 , Th 4 H 15 and Th 4 D 15 ) and the intermetallic compound system (Zr(Vsub(1-x)Cosub(x)) 2 and its hydrides were investigated using the nuclear magnetic resonance (NMR) technique. From the results for the thorium hydride samples it was concluded that the density of states at the Fermi level n(Esub(f)) is higher in Th 4 H 15 than in ThH 2 ; there is an indirect reaction between the protons and the d electrons belonging to the Th atoms in Th 4 H 15 ; n(E) has a sharp structure near Esub(f). It was also found that the hydrogen diffusion mechanism changes with temperature. From the results for the intermetallic compound system conclusions were drawn concerning variations in the electronic structure, which explain the behavior of the system. In hydrogen diffusion studies in several samples it was found that Co atoms slow the diffusion rate. Quadrupole spectra obtained at low temperatures show that the H atoms preferably occupy tetrahedral sites formed by three V atoms and one Z atom. (H.K.)

  20. Stress induced reorientation of vanadium hydride

    International Nuclear Information System (INIS)

    Beardsley, M.B.

    1977-10-01

    The critical stress for the reorientation of vanadium hydride was determined for the temperature range 180 0 to 280 0 K using flat tensile samples containing 50 to 500 ppM hydrogen by weight. The critical stress was observed to vary from a half to a third of the macroscopic yield stress of pure vanadium over the temperature range. The vanadium hydride could not be stress induced to precipitate above its stress-free precipitation temperature by uniaxial tensile stresses or triaxial tensile stresses induced by a notch

  1. Discharge capacity and microstructures of La Mg Pr Al Mn Co Ni alloys for nickel-metal hydride batteries

    International Nuclear Information System (INIS)

    Casini, J.C.S.; Galdino, G.S.; Ferreira, E.A.; Takiishi, H.; Faria, R.N.

    2010-01-01

    La 0.7-x Mg x Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 (x = 0.0, 0.3 and 0.7) alloys have been investigated aiming the production of negative electrodes for nickel-metal hydride batteries. The alloys employed in this work were used in the as cast state. The results showed that the substitution of magnesium by lanthanum increased the discharge capacity of the Ni-MH batteries. A battery produced with the La 0.4 Mg 0.3 Pr 0.3 Al 0.3 Mn 0.4 Co 0.5 Ni 3.8 alloy shown a high discharge capacity (380mAh/g) also good stability compared to other alloys. The electrode materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). (author)

  2. Preparation, characterization, and use of metal hydrides for fuel systems. Progress report, September 1, 1976--May 31, 1977

    International Nuclear Information System (INIS)

    Herley, P.J.

    1977-05-01

    The isothermal decomposition kinetics of unirradiated and irradiated powdered lithium aluminum hydride have been determined in the temperature range 125 to 155 0 C. The resulting activation energies for unirradiated material for the induction, acceleratory, decay and slow final rate were, respectively, 116.8, 94.3, 87.1 and 12.9 +- 4.6 KJ/mole. For preirradiated powders (1.25 x 10 5 rad) activation energies for the same periods were 119.0, 99.5, 80.5 and 10.0 +- 4.6 KJ/mole, respectively. Admixture with powdered aluminum, nickel and final reaction product did not affect the subsequent thermal decomposition. Exposure to dry air and carbon dioxide do not affect the decomposition, but 2 minute exposure to saturated water vapor reduces the percentage decomposition by almost 50%. An extensive differential scanning calorimeter study has been made of LiAlH 4 (irradiation and water vapor effects), AlH 3 and NaAlH 3 (irradiation effects). The results indicate that irradiation tends to move the existing peaks to lower temperatures and at higher doses may even introduce additional peaks. The data above were analyzed using a cubic acceleratory period equation and a monomolecular decay law. In addition the analysis shows that irradiation increased the concentration of decomposition nuclei and the rate that potential decomposition sites are converted to active sites. These observations suggest that the same process is occurring in both irradiated and unirradiated lithium aluminum hydride, but that the rate constants are increased by prior irradiation. The photolytic decomposition of powdered LiAlH 4 and AlH 3 is markedly reproducible with no dark rate occurring in both instances. Magnesium hydride is also readily photolyzed with the BH 6 lamp and the actinic wavelength and intensity-rate relationships are being determined

  3. Solubility of hydrogen isotopes in stressed hydride-forming metals

    International Nuclear Information System (INIS)

    Coleman, C.E.; Ambler, J.F.R.

    1983-01-01

    Components made from hydride-forming metals can be brittle when particles of hydride are present. The solid solubility limit of hydrogen in these metals needs to be known so that fracture resistance can be properly assessed. Stress affects the solubility of hydrogen in metals. As hydrogen dissolves the metal volume increases, an applied hydrostatic tensile stress supplies work to increase the solubility. Precipitation of hydrides increases the volume further. A hydrostatic tensile stress promotes the formation of hydrides and tends to reduce the terminal solubility. For materials containing hydrogen in solution in equilibrium with hydrides, the effect of stress on the terminal solubility is given. Hydrogen migrates up tensile stress gradients because of the effect of stress on the solubility and solubility limit. Consequently, hydrogen concentrates at flaws. When hydrides are present in the metal matrix, those remote from the flaw tip will preferentially dissolve in favor of those precipitated at the flaw. If the stress is large enough, at some critical condition the hydrides at the flaw will crack. This is delayed hydrogen cracking. Notched and fatigue-cracked cantilever beam specimens (6) (38 x 4 x 3 mm) were machined from the circumferential direction of several cold-worked Zr-2.5 at. % Nb pressure tubes. The chemical compositions had the ranges (in atomic %) Nb - 2.5 to 2.7; O - 0.58 to 0.71; H - 0.018 to 0.18. The effect of test temperature is for a specimen containing 0.13 at. % protium and 0.29 at .% deuterium. Between 505 K and 530 K was less than 1 hr, between 530 K and 537 K it increased to 25.8 h, while at 538 K no cracking was observed up to the 54 h

  4. Low-Cost Metal Hydride Thermal Energy Storage System for Concentrating Solar Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Zidan, Ragaiy [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hardy, B. J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Corgnale, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Teprovich, J. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Ward, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Motyka, Ted [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-31

    The objective of this research was to evaluate and demonstrate a metal hydride-based TES system for use with a CSP system. A unique approach has been applied to this project that combines our modeling experience with the extensive material knowledge and expertise at both SRNL and Curtin University (CU). Because of their high energy capacity and reasonable kinetics many metal hydride systems can be charged rapidly. Metal hydrides for vehicle applications have demonstrated charging rates in minutes and tens of minutes as opposed to hours. This coupled with high heat of reaction allows metal hydride TES systems to produce very high thermal power rates (approx. 1kW per 6-8 kg of material). A major objective of this work is to evaluate some of the new metal hydride materials that have recently become available. A problem with metal hydride TES systems in the past has been selecting a suitable high capacity low temperature metal hydride material to pair with the high temperature material. A unique aspect of metal hydride TES systems is that many of these systems can be located on or near dish/engine collectors due to their high thermal capacity and small size. The primary objective of this work is to develop a high enthalpy metal hydride that is capable of reversibly storing hydrogen at high temperatures (> 650 °C) and that can be paired with a suitable low enthalpy metal hydride with low cost materials. Furthermore, a demonstration of hydrogen cycling between the two hydride beds is desired.

  5. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    International Nuclear Information System (INIS)

    Stout, R.B.

    2001-01-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  6. Hydride precipitation crack propagation in zircaloy cladding during a decreasing temperature history

    Energy Technology Data Exchange (ETDEWEB)

    Stout, R.B. [California Univ., Livermore, CA (United States). Lawrence Livermore National Lab

    2001-07-01

    An assessment of safety, design, and cost tradeoff issues for short (ten to fifty years) and longer (fifty to hundreds of years) interim dry storage of spent nuclear fuel in Zircaloy rods shall address potential failures of the Zircaloy cladding caused by the precipitation response of zirconium hydride platelets. To perform such assessment analyses rigorously and conservatively will be necessarily complex and difficult. For Zircaloy cladding, a model for zirconium hydride induced crack propagation velocity was developed for a decreasing temperature field and for hydrogen, temperature, and stress dependent diffusive transport of hydrogen to a generic hydride platelet at a crack tip. The development of the quasi-steady model is based on extensions of existing models for hydride precipitation kinetics for an isolated hydride platelet at a crack tip. An instability analysis model of hydride-crack growth was developed using existing concepts in a kinematic equation for crack propagation at a constant thermodynamic crack potential subject to brittle fracture conditions. At the time an instability is initiated, the crack propagation is no longer limited by hydride growth rate kinetics, but is then limited by stress rates. The model for slow hydride-crack growth will be further evaluated using existing available data. (authors)

  7. Precipitation of hydrides in high purity niobium after different treatments

    Energy Technology Data Exchange (ETDEWEB)

    Barkov, F.; Romanenko, A.; Trenikhina, Y.; Grassellino, A.

    2013-01-01

    Precipitation of lossy non-superconducting niobium hydrides represents a known problem for high purity niobium in superconducting applications. Using cryogenic optical and laser confocal scanning microscopy we have directly observed surface precipitation and evolution of niobium hydrides in samples after different treatments used for superconducting RF cavities for particle acceleration. Precipitation is shown to occur throughout the sample volume, and the growth of hydrides is well described by the fast diffusion-controlled process in which almost all hydrogen is precipitated at $T=140$~K within $\\sim30$~min. 120$^{\\circ}$C baking and mechanical deformation are found to affect hydride precipitation through their influence on the number of nucleation and trapping centers.

  8. Analytical and numerical models of uranium ignition assisted by hydride formation

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Hayes, S.L.

    1996-01-01

    Analytical and numerical models of uranium ignition assisted by the oxidation of uranium hydride are described. The models were developed to demonstrate that ignition of large uranium ingots could not occur as a result of possible hydride formation during storage. The thermodynamics-based analytical model predicted an overall 17 C temperature rise of the ingot due to hydride oxidation upon opening of the storage can in air. The numerical model predicted locally higher temperature increases at the surface; the transient temperature increase quickly dissipated. The numerical model was further used to determine conditions for which hydride oxidation does lead to ignition of uranium metal. Room temperature ignition only occurs for high hydride fractions in the nominally oxide reaction product and high specific surface areas of the uranium metal

  9. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Kim, Y. S.; Gong, U. S.; Kwon, S. C.; Kim, S. S.; Choo, K.N.

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described

  10. Evaluation of hydride blisters in zirconium pressure tube in CANDU reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Y M; Kim, Y S; Gong, U S; Kwon, S C; Kim, S S; Choo, K N

    2000-09-01

    When the garter springs for maintaining the gap between the pressure tube and the calandria tube are displaced in the CANDU reactor, the sagging of pressure tube results in a contact to the calandria tube. This causes a temperature difference between the inner and outer surface of the pressure tube. The hydride can be formed at the cold spot of outer surface and the volume expansion by hydride dormation causes the blistering in the zirconium alloys. An incident of pressure tube rupture due to the hydride blisters had happened in the Canadian CANDU reactor. This report describes the theoretical development and models on the formation and growth of hydride blister and some experimental results. The evaluation methodology and non-destructive testing for hydride blister in operating reactors are also described.

  11. Evaluation of delayed hydride cracking and fracture toughness in zirconium alloys

    International Nuclear Information System (INIS)

    Oh, Je Yong

    2000-02-01

    The tensile, fracture toughness, and delayed hydride cracking (DHC) test were carried at various temperatures to understand the effect of hydrides on zirconium alloys. And the effects of yield stress and texture on the DHC velocity were discussed. The tensile properties of alloy A were the highest, and the difference between directions in alloy C was small due to texture. The fracture toughness at room temperature decreased sharply when hydrided. Although the alignment of hydride plates was parallel to loading direction, the hydrides were fractured due to the triaxiality at the crack tip region. The fracture toughness over 200 .deg. C was similar regardless of the hydride existence, because the triaxiality region was lost due to the decrease of yield stress with temperature. As the yield stress decreased, the threshold stress intensity factor and the striation spacing increased in alloy A, and the fracture surfaces and striations were affected by microstructures in all alloys. To evaluate the effect of the yield stress on DHC velocity, a normalization method was proposed. When the DHC velocity was normalized with dividing by the terminal solid solubility and the diffusion coefficient of hydrogen, the relationship between the yield stress and the DHC velocity was representable on one master curve. The equation from the master curve was able to explain the difference between the theoretical activation energy and the experimental activation energy in DHC. The difference was found to be ascribed to the decrease of yield stress with temperature. texture affected the delayed hydride cracking velocity by yield stress and by hydride reprecipitation. The relationship between the yield stress and the DHC velocity was expressed as an exponential function, and the relationship between the reprecipitation of hydride and the DHC velocity was expressed as a linear function

  12. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hydrogen storage compositions

    Science.gov (United States)

    Li, Wen; Vajo, John J.; Cumberland, Robert W.; Liu, Ping

    2011-04-19

    Compositions for hydrogen storage and methods of making such compositions employ an alloy that exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The composition includes a ternary alloy including magnesium, boron and a metal and a metal hydride. The ternary alloy and the metal hydride are present in an amount sufficient to render the composition capable of hydrogen storage. The molar ratio of the metal to magnesium and boron in the alloy is such that the alloy exhibits reversible formation/deformation of BH.sub.4.sup.- anions. The hydrogen storage composition is prepared by combining magnesium, boron and a metal to prepare a ternary alloy and combining the ternary alloy with a metal hydride to form the hydrogen storage composition.

  14. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  15. Synthesis, properties, and assimilation methods of aluminium hydride

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2013-01-01

    We have discovered a new source of aluminium hydride-conversion of tetrahydrofurane under influence of halogenous alkyls. We have proposed the chlorbenzene method of synthesis of AlH 3 , which excludes adhesion and ensure high quality of the product with respect to its purity, thermal stability, habits of crystals (round shape), and granulometric composition. We determined capability of benzyl chloride to fix AlH 4 -groups by the way of complexes formation. This allows increasing efficient concentration of AlH 3 solutions and their productivity. We have carried out 'direct' crystallization of aluminium hydride in one stage using interaction of binary metal hydride with aluminium chloride in the medium of ether-toluene at 60-100 d ig C a nd using solvent distillation. In the reaction of Li H with AlCl 3 , we achieved output of pure crystal AlH 3 of hexagonal modification, which was close to quantitative. We have discovered the assimilation methods of aluminium hydride in carrying out of solid-phase chemical reactions. (author)

  16. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Hareesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution of mechanical fields due to dislocations was found to have a non-negligible effect on such process.

  17. A study of stability of MgH{sub 2} in Mg-8at%Al alloy powder

    Energy Technology Data Exchange (ETDEWEB)

    Tanniru, Mahesh; Ebrahimi, Fereshteh [Materials Science and Engineering Department, University of Florida, Gainesville, FL 32611 (United States); Slattery, Darlene K. [Florida Solar Energy Center (FSEC), Cocoa, FL (United States)

    2010-04-15

    To investigate the effect of Al addition on the stability of magnesium hydride, the hydrogenation characteristics of a Mg-8at%Al alloy powder synthesized using the electrodeposition technique were evaluated. The characterization of the hydrogenation behavior within the 180 C-280 C temperature range and the subsequent microstructural analysis elucidated that the amount of Al present in the hydride decreased with increasing temperature. This observation suggests that Al has very low solubility in magnesium hydride but Al can be accommodated in MgH{sub 2} by processing under non-equilibrium conditions. Pressure-composition isotherms were developed at different temperatures for the Mg-Al powder as well as pure Mg powder. The results indicate that the enthalpy of formation was slightly lower for the Mg-8at%Al powder while the enthalpy of dissociation did not change. The absence of noticeable influence of Al addition on the stability of magnesium hydride is attributed to its lack of solubility. (author)

  18. Effect of electronegativity on the mechanical properties of metal hydrides with a fluorite structure

    International Nuclear Information System (INIS)

    Ito, Masato; Setoyama, Daigo; Matsunaga, Junji; Muta, Hiroaki; Kurosaki, Ken; Uno, Masayoshi; Yamanaka, Shinsuke

    2006-01-01

    Bulk titanium, yttrium, and zirconium hydrides, which have the same structure as that of fluorite-type fcc C 1, were produced and their mechanical properties were investigated. With an increase in the hydrogen content, the lattice parameters of titanium and zirconium hydrides increased, whereas those of yttrium hydride decreased. The elastic moduli of titanium and zirconium hydrides decreased by hydrogen addition, whereas those of yttrium hydride increased. There are linear relations between the electronegativities and hydrogen content dependence of the properties. Therefore, the mechanical properties of the metal hydrides are considered to be determined by a common rule based on the electronegativity

  19. Magnesium in pregnancy.

    Science.gov (United States)

    Dalton, Lynne M; Ní Fhloinn, Deirdre M; Gaydadzhieva, Gergana T; Mazurkiewicz, Ola M; Leeson, Heather; Wright, Ciara P

    2016-09-01

    Magnesium deficiency is prevalent in women of childbearing age in both developing and developed countries. The need for magnesium increases during pregnancy, and the majority of pregnant women likely do not meet this increased need. Magnesium deficiency or insufficiency during pregnancy may pose a health risk for both the mother and the newborn, with implications that may extend into adulthood of the offspring. The measurement of serum magnesium is the most widely used method for determining magnesium levels, but it has significant limitations that have both hindered the assessment of deficiency and affected the reliability of studies in pregnant women. Thus far, limited studies have suggested links between magnesium inadequacy and certain conditions in pregnancy associated with high mortality and morbidity, such as gestational diabetes, preterm labor, preeclampsia, and small for gestational age or intrauterine growth restriction. This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Accommodation stresses in hydride precipitates by synchrotron x-ray diffraction

    International Nuclear Information System (INIS)

    Santisteban, J R; Vicente, M A; Vizcaino, P; Banchik, A D; Almer, J

    2012-01-01

    Hydride-forming materials (Zr, Ti, Nb, etc) are affected by a sub-critical crack growth mechanism that involves the diffusion of H to the stressed region ahead of a crack, followed by nucleation and fracture of hydrides at the crack tip [1]. The phenomenon is intermittent, with the crack propagating through the hydride and stopping when it reaches the matrix. By repeating these processes, the crack propagates through a component at a rate that is highly dependent on the temperature history of the component. Most research effort to understand this phenomenon has occurred within the nuclear industry, as it affects the safe operation of pressure tubes (Zr2.5%Nb) and the long-term storage of nuclear fuel (Zircaloy cladding). Stress-induced hydride formation is a consequence of the volume dilatation that accompanies hydride formation (of the order of 15%), which is elastoplastically accommodated by the matrix and precipitate. Compressive stresses are expected within hydride precipitates due to the constraint imposed by the matrix. Such 'accommodation' stresses are essential ingredients in all theoretical models developed to assess the crack growth rate dependence on operational variables such as temperature, applied stress intensity factor, or overall H concentration [2]. Yet little experimental information is available about the magnitude and directionality of such accommodation stresses. Synchrotron X-ray diffraction is the only technique capable of quantifying such stresses. Here we briefly describe the fundaments of the technique, when used through an area detector placed in transmission geometry. The results of the experiments have allowed us to produce a comprehensive picture about the magnitude and origin of accommodation stresses in δ zirconium hydride platelets (author)

  1. Activation and discharge kinetics of metal hydride electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Johnsen, Stein Egil

    2003-07-01

    Potential step chronoamperometry and Electrochemical Impedance Spectroscopy (eis) measurements were performed on single metal hydride particles. For the {alpha}-phase, the bulk diffusion coefficient and the absorption/adsorption rate parameters were determined. Materials produced by atomisation, melt spinning and conventional casting were investigated. The melt spun and conventional cast materials were identical and the atomised material similar in composition. The particles from the cast and the melt spun material were shaped like parallelepipeds. A corresponding equation, for this geometry, for diffusion coupled to an absorption/adsorption reaction was developed. It was found that materials produced by melt spinning exhibited lower bulk diffusion (1.7E-14 m2/s) and absorption/adsorption reaction rate (1.0E-8 m/s), compared to materials produced by conventionally casting (1.1E-13 m2/s and 5.5E-8 m/s respectively). In addition, the influence of particle active surface and relative diffusion length were discussed. It was concluded that there are uncertainties connected to these properties, which may explain the large distribution in the kinetic parameters measured on metal hydride particles. Activation of metal hydride forming materials has been studied and an activation procedure, for porous electrodes, was investigated. Cathodic polarisation of the electrode during a hot alkaline surface treatment gave the maximum discharge capacity on the first discharge of the electrode. The studied materials were produced by gas atomisation and the spherical shape was retained during the activation. Both an AB{sub 5} and an AB{sub 2} alloy was successfully activated and discharge rate properties determined. The AB{sub 2} material showed a higher maximum discharge capacity, but poor rate properties, compared to the AB{sub 5} material. Reduction of surface oxides, and at the same time protection against corrosion of active metallic nickel, can explain the satisfying results of

  2. Research in Nickel/Metal Hydride Batteries 2017

    Directory of Open Access Journals (Sweden)

    Kwo-Hsiung Young

    2018-02-01

    Full Text Available Continuing from a special issue in Batteries in 2016, nineteen new papers focusing on recent research activities in the field of nickel/metal hydride (Ni/MH batteries have been selected for the 2017 Special Issue of Ni/MH Batteries. These papers summarize the international joint-efforts in Ni/MH battery research from BASF, Wayne State University, Michigan State University, FDK Corp. (Japan, Institute for Energy Technology (Norway, Central South University (China, University of Science and Technology Beijing (China, Zhengzhou University of Light Industry (China, Inner Mongolia University of Science and Technology (China, Shenzhen Highpower (China, and University of the Witwatersrand (South Africa from 2016–2017 through reviews of AB2 metal hydride alloys, Chinese and EU Patent Applications, as well as descriptions of research results in metal hydride alloys, nickel hydroxide, electrolyte, and new cell type, comparison work, and projections of future works.

  3. Dislocation/hydrogen interaction mechanisms in hydrided nanocrystalline palladium films

    International Nuclear Information System (INIS)

    Amin-Ahmadi, Behnam; Connétable, Damien; Fivel, Marc; Tanguy, Döme; Delmelle, Renaud; Turner, Stuart; Malet, Loic; Godet, Stephane; Pardoen, Thomas; Proost, Joris; Schryvers, Dominique

    2016-01-01

    The nanoscale plasticity mechanisms activated during hydriding cycles in sputtered nanocrystalline Pd films have been investigated ex-situ using advanced transmission electron microscopy techniques. The internal stress developing within the films during hydriding has been monitored in-situ. Results showed that in Pd films hydrided to β-phase, local plasticity was mainly controlled by dislocation activity in spite of the small grain size. Changes of the grain size distribution and the crystallographic texture have not been observed. In contrast, significant microstructural changes were not observed in Pd films hydrided to α-phase. Moreover, the effect of hydrogen loading on the nature and density of dislocations has been investigated using aberration-corrected TEM. Surprisingly, a high density of shear type stacking faults has been observed after dehydriding, indicating a significant effect of hydrogen on the nucleation energy barriers of Shockley partial dislocations. Ab-initio calculations of the effect of hydrogen on the intrinsic stable and unstable stacking fault energies of palladium confirm the experimental observations.

  4. Hydride redistribution and crack growth in Zr-2.5 wt.% Nb stressed in torsion

    International Nuclear Information System (INIS)

    Puls, M.P.; Rogowski, A.J.

    1980-11-01

    The effect of applied shear stresses on zirconium hydride solubility in a zirconium alloy was investigated. Recent studies have shown that zirconium hydride precipiates probably nucleate and grow by means of a shear transformation mechanism. It is postulated that these transformation shear strains can interact with applied shear stress gradients in the same way that the dilatational strains can interact with a dilatational stress gradient, providing a driving force for hydride accumulation, hydride embrittlement and crack propagation. To test this proposition, crack growth experiments were carried out under torsional loading conditions on hydrided, round notched bar specimens of cold-worked Zr-2.5 wt.% Nb cut from Pickering-type pressure tube material. Postmortem metallographic examination of the hydride distribution in these samples showed that, in many cases, the hydrides appeared to have reoriented in response to the applied shear stress and that hydride accumulation at the notch tip had occurred. However, except in a few cases, the rate of accumulation of reoriented hydrides at the notch tip due to applied shear stresses was much less than the rate due to corresponding applied uniaxial stresss. Moreover, the process in shear appears to be more sensitive to the inital hydride size. Attempts to elucidate the fracture mechanism by fractographic examination using scanning and replica transmission electron microscopy proved to be inconclusive because of smearing of the fracture face. (auth)

  5. Magnesium stannide as a high-capacity anode for magnesium-ion batteries

    Science.gov (United States)

    Nguyen, Dan-Thien; Song, Seung-Wan

    2017-11-01

    Driven by the limited global resources of lithium, magnesium metal batteries are considered as potential energy storage systems. The battery chemistry of magnesium metal anode, however, limits the selection of electrolytes, cathode materials and working temperature, making the realization of magnesium metal batteries complicated. Herein, we report the development of a new magnesium-insertion anode, magnesium stannide (Mg2Sn), and demonstrate reversible electrochemical Mg2+-extraction and insertion of Mg2Sn anode at 0.2 V versus Mg, delivering discharge capacity of 270 mAhg-1 in a half-cell with the electrolyte of PhMgCl/THF and enabling of room temperature magnesium-ion batteries with Mg2Sn anode combined with Mg-free oxide cathode and conventional-type electrolyte of Mg(TFSI)2/diglyme. The combination of Mg2Sn anode with various cathodes and electrolytes holds great promise for enabling room temperature magnesium-ion batteries.

  6. A fractographic distinction between hydride cracking and stress corrosion cracking in zircaloys

    International Nuclear Information System (INIS)

    Cox, B.

    1978-06-01

    The fractographic details of SCC and delayed hydride failures are compared by scanning and replica electron microscopy. It is shown that there are distinct features ascribable to the fracture of hydride platelets which are absent from SCC fractures and which distinguish them from fractures produced by delayed hydride cracking. (author)

  7. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat.

    OpenAIRE

    Carney, S L; Wong, N L; Quamme, G A; Dirks, J H

    1980-01-01

    Recollection of micropuncture experiments were performed on acutely thyroparathyroidectomized rats rendered magnesium deficient by dietary deprivation. Urinary magnesium excretion fell from a control of 15 to 3% of the filtered load after magnesium restriction. The loop of Henle, presumably the thick ascending limb, was the major modulator for renal magnesium homeostasis. The transport capacity for magnesium, however, was less in deficient rats than control animals. Absolute magnesium reabsor...

  8. Influence of hydride microstructure on through-thickness crack growth in zircaloy-4 sheet

    International Nuclear Information System (INIS)

    Raynaud, P.A.; Meholic, M.J.; Koss, D.A.; Motta, A.T.; Chan, K.S.

    2007-01-01

    The fracture toughness of cold-worked and stress-relieved Zircaloy-4 sheet subject to through-thickness crack growth within a 'sunburst' hydride microstructure was determined at 25 o C. The results were obtained utilizing a novel testing procedure in which a narrow linear strip of hydride blister was fractured at small loads under bending to create a well-defined sharp pre-crack that arrested at the blister-substrate interface. The hydriding procedure also forms 'sunburst' hydrides emanating from the blister that were aligned both in the plane of the crack and in the crack growth direction. Subsequent tensile loading caused crack growth initiation into the field of 'sunburst' hydrides. Specimen failure occurred under near-linear elastic behavior, and the fracture toughness for crack growth initiation into sunburst hydrides was in the range K Q ∼10-15 MPa√m. These results, when combined with those of a previous study, indicate that the through-thickness crack growth initiation toughness at 25 o C is very sensitive to the hydride microstructure. (author)

  9. Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis

    International Nuclear Information System (INIS)

    Qin, W.; Szpunar, J.A.; Kozinski, J.

    2012-01-01

    Hydride-induced degradation of hoop ductility in Zr-alloy tubular components has been studied for many years because of its importance in the nuclear industry. In this paper the role of intergranular and intragranular δ-hydrides in the degradation of ductility of the textured Zr-alloy tubes is investigated. The correlation among hydride distribution, orientation and morphology in the tubes is formulated based on thermodynamic modeling, and then analyzed. The results show that the applied stress, the crystallographic texture of α-Zr matrix, the grain-boundary structure, and the morphology and size of Zr grains simultaneously govern the site preference and the orientation of hydrides. A criterion is proposed to determine the threshold stress of hydride reorientation. The hoop ductility of the hydrided Zr tubes is discussed using the concept of macroscopic fracture strain. It is shown that the intergranular hydrides may be more deleterious to ductility than the intragranular ones. This work defines a general framework for understanding the relation of the microstructure of hydride-forming materials to embrittlement.

  10. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    .... With the popularity of magnesium-based materials in the automotive, aerospace, electronics, and sports equipment industries, and its unique role as a lightweight, energy-saving and high-performance...

  11. Neutron scattering study of the phase transformation of LaNi3 induced by hydriding

    International Nuclear Information System (INIS)

    Ruan Jinghui; Zeng Xiangxin; Niu Shiwen

    1994-01-01

    The phase transformation of LaNi 3 induced by hydriding and de-hydriding is investigated using the neutron diffraction and the neutron inelastic scattering. The results show that the hydriding sample, LaNi 3 H x , is transformed from crystalline state of the LaNi 3 into amorphous state with a microcrystalline characteristic of LaNi 5 , and the de-hydriding sample produced by LaNi 3 H x dehydrated at 600 degree C is decomposed into new crystalline states composed by LaNi 5 -and La-hydrides. The procedure of phase transformation is that the result of the transformation of LaNi 3 induced by hydriding shows the properties of LaNi 5 -H 2 system

  12. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P. [Dept. Combustibles Nucleares. Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 Buenos Aires (Argentina)

    2002-07-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable {gamma} (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  13. Powder production of U-Mo alloy, HMD process (Hydriding- Milling- Dehydriding)

    International Nuclear Information System (INIS)

    Pasqualini, E. E.; Garcia, J.H.; Lopez, M.; Cabanillas, E.; Adelfang, P.

    2002-01-01

    Uranium-molybdenum (U-Mo) alloys can be hydrided massively in metastable γ (gamma) phase. The brittle hydride can be milled and dehydrided to acquire the desired size distributions needed for dispersion nuclear fuels. The developments of the different steps of this process called hydriding-milling- dehydriding (HMD Process) are described. Powder production scales for industrial fabrication is easily achieved with conventional equipment, small man-power and low investment. (author)

  14. The status and immediate problems of the chemistry of transition metal hydrides

    International Nuclear Information System (INIS)

    Meikheeva, V.I.

    1978-01-01

    The state of the art and perspectives of the chemistry transition metal hydrides are reviewed, the hydrides being essentially compounds with interstitial hydrogen in the crystal lattice of the metals. The possibilities of hydrogenation of transition metals are considered along with that of compounds of rare earth elements with metals of the iron family. It is shown that the products of hydrogenation of many alloys are unstable and disintegrate forming simpler hydrides. The phase diagram of La-Ni-H system resembles the isotherm of a ternary metal system with the difference that no continuous series of solid solutions is formed. Most hydrogenation products across LaHsub(2-3)-NiH are X-ray amorphous. The nature of hydrogen in hydrides is discussed along with the possibilities of synthesis of new hydrides of transition metals

  15. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  16. In situ synchrotron X-ray diffraction study of hydrides in Zircaloy-4 during thermomechanical cycling

    Energy Technology Data Exchange (ETDEWEB)

    Cinbiz, Mahmut N., E-mail: cinbizmn@ornl.gov [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Koss, Donald A., E-mail: koss@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Motta, Arthur T., E-mail: atm2@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802 (United States); Park, Jun-Sang, E-mail: parkjs@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States); Almer, Jonathan D., E-mail: almer@aps.anl.gov [Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439 (United States)

    2017-04-15

    The d-spacing evolution of both in-plane and out-of-plane hydrides has been studied using in situ synchrotron radiation X-ray diffraction during thermo-mechanical cycling of cold-worked stress-relieved Zircaloy-4. The structure of the hydride precipitates is such that the δ{111} d-spacing of the planes aligned with the hydride platelet face is greater than the d-spacing of the 111 planes aligned with the platelet edges. Upon heating from room temperature, the δ{111} planes aligned with hydride plate edges exhibit bi-linear thermally-induced expansion. In contrast, the d-spacing of the (111) plane aligned with the hydride plate face initially contracts upon heating. These experimental results can be understood in terms of a reversal of stress state associated with precipitating or dissolving hydride platelets within the α-zirconium matrix. - Highlights: •The δ{111} d-spacings aligned with the hydride plate edges exhibit a bi-linear thermal expansion. •Stress state reversal is predicted with the onset of hydride dissolution. •During dissolution, the δ{111} planes oriented parallel to the hydride plate face initially contract upon heating. •Hydride d-spacings indicate that both in-plane (circumferential) and out-of-plane (radial) hydrides are in the same strain-state and likely in the same stress state as well.

  17. Metal Hydrides for Rechargeable Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Valoeen, Lars Ole

    2000-03-01

    Rechargeable battery systems are paramount in the power supply of modern electronic and electromechanical equipment. For the time being, the most promising secondary battery systems for the future are the lithium-ion and the nickel metal hydride (NiMH) batteries. In this thesis, metal hydrides and their properties are described with the aim of characterizing and improving those. The thesis has a special focus on the AB{sub 5} type hydrogen storage alloys, where A is a rare earth metal like lanthanum, or more commonly misch metal, which is a mixture of rare earth metals, mainly lanthanum, cerium, neodymium and praseodymium. B is a transition metal, mainly nickel, commonly with additions of aluminium, cobalt, and manganese. The misch metal composition was found to be very important for the geometry of the unit cell in AB{sub 5} type alloys, and consequently the equilibrium pressure of hydrogen in these types of alloys. The A site substitution of lanthanum by misch metal did not decrease the surface catalytic properties of AB{sub 5} type alloys. B-site substitution of nickel with other transition elements, however, substantially reduced the catalytic activity of the alloy. If the internal pressure within the electrochemical test cell was increased using inert argon gas, a considerable increase in the high rate charge/discharge performance of LaNi{sub 5} was observed. An increased internal pressure would enable the utilisation of alloys with a high hydrogen equivalent pressure in batteries. Such alloys often have favourable kinetics and high hydrogen diffusion rates and thus have a potential for improving the high current discharge rates in metal hydride batteries. The kinetic properties of metal hydride electrodes were found to improve throughout their lifetime. The activation properties were found highly dependent on the charge/discharge current. Fewer charge/discharge cycles were needed to activate the electrodes if a small current was used instead of a higher

  18. Characteristics of hydride precipitation and reorientation in spent-fuel cladding

    International Nuclear Information System (INIS)

    Chung, H. M.; Strain, R. V.; Billone, M. C.

    2000-01-01

    The morphology, number density, orientation, distribution, and crystallographic aspects of Zr hydrides in Zircaloy fuel cladding play important roles in fuel performance during all phases before and after discharge from the reactor, i.e., during normal operation, transient and accident situations in the reactor, temporary storage in a dry cask, and permanent storage in a waste repository. In the past, partly because of experimental difficulties, hydriding behavior in irradiated fuel cladding has been investigated mostly by optical microscopy (OM). In the present study, fundamental metallurgical and crystallographic characteristics of hydride precipitation and reorientation were investigated on the microscopic level by combined techniques of OM and transmission electron and scanning electron microscopy (TEM and SEM) of spent-fuel claddings discharged from several boiling and pressurized water reactors (BWRs and PWRs). Defueled sections of standard and Zr-lined Zircaloy-2 fuel claddings, irradiated to fluences of ∼3.3 x 10 21 n cm -2 and ∼9.2 x 10 21 n cm -2 (E > 1 MeV), respectively, were obtained from spent fuel rods discharged from two BWRs. Sections of standard and low-tin Zircaloy-4 claddings, irradiated to fluences of ∼4.4 x 10 21 n cm -2 , ∼5.9 x 10 21 n cm -2 , and ∼9.6 x 10 21 n cm -2 (E > 1 MeV) in three PWRs, were also obtained. Microstructural characteristics of hydrides were analyzed in as-irradiated condition and after gas-pressurization-burst or expanding-mandrel tests at 292-325 C in Ar for some of the spent-fuel claddings. Analyses were also conducted of hydride habit plane, morphology, and reorientation characteristics on unirradiated Zircaloy-4 cladding that contained dense radial hydrides. Reoriented hydrides in the slowly cooled unirradiated cladding were produced by expanding-mandrel loading

  19. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr--2.5% Nb (Cb) which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles

  20. Mechanisms of hydrogen induced delayed cracking in hydride forming materials

    International Nuclear Information System (INIS)

    Dutton, R.; Nuttall, K.; Puls, M.P.; Simpson, L.A.

    1977-01-01

    Mechanisms which have been formulated to describe delayed hydrogen cracking in hydride-forming metals are reviewed and discussed. Particular emphasis is placed on the commercial alloy Zr-2.5 pct Nb which is extensively used in nuclear reactor core components. A quantitative model for hydrogen cracking in this material is presented and compared with available experimental data. The kinetics of crack propagation are controlled by the growth of hydrides at the stressed crack tip by the diffusive ingress of hydrogen into this region. The driving force for the diffusion flux is provided by the local stress gradient which interacts with both hydrogen atoms in solution and hydrogen atoms being dissolved and reprecipitated at the crack tip. The model is developed using concepts of elastoplastic fracture mechanics. Stage I crack growth is controlled by hydrides growing in the elastic stress gradient, while Stage II is controlled by hydride growth in the plastic zone at the crack tip. Recent experimental observations are presented which indicate that the process occurs in an intermittent fashion; hydride clusters accumulate at the crack tip followed by unstable crack advance and subsequent crack arrest in repeated cycles. 55 refs., 6 figs

  1. ON THE CHEMISTRY OF HYDRIDES OF N ATOMS AND O{sup +} IONS

    Energy Technology Data Exchange (ETDEWEB)

    Awad, Zainab [Astronomy, Space Science, and Meteorology Department, Faculty of Science, Cairo University, Giza (Egypt); Viti, Serena; Williams, David A., E-mail: zma@sci.cu.edu.eg [Physics and Astronomy Department, University College London, Gower Street, London WC1E 6BT (United Kingdom)

    2016-08-01

    Previous work by various authors has suggested that the detection by Herschel /HIFI of nitrogen hydrides along the low-density lines of sight toward G10.6-0.4 (W31C) cannot be accounted for by gas-phase chemical models. In this paper we investigate the role of surface reactions on dust grains in diffuse regions, and we find that formation of the hydrides by surface reactions on dust grains with efficiency comparable to that for H{sub 2} formation reconciles models with observations of nitrogen hydrides. However, similar surface reactions do not contribute significantly to the hydrides of O{sup +} ions detected by Herschel /HIFI that are present along many sight lines in the Galaxy. The O{sup +} hydrides can be accounted for by conventional gas-phase chemistry either in diffuse clouds of very low density with normal cosmic-ray fluxes or in somewhat denser diffuse clouds with high cosmic-ray fluxes. Hydride chemistry in dense dark clouds appears to be dominated by gas-phase ion–molecule reactions.

  2. Influence of Zircaloy cladding composition on hydride formation during aqueous hydrogen charging

    Energy Technology Data Exchange (ETDEWEB)

    Rajasekhara, S. [Intel Corporation, 2501 NW 229th Av., Hillsboro, OR 97124 (United States); Kotula, P.G.; Enos, D.G.; Doyle, B.L. [Sandia National Laboratories, Albuquerque, NM, 87185 (United States); Clark, B.G., E-mail: blyclar@sandia.gov [Sandia National Laboratories, Albuquerque, NM, 87185 (United States)

    2017-06-15

    Although hydrogen uptake in Zirconium (Zr) based claddings has been a topic of many studies, hydrogen uptake as a function of alloy composition has received little attention. In this work, commercial Zr-based cladding alloys (Zircaloy-2, Zircaloy-4 and ZIRLO™), differing in composition but with similar initial textures, grain sizes, and surface roughness, were aqueously charged with hydrogen for 100, 300, and 1000 s at nominally 90 °C to produce hydride layers of varying thicknesses. Transmission electron microscope characterization following aqueous charging showed hydride phase and orientation relationship were identical in all three alloys. However, elastic recoil detection measurements confirmed that surface hydride layers in Zircaloy-2 and Zircaloy-4 were an order of magnitude thicker relative to ZIRLO™. - Highlights: •Aqueous charging was performed to produce a layer of zirconium hydride for three different Zr-alloy claddings. •Hydride thicknesses were analyzed by elastic recoil detection and transmission electron microscopy. •Zircaloy-2 and Zircaloy-4 formed thicker hydride layers than ZIRLO™ for the same charging durations.

  3. Metal hydride-based thermal energy storage systems

    Science.gov (United States)

    Vajo, John J.; Fang, Zhigang

    2017-10-03

    The invention provides a thermal energy storage system comprising a metal-containing first material with a thermal energy storage density of about 1300 kJ/kg to about 2200 kJ/kg based on hydrogenation; a metal-containing second material with a thermal energy storage density of about 200 kJ/kg to about 1000 kJ/kg based on hydrogenation; and a hydrogen conduit for reversibly transporting hydrogen between the first material and the second material. At a temperature of 20.degree. C. and in 1 hour, at least 90% of the metal is converted to the hydride. At a temperature of 0.degree. C. and in 1 hour, at least 90% of the metal hydride is converted to the metal and hydrogen. The disclosed metal hydride materials have a combination of thermodynamic energy storage densities and kinetic power capabilities that previously have not been demonstrated. This performance enables practical use of thermal energy storage systems for electric vehicle heating and cooling.

  4. Hydrogen transmission/storage with a metal hydride/organic slurry

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J.; McClaine, A. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Thermo Power Corporation has developed a new approach for the production, transmission, and storage of hydrogen. In this approach, a chemical hydride slurry is used as the hydrogen carrier and storage media. The slurry protects the hydride from unanticipated contact with moisture in the air and makes the hydride pumpable. At the point of storage and use, a chemical hydride/water reaction is used to produce high-purity hydrogen. An essential feature of this approach is the recovery and recycle of the spent hydride at centralized processing plants, resulting in an overall low cost for hydrogen. This approach has two clear benefits: it greatly improves energy transmission and storage characteristics of hydrogen as a fuel, and it produces the hydrogen carrier efficiently and economically from a low cost carbon source. The preliminary economic analysis of the process indicates that hydrogen can be produced for $3.85 per million Btu based on a carbon cost of $1.42 per million Btu and a plant sized to serve a million cars per day. This compares to current costs of approximately $9.00 per million Btu to produce hydrogen from $3.00 per million Btu natural gas, and $25 per million Btu to produce hydrogen by electrolysis from $0.05 per Kwh electricity. The present standard for production of hydrogen from renewable energy is photovoltaic-electrolysis at $100 to $150 per million Btu.

  5. Experimental study of a metal hydride driven braided artificial pneumatic muscle

    Science.gov (United States)

    Vanderhoff, Alexandra; Kim, Kwang J.

    2009-12-01

    This paper reports the experimental study of a new actuation system that couples a braided artificial pneumatic muscle (BAPM) with a metal hydride driven hydrogen compressor to create a compact, lightweight, noiseless system capable of high forces and smooth actuation. The results indicate that the metal hydride-BAPM system has relatively good second law efficiency average of 30% over the desorption cycle. The thermal efficiency is low, due mainly to the highly endothermic chemical reaction that releases the stored hydrogen gas from the metal hydride. The force to metal hydride weight is very high (~14 000 NForce/kgMH) considering that this system has not been optimized to use the minimum amount of metal hydride required for a full actuation stroke of the fluidic muscle. Also, a thermodynamic model for the complete system is developed. The analysis is restricted in some aspects concerning the complexity of the hydriding/dehydriding chemical process of the system and the three-dimensional geometry of the reactor, but it provides a useful comparison to other actuation devices and clearly reveals the parameters necessary for optimization of the actuation system in future work. The system shows comparable work output and has the benefits of biological muscle-like properties for potential use in robotic systems.

  6. Hydrogen storage in metal hydrides and complex hydrides; Wasserstoffspeicherung in Metall- und komplexen Hydriden - Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Bielmann, M.; Zuettel, A.

    2007-07-01

    This final report for the Swiss Federal Office of Energy (SFOE), reports on work done in 2007 at the Swiss Federal Laboratories for Materials Science and Technology EMPA on the storage of hydrogen in metal hydrides and complex hydrides. In particular, the use of tetrahydroborates is noted. The potential of this class of materials is stressed. The structures at room-temperature were examined using neutron and X-ray diffraction methods. Thermodynamic methods helped determine the thermodynamic stability of the materials. Also, a complete energy diagram for the materials was developed. The use of silicon oxide to reduce activation energy and its catalytic effects are discussed. The challenges placed by desorption mechanisms are noted. The authors note that reversibility is basically proven.

  7. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    Science.gov (United States)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  8. Low magnesium level

    Science.gov (United States)

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  9. Anticorrosive magnesium hydroxide coating on AZ31 magnesium alloy by hydrothermal method

    International Nuclear Information System (INIS)

    Zhu Yanying; Wu Guangming; Xing Guangjian; Li Donglin; Zhao Qing; Zhang Yunhong

    2009-01-01

    Magnesium alloys are potential biodegradable biomaterials in orthopedic surgery. However, the rapid degradation rate has limited their application in biomedical field. A great deal of studies have been done to improve the resistance of magnesium alloys. In this article, An anticorrosive magnesium hydroxide coating with a thickness of approximately 100μm was formed on an AZ31 magnesium alloy by hydrothermal method. The morphology of the coatings were observed by an optical microscope and SEM. And the samples were soaked in hank's solution (37 deg. C) to investigate the corrosion resistance. Magnesium alloy AZ31 with magnesium hydroxide coatings present superior corrosion resistance than untreated samples.

  10. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  11. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  12. Spectroscopy of helium hydride and triatomic hydrogen molecules

    International Nuclear Information System (INIS)

    Ketterle, W.

    1986-07-01

    Helium hydride and triatomic hydrogen has been produced by charge exchange between fast mass selected beams of molecular ions and alkali vapor. Using this method, the first discrete spectra of helium hydride were obtained. Fine electronic transitions with resolved rotational structure were observed in the visible and near infrared. Four isotopic mixtures were studied. Furthermore the first lifetime measurement of triatomic hydrogen states were performed and compared to theoretical predictions. (orig.)

  13. A deformation and thermodynamic model for hydride precipitation kinetics in spent fuel cladding

    International Nuclear Information System (INIS)

    Stout, R.B.

    1989-10-01

    Hydrogen is contained in the Zircaloy cladding of spent fuel rods from nuclear reactors. All the spent fuel rods placed in a nuclear waste repository will have a temperature history that decreases toward ambient; and as a result, most all of the hydrogen in the Zircaloy will eventually precipitate as zirconium hydride platelets. A model for the density of hydride platelets is a necessary sub-part for predicting Zircaloy cladding failure rate in a nuclear waste repository. A model is developed to describe statistically the hydride platelet density, and the density function includes the orientation as a physical attribute. The model applies concepts from statistical mechanics to derive probable deformation and thermodynamic functionals for cladding material response that depend explicitly on the hydride platelet density function. From this model, hydride precipitation kinetics depend on a thermodynamic potential for hydride density change and on the inner product of a stress tensor and a tensor measure for the incremental volume change due to hydride platelets. The development of a failure response model for Zircaloy cladding exposed to the expected conditions in a nuclear waste repository is supported by the US DOE Yucca Mountain Project. 19 refs., 3 figs

  14. Zirconium hydrides and Fe redistribution in Zr-2.5%Nb alloy under ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Idrees, Y.; Yao, Z. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada); Cui, J.; Shek, G.K. [Kinetrics, Mississauga, ON (Canada); Daymond, M.R., E-mail: daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, Canada, K7L 3N6 (Canada)

    2016-11-15

    Zr-2.5%Nb alloy is used to fabricate the pressure tubes of the CANDU reactor. The pressure tube is the primary pressure boundary for coolant in the CANDU design and is susceptible to delayed hydride cracking, reduction in fracture toughness upon hydride precipitation and potentially hydride blister formation. The morphology and nature of hydrides in Zr-2.5%Nb with 100 wppm hydrogen has been investigated using transmission electron microscopy. The effect of hydrides on heavy ion irradiation induced decomposition of the β phase has been reported. STEM-EDX mapping was employed to investigate the distribution of alloying elements. The results show that hydrides are present in the form of stacks of different sizes, with length scales from nano- to micro-meters. Heavy ion irradiation experiments at 250 °C on as-received and hydrided Zr-2.5%Nb alloy, show interesting effects of hydrogen on the irradiation induced redistribution of Fe. It was found that Fe is widely redistributed from the β phase into the α phase in the as-received material, however, the loss of Fe from the β phase and subsequent precipitation is retarded in the hydrided material. This preliminary work will further the current understanding of microstructural evolution of Zr based alloys in the presence of hydrogen. - Graphical abstract: STEM HAADF micrographs at low magnification showing the hydride structure in Zr-2.5Nb alloy.

  15. Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Slattery, Darlene; Hampton, Michael

    2003-03-10

    This report describes research into the use of complex hydrides for hydrogen storage. The synthesis of a number of alanates, (AIH4) compounds, was investigated. Both wet chemical and mechano-chemical methods were studied.

  16. Hydrides and deuterides of lithium and sodium. Pt. 1

    International Nuclear Information System (INIS)

    Haque, E.

    1990-01-01

    An interionic potential model is developed for lighter and heavier alkali hydrides and deuterides. The method uses a combination of theoretical techniques, empirical fit, and a few plausible assumptions. An assessment of the derived potentials is made by calculating the lattice statics and dynamics of the crystals and by comparing both with experiment (where available) and with other calculations. The potentials are found to describe the elastic and dielectric properties reasonably well. The phonon dispersion curves of hydride and deuteride of sodium are compared with the calculations of Dyck and Jex based on force constant model approach and the results are discussed. The need for further experiments on heavier hydrides and deuterides is stressed. (author)

  17. Tritium processing using metal hydrides

    International Nuclear Information System (INIS)

    Mallett, M.W.

    1986-01-01

    E.I. duPont de Nemours and Company is commissioned by the US Department of Energy to operate the Savannah River Plant and Laboratory. The primary purpose of the plant is to produce radioactive materials for national defense. In keeping with current technology, new processes for the production of tritium are being developed. Three main objectives of this new technology are to ease the processing of, ease the storage of, and to reduce the operating costs of the tritium production facility. Research has indicated that the use of metal hydrides offers a viable solution towards satisfying these objectives. The Hydrogen and Fuels Technology Division has the responsibility to conduct research in support of the tritium production process. Metal hydride technology and its use in the storage and transportation of hydrogen will be reviewed

  18. Synthesis, spectroscopy, and hydrogen/deuterium exchange in high-spin iron(II) hydride complexes.

    Science.gov (United States)

    Dugan, Thomas R; Bill, Eckhard; MacLeod, K Cory; Brennessel, William W; Holland, Patrick L

    2014-03-03

    Very few hydride complexes are known in which the metals have a high-spin electronic configuration. We describe the characterization of several high-spin iron(II) hydride/deuteride isotopologues and their exchange reactions with one another and with H2/D2. Though the hydride/deuteride signal is not observable in NMR spectra, the choice of isotope has an influence on the chemical shifts of distant protons in the dimers through the paramagnetic isotope effect on chemical shift. This provides the first way to monitor the exchange of H and D in the bridging positions of these hydride complexes. The rate of exchange depends on the size of the supporting ligand, and this is consistent with the idea that H2/D2 exchange into the hydrides occurs through the dimeric complexes rather than through a transient monomer. The understanding of H/D exchange mechanisms in these high-spin iron hydride complexes may be relevant to postulated nitrogenase mechanisms.

  19. In vitro studies on magnesium uptake by rumen epithelium using magnesium-28

    International Nuclear Information System (INIS)

    Martens, H.; Harmeyer, J.; Breves, G.

    1976-01-01

    Magnesium-28 transfer across the rumen epithelium has been studied using surviving epithelia in an in vitro system. Net absorption of magnesium in the direction from lumen to blood could be observed as the result of two opposite unidirectional fluxes of different magnitude. Net uptake of magnesium occurred against an electrical potential difference, and was associated with the presence of an unaltered transmural potential difference in the mucosal tissue. Both the net transfer of magnesium and the transmural potential difference decreased during two hours of incubation. Unidirectional fluxes of magnesium and net efflux from the lumen were markedly reduced although not completely inhibited by the addition of ouabain (10 -4 mol/l). The findings suggest that the mechanism of magnesium absorption by the rumen epithelium can be considered as an active transport process, and that the rumen is the main area of magnesium absorption in the living animal. (author)

  20. Hydriding and dehydriding properties of CaSi

    International Nuclear Information System (INIS)

    Aoki, Masakazu; Ohba, Nobuko; Noritake, Tatsuo; Towata, Shin-ichi

    2005-01-01

    The hydriding and dehydriding properties of CaSi were investigated both theoretically and experimentally. First-principles calculations suggested that CaSiH n is thermodynamically stable. Experimentally, the p -c isotherms clearly demonstrated plateau pressures in a temperature range of 473-573 K and the maximum hydrogen content was 1.9 weight % (wt.%) under a hydrogen pressure of 9 MPa at 473 K. The structure of CaSiH n is different from those of ZrNi hydrides, although CaSi has the CrB-type structure as well as ZrNi

  1. Microcapsulated rare earth - nickel hydride-forming materials

    International Nuclear Information System (INIS)

    Ishikawa, H.; Oguro, K.; Kato, A.; Suzuki, H.; Ishii, E.

    1985-01-01

    Fine particles of hydride-forming alloys such as LaNi/sub 5/ and MmNi/sub 4.5/Mn/sub 0.5/ (MM : mischmetal) were coated with metallic copper thin layer by chemical plating method. Hydrogen storage capacities of alloys were not appreciably affected by the plating treatment. The capsulated alloy powders were easily pressed into pellets. The pellets obtained had high thermal conductivity and porosity enough to permeate hydrogen, leading to fast reaction kinetics. These were able to withstand more than 5,000 repeated hydriding-dehydriding cycles without disintegrating

  2. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    ... of science, characteristics, and applications. It emphasizes the properties of magnesium-based composites and the effects of different types of reinforcements, from micron length to nanometer scale, on the properties of the resulting composites...

  3. Criteria for fracture initiation at hydrides in zirconium alloys. Pt. 1

    International Nuclear Information System (INIS)

    Shi, S.Q.; Puls, M.P.

    1994-01-01

    A theoretical framework for the initiation of delayed hydride cracking (DHC) in zirconium is proposed for two different types of initiating sites, i.e., a sharp crack tip (considered in this part) and a shallow notch (considered in part II). In the present part I, an expression for K IH is derived which shows that K IH depends on the size and shape of the hydride precipitated at the crack tip, the yield stress and elastic moduli of the material and the fracture stress of the hydride. If the hydride at the crack tip extends in length at constant thickness, then K IH increases as the square root of the hydride thickness. Thus a microstructure favouring the formation of thicker hydrides at the crack tip would result in an increased K IH . K IH increases slightly with temperature up to a temperature at which there is a more rapid increase. The temperature at which there is a more rapid increase in K IH will increase as the yield stress increases. The model also predicts that an increase in yield stress due to irradiation will cause an overall slight decrease in K IH compared to unirradiated material. There is good agreement between the overall predictions of the theory and experimental results. It is suggested that more careful evaluations of some key parameters are required to improve on the theoretical estimates. (orig.)

  4. Complex metal hydrides for hydrogen, thermal and electrochemical energy storage

    DEFF Research Database (Denmark)

    Møller, Kasper T.; Sheppard, Drew; Ravnsbæk, Dorthe B.

    2017-01-01

    field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...... how complex metal hydrides may act in an integrated setup with a fuel cell. This review focuses on the unique properties of light element complex metal hydrides mainly based on boron, nitrogen and aluminum, e.g., metal borohydrides and metal alanates. Our hope is that this review can provide new...

  5. Pore-Confined Light Metal Hydrides for Energy Storage and Catalysis

    NARCIS (Netherlands)

    Bramwell, P.L.|info:eu-repo/dai/nl/371685117

    2017-01-01

    Light metal hydrides have enjoyed several decades of attention in the field of hydrogen storage, but their applications have recently begun to diversify more and more into the broader field of energy storage. For example, light metal hydrides have shown great promise as battery materials, in sensors

  6. Development of transmutation technologies of radioactive waste by actinoid hydride

    International Nuclear Information System (INIS)

    Konashi, Kenji; Matsui, Hideki; Yamawaki, Michio

    2001-01-01

    Two waste treatment methods, geological disposal and transmutation, have been studied. The transmutation method changes long-lived radioactive nuclides to short-lived one or stabilizes them by nuclear transformation. The transmutation by actinoid hydride is exactly alike that transformation method from actinoid disposal waste to Pu fuel. For this object, OMEGA project is processing now. The transmutation is difficult by two causes such as large amount of long-lived radioactive nuclides and not enough development of control technologies of nuclear reaction except atomic reactor. The transmutation using actinoid hydride has merits that the amount of actinoid charged in the target increases and the effect of thermal neutrons on fuel decreases depending on homogeneous transmutation velocity in the target. Development of stable actinoid hydride under the conditions of reactor temperature and irradiation environment is important. The experimental results of U-ZrH 1.6 are shown in this paper. The irradiation experiment using Th hydride has been proceeding. (S.Y.)

  7. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  8. Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites

    Science.gov (United States)

    Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou

    2017-11-01

    Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.

  9. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa; Bendjeriou-Sedjerari, Anissa; Jedidi, Abdesslem; Abou-Hamad, Edy; Cavallo, Luigi; Basset, Jean-Marie

    2016-01-01

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  10. Single-Site Tetracoordinated Aluminum Hydride Supported on Mesoporous Silica. From Dream to Reality!

    KAUST Repository

    Werghi, Baraa

    2016-09-26

    The reaction of mesoporous silica (SBA15) dehydroxylated at 700 °C with diisobutylaluminum hydride, i-Bu2AlH, gives after thermal treatment a single-site tetrahedral aluminum hydride with high selectivity. The starting aluminum isobutyl and the final aluminum hydride have been fully characterized by FT-IR, advanced SS NMR spectroscopy (1H, 13C, multiple quanta (MQ) 2D 1H-1H, and 27Al), and elemental analysis, while DFT calculations provide a rationalization of the occurring reactivity. Trimeric i-Bu2AlH reacts selectively with surface silanols without affecting the siloxane bridges. Its analogous hydride catalyzes ethylene polymerization. Indeed, catalytic tests show that this single aluminum hydride site is active in the production of a high-density polyethylene (HDPE). © 2016 American Chemical Society.

  11. Hydride Molecules towards Nearby Galaxies

    Science.gov (United States)

    Monje, Raquel R.; La, Ngoc; Goldsmith, Paul

    2018-06-01

    Observations carried out by the Herschel Space Observatory revealed strong spectroscopic signatures from light hydride molecules within the Milky Way and nearby active galaxies. To better understand the chemical and physical conditions of the interstellar medium, we conducted the first comprehensive survey of hydrogen fluoride (HF) and water molecular lines observed through the SPIRE Fourier Transform Spectrometer. By collecting and analyzing the sub-millimeter spectra of over two hundred sources, we found that the HF J = 1 - 0 rotational transition which occurs at approximately 1232 GHz was detected in a total of 39 nearby galaxies both in absorption and emission. The analysis will determine the main excitation mechanism of HF in nearby galaxies and provide steady templates of the chemistry and physical conditions of the ISM to be used in the early universe, where observations of hydrides are more scarce.

  12. Manganese Silylene Hydride Complexes: Synthesis and Reactivity with Ethylene to Afford Silene Hydride Complexes.

    Science.gov (United States)

    Price, Jeffrey S; Emslie, David J H; Britten, James F

    2017-05-22

    Reaction of the ethylene hydride complex trans-[(dmpe) 2 MnH(C 2 H 4 )] (1) with Et 2 SiH 2 at 20 °C afforded the silylene hydride [(dmpe) 2 MnH(=SiEt 2 )] (2 a) as the trans-isomer. By contrast, reaction of 1 with Ph 2 SiH 2 at 60 °C afforded [(dmpe) 2 MnH(=SiPh 2 )] (2 b) as a mixture of the cis (major) and trans (minor) isomers, featuring a Mn-H-Si interaction in the former. The reaction to form 2 b also yielded [(dmpe) 2 MnH 2 (SiHPh 2 )] (3 b); [(dmpe) 2 MnH 2 (SiHR 2 )] (R=Et (3 a) and Ph (3 b)) were accessed cleanly by reaction of 2 a and 2 b with H 2 , and the analogous reactions with D 2 afforded [(dmpe) 2 MnD 2 (SiHR 2 )] exclusively. Both 2 a and 2 b engaged in unique reactivity with ethylene, generating the silene hydride complexes cis-[(dmpe) 2 MnH(R 2 Si=CHMe)] (R=Et (4 a), Ph (4 b)). Compounds trans-2 a, cis-2 b, 3 b, and 4 b were crystallographically characterized, and bonding in 2 a, 2 b, 4 a, and 4 b was probed computationally. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Discharge capacity and microstructures of La Mg Pr Al Mn Co Ni alloys for nickel-metal hydride batteries

    Energy Technology Data Exchange (ETDEWEB)

    Casini, J.C.S.; Galdino, G.S.; Ferreira, E.A.; Takiishi, H.; Faria, R.N., E-mail: jcasini@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (DM/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Dept. de Metalurgia

    2010-07-01

    La{sub 0.7-x}Mg{sub x}Pr{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} (x = 0.0, 0.3 and 0.7) alloys have been investigated aiming the production of negative electrodes for nickel-metal hydride batteries. The alloys employed in this work were used in the as cast state. The results showed that the substitution of magnesium by lanthanum increased the discharge capacity of the Ni-MH batteries. A battery produced with the La{sub 0.4}Mg{sub 0.3}Pr{sub 0.3}Al{sub 0.3}Mn{sub 0.4}Co{sub 0.5}Ni{sub 3.8} alloy shown a high discharge capacity (380mAh/g) also good stability compared to other alloys. The electrode materials were characterized using scanning electron microscopy (SEM) and X-ray diffraction (XRD). (author)

  14. Finite difference program for calculating hydride bed wall temperature profiles

    International Nuclear Information System (INIS)

    Klein, J.E.

    1992-01-01

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis

  15. Kinetic behaviour of low-Co AB5-type metal hydride electrodes

    International Nuclear Information System (INIS)

    Tliha, M.; Boussami, S.; Mathlouthi, H.; Lamloumi, J.; Percheron-Guegan, A.

    2010-01-01

    The kinetic behaviour of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.4 Fe 0.35 metal hydride, used as a negative electrode in the nickel/metal hydride (Ni/MH) batteries, was investigated using electrochemical impedance spectroscopy (EIS) at different state of charge (SOC). Impedance measurements were performed in the frequency range from 50 kHz to 1 mHz. Electrochemical impedance spectrum of the metal hydride electrode was interpreted by an equivalent circuit including the different electrochemical processes taking place on the interface between the MH electrode and the electrolyte. Electrochemical kinetic parameters such as the charge-transfer resistance R tc , the exchange current density I 0 and the hydrogen diffusion coefficient D H were determined at different state of charge. The results of EIS measurements indicate that the electrochemical reaction activity of the LaNi 3.55 Mn 0.4 Al 0.3 Co 0.4 Fe 0.35 metal hydride electrode was markedly improved with increasing state of charge (SOC). The transformation α-β is probably a limiting step in the mechanisms of hydrogenation of metal hydride electrode.

  16. Hydrogen metal hydride storage with integrated catalytic recombiner for mobile application

    Energy Technology Data Exchange (ETDEWEB)

    Marinescu-Pasoi, L.; Behrens, U.; Langer, G.; Gramatte, W.; Rastogi, A.K.; Schmitt, R.E. (Battelle-Institut e.V., Frankfurt am Main (DE). Dept. of Energy Technology)

    1991-01-01

    A novel, thermodynamically efficient device is under development at Battelle in Frankfurt, by which the range of hydrogen-driven cars with a metal hydride tank might be roughly doubled. The device makes use of the properties of metal hydrides, combined with catalytic combustion. Its development is funded by the Hessian Ministry of Economic Affairs and Technology; it is to be completed by the end of 1990. High-temperature hydrides (HTH) have about three times the storage capacity of low temperature hydrides (LTH), but require relatively large amounts of heat at high temperatures to release the hydrogen. The exhaust heat from combustion-engine-driven vehicles is insufficient for this, and vehicles with electric (fuel cell) drive produce practically no exhaust heat at all. The Battelle-developed device is a combination of an HTH storage cell, an LTH storage cell and a catalyst. (author).

  17. FOCUS ON MAGNESIUM BASED DRUGS

    Directory of Open Access Journals (Sweden)

    I. I. Esenova

    2011-01-01

    Full Text Available Magnesium deficiency in the organism is one of the most common human deficiency states. The prevalence of magnesium deficiency is about 15%, and suboptimal magnesium level is observed more than in 30% of people in the general population. Clinical signs of hypomagnesaemia are observed in 40% of patients in general care hospitals, in 70% of patients - in intensive care units, and magnesium deficiency occurs in 90% of patients with acute coronary syndrome. Magnesium metabolic disorders in the organism accelerate significantly development of complications of coronary heart disease, hypertension, type 2 diabetes, asthma and a number of neurological and psychiatric diseases. The value of this macro in the body is well studied, and its daily need is identified depending on age and sex. It is known that magnesium intake with the food does not cover an organism need. It is a rationale for preventive and therapeutic use of magnesium based drugs in various diseases. Organic salts of magnesium are recommended for these purposes. Magnesium metabolic disorders, approaches to pharmacotherapeutic correction of magnesium deficiency, advantages of magnesium salts of orotic acid are reviewed.

  18. Structural and magnetic transformations in NdMn2Hx hydrides

    International Nuclear Information System (INIS)

    Budziak, A.; Zachariasz, P.; Pełka, R.; Figiel, H.; Żukrowski, J.; Woch, M.W.

    2012-01-01

    Highlights: ► Full structural phase diagram is presented for the NdMn 2 H x (2.0 ≤ x ≤ 4.0) hydrides in the temperature range of 70–385 K. ► For samples x = 2.0, 2.5, and 4.0 a splitting into two phases with different hydrogen concentrations are observed. ► Only for samples with x = 3.0 and 3.5 no spinodal decompositions are detected. ► The effects of hydrogen absorption on structural properties are shown to be reflected in magnetic behavior. ► A huge jump of magnetic ordering temperatures from ∼104 K for host NdMn 2 to above 200 K for its hydrides is observed or anticipated. - Abstract: X-ray powder diffraction and bulk magnetization measurements were used to study structural and magnetic properties of hydrides NdMn 2 H x (2.0 ≤ x ≤ 4.0). The X-ray investigations performed in the temperature range 70–385 K have revealed many structural transformations at low temperatures. In particular, a transformation from the hexagonal to the monoclinic phase and spinodal decompositions were observed. The magnetic behavior of the hydrides is correlated with the structural transitions. A tentative structural diagram is presented. The obtained results are compared with the properties of other cubic and hexagonal RMn 2 H x hydrides.

  19. Hydrogen-storing hydride complexes

    Science.gov (United States)

    Srinivasan, Sesha S [Tampa, FL; Niemann, Michael U [Venice, FL; Goswami, D Yogi [Tampa, FL; Stefanakos, Elias K [Tampa, FL

    2012-04-10

    A ternary hydrogen storage system having a constant stoichiometric molar ratio of LiNH.sub.2:MgH.sub.2:LiBH.sub.4 of 2:1:1. It was found that the incorporation of MgH.sub.2 particles of approximately 10 nm to 20 nm exhibit a lower initial hydrogen release temperature of 150.degree. C. Furthermore, it is observed that the particle size of LiBNH quaternary hydride has a significant effect on the hydrogen sorption concentration with an optimum size of 28 nm. The as-synthesized hydrides exhibit two main hydrogen release temperatures, one around 160.degree. C. and the other around 300.degree. C., with the main hydrogen release temperature reduced from 310.degree. C. to 270.degree. C., while hydrogen is first reversibly released at temperatures as low as 150.degree. C. with a total hydrogen capacity of 6 wt. % to 8 wt. %. Detailed thermal, capacity, structural and microstructural properties have been demonstrated and correlated with the activation energies of these materials.

  20. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some people use it as ... one to four times daily depending on which brand is used and what condition you have. Follow ...

  1. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-01-01

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  2. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  3. Corrosion behavior of Zircaloy 4 cladding material. Evaluation of the hydriding effect

    International Nuclear Information System (INIS)

    Blat, M.

    1997-04-01

    In this work, particular attention has been paid to the hydriding effect in PIE and laboratory test to validate a detrimental hydrogen contribution on Zircaloy 4 corrosion behavior at high burnup. Laboratory corrosion tests results confirm that hydrides have a detrimental role on corrosion kinetics. This effect is particularly significant for cathodic charged samples with a massive hydride outer layer before corrosion test. PIE show that at high burnup a hydride layer is formed underneath the metal/oxide interface. The results of the metallurgical examinations are discussed with respect to the possible mechanisms involved in this detrimental effect of hydrogen. Therefore, according to the laboratory tests results and PIE, hydrogen could be a strong contributor to explain the increase in corrosion rate at high burnup. (author)

  4. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries

    Directory of Open Access Journals (Sweden)

    Luc Aymard

    2015-08-01

    Full Text Available The state of the art of conversion reactions of metal hydrides (MH with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g−1 at a suitable potential (0.5 V vs Li+/Li0 and the lowest electrode polarization (2, TiH2, complex hydrides Mg2MHx and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MHx + xLi+ + xe− in equilibrium with M + xLiH. Other reaction paths—involving solid solutions, metastable distorted phases, and phases with low hydrogen content—were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should be inspired by the emergent

  5. Metal hydrides: an innovative and challenging conversion reaction anode for lithium-ion batteries.

    Science.gov (United States)

    Aymard, Luc; Oumellal, Yassine; Bonnet, Jean-Pierre

    2015-01-01

    The state of the art of conversion reactions of metal hydrides (MH) with lithium is presented and discussed in this review with regard to the use of these hydrides as anode materials for lithium-ion batteries. A focus on the gravimetric and volumetric storage capacities for different examples from binary, ternary and complex hydrides is presented, with a comparison between thermodynamic prediction and experimental results. MgH2 constitutes one of the most attractive metal hydrides with a reversible capacity of 1480 mA·h·g(-1) at a suitable potential (0.5 V vs Li(+)/Li(0)) and the lowest electrode polarization (lithium are subsequently detailed for MgH2, TiH2, complex hydrides Mg2MH x and other Mg-based hydrides. The reversible conversion reaction mechanism of MgH2, which is lithium-controlled, can be extended to others hydrides as: MH x + xLi(+) + xe(-) in equilibrium with M + xLiH. Other reaction paths-involving solid solutions, metastable distorted phases, and phases with low hydrogen content-were recently reported for TiH2 and Mg2FeH6, Mg2CoH5 and Mg2NiH4. The importance of fundamental aspects to overcome technological difficulties is discussed with a focus on conversion reaction limitations in the case of MgH2. The influence of MgH2 particle size, mechanical grinding, hydrogen sorption cycles, grinding with carbon, reactive milling under hydrogen, and metal and catalyst addition to the MgH2/carbon composite on kinetics improvement and reversibility is presented. Drastic technological improvement in order to the enhance conversion process efficiencies is needed for practical applications. The main goals are minimizing the impact of electrode volume variation during lithium extraction and overcoming the poor electronic conductivity of LiH. To use polymer binders to improve the cycle life of the hydride-based electrode and to synthesize nanoscale composite hydride can be helpful to address these drawbacks. The development of high-capacity hydride anodes should

  6. Proton location in metal hydrides using electron spin resonance

    International Nuclear Information System (INIS)

    Venturini, E.L.

    1979-01-01

    Electron spin resonance (ESR) of dilute paramagnetic ions establishes the site symmetry of these ions. In the case of metal hydrides the site symmetry is determined by the number and location of neighboring protons. Typical ESR spectra for trivalent erbium in scandium and yttrium hydrides are presented and analyzed, and this technique is shown to be a versatile microscopic probe of the location, net charge and occupation probability of nearby protons

  7. Some new techniques in tritium gas handling as applied to metal hydride synthesis

    International Nuclear Information System (INIS)

    Nasise, J.E.

    1988-01-01

    A state-of-the-art tritium Hydriding Synthesis System (HSS) was designed and built to replace the existing system within the Tritium Salt Facility (TSF) at the Los Alamos National Laboratory. This new hydriding system utilizes unique fast-cycling 7.9 mole uranium beds (47.5g of T at 100% loading) and novel gas circulating hydriding furnaces. Tritium system components discussed include fast-cycling uranium beds, circulating gas hydriding furnaces, valves, storage volumes, manifolds, gas transfer pumps, and graphic display and control consoles. Many of the tritium handling and processing techniques incorporated into this system are directly applicable to today's fusion fuel loops. 12 refs., 7 figs

  8. Effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4

    International Nuclear Information System (INIS)

    Bai, J.B.

    1996-01-01

    In this paper, the effect of hydriding temperature and strain rate on the ductile-brittle transition in β treated Zircaloy-4 has been investigated. The hydriding temperature used is 700degC, strain rates being 4x10 -4 s -1 and 4x10 -3 s -1 . The results show that at same conditions the ductility of hydrides decreases as the hydriding temperature decreases. There exists a critical temperature (transition temperature) of 250degC for hydriding at 700degC, below which the hydrided specimens (and so for the hydrides) are brittle, while above it they are ductile. This transition temperature is lower than the one mentioned by various authors obtained for hydriding at 400degC. For the same hydriding temperature of 700degC, the specimens tested at 4x10 -3 s -1 are less ductile than those tested at 4x10 -4 s -1 . Furthermore, unlike at a strain rate of 4x10 -4 s -1 , there is no more a clear ductile-brittle transition behaviour. (author)

  9. Magnesium motorcycle applications

    International Nuclear Information System (INIS)

    Jianyong Cao; Zonghe Zhang; Dongxia Xiang; Jun Wang

    2005-01-01

    Magnesium, the lightest engineering structural metal, has been comprehensively used in castings of aviation and aerospace, communication and transportation, and IT components. This paper introduced the history, advantages and difficulties of magnesium castings for motorcycle application as well as its application state in China. It also indicated the production situation of magnesium motorcycle components in CQMST and difficulties need to overcome for further development. (orig.)

  10. Magnesium sulfate reduces formalin-induced orofacial pain in rats with normal magnesium serum levels.

    Science.gov (United States)

    Srebro, Dragana P; Vučković, Sonja M; Dožić, Ivan S; Dožić, Branko S; Savić Vujović, Katarina R; Milovanović, Aleksandar P; Karadžić, Branislav V; Prostran, Milica Š

    2018-02-01

    In humans, orofacial pain has a high prevalence and is often difficult to treat. Magnesium is an essential element in biological a system which controls the activity of many ion channels, neurotransmitters and enzymes. Magnesium produces an antinociceptive effect in neuropathic pain, while in inflammatory pain results are not consistent. We examined the effects of magnesium sulfate using the rat orofacial formalin test, a model of trigeminal pain. Male Wistar rats were injected with 1.5% formalin into the perinasal area, and the total time spent in pain-related behavior (face rubbing) was quantified. We also spectrophotometrically determined the concentration of magnesium and creatine kinase activity in blood serum. Magnesium sulfate administered subcutaneously (0.005-45mg/kg) produced significant antinociception in the second phase of the orofacial formalin test in rats at physiological serum concentration of magnesium. The effect was not dose-dependent. The maximum antinociceptive effect of magnesium sulfate was about 50% and was achieved at doses of 15 and 45mg/kg. Magnesium did not affect increase the levels of serum creatine kinase activity. Preemptive systemic administration of magnesium sulfate as the only drug can be used to prevent inflammatory pain in the orofacial region. Its analgesic effect is not associated with magnesium deficiency. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. Function of magnesium aluminate hydrate and magnesium nitrate ...

    Indian Academy of Sciences (India)

    MgO was added both as spinel (MgAl2O4) forming precursor i.e. magnesium aluminate hydrate, and magnesium nitrate. Sintering investigations were conducted in the temperature range 1500–1600°C with 2 h soaking. Structural study of sintered pellets was carried out by extensive XRD analysis. Scanning electron mode ...

  12. Experimental study of a metal hydride driven braided artificial pneumatic muscle

    International Nuclear Information System (INIS)

    Vanderhoff, Alexandra; Kim, Kwang J

    2009-01-01

    This paper reports the experimental study of a new actuation system that couples a braided artificial pneumatic muscle (BAPM) with a metal hydride driven hydrogen compressor to create a compact, lightweight, noiseless system capable of high forces and smooth actuation. The results indicate that the metal hydride–BAPM system has relatively good second law efficiency average of 30% over the desorption cycle. The thermal efficiency is low, due mainly to the highly endothermic chemical reaction that releases the stored hydrogen gas from the metal hydride. The force to metal hydride weight is very high (∼14 000 N Force /kg MH ) considering that this system has not been optimized to use the minimum amount of metal hydride required for a full actuation stroke of the fluidic muscle. Also, a thermodynamic model for the complete system is developed. The analysis is restricted in some aspects concerning the complexity of the hydriding/dehydriding chemical process of the system and the three-dimensional geometry of the reactor, but it provides a useful comparison to other actuation devices and clearly reveals the parameters necessary for optimization of the actuation system in future work. The system shows comparable work output and has the benefits of biological muscle-like properties for potential use in robotic systems

  13. Hydrogen storage in complex hydrides

    International Nuclear Information System (INIS)

    Lupu, D.; Biris, A. R.; Misan, I.

    2005-01-01

    Full text: Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell power technologies in mobile and stationary applications. A relevant role of the fuel cell powered vehicles on the market of the transportation systems will be achieved only if the research and development of on-board vehicular hydrogen storage are able to allow a driving range of at least 500 km. The on-board hydrogen storage systems are more challenging due to the space, weight and cost limitations. This range of autonomy between refueling requires materials able to store at least 6.5% weight hydrogen, available at moderate pressures, at the working temperature of the fuel cells and with acceptable cycling stability. The intensive research on the hydrogen storage in alloys and intermetallic of the LaNi 5 , FeTi or Laves phase type compounds, which started more than three decades ago did not resulted in materials of more than about 3% H storage capacities. The 7.5% H content of the Mg hydride is still of attracting interest but though the absorption has been achieved at lower temperatures by ball milling magnesium with various amounts of nickel, the desorption can not be attained at 1 bar H 2 below 280 deg. C and the kinetics of the process is too slow. In the last decade, the attention is focused on another class of compounds, the complex hydrides of aluminum with alkali metals (alanates), due to their high hydrogen content. It was found that doping with Ti-based catalysts improve the hydrogenation/dehydrogenation conditions of NaAlH 4 . Later on, it was shown that ball milling with solid state catalysts greatly improve the hydrogen desorption kinetics of NaAlH 4 , and this also helps to the rehydriding process. The hydrogen desorption from NaAlH 4 occurs in three steps, it shows a reversible storage capacity of 5.5% H and this led to further research work for a better knowledge of its application relating properties. In this work, ball milling experiments on Na

  14. New ternary hydride formation in U-Ti-H system

    International Nuclear Information System (INIS)

    Yamamoto, Takuya; Kayano, Hideo; Yamawaki, Michio.

    1991-01-01

    Hydrogen absorption properties of two titanium-rich uranium alloys, UTi 2 and UTi 4 , were studied in order to prepare and identify the recently found ternary hydride. They slowly reacted with hydrogen of the initial pressure of 10 5 Pa at 873K to form the ternary hydride. The hydrogenated specimen mainly consisted of the pursued ternary hydride but contained also U(or UO 2 ), TiH x , and some transient phases. X-ray powder diffraction and Electron Probe Micro Analysis proved that it was the UTi 2 H x with the expected MgCu 2 structure, though all the X-ray peaks were broad probably because of inhomogeneity. This compound had extremely high resistance to powdering on its formation, which showed high potential utilities for a non-powdering tritium storage system or for other purposes. (author)

  15. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  16. The Production of Uranium Metal by Metal Hydrides Incorporated

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, P. P.

    1943-01-01

    Metal Hydrides Incorporated was a pioneer in the production of uranium metal on a commercial scale and supplied it to all the laboratories interested in the original research, before other methods for its production were developed. Metal Hydrides Inc. supplied the major part of the metal for the construction of the first experimental pile which, on December 2, 1942, demonstrated the feasibility of the self-sustaining chain reaction and the release of atomic energy.

  17. Preparation of beryllium hydride

    International Nuclear Information System (INIS)

    Bergeron, C.R.; Baker, R.W.

    1975-01-01

    Beryllium hydride of high bulk density, suitable for use as a component of high-energy fuels, is prepared by the pyrolysis, in solution in an inert solvent, of a ditertiary-alkyl beryllium. An agitator introduces mechanical energy into the reaction system, during the pyrolysis, at the rate of 0.002 to 0.30 horsepower per gallon of reaction mixture. (U.S.)

  18. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  19. Reactivity patterns of transition metal hydrides and alkyls

    International Nuclear Information System (INIS)

    Jones, W.D. II.

    1979-05-01

    The complex PPN + CpV(CO) 3 H - (Cp=eta 5 -C 5 H 5 and PPN = (Ph 3 P) 2 ) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN + CpV(CO) 3 H - reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN + [CpV(C) 3 X] - and in some cases the binuclear bridging hydride PPN + [CpV(CO) 3 ] 2 H - . The borohydride salt PPN + [CpV(CO) 3 BH 4 ] - has also been prepared. The reaction between CpV(CO) 3 H - and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO) 3 H - . Sodium amalgam reduction of CpRh(CO) 2 or a mixture of CpRh(CO) 2 and CpCo(CO) 2 affords two new anions, PPN + [Cp 2 Rh 3 (CO) 4 ] - and PPN + [Cp 2 RhCo(CO) 2 ] - . CpMo(CO) 3 H reacts with CpMo(CO) 3 R (R=CH 3 ,C 2 H 5 , CH 2 C 6 H 5 ) at 25 to 50 0 C to produce aldehyde RCHO and the dimers [CpMo(CO) 3 ] 2 and [CpMo(CO) 2 ] 2 . In general, CpV(CO) 3 H - appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO) 3 H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO) 3 H - generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO) 3 H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species

  20. Thermodynamics and statistical mechanics of some hydrides of the lanthanides and actinides

    International Nuclear Information System (INIS)

    Mintz, M.H.

    1976-06-01

    This work deals mainly with the thermodynamic and physical properties of the hydrides of the lanthanides and actinides. In addition, statistical models have been developed and applied to metal-hydrogen systems. A kinetic study of the uranium-hydrogen system was performed. The thermodynamic properties of the hydrides of neptunium, thorium, praseodymium, neodymium, samarium and europium were determined. In addition the samarium-europium-hydrogen ternary system was investigated. Moessbauer effect measurements of cubic neptunium hydrides were interpreted according to a model presented. A comparison. (author)

  1. Influence of hydrides orientation on strain, damage and failure of hydrided zircaloy-4; Influence de l'orientation des hydrures sur les modes de deformation, d'endommagement et de rupture du zircaloy-4 hydrure

    Energy Technology Data Exchange (ETDEWEB)

    Racine, A

    2005-09-15

    In pressurized water reactors of nuclear power plants, fuel pellets are contained in cladding tubes, made of Zirconium alloy, for instance Zircaloy-4. During their life in the primary water of the reactor (155 bars, 300 C), cladding tubes are oxidized and consequently hydrided. A part of the hydrogen given off precipitates as Zirconium hydrides in the bulk material and embrittles the material. This embrittlement depends on many parameters, among which hydrogen content and orientation of hydrides with respect to the applied stress. This investigation is devoted to the influence of the orientation of hydrides with respect to the applied stress on strain, damage and failure mechanisms. Macroscopic and SEM in-situ ring tensile tests are performed on cladding tube material (unirradiated cold worked stress-relieved Zircaloy-4) hydrided with about 200 and 500 wppm hydrogen, and with different main hydrides orientation: either parallel or perpendicular to the circumferential tensile direction. We get the mechanical response of the material as a function of hydride orientation and hydrogen content and we investigate the deformation, damage and failure mechanisms. In both cases, digital image correlation techniques are used to estimate local and global strain distributions. Neither the tensile stress-strain response nor the global and local strain modes are significantly affected by hydrogen content or hydride orientation, but the failure modes are strongly modified. Indeed, only 200 wppm radial hydrides embrittle Zy-4: sample fail in the elastic domain at about 350 MPa before strain bands could develop; whereas in other cases sample reach at least 750 MPa before necking and final failure, in ductile or brittle mode. To model this particular heterogeneous material behavior, a non-coupled damage approach which takes into account the anisotropic distribution of the hydrides is proposed. Its parameters are identified from the macroscopic strain field measurements and a

  2. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  3. Atom Probe Analysis of Ex Situ Gas-Charged Stable Hydrides.

    Science.gov (United States)

    Haley, Daniel; Bagot, Paul A J; Moody, Michael P

    2017-04-01

    In this work, we report on the atom probe tomography analysis of two metallic hydrides formed by pressurized charging using an ex situ hydrogen charging cell, in the pressure range of 200-500 kPa (2-5 bar). Specifically we report on the deuterium charging of Pd/Rh and V systems. Using this ex situ system, we demonstrate the successful loading and subsequent atom probe analysis of deuterium within a Pd/Rh alloy, and demonstrate that deuterium is likely present within the oxide-metal interface of a native oxide formed on vanadium. Through these experiments, we demonstrate the feasibility of ex situ hydrogen analysis for hydrides via atom probe tomography, and thus a practical route to three-dimensional imaging of hydrogen in hydrides at the atomic scale.

  4. Investigation of Lithium Metal Hydride Materials for Mitigation of Deep Space Radiation

    Science.gov (United States)

    Rojdev, Kristina; Atwell, William

    2016-01-01

    Radiation exposure to crew, electronics, and non-metallic materials is one of many concerns with long-term, deep space travel. Mitigating this exposure is approached via a multi-faceted methodology focusing on multi-functional materials, vehicle configuration, and operational or mission constraints. In this set of research, we are focusing on new multi-functional materials that may have advantages over traditional shielding materials, such as polyethylene. Metal hydride materials are of particular interest for deep space radiation shielding due to their ability to store hydrogen, a low-Z material known to be an excellent radiation mitigator and a potential fuel source. We have previously investigated 41 different metal hydrides for their radiation mitigation potential. Of these metal hydrides, we found a set of lithium hydrides to be of particular interest due to their excellent shielding of galactic cosmic radiation. Given these results, we will continue our investigation of lithium hydrides by expanding our data set to include dose equivalent and to further understand why these materials outperformed polyethylene in a heavy ion environment. For this study, we used HZETRN 2010, a one-dimensional transport code developed by NASA Langley Research Center, to simulate radiation transport through the lithium hydrides. We focused on the 1977 solar minimum Galactic Cosmic Radiation environment and thicknesses of 1, 5, 10, 20, 30, 50, and 100 g/cm2 to stay consistent with our previous studies. The details of this work and the subsequent results will be discussed in this paper.

  5. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    Science.gov (United States)

    Ford, Denise C.; Cooley, Lance D.; Seidman, David N.

    2013-09-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium-hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities.

  6. First-principles calculations of niobium hydride formation in superconducting radio-frequency cavities

    International Nuclear Information System (INIS)

    Ford, Denise C; Cooley, Lance D; Seidman, David N

    2013-01-01

    Niobium hydride is suspected to be a major contributor to degradation of the quality factor of niobium superconducting radio-frequency (SRF) cavities. In this study, we connect the fundamental properties of hydrogen in niobium to SRF cavity performance and processing. We modeled several of the niobium hydride phases relevant to SRF cavities and present their thermodynamic, electronic, and geometric properties determined from calculations based on density functional theory. We find that the absorption of hydrogen from the gas phase into niobium is exothermic and hydrogen becomes somewhat anionic. The absorption of hydrogen by niobium lattice vacancies is strongly preferred over absorption into interstitial sites. A single vacancy can accommodate six hydrogen atoms in the symmetrically equivalent lowest energy sites and additional hydrogen in the nearby interstitial sites affected by the strain field: this indicates that a vacancy can serve as a nucleation center for hydride phase formation. Small hydride precipitates may then occur near lattice vacancies upon cooling. Vacancy clusters and extended defects should also be enriched in hydrogen, potentially resulting in extended hydride phase regions upon cooling. We also assess the phase changes in the niobium–hydrogen system based on charge transfer between niobium and hydrogen, the strain field associated with interstitial hydrogen, and the geometry of the hydride phases. The results of this study stress the importance of not only the hydrogen content in niobium, but also the recovery state of niobium for the performance of SRF cavities. (paper)

  7. Are RENiAl hydrides metallic?

    Czech Academy of Sciences Publication Activity Database

    Eichinger, K.; Havela, L.; Prokleška, J.; Stelmakhovych, O.; Daniš, S.; Šantavá, Eva; Miliyanchuk, K.

    2009-01-01

    Roč. 100, č. 9 (2009), s. 1200-1202 ISSN 1862-5282 Grant - others:GA ČR(CZ) GA202/07/0418 Institutional research plan: CEZ:AV0Z10100520 Keywords : rare earth metals * magnetism * hydrides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.862, year: 2009

  8. Electronic structure of ternary hydrides based on light elements

    Energy Technology Data Exchange (ETDEWEB)

    Orgaz, E. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)]. E-mail: orgaz@eros.pquim.unam.mx; Membrillo, A. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Castaneda, R. [Departamento de Fisica y Quimica Teorica, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico); Aburto, A. [Departamento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, CP 04510 Coyoacan, Mexico, D.F. (Mexico)

    2005-12-08

    Ternary hydrides based on light elements are interesting owing to the high available energy density. In this work we focused into the electronic structure of a series of known systems having the general formula AMH{sub 4}(A=Li,Na,M=B,Al). We computed the energy bands and the total and partial density of states using the linear-augmented plane waves method. In this report, we discuss the chemical bonding in this series of complex hydrides.

  9. Synthesis and physical and chemical properties of poly-hydro-aluminates and poly-halogen-aluminates metals of II A group

    International Nuclear Information System (INIS)

    Khudoydodov, B.O.

    1990-01-01

    The purpose of the present work is investigation of conditions and mechanism of passing of formation reactions of aluminum hydrides, poly-hydride-aluminates and poly-halogen-aluminates of alkaline-earth metals and magnesium and studying of their physical and chemical properties

  10. The effect of sample preparation on uranium hydriding

    International Nuclear Information System (INIS)

    Banos, A.; Stitt, C.A.; Scott, T.B.

    2016-01-01

    Highlights: • Distinct differences in uranium hydride growth rates and characteristics between different surface preparation methods. • The primary difference between the categories of sample preparations is the level of strain present in the surface. • Greater surface-strain, leads to higher nucleation number density, implying a preferred attack of strained vs unstrained metal. • As strain is reduced, surface features such as carbides and grain boundaries become more important in controlling the UH3 location. - Abstract: The influence of sample cleaning preparation on the early stages of uranium hydriding has been examined, by using four identical samples but concurrently prepared using four different methods. The samples were reacted together in the same corrosion cell to ensure identical exposure conditions. From the analysis, it was found that the hydride nucleation rate was proportional to the level of strain exhibiting higher number density for the more strained surfaces. Additionally, microstructure of the metal plays a secondary role regarding initial hydrogen attack on the highly strained surfaces yet starts to dominate the system while moving to more pristine samples.

  11. Design and integration of a hydrogen storage on metallic hydrides

    International Nuclear Information System (INIS)

    Botzung, M.

    2008-01-01

    This work presents a hydrogen storage system using metal hydrides for a Combined Heat and Power (CHP) system. Hydride storage technology has been chosen due to project specifications: high volumetric capacity, low pressures (≤ 3.5 bar) and low temperatures (≤ 75 C: fuel cell temperature). During absorption, heat from hydride generation is dissipated by fluid circulation. An integrated plate-fin type heat exchanger has been designed to obtain good compactness and to reach high absorption/desorption rates. At first, the storage system has been tested in accordance with project specifications (absorption 3.5 bar, desorption 1.5 bar). Then, the hydrogen charge/discharge times have been decreased to reach system limits. System design has been used to simulate thermal and mass comportment of the storage tank. The model is based on the software Fluent. We take in consideration heat and mass transfers in the porous media during absorption/desorption. The hydride thermal and mass behaviour has been integrated in the software. The heat and mass transfers experimentally obtained have been compared to results calculated by the model. The influence of experimental and numerical parameters on the model behaviour has also been explored. (author) [fr

  12. Obtaining zircaloy powder through hydriding

    International Nuclear Information System (INIS)

    Dupim, Ivaldete da Silva; Moreira, Joao M.L.

    2009-01-01

    Zirconium alloys are good options for the metal matrix in dispersion fuels for power reactors due to their low thermal neutron absorption cross-section, good corrosion resistance, good mechanical strength and high thermal conductivity. A necessary step for obtaining such fuels is producing Zr alloy powder for the metal matrix composite material. This article presents results from the Zircaloy-4 hydrogenation tests with the purpose to embrittle the alloy as a first step for comminuting. Several hydrogenation tests were performed and studied through thermogravimetric analysis. They included H 2 pressures of 25 and 50 kPa and temperatures ranging between from 20 to 670 deg C. X-ray diffraction analysis showed in the hydrogenated samples the predominant presence of ZrH 2 and some ZrO 2 . Some kinetics parameters for the Zircaloy-4 hydrogenation reaction were obtained: the time required to reach the equilibrium state at the dwell temperature was about 100 minutes; the hydrogenation rate during the heating process from 20 to 670 deg C was about 21 mg/h, and at constant temperature of 670 deg C, the hydride rate was about 1.15 mg/h. The hydrogenation rate is largest during the heating process and most of it occurs during this period. After hydrogenated, the samples could easily be comminuted indicating that this is a possible technology to obtain Zircaloy powder. The results show that only few minutes of hydrogenation are necessary to reach the hydride levels required for comminuting the Zircaloy. The final hydride stoichiometry was between 2.7 and 2.8 H for each Zr atom in the sample (author)

  13. Use of triammonium salt of aurin tricarboxylic acid as risk mitigant for aluminum hydride

    Science.gov (United States)

    Cortes-Concepcion, Jose A.; Anton, Donald L.

    2017-08-08

    A process and a resulting product by process of an aluminum hydride which is modified with by physically combining in a ball milling process an aluminum hydride with a triammonium salt of aurin tricarboxylic acid. The resulting product is an aluminum hydride which is resistant to air, ambient moisture, and liquid water while maintaining useful hydrogen storage and release kinetics.

  14. Hydrogen storage materials with focus on main group I-II elements

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-07-01

    A future hydrogen based society, viz. a society in which hydrogen is the primary energy carrier, is viewed by many as a solution to many of the energy related problems of the world {integral} the ultimate problem being the eventual depletion of fossil fuels. Although, for the hydrogen based society to become realizable, several technical difficulties must be dealt with. Especially, the transport sector relies on a cheap, safe and reliable way of storing hydrogen with high storage capacity, fast kinetics and favourable thermodynamics. No potential hydrogen storage candidate has been found yet, which meets all the criteria just summarized. The hydrogen storage solution showing the greatest potential in fulfilling the hydrogen storage criteria with respect to storage capacity, is solid state storage in light metal hydrides e.g. alkali metals and alkali earth metals. The remaining issues to be dealt with mainly concerns the kinetics of hydrogen uptake/release and the thermal stability of the formed hydride. In this thesis the hydrogen storage properties of some magnesium based hydrides and alkali metal tetrahydridoaluminates, a subclass of the so called complex hydrides, are explored in relation to hydrogen storage. After briefly reviewing the major energy related problems of the world, including some basic concepts of solid state hydrogen storage the dehydrogenation kinetics of various magnesium based hydrides are investigated. By means of time resolved in situ X-ray powder diffraction, quantitative phase analysis is performed for air exposed samples of magnesium, magnesium-copper, and magnesium-aluminum based hydrides. From kinetic analysis of the different samples it is generally found that the dehydrogenation kinetics of magnesium hydride is severely hampered by the presence of oxide impurities whereas alloying with both Cu and Al creates compounds significantly less sensitive towards contamination. This leads to a phenomenological explanation of the large

  15. Effect of the hydrogen content and cooling velocity in the hydrides precipitation in α-zirconium

    International Nuclear Information System (INIS)

    Ramanathan, L.V.

    1983-01-01

    Zirconium specimens containing 50-300 ppm hydrogen have been cooled from the hydrogen solution treatment temperature at different rates by furnace cooling, air cooling and oil quenching. Optical and electron microscopical investigations have revealed grain boundary Δ - hydrides in slowly cooled specimens. At higher cooling rates γ and Δ hydrides have been found precipitated both intergranularly and intragranularly. Grain boundary Δ hydrides have been also observed in oil quenched specimens with 300 ppm hydrogen. Quenched specimens have revealed Widmanstatten and parallel plate type hydride morphologies. (Author) [pt

  16. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  17. Speculations on the existence of hydride ions in proton conducting oxides

    DEFF Research Database (Denmark)

    Poulsen, F.W.

    2001-01-01

    The chemical and physical nature of the hydride ion is briefly treated. Several reactions of the hydride ion in oxides or oxygen atmosphere are given, A number of perovskites and inverse perovskites are listed. which contain the H- ion on the oxygen or B-anion sites in the archetype ABO(3) System...

  18. Hydrides of Alkaline Earth–Tetrel (AeTt) Zintl Phases: Covalent Tt–H Bonds from Silicon to Tin

    Energy Technology Data Exchange (ETDEWEB)

    Auer, Henry; Guehne, Robin; Bertmer, Marko; Weber, Sebastian; Wenderoth, Patrick; Hansen, Thomas Christian; Haase, Jürgen; Kohlmann, Holger (Leipzig); (Saarland-MED); (ILL)

    2017-01-18

    Zintl phases form hydrides either by incorporating hydride anions (interstitial hydrides) or by covalent bonding of H to the polyanion (polyanionic hydrides), which yields a variety of different compositions and bonding situations. Hydrides (deuterides) of SrGe, BaSi, and BaSn were prepared by hydrogenation (deuteration) of the CrB-type Zintl phases AeTt and characterized by laboratory X-ray, synchrotron, and neutron diffraction, NMR spectroscopy, and quantum-chemical calculations. SrGeD4/3–x and BaSnD4/3–x show condensed boatlike six-membered rings of Tt atoms, formed by joining three of the zigzag chains contained in the Zintl phase. These new polyanionic motifs are terminated by covalently bound H atoms with d(Ge–D) = 1.521(9) Å and d(Sn–D) = 1.858(8) Å. Additional hydride anions are located in Ae4 tetrahedra; thus, the features of both interstitial hydrides and polyanionic hydrides are represented. BaSiD2–x retains the zigzag Si chain as in the parent Zintl phase, but in the hydride (deuteride), it is terminated by H (D) atoms, thus forming a linear (SiD) chain with d(Si–D) = 1.641(5) Å.

  19. The effect of texture on delayed hydride cracking in Zr-2.5Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Resta Levi, R.; Sagat, S

    1999-09-01

    Pressure tubes for CANDU reactors are made of Zr-2.5Nb alloy. They are produced by hot extrusion followed by cold work, which results in a material with a pronounced crystallographic texture with basal plane normals of its hexagonal structure around the circumferential direction. Under certain conditions, this material is susceptible to a cracking mechanism called delayed hydride cracking (DHC). Our work investigated the susceptibility of Zr-2.5Nb alloy pressure tube to DHC in this pressure tube material, in terms of crystallographic texture and grain shape. The results are presented in terms of crack velocity obtained on different planes and directions of the pressure tube. The results show that it is more difficult for a crack to propagate at right angles to crystallographic basal planes (which are close to the precipitation habit plane of hydrides) than for it to propagate parallel to the basal plane. However, if the cracking plane is oriented parallel to preexisting hydrides (hydrides formed as a result of the manufacturing process), the crack propagates along these hydrides easily, even if the hydride habit planes are not oriented favourably. (author)

  20. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  1. Magnesium-based implants: a mini-review.

    Science.gov (United States)

    Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit-Römer, Regine

    2014-01-01

    The goal of this review is to bring to the attention of the readership of Magnesium Research another facet of the importance of magnesium, i.e. magnesium-based biomaterials. A concise history of biomaterials and magnesium are thus presented. In addition, historical and current, clinical magnesium-based applications are presented.

  2. Roles of texture in controlling oxidation, hydrogen ingress and hydride formation in Zr alloys

    International Nuclear Information System (INIS)

    Szpunar, Jerzy A.; Qin, Wen; Li, Hualong; Kumar, Kiran

    2011-01-01

    Experimental observations shows that the oxide formed on Zr alloys are strongly textured. The texture and grain-boundary characteristics of oxide are dependent on the texture of metal substrate. Computer simulation and thermodynamic modeling clarify the effect of metal substrate on structure of oxide film, and intrinsic factors affecting the microstructure. Models of diffusion process of hydrogen atoms and oxygen diffusion through oxide are presented. Both intra-granular and inter-granular hydrides were found following (0001) α-Zr //(111) δ-ZrH1.5 relationship. The through-thickness texture inhomogeneity in cladding tubes, the effects of hoop stress on the hydride orientation and the formation of interlinked hydride structure were studied. A thermodynamic model was developed to analyze the nucleation and the stress-induced reorientation of intergranular hydrides. These works provide a framework for understanding the oxidation, the hydrogen ingress and the hydride formation in Zr alloys. (author)

  3. Ionized magnesium in plasma and erythrocytes for the assessment of low magnesium status in alcohol dependent patients.

    Science.gov (United States)

    Ordak, Michal; Maj-Zurawska, Magdalena; Matsumoto, Halina; Bujalska-Zadrozny, Magdalena; Kieres-Salomonski, Ilona; Nasierowski, Tadeusz; Muszynska, Elzbieta; Wojnar, Marcin

    2017-09-01

    Studies on the homeostasis of magnesium in alcohol-dependent patients have often been characterized by low hypomagnesemia detection rates. This may be due to the fact that the content of magnesium in blood serum constitutes only 1% of the average magnesium level within the human body. However, the concentration of ionized magnesium is more physiologically important and makes up 67% of the total magnesium within a human organism. There are no data concerning the determination of the ionized fraction of magnesium in patients addicted to alcohol and its influence on mental health status. This study included 100 alcohol-dependent patients and 50 healthy subjects. The free magnesium fraction was determined using the potentiometric method by means of using ion-selective electrodes. The total magnesium level was determined by using a biochemical Indiko Plus analyzer. In this study, different psychometric scales were applied. Our results confirm the usefulness of ionized magnesium concentrations in erythrocytes and plasma as a diagnostic parameter of low magnesium status in alcohol-dependent patients. The lower the concentration of ionized magnesium, the worse the quality of life an alcohol-dependent person might experience. In the case of total magnesium, no such correlation was determined. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Method of making alkali metal hydrides

    Science.gov (United States)

    Pecharsky, Vitalij K.; Gupta, Shalabh; Pruski, Marek; Hlova, Ihor; Castle, Andra

    2017-05-30

    A method is provided for making alkali metal hydrides by mechanochemically reacting alkali metal and hydrogen gas under mild temperature (e.g room temperature) and hydrogen pressure conditions without the need for catalyst, solvent, and intentional heating or cooling.

  5. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    International Nuclear Information System (INIS)

    Totemeier, T.C.; Pahl, R.G.; Frank, S.M.

    1998-01-01

    The oxidation behavior of hydride-bearing uranium metal corrosion products from zero power physics reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2 , Ar-9%O 2 , and Ar-20%O 2 . Ignition of corrosion product samples from two moderately corroded plates was observed between 125 C and 150 C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride. (orig.)

  6. Delayed hydride cracking in Zr-2.5Nb pressure tubes

    International Nuclear Information System (INIS)

    Mieza, Juan I.; Domizzi, Gladys; Vigna, Gustavo L.

    2007-01-01

    Zr-2.5 Nb alloy from CANDU pressure tubes are prone to failure by hydrogen intake. One of the degradation mechanisms is delayed hydride cracking, which is characterized by the velocity of cracking. In this work, we study the effect of beta zirconium phase transformation over delayed hydride cracking velocity in Zr-2.5 Nb alloy from pressure tubes. Acoustic emission technique was used for cracking detection. (author) [es

  7. Choline Magnesium Trisalicylate

    Science.gov (United States)

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  8. Characterization of a U-Mo alloy subjected to direct hydriding of the gamma phase

    International Nuclear Information System (INIS)

    Balart, Silvia N.; Bruzzoni, Pablo; Granovsky, Marta S.

    2003-01-01

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has imposed the need to develop plate-type fuel elements based on high density uranium compounds, such as U-Mo alloys. One of the steps in the fabrication of the fuel elements is the pulverization of the fissile material. In the case of the U-Mo alloys, the pulverization can be accomplished through hydriding - dehydriding. Two alternative methods of the hydriding-dehydriding process, namely the selective hydriding in alpha phase (HS-alpha) and the massive hydriding in gamma phase (HM-gamma) are currently being studied at the Comision Nacional de Energia Atomica. The HM-gamma method was reproduced at laboratory scale starting from a U-7 wt % Mo alloy. The hydrided and dehydrided materials were characterized using metallographic techniques, scanning electron microscopy, energy dispersive X-ray analysis and X-ray diffraction. These results are compared with previous results of the HS-alpha method. (author)

  9. Metal Hydride Compression

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Terry A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bowman, Robert [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Smith, Barton [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Anovitz, Lawrence [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jensen, Craig [Hawaii Hydrogen Carriers LLC, Honolulu, HI (United States)

    2017-07-01

    Conventional hydrogen compressors often contribute over half of the cost of hydrogen stations, have poor reliability, and have insufficient flow rates for a mature FCEV market. Fatigue associated with their moving parts including cracking of diaphragms and failure of seal leads to failure in conventional compressors, which is exacerbated by the repeated starts and stops expected at fueling stations. Furthermore, the conventional lubrication of these compressors with oil is generally unacceptable at fueling stations due to potential fuel contamination. Metal hydride (MH) technology offers a very good alternative to both conventional (mechanical) and newly developed (electrochemical, ionic liquid pistons) methods of hydrogen compression. Advantages of MH compression include simplicity in design and operation, absence of moving parts, compactness, safety and reliability, and the possibility to utilize waste industrial heat to power the compressor. Beyond conventional H2 supplies of pipelines or tanker trucks, another attractive scenario is the on-site generating, pressuring and delivering pure H2 at pressure (≥ 875 bar) for refueling vehicles at electrolysis, wind, or solar generating production facilities in distributed locations that are too remote or widely distributed for cost effective bulk transport. MH hydrogen compression utilizes a reversible heat-driven interaction of a hydride-forming metal alloy with hydrogen gas to form the MH phase and is a promising process for hydrogen energy applications [1,2]. To deliver hydrogen continuously, each stage of the compressor must consist of multiple MH beds with synchronized hydrogenation & dehydrogenation cycles. Multistage pressurization allows achievement of greater compression ratios using reduced temperature swings compared to single stage compressors. The objectives of this project are to investigate and demonstrate on a laboratory scale a two-stage MH hydrogen (H2) gas compressor with a

  10. The electrochemical impedance of metal hydride electrodes

    DEFF Research Database (Denmark)

    Valøen, Lars Ole; Lasia, Andrzej; Jensen, Jens Oluf

    2002-01-01

    The electrochemical impedance responses for different laboratory type metal hydride electrodes were successfully modeled and fitted to experimental data for AB5 type hydrogen storage alloys as well as one MgNi type electrode. The models fitted the experimental data remarkably well. Several AC......, explaining the experimental impedances in a wide frequency range for electrodes of hydride forming materials mixed with copper powder, were obtained. Both charge transfer and spherical diffusion of hydrogen in the particles are important sub processes that govern the total rate of the electrochemical...... hydrogen absorption/desorption reaction. To approximate the experimental data, equations describing the current distribution in porous electrodes were needed. Indications of one or more parallel reduction/oxidation processes competing with the electrochemical hydrogen absorption/desorption reaction were...

  11. Decomposition kinetics of plutonium hydride

    Energy Technology Data Exchange (ETDEWEB)

    Haschke, J.M.; Stakebake, J.L.

    1979-01-01

    Kinetic data for decomposition of PuH/sub 1/ /sub 95/ provides insight into a possible mechanism for the hydriding and dehydriding reactions of plutonium. The fact that the rate of the hydriding reaction, K/sub H/, is proportional to P/sup 1/2/ and the rate of the dehydriding process, K/sub D/, is inversely proportional to P/sup 1/2/ suggests that the forward and reverse reactions proceed by opposite paths of the same mechanism. The P/sup 1/2/ dependence of hydrogen solubility in metals is characteristic of the dissociative absorption of hydrogen; i.e., the reactive species is atomic hydrogen. It is reasonable to assume that the rates of the forward and reverse reactions are controlled by the surface concentration of atomic hydrogen, (H/sub s/), that K/sub H/ = c'(H/sub s/), and that K/sub D/ = c/(H/sub s/), where c' and c are proportionality constants. For this surface model, the pressure dependence of K/sub D/ is related to (H/sub s/) by the reaction (H/sub s/) reversible 1/2H/sub 2/(g) and by its equilibrium constant K/sub e/ = (H/sub 2/)/sup 1/2//(H/sub s/). In the pressure range of ideal gas behavior, (H/sub s/) = K/sub e//sup -1/(RT)/sup -1/2/ and the decomposition rate is given by K/sub D/ = cK/sub e/(RT)/sup -1/2/P/sup 1/2/. For an analogous treatment of the hydriding process with this model, it can be readily shown that K/sub H/ = c'K/sub e//sup -1/(RT)/sup -1/2/P/sup 1/2/. The inverse pressure dependence and direct temperature dependence of the decomposition rate are correctly predicted by this mechanism which is most consistent with the observed behavior of the Pu--H system.

  12. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications

    International Nuclear Information System (INIS)

    Barreiro, M M; Grana, D R; Kokubu, G A; Luppo, M I; Mintzer, S; Vigna, G

    2010-01-01

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125 μm in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150 μm. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  13. Titanium compacts produced by the pulvimetallurgical hydride-dehydride method for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Barreiro, M M [Materiales Dentales, Facultad de OdontologIa, Universidad de Buenos Aires, Marcelo T de Alvear 2142 (1122), Buenos Aires (Argentina); Grana, D R; Kokubu, G A [PatologIa I. Escuela de OdontologIa, Facultad de Medicina. Asociacion Odontologica Argentina-Universidad del Salvador, Tucuman 1845 (1050) Buenos Aires (Argentina); Luppo, M I; Mintzer, S; Vigna, G, E-mail: mbarreiro@mater.odon.uba.a, E-mail: dgrana@usal.edu.a, E-mail: luppo@cnea.gov.a, E-mail: vigna@cnea.gov.a [Departamento Materiales, Comision Nacional de Energia Atomica, Gral Paz 1499 (B1650KNA), San MartIn, Buenos Aires (Argentina)

    2010-04-15

    Titanium powder production by the hydride-dehydride method has been developed as a non-expensive process. In this work, commercially pure grade two Ti specimens were hydrogenated. The hydrided material was milled in a planetary mill. The hydrided titanium powder was dehydrided and then sieved to obtain a particle size between 37 and 125{mu}m in order to compare it with a commercial powder produced by chemical reduction with a particle size lower than 150{mu}m. Cylindrical green compacts were obtained by uniaxial pressing of the powders at 343 MPa and sintering in vacuum. The powders and the density of sintered compacts were characterized, the oxygen content was measured and in vivo tests were performed in the tibia bones of Wistar rats in order to evaluate their biocompatibility. No differences were observed between the materials which were produced either with powders obtained by the hydride-dehydride method or with commercial powders produced by chemical reduction regarding modifications in compactation, sintering and biological behaviour.

  14. Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding

    Energy Technology Data Exchange (ETDEWEB)

    Desquines, J., E-mail: jean.desquines@irsn.fr; Drouan, D.; Billone, M.; Puls, M.P.; March, P.; Fourgeaud, S.; Getrey, C.; Elbaz, V.; Philippe, M.

    2014-10-15

    Radial hydride precipitation in stress relieved Zircaloy-4 fuel claddings is studied using a new thermal–mechanical test. Two maximum temperatures for radial hydride precipitation heat treatment are studied, 350 and 450 °C with hydrogen contents ranging between 50 and 600 wppm. The new test provides two main results of interest: the minimum hoop stress required to precipitate radial hydrides and a maximum stress above which, all hydrides precipitate in the radial direction. Based on these two extreme stress conditions, a model is derived to determine the stress level required to obtain a given fraction of radial hydrides after high temperature thermal–mechanical heat treatment. The proposed model is validated using metallographic observation data on pressurized tubes cooled down under constant pressure. Most of the samples with reoriented hydrides are further subjected to a ductility test. Using finite element modeling, the test results are analyzed in terms of crack nucleation within radial hydrides at the outer diameter and crack growth through the thickness of the tubular samples. The combination of test results shows that samples with hydrogen contents of about 100 wppm had the lowest ductility.

  15. Properties of Mg-Al alloys in relation to hydrogen storage

    DEFF Research Database (Denmark)

    Andreasen, A.

    2005-01-01

    storage e.g. in stationary applications. In this report the properties of Mg-Al alloys are reviewed in relation to solid state hydrogen storage. Alloying with Al reduces the hydrogen capacity since Al doesnot form a hydride under conventional hydriding conditions, however both the thermodynamical......Magnesium theoretically stores 7.6 wt. % hydrogen, although it requires heating to above 300 degrees C in order to release hydrogen. This limits its use for mobile application. However, due to its low price and abundance magnesium should still beconsidered as a potential candidate for hydrogen...... properties (lower desorption temperature), and kinetics of hydrogenation/dehydrogenation are improved. In addition to this, the low price of the hydride isretained along with improved heat transfer properties and improved resistance towards oxygen contamination....

  16. A thermal neutron scattering law for yttrium hydride

    Science.gov (United States)

    Zerkle, Michael; Holmes, Jesse

    2017-09-01

    Yttrium hydride (YH2) is of interest as a high temperature moderator material because of its superior ability to retain hydrogen at elevated temperatures. Thermal neutron scattering laws for hydrogen bound in yttrium hydride (H-YH2) and yttrium bound in yttrium hydride (Y-YH2) prepared using the ab initio approach are presented. Density functional theory, incorporating the generalized gradient approximation (GGA) for the exchange-correlation energy, is used to simulate the face-centered cubic structure of YH2 and calculate the interatomic Hellmann-Feynman forces for a 2 × 2 × 2 supercell containing 96 atoms. Lattice dynamics calculations using PHONON are then used to determine the phonon dispersion relations and density of states. The calculated phonon density of states for H and Y in YH2 are used to prepare H-YH2 and Y-YH2 thermal scattering laws using the LEAPR module of NJOY2012. Analysis of the resulting integral and differential scattering cross sections demonstrates adequate resolution of the S(α,β) function. Comparison of experimental lattice constant, heat capacity, inelastic neutron scattering spectra and total scattering cross section measurements to calculated values are used to validate the thermal scattering laws.

  17. Evaluation of Neutron shielding efficiency of Metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Sang Hwan; Chae, San; Kim, Yong Soo [Hanyang University, Seoul (Korea, Republic of)

    2012-05-15

    Neutron shielding is achieved of interaction with material by moderation and absorption. Material that contains large amounts hydrogen atoms which are almost same neutron atomic weight is suited for fast neutron shielding material. Therefore, polymers containing high density hydrogen atom are being used for fast neutron shielding. On the other hand, composite materials containing high thermal neutron absorption cross section atom (Li, B, etc) are being used for thermal neutron shielding. However, these materials have low fast neutron absorption cross section. Therefore, these materials are not suited for fast neutron shielding. Hydrogen which has outstanding neutron energy reduction ability has very low thermal neutron absorption cross section, almost cannot be used for thermal neutron shielding. In this case, a large atomic number material (Pb, U, etc.) has been used. Thus, metal hydrides are considered as complement to concrete shielding material. Because metal hydrides contain high hydrogen density and elements with high atomic number. In this research neutron shielding performance and characteristic of nuclear about metal hydrides ((TiH{sub 2}, ZrH{sub 2}, HfH{sub 2}) is evaluated by experiment and MCNPX using {sup 252}Cf neutron source as purpose development shielding material to developed shielding material

  18. Zircaloy-4 hydridation

    International Nuclear Information System (INIS)

    Vizcaino, Pablo

    1997-01-01

    The objectives of this work can be summarized as: 1) To reproduce, by heat treatments, matrix microstructures and hydride morphologies similar to those observed in structural components of the CNA-1 and CNE nuclear power plants; 2) To study the evolution of the mechanical properties of the original material with different hydrogen concentrations, such as microhardness, and its capacity to distinguish these materials; 3) To find parameters that allow to estimate the hydrogen content of a material by quantitative metallographic techniques, to be used as complementary in the study of the radioactive materials from reactors

  19. Combustion and extinction of magnesium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  20. Magnesium deficiency: What is our status

    Science.gov (United States)

    Low magnesium intake has been implicated in a broad range of cardiometabolic conditions, including diabetes, hypertension, and cardiovascular disease. Dietary magnesium and total body magnesium status have a widely-used but imperfect biomarker in serum magnesium. Despite serum magnesium’s limitation...

  1. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  2. Hydrogen charging, hydrogen content analysis and metallographic examination of hydride in zirconium alloys

    International Nuclear Information System (INIS)

    Singh, R.N.; Kishore, R.; Mukherjee, S.; Roychowdhury, S.; Srivastava, D.; Sinha, T.K.; De, P.K.; Banerjee, S.; Gopalan, B.; Kameswaran, R.; Sheelvantra, Smita S.

    2003-12-01

    Gaseous and electrolytic hydrogen charging techniques for introducing controlled amount of hydrogen in zirconium alloy is described. Zr-1wt%Nb fuel tube, zircaloy-2 pressure tube and Zr-2.5Nb pressure tube samples were charged with up to 1000 ppm of hydrogen by weight using one of the aforementioned methods. These hydrogen charged Zr-alloy samples were analyzed for estimating the total hydrogen content using inert gas fusion technique. Influence of sample surface preparation on the estimated hydrogen content is also discussed. In zirconium alloys, hydrogen in excess of the terminal solid solubility precipitates out as brittle hydride phase, which acquire platelet shaped morphology due to its accommodation in the matrix and can make the host matrix brittle. The F N number, which represents susceptibility of Zr-alloy tubes to hydride embrittlement was measured from the metallographs. The volume fraction of the hydride phase, platelet size, distribution, interplatelet spacing and orientation were examined metallographically using samples sliced along the radial-axial and radial-circumferential plane of the tubes. It was observed that hydride platelet length increases with increase in hydrogen content. Considering the metallographs generated by Materials Science Division as standard, metallographs prepared by the IAEA round robin participants for different hydrogen concentration was compared. It is felt that hydride micrographs can be used to estimate not only that approximate hydrogen concentration of the sample but also its size, distribution and orientation which significantly affect the susceptibility to hydride embrittlement of these alloys. (author)

  3. Modelling the gas transport and chemical processes related to clad oxidation and hydriding

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, R O; Rashid, Y R [ANATECH Research Corp., San Diego, CA (United States)

    1997-08-01

    Models are developed for the gas transport and chemical processes associated with the ingress of steam into a LWR fuel rod through a small defect. These models are used to determine the cladding regions in a defective fuel rod which are susceptible to massive hydriding and the creation of sunburst hydrides. The brittle nature of zirconium hydrides (ZrH{sub 2}) in these susceptible regions produces weak spots in the cladding which can act as initiation sites for cladding cracks under certain cladding stress conditions caused by fuel cladding mechanical interaction. The modeling of the axial gas transport is based on gaseous bimolar diffusion coupled with convective mass transport using the mass continuity equation. Hydrogen production is considered from steam reaction with cladding inner surface, fission products and internal components. Eventually, the production of hydrogen and its diffusion along the length results in high hydrogen concentration in locations remote from the primary defect. Under these conditions, the hydrogen can attack the cladding inner surface and breakdown the protective ZrO{sub 2} layer locally, initiating massive localized hydriding leading to sunburst hydride. The developed hydrogen evolution model is combined with a general purpose fuel behavior program to integrate the effects of power and burnup into the hydriding kinetics. Only in this manner can the behavior of a defected fuel rod be modeled to determine the conditions the result in fuel rod degradation. (author). 14 refs, 6 figs.

  4. Trapping of antimony and bismuth hydrides on a molybdenum-foil strip

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Dočekal, Bohumil

    2005-01-01

    Roč. 99, S (2005), s148-s149 ISSN 0009-2770. [Meeting on Chemistry and Life /3./. Brno, 20.09.2005-22.09.2005] R&D Projects: GA AV ČR IAA400310507 Institutional research plan: CEZ:AV0Z40310501 Keywords : hydride generation * hydride trapping * molybdenum-foil strip device Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.445, year: 2005

  5. Conceptual study on HTGR-IS hydrogen supply system using organic hydrides

    International Nuclear Information System (INIS)

    Terada, Atsuhiko; Noguchi, Hiroki; Takegami, Hiroaki; Kamiji, Yu; Inagaki, Yoshiyuki

    2012-02-01

    We have proposed a hydrogen supply-chain system, which is a storage/supply system of large amount of hydrogen produced by HTGR-IS hydrogen production system. The organic chemical hydride method is one of the candidate techniques in the system for hydrogen storage and transportation. In this study, properties of organic hydrides and conventional hydrogen storage/supply system were surveyed to make use of the conceptual design of the hydrogen supply system using an organic hydrides method with VHTR-IS hydrogen production process (hydrogen production: 85,400 Nm 3 /h). Conceptual specifications of the main equipments were designed for the hydrogen supply system consisting of hydrogenation and dehydrogenation process. It was also clarified the problems of hydrogen supply system, such as energy efficiency and system optimization. (author)

  6. Thermal enhancement cartridge heater modified tritium hydride bed development, Part 2 - Experimental validation of key conceptual design features

    Energy Technology Data Exchange (ETDEWEB)

    Heroux, K.J.; Morgan, G.A. [Savannah River Laboratory, Aiken, SC (United States)

    2015-03-15

    The Thermal Enhancement Cartridge Heater Modified (TECH Mod) tritium hydride bed is an interim replacement for the first generation (Gen1) process hydride beds currently in service in the Savannah River Site (SRS) Tritium Facilities. 3 new features are implemented in the TECH Mod hydride bed prototype: internal electric cartridge heaters, porous divider plates, and copper foam discs. These modifications will enhance bed performance and reduce costs by improving bed activation and installation processes, in-bed accountability measurements, end-of-life bed removal, and He-3 recovery. A full-scale hydride bed test station was constructed at the Savannah River National Laboratory (SRNL) in order to evaluate the performance of the prototype TECH Mod hydride bed. Controlled hydrogen (H{sub 2}) absorption/ desorption experiments were conducted to validate that the conceptual design changes have no adverse effects on the gas transfer kinetics or H{sub 2} storage/release properties compared to those of the Gen1 bed. Inert gas expansions before, during, and after H{sub 2} flow tests were used to monitor changes in gas transfer rates with repeated hydriding/de-hydriding of the hydride material. The gas flow rates significantly decreased after initial hydriding of the material; however, minimal changes were observed after repeated cycling. The data presented herein confirm that the TECH Mod hydride bed would be a suitable replacement for the Gen1 bed with the added enhancements expected from the advanced design features. (authors)

  7. Hydrogen storage and evolution catalysed by metal hydride complexes.

    Science.gov (United States)

    Fukuzumi, Shunichi; Suenobu, Tomoyoshi

    2013-01-07

    The storage and evolution of hydrogen are catalysed by appropriate metal hydride complexes. Hydrogenation of carbon dioxide by hydrogen is catalysed by a [C,N] cyclometalated organoiridium complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(OH(2))](2)SO(4) [Ir-OH(2)](2)SO(4), under atmospheric pressure of H(2) and CO(2) in weakly basic water (pH 7.5) at room temperature. The reverse reaction, i.e., hydrogen evolution from formate, is also catalysed by [Ir-OH(2)](+) in acidic water (pH 2.8) at room temperature. Thus, interconversion between hydrogen and formic acid in water at ambient temperature and pressure has been achieved by using [Ir-OH(2)](+) as an efficient catalyst in both directions depending on pH. The Ir complex [Ir-OH(2)](+) also catalyses regioselective hydrogenation of the oxidised form of β-nicotinamide adenine dinucleotide (NAD(+)) to produce the 1,4-reduced form (NADH) under atmospheric pressure of H(2) at room temperature in weakly basic water. In weakly acidic water, the complex [Ir-OH(2)](+) also catalyses the reverse reaction, i.e., hydrogen evolution from NADH to produce NAD(+) at room temperature. Thus, interconversion between NADH (and H(+)) and NAD(+) (and H(2)) has also been achieved by using [Ir-OH(2)](+) as an efficient catalyst and by changing pH. The iridium hydride complex formed by the reduction of [Ir-OH(2)](+) by H(2) and NADH is responsible for the hydrogen evolution. Photoirradiation (λ > 330 nm) of an aqueous solution of the Ir-hydride complex produced by the reduction of [Ir-OH(2)](+) with alcohols resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex, which can catalyse hydrogen evolution from alcohols in a basic aqueous solution (pH 11.9). The catalytic mechanisms of the hydrogen storage and evolution are discussed by focusing on the reactivity of Ir-hydride complexes.

  8. Dependency of Delayed Hydride Crack Velocity on the Direction of an Approach to Test Temperatures in Zirconium Alloys

    International Nuclear Information System (INIS)

    Kim, Young Suk; Kim, Kang Soo; Im, Kyung Soo; Ahn, Sang Bok; Cheong, Yong Moo

    2005-01-01

    Recently, Kim proposed a new DHC model where a driving force for the DHC is a supersaturated hydrogen concentration as a result of a hysteresis of the terminal solid solubility (TSS) of hydrogen in zirconium alloys upon a heating and a cooling. This model was demonstrated to be valid through a model experiment where the prior plastic deformation facilitated nucleation of the reoriented hydrides, thus reducing the supersaturated hydrogen concentration at the plastic zone ahead of the crack tip and causing hydrogen to move to the crack tip from the bulk region. Thus, an approach to the test temperature by a cooling is required to create a supersaturation of hydrogen, which is a driving force for the DHC of zirconium alloys. However, despite the absence of the supersaturation of hydrogen due to an approach to the test temperature by a heating, DHC is observed to occur in zirconium alloys at the test temperatures below 180 .deg. C. As to this DHC phenomenon, Kim proposed that stress-induced transformation from γ-hydrides to δ-hydrides is likely to be a cause of this, based on Root's observation that the γ-hydride is a stable phase at temperatures lower than 180 .deg. C. In other words, the hydrides formed at the crack tip would be δ-hydrides due to the stressinduced transformation while the bulk region still maintains the initial hydride phase or γ-hydrides. It should be noted that Ambler has also assumed the crack tip hydrides to be δ-hydrides. When the δ-hydrides or ZrH1.66 are precipitated at the crack tip due to the transformation of the γ-hydrides or ZrH, the crack tip will have a decreased concentration of dissolved hydrogen in zirconium, considering the atomic ratio of hydrogen and zirconium in the γ- and δ-hydrides. In contrast, due to no stress-induced transformation of hydrides, the bulk region maintains the initial concentration of dissolved hydrogen. Hence, there develops a difference in the hydrogen concentration or .C between the bulk and the

  9. Dependency of Delayed Hydride Crack Velocity on the Direction of an Approach to Test Temperatures in Zirconium Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Suk; Kim, Kang Soo; Im, Kyung Soo; Ahn, Sang Bok; Cheong, Yong Moo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    Recently, Kim proposed a new DHC model where a driving force for the DHC is a supersaturated hydrogen concentration as a result of a hysteresis of the terminal solid solubility (TSS) of hydrogen in zirconium alloys upon a heating and a cooling. This model was demonstrated to be valid through a model experiment where the prior plastic deformation facilitated nucleation of the reoriented hydrides, thus reducing the supersaturated hydrogen concentration at the plastic zone ahead of the crack tip and causing hydrogen to move to the crack tip from the bulk region. Thus, an approach to the test temperature by a cooling is required to create a supersaturation of hydrogen, which is a driving force for the DHC of zirconium alloys. However, despite the absence of the supersaturation of hydrogen due to an approach to the test temperature by a heating, DHC is observed to occur in zirconium alloys at the test temperatures below 180 .deg. C. As to this DHC phenomenon, Kim proposed that stress-induced transformation from {gamma}-hydrides to {delta}-hydrides is likely to be a cause of this, based on Root's observation that the {gamma}-hydride is a stable phase at temperatures lower than 180 .deg. C. In other words, the hydrides formed at the crack tip would be {delta}-hydrides due to the stressinduced transformation while the bulk region still maintains the initial hydride phase or {gamma}-hydrides. It should be noted that Ambler has also assumed the crack tip hydrides to be {delta}-hydrides. When the {delta}-hydrides or ZrH1.66 are precipitated at the crack tip due to the transformation of the {gamma}-hydrides or ZrH, the crack tip will have a decreased concentration of dissolved hydrogen in zirconium, considering the atomic ratio of hydrogen and zirconium in the {gamma}- and {delta}-hydrides. In contrast, due to no stress-induced transformation of hydrides, the bulk region maintains the initial concentration of dissolved hydrogen. Hence, there develops a difference in the

  10. Spider silk as a template for obtaining magnesium oxide and magnesium hydroxide fibers

    Directory of Open Access Journals (Sweden)

    Dmitrović Svetlana

    2018-01-01

    Full Text Available Spider silk fibers, collected from Pholcus Phalangioides spider were used as a template for obtaining magnesium oxide (MgO, periclase as well as magnesium hydroxide (Mg(OH2, brucite fibers. Magnesium oxide fibers were obtained in a simple manner by heat induced decomposition of magnesium salt (MgCl2 in the presence of the spider silk fibers, while magnesium hydroxide fibers were synthesized by hydration of MgO fibers at 50, 70 and 90 C, for 48 and 96 h. According to Scanning electron microscopy (SEM, dimensions of spider silk fibers determined the dimension of synthesized MgO fibers, while for Mg(OH2 fibers, the average diameter was increased with prolonging the hydration period. The surface of Mg(OH2 fibers was noticed to be covered with brucite in a form of plates. X-Ray diffraction (XRD analysis showed that MgO fibers were single-phased (the pure magnesium oxide fibers were obtained, while Mg(OH2 fibers were two- or single-phased brucite depending on incubation period, and/or incubation temperature. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 45012

  11. Magnesium Technology : Preface

    NARCIS (Netherlands)

    Sillekens, W.H.; Agnew, S.R.; Neelameggham, N.R.; Mathaudhu, S.N.

    2011-01-01

    The Magnesium Technology Symposium, which takes place every year at the TMS Annual Meeting & Exhibition, is one of the largest yearly gatherings of magnesium specialists in the world. Papers are presented in all aspects of the field, ranging from primary production to applications to recycling.

  12. Optical hydrogen sensors based on metal-hydrides

    Science.gov (United States)

    Slaman, M.; Westerwaal, R.; Schreuders, H.; Dam, B.

    2012-06-01

    For many hydrogen related applications it is preferred to use optical hydrogen sensors above electrical systems. Optical sensors reduce the risk of ignition by spark formation and are less sensitive to electrical interference. Currently palladium and palladium alloys are used for most hydrogen sensors since they are well known for their hydrogen dissociation and absorption properties at relatively low temperatures. The disadvantages of palladium in sensors are the low optical response upon hydrogen loading, the cross sensitivity for oxygen and carbon, the limited detection range and the formation of micro-cracks after some hydrogen absorption/desorption cycles. In contrast to Pd, we find that the use of magnesium or rear earth bases metal-hydrides in optical hydrogen sensors allow tuning of the detection levels over a broad pressure range, while maintaining a high optical response. We demonstrate a stable detection layer for detecting hydrogen below 10% of the lower explosion limit in an oxygen rich environment. This detection layer is deposited at the bare end of a glass fiber as a micro-mirror and is covered with a thin layer of palladium. The palladium layer promotes the hydrogen uptake at room temperature and acts as a hydrogen selective membrane. To protect the sensor for a long time in air a final layer of a hydrophobic fluorine based coating is applied. Such a sensor can be used for example as safety detector in automotive applications. We find that this type of fiber optic hydrogen sensor is also suitable for hydrogen detection in liquids. As example we demonstrate a sensor for detecting a broad range of concentrations in transformer oil. Such a sensor can signal a warning when sparks inside a high voltage power transformer decompose the transformer oil over a long period.

  13. A computer model for hydride blister growth in zirconium alloys

    International Nuclear Information System (INIS)

    White, A.J.; Sawatzky, A.; Woo, C.H.

    1985-06-01

    The failure of a Zircaloy-2 pressure tube in the Pickering unit 2 reactor started at a series of zirconium hydride blisters on the outside of the pressure tube. These blisters resulted from the thermal diffusion of hydrogen to the cooler regions of the pressure tube. In this report the physics of thermal diffusion of hydrogen in zirconium is reviewed and a computer model for blister growth in two-dimensional Cartesian geometry is described. The model is used to show that the blister-growth rate in a two-phase zirconium/zirconium-hydride region does not depend on the initial hydrogen concentration nor on the hydrogen pick-up rate, and that for a fixed far-field temperature there is an optimum pressure-type/calandria-tube contact temperature for growing blisters. The model described here can also be used to study large-scale effects, such as hydrogen-depletion zones around hydride blisters

  14. The Corrosion of Magnesium and of the Magnesium Aluminum Alloys Containing Manganese

    Science.gov (United States)

    Boyer, J A

    1927-01-01

    The extensive use of magnesium and its alloys in aircraft has been seriously handicapped by the uncertainties surrounding their resistance to corrosion. This problem has been given intense study by the American Magnesium Corporation and at the request of the Subcommittee on Materials for Aircraft of the National Advisory Committee for Aeronautics this report was prepared on the corrosion of magnesium. The tentative conclusions drawn from the experimental facts of this investigation are as follows: the overvoltage of pure magnesium is quite high. On immersion in salt water the metal corrodes with the liberation of hydrogen until the film of corrosion product lowers the potential to a critical value. When the potential reaches this value it no longer exceeds the theoretical hydrogen potential plus the overvoltage of the metal. Rapid corrosion consequently ceases. When aluminum is added, especially when in large amounts, the overvoltage is decreased and hydrogen plates out at a much lower potential than with pure magnesium. The addition of small amount of manganese raises the overvoltage back to practically that of pure metal, and the film is again negative.

  15. Oxidation kinetics of hydride-bearing uranium metal corrosion products

    Science.gov (United States)

    Totemeier, Terry C.; Pahl, Robert G.; Frank, Steven M.

    The oxidation behavior of hydride-bearing uranium metal corrosion products from Zero Power Physics Reactor (ZPPR) fuel plates was studied using thermo-gravimetric analysis (TGA) in environments of Ar-4%O 2, Ar-9%O 2, and Ar-20%O 2. Ignition of corrosion product samples from two moderately corroded plates was observed between 125°C and 150°C in all environments. The rate of oxidation above the ignition temperature was found to be dependent only on the net flow rate of oxygen in the reacting gas. Due to the higher net oxygen flow rate, burning rates increased with increasing oxygen concentration. Oxidation rates below the ignition temperature were much slower and decreased with increasing test time. The hydride contents of the TGA samples from the two moderately corroded plates, determined from the total weight gain achieved during burning, were 47-61 wt% and 29-39 wt%. Samples from a lightly corroded plate were not reactive; X-ray diffraction (XRD) confirmed that they contained little hydride.

  16. Hydride reorientation in Zircaloy-4 examined by in situ synchrotron X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Weekes, H.E. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Jones, N.G. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Lindley, T.C. [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom); Dye, D., E-mail: david.dye@imperial.ac.uk [Department of Materials, Royal School of Mines, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2016-09-15

    The phenomenon of stress-reorientation has been investigated using in situ X-ray diffraction during the thermomechanical cycling of hydrided Zircaloy-4 tensile specimens. Results have shown that loading along a sample’s transverse direction (TD) leads to a greater degree of hydride reorientation when compared to rolling direction (RD)-aligned samples. The elastic lattice micro-strains associated with radially oriented hydrides have been revealed to be greater than those oriented circumferentially, a consequence of strain accommodation. Evidence of hydride redistribution after cycling, to α-Zr grains oriented in a more favourable orientation when under an applied stress, has also been observed and its behaviour has been found to be highly dependent on the loading axis. Finally, thermomechanical loading across multiple cycles has been shown to reduce the difference in terminal solid solubility of hydrogen during dissolution (TSS{sub D,H}) and precipitation (TSS{sub P,H}).

  17. High-efficiency heat pump technology using metal hydrides (eco-energy city project)

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y.; Harada, T.; Niikura, J.; Yamamoto, Y.; Suzuki, J. [Human Environmental Systems Development Center, Matsushita Electric Industrial Co., Ltd., Moriguchi, Osaka (Japan); Gamo, T. [Corporate Environmental Affairs Div., Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka (Japan)

    1999-07-01

    Metal hybrides are effective materials for utilizing hydrogen as a clean energy medium. That is, when the metal hydrides absorb or desorb the hydrogen, a large heat output of reaction occurs. So, the metal hydrides can be applied to a heat pump. We have researched on a high efficiency heat pump technology using their metal hydrides. In this report, a double effect type metal hydride heat pump configuration is described in which the waste heat of 160 C is recovered in a factory cite and transported to areas far distant from the industrial district. In the heat recovery unit, a low pressure hydrogen is converted into highly effective high pressure hydrogen by applying the metal hydrides. Other metal hydrides perform the parts of heating by absorbing the hydrogen and cooling by desorbing the hydrogen in the heat supply unit. One unit scale of the system is 3 kW class as the sum of heating and cooling. This system using the hydrogen absorbing alloy also has good energy storage characteristics and ambient hydrogen pressure self-safety control ability. Furthermore, this heating and cooling heat supply system is not harmful to the natural environment because it is a chlorofluorocarbon-free, and low noise type system. We have developed in the following element technologies to attain the above purposes, that is development of hydrogen absorbing alloys with high heat outputs and technologies to construct the heat pump system. This study is proceeded at present as one of the programs in New Sunshine Project, which aims for development of ingenious energy utilization technology to achieve reduction of primary energy consumption with keeping cultural and wealthy life and preventing deterioration of global environment. (orig.)

  18. In-situ X-ray diffraction : a useful tool to investigate hydride-formation reactions

    NARCIS (Netherlands)

    Notten, P.H.L.; Daams, J.L.C.; Veirman, de A.E.M.; Staals, A.A.

    1994-01-01

    A high-pressure X-ray diffraction (XRD) cell has been designed which allowed us to study simultaneously hydrogen absorption/desorption isotherms and XRD powder diffraction patterns on (de)hydrided intermetallic compounds. The hydride formation reaction was investigated in the case of LaNi5 under

  19. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Isobe, Shigehito [Creative Research Institution, Hokkaido University, Sapporo 001-0021 (Japan); Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Orimo, Shin-ichi [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-09-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.

  20. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Isobe, Shigehito; Kuwano, Hiroki; Shiraki, Susumu; Hitosugi, Taro; Orimo, Shin-ichi

    2015-01-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10 −2 Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R RMS of ∼0.4 nm

  1. Photoluminescence of magnesium-associated color centers in LiF crystals implanted with magnesium ions

    Science.gov (United States)

    Nebogin, S. A.; Ivanov, N. A.; Bryukvina, L. I.; V. Shipitsin, N.; E. Rzhechitskii, A.; Papernyi, V. L.

    2018-05-01

    In the present paper, the effect of magnesium nanoparticles implanted in a LiF crystal on the optical properties of color centers is studied. The transmittance spectra and AFM images demonstrate effective formation of the color centers and magnesium nanoparticles in an implanted layer of ∼ 60-100 nm in thickness. Under thermal annealing, a periodical structure is formed on the surface of the crystal and in the implanted layer due to self-organization of the magnesium nanoparticles. Upon excitation by argon laser with a wavelength of 488 nm at 5 K, in a LiF crystal, implanted with magnesium ions as well as in heavily γ-irradiated LiF: Mg crystals, luminescence of the color centers at λmax = 640 nm with a zero-phonon line at 601.5 nm is observed. The interaction of magnesium nanoparticles and luminescing color centers in a layer implanted with magnesium ions has been revealed. It is shown that the luminescence intensity of the implanted layer at a wavelength of 640 nm is by more than two thousand times higher than that of a heavily γ-irradiated LiF: Mg crystal. The broadening of the zero-phonon line at 601.5 nm in the spectrum of the implanted layer indicates the interaction of the emitting quantum system with local field of the surface plasmons of magnesium nanoparticles. The focus of this work is to further optimize the processing parameters in a way to result in luminescence great enhancement of color centers by magnesium nanoparticles in LiF.

  2. Study of factors affecting a combustion method for determining carbon in lithium hydride

    International Nuclear Information System (INIS)

    Barringer, R.E.; Thornton, R.E.

    1975-09-01

    An investigation has been made of the factors affecting a combustion method for the determination of low levels (300 to 15,000 micrograms/gram) of carbon in highly reactive lithium hydride. Optimization of the procedure with available equipment yielded recoveries of 90 percent, with a limit of error (0.95) of +-39 percent relative for aliquants containing 35 to 55 micrograms of carbon (500 to 800 micrograms of carbon per gram of lithium hydride sample). Sample preparation, thermal decomposition of the hydride, final ignition of the carbon, and carbon-measurement steps were studied, and a detailed procedure was developed. (auth)

  3. Study on the scattering law and scattering kernel of hydrogen in zirconium hydride

    International Nuclear Information System (INIS)

    Jiang Xinbiao; Chen Wei; Chen Da; Yin Banghua; Xie Zhongsheng

    1999-01-01

    The nuclear analytical model of calculating scattering law and scattering kernel for the uranium zirconium hybrid reactor is described. In the light of the acoustic and optic model of zirconium hydride, its frequency distribution function f(ω) is given and the scattering law of hydrogen in zirconium hydride is obtained by GASKET. The scattering kernel σ l (E 0 →E) of hydrogen bound in zirconium hydride is provided by the SMP code in the standard WIMS cross section library. Along with this library, WIMS is used to calculate the thermal neutron energy spectrum of fuel cell. The results are satisfied

  4. Combined on-board hydride slurry storage and reactor system and process for hydrogen-powered vehicles and devices

    Science.gov (United States)

    Brooks, Kriston P; Holladay, Jamelyn D; Simmons, Kevin L; Herling, Darrell R

    2014-11-18

    An on-board hydride storage system and process are described. The system includes a slurry storage system that includes a slurry reactor and a variable concentration slurry. In one preferred configuration, the storage system stores a slurry containing a hydride storage material in a carrier fluid at a first concentration of hydride solids. The slurry reactor receives the slurry containing a second concentration of the hydride storage material and releases hydrogen as a fuel to hydrogen-power devices and vehicles.

  5. Study on an innovative fast reactor utilizing hydride neutron absorber - Final report of phase I study

    International Nuclear Information System (INIS)

    Konashi, K.; Iwasaki, T.; Itoh, K.; Hirai, M.; Sato, J.; Kurosaki, K.; Suzuki, A.; Matsumura, Y.; Abe, S.

    2010-01-01

    These days, the demand to use nuclear resources efficiently is growing for long-term energy supply and also for solving the green house problem. It is indispensable to develop technologies to reduce environmental load with the nuclear energy supply for sustainable development of human beings. In this regard, the development of the fast breeder reactor (FBR) is preferable to utilize nuclear resources effectively and also to burn minor actinides which possess very long toxicity for more than thousands years if they are not extinguished. As one of the FBR developing works in Japan this phase I study started in 2006 to introduce hafnium (Hf) hydride and Gadolinium-Zirconium (Gd-Zr) hydride as new control materials in FBR. By adopting them, the FBR core control technology is improved by two ways. One is extension of control rod life time by using long life Hf hydride which leads to reduce the fabrication and disposal cost and the other is reduction of the excess reactivity by adopting Gd-Zr hydride which leads to reduce the number of control rods and simplifies the core upper structure. This three year study was successfully completed and the following results were obtained. The core design was performed to examine the applicability of the Hf hydride absorber to Japanese Sodium Fast Reactor (JSFR) and it is clarified that the control rod life time can be prolonged to 6 years by adopting Hf hydride and the excess reactivity of the beginning of the core cycle can be reduced to half and the number of the control rods is also reduced to half by using the Gd-Zr hydride burnable poison. The safety analyses also certified that the core safety can be maintained with the same reliability of JSFR Hf hydride and Gd-Zr hydride pellets were fabricated in good manner and their basic features for design use were measured by using the latest devices such as SEM-EDX. In order to reduce the hydrogen transfer through the stainless steel cladding a new technique which shares calorizing

  6. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution ... Having tremendous load bearing capacity, it can withstand .... retention coefficients for similar concrete compositions.

  7. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  8. Mineral resource of the month: magnesium

    Science.gov (United States)

    Kramer, Deborah A.

    2012-01-01

    Magnesium is the eighthmost abundant element in Earth’s crust, and the second-most abundant metal ion in seawater. Although magnesium is found in more than 60 minerals, only brucite, dolomite, magnesite and carnallite are commercially important for their magnesium content. Magnesium and its compounds also are recovered from seawater, brines found in lakes and wells, and bitterns (salts).

  9. 21 CFR 184.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or carbonate...

  10. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... hydrochloric acid solution and crystallizing out magnesium chloride hexahydrate. (b) The ingredient meets the...

  11. Properties of MgAl alloys in relation to hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Andreasen, Anders

    2005-08-01

    Magnesium theoretically stores 7.6 wt. % hydrogen, although it requires heating to above 300 degrees C in order to release hydrogen. This limits its use for mobile application. However, due to its low price and abundance magnesium should still be considered as a potential candidate for hydrogen storage e.g. in stationary applications. In this report the properties of Mg-Al alloys are reviewed in relation to solid state hydrogen storage Alloying with Al reduces the hydrogen capacity since Al does not form a hydride under conventional hydriding conditions, however both the thermodynamical properties (lower desorption temperature), and kinetics of hydrogenation/dehydrogenation are improved. In addition to this, the low price of the hydride is retained along with improved heat transfer properties and improved resistance towards oxygen contamination. (au)

  12. Reactivity patterns of transition metal hydrides and alkyls

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W.D. II

    1979-05-01

    The complex PPN/sup +/ CpV(CO)/sub 3/H/sup -/ (Cp=eta/sup 5/-C/sub 5/H/sub 5/ and PPN = (Ph/sub 3/P)/sub 2/) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN/sup +/ CpV(CO)/sub 3/H/sup -/ reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN/sup +/(CpV(C)/sub 3/X)/sup -/ and in some cases the binuclear bridging hydride PPN/sup +/ (CpV(CO)/sub 3/)/sub 2/H/sup -/. The borohydride salt PPN/sup +/(CpV(CO)/sub 3/BH/sub 4/)/sup -/ has also been prepared. The reaction between CpV(CO)/sub 3/H/sup -/ and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)/sub 3/H/sup -/. Sodium amalgam reduction of CpRh(CO)/sub 2/ or a mixture of CpRh(CO)/sub 2/ and CpCo(CO)/sub 2/ affords two new anions, PPN/sup +/ (Cp/sub 2/Rh/sub 3/(CO)/sub 4/)/sup -/ and PPN/sup +/(Cp/sub 2/RhCo(CO)/sub 2/)/sup -/. CpMo(CO)/sub 3/H reacts with CpMo(CO)/sub 3/R (R=CH/sub 3/,C/sub 2/H/sub 5/, CH/sub 2/C/sub 6/H/sub 5/) at 25 to 50/sup 0/C to produce aldehyde RCHO and the dimers (CpMo(CO)/sub 3/)/sub 2/ and (CpMo(CO)/sub 2/)/sub 2/. In general, CpV(CO)/sub 3/H/sup -/ appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)/sub 3/H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)/sub 3/H/sup -/ generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)/sub 3/H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species.

  13. Surface modification of a proton exchange membrane and hydrogen storage in a metal hydride for fuel cells

    Science.gov (United States)

    Andrews, Lisa

    promising option. Effective hydrogen storage methods must be used as sources of available hydrogen. One possibility is to use hydrogen stored in a solid chemical compound such as magnesium hydride. The kinetics of hydrogen release from the hydrolysis of magnesium hydride with 2 wt% acetic acid was examined. The hydrogen produced was supplied to a fuel cell and the amount of hydrogen consumed by the fuel cell was determined. Carbon nanotubes also can play a role in energy sources and as components in fuel cells. VUV photo-oxidized single walled carbon nanotubes (SWNT) paper was grafted with polyacrylic acid and analyzed using XPS.

  14. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  15. Complex Metal Hydrides for hydrogen storage and solid-state ion conductors

    DEFF Research Database (Denmark)

    Payandeh GharibDoust, SeyedHosein

    and electricity in batteries. However, both hydrogen and electricity must be stored in a very dense way to be useful, e.g. for mobile applications. Complex metal hydrides have high hydrogen density and have been studied during the past twenty years in hydrogen storage systems. Moreover, they have shown high ionic...... conductivities which promote their application as solid electrolytes in batteries. This dissertation presents the synthesis and characterization of a variety of complex metal hydrides and explores their hydrogen storage properties and ionic conductivity. Five halide free rare earth borohydrides RE(BH4)3, (RE...... = La, Ce, Pr, Nd, Er) have been synthesized, which pave the way for studying the polymorphic transition in these compounds, obtaining new bimetallic borohydrides and designing new reactive hydride composites with improved hydrogen storage capacities. Two novel polymorphs of Pr(BH4)3 are identified...

  16. 21 CFR 862.1495 - Magnesium test system.

    Science.gov (United States)

    2010-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of magnesium). (b) Classification. Class I. ...

  17. Examination of parameters affecting overload fracture behavior of flaw-tip hydrides in Zr-2.5Nb pressure tubes in Candu reactors

    International Nuclear Information System (INIS)

    Cui, J.; Shek, G.K.; Wang, Z.R.

    2007-01-01

    Service-induced flaws in Zr-2.5Nb alloy pressure tubes in Candu (Canada Deuterium Uranium Reactors) nuclear reactors are susceptible to a crack initiation and growth mechanism known as Delayed Hydride Cracking (DHC), which is a repetitive process that involves hydrogen diffusion, hydride precipitation, growth and fracture of a hydride region at the flaw-tip under a constant load. Crack initiation may also occur under another loading condition when the hydride region is subjected to an overload. An overload occurs when the hydride region at the flaw tip is loaded to a stress higher than that at which this region is formed such as when the reactor experiences a transient pressure higher than the normal operating pressure where the hydride region is formed. Flaw disposition requires justification that the hydride region overload will not fracture the hydride region, and initiate DHC. In this work, monotonically increasing load experiments were performed on unirradiated Zr-2.5Nb pressure tube specimens containing simulated debris frets (V-notch) and bearing pad frets (BPF, U-shape notch) to examine overload fracture behavior of flaw-tip hydrides formed under hydride ratcheting conditions. Hydride cracking in the overload tests was detected by the acoustic emission technique and confirmed by post-test metallurgical examination. Test results indicate that the resistance to overload fracture is affected by a number of parameters including hydride formation stress, flaw shape (V-notch vs. BPF) and flaw radius (0.015 mm vs. 0.1 mm). The notch-tip hydride morphologies were examined by optical microscopy and scanning electron microscopy (SEM) which show that they are affected by the hydride formation conditions, resulting in different overload fracture resistance. Finite element stress analyses were also performed to obtain flaw-tip stress distributions for interpretation of the test results. (authors)

  18. Radioactive 210Po in magnesium supplements

    International Nuclear Information System (INIS)

    Struminska-Parulska, Dagmara Ida

    2016-01-01

    The aim of this pioneer study was to determine polonium 210 Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring 210 Po activity concentrations in magnesium supplements, find the correlations between 210 Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest 210 Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g -1 (sample Mg17). The highest annual radiation dose from 210 Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year -1 respectively.

  19. Combined effects of radiation damage and hydrides on the ductility of Zircaloy-2

    International Nuclear Information System (INIS)

    Wisner, S.B.; Adamson, R.B.

    1998-01-01

    Interest remains high regarding the effects of zirconium hydride precipitates on the ductility of reactor Zircaloy components, particularly in irradiated material. Previous studies have reported that ductility reductions are much greater at room temperature compared to reactor component temperatures. It is often concluded that the effects of irradiation dominate the ductility reduction observed in test specimens, although there is no consensus as to whether hydriding effects are additive. Many of the tests reported in the literature are difficult to interpret due to variations in test specimen geometry and material history. In this paper, we present the results of an experimental program aimed at clearly describing the combined effects of irradiation and hydriding on ductility parameters under conditions of a realistic test specimen design and well characterized hydride content, distribution and orientation. Experiments were conducted at 295 and 605 K, respectively on Zircaloy-2 tubing segments containing 10-800 ppm hydrogen and neutron fluences between 0.9 x 10 25 nm -2 (E>1 MeV). Tests utilized the well proven localized ductility specimen which applies plane strain tension in the hoop direction of the tubing segment. In all cases, hydrides were also oriented in the hoop or circumferential direction and were uniformly distributed across the tubing wall. Results indicate that at 605 K, the ductility of irradiated material was almost independent of hydride content, retaining above 4% uniform elongation and 25% reduction in an area for the highest fluences and hydrogen contents. Even at 295 K, measurable ductility was retained for irradiated material with up to 600 ppm hydrogen. In the paper, results of fractographic analyses and strain rate are also discussed

  20. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  1. Corrosion resistance of multilayered magnesium phosphate/magnesium hydroxide film formed on magnesium alloy using steam-curing assisted chemical conversion method

    International Nuclear Information System (INIS)

    Ishizaki, Takahiro; Kudo, Ruriko; Omi, Takeshi; Teshima, Katsuya; Sonoda, Tsutomu; Shigematsu, Ichinori; Sakamoto, Michiru

    2012-01-01

    Anticorrosive multilayered films were successfully prepared on magnesium alloy AZ31 by chemical conversion treatment, followed by steam curing treatment. The crystal structures, chemical composition, surface morphologies, chemical bonding states of the film was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and field emission scanning electron microscope (FE-SEM) measurements. All the films had thicknesses of ranging from 24 to 32 μm. The film had two layers that were composed of crystalline NH 4 MgPO 4 ·H 2 O, Mg 2 PO 4 OH·3H 2 O, Mg(OH) 2 and amorphous MgO. The outer layers include magnesium, oxygen, and phosphorous, and the inner layers include magnesium and oxygen. The corrosion resistant performances of the multilayered films in 5 wt% NaCl aqueous solution were investigated by electrochemical and gravimetric measurements. The potentiodynamic polarization curves revealed that the corrosion current density (j corr ) of all the film coated magnesium alloys decreased by more than four orders of magnitude as compared to that of the bare magnesium alloy, indicating that all the films had an inhibiting effect of corrosion reaction. Gravimetric measurements showed that the average corrosion rates obtained from the weight loss rates were estimated to be in the ranges of ca. 0.085–0.129 mm/y. American Society for Testing and Materials (ASTM) standard D 3359-02 cross cut tape test revealed that the adhesion of our anticorrosive multilayered film to the magnesium alloy surface was very good.

  2. Nanostructured magnesium increases bone cell density.

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  3. δ-hydride habit plane determination in α-zirconium by strain energy minimization technique at 25 and 300 deg C

    International Nuclear Information System (INIS)

    Singh, R.N.; Stahle, P.; Sairam, K.; Ristmana, Matti; Banerjee, S.

    2008-01-01

    The objective of the present investigation is to predict the habit plane of δ-hydride precipitating in α-Zr at 25 and 300 deg C using strain energy minimization technique. The δ-hydride phase is modeled to undergo isotropic elastic and plastic deformation. The α-Zr phase was modeled to undergo transverse isotropic elastic deformation. Both isotropic plastic and transverse isotropic plastic deformations of α-Zr were considered. Further, both perfect and linear work-hardening plastic behaviors of zirconium and its hydride were considered. Accommodation strain energy of δ-hydrides forming in α-Zr crystal was computed using initial strain method as a function of hydride nuclei orientation. Hydride was modeled as disk with circular edge. The simulation was carried out using materials properties reported at 25 and 300 deg C. Contrary to several habit planes reported in literature for δ-hydrides precipitating in α-Zr crystal the total accommodation energy minima suggests only basal plane i.e. (0001) as the habit plane. (author)

  4. Calcium and magnesium determination

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.

    1982-01-01

    The roles of calcium and magnesium in human health and disease have been extensively studied. Calcium and magnesium have been determined in biological specimens by atomic absorption spectroscopy using stiochiometric nitrous oxide-acetylene flame

  5. Theoretical study of the chemical properties of cesium hydride; Teoreticke studium chemickych vlastnosti hydridu cezia

    Energy Technology Data Exchange (ETDEWEB)

    Skoviera, J [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra fyzikalnej a teoretickej chemie, 84215 Bratislava (Slovakia)

    2012-04-25

    A theoretical study of radiofrequency source of hydrogen ions in the International Thermonuclear Experimental Reactor (ITER) used a cesium grid as a source of electrons for ionization of hydrogen. In the process of ionization of hydrogen, however, there is a weathering of cesium grid, resulting into a group of undesired products - cesium hydrides and materials derived from cesium hydride. We calculated the potential curves of cesium hydride and of its anion and cation, their spectroscopic properties and partly their electrical properties. To make electrical properties comparable with the experiment, we calculated for all also the vibration corrections. Lack of convergence in RASSCF step caused, that the electrical properties of excited states are still an open question of chemical properties of cesium hydride. (authors)

  6. Preliminary data from lithium hydride ablation tests conducted by NASA, Ames Research Center

    International Nuclear Information System (INIS)

    Elliott, R.D.

    1970-01-01

    A series of ablation tests of lithium hydride has been made by NASA-Ames in one of their high-enthalpy arc-heated wind tunnels. Two-inch diameter cylindrical samples of the hydride, supplied by A. I., were subjected to heating on their ends for time periods up to 10 seconds. After each test, the amount of material removed from each sample was measured. The rates of loss of material were correlated with the heat input rates in terms of a heat of ablation, which ranged from 2100 to 3500 Btu/lb. The higher values were obtained when the hydride contained a matrix such as steel honeycomb of steel wool. (U.S.)

  7. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    International Nuclear Information System (INIS)

    Hörst, S. M.; Brown, M. E.

    2013-01-01

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  8. Positronium hydride defects in thermochemically reduced alkaline-Earth oxides

    International Nuclear Information System (INIS)

    Monge, M.A.; Pareja, R.; Gonzalez, R.; Chen, Y.

    1997-01-01

    Thermochemical reduction of both hydrogen-doped MgO and CaO single crystals results in large concentrations of hydride (H - ) ions. In MgO crystals, positron lifetime and Doppler broadening experiments show that positrons are trapped at H - centers forming positronium hydride molecules [e + - H - ]. A value of 640 ps is obtained for the lifetime of the PsH states located in an anion vacancy In MgO positrons are also trapped at H 2- sites at low temperatures. The H 2- ions were induced in the crystals by blue light illumination. The formation of PsH states in CaO could not be conclusively established. (orig.)

  9. Enhancement of Hydrogen Storage Behavior of Complex Hydrides via Bimetallic Nanocatalysts Doping

    Directory of Open Access Journals (Sweden)

    Prakash C. Sharma

    2012-10-01

    Full Text Available Pristine complex quaternary hydride (LiBH4/2LiNH2 and its destabilized counterpart (LiBH4/2LiNH2/nanoMgH2 have recently shown promising reversible hydrogen storage capacity under moderate operating conditions. The destabilization of complex hydride via nanocrystalline MgH2 apparently lowers the thermodynamic heat values and thus enhances the reversible hydrogen storage behavior at moderate temperatures. However, the kinetics of these materials is rather low and needs to be improved for on-board vehicular applications. Nanocatalyst additives such as nano Ni, nano Fe, nano Co, nano Mn and nano Cu at low concentrations on the complex hydride host structures have demonstrated a reduction in the decomposition temperature and overall increase in the hydrogen desorption reaction rates. Bi-metallic nanocatalysts such as the combination of nano Fe and nano Ni have shown further pronounced kinetics enhancement in comparison to their individual counterparts. Additionally, the vital advantage of using bi-metallic nanocatalysts is to enable the synergistic effects and characteristics of the two transitional nanometal species on the host hydride matrix for the optimized hydrogen storage behavior.

  10. Corrosion of magnesium and some magnesium alloys in gas cooled reactors

    International Nuclear Information System (INIS)

    Caillat, R.; Darras, R.

    1958-01-01

    The results of corrosion tests on magnesium and some magnesium alloys (Mg-Zr and Mg-Zr-Zn) in moist air (like G1 reactor) and in CO 2 : (like G2, G3, EDF1 reactors) are reported. The maximum temperature for exposure of magnesium to moist air without any risk of corrosion is 350 deg. C. Indeed, the oxidation rate follows a linear law above 350 deg. C although it reaches a constant level and keeps on very low under 350 deg. C. However, as far as corrosion is concerned this temperature limit can be raised up to 500 deg. C if moist air is very slightly charged with fluorinated compounds. Under pressure of CO 2 , these three materials oxidate much more slowly even if 500 deg. C is reached. The higher is the temperature, the higher is the constant level of the weight increase and the quicker is reached this one. However, Mg-Zr alloy behaves quite better than pure magnesium and especially than Mg-Zr-Zn alloy. (author) [fr

  11. Mechanisms of chemical generation of volatile hydrides for trace element determination (IUPAC Technical Report)

    Czech Academy of Sciences Publication Activity Database

    D'Ulivo, A.; Dědina, Jiří; Mester, Z.; Sturgeon, R. E.; Wang, Q.; Welz, B.

    2011-01-01

    Roč. 83, č. 6 (2011), s. 1283-1340 ISSN 0033-4545 Institutional research plan: CEZ:AV0Z40310501 Keywords : borane complexes * chemical generation of volatile hydrides (CHG) * volatile hydrides Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.789, year: 2011

  12. Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Breault, R.W.; Rolfe, J. [Thermo Power Corp., Waltham, MA (United States)

    1998-08-01

    Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermo Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.

  13. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Directory of Open Access Journals (Sweden)

    Morten B. Ley

    2015-09-01

    Full Text Available This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability.

  14. Development of Hydrogen Storage Tank Systems Based on Complex Metal Hydrides

    Science.gov (United States)

    Ley, Morten B.; Meggouh, Mariem; Moury, Romain; Peinecke, Kateryna; Felderhoff, Michael

    2015-01-01

    This review describes recent research in the development of tank systems based on complex metal hydrides for thermolysis and hydrolysis. Commercial applications using complex metal hydrides are limited, especially for thermolysis-based systems where so far only demonstration projects have been performed. Hydrolysis-based systems find their way in space, naval, military and defense applications due to their compatibility with proton exchange membrane (PEM) fuel cells. Tank design, modeling, and development for thermolysis and hydrolysis systems as well as commercial applications of hydrolysis systems are described in more detail in this review. For thermolysis, mostly sodium aluminum hydride containing tanks were developed, and only a few examples with nitrides, ammonia borane and alane. For hydrolysis, sodium borohydride was the preferred material whereas ammonia borane found less popularity. Recycling of the sodium borohydride spent fuel remains an important part for their commercial viability. PMID:28793541

  15. Another Look at the Mechanisms of Hydride Transfer Enzymes with Quantum and Classical Transition Path Sampling.

    Science.gov (United States)

    Dzierlenga, Michael W; Antoniou, Dimitri; Schwartz, Steven D

    2015-04-02

    The mechanisms involved in enzymatic hydride transfer have been studied for years, but questions remain due, in part, to the difficulty of probing the effects of protein motion and hydrogen tunneling. In this study, we use transition path sampling (TPS) with normal mode centroid molecular dynamics (CMD) to calculate the barrier to hydride transfer in yeast alcohol dehydrogenase (YADH) and human heart lactate dehydrogenase (LDH). Calculation of the work applied to the hydride allowed for observation of the change in barrier height upon inclusion of quantum dynamics. Similar calculations were performed using deuterium as the transferring particle in order to approximate kinetic isotope effects (KIEs). The change in barrier height in YADH is indicative of a zero-point energy (ZPE) contribution and is evidence that catalysis occurs via a protein compression that mediates a near-barrierless hydride transfer. Calculation of the KIE using the difference in barrier height between the hydride and deuteride agreed well with experimental results.

  16. PAC and μSr investigations of light interstitial diffusion in intermetallic hydrides

    International Nuclear Information System (INIS)

    Boyer, P.; Baudry, A.

    1988-01-01

    Specific aspects of the Perturbed Angular Correlation (PAC) of gamma rays concerning its application to the study of atomic diffusion in solids are presented. PAC results recently obtained on the 181 Ta probe in several crystalline and amorphous phases of Zr 2 Ni hydrides are briefly summarized. Preliminary μSR results relative to these intermetallic hydrides are presented and compared to the PAC data

  17. Hydridation of Ti-6Al-4V

    International Nuclear Information System (INIS)

    Domizzi, G; Luppo, M.I; Ortiz, M; Vigna, G

    2004-01-01

    The production of Ti pieces or their alloys through powder metallurgy is an economical alternative that replaces the costly methods commonly used. The Ti-6AI-4V alloy is widely used in the aerospace, chemical and medical industries. The use of powder from the alloy instead of using more pure alloyed titanium powders, further simplifies the production process. The presence of V allows the phase β to stabilize at very low temperatures and both alloys alter the Ti-H equilibrium diagram. This work analyzes to what degree these effects influence the obtaining of powders from this alloy from that of hydridation and dehydridation. Although it has slower kinetics, powders can be produced in times similar to those found for grade 2 Ti since the distribution of hydrides in the sample is uniform and the material is fragile enough for concentrations of approximately 0.7 H/Ti (CW)

  18. Complex hydrides for hydrogen storage

    Science.gov (United States)

    Zidan, Ragaiy

    2006-08-22

    A hydrogen storage material and process of forming the material is provided in which complex hydrides are combined under conditions of elevated temperatures and/or elevated temperature and pressure with a titanium metal such as titanium butoxide. The resulting fused product exhibits hydrogen desorption kinetics having a first hydrogen release point which occurs at normal atmospheres and at a temperature between 50.degree. C. and 90.degree. C.

  19. Nanostructured magnesium increases bone cell density

    International Nuclear Information System (INIS)

    Weng, Lucy; Webster, Thomas J

    2012-01-01

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH − which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied. (paper)

  20. U-8 wt %Mo and 7 wt %Mo alloys powder obtained by an hydride-de hydride process; Obtencion de polvo de aleaciones U-8% Mo y U-7% Mo (en peso) mediante hidruracion

    Energy Technology Data Exchange (ETDEWEB)

    Balart, Silvia N; Bruzzoni, Pablo; Granovsky, Marta S; Gribaudo, Luis M.J.; Hermida, Jorge D; Ovejero, Jose; Rubiolo, Gerardo H; Vicente, Eduardo E [Comision Nacional de Energia Atomica, General San Martin (Argentina). Dept. de Materiales

    2000-07-01

    Uranium-molybdenum alloys are been tested as a component in high-density LEU dispersion fuels with very good performances. These alloys need to be transformed to powder due to the manufacturing requirements of the fuels. One method to convert ductile alloys into powder is the hydride-de hydride process, which takes advantage of the ability of the U-{alpha} phase to transform to UH{sub 3}: a brittle and relatively low-density compound. U-Mo alloys around 7 and 8 wt % Mo were melted and heat treated at different temperature ranges in order to partially convert {gamma} -phase to {alpha} -phase. Subsequent hydriding transforms this {alpha} -phase to UH{sub 3}. The volume change associated to the hydride formation embrittled the material which ends up in a powdered alloy. Results of the optical metallography, scanning electron microscopy, X-ray diffraction during different steps of the process are shown. (author)

  1. Effects of H-H interactions on the heat of H absorption by β and delta Zr hydrides

    International Nuclear Information System (INIS)

    Ohta, Yutaka; Mabuchi, Mahito; Naito, Shizuo; Hashino, Tomoyasu

    1987-01-01

    The heat of H absorption by β and delta Zr hydrides has been measured by isoperibol calorimetry over the range of H concentration 0.1 - 1.6 H/Zr at temperatures 873-1273 K. In the β hydride the heat per H atom (differential heat) increases and then decreases as the H concentration increases. In the delta hydride only a decrease at large H concentrations is clearly observed. The increase in the β hydride is related by self-consistent calculations to a pair indirect interaction between H atoms; the decreases in the β and delta hydrides are due to a pair direct interaction which is of the form of a screened Coulomb potential. The differential heat is estimated from the pair indirect and direct interactions by the use of Monte Carlo simulations and compared with the measured differential heat. (author)

  2. Quantification and characterization of zirconium hydrides in Zircaloy-4 by the image analysis method

    International Nuclear Information System (INIS)

    Zhang, J.H.; Groos, M.; Bredel, T.; Trotabas, M.; Combette, P.

    1992-01-01

    The image analysis method is used to determine the hydrogen content in specimens of Zircaloy-4. Two parameters, surface density of hydride, S v , and degree of orientation, Ω, are defined to represent separately the hydrogen content and the orientation of hydrides. By analysing the stress-relieved Zircaloy-4 specimens with known hydrogen content from 100 to 1000 ppm, a relationship is established between the parameter S v and the hydrogen content when the magnifications of the optical microscope are 1000 and 250. The degree of orientation for the hydride in the stress-relieved Zircaloy-4 cladding is about 0.3. (orig.)

  3. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  4. First principles characterisation of brittle transgranular fracture of titanium hydrides

    International Nuclear Information System (INIS)

    Olsson, Pär A.T.; Mrovec, Matous; Kroon, Martin

    2016-01-01

    In this work we have studied transgranular cleavage and the fracture toughness of titanium hydrides by means of quantum mechanical calculations based on density functional theory. The calculations show that the surface energy decreases and the unstable stacking fault energy increases with increasing hydrogen content. This is consistent with experimental findings of brittle behaviour of titanium hydrides at low temperatures. Based on Griffith-Irwin theory we estimate the fracture toughness of the hydrides to be of the order of 1 MPa⋅m"1"/"2, which concurs well with experimental data. To investigate the cleavage energetics, we analyse the decohesion at various crystallographic planes and determine the traction-separation laws based on the Rose's extended universal binding energy relation. The calculations predict that the peak stresses do not depend on the hydrogen content of the phases, but it is rather dependent on the crystallographic cleavage direction. However, it is found that the work of fracture decreases with increasing hydrogen content, which is an indication of hydrogen induced bond weakening in the material.

  5. Hydrogen Storage using Metal Hydrides in a Stationary Cogeneration System

    International Nuclear Information System (INIS)

    Botzung, Maxime; Chaudourne, Serge; Perret, Christian; Latroche, Michel; Percheron-Guegan, Annick; Marty Philippe

    2006-01-01

    In the frame of the development of a hydrogen production and storage unit to supply a 40 kW stationary fuel cell, a metal hydride storage tank was chosen according to its reliability and high energetic efficiency. The study of AB5 compounds led to the development of a composition adapted to the project needs. The absorption/desorption pressures of the hydride at 75 C (2 / 1.85 bar) are the most adapted to the specifications. The reversible storage capacity (0.95 %wt) has been optimized to our work conditions and chemical kinetics is fast. The design of the Combined Heat and Power CHP system requires 5 kg hydrogen storage but in a first phase, only a 0.1 kg prototype has been realised and tested. Rectangular design has been chosen to obtain good compactness with an integrated plate fin type heat exchanger designed to reach high absorption/desorption rates. In this paper, heat and mass transfer characteristics of the Metal Hydride tank (MH tank) during absorption/desorption cycles are given. (authors)

  6. Investigation of the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4

    International Nuclear Information System (INIS)

    Soares, M.I.

    1981-12-01

    To investigate the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4 tubes, deformation tests under pressure of samples hydrided in autoclave and of samples containing iodine were carried out, in order to simulate the fission product. The same tests were carried out in samples without hydride and iodine contents that were used as reference samples in the temperature range of 650 0 C-950 0 C. The hydrided samples and the samples containing iodine tested at 650 0 C and 750 0 C showed a higher ductility than the samples of reference. The hydrided samples tested at 850 0 C and 950 0 C showed a higher embritlement than the samples of reference and than the samples containing iodine tested at the same temperatures. A mechanical test has been developed to investigate the effect of hydride and iodine on the mechanical behaviour of the zircaloy-4 tubes. The mechanical test were carried out at room temperature. At room temperature the hydrition decreased the ductility of zircaloy-4. At room temperature the sample containing iodine showed a higher ductility than the sample without iodine. The combined action of hydrogen and iodine at room temperature enhanced the embrittlment of the samples zircaloy-4. (Author) [pt

  7. A quantitative phase field model for hydride precipitation in zirconium alloys: Part I. Development of quantitative free energy functional

    International Nuclear Information System (INIS)

    Shi, San-Qiang; Xiao, Zhihua

    2015-01-01

    A temperature dependent, quantitative free energy functional was developed for the modeling of hydride precipitation in zirconium alloys within a phase field scheme. The model takes into account crystallographic variants of hydrides, interfacial energy between hydride and matrix, interfacial energy between hydrides, elastoplastic hydride precipitation and interaction with externally applied stress. The model is fully quantitative in real time and real length scale, and simulation results were compared with limited experimental data available in the literature with a reasonable agreement. The work calls for experimental and/or theoretical investigations of some of the key material properties that are not yet available in the literature

  8. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    International Nuclear Information System (INIS)

    Gutkin, L.; Scarth, D.A.

    2014-01-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  9. Probabilistic modeling of material resistance to crack initiation due to hydrided region overloads in CANDU Zr-2.5%Nb pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gutkin, L.; Scarth, D.A. [Kinectrics Inc., Toronto, ON (Canada)

    2014-07-01

    Zr-2.5%Nb pressure tubes in CANDU nuclear reactors are susceptible to hydride-assisted cracking at the locations of stress concentration, such as in-service flaws. Probabilistic methodology is being developed to evaluate such flaws for crack initiation due to hydrided region overloads, which occur when the applied stress acting on a flaw with an existing hydrided region at its tip exceeds the stress at which the hydrided region is formed. As part of this development, probabilistic modeling of pressure tube material resistance to overload crack initiation has been performed on the basis of a set of test data specifically designed to study the effects of non-ratcheting hydride formation conditions and load reduction prior to hydride formation. In the modeling framework, the overload resistance is represented as a power-law function of the material resistance to initiation of delayed hydride cracking under constant loading, where both the overload crack initiation coefficient and the overload crack initiation exponent vary with the flaw geometry. In addition, the overload crack initiation coefficient varies with the extent of load reduction prior to hydride formation as well as the number of non-ratcheting hydride formation thermal cycles. (author)

  10. Magnesium-DNA interactions and the possible relation of magnesium to carcinogenesis. Irradiation and free radicals.

    Science.gov (United States)

    Anastassopoulou, J; Theophanides, T

    2002-04-01

    Magnesium deficiency causes renal complications. The appearance of several diseases is related to its depletion in the human body. In radiotherapy, as well as in chemotherapy, especially in treatment of cancers with cis-platinum, hypomagnesaemia is observed. The site effects of chemotherapy that are due to hypomagnesaemia are decreased using Mg supplements. The role of magnesium in DNA stabilization is concentration dependent. At high concentrations there is an accumulation of Mg binding, which induces conformational changes leading to Z-DNA, while at low concentration there is deficiency and destabilization of DNA. The biological and clinical consequences of abnormal concentrations are DNA cleavage leading to diseases and cancer. Carcinogenesis and cell growth are also magnesium-ion concentration dependent. Several reports point out that the interaction of magnesium in the presence of other metal ions showed that there is synergism with Li and Mn, but there is magnesium antagonism in DNA binding with the essential metal ions in the order: Zn>Mg>Ca. In the case of toxic metals such as Cd, Ga and Ni there is also antagonism for DNA binding. It was found from radiolysis of deaerated aqueous solutions of the nucleoside 5'-guanosine monophosphate (5'-GMP) in the presence as well as in the absence of magnesium ions that, although the addition of hydroxyl radicals (*OH) has been increased by 2-fold, the opening of the imidazole ring of the guanine base was prevented. This effect was due to the binding of Mg2+ ions to N7 site of the molecule by stabilizing the five-member ring imitating cis-platinum. It was also observed using Fourier Transform Infrared spectroscopy, Raman spectroscopy and Fast Atom Bombardment mass spectrometry that *OH radicals subtract H atoms from the C1', C4' and C5' sites of the nucleotide. Irradiation of 5'-GMP in the presence of oxygen (2.5 x 10(-4) M) shows that magnesium is released from the complex. There is spectroscopic evidence that

  11. Synthesis of intermetallic hydrides of Zr-Ni system in the burning regime

    Energy Technology Data Exchange (ETDEWEB)

    Akopyan, A.G.; Dolukhanyan, S.K.; Karapetyan, A.K.; Merzhanov, A.G.

    1983-06-01

    Conditions for production of intermetallides in the Zr-Ni system and their hydrides in the burning regime are studied. Burning regularities of Zr/sub 2/Ni and ZrNi intermetallides in hydrogen are studied, the burning mechanism is found. It is shown that burning proceeds at abnormally low temperatures. Optimum synthesis conditions for Zr/sub 2/NiH/sub 5/ and ZrNiH/sub 3/ hydrides are determined.

  12. Porous bioresorbable magnesium as bone substitute

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.E.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Mabuchi, M. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan)

    2003-07-01

    Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X-ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35% and/or with the small pore size of about 70 {mu}m are close to those of human cancellous bones. (orig.)

  13. Small for Gestational Age and Magnesium: Intrauterine magnesium deficiency may induce metabolic syndrome in later life

    Directory of Open Access Journals (Sweden)

    Junji Takaya

    2015-12-01

    Full Text Available Magnesium deficiency during pregnancy as a result of insufficient or low intake of magnesium is common in developing and developed countries. Previous reports have shown that intracellular magnesium of cord blood platelets is lower among small for gestational age (SGA groups than that of appropriate for gestational age (AGA groups, suggesting that intrauterine magnesium deficiency may result in SGA. Additionally, the risk of adult-onset diseases such as insulin resistance syndrome is greater among children whose mothers were malnourished during pregnancy, and who consequently had a low birth weight. In a number of animal models, poor nutrition during pregnancy leads to offspring that exhibit pathophysiological changes similar to human diseases. The offspring of pregnant rats fed a magensium restricted diet have developed hypermethylation in the hepatic 11β-hydroxysteroid dehydrogenase-2 promoter. These findings indicate that maternal magnesium deficiencies during pregnancy influence regulation of non-imprinted genes by altering the epigenetic regulation of gene expression, thereby inducing different metabolic phenotypes. Magnesium deficiency during pregnancy may be responsible for not only maternal and fetal nutritional problems, but also lifelong consequences that affect the offspring throughout their life. Epidemiological, clinical, and basic research on the effects of magnesium deficiency now indicates underlying mechanisms, especially epigenetic processes.

  14. Magnesium in Prevention and Therapy

    Science.gov (United States)

    Gröber, Uwe; Schmidt, Joachim; Kisters, Klaus

    2015-01-01

    Magnesium is the fourth most abundant mineral in the body. It has been recognized as a cofactor for more than 300 enzymatic reactions, where it is crucial for adenosine triphosphate (ATP) metabolism. Magnesium is required for DNA and RNA synthesis, reproduction, and protein synthesis. Moreover, magnesium is essential for the regulation of muscular contraction, blood pressure, insulin metabolism, cardiac excitability, vasomotor tone, nerve transmission and neuromuscular conduction. Imbalances in magnesium status—primarily hypomagnesemia as it is seen more common than hypermagnesemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Based on magnesium’s many functions within the human body, it plays an important role in prevention and treatment of many diseases. Low levels of magnesium have been associated with a number of chronic diseases, such as Alzheimer’s disease, insulin resistance and type-2 diabetes mellitus, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, and attention deficit hyperactivity disorder (ADHD). PMID:26404370

  15. Zirconium-hydride solid zero power reactor and its application research

    International Nuclear Information System (INIS)

    Lin Shenghuo; Luo Zhanglin; Su Zhuting

    1994-10-01

    The Zirconium Hydride Solid Zero Power Reactor built at China Institute of Atomic Energy is introduced. In the reactor Zirconium-hydride is used as moderator, plexiglass as reflector and U 3 O 8 with enrichment of 20% as the fuel, Since its initial criticality, the physical characteristics and safety features have been measured with the result showing that the reactor has sound stability and high sensitivity, etc. It has been successfully used for the personnel training and for the testing of reactor control instruments and experiment devices. It also presents the special advantage for the pre-research of some applications

  16. Thermophysical properties of solid lithium hydride and its isotopic modifications

    International Nuclear Information System (INIS)

    Mel'nikova, T.N.

    1981-01-01

    The theory of the anharmonic lattice is used to calculate the thermophysical properties (thermal expansivity, lattice constant, compressibility, and elastic moduli) of all the isotopic modifications of solid lithium hydride sup(6,7)Li(H,D,T) at temperatures up to the melting point. A general analysis of isotopic effects is carried out; in particular the reverse isotopic effect in the lattice constant is explained and the isotopic effect in melting is discussed. The results of the calculations agree with available experimental data and can be used for those isotopic modifications of lithium hydride for which there exist no experimental results. (author)

  17. Corrosion of Magnesium in Multimaterial System

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V.; Agnew, Sean

    2017-08-16

    The TMS Magnesium Committee has been actively involved in presenting cutting-edge research and development and the latest trends related to magnesium and its alloys to industry and academia. Topics including magnesium alloy development, applications, mechanism of deformation and corrosion, thermomechanical processing, modelling, etc. have been captured year after year through the Magnesium Technology symposium and conference proceedings at TMS and through special topics in JOM. Every year, based on the unanimous endorsement from the industry and academia, a topic is selected to address the latest developments within this subject in JOM. In continuation with last year’s coverage of Advances and Achievements in In-Situ Analysis of Corrosions and Structure–Property Relationship in Mg Alloys,[1] this year’s topic focuses on the Corrosion of Magnesium in Multimaterial Systems. Magnesium, the lightest of all the structural materials, has garnered much interest in the transportation, electronics packaging, defense equipments and industries alike and are more commonly being incorporated in multimaterial design concepts.[2-4] However, the application of the same is limited due to its highly corrosive nature, and understanding and mitigating the corrosion of magnesium has been a major research challenge.

  18. Z-H Bond Activation in (Di)hydrogen Bonding as a Way to Proton/Hydride Transfer and H2 Evolution.

    Science.gov (United States)

    Belkova, Natalia V; Filippov, Oleg A; Shubina, Elena S

    2018-02-01

    The ability of neutral transition-metal hydrides to serve as a source of hydride ion H - or proton H + is well appreciated. The hydride ligands possessing a partly negative charge are proton accepting sites, forming a dihydrogen bond, M-H δ- ⋅⋅⋅ δ+ HX (M=transition metal or metalloid). On the other hand, some metal hydrides are able to serve as a proton source and give hydrogen bond of M-H δ+ ⋅⋅⋅X type (X=organic base). In this paper we analyse recent works on transition-metal and boron hydrides showing i) how formation of an intermolecular complex between the reactants changes the Z-H (M-H and X-H) bond polarity and ii) what is the implication of such activation in the mechanisms of hydrides reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of hydrides on the ductile-brittle transition in stress-relieved, recrystallized and beta-treated zircaloy-4

    International Nuclear Information System (INIS)

    Pelchat, J.; Barcelo, F.

    1991-01-01

    This paper is concerned with the influence of δ-hydrides on the mechanical properties of three heat treated cold-rolled Zircaloy-4 sheets (stress-relieved, recrystallized and β treated), tested at room temperature and 350 0 C. Smooth tensile specimens of two thicknesses: 0.5 and 3.1 mm, containing different hydride volume fractions, up to 18% (about 1400 ppm H), have been tested. Metallographic and fractographic analysis were carried out in order to examine the fracture morphology near and on the fracture surface, and to determine the evolution of the fracture mechanism of hydrides as a function of temperature, hydride orientation and volume fraction

  20. The reference range of serum, plasma and erythrocyte magnesium

    Directory of Open Access Journals (Sweden)

    Suzanna Immanuel

    2006-12-01

    Full Text Available The interest in the clinical importance of serum magnesium level has just recently begun with the analysis and findings of abnormal magnesium level in cardiovascular, metabolic and neuromuscular disorder. Although the serum level does not reflect the body magnesium level, but currently, only serum magnesium determination is widely used. Erythrocyte magnesium is considered more sensitive than serum magnesium as it reflects intracellular magnesium status. According to NCCLS (National Committee for Clinical Laboratory Standards every laboratory is recommended to have its own reference range for the tests it performs, including magnesium determination. The reference range obtained is appropriate for the population and affected by the method and technique. This study aimed to find the reference range of serum and plasma magnesium and also intracellular magnesium i.e. erythrocyte magnesium by direct method, and compare the results of serum and plasma magnesium. Blood was taken from 114-blood donor from Unit Transfusi Darah Daerah (UTDD Budhyarto Palang Merah Indonesia (PMI DKI Jakarta, consisted of 57 male and 57 female, aged 17 – 65 years, clinically healthy according to PMI donor criteria. Blood was taken from blood set, collected into 4 ml vacuum tube without anticoagulant for serum magnesium determination and 3 ml vacuum tube with lithium heparin for determination of erythrocyte and plasma magnesium Determination of magnesium level was performed with clinical chemistry auto analyzer Hitachi 912 by Xylidil Blue method colorimetrically. This study showed no significant difference between serum and heparinized plasma extra cellular magnesium. The reference range for serum or plasma magnesium was 1.30 – 2.00 mEq/L and for erythrocyte magnesium was 4.46 - 7.10 mEq/L. (Med J Indones 2006; 15:229-35Keywords: Reference range, extracellular magnesium, intracellular magnesium

  1. Magnesium Tube Hydroforming

    International Nuclear Information System (INIS)

    Liewald, M.; Pop, R.; Wagner, S.

    2007-01-01

    Magnesium alloys can be considered as alternative materials towards achieving light weight structures with high material stiffness. The formability of two magnesium alloys, viz. AZ31 and ZM21 has been experimentally tested using the IHP forming process. A new die set up for hot IHP forming has been designed and the process experimentally investigated for temperatures up to 400 deg. C. Both alloys exhibit an increase in formability with increasing forming temperature. The effect of annealing time on materials forming properties shows a fine grained structure for sufficient annealing times as well as deterioration with a large increase at the same time. The IHP process has also been used to demonstrate practicability and feasibility for real parts from manufacture a technology demonstrator part using the magnesium alloy ZM21

  2. In-situ study of hydriding kinetics in Pd-based thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Delmelle, Renaud; Proost, Joris [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Div. of Materials and Process Engineering

    2010-07-01

    The hydriding kinetics of Pd thin films has been investigated in detail. The key experimental technique used in this work consists of a high resolution curvature measurement setup, which continuously monitors the reflections of multiple laser beams coming off a cantilevered sample. After mounting the sample inside a vacuum chamber, a H-containing gas mixture is introduced to instantaneously generate a given hydrogen partial pressure (p{sub H2}) inside the chamber. The resulting interaction of H with the Pd layer then leads to a volume expansion of the thin film system. This induces in turn changes in the sample curvature as a result of internal stresses developing in the Pd film during a hydriding cycle. Based on such curvature date obtained in-situ at different p{sub H2}, a two-step model for the kinetics of Pd-hydride formation has been proposed and expressions for the hydrogen adsorption and absorption velocities have been derived. The rate-limiting steps have been identified by studying the p{sub H2}-dependence of these velocities. Furthermore, from our in-situ experimental data, relevant kinetic parameters have been calculated. The effect of dry air exposure of the Pd films on the hydriding kinetics has been considered as well. (orig.)

  3. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  4. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  5. Magnesium deficiency and increased inflammation: current perspectives

    Directory of Open Access Journals (Sweden)

    Nielsen FH

    2018-01-01

    Full Text Available Forrest H Nielsen Research Nutritionist Consultant, Grand Forks, ND, USA Abstract: Animal studies have shown that magnesium deficiency induces an inflammatory response that results in leukocyte and macrophage activation, release of inflammatory cytokines and acute-phase proteins, and excessive production of free radicals. Animal and in vitro studies indicate that the primary mechanism through which magnesium deficiency has this effect is through increasing cellular Ca2+, which is the signal that results in the priming of cells to give the inflammatory response. Primary pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL-1; the messenger cytokine IL-6; cytokine responders E-selectin, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1; and acute-phase reactants C-reactive protein and fibrinogen have been determined to associate magnesium deficiency with chronic low-grade inflammation (inflammatory stress. When magnesium dietary intake, supplementation, and/or serum concentration suggest/s the presence of magnesium deficiency, it often is associated with low-grade inflammation and/or with pathological conditions for which inflammatory stress is considered a risk factor. When magnesium intake, supplementation, and/or serum concentration suggest/s an adequate status, magnesium generally has not been found to significantly affect markers of chronic low-grade inflammation or chronic disease. The consistency of these findings can be modified by other nutritional and metabolic factors that affect inflammatory and oxidative stress. In spite of this, findings to date provide convincing evidence that magnesium deficiency is a significant contributor to chronic low-grade inflammation that is a risk factor for a variety of pathological conditions such as cardiovascular disease, hypertension, and diabetes. Because magnesium deficiency commonly occurs in countries where foods rich in magnesium are not consumed in

  6. Performance study of a hydrogen powered metal hydride actuator

    International Nuclear Information System (INIS)

    Bhuiya, Md Mainul Hossain; Kim, Kwang J

    2016-01-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi 5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C–50 °C. Stress–strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress–strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future. (paper)

  7. Hydrogen storage material and process using graphite additive with metal-doped complex hydrides

    Science.gov (United States)

    Zidan, Ragaiy [Aiken, SC; Ritter, James A [Lexington, SC; Ebner, Armin D [Lexington, SC; Wang, Jun [Columbia, SC; Holland, Charles E [Cayce, SC

    2008-06-10

    A hydrogen storage material having improved hydrogen absorbtion and desorption kinetics is provided by adding graphite to a complex hydride such as a metal-doped alanate, i.e., NaAlH.sub.4. The incorporation of graphite into the complex hydride significantly enhances the rate of hydrogen absorbtion and desorption and lowers the desorption temperature needed to release stored hydrogen.

  8. Hydrides and Borohydrides of Light Elements

    Science.gov (United States)

    1947-12-04

    Troy, Attn: Inst. of Naval Science (30) Solar Aircraft Cu,, San Diego, Attn: Dr. M. A. Williamson " (31) INSMAT. N. J. for Itandard Oil Co., Esso Lab...with the other# iLD F.Re p. 8 ilt -ms" #61ggSotod that.. ir addition to thc impurity in the t~y..thr, an impurkty, prosumably aluminum hydride, in

  9. Method for preparation of uranium hydride

    International Nuclear Information System (INIS)

    Gorski, M.S.; Goncalves, Miriam; Mirage, A.; Lima, W. de.

    1985-01-01

    A method for preparation of Uranium Hydride starting from Hidrogen and Uranium is described. In the temperature range of 250 0 up to 350 0 C, and pressures above 10torr, Hydrogen reacts smoothly with Uranium turnings forming a fine black or dark gray powder (UH 3 ). Samples containing a significant amount of oxides show a delay before the reaction begging. (Author) [pt

  10. A NOVEL METHOD OF THE HYDRIDE SEPARATION FOR THE DETERMINATION OF ARSENIC AND ANTIMONY BY AAS

    Directory of Open Access Journals (Sweden)

    Ganden Supriyanto

    2010-06-01

    Full Text Available A novel method is proposed for the hydride separation when determinining of arsenic and antimony by AAS. A chromatomembrane cell was used as preconcentration-, extraction- and separation-manifold instead of the U-tube phase separator, which is normally fitted in continuous flow vapour systems generating conventionaly the hydrides. The absorbances of the hydrides produced were measured by an atomic absorption spectrophotometer at 193.7 nm and 217.6 nm. Under optimized analytical conditions, the calibration plot for arsenic was linear from 50 to 500 ng.mL-1 (r2 = 0.9982. The precision for three subsequent measurements of 500 ng.mL-1 arsenic gave rise to a relative standard deviation of 0.4%. The detection limit was 15 ng.mL-1, which is much lower compared with that of the conventional hydride system (2000 ng.mL-1. A similar result was observed in case of antimony: the detection limit was 8 ng.mL-1 when the proposed method was applied. Consequently, the sensitivity of the novel method surpasses systems with conventional hydride generation, i.e. the precision and the acuracy increase whereas the standard deviation and the detection limit decrease. The proposed method was applied in pharmacheutial analysis and the certified As-content of a commercial product was very sufficiently confirmed.   Keywords: Chromatomembrane Cell, Hydride separation, Arsenic detection, Antimony detection, AAS

  11. Obtention of the constitutive equation of hydride blisters in fuel cladding from nanoindentation tests

    Energy Technology Data Exchange (ETDEWEB)

    Martin Rengel, M.A., E-mail: mamartin.rengel@upm.es [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/ Profesor Aranguren, 3, E-28040 Madrid (Spain); Gomez, F.J., E-mail: javier.gomez@amsimulation.com [Advanced Material Simulation, AMS, Bilbao (Spain); Rico, A., E-mail: alvaro.rico@urjc.es [DIMME, Universidad Rey Juan Carlos, Mostoles (Spain); Ruiz-Hervias, J. [E.T.S.I. Caminos, Canales y Puertos, Universidad Politécnica de Madrid, c/ Profesor Aranguren, 3, E-28040 Madrid (Spain); Rodriguez, J. [DIMME, Universidad Rey Juan Carlos, Mostoles (Spain)

    2017-04-15

    It is well known that the presence of hydrides in nuclear fuel cladding may reduce its mechanical and fracture properties. This situation may be worsened as a consequence of the formation of hydride blisters. These blisters are zones with an extremely high hydrogen concentration and they are usually associated to the oxide spalling which may occur at the outer surface of the cladding. In this work, a method which allows us to reproduce, in a reliable way, hydride blisters in the laboratory has been devised. Depth-sensing indentation tests with a spherical indenter were conducted on a hydride blister produced in the laboratory with the aim of measuring its mechanical behaviour. The plastic stress-strain curve of the hydride blister was calculated for first time by combining depth-sensing indentation tests results with an iterative algorithm using finite element simulations. The algorithm employed reduces, in each iteration, the differences between the numerical and the experimental results by modifying the stress-strain curve. In this way, an almost perfect adjustment of the experimental data was achieved after several iterations. The calculation of the constitutive equation of the blister from nanoindentation tests, may involve a lack of uniqueness. To evaluate it, a method based on the optimization of parameters of analytical equations has been proposed in this paper. An estimation of the error which involves this method is also provided.

  12. 21 CFR 582.5431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  13. 21 CFR 582.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance is...

  14. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  15. Hydriding and structural characteristics of thermally cycled and cold-worked V-0.5 at.%C alloy

    International Nuclear Information System (INIS)

    Chandra, Dhanesh; Sharma, Archana; Chellappa, Raja; Cathey, William N.; Lynch, Franklin E.; Bowman, Robert C.; Wermer, Joseph R.; Paglieri, Stephen N.

    2008-01-01

    High pressure hydrides of V 0.995 C 0.005 were thermally cycled between β 2 - and γ-phases hydrides for potential use in cryocoolers/heat pumps for space applications. The effect of addition of carbon to vanadium, on the plateau enthalpies of the high pressure β 2 + γ region is minimal. This is in contrast to the calculated plateau enthalpies for low pressure (α + β 1 ) mixed phases which showed a noticeable lowering of the values. Thermal cycling between β 2 -and γ-phase hydrides increased the absorption pressures but desorption pressure did not change significantly and the free energy loss due to hysteresis also increased. Hydriding of the alloy with prior cold-work increased the pressure hysteresis significantly and lowered the hydrogen capacity. In contrast to the alloy without any prior straining (as-cast), desorption pressure of the alloy with prior cold-work also decreased significantly. Microstrains, 2 > 1/2 , in the β 2 -phase lattice of the thermally cycled hydrides decreased after 778 cycles and the domain sizes increased. However, in the γ-phase, both the microstrains and the domain sizes decreased after thermal cycling indicating no particle size effect. The dehydrogenated α-phase after 778 thermal cycles also showed residual microstrains in the lattice, similar to those observed in intermetallic hydrides. The effect of thermal cycling (up to 4000 cycles between β 2 - and γ-phases) and cold working on absorption/desorption pressures, hydrogen storage capacity, microstrains, long-range strains, and domain sizes of β 2 - and γ-phase hydrides of V 0.995 C 0.005 alloys are presented

  16. Imparting passivity to vapor deposited magnesium alloys

    Science.gov (United States)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  17. Separation of magnesium from magnesium chloride and zirconium and/or hafnium subchlorides in the production of zirconium and/or hafnium sponge metal

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Adams, R.J.; Kearl, S.R.

    1992-01-01

    This patent describes the producing of a refractory metal wherein a sponge refractory metal is produced as an intermediate product by the use of magnesium with the incidental production of magnesium chloride, and wherein residual magnesium is separated from the magnesium chloride and from refractory metal to a vacuum distillation step which fractionally distills the magnesium, the magnesium chloride, and the metal sub-chlorides; the steps of: recovering fractionally distilled vapors of magnesium chloride and metal sub-chlorides from a sponge refractory metal; separately condensing the vapors as separately recovered; and recycling the separately recovered magnesium at a purity of at least about 96%

  18. Internal hydriding in irradiated defected Zircaloy fuel rods: A review (LWBR Development Program)

    International Nuclear Information System (INIS)

    Clayton, J.C.

    1987-10-01

    Although not a problem in recent commercial power reactors, including the Shippingport Light Water Breeder Reactor, internal hydriding of Zircaloy cladding was a persistent cause of gross cladding failures during the 1960s. It occurred in the fuel rods of water-cooled nuclear power reactors that had a small cladding defect. This report summarizes the experimental findings, causes, mechanisms, and methods of minimizing internal hydriding in defected Zircaloy-clad fuel rods. Irradiation test data on the different types of defected fuel rods, intentionally fabricated defected and in-pile operationally defected rods, are compared. Significant factors affecting internal hydriding in defected Zircaloy-clad fuel rods (defect hole size, internal and external sources of hydrogen, Zircaloy cladding surface properties, nickel alloy contamination of Zircaloy, the effect of heat flux and fluence) are discussed. Pertinent in-pile and out-of-pile test results from Bettis and other laboratories are used as a data base in constructing a qualitative model which explains hydrogen generation and distribution in Zircaloy cladding of defected water-cooled reactor fuel rods. Techniques for minimizing internal hydride failures in Zircaloy-clad fuel rods are evaluated

  19. 40 CFR Appendix V to Part 265 - Examples of Potentially Incompatible Waste

    Science.gov (United States)

    2010-07-01

    ... Calcium Lithium Magnesium Potassium Sodium Zinc powder Other reactive metals and metal hydrides Potential... concentrated waste in Groups 1-A or 1-B Water Calcium Lithium Metal hydrides Potassium SO2Cl2, SOCl2, PCl3...: Generation of toxic hydrogen cyanide or hydrogen sulfide gas. Group 6-A Group 6-B Chlorates Acetic acid and...

  20. Assessment of serum magnesium levels and its outcome in neonates of eclamptic mothers treated with low-dose magnesium sulfate regimen

    Science.gov (United States)

    Das, Monalisa; Chaudhuri, Patralekha Ray; Mondal, Badal C.; Mitra, Sukumar; Bandyopadhyay, Debasmita; Pramanik, Sushobhan

    2015-01-01

    Objectives: Magnesium historically has been used for treatment and/or prevention of eclampsia. Considering the low body mass index of Indian women, a low-dose magnesium sulfate regime has been introduced by some authors. Increased blood levels of magnesium in neonates is associated with increased still birth, early neonatal death, birth asphyxia, bradycardia, hypotonia, gastrointestinal hypomotility. The objective of this study was to assess safety of low-dose magnesium sulfate regimen in neonates of eclamptic mothers treated with this regimen. Materials and Methods: This was a cross-sectional observational study of 100 eclampsia patients and their neonates. Loading dose and maintenance doses of magnesium sulfate were administered to patients by combination of intravenous and intramuscular routes. Maternal serum and cord blood magnesium levels were estimated. Neonatal outcome was assessed. Results: Bradycardia was observed in 18 (19.15%) of the neonates, 16 (17.02%) of the neonates were diagnosed with hypotonia. Pearson Correlation Coefficient showed Apgar scores decreased with increase in cord blood magnesium levels. Unpaired t-test showed lower Apgar scores with increasing dose of magnesium sulfate. The Chi-square/Fisher's exact test showed significant increase in hypotonia, birth asphyxia, intubation in delivery room, Neonatal Intensive Care Unit (NICU) care requirement, with increasing dose of magnesium sulfate. (P ≤ 0.05). Conclusion: Several neonatal complications are significantly related to increasing serum magnesium levels. Overall, the low-dose magnesium sulfate regimen was safe in the management of eclamptic mothers, without toxicity to their neonates. PMID:26600638

  1. Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-06-25

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  2. Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Proefrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  3. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  4. Azimuthally anisotropic hydride lens structures in Zircaloy 4 nuclear fuel cladding: High-resolution neutron radiography imaging and BISON finite element analysis

    Science.gov (United States)

    Lin, Jun-Li; Zhong, Weicheng; Bilheux, Hassina Z.; Heuser, Brent J.

    2017-12-01

    High-resolution neutron radiography has been used to image bulk circumferential hydride lens particles in unirradiated Zircaloy 4 tubing cross section specimens. Zircaloy 4 is a common light water nuclear reactor (LWR) fuel cladding; hydrogen pickup, hydride formation, and the concomitant effect on the mechanical response are important for LWR applications. Ring cross section specimens with three hydrogen concentrations (460, 950, and 2830 parts per million by weight) and an as-received reference specimen were imaged. Azimuthally anisotropic hydride lens particles were observed at 950 and 2830 wppm. The BISON finite element analysis nuclear fuel performance code was used to model the system elastic response induced by hydride volumetric dilatation. The compressive hoop stress within the lens structure becomes azimuthally anisotropic at high hydrogen concentrations or high hydride phase fraction. This compressive stress anisotropy matches the observed lens anisotropy, implicating the effect of stress on hydride formation as the cause of the observed lens azimuthal asymmetry. The cause and effect relation between compressive stress and hydride lens anisotropy represents an indirect validation of a key BISON output, the evolved hoop stress associated with hydride formation.

  5. Complex Metal Hydrides for Hydrogen, Thermal and Electrochemical Energy Storage

    DEFF Research Database (Denmark)

    Moller, Kasper T.; Sheppard, Drew; Ravnsbaek, Dorthe B.

    2017-01-01

    Hydrogen has a very diverse chemistry and reacts with most other elements to form compounds, which have fascinating structures, compositions and properties. Complex metal hydrides are a rapidly expanding class of materials, approaching multi-functionality, in particular within the energy storage...... inspiration to solve the great challenge of our time: efficient conversion and large-scale storage of renewable energy....... field. This review illustrates that complex metal hydrides may store hydrogen in the solid state, act as novel battery materials, both as electrolytes and electrode materials, or store solar heat in a more efficient manner as compared to traditional heat storage materials. Furthermore, it is highlighted...

  6. The influence of stress state on the reorientation of hydrides in a zirconium alloy

    International Nuclear Information System (INIS)

    Cinbiz, Mahmut N.; Koss, Donald A.; Motta, Arthur T.

    2016-01-01

    Hydride reorientation can occur in spent nuclear fuel cladding when subjected to a tensile hoop stress above a threshold value during cooling. Because in these circumstances the cladding is under a multiaxial stress state, the effect of stress biaxiality on the threshold stress for hydride reorientation is investigated using hydrided CWSR Zircaloy-4 sheet specimens containing ∼180 wt ppm of hydrogen and subjected to a two-cycle thermo-mechanical treatment. The study is based on especially designed specimens within which the stress biaxiality ratios range from uniaxial (σ_2/σ_1 = 0) to “near-equibiaxial” tension (σ_2/σ_1 = 0.8). The threshold stress is determined by mapping finite element calculations of the principal stresses and of the stress biaxiality ratio onto the hydride microstructure obtained after the thermo-mechanical treatment. The results show that the threshold stress (maximum principal stress) decreases from 155 to 75 MPa as the stress biaxiality increases from uniaxial to “near-equibiaxial” tension.

  7. Magnesium balances and 28Mg studies in man

    International Nuclear Information System (INIS)

    Spencer, H.; Schwartz, R.; Osis, D.

    1988-01-01

    The intestinal absorption of magnesium was determined under strictly controlled dietary conditions in patients with normal renal function and also in patients with chronic renal failure. The average net absorption of magnesium of patients with normal renal function, expressed as percent of the magnesium intake, was 48.5%, while that of patients with chronic renal failure was significantly lower, 17%. Increasing the calcium intake from a low calcium intake of 200 mg/day to different higher intake levels up to 2000 mg/day did not change the magnesium balance nor the net absorption of magnesium of both types of patients. The lack of effect of the higher calcium intake on the absorption of magnesium was confirmed in 28 Mg studies in which an oral dose of 28 Mg, as the chloride, was given. The excretion of the absorbed magnesium into the intestine, the endogenous fecal magnesium, was low. Also, increasing the phosphorus intake up to 2000 mg/day in subjects with normal renal function did not affect the magnesium balance, regardless of the calcium intake

  8. Manufacturing and investigation of U-Mo LEU fuel granules by hydride-dehydride processing

    International Nuclear Information System (INIS)

    Stetskiy, Y.A.; Trifonov, Y.I.; Mitrofanov, A.V.; Samarin, V.I.

    2002-01-01

    Investigations of hydride-dehydride processing for comminution of U-Mo alloys with Mo content in the range 1.9/9.2% have been performed. Some regularities of the process as a function of Mo content have been determined as well as some parameters elaborated. Hydride-dehydride processing has been shown to provide necessary phase and chemical compositions of U-Mo fuel granules to be used in disperse fuel elements for research reactors. Pin type disperse mini-fuel elements for irradiation tests in the loop of 'MIR' reactor (Dmitrovgrad) have been fabricated using U-Mo LEU fuel granules obtained by hydride-dehydride processing. Irradiation tests of these mini-fuel elements loaded to 4 g U tot /cm 3 are planned to start by the end of this year. (author)

  9. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  10. Serum magnesium levels in patients with pre-eclampsia and eclampsia with different regimens of magnesium sulphate

    Directory of Open Access Journals (Sweden)

    Arpita Singh

    2013-01-01

    Full Text Available Background Pre-eclampsia and the subsequent eclampsia account for a common cause of maternal mortality worldwide and efforts aimed at reducing its menace are vital. Objective To estimate the serum magnesium levels in pre-eclampsia and eclampsia and to study the effect of using different regimens of magnesium sulphate. Methods 70 cases of pre-eclampsia and eclampsia and 35 normal pregnant women as controls were studied. Serum magnesium levels were estimated using Atomic Absorption Spectrophotometer (Model AAS-4139 at baseline and at frequent intervals during gestation and the overall parameters were meticulously observed. Results Majority(60%ofstudiedcaseswasnulliparawithgestationageof36-40 weeks. Statistically significant reduction of mean diastolic blood pressure and protein-urea was observed after using both intramuscular and intravenous regimens of magnesium sulphate. Mean initial serum magnesium level (mg/dl±SD was 1.81±0.58 in group A,1.55±0.41 in group B and 1.49±0.41 in group C. Mean serum magnesium levels during first 4 hours after therapy were statistically significant between intramuscular and intravenous regimen groups while same were statistically insignificant at 8,12,16,24 and 32 hours. Besides, few minor side effects including headache, vomiting, reduced tendon reflexes and thrombocytopenia, no severe side effects and no maternal mortality were seen. Conclusion Hypomagnesemia occurs during states of preeclampsia and eclampsia, and, administration of magnesium sulphate is effective and safe in preventing maternal mortality.

  11. Serum magnesium levels in patients with pre-eclampsia and eclampsia with different regimens of magnesium sulphate

    Directory of Open Access Journals (Sweden)

    Arpita Singh

    2013-03-01

    Full Text Available Background Pre-eclampsia and the subsequent eclampsia account for a common cause of maternal mortality worldwide and efforts aimed at reducing its menace are vital. Objective To estimate the serum magnesium levels in pre-eclampsia and eclampsia and to study the effect of using different regimens of magnesium sulphate. Methods 70 cases of pre-eclampsia and eclampsia and 35 normal pregnant women as controls were studied. Serum magnesium levels were estimated using Atomic Absorption Spectrophotometer (Model AAS-4139 at baseline and at frequent intervals during gestation and the overall parameters were meticulously observed. Results Majority (60% of studied cases was nullipara with gestation age of 36-40 weeks. Statistically significant reduction of mean diastolic blood pressure and protein-urea was observed after using both intramuscular and intravenous regimens of magnesium sulphate. Mean initial serum magnesium level (mg/dl±SD was 1.81±0.58 in group A,1.55±0.41 in group B and 1.49±0.41 in group C. Mean serum magnesium levels during first 4 hours after therapy were statistically significant between intramuscular and intravenous regimen groups while same were statistically insignificant at 8,12,16,24 and 32 hours. Besides, few minor side effects including headache, vomiting, reduced tendon reflexes and thrombocytopenia, no severe side effects and no maternal mortality were seen. Conclusion Hypomagnesemia occurs during states of preeclampsia and eclampsia, and, administration of magnesium sulphate is effective and safe in preventing maternal mortality.

  12. Poisoning Experiments Aimed at Discriminating Active and Less-Active Sites of Silica-Supported Tantalum Hydride for Alkane Metathesis

    KAUST Repository

    Saggio, Guillaume

    2010-10-04

    Only 50% of the silica-supported tantalum hydride sites are active in the metathesis of propane. Indeed, more than 45% of the tantalum hydride can be eliminated by a selective oxygen poisoning of inactive sites with no significant decrease in the global turnover. Conversely, cyclopentane induces no such selective poisoning. Hence, the active tantalum hydride sites that show greater resistance to oxygen poisoning correspond to the νTa-H bands of higher wavenumbers, particularly that at 1860cm-1. These active tantalum hydride sites should correspond to tris- or monohydride species relatively far from silica surface oxygen atoms. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Determination of antimony by using a quartz atom trap and electrochemical hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Menemenlioglu, Ipek; Korkmaz, Deniz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey); Ataman, O. Yavuz [Department of Chemistry, Middle East Technical University, 06531 Ankara (Turkey)], E-mail: ataman@metu.edu.tr

    2007-01-15

    The analytical performance of a miniature quartz trap coupled with electrochemical hydride generator for antimony determination is described. A portion of the inlet arm of the conventional quartz tube atomizer was used as an integrated trap medium for on-line preconcentration of electrochemically generated hydrides. This configuration minimizes transfer lines and connections. A thin-layer of electrochemical flow through cell was constructed. Lead and platinum foils were employed as cathode and anode materials, respectively. Experimental operation conditions for hydride generation as well as the collection and revolatilization conditions for the generated hydrides in the inlet arm of the quartz tube atomizer were optimized. Interferences of copper, nickel, iron, cobalt, arsenic, selenium, lead and tin were examined both with and without the trap. 3{sigma} limit of detection was estimated as 0.053 {mu}g l{sup -1} for a sample size of 6.0 ml collected in 120 s. The trap has provided 18 fold sensitivity improvement as compared to electrochemical hydride generation alone. The accuracy of the proposed technique was evaluated with two standard reference materials; Trace Metals in Drinking Water, Cat CRM-TMDW and Metals on Soil/Sediment 4, IRM-008.

  14. Computational micromechanics of bioabsorbable magnesium stents.

    Science.gov (United States)

    Grogan, J A; Leen, S B; McHugh, P E

    2014-06-01

    Magnesium alloys are a promising candidate material for an emerging generation of absorbable metal stents. Due to its hexagonal-close-packed lattice structure and tendency to undergo twinning, the deformation behaviour of magnesium is quite different to that of conventional stent materials, such as stainless steel 316L and cobalt chromium L605. In particular, magnesium exhibits asymmetric plastic behaviour (i.e. different yield behaviours in tension and compression) and has lower ductility than these conventional alloys. In the on-going development of absorbable metal stents it is important to assess how the unique behaviour of magnesium affects device performance. The mechanical behaviour of magnesium stent struts is investigated in this study using computational micromechanics, based on finite element analysis and crystal plasticity theory. The plastic deformation in tension and bending of textured and non-textured magnesium stent struts with different numbers of grains through the strut dimension is investigated. It is predicted that, unlike 316L and L605, the failure risk and load bearing capacity of magnesium stent struts during expansion is not strongly affected by the number of grains across the strut dimensions; however texturing, which may be introduced and controlled in the manufacturing process, is predicted to have a significant influence on these measures of strut performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Magnesium fluoride recovery method

    International Nuclear Information System (INIS)

    Gay, R.L.; McKenzie, D.E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag formed in the production of metallic uranium by the reduction of depleted uranium tetrafluoride with metallic magnesium in a retort wherein the slag contains the free metals magnesium and uranium and also oxides and fluorides of the metals. The slag having a radioactivity level of at least about 7,000 rhoCi/gm. The method comprises the steps of: grinding the slag to a median particle size of about 200 microns; contacting the ground slag in a reaction zone with an acid having a strength of from about 0.5 to 1.5 N for a time of from about 4 to about 20 hours in the presence of a catalytic amount of iron; removing the liquid product; treating the particulate solid product; repeating the last two steps at least one more time to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 rhoCi/gm

  16. Radioactive {sup 210}Po in magnesium supplements

    Energy Technology Data Exchange (ETDEWEB)

    Struminska-Parulska, Dagmara Ida [Gdansk Univ. (Poland). Environmental Chemistry and Radiochemistry Chair

    2016-08-01

    The aim of this pioneer study was to determine polonium {sup 210}Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring {sup 210}Po activity concentrations in magnesium supplements, find the correlations between {sup 210}Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest {sup 210}Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g{sup -1} (sample Mg17). The highest annual radiation dose from {sup 210}Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year{sup -1} respectively.

  17. Distinction between magnesium diboride and tetraboride by kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Kim, Du-Na; Caron, Arnaud; Park, Hai Woong

    2016-01-01

    We analyze mixtures of magnesium diboride and tetraboride synthesized with magnesium powders of different shapes. To distinguish between magnesium diboride and tetraboride we use the contrast of kelvin probe force microscopy. The microstructural morphology strongly depends on the shape of the magnesium powders used in the reaction between magnesium and magnesium tetraboride to form magnesium diboride. With spherical magnesium powder an equiaxed microstructure of magnesium diboride is formed with residual magnesium tetraboride at the grain boundaries. With plate-like magnesium powders elongated magnesium diboride grains are formed. In this case, residual magnesium tetraboride is found to agglomerate.

  18. Mechanistic Study of Magnesium Carbonate Semibatch Reactive Crystallization with Magnesium Hydroxide and CO2

    DEFF Research Database (Denmark)

    Han, B.; Qu, H. Y.; Niemi, H.

    2014-01-01

    This work investigates semibatch precipitation of magnesium carbonate at ambient temperature and pressure using Mg(OH)(2) and CO2 as starting materials. A thermal analysis method was developed that reflects the dissolution rate of Mg(OH)(2) and the formation of magnesium carbonate. The method...... the liquid and solid phases. A stirring rate of 650 rpm was found to be the optimum speed as the flow rate of CO2 was 1 L/min. Precipitation rate increased with gas flow rate, which indicates that mass transfer of CO2 plays a critical role in this precipitation case. Magnesium carbonate trihydrate...

  19. Solvation of magnesium dication: molecular dynamics simulation and vibrational spectroscopic study of magnesium chloride in aqueous solutions.

    Science.gov (United States)

    Callahan, Karen M; Casillas-Ituarte, Nadia N; Roeselová, Martina; Allen, Heather C; Tobias, Douglas J

    2010-04-22

    Magnesium dication plays many significant roles in biochemistry. While it is available to the environment from both ocean waters and mineral salts on land, its roles in environmental and atmospheric chemistry are still relatively unknown. Several pieces of experimental evidence suggest that contact ion pairing may not exist at ambient conditions in solutions of magnesium chloride up to saturation concentrations. This is not typical of most ions. There has been disagreement in the molecular dynamics literature concerning the existence of ion pairing in magnesium chloride solutions. Using a force field developed during this study, we show that contact ion pairing is not energetically favorable. Additionally, we present a concentration-dependent Raman spectroscopic study of the Mg-O(water) hexaaquo stretch that clearly supports the absence of ion pairing in MgCl(2) solutions, although a transition occurring in the spectrum between 0.06x and 0.09x suggests a change in solution structure. Finally, we compare experimental and calculated observables to validate our force field as well as two other commonly used magnesium force fields, and in the process show that ion pairing of magnesium clearly is not observed at higher concentrations in aqueous solutions of magnesium chloride, independent of the choice of magnesium force field, although some force fields give better agreement to experimental results than others.

  20. Intradermal administration of magnesium sulphate and magnesium chloride produces hypesthesia to mechanical but hyperalgesia to heat stimuli in humans

    Directory of Open Access Journals (Sweden)

    Ikemoto Tatsunori

    2009-08-01

    Full Text Available Abstract Background Although magnesium ions (Mg2+ are known to display many similar features to other 2+ charged cations, they seem to have quite an important and unique role in biological settings, such as NMDA blocking effect. However, the role of Mg2+ in the neural transmission system has not been studied as sufficiently as calcium ions (Ca2+. To clarify the sensory effects of Mg2+ in peripheral nervous systems, sensory changes after intradermal injection of Mg2+ were studied in humans. Methods Magnesium sulphate, magnesium chloride and saline were injected into the skin of the anterior region of forearms in healthy volunteers and injection-induced irritating pain ("irritating pain", for short, tactile sensation, tactile pressure thresholds, pinch-pain changes and intolerable heat pain thresholds of the lesion were monitored. Results Flare formation was observed immediately after magnesium sulphate or magnesium chloride injection. We found that intradermal injections of magnesium sulphate and magnesium chloride transiently caused irritating pain, hypesthesia to noxious and innocuous mechanical stimulations, whereas secondary hyperalgesia due to mechanical stimuli was not observed. In contrast to mechanical stimuli, intolerable heat pain-evoking temperature was significantly decreased at the injection site. In addition to these results, spontaneous pain was immediately attenuated by local cooling. Conclusion Membrane-stabilizing effect and peripheral NMDA-blocking effect possibly produced magnesium-induced mechanical hypesthesia, and extracellular cation-induced sensitization of TRPV1 channels was thought to be the primary mechanism of magnesium-induced heat hyperalgesia.

  1. Determination of the population of octahedral and tetrahedral interstitials in zirconium hydrides

    International Nuclear Information System (INIS)

    Fedorov, V.M.; Gogava, V.V.; Shilo, S.I.; Biryukova, E.A.

    1983-01-01

    Results of neutron investigations of ZrHsub(1.66), ZrHsub(1.75) and ZrHsub(1.98) zirconium hydrides are presented. Investigations were conducted using plane polycrystal samples by multidetector system of scattered neutron detection. Neutron diffraction method was used to determine the number of interstitial hydrogen atoms in interstitials of the lattice cell in the case of statistic atom distribution. The numbers of interstitial atoms in octahedral interstitials for zirconium hydrides were determined experimentally; the difference of potential energies of hydrogen atoms in octa- and tetrahedral interstitials was determined as well. It is shown that experimentally determined difference of potential energies of hydrogen atoms, occupying octa- and tetrahedral positions in investigated zirconium hydrides results at room temperature in the pretailing occupation of tetrahedral interstitials by hydrogen atoms (85-90%); the occupation number grows with temperature decrease and the ordering of interstitial vacancies with formation of hydrogen superstructure takes place at low temperatures

  2. Hydriding and dehydriding characteristics of small-scale DU and ZrCo beds

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Dongyou; Lee, Jungmin; Koo, Daeseo [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Chung, Hongsuk, E-mail: hschung1@kaeri.kr [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Kim, Ki Hwan [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of); Kang, Hyun-Goo; Chang, Min Ho [National Fusion Research Institute, 113 Gwahakro, Yuseong, Daejeon 305-333 (Korea, Republic of); Camp, Patrick [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Jung, Ki Jung; Cho, Seungyon; Yun, Sei-Hun; Kim, Chang Shuk [National Fusion Research Institute, 113 Gwahakro, Yuseong, Daejeon 305-333 (Korea, Republic of); Yoshida, Hiroshi [Fusion Science Consultant, 3288-10 Sakado-cho, Mito-shi 310-0841, Ibakaki-ken (Japan); Paek, Seungwoo; Lee, Hansoo [Korea Atomic Energy Research Institute, 989-111 Daedeokdaero, Yuseong, Daejeon 305-353 (Korea, Republic of)

    2013-10-15

    Highlights: • We have designed and fabricated a twosome small-scale getter bed for a comparison of ZrCo with DU on the hydriding/dehydriding properties. • We provide preliminary experimental results of our ZrCo and DU beds. -- Abstract: With the development of fusion technology, it will be necessary to store large amounts of tritium during the nuclear fusion fuel cycle. Stable metal tritides are viewed as potential candidates for the high-density storage of tritium. Metal tritide formers offer a safe and convenient method for tritium storage. For the storage, supply, and recovery of hydrogen isotopes, zirconium cobalt (ZrCo) and depleted uranium (DU) have been extensively proposed. Thus, we have designed and fabricated two identical small-scale getter beds for a comparison of ZrCo with DU on the hydriding/dehydriding properties. After the powderization of the metals, the hydriding/dehydriding performance at different stoichiometries of ZrCo and DU was measured. We provide preliminary experimental results of our ZrCo and DU beds.

  3. Higher dietary magnesium intake and higher magnesium status are associated with lower prevalence of coronary heart disease in patients with type 2 diabetes

    NARCIS (Netherlands)

    Gant, C.M.; Soedamah-Muthu, S.S.; Binnenmars, S.H.; Bakker, S.J.L.; Navis, G.; Laverman, G.D.

    2018-01-01

    In type 2 diabetes mellitus (T2D), the handling of magnesium is disturbed. Magnesium deficiency may be associated with a higher risk of coronary heart disease (CHD). We investigated the associations between (1) dietary magnesium intake; (2) 24 h urinary magnesium excretion; and (3) plasma magnesium

  4. NATO Advanced Study Institute on Metal Hydrides

    CERN Document Server

    1981-01-01

    In the last five years, the study of metal hydrides has ex­ panded enormously due to the potential technological importance of this class of materials in hydrogen based energy conversion schemes. The scope of this activity has been worldwide among the industrially advanced nations. There has been a consensus among researchers in both fundamental and applied areas that a more basic understanding of the properties of metal/hydrogen syster;,s is required in order to provide a rational basis for the selection of materials for specific applications. The current worldwide need for and interest in research in metal hydrides indicated the timeliness of an Advanced Study Insti­ tute to provide an in-depth view of the field for those active in its various aspects. The inclusion of speakers from non-NATO coun­ tries provided the opportunity for cross-fertilization of ideas for future research. While the emphasis of the Institute was on basic properties, there was a conscious effort to stimulate interest in the applic...

  5. Application of hafnium hydride control rod to large sodium cooled fast breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Kazumi, E-mail: kazumi_ikeda@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Moriwaki, Hiroyuki, E-mail: hiroyuki_moriwaki@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Ohkubo, Yoshiyuki, E-mail: yoshiyuki_okubo@mfbr.mhi.co.jp [Mitsubishi FBR Systems, Inc., 34-17, Jingumae 2-Chome, Shibuya-ku, Tokyo 150-0001 (Japan); Iwasaki, Tomohiko, E-mail: tomohiko.iwasaki@qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai-shi, Miyagi-ken 980-8579 (Japan); Konashi, Kenji, E-mail: konashi@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Narita-cho, Oarai-machi, Higashi-Ibaraki-gun, Ibaraki-ken 311-1313 (Japan)

    2014-10-15

    Highlights: • Application of hafnium hydride control rod to large sodium cooled fast breeder reactor. • This paper treats application of an innovative hafnium hydride control rod to a large sodium cooled fast breeder reactor. • Hydrogen absorption triples the reactivity worth by neutron spectrum shift at H/Hf ratio of 1.3. • Lifetime of the control rod quadruples because produced daughters of hafnium isotopes are absorbers. • Nuclear and thermal hydraulic characteristics of the reactor are as good as or better than B-10 enriched boron carbide. - Abstract: This study treats the feasibility of long-lived hafnium hydride control rod in a large sodium-cooled fast breeder reactor by nuclear and thermal analyses. According to the nuclear calculations, it is found that hydrogen absorption of hafnium triples the reactivity by the neutron spectrum shift at the H/Hf ratio of 1.3, and a hafnium transmutation mechanism that produced daughters are absorbers quadruples the lifetime due to a low incineration rate of absorbing nuclides under irradiation. That is to say, the control rod can function well for a long time because an irradiation of 2400 EFPD reduces the reactivity by only 4%. The calculation also reveals that the hafnium hydride control rod can apply to the reactor in that nuclear and thermal characteristics become as good as or better than 80% B-10 enriched boron carbide. For example, the maximum linear heat rate becomes 3% lower. Owing to the better power distribution, the required flow rate decreases approximately by 1%. Consequently, it is concluded on desk analyses that the long lived hafnium hydride control rod is feasible in the large sodium-cooled fast breeder reactor.

  6. Simultaneous analysis of arsenic, antimony, selenium and tellurium in environmental samples using hydride generation ICPMS

    International Nuclear Information System (INIS)

    Jankowski, L.M.; Breidenbach, R.; Bakker, I.J.I.; Epema, O.J.

    2009-01-01

    Full text: A quantitative method for simultaneous analysis of arsenic, antimony, selenium and tellurium in environmental samples is being developed using hydride generation ICPMS. These elements must be first transformed into hydride-forming oxidation states. This is particularly challenging for selenium and antimony because selenium is susceptible to reduction to the non-hydride-forming elemental state and antimony requires strong reducing conditions. The effectiveness of three reducing agents (KI, thiourea, cysteine) is studied. A comparison is made between addition of reducing agent to the sample and addition of KI to the NaBH 4 solution. Best results were obtained with the latter approach. (author)

  7. Serum magnesium concentration in drug-addicted patients.

    Science.gov (United States)

    Karakiewicz, Beata; Kozielec, Tadeusz; Brodowski, Jacek; Chlubek, Dariusz; Noceń, Iwona; Starczewski, Andrzej; Brodowska, Agnieszka; Laszczyńska, Maria

    2007-03-01

    Drug addiction is a complex problem which leads to many somatic, psychic and social diseases. It is accompanied by the disturbed metabolism of various macro and micronutrients. The aim of this study was to assess serum magnesium concentration in drug-addicted patients and analyze whether Human Immunodeficiency Virus (HIV) infection and methadone treatment affect the level of serum magnesium in these patients. The examination was conducted in a group of 83 people - patients of Szczecin-Zdroje Psychiatric Hospital (Poland). They were 21 to 49 years old, and the mean age was 32 +/- 7 years. The control group consisted of 81 healthy individuals. Flame atomic-absorption spectrometry method was used to determine the magnesium concentration. The total serum magnesium concentration was calculated for the whole patient group, subgroups of women and men, a subgroup of people infected with HIV, and a subgroup receiving methadone substitution treatment. How magnesium behaves depending on age and addiction period, was checked. The mean concentration of magnesium in blood serum of the patients examined was 0.57 mmol/L, which was significantly lower than in the control group. In the subgroup of men it was 0.57 mmol/L, and in the subgroup of women - 0.55 mmol/L; the differences were not statistically significant. In the patient group nobody had the appropriate magnesium concentration in blood serum. No significant correlation was found between the magnesium concentration, age of the patients and addiction period. In the subgroup of seropositive people the mean concentration of magnesium was 0.55 mmol/L, and in the subgroup of non-infected patients - 0.58 mmol/L; the difference was not statistically significant. The mean concentration of magnesium in the subgroup treated with methadone was 0.59 mmol/L, and in the subgroup not involved in this type of therapy - 0.55 mmol/L; it was not a statistically significant difference.

  8. Fractal analysis of electrolytically-deposited palladium hydride dendrites

    International Nuclear Information System (INIS)

    Bursill, L.A.; Julin, Peng; Xudong, Fan.

    1990-01-01

    The fractal scaling characteristics of the surface profile of electrolytically-deposited palladium hydride dendritic structures have been obtained using conventional and high resolution transmission electron microscopy. The results are in remarkable agreement with the modified diffusion-limited aggregation model. 19 refs., 3 tabs., 13 figs

  9. Facile Synthesis of Permethyl Yttrocene Hydride

    NARCIS (Netherlands)

    Haan, Klaas H. den; Teuben, Jan H.

    1984-01-01

    A convenient three step synthesis of (Cp*2YH)n (Cp* = C5Me5) is described starting with YCl3.3thf, in which Cp*2YCl.thf and Cp*2YCH(SiMe3)2 are intermediates, which could be isolated and characterized. The hydride is active in the activation of sp2 and sp3 C-H bonds as was demonstrated by the H-D

  10. Hydrides blister formation and induced embrittlement on zircaloy-4 cladding tubes in reactivity initiated conditions

    International Nuclear Information System (INIS)

    Hellouin-De-Menibus, A.

    2012-01-01

    Our aim is to study the cladding fracture with mechanical tests more representative of RIA conditions, taking into account the hydrides blisters, representative strain rates and stress states. To obtain hydride blisters, we developed a thermodiffusion setup that reproduces blister growth in reactor conditions. By metallography, nano-hardness, XRD and ERDA, we showed that they are constituted by 80% to 100% of δ hydrides in a Zircaloy-4 matrix, and that the zirconium beneath has some radially oriented hydrides. We modeled the blister growth kinetics taking into account the hysteresis of the hydrogen solubility limit and defined the thermal gradient threshold for blister growth. The modeling of the dilatometric behavior of hydrided zirconium indicates the important role of the material crystallographic texture, which could explain differences in the blister shape. Mechanical tests monitored with an infrared camera showed that significant local heating occurred at strain rates higher than 0.1/s. In parallel, the Expansion Due to Compression test was optimized to increase the bi-axiality level from uniaxial stress to plane strain (HB-EDC and VHB-EDC tests). This increase in loading bi-axiality lowers greatly the fracture strain at 25 C and 350 C only in homogeneous material without blister. Eventually, the ductility decrease of unirradiated Zircaloy-4 cladding tube in function of the blister depth was quantified. (author) [fr

  11. The Role of Magnesium in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Anna E. Kirkland

    2018-06-01

    Full Text Available Magnesium is well known for its diverse actions within the human body. From a neurological standpoint, magnesium plays an essential role in nerve transmission and neuromuscular conduction. It also functions in a protective role against excessive excitation that can lead to neuronal cell death (excitotoxicity, and has been implicated in multiple neurological disorders. Due to these important functions within the nervous system, magnesium is a mineral of intense interest for the potential prevention and treatment of neurological disorders. Current literature is reviewed for migraine, chronic pain, epilepsy, Alzheimer’s, Parkinson’s, and stroke, as well as the commonly comorbid conditions of anxiety and depression. Previous reviews and meta-analyses are used to set the scene for magnesium research across neurological conditions, while current research is reviewed in greater detail to update the literature and demonstrate the progress (or lack thereof in the field. There is strong data to suggest a role for magnesium in migraine and depression, and emerging data to suggest a protective effect of magnesium for chronic pain, anxiety, and stroke. More research is needed on magnesium as an adjunct treatment in epilepsy, and to further clarify its role in Alzheimer’s and Parkinson’s. Overall, the mechanistic attributes of magnesium in neurological diseases connote the macromineral as a potential target for neurological disease prevention and treatment.

  12. A review of uranium corrosion by hydrogen and the formation of uranium hydride

    OpenAIRE

    Banos, A.; Harker, N. J.; Scott, T. B.

    2018-01-01

    Uranium hydride (UH3) is the direct product of the reaction between uranium metal and gaseous hydrogen. In the context of uranium storage, this corrosion reaction is considered deleterious, not just because the structure of the metal may become significantly degraded but also because the resulting hydride is pyrophoric and therefore potentially flammable in air if present in significant quantity. The current review draws from the literature surrounding the uranium-hydrogen system accrued over...

  13. Zirconium hydride containing explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  14. Lithium hydride hydrolysis: experimental and kinetic study

    International Nuclear Information System (INIS)

    Charton, S.; Maupoix, C.; Brevet, A.; Delaunay, F.; Heintz, O.; Saviot, L.

    2006-01-01

    In this work has been studied the contribution of various analyses techniques in the framework, on the one hand of revealing the mechanisms implied in lithium hydride hydrolysis, and on the other hand of studying the kinetics of hydrogen production. Among the methods recently investigated, Raman spectroscopy, XPS and SIMS seem to be particularly attractive. (O.M.)

  15. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    Directory of Open Access Journals (Sweden)

    Weng L

    2013-05-01

    Full Text Available Lucy Weng, Thomas J Webster School of Engineering and Department of Orthopedics, Brown University, Providence, RI, USA Abstract: Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells. Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. Keywords: nanostructured magnesium, degradation, detrimental effects, osteoblasts

  16. Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys using Laboratory-Based Accelerated Corrosion and Electro-Chemical Methods

    Science.gov (United States)

    2014-07-01

    Spray. Journal of Failure Analysis and Prevention 2008, 8 (2), 164–175. 34. Aluminium Alloy 5083, Plate and Sheet; SAE-AMS-QQ-A-250/6S; SAE...Corrosion Screening of EV31A Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods...Magnesium and Other Magnesium Alloys Using Laboratory-Based Accelerated Corrosion and Electro-chemical Methods Brian E. Placzankis, Joseph P

  17. Application of molecular calcium compounds in catalysis and hydrogen storage; Anwendung von molekularen Calcium-Verbindungen in der Katalyse und der Wasserstoffspeicherung

    Energy Technology Data Exchange (ETDEWEB)

    Spielmann, Jan

    2010-07-20

    structurally characterized. Depending on the metal and the sterical bulk of the substituent R the decomposition resulted in the clean formation of complexes with either a central dianionic [N(R)-BH-N(R)-BH3]2--unit (R = H, Me, i-Pr), a compound containing a borylamide [N(R)=BH2]- (R = 2,6-(i Pr)-C6H3) or a metal hydride complex. For the observed products mechanisms of their formation have been proposed and experimentally confirmed. In these mechanisms metal hydride species play a key role. The favoured decomposition pathway leads to formation of compounds with the central dianionic [N(R)-BH-N(R)-BH3]2--unit. Additionally a magnesium-catalyzed synthetic route to a bis(amino)borane HB[NH(DIPP)]2 has been developed which can form a novel boramidinate ligand {l_brace}HB[N(2,6-(i-Pr)-C6H3)]2{r_brace}2- by double deprotonation. Furthermore a preparative useful synthetic route to zinc and aluminium hydride complexes based on the use of amidoborane compounds has been described. By using novel bis({beta}-diketiminate) ligands it has been possible to prepare dinuclear magnesium amidoborane complexes. The investigation of their thermal decomposition gave important information on aggregation effects of the complexes during the dehydrogenation. As a decomposition product of a N-substituted, dinuclear magnesium amidoborane complex a tetranuclear magnesium hydride complex has been isolated in low yields. Alternatively such compounds have been prepared in good yields by reaction of a n butylmagnesium precursor with phenylsilane. This synthetic approach allowed also the preparation of an octanuclear magnesium hydride complex with a central paddle-wheel shaped [Mg8H10]-unit. These multinuclear magnesium hydride complexes could be considered as ligand-stabilized forms of MgH2 and could be valuable model systems for investigations on MgxHy-hydrogen storage materials. (orig.)

  18. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  19. Magnesium bicarbonate as an in situ uranium lixiviant

    International Nuclear Information System (INIS)

    Sibert, J.W.

    1984-01-01

    In the subsurface solution mining of mineral values, especially uranium, in situ, magnesium bicarbonate leaching solution is used instead of sodium, potassium and ammonium carbonate and bicarbonates. The magnesium bicarbonate solution is formed by combining carbon dioxide with magnesium oxide and water. The magnesium bicarbonate lixivant has four major advantages over prior art sodium, potassium and ammonium bicarbonates

  20. Magnesium supplement in pregnancy-induced hypertension. A clinicopathological study

    DEFF Research Database (Denmark)

    Rudnicki, M; Junge, Jette; Frølich, A

    1990-01-01

    as a double-blind randomized controlled study in which 11 women were allocated to magnesium and 7 to placebo treatment. The treatment comprised a 48-hour intravenous magnesium/placebo infusion followed by daily oral magnesium/placebo intake until one day after delivery. Magnesium supplement increased birth....... There was no significant difference when the magnesium group, the placebo group and the control group were compared separately. The present study suggests that magnesium supplement has a beneficial effect on fetal growth in pregnancy-induced hypertension. With regard to the light and electron microscopic changes we were...... unable to demonstrate any significant difference between the magnesium, placebo and control groups....

  1. Preparation and corrosion resistance of magnesium phytic acid/hydroxyapatite composite coatings on biodegradable AZ31 magnesium alloy.

    Science.gov (United States)

    Zhang, Min; Cai, Shu; Zhang, Feiyang; Xu, Guohua; Wang, Fengwu; Yu, Nian; Wu, Xiaodong

    2017-06-01

    In this work, a magnesium phytic acid/hydroxyapatite composite coating was successfully prepared on AZ31 magnesium alloy substrate by chemical conversion deposition technology with the aim of improving its corrosion resistance and bioactivity. The influence of hydroxyapatite (HA) content on the microstructure and corrosion resistance of the coatings was investigated. The results showed that with the increase of HA content in phytic acid solution, the cracks on the surface of the coatings gradually reduced, which subsequently improved the corrosion resistance of these coated magnesium alloy. Electrochemical measurements in simulated body fluid (SBF) revealed that the composite coating with 45 wt.% HA addition exhibited superior surface integrity and significantly improved corrosion resistance compared with the single phytic acid conversion coating. The results of the immersion test in SBF showed that the composite coating could provide more effective protection for magnesium alloy substrate than that of the single phytic acid coating and showed good bioactivity. Magnesium phytic acid/hydroxyapatite composite, with the desired bioactivity, can be synthesized through chemical conversion deposition technology as protective coatings for surface modification of the biodegradable magnesium alloy implants. The design idea of the new type of biomaterial is belong to the concept of "third generation biomaterial". Corrosion behavior and bioactivity of coated magnesium alloy are the key issues during implantation. In this study, preparation and corrosion behavior of magnesium phytic acid/hydroxyapatite composite coatings on magnesium alloy were studied. The basic findings and significance of this paper are as follows: 1. A novel environmentally friendly, homogenous and crack-free magnesium phytic acid/hydroxyapatite composite coating was fabricated on AZ31 magnesium alloy via chemical conversion deposition technology with the aim of enhancing its corrosion resistance and

  2. Transmission Electron Microscopy Studies on Titanium-doped Sodium Aluminum Hydride

    Science.gov (United States)

    Culnane, Lance F.

    Hydrogen fuel cells play an important role in today's diverse and blossoming alternative energy industry. One of the greatest technological barriers for vehicular applications is the storage of hydrogen (which is required to power hydrogen fuel cells). Storing hydrogen as a gas is not volume efficient, and storing it as a liquid is not cost effective, therefore solid-state storage of hydrogen, such as in metal hydrides offers the most potential for success since many metal hydrides have attractive qualities for hydrogen storage such as: high volumetric capacity, cost efficiency, weight efficiency, low refueling times, and most importantly, high safety. Unfortunately, a compound has not been discovered which contains all of the attractive hydrogen storage qualities for vehicular applications. Sodium aluminum hydride (NaAlH 4) is one of the few compounds which is close to meeting requirements for car manufacturers, and has perhaps been researched the most extensively out of all metal hydrides in the last 15 years. This arises from the remarkable discovery by Bogdanovic who found that doping NaAlH4 with Ti dopants enabled the reversible dehydrogenation and hydrogenation of NaAlH 4 at mild conditions. Various evidence and theories have been proposed to suggest explanations for the enhanced kinetic effect that Ti-doping and ball-milling provide. However, the research community has not reached a consensus as to the exact role of Ti-dopants. If the role of titanium in the NaAlH4 dehydrogenation/hydrogenation mechanism could be understood, then more attractive metal hydrides could be designed. To this end, we conducted Transmission Electron Microscopy (TEM) studies to explain the role of the Ti dopants. The first known thorough particle size analysis of the NaAlH4 system was conducted, as well as TEM-EELS (Electron Energy Loss Spectroscopy), TEM-EDS (Energy Dispersive X-ray Spectroscopy), and in-situ imaging studies. Preparation methods were found to be important for the

  3. Development of a direct hydride generation nebulizer for the determination of selenium by inductively coupled plasma optical emission spectrometry

    International Nuclear Information System (INIS)

    Carrion, Nereida; Murillo, Miguel; Montiel, Edie; Diaz, Dorfe

    2003-01-01

    A study was conducted to evaluate the performance of a new direct hydride generation nebulizer system for determination of hydride forming elements by inductively coupled plasma optical emission spectroscopy. This system was designed and optimized to obtain the highest sensitivity. Several experimental designs were used for these purposes. To optimize the individual parameters of the system, and to study the interaction between these parameters for both direct hydride generation nebulizers, a central composite orthogonal design with eight factors was set up. Significant behavioral differences were observed in the two direct hydride generation nebulizers studied. Finally, a 70 μm gas orifice nebulizer exhibits a better detection limit than the 120 μm nebulizer. Generally, for determination of selenium, this new direct hydride generation nebulizer system exhibits a linear dynamic range and detection limit (3σb) of 3 orders of magnitude and 0.2 μg l -1 for selenium, respectively. This new hydride generator is much simpler system that conventional hydride generation systems, which does not need to be changed to work in normal mode with the inductively coupled plasma, since this system may be used for hydride forming elements and those that do not form them. It produces a rapid response with low memory effect. It reduces the interference level of Ni, Co and Cu to 600, 500 and 5 mg l -1 , respectively. The accuracy of the system was verified by the determination of selenium in several standard reference materials of ambient, food and clinical sample matrices. No statistically significant differences (95 confidence level) were obtained between our method and the reference values

  4. Alloys for hydrogen storage in nickel/hydrogen and nickel/metal hydride batteries

    Science.gov (United States)

    Anani, Anaba; Visintin, Arnaldo; Petrov, Konstantin; Srinivasan, Supramaniam; Reilly, James J.; Johnson, John R.; Schwarz, Ricardo B.; Desch, Paul B.

    1993-01-01

    Since 1990, there has been an ongoing collaboration among the authors in the three laboratories to (1) prepare alloys of the AB(sub 5) and AB(sub 2) types, using arc-melting/annealing and mechanical alloying/annealing techniques; (2) examine their physico-chemical characteristics (morphology, composition); (3) determine the hydrogen absorption/desorption behavior (pressure-composition isotherms as a function of temperature); and (4) evaluate their performance characteristics as hydride electrodes (charge/discharge, capacity retention, cycle life, high rate capability). The work carried out on representative AB(sub 5) and AB(sub 2) type modified alloys (by partial substitution or with small additives of other elements) is presented. The purpose of the modification was to optimize the thermodynamics and kinetics of the hydriding/dehydriding reactions and enhance the stabilities of the alloys for the desired battery applications. The results of our collaboration, to date, demonstrate that (1) alloys prepared by arc melting/annealing and mechanical alloying/annealing techniques exhibit similar morphology, composition and hydriding/dehydriding characteristics; (2) alloys with the appropriate small amounts of substituent or additive elements: (1) retain the single phase structure, (2) improve the hydriding/dehydriding reactions for the battery applications, and (3) enhance the stability in the battery environment; and (3) the AB(sub 2) type alloys exhibit higher energy densities than the AB(sub 5) type alloys but the state-of-the-art, commercialized batteries are predominantly manufactured using Ab(sub 5) type alloys.

  5. Nanostructured magnesium has fewer detrimental effects on osteoblast function

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications. PMID:23674891

  6. Nanostructured magnesium has fewer detrimental effects on osteoblast function.

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2013-01-01

    Efforts have been made recently to implement nanoscale surface features on magnesium, a biodegradable metal, to increase bone formation. Compared with normal magnesium, nanostructured magnesium has unique characteristics, including increased grain boundary properties, surface to volume ratio, surface roughness, and surface energy, which may influence the initial adsorption of proteins known to promote the function of osteoblasts (bone-forming cells). Previous studies have shown that one way to increase nanosurface roughness on magnesium is to soak the metal in NaOH. However, it has not been determined if degradation of magnesium is altered by creating nanoscale features on its surface to influence osteoblast density. The aim of the present in vitro study was to determine the influence of degradation of nanostructured magnesium, created by soaking in NaOH, on osteoblast density. Our results showed a less detrimental effect of magnesium degradation on osteoblast density when magnesium was treated with NaOH to create nanoscale surface features. The detrimental degradation products of magnesium are of significant concern when considering use of magnesium as an orthopedic implant material, and this study identified a surface treatment, ie, soaking in NaOH to create nanoscale features for magnesium that can improve its use in numerous orthopedic applications.

  7. The influence of surface morphology and oxide microstructure on the nucleation and growth of uranium hydride on alpha uranium

    International Nuclear Information System (INIS)

    Hanrahan, R.J. Jr.; Hawley, M.E.; Brown, G.W.

    1998-01-01

    While the bulk kinetics of the uranium-hydrogen reaction are well understood, the mechanisms underlying the initial nucleation of uranium hydride on uranium remain controversial. In this study, the authors have employed environmental cell optical microscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy, (AFM) in an attempt to relate the structure of the surface and the microstructure of the substrate with the susceptibility and site of hydride nucleation. Samples have been investigated with varying grain size, inclusion (carbide) concentration, and thermal history. There is a clear correlation to heat treatment immediately prior to hydrogen exposure. Susceptibility to hydride formation also appears to be related to impurities in the uranium. The oxidized surface is very complex, exhibiting wide variations in thickness and topography between samples, between grains in the same sample, and within individual grains. It is, however, very difficult to relate this fine scale variability to the relatively sparse hydride initiation sites. Therefore, the surface oxide layer itself does not appear to control the sites where hydride attack is initiated, although it must play a role in the induction period prior to hydride initiation

  8. The influence of surface morphology and oxide microstructure on the nucleation and growth of uranium hydride on alpha uranium

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, R.J. Jr.; Hawley, M.E.; Brown, G.W. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1998-12-31

    While the bulk kinetics of the uranium-hydrogen reaction are well understood, the mechanisms underlying the initial nucleation of uranium hydride on uranium remain controversial. In this study the authors have employed environmental cell optical microscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy, (AFM) in an attempt to relate the structure of the surface and the microstructure of the substrate with the susceptibility and site of hydride nucleation. Samples have been investigated with varying grain size, inclusion (carbide) concentration, and thermal history. There is a clear correlation to heat treatment immediately prior to hydrogen exposure. Susceptibility to hydride formation also appears to be related to impurities in the uranium. The oxidized surface is very complex, exhibiting wide variations in thickness and topography between samples, between grains in the same sample, and within individual grains. It is, however, very difficult to relate this fine scale variability to the relatively sparse hydride initiation sites. Therefore, the surface oxide layer itself does not appear to control the sites where hydride attack is initiated, although it must play a role in the induction period prior to hydride initiation.

  9. The influence of surface morphology and oxide microstructure on the nucleation and growth of uranium hydride on alpha uranium

    Energy Technology Data Exchange (ETDEWEB)

    Hanrahan, R.J. Jr.; Hawley, M.E.; Brown, G.W.

    1998-12-31

    While the bulk kinetics of the uranium-hydrogen reaction are well understood, the mechanisms underlying the initial nucleation of uranium hydride on uranium remain controversial. In this study, the authors have employed environmental cell optical microscopy, Scanning Electron Microscopy (SEM) and Atomic Force Microscopy, (AFM) in an attempt to relate the structure of the surface and the microstructure of the substrate with the susceptibility and site of hydride nucleation. Samples have been investigated with varying grain size, inclusion (carbide) concentration, and thermal history. There is a clear correlation to heat treatment immediately prior to hydrogen exposure. Susceptibility to hydride formation also appears to be related to impurities in the uranium. The oxidized surface is very complex, exhibiting wide variations in thickness and topography between samples, between grains in the same sample, and within individual grains. It is, however, very difficult to relate this fine scale variability to the relatively sparse hydride initiation sites. Therefore, the surface oxide layer itself does not appear to control the sites where hydride attack is initiated, although it must play a role in the induction period prior to hydride initiation.

  10. A low tritium hydride bed inventory estimation technique

    Energy Technology Data Exchange (ETDEWEB)

    Klein, J.E.; Shanahan, K.L.; Baker, R.A. [Savannah River National Laboratory, Aiken, SC (United States); Foster, P.J. [Savannah River Nuclear Solutions, Aiken, SC (United States)

    2015-03-15

    Low tritium hydride beds were developed and deployed into tritium service in Savannah River Site. Process beds to be used for low concentration tritium gas were not fitted with instrumentation to perform the steady-state, flowing gas calorimetric inventory measurement method. Low tritium beds contain less than the detection limit of the IBA (In-Bed Accountability) technique used for tritium inventory. This paper describes two techniques for estimating tritium content and uncertainty for low tritium content beds to be used in the facility's physical inventory (PI). PI are performed periodically to assess the quantity of nuclear material used in a facility. The first approach (Mid-point approximation method - MPA) assumes the bed is half-full and uses a gas composition measurement to estimate the tritium inventory and uncertainty. The second approach utilizes the bed's hydride material pressure-composition-temperature (PCT) properties and a gas composition measurement to reduce the uncertainty in the calculated bed inventory.

  11. The role of magnesium in the electrochemical behaviour of 5XXX aluminium-magnesium alloys

    NARCIS (Netherlands)

    Flores Ramirez, J.R.

    2006-01-01

    An investigation concerning the effects of magnesium on the intergranular corrosion susceptibility of AA5XXX aluminium alloys was carried out. In the present work, magnesium is found to be highly mobile in the bulk metal as well as in the aluminium oxide. This mobility is also found to be dependent

  12. Electrochemical modeling of hydrogen storage in hydride-forming electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2009-01-01

    An electrochemical kinetic model (EKM) is developed, describing the electrochemical hydrogen storage in hydride-forming materials under equilibrium conditions. This model is based on first principles of electrochemical reaction kinetics and statistical thermodynamics and describes the complex,

  13. Modifications of the hydriding kinetics of a metallic surface, using ion implantation

    International Nuclear Information System (INIS)

    Crusset, D.

    1992-10-01

    Uranium reacts with hydrogen to form an hydride: this reaction leads to the total destruction of the material. To modify the reactivity of an uranium surface towards hydrogen, ion implantation was selected, among surface treatments techniques. Four elements (carbon, nitrogen, oxygen, sulfur) were implanted to different doses. The results show a modification of the hydriding mechanism and a significant increase in the reaction induction times, notably at high implantation doses. Several techniques (SIMS, X-rays phases analysis and residual stresses determination) were used to characterize the samples and understand the different mechanisms involved

  14. Computer simulation of hydrogen diffusion and hydride precipitation at Ta/Zr bond interface. Hydrogen embrittlement in SUS304ULC/Ta/Zr explosive bonded joint

    International Nuclear Information System (INIS)

    Saida, Kazuyoshi; Fujimoto, Tetsuya; Nishimoto, Kazutoshi

    2010-01-01

    The concentration of hydrogen and precipitation of zirconium hydrides in Ta/Zr explosive bonded joint were analysed by computer simulation. Numerical model of hydride precipitation under hydrogen diffusion was simplified by the alternate model coupled the macroscopic hydrogen diffusion with the microscopic hydride precipitation. Effects of the initial hydrogen content in Ta, working degree of Zr and post-bond heat treatment on the hydrogen diffusion and hydride precipitation were investigated. Hydrogen was rapidly diffused from Ta substrate into Zr after explosive bonding and temporarily concentrated at Ta/Zr bond interface. Zirconium hydrides were precipitated and grew at Ta/Zr bond interface, and the precipitation zone of hydrides was enlarged with the lapse of time. The precipitation of zirconium hydrides was promoted when the initial hydrogen content in Ta and working degree of Zr were increased. The concentration of hydrogen and precipitation of hydrides at the bond interface were reduced and diminished by post-bond heat treatment at 373 K. It was deduced that hydrogen embrittlement in Ta/Zr explosive bonded joint was caused by the precipitation of zirconium hydrides and concentration of hydrogen at Ta/Zr bond interface during the diffusion of hydrogen containing in Ta substrate. (author)

  15. Solubilities of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid in water

    Energy Technology Data Exchange (ETDEWEB)

    Mishelevich, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel); Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105 (Israel)], E-mail: apelblat@bgu.ac.il

    2008-05-15

    The solubility in water of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid was determined in the 278.15 K to 343.15 K temperature range. The solubility of these compounds served to permit the evaluation of the apparent molar enthalpies of solution.

  16. Solubilities of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid in water

    International Nuclear Information System (INIS)

    Mishelevich, Alexander; Apelblat, Alexander

    2008-01-01

    The solubility in water of magnesium-L-ascorbate, calcium-L-ascorbate, magnesium-L-glutamate, magnesium-D-gluconate, calcium-D-gluconate, calcium-D-heptagluconate, L-aspartic acid, and 3-nitrobenzoic acid was determined in the 278.15 K to 343.15 K temperature range. The solubility of these compounds served to permit the evaluation of the apparent molar enthalpies of solution

  17. Flow injection electrochemical hydride generation inductively coupled plasma time-of-flight mass spectrometry for the simultaneous determination of hydride forming elements and its application to the analysis of fresh water samples

    International Nuclear Information System (INIS)

    Bings, Nicolas H.; Stefanka, Zsolt; Mallada, Sergio Rodriguez

    2003-01-01

    A flow injection (FI) method was developed using electrochemical hydride generation (EcHG) as a sample introduction system, coupled to an inductively coupled plasma time-of-flight mass spectrometer (ICP-TOFMS) for rapid and simultaneous determination of six elements forming hydrides (As, Bi, Ge, Hg, Sb and Se). A novel low volume electrolysis cell, especially suited for FI experiments was designed and the conditions for simultaneous electrochemical hydride generation (EcHG; electrolyte concentrations and flow rates, electrolysis voltage and current) as well as the ICP-TOFMS operational parameters (carrier gas flow rate, modulation pulse width (MPW)) for the simultaneous determination of 12 isotopes were optimized. The compromise operation parameters of the electrolysis were found to be 1.4 and 3 ml min -1 for the anolyte and catholyte flow rates, respectively, using 2 M sulphuric acid. An optimum electrolysis current of 0.7 A (16 V) and an argon carrier gas flow rate of 0.91 l min -1 were chosen. A modulation pulse width of 5 μs, which influences the sensitivity through the amount of ions being collected by the MS per single analytical cycle, provided optimum results for the detection of transient signals. The achieved detection limits were compared with those obtained by using FI in combination with conventional nebulization (FI-ICP-TOFMS); values for chemical hydride generation (FI-CHG-ICP-TOFMS) were taken from the literature. By using a 200 μl sample loop absolute detection limits (3σ) in the range of 10-160 pg for As, Bi, Ge, Hg, Sb and 1.1 ng for Se and a precision of 4-8% for seven replicate injections of 20-100 ng ml -1 multielemental sample solutions were achieved. The analysis of a standard reference material (SRM) 1643d (NIST, 'Trace Elements in Water') showed good agreement with the certified values for As and Sb. Se showed a drastic difference, which is probably due to the presence of hydride-inactive Se species in the sample. Recoveries better than

  18. Study of Serum Magnesium in Surgical Stress

    Directory of Open Access Journals (Sweden)

    Sandip D. Lambe

    2016-10-01

    Full Text Available Background: A deficiency of magnesium is of clinical importance in hospitalized patients. The prevalence of hypomagnesaemia is high in critically ill patients. Knowing the important role of magnesium in surgical cases, it is necessary to anticipate and diagnose magnesium deficiency prior to surgery and in the immediate postoperative period to correct it. Aims and Objectives: The aim of this study was to analyse serum magnesium levels in patients undergoing emergency surgical procedures, planned surgical procedures and normal healthy matched controls and to compare the serum magnesium levels in all the three groups. Materials and Methods: The study participants were divided into three groups: i Group I: patients undergoing emergency major surgery ii Group II: patients undergoing planned major surgery iii Group III: normal healthy controls. Serum Magnesium investigation was done by Xylidyl Blue Method using UV-1800/Shimadzu UV-Spectrophotometer. Results: The mean serum Magnesium in control group was found to be 2.16 ± 0.30 mg/dl. In patients undergoing planned surgery, pre-operative serum magnesium was normal (2.16 ± 0.22 mg/dl but decreased significantly on postoperative day 3 (1.63 ± 0.27 mg/dl and day 6 (1.97 ± 0.12 mg/dl and returned to normal level by post-operative day 9 (2.14 ± 0.14 mg/dl compared to controls. In patients undergoing emergency surgery, serum magnesium was decreased pre-operatively (1.90 ± 0.48 mg/dl.Further significant reduction was found at post-operative day 3 (1.38 ± 0.28 mg/dl, day 6 (1.59 ± 0.30 mg/dl and day 9 (1.88 ± 0.46 mg/dl compared to controls. Mean serum Magnesium overall in emergency surgery patients was reduced significantly compared to planned surgery patients. Conclusion: A transient fall in the serum Magnesium as compared to its pre-operative level was seen in every patient undergoing surgical procedure due to surgical stress. In patients undergoing emergency surgical procedure, the decrease was

  19. Hydrogen storage alloys for nickel/metal hydride battery

    Energy Technology Data Exchange (ETDEWEB)

    Kuriyama, Nobuhiro; Sakai, Tetsuo; Myamura, Hiroshi; Tanaka, Hideaki; Ishikawa, Hiroshi; Uehara, Itsuki [Osaka National Research Inst. (Japan)

    1996-06-01

    Efforts to improve performance of metal hydride electrodes such as substitution of alloy components, heat treatment, and surface treatment intended to change surface and bulk structure of hydrogen storage alloys, mainly LaNi{sub 5} based alloys, are reviewed. The importance of control of morphology is emphasized. (author)

  20. Metal Hydride assited contamination on Ru/Si surfaces

    NARCIS (Netherlands)

    Pachecka, Malgorzata; Lee, Christopher James; Sturm, Jacobus Marinus; Bijkerk, Frederik

    2013-01-01

    In extreme ultraviolet lithography (EUVL) residual tin, in the form of particles, ions, and atoms, can be deposited on nearby EUV optics. During the EUV pulse, a reactive hydrogen plasma is formed, which may be able to react with metal contaminants, creating volatile and unstable metal hydrides that

  1. U-Mo Alloy Powder Obtained Through Selective Hydriding. Particle Size Control

    International Nuclear Information System (INIS)

    Balart, S.N.; Bruzzoni, P.; Granovsky, M.S.

    2002-01-01

    Hydride-dehydride methods to obtain U-Mo alloy powder for high-density fuel elements have been successfully tested by different authors. One of these methods is the selective hydriding of the α phase (HSα). In the HSα method, a key step is the partial decomposition of the γ phase (retained by quenching) to α phase and an enriched γ phase or U 2 Mo. This transformation starts mainly at grain boundaries. Subsequent hydrogenation of this material leads to selective hydriding of the α phase, embrittlement and intergranular fracture. According to this picture, the particle size of the final product should be related to the γ grain size of the starting alloy. The feasibility of controlling the particle size of the product by changing the γ grain size of the starting alloy is currently investigated. In this work an U-7 wt% Mo alloy was subjected to various heat treatments in order to obtain different grain sizes. The results on the powder particle size distribution after applying the HSα method to these samples show that there is a strong correlation between the original γ grain size and the particle size distribution of the powder. (author)

  2. Low Temperature Synthesis of Magnesium Aluminate Spinel

    International Nuclear Information System (INIS)

    Lebedovskaya, E.G.; Gabelkov, S.V.; Litvinenko, L.M.; Logvinkov, D.S.; Mironova, A.G.; Odejchuk, M.A.; Poltavtsev, N.S.; Tarasov, R.V.

    2006-01-01

    The low-temperature synthesis of magnesium-aluminum spinel is carried out by a method of thermal decomposition in combined precipitated hydrates. The fine material of magnesium-aluminium spinel with average size of coherent dispersion's area 4...5 nanometers is obtained. Magnesium-aluminum spinel and initial hydrates were investigated by methods of the differential thermal analysis, the x-ray phase analysis and measurements of weight loss during the dehydration and thermal decomposition. It is established that synthesis of magnesium-aluminum spinel occurs at temperature 300 degree C by method of the x-ray phase analysis

  3. Wide Strip Casting Technology of Magnesium Alloys

    Science.gov (United States)

    Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.

    Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.

  4. Effect of oxygen on the hydrogenation properties of magnesium films

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The effect of magnesium oxide on the magnesium and hydrogen desorption properties of magnesium films have been investigated. We find that by capping metallic magnesium films with oxide overlayers the apparent desorption energy of magnesium is increased from 146 kJ/mol to 314 kJ/mol. The results...... are discussed in light of previous investigations of ball-milled magnesium powders....

  5. The potential for ionic liquid electrolytes to stabilise the magnesium interface for magnesium/air batteries

    International Nuclear Information System (INIS)

    Khoo, Timothy; Howlett, Patrick C.; Tsagouria, Maureen; MacFarlane, Douglas R.; Forsyth, Maria

    2011-01-01

    Magnesium/air batteries are a possible high-energy density power source that, to date, have not received strong commercial interest due to issues with the corrosion of the magnesium and evaporation of the electrolyte. In this work we report on the use of ionic liquid based electrolytes to stabilise the metal/electrolyte interface and their impact on the electrochemical performance. Galvanostatic measurements indicate that the water content of the ionic liquid electrolyte plays an important role in the cell discharge characteristics. Surface characterisation using EIS, ATR-FTIR and powder diffraction examined the unique properties of the surface film formed on the magnesium anode.

  6. Vanadium-based alloy hydrides for heat pumps, compressors, and isotope separation

    International Nuclear Information System (INIS)

    Libowitz, G.G.

    1988-01-01

    A series of body-centered cubic (b.c.c.) solid solution alloys have been developed which appears to be unusually suitable for several applications involving metal hydrides. It is normally very difficult to induce the body-centered cubic metals, Nb, V, and Ta, to react with hydrogen; in bulk form the reaction will simply not occur at room temperature. Alloys containing Nb exhibited very large hysteresis effects on hydride formation and thus are not suitable for most applications. However, the V-Ti based alloys showed relatively little hysteresis, and because of their unusual thermodynamic properties offer significant advantages for the specific applications discussed below. (orig./HB)

  7. Behavior and failure of fresh, hydrided and irradiated Zircaloy-4 fuel claddings under RIA conditions

    International Nuclear Information System (INIS)

    Le Saux, M.

    2008-01-01

    The purpose of this study is to characterize and simulate the mechanical behaviour and failure of fresh, hydrided and irradiated (in pressurized water reactors) cold-worked stress relieved Zircaloy-4 fuel claddings under reactivity initiated accident conditions. A model is proposed to describe the anisotropic viscoplastic mechanical behavior of the material as a function of temperature (from 20 C up to 1100 C), strain rate (from 3.10 -4 s -1 up to 5 s -1 ), fluence (from 0 up to 1026 n.m -2 ) and irradiation conditions. Axial tensile, hoop tensile, expansion due to compression and hoop plane strain tensile tests are performed at 25 C, 350 C and 480 C in order to analyse the anisotropic plastic and failure properties of the non-irradiated material hydrided up to 1200 ppm. Material strength and strain hardening depend on temperature and hydrogen in solid solution and precipitated hydride contents. Plastic anisotropy is not significantly modified by hydrogen. The material is embrittled by hydrides at room temperature. The plastic strain that leads to hydride cracking decreases with increasing hydrogen content. The material ductility, which increases with increasing temperature, is not deteriorated by hydrogen at 350 C and 480 C. Macroscopic fracture modes and damage mechanisms depend on specimen geometry, temperature and hydrogen content. A Gurson type model is finally proposed to describe both the anisotropic viscoplastic behavior and the ductile fracture of the material as a function of temperature and hydrogen content. (author) [fr

  8. Irradiation effects in magnesium and aluminium alloys

    International Nuclear Information System (INIS)

    Sturcken, E.F.

    1979-01-01

    Effects of neutron irradiation on microstructure, mechanical properties and swelling of several magnesium and aluminium alloys were studied. The neutron fluences of 2-3 X 10 22 n/cm 2 , >0.2 MeV produced displacement doses of 20 to 45 displacements per atom (dpa). Ductility of the magnesium alloys was severely reduced by irradiation induced recrystallization and precipitation of various forms. Precipitation of transmuted silicon occurred in the aluminium alloys. However, the effect on ductility was much less than for the magnesium alloys. The magnesium and aluminium alloys had excellent resistance to swelling: The best magnesium alloy was Mg/3.0 wt% Al/0.19 wt% Ca; its density decreased by only 0.13%. The best aluminium alloy was 6063, with a density decrease of 0.22%. (Auth.)

  9. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sindelar, R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Louthan, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); PNNL, B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to

  10. How to Analyse Metal Hydride Decomposition Temperatures Using a Sieverts’ Type Hydriding-Dehydriding Apparatus and Hydrogen-Storage Characteristics for an MgH2–Based Alloy

    Directory of Open Access Journals (Sweden)

    Young Jun KWAK

    2018-02-01

    Full Text Available In this work, a method to analyze metal hydride decomposition temperatures (the onset temperature of the metal hydride decomposition and the temperature for the maximum ratio of released gas quantity change with temperature change, of prepared samples were investigated using a Sieverts’ type hydriding-dehydriding apparatus, in which a back-pressure regulator was employed. The quantity of the gas released under 1.0 bar H2 was measured as the temperature was increased with a heating rate of 4 K/min. The variation in the ratio of released hydrogen quantity Hd change with temperature T change, dHd/dT, as a function of temperature was obtained and from the variation in dHd/dT with T, the metal hydride decomposition temperatures were analyzed. This analysis method can be used instead of thermal analysis methods such as thermogravimetric analysis (TGA, differential scanning calorimetry (DSC analysis, differential thermal analysis (DTA, and thermal desorption spectroscopy (TDS analysis. For this analysis, a sample with a composition of 89 wt.% MgH2 + 4.9 wt.% Ni + 1.7 wt.% Zn(BH42 + 1.0 wt% NaCl + 1.7 wt.% Ti + 1.7 wt % Fe (named MgH2-Ni-Zn(BH42-NaCl-Ti-Fe sample was prepared by planetary ball milling. In the prepared MgH2-Ni-Zn(BH42-NaCl-Ti-Fe sample, it is believed that MgH2 begins to decompose at about 575 K and dHd/dT reaches its peak at about 610 K.DOI: http://dx.doi.org/10.5755/j01.ms.24.1.17664

  11. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Y.; Qian, S.; Littrell, K.; Parish, C.M. [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Plummer, L.K. [University of Oregon, Eugene, OR 97403 (United States)

    2015-05-15

    A nondestructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless-steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. Our study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount (≈20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor can be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for determining absolute hydrogen concentrations.

  12. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  13. Simultaneous purification and storage of hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hynek, S.; Fuller, W.; Weber, R.; Carlson, E. [Arthur D. Little, Inc., Cambridge, MA (United States)

    1998-08-01

    Specially coated magnesium particles have been shown to selectively absorb hydrogen from a hydrogen-rich gas stream such as reformate. These coated magnesium particles can store the absorbed hydrogen as required and subsequently deliver pure hydrogen, just as uncoated magnesium particles can. These coated magnesium particles could be used in a device that accepts a steady stream of reformate, as from a methane reformer, stores the selectively absorbed hydrogen indefinitely, and delivers purified hydrogen on demand. Unfortunately, this coating (magnesium nitride) has been shown to degrade over a period of several weeks, so that the magnesium within evidences progressively lower storage capacity. The authors are investigating two other coatings, one of which might be applicable to hydridable metals other than magnesium, to replace magnesium nitride.

  14. Tailoring Thermodynamics and Kinetics for Hydrogen Storage in Complex Hydrides towards Applications.

    Science.gov (United States)

    Liu, Yongfeng; Yang, Yaxiong; Gao, Mingxia; Pan, Hongge

    2016-02-01

    Solid-state hydrogen storage using various materials is expected to provide the ultimate solution for safe and efficient on-board storage. Complex hydrides have attracted increasing attention over the past two decades due to their high gravimetric and volumetric hydrogen densities. In this account, we review studies from our lab on tailoring the thermodynamics and kinetics for hydrogen storage in complex hydrides, including metal alanates, borohydrides and amides. By changing the material composition and structure, developing feasible preparation methods, doping high-performance catalysts, optimizing multifunctional additives, creating nanostructures and understanding the interaction mechanisms with hydrogen, the operating temperatures for hydrogen storage in metal amides, alanates and borohydrides are remarkably reduced. This temperature reduction is associated with enhanced reaction kinetics and improved reversibility. The examples discussed in this review are expected to provide new inspiration for the development of complex hydrides with high hydrogen capacity and appropriate thermodynamics and kinetics for hydrogen storage. © 2015 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Mechanism of n-butane hydrogenolysis promoted by Ta-hydrides supported on silica

    KAUST Repository

    Pasha, Farhan Ahmad

    2014-06-06

    The mechanism of hydrogenolysis of alkanes, promoted by Ta-hydrides supported on silica via 2 ≡ Si-O- bonds, has been studied with a density functional theory (DFT) approach. Our study suggests that the initial monohydride (≡ Si-O-)2Ta(III)H is rapidly trapped by molecular hydrogen to form the more stable tris-hydride (≡ Si-O-) 2Ta(V)H3. Loading of n-butane to the Ta-center occurs through C-H activation concerted with elimination of molecular hydrogen (σ-bond metathesis). Once the Ta-alkyl species is formed, the C-C activation step corresponds to a β-alkyl transfer to the metal with elimination of an olefin. According to these calculations, an α-alkyl transfer to the metal to form a Ta-carbene species is of higher energy. The olefins formed during the C-C activation step can be rapidly hydrogenated by both mono- and tris-Ta-hydride species, making the overall process of alkane cracking thermodynamically favored. © 2014 American Chemical Society.

  16. OPTIMIZATION OF INTERNAL HEAT EXCHANGERS FOR HYDROGEN STORAGE TANKS UTILIZING METAL HYDRIDES

    Energy Technology Data Exchange (ETDEWEB)

    Garrison, S.; Tamburello, D.; Hardy, B.; Anton, D.; Gorbounov, M.; Cognale, C.; van Hassel, B.; Mosher, D.

    2011-07-14

    Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL{reg_sign} Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab{reg_sign} scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride. The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.

  17. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented electrochemical kinetic model, describing the electrochemical hydrogen storage in hydride-forming materials, was extended by the description of the solid/electrolyte interface, i.e., the charge-transfer kinetics and electrical double-layer charging. A complete set of equations

  18. EFFECT OF MAGNESIUM SULFATE (A LAXATIVE) ON ...

    African Journals Online (AJOL)

    use with little success . Magnesium sulfate also known as Epsom salt or bitter salt is a hydrate salt with a chemical name of magnesium sulfate heptahydrate . Chemical formula is MgSO. 7HO and trade name is. Andrews liver salt. Dried magnesium sulfate is an osmotic laxative or a saline laxative that acts by increasing the.

  19. Immunological Response to Biodegradable Magnesium Implants

    Science.gov (United States)

    Pichler, Karin; Fischerauer, Stefan; Ferlic, Peter; Martinelli, Elisabeth; Brezinsek, Hans-Peter; Uggowitzer, Peter J.; Löffler, Jörg F.; Weinberg, Annelie-Martina

    2014-04-01

    The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.

  20. Application of acoustic emission to hydride cracking

    International Nuclear Information System (INIS)

    Sagat, S.; Ambler, J.F.R.; Coleman, C.E.

    1986-07-01

    Acoustic emission has been used for over a decade to study delayed hydride cracking (DHC) in zirconium alloys. At first acoustic emission was used primarily to detect the onset of DHC. This was possible because DHC was accompanied by very little plastic deformation of the material and furthermore the amplitudes of the acoustic pulses produced during cracking of the brittle hydride phase were much larger than those from dislocation motion and twinning. Acoustic emission was also used for measuring crack growth when it was found that for a suitable amplitude threshold, the total number of acoustic emission counts was linearly related to the cracked area. Once the proportionality constant was established, the acoustic counts could be converted to the crack length. Now the proportionality between the count rate and the crack growth rate is used to provide feedback between the crack length and the applied load, using computer technology. In such a system, the stress at the crack tip can be maintained constant during the test by adjusting the applied load as the crack progresses, or it can be changed in a predetermined manner, for example, to measure the threshold stress for cracking

  1. Magnesium substitution in the structure of orthopedic nanoparticles: A comparison between amorphous magnesium phosphates, calcium magnesium phosphates, and hydroxyapatites

    International Nuclear Information System (INIS)

    Nabiyouni, Maryam; Ren, Yufu; Bhaduri, Sarit B.

    2015-01-01

    As biocompatible materials, magnesium phosphates have received a lot of attention for orthopedic applications. During the last decade multiple studies have shown advantages for magnesium phosphate such as lack of cytotoxicity, biocompatibility, strong mechanical properties, and high biodegradability. The present study investigates the role of Mg +2 and Ca +2 ions in the structure of magnesium phosphate and calcium phosphate nanoparticles. To directly compare the effect of Mg +2 and Ca +2 ions on structure of nanoparticles and their biological behavior, three groups of nanoparticles including amorphous magnesium phosphates (AMPs) which release Mg +2 , calcium magnesium phosphates (CMPs) which release Mg +2 and Ca +2 , and hydroxyapatites (HAs) which release Ca +2 were studied. SEM, TEM, XRD, and FTIR were used to evaluate the morphology, crystallinity, and chemical properties of the particles. AMP particles were homogeneous nanospheres, whereas CMPs were combinations of heterogeneous nanorods and nanospheres, and HAs which contained heterogeneous nanosphere particles. Cell compatibility was monitored in all groups to determine the cytotoxicity effect of particles on studied MC3T3-E1 preosteoblasts. AMPs showed significantly higher attachment rate than the HAs after 1 day and both AMPs and CMPs showed significantly higher proliferation rate when compared to HAs after 7 days. Gene expression level of osteoblastic markers ALP, COL I, OCN, OPN, RUNX2 were monitored and they were normalized to GAPDH housekeeping gene. Beta actin expression level was monitored as the second housekeeping gene to confirm the accuracy of results. In general, AMPs and CMPs showed higher expression level of osteoblastic genes after 7 days which can further confirm the stimulating role of Mg + 2 and Ca +2 ions in increasing the proliferation rate, differentiation, and mineralization of MC3T3-E1 preosteoblasts. - Highlights: • Role of Mg 2+ and Ca 2+ ions in proliferation, and differentiation

  2. Syntheses and properties of several metastable and stable hydrides derived from intermetallic compounds under high hydrogen pressure

    Energy Technology Data Exchange (ETDEWEB)

    Filipek, S.M., E-mail: sfilipek@unipress.waw.pl [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Paul-Boncour, V. [ICMPE-CMTR, CNRS-UPEC, 2-8 rue Henri Dunant, 94320 Thiais (France); Liu, R.S. [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Jacob, I. [Unit Nuclear Eng., Ben Gurion University of the Negev, Beer-Sheva (Israel); Tsutaoka, T. [Dept. of Sci. Educ., Grad. School of Educ., Hiroshima University, Hiroshima (Japan); Budziak, A. [Institute of Nuclear Physics PAS, 31-342 Kraków (Poland); Morawski, A. [Institute of High Pressure Physics PAS, ul. Sokolowska 29, 01-142 Warsaw (Poland); Sugiura, H. [Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027 (Japan); Zachariasz, P. [Institute of Electron Technology Cracow Division, ul. Zablocie 39, 30-701 Krakow (Poland); Dybko, K. [Institute of Physics, PAS, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul. Ratuszowa 11, Warsaw (Poland)

    2016-12-01

    Brief summary of our former work on high hydrogen pressure syntheses of novel hydrides and studies of their properties is supplemented with new results. Syntheses and properties of a number of hydrides (unstable, metastable or stable in ambient conditions) derived under high hydrogen pressure from intermetallic compounds, like MeT{sub 2}, MeNi{sub 5}, Me{sub 7}T{sub 3}, Y{sub 6}Mn{sub 23} and YMn{sub 12} (where Me = zirconium, yttrium or rare earth; T = transition metal) are presented. Stabilization of ZrFe{sub 2}H{sub 4} due to surface phenomena was revealed. Unusual role of manganese in hydride forming processes is pointed out. Hydrogen induced phase transitions, suppression of magnetism, antiferromagnetic-ferromagnetic and metal-insulator or semimetal-metal transitions are described. Equations of state (EOS) of hydrides submitted to hydrostatic pressures up to 30 GPa are presented and discussed.

  3. Low-frequency excitations in zirconium hydrides

    International Nuclear Information System (INIS)

    Radulescu, A.; Padureanu, I.; Rapeanu, S.N.; Beldiman, A.; Kozlov, Zh.A.; Semenov, V.A.

    1999-01-01

    The slow inelastic neutron scattering (INS) on ZrH x systems (x = 0.38, 0.52) revealed new excitations located within the energy range 2-10 MeV. Besides the acoustic vibrations specific to α-HCP Zr and γ-FCO Zr hydride the fine structure of these excitations is clearly observed. The origin of the new observed peaks is not very clear but a proton tunneling or a resonance effect in α-Zr lattice could be taken into account

  4. Investigation of magnesium oxychloride cement at the initial hardening stage

    Directory of Open Access Journals (Sweden)

    Averina Galina

    2018-01-01

    Full Text Available The paper investigates the process of variation of magnesium oxychloride cement deformations at the initial hardening stage depending on the activity of magnesium oxide powder which is determined by the parameters of the source material burning. Investigation is focused on magnesium cements obtained from pure magnesium hydroxide. Source materials were burnt at various temperatures with the purpose to obtain magnesium oxide powder with different activity. Regular content of hydrated phases was determined in hardened magnesium cement prepared on the basis of binders with different activity. The study reveals the influence of magnesium oxide powder activity on the process of deformation occurrence in hardened magnesium cement and its tendency to crack formation.

  5. Minimum Entropy Generation Theorem Investigation and Optimization of Metal Hydride Alloy Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chi-Chang Wang

    2014-05-01

    Full Text Available The main purpose of this paper is to carry out numerical simulation of the hydrogen storage on exothermic reaction of metal hydride LaNi5 alloy container. In addition to accelerating the reaction speed of the internal metal hydride by internal control tube water-cooled mode, analyze via the application of second law of thermodynamics the principle of entropy generation. Use COMSOL Mutilphysics 4.3 a to engage in finite element method value simulation on two-dimensional axisymmetric model. Also on the premise that the internal control tube parameters the radius ri, the flow rate U meet the metal hydride saturation time, observe the reaction process of two parameters on the tank, entropy distribution and the results of the accumulated entropy. And try to find the internal tube parameter values of the minimum entropy, whose purpose is to be able to identify the reaction process and the reaction results of internal tank’s optimum energy conservation.

  6. Titanium tritide radioisotope heat source development: palladium-coated titanium hydriding kinetics and tritium loading tests

    International Nuclear Information System (INIS)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  7. An Investigation on the Persistence of Uranium Hydride during Storage of Simulant Nuclear Waste Packages.

    Science.gov (United States)

    Stitt, C A; Harker, N J; Hallam, K R; Paraskevoulakos, C; Banos, A; Rennie, S; Jowsey, J; Scott, T B

    2015-01-01

    Synchrotron X-rays have been used to study the oxidation of uranium and uranium hydride when encapsulated in grout and stored in de-ionised water for 10 months. Periodic synchrotron X-ray tomography and X-ray powder diffraction have allowed measurement and identification of the arising corrosion products and the rates of corrosion. The oxidation rates of the uranium metal and uranium hydride were slower than empirically derived rates previously reported for each reactant in an anoxic water system, but without encapsulation in grout. This was attributed to the grout acting as a physical barrier limiting the access of oxidising species to the uranium surface. Uranium hydride was observed to persist throughout the 10 month storage period and industrial consequences of this observed persistence are discussed.

  8. Topotactic Solid-State Metal Hydride Reductions of Sr2MnO4.

    Science.gov (United States)

    Hernden, Bradley C; Lussier, Joey A; Bieringer, Mario

    2015-05-04

    We report novel details regarding the reactivity and mechanism of the solid-state topotactic reduction of Sr2MnO4 using a series of solid-state metal hydrides. Comprehensive details describing the active reducing species are reported and comments on the reductive mechanism are provided, where it is shown that more than one electron is being donated by H(-). Commonly used solid-state hydrides LiH, NaH, and CaH2, were characterized in terms of reducing power. In addition the unexplored solid-state hydrides MgH2, SrH2, and BaH2 are evaluated as potential solid-state reductants and characterized in terms of their reductive reactivities. These 6 group I and II metal hydrides show the following trend in terms of reactivity: MgH2 < SrH2 < LiH ≈ CaH2 ≈ BaH2 < NaH. The order of the reductants are discussed in terms of metal electronegativity and bond strengths. NaH and the novel use of SrH2 allowed for targeted synthesis of reduced Sr2MnO(4-x) (0 ≤ x ≤ 0.37) phases. The enhanced control during synthesis demonstrated by this soft chemistry approach has allowed for a more comprehensive and systematic evaluation of Sr2MnO(4-x) phases than previously reported phases prepared by high temperature methods. Sr2MnO3.63(1) has for the first time been shown to be monoclinic by powder X-ray diffraction and the oxidative monoclinic to tetragonal transition occurs at 450 °C.

  9. Recrystallization of magnesium deformed at low temperatures

    International Nuclear Information System (INIS)

    Fromageau, R.; Pastol, J.L.; Revel, G.

    1978-01-01

    The recrystallization of magnesium was studied after rolling at temperatures ranging between 248 and 373 K. For zone refined magnesium the annealing behaviour as observed by electrical resistivity measurements showed two stages at about 250 K and 400 K due respectively to recrystallization and grain growth. The activation energy associated with the recrystallization stage was 0.75 +- 0.01 eV. In less pure magnesium, with nominal purity 99.99 and 99.9%, the recrystallization stage was decomposed into two substages. Activation energies were determined in relation with deformation temperature and purity. The magnesium of intermediate purity (99.99%) behaved similarly to the lowest purity metal when it was deformed at high temperature and to the purest magnesium when the deformation was made at low temperature. This behaviour was discussed in connection with the theories of Luecke and Cahn. (Auth.)

  10. Benefits of magnesium wheels for consumer cars

    Science.gov (United States)

    Frishfelds, Vilnis; Timuhins, Andrejs; Bethers, Uldis

    2018-05-01

    Advantages and disadvantages of magnesium wheels are considered based on a mechanical model of a car. Magnesium wheels are usually applied to racing cars as they provide slightly better strength/weight ratio than aluminum alloys. Do they provide notable benefits also for the everyday user when the car speeds do not exceed allowed speed limit? Distinct properties of magnesium rims are discussed. Apart from lighter weight of magnesium alloys, they are also good in dissipating the energy of vibrations. The role of energy dissipation in the rim of a wheel is estimated by a quarter car model. Improvements to safety by using the magnesium wheels are considered. Braking distance and responsiveness of the car is studied both with and without using an Anti Blocking System (ABS). Influence of rim weight on various handling parameters of the car is quantitatively tested.

  11. A review on hot tearing of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Jiangfeng Song

    2016-09-01

    Full Text Available Hot tearing is often a major casting defect in magnesium alloys and has a significant impact on the quality of their casting products. Hot tearing of magnesium alloys is a complex solidification phenomenon which is still not fully understood, it is of great importance to investigate the hot tearing behaviour of magnesium alloys. This review attempts to summarize the investigations on hot tearing of magnesium alloys over the past decades. The hot tearing criteria including recently developed Kou's criterion are summarized and compared. The numeric simulation and assessing methods of hot tearing, factors influencing hot tearing, and hot tearing susceptibility (HTS of magnesium alloys are discussed.

  12. Manufacturing and characterization of magnesium alloy foils for use as anode materials in rechargeable magnesium ion batteries

    Science.gov (United States)

    Schloffer, Daniel; Bozorgi, Salar; Sherstnev, Pavel; Lenardt, Christian; Gollas, Bernhard

    2017-11-01

    The fabrication of thin foils of magnesium for use as anode material in rechargeable magnesium ion batteries is described. In order to improve its workability, the magnesium was alloyed by melting metallurgy with zinc and/or gadolinium, producing saturated solid solutions. The material was extruded to thin foils and rolled to a thickness of approximately 100 μm. The electrochemical behavior of Mg-1.63 wt% Zn, Mg-1.55 wt% Gd and Mg-1.02 wt% Zn-1.01 wt% Gd was studied in (PhMgCl)2-AlCl3/THF electrolyte by cyclic voltammetry and galvanostatic cycling in symmetrical cells. Analysis of the current-potential curves in the Tafel region and the linear region close to the equilibrium potential show almost no effect of the alloying elements on the exchange current densities (5-45 μA/cm2) and the transfer coefficients. Chemical analyses of the alloy surfaces and the electrolyte demonstrate that the alloying elements not only dissolve with the magnesium during the anodic half-cycles, but also re-deposit during the cathodic half-cycles together with the magnesium and aluminum from the electrolyte. Given the negligible corrosion rate in aprotic electrolytes under such conditions, no adverse effects of alloying elements are expected for the performance of magnesium anodes in secondary batteries.

  13. Modeling of electrochemical hydrogen storage in metal hydride electrodes

    NARCIS (Netherlands)

    Ledovskikh, A.; Danilov, D.; Vermeulen, P.; Notten, P.H.L.

    2010-01-01

    The recently presented Electrochemical Kinetic Model (EKM), describing the electrochemical hydrogen storage in hydride-forming materials, has been extended by the description of the solid/electrolyte interface, i.e. the charge transfer kinetics and electrical double layer charging. A complete set of

  14. The formation and characteristics of hydride blisters in c.w. Zircaloy-2 pressure tubes

    Energy Technology Data Exchange (ETDEWEB)

    Price, E G [ed.

    1994-09-01

    Under the auspices of the IAEA, a consultants` meeting was arranged in Vienna, 1994 July 25-29, at which a Canadian delegation, consisting of AECL and Ontario Hydro Technologies personnel, presented information on their knowledge of the behaviour of hydride blisters in Zircaloy-2 pressure tubes. This document contains the 10 papers presented by the Canadian delegation to the meeting. It is believed that they represent a good reference document on hydride blister phenomena.

  15. Irradiation effects on thermal properties of LWR hydride fuel

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt, E-mail: terrani@berkeley.edu [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Balooch, Mehdi [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States); Carpenter, David; Kohse, Gordon [Massachusetts Institute of Technology, 138 Albany St., Cambridge, MA 02139 (United States); Keiser, Dennis; Meyer, Mitchell [Idaho National Laboratory, Idaho Falls, ID 83415 (United States); Olander, Donald [University of California, 4155 Etcheverry Hall, M.C. 1730, Berkeley, CA 94720-1730 (United States)

    2017-04-01

    Three hydride mini-fuel rods were fabricated and irradiated at the MIT nuclear reactor with a maximum burnup of 0.31% FIMA or ∼5 MWd/kgU equivalent oxide fuel burnup. Fuel rods consisted of uranium-zirconium hydride (U (30 wt%)ZrH{sub 1.6}) pellets clad inside a LWR Zircaloy-2 tubing. The gap between the fuel and the cladding was filled with lead-bismuth eutectic alloy to eliminate the gas gap and the large temperature drop across it. Each mini-fuel rod was instrumented with two thermocouples with tips that are axially located halfway through the fuel centerline and cladding surface. In-pile temperature measurements enabled calculation of thermal conductivity in this fuel as a function of temperature and burnup. In-pile thermal conductivity at the beginning of test agreed well with out-of-pile measurements on unirradiated fuel and decreased rapidly with burnup.

  16. Transport of Magnesium by a Bacterial Nramp-Related Gene

    Science.gov (United States)

    Rodionov, Dmitry A.; Freedman, Benjamin G.; Senger, Ryan S.; Winkler, Wade C.

    2014-01-01

    Magnesium is an essential divalent metal that serves many cellular functions. While most divalent cations are maintained at relatively low intracellular concentrations, magnesium is maintained at a higher level (∼0.5–2.0 mM). Three families of transport proteins were previously identified for magnesium import: CorA, MgtE, and MgtA/MgtB P-type ATPases. In the current study, we find that expression of a bacterial protein unrelated to these transporters can fully restore growth to a bacterial mutant that lacks known magnesium transporters, suggesting it is a new importer for magnesium. We demonstrate that this transport activity is likely to be specific rather than resulting from substrate promiscuity because the proteins are incapable of manganese import. This magnesium transport protein is distantly related to the Nramp family of proteins, which have been shown to transport divalent cations but have never been shown to recognize magnesium. We also find gene expression of the new magnesium transporter to be controlled by a magnesium-sensing riboswitch. Importantly, we find additional examples of riboswitch-regulated homologues, suggesting that they are a frequent occurrence in bacteria. Therefore, our aggregate data discover a new and perhaps broadly important path for magnesium import and highlight how identification of riboswitch RNAs can help shed light on new, and sometimes unexpected, functions of their downstream genes. PMID:24968120

  17. Fracture healing using degradable magnesium fixation plates and screws.

    Science.gov (United States)

    Chaya, Amy; Yoshizawa, Sayuri; Verdelis, Kostas; Noorani, Sabrina; Costello, Bernard J; Sfeir, Charles

    2015-02-01

    Internal bone fixation devices made with permanent metals are associated with numerous long-term complications and may require removal. We hypothesized that fixation devices made with degradable magnesium alloys could provide an ideal combination of strength and degradation, facilitating fracture fixation and healing while eliminating the need for implant removal surgery. Fixation plates and screws were machined from 99.9% pure magnesium and compared with titanium devices in a rabbit ulnar fracture model. Magnesium device degradation and the effect on fracture healing and bone formation were assessed after 4 weeks. Fracture healing with magnesium device fixation was compared with that of titanium devices using qualitative histologic analysis and quantitative histomorphometry. Micro-computed tomography showed device degradation after 4 weeks in vivo. In addition, 2-dimensional micro-computed tomography slices and histologic staining showed that magnesium degradation did not inhibit fracture healing or bone formation. Histomorphology showed no difference in bone-bridging fractures fixed with magnesium and titanium devices. Interestingly, abundant new bone was formed around magnesium devices, suggesting a connection between magnesium degradation and bone formation. Our results show potential for magnesium fixation devices in a loaded fracture environment. Furthermore, these results suggest that magnesium fixation devices may enhance fracture healing by encouraging localized new bone formation. Copyright © 2015 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  18. Behaviour of magnesium and two magnesium alloys heated in a carbon dioxide flow

    International Nuclear Information System (INIS)

    Boussion, M.-L.; Darras, R.; Leclercq, D.

    1959-01-01

    Magnesium is a particularly attractive material for sheathing uranium fuel elements in nuclear reactors in order to avoid uranium hot temperature oxidation by the cooling fluid. As this cooling fluid will be carbon dioxide at the (future) Marcoule plants, a thorough study of magnesium and magnesium alloys behaviour when heated by carbon dioxide at a 400 C temperature, have been completed. Tests on three materials (Mg, Mg-Zr and Mg-Zr-Zn) have been performed with CO 2 up to a temperature of 550 C, at atmospheric pressure in the presence of a certain amount of oxygen and nitrogen (in order to study the influence of these impurities), and at a pressure of 15 kg / cm 2 . Oxidation results are detailed. Reprint of a paper published in 'Revue de Metallurgie', LVI, n. 1, 1959, p. 61-67

  19. Magnesium and related low alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J; Caillat, R; Darras, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the first part the authors examine the comparative corrosion of commercial magnesium, of a magnesium-zirconium alloy (0,4 per cent {<=} Zr {<=} 0,7 per cent) of a ternary magnesium-zinc-zirconium alloy (0,8 per cent {<=} Zn {<=} 1,2 per cent) and of english 'Magnox type' alloys, in dry carbon dioxide-free air, in damp carbon dioxide-free air, and in dry and damp carbon dioxide, at temperatures from 300 to 600 deg. C. In the second part the structural stability of these materials is studied after annealings, of 10 to 1000 hours at 300 to 450 deg. C. Variations in grain after these heat treatments and mechanical stretching properties at room temperature are presented. Finally various creep rate and life time diagrams are given for these materials, for temperatures ranging from 300 to 450 deg. C. (author) [French] Dans une premiere partie les auteurs etudient la corrosion comparee du magnesium commercial, d'un alliage magnesium-zirconium (0,4 pour cent {<=} Zr {<=} 0,7 pour cent), d'un alliage ternaire magnesium-zinc-zirconium (0,8 pour cent {<=} Zn {<=} 1,2 pour cent), et d'alliages anglais 'type Magnox', dans l'air sec decarbonate, l'air humide decarbonate, le gaz carbonique sec et humide a des temperatures de 300 a 600 deg. C. Dans une seconde partie, est etudiee la stabilite structurale de ces materiaux apres des recuits de 300 a 450 deg. C, et de 10 a 1000 heures. Sont presentees les variations, apres ces traitements thermiques, de la grosseur du grain, et des caracteristiques mecaniques de traction a la temperature ambiante. Enfin, quelques diagrammes de vitesse de fluage et de durees de vie sont presentes sur ces materiaux pour des temperatures variant entre 300 et 450 deg. C. (auteur)

  20. Multi-functional magnesium alloys containing interstitial oxygen atoms.

    Science.gov (United States)

    Kang, H; Choi, H J; Kang, S W; Shin, S E; Choi, G S; Bae, D H

    2016-03-15

    A new class of magnesium alloys has been developed by dissolving large amounts of oxygen atoms into a magnesium lattice (Mg-O alloys). The oxygen atoms are supplied by decomposing titanium dioxide nanoparticles in a magnesium melt at 720 °C; the titanium is then completely separated out from the magnesium melt after solidification. The dissolved oxygen atoms are located at the octahedral sites of magnesium, which expand the magnesium lattice. These alloys possess ionic and metallic bonding characteristics, providing outstanding mechanical and functional properties. A Mg-O-Al casting alloy made in this fashion shows superior mechanical performance, chemical resistance to corrosion, and thermal conductivity. Furthermore, a similar Mg-O-Zn wrought alloy shows high elongation to failure (>50%) at room temperature, because the alloy plastically deforms with only multiple slips in the sub-micrometer grains (alloys are expected to open a new paradigm in commercial alloy design.