WorldWideScience

Sample records for magnesium carbide synthesis

  1. Magnesium carbide synthesis from methane and magnesium oxide - a potential methodology for natural gas conversion to premium fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, A.F.; Modestino, A.J.; Howard, J.B. [Massachusetts Institute of Technology, Cambridge, MA (United States)] [and others

    1995-12-31

    Diversification of the raw materials base for manufacturing premium fuels and chemicals offers U.S. and international consumers economic and strategic benefits. Extensive reserves of natural gas in the world provide a valuable source of clean gaseous fuel and chemical feedstock. Assuming the availability of suitable conversion processes, natural gas offers the prospect of improving flexibility in liquid fuels and chemicals manufacture, and thus, the opportunity to complement, supplement, or displace petroleum-based production as economic and strategic considerations require. The composition of natural gas varies from reservoir to reservoir but the principal hydrocarbon constituent is always methane (CH{sub 4}). With its high hydrogen-to-carbon ratio, methane has the potential to produce hydrogen or hydrogen-rich products. However, methane is a very chemically stable molecule and, thus, is not readily transformed to other molecules or easily reformed to its elements (H{sub 2} and carbon). In many cases, further research is needed to augment selectivity to desired product(s), increase single-pass conversions, or improve economics (e.g. there have been estimates of $50/bbl or more for liquid products) before the full potential of these methodologies can be realized on a commercial scale. With the trade-off between gas conversion and product selectivity, a major challenge common to many of these technologies is to simultaneously achieve high methane single-pass conversions and high selectivity to desired products. Based on the results of the scoping runs, there appears to be strong indications that a breakthrough has finally been achieved in that synthesis of magnesium carbides from MgO and methane in the arc discharge reactor has been demonstrated.

  2. Low Temperature Synthesis of Magnesium Aluminate Spinel

    International Nuclear Information System (INIS)

    Lebedovskaya, E.G.; Gabelkov, S.V.; Litvinenko, L.M.; Logvinkov, D.S.; Mironova, A.G.; Odejchuk, M.A.; Poltavtsev, N.S.; Tarasov, R.V.

    2006-01-01

    The low-temperature synthesis of magnesium-aluminum spinel is carried out by a method of thermal decomposition in combined precipitated hydrates. The fine material of magnesium-aluminium spinel with average size of coherent dispersion's area 4...5 nanometers is obtained. Magnesium-aluminum spinel and initial hydrates were investigated by methods of the differential thermal analysis, the x-ray phase analysis and measurements of weight loss during the dehydration and thermal decomposition. It is established that synthesis of magnesium-aluminum spinel occurs at temperature 300 degree C by method of the x-ray phase analysis

  3. Synthesis of carbides of refractory metals in salt melts

    International Nuclear Information System (INIS)

    Ilyushchenko, N.G.; Anfinogenov, A.I.; Chebykin, V.V.; Chernov, Ya.B.; Shurov, N.I.; Ryaposov, Yu.A.; Dobrynin, A.I.; Gorshkov, A.V.; Chub, A.V.

    2003-01-01

    The ion-electron melts, obtained through dissolving the alkali and alkali-earth metals in the molten chlorides above the chloride melting temperature, were used for manufacturing the high-melting metal carbides as the transport melt. The lithium, calcium and magnesium chlorides and the mixture of the lithium chloride with the potassium or calcium chloride were used from the alkali or alkali-earth metals. The metallic lithium, calcium, magnesium or the calcium-magnesium mixtures were used as the alkali or alkali-earth metals. The carbon black or sugar was used as carbon. It is shown, that lithium, magnesium or calcium in the molten salts transfer the carbon on the niobium, tantalum, titanium, forming the carbides of the above metals. The high-melting metal carbides are obtained both from the metal pure powders and from the oxides and chlorides [ru

  4. Mechanical-thermal synthesis of chromium carbides

    International Nuclear Information System (INIS)

    Cintho, Osvaldo Mitsuyuki; Favilla, Eliane Aparecida Peixoto; Capocchi, Jose Deodoro Trani

    2007-01-01

    The present investigation deals with the synthesis of chromium carbides (Cr 3 C 2 and Cr 7 C 3 ), starting from metallic chromium (obtained from the reduction of Cr 2 O 3 with Al) and carbon (graphite). The synthesis was carried out via high energy milling, followed by heat-treating of pellets made of different milled mixtures at 800 o C, for 2 h, under an atmosphere of argon. A SPEX CertPrep 8000 Mixer/Mill was used for milling under argon atmosphere. A tool steel vat and two 12.7 mm diameter chromium steel balls were used. The raw materials used and the products were characterized by differential thermal analysis, thermo gravimetric analysis, X-ray diffraction, electronic microscopy and X-ray fluorescence chemical analysis. The following variables were investigated: the quantity of carbon in the mixture, the milling time and the milling power. Mechanical activation of the reactant mixture depends upon the milling power ratio used for processing. The energy liberated by the reduction of the chromium oxide with aluminium exhibits a maximum for milling power ratio between 5:1 and 7.5:1. Self-propagating reaction occurred for all heat-treated samples whatever the carbon content of the sample and the milling power ratio used. Bearing carbon samples exhibited hollow shell structures after the reaction. The level of iron contamination of the milled samples was kept below 0.3% Fe. The self-propagated reaction caused high temperatures inside the samples as it may be seen by the occurrence of spherules, dendrites and whiskers. The carbon content determines the type of chromium carbide formed

  5. Supported molybdenum carbide for higher alcohol synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Christensen, Jakob Munkholt; Chiarello, Gian Luca

    2013-01-01

    Molybdenum carbide supported on active carbon, carbon nanotubes, and titanium dioxide, and promoted by K2CO3, has been prepared and tested for methanol and higher alcohol synthesis from syngas. At optimal conditions, the activity and selectivity to alcohols (methanol and higher alcohols) over...... carbide, while the selectivity to methanol follows the opposite trend. The effect of Mo2C loading on the alcohol selectivity at a fixed K/Mo molar ratio of 0.14 could be related to the amount of K2CO3 actually on the active Mo2C phase and the size, structure and composition of the supported carbide...... alcohols is obtained at a K/Mo molar ratio of 0.21 over the active carbon supported Mo2C (20wt%)....

  6. Detonation Synthesis of Alpha-Variant Silicon Carbide

    Science.gov (United States)

    Langenderfer, Martin; Johnson, Catherine; Fahrenholtz, William; Mochalin, Vadym

    2017-06-01

    A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional synthesis of α-SiC results in formation of crystals greater than 100 nm in diameter, outside nano-scale. It has been theorized that the high temperature and pressure of an explosive detonation can be used for the formation of α-SiC in the sub 100 nm range. This paper will discuss in detail the process development for detonation nanomaterial synthesis facilities, optimization of explosive charge parameters to maximize nanomaterial yield, and introduction of silicon to the detonation reaction environment to achieve first synthesis of nano-sized alpha variant silicon carbide.

  7. Low-temperature synthesis of silicon carbide powder using shungite

    International Nuclear Information System (INIS)

    Gubernat, A.; Pichor, W.; Lach, R.; Zientara, D.; Sitarz, M.; Springwald, M.

    2017-01-01

    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600°C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500°C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders. (Author)

  8. Low-temperature synthesis of silicon carbide powder using shungite

    Energy Technology Data Exchange (ETDEWEB)

    Gubernat, A.; Pichor, W.; Lach, R.; Zientara, D.; Sitarz, M.; Springwald, M.

    2017-07-01

    The paper presents the results of investigation the novel and simple method of synthesis of silicon carbide. As raw material for synthesis was used shungite, natural mineral rich in carbon and silica. The synthesis of SiC is possible in relatively low temperature in range 1500–1600°C. It is worth emphasising that compared to the most popular method of SiC synthesis (Acheson method where the temperature of synthesis is about 2500°C) the proposed method is much more effective. The basic properties of products obtained from different form of shungite and in wide range of synthesis temperature were investigated. The process of silicon carbide formation was proposed and discussed. In the case of synthesis SiC from powder of raw materials the product is also in powder form and not requires any additional process (crushing, milling, etc.). Obtained products are pure and after grain classification may be used as abrasive and polishing powders. (Author)

  9. Magnesium silicide production and silane synthesis on its basis

    International Nuclear Information System (INIS)

    Taurbaev, T.I.; Mukashev, F.A.; Manakov, S.M.; Francev, U.V.; Kalblanbekov, B.M.; Akhter, P.; Abbas, M.; Hussain, A.

    2003-01-01

    We had developed an alternative method of production of magnesium silicide with use of ferroalloys of silicon. Magnesium silicide is raw material for silane synthesis. The essence of the method consist of sintering FS -75 (ferrosilicium with 75 % of silicon and 25 % of iron, made by ferroalloy factories) with metal magnesium at temperature of 650 deg. C. The X-ray analysis has shown formation of magnesium silicide. That is further used for synthesis of silane. The output of silane is 60 % in respect of the contents of silicon. After removing the water vapors the mass-spectrometer analysis has estimated the purity of silane as 99.95 % with no detection of phosphine and diborane. (author)

  10. Sol – Gel synthesis and characterization of magnesium peroxide nanoparticles

    International Nuclear Information System (INIS)

    Jaison, J; Chan, Y S; Ashok raja, C; Balakumar, S

    2015-01-01

    Magnesium peroxide is an excellent source of oxygen in agriculture applications, for instance it is used in waste management as a material for soil bioremediation to remove contaminants from polluted underground water, biological wastes treatment to break down hydrocarbon, etc. In the present study, sol-gel synthesis of magnesium peroxide (MgO 2 ) nanoparticles is reported. Magnesium peroxide is odourless; fine peroxide which releases oxygen when reacts with water. During the sol-gel synthesis, the magnesium malonate intermediate is formed which was then calcinated to obtain MgO 2 nanoparticles. The synthesized nanoparticles were characterized using Thermo gravimetric -Differential Thermal Analysis (TG- DTA), X-Ray Diffraction studies (XRD) and High Resolution Transmission Electron Microscope (HRTEM). Our study provides a clear insight that the formation of magnesium malonate during the synthesis was due to the reaction between magnesium acetate, oxalic acid and ethanol. In our study, we can conclude that the calcination temperature has a strong influence on particle size, morphology, monodispersity and the chemistry of the particles. (paper)

  11. Synthesis of magnesium aluminate spinel by periclase and alumina chlorination

    International Nuclear Information System (INIS)

    Orosco, Pablo; Barbosa, Lucía; Ruiz, María del Carmen

    2014-01-01

    Highlights: • Use of chlorination for the synthesis of magnesium aluminate spinel. • The reagents used were alumina, periclase and chlorine. • Isothermal and non-isothermal assays were performed in air and Cl 2 –N 2 flows. • The chlorination produced magnesium aluminate spinel at 700 °C. • Selectivity of the chlorination reaction to obtain spinel is very high. - Abstract: A pyrometallurgical route for the synthesis of magnesium aluminate spinel by thermal treatment of a mechanical mixture containing 29 wt% MgO (periclase) and 71 wt% Al 2 O 3 (alumina) in chlorine atmosphere was developed and the results were compared with those obtained by calcining the same mixture of oxides in air atmosphere. Isothermal and non-isothermal assays were performed in an experimental piece of equipment adapted to work in corrosive atmospheres. Both reagents and products were analyzed by differential thermal analysis (DTA), X-ray diffraction (XRD) and X-ray fluorescence (XRF). Thermal treatment in Cl 2 atmosphere of the MgO–Al 2 O 3 mixture produces magnesium aluminate spinel at 700 °C, while in air, magnesium spinel is generated at 930 °C. The synthesis reaction of magnesium aluminate spinel was complete at 800 °C

  12. Synthesis of nanoparticles of vanadium carbide in the ferrite of nodular cast iron

    CERN Document Server

    Fras, E; Guzik, E; Lopez, H

    2005-01-01

    The synthesis method of nanoparticles of vanadium carbide in nodular cast iron is presented. After introduction of this method, the nanoparticles with 10-70 nm of diameter was obtained in the ferrite. The diffraction investigations confirmed that these particles are vanadium carbides of type V/sub 3/C/sub 4/.

  13. Natural precursor based hydrothermal synthesis of sodium carbide for reactor applications

    Science.gov (United States)

    Swapna, M. S.; Saritha Devi, H. V.; Sebastian, Riya; Ambadas, G.; Sankararaman, S.

    2017-12-01

    Carbides are a class of materials with high mechanical strength and refractory nature which finds a wide range of applications in industries and nuclear reactors. The existing synthesis methods of all types of carbides have problems in terms of use of toxic chemical precursors, high-cost, etc. Sodium carbide (Na2C2) which is an alkali metal carbide is the least explored one and also that there is no report of low-cost and low-temperature synthesis of sodium carbide using the eco-friendly, easily available natural precursors. In the present work, we report a simple low-cost, non-toxic hydrothermal synthesis of refractory sodium carbide using the natural precursor—Pandanus. The formation of sodium carbide along with boron carbide is evidenced by the structural and morphological characterizations. The sample thus synthesized is subjected to field emission scanning electron microscopy (FESEM), x-ray powder diffraction (XRD), ultraviolet (UV)—visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), Raman, and photoluminescent (PL) spectroscopic techniques.

  14. Sonochemical-assisted magnesium borate synthesis from different boron sources

    Directory of Open Access Journals (Sweden)

    Yildirim Meral

    2017-03-01

    Full Text Available In this study, sonochemical-assisted magnesium borate synthesis is studied from different boron sources. Various reaction parameters are successfully applied by a simple and green method. X-ray diffraction (XRD, Fourier transform infrared (FT-IR and Raman spectroscopies are used to characterize the synthesized magnesium borates on the other hand surface morphologies are investigated by using scanning electron microscope (SEM. The XRD analyses showed that the products were admontite [MgO(B2O33 · 7(H2O] with JCPDS (Joint Committee on Powder Diffraction Standards no. of 01-076-0540 and mcallisterite [Mg2(B6O7(OH62 · 9(H2O] with JCPDS no. of 01-070-1902. The results that found in the spectroscopic studies were in a good agreement with characteristic magnesium borate bands in both regions of infra-red and visible. According to SEM results, obtained borates were in micro and sub-micro scales. By the use of ultrasonication, reaction yields were found between 84.2 and 97.9%. As a result, it is concluded that the sonochemical approach is a practicable synthesis method to get high efficiency and high crystallinity in the synthesis magnesium borate compounds.

  15. Synthesis of Bulk Superconducting Magnesium Diboride

    Directory of Open Access Journals (Sweden)

    Margie Olbinado

    2002-06-01

    Full Text Available Bulk polycrystalline superconducting magnesium diboride, MgB2, samples were successfully prepared via a one-step sintering program at 750°C, in pre Argon with a pressure of 1atm. Both electrical resistivity and magnetic susceptibility measurements confirmed the superconductivity of the material at 39K, with a transition width of 5K. The polycrystalline nature, granular morphology, and composition of the sintered bulk material were confirmed using X-ray diffractometry (XRD, scanning electron microscopy (SEM, and energy dispersive X-ray analysis (EDX.

  16. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-01-01

    Graphical abstract: Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH) 2 nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH) 2 nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH) 2 ) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH) 2 nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes

  17. Synthesis of carbon fibre-reinforced, silicon carbide composites by ...

    Indian Academy of Sciences (India)

    carbon fibre (Cf) reinforced, silicon carbide matrix composites which are ... eral applications, such as automotive brakes, high-efficiency engine systems, ... The PIP method is based on the use of organo metallic pre-ceramic precursors.

  18. Platinum group metal nitrides and carbides: synthesis, properties and simulation

    International Nuclear Information System (INIS)

    Ivanovskii, Alexander L

    2009-01-01

    Experimental and theoretical data on new compounds, nitrides and carbides of the platinum group 4d and 5d metals (ruthenium, rhodium, palladium, osmium, iridium, platinum), published over the past five years are summarized. The extreme mechanical properties of platinoid nitrides and carbides, i.e., their high strength and low compressibility, are noted. The prospects of further studies and the scope of application of these compounds are discussed.

  19. Synthesis of nanocrystalline magnesium nitride (Mg3N2) powder using thermal plasma

    International Nuclear Information System (INIS)

    Kim, Dong-Wook; Kim, Tae-Hee; Park, Hyun-Woo; Park, Dong-Wha

    2011-01-01

    Nanocrystalline magnesium nitride (Mg 3 N 2 ) powder was synthesized from bulk magnesium by thermal plasma at atmospheric pressure. Magnesium vapor was generated through heating the bulk magnesium by DC plasma jet and reacted with ammonia gas. Injecting position and flow rates of ammonia gas were controlled to investigate an ideal condition for Mg 3 N 2 synthesis. The synthesized Mg 3 N 2 was cooled and collected on the chamber wall. Characteristics of the synthesized powders for each experimental condition were analyzed by X-ray diffractometer (XRD), scanning electron microscopy (SEM) and thermogravity analysis (TGA). In absence of NH 3 , magnesium metal powder was formed. The synthesis with NH 3 injection in low temperature region resulted in a formation of crystalline magnesium nitride with trigonal morphology, whereas the mixture of magnesium metal and amorphous Mg 3 N 2 was formed when NH 3 was injected in high temperature region. Also, vaporization process of magnesium was discussed.

  20. Iron Carbides in Fischer–Tropsch Synthesis: Theoretical and Experimental Understanding in Epsilon-Iron Carbide Phase Assignment

    International Nuclear Information System (INIS)

    Liu, Xing-Wu; Cao, Zhi; Zhao, Shu; Gao, Rui

    2017-01-01

    As active phases in low-temperature Fischer–Tropsch synthesis for liquid fuel production, epsilon iron carbides are critically important industrial materials. However, the precise atomic structure of epsilon iron carbides remains unclear, leading to a half-century of debate on the phase assignment of the ε-Fe 2 C and ε’-Fe 2.2 C. Here, we resolve this decades-long question by a combining theoretical and experimental investigation to assign the phases unambiguously. First, we have investigated the equilibrium structures and thermal stabilities of ε-Fe x C, (x = 1, 2, 2.2, 3, 4, 6, 8) by first-principles calculations. We have also acquired X-ray diffraction patterns and Mössbauer spectra for these epsilon iron carbides, and compared them with the simulated results. These analyses indicate that the unit cell of ε-Fe 2 C contains only one type of chemical environment for Fe atoms, while ε’-Fe 2.2 C has six sets of chemically distinct Fe atoms.

  1. Production of boron carbide powder by carbothermal synthesis of ...

    Indian Academy of Sciences (India)

    TECS

    weight armour plates etc (Alizadeh et al 2004). It can also be used as a reinforcing material for ceramic matrix composites. It is an excellent neutron absorption material in nuclear industry due to its high neutron absorption co- efficient (Sinha et al 2002). Boron carbide can be prepared by reaction of elemental boron and ...

  2. Synthesis and investigation of silicon carbide nanowires by HFCVD ...

    Indian Academy of Sciences (India)

    Silicon carbide (SiC) nanowire has been fabricated by hot filament chemical vapour .... −5. Torr by mechanical and dif- fusion vacuum pumps, then high purity H2 gas was fed into it. ... to standard PDF card numbers of 01-074-2307 and 01-.

  3. Synthesis of Nano-Light Magnesium Hydride for Hydrogen Storage ...

    African Journals Online (AJOL)

    Abstract. Nano-light magnesium hydride that has the capability for hydrogen storage was synthesized from treatment of magnesium ribbon with hydrogen peroxide. The optimum time for complete hydrogenation of the magnesium hydride was 5 hours.

  4. Effect of cutting parameters on machinability characteristics in milling of magnesium alloy with carbide tool

    Directory of Open Access Journals (Sweden)

    Kaining Shi

    2016-01-01

    Full Text Available Magnesium alloy has attracted more attentions due to its excellent mechanical properties. However, in process of dry cutting operation, many problems restrict its further development. In this article, the effect of cutting parameters on machinabilities of magnesium alloy is explored under dry milling condition. This research is an attempt to investigate the impact of cutting speed at multiple feed rates on cutting force and surface roughness, while a statistical analysis is adopted to determine the influential intensities accurately. The results showed that cutting force is affected by the positively constant intensity from feed rate and the increasingly negative intensity from cutting speed. In contrast, surface roughness is determined by the gradually increasing negative tendency from feed rate and the positive effect with constant intensity from cutting speed. Within the range of the experiments, feed rate is the leading contribution for cutting force while the cutting speed is the dominant factor for surface roughness according to the absolute intensity values. Meanwhile, the trends of influencing intensities between cutting force and surface roughness are opposite. Besides, it is also found that in milling magnesium alloy, chip morphology is highly sensitive to cutting speed while the chip quality mainly depends on feed rate.

  5. Synthesis of titanium carbide from wood by self-propagating high temperature synthesis

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2010-05-01

    Full Text Available Titanium carbide (TiC particles were obtained in situ by a self-propagating high temperature synthesis (SHS of wooddust with TiO2 and Mg. The reaction was carried out in a SHS reactor under static argon gas at the pressure of 0.5 MPa. Thestandard Gibbs energy minimization method was used to calculate the equilibrium composition of the reacting species. Theeffects of increasing Mg mole ratio to the precursor mixture of TiO2 and wood dusts were investigated. XRD and SEManalyses indicate a complete reaction of the precursors to yield TiC-MgO as a product composite. The synthesized compositeswere leached with 0.1M HCl acid solution to obtain TiC particles as final products.

  6. Synthesis of transfer-free graphene on cemented carbide surface.

    Science.gov (United States)

    Yu, Xiang; Zhang, Zhen; Liu, Fei; Ren, Yi

    2018-03-19

    Direct growth of spherical graphene with large surface area is important for various applications in sensor technology. However, the preparation of transfer-free graphene on different substrates is still a challenge. This study presents a novel approach for the transfer-free graphene growth directly on cemented carbide. The used simple thermal annealing induces an in-situ transformation of magnetron-sputtered amorphous silicon carbide films into the graphene matrix. The study reveals the role of Co, a binding phase in cemented carbides, in Si sublimation process, and its interplay with the annealing temperature in development of the graphene matrix. A detailed physico-chemical characterisation was performed by structural (XRD analysis and Raman spectroscopy with mapping studies), morphological (SEM) and chemical (EDS) analyses. The optimal bilayer graphene matrix with hollow graphene spheres on top readily grows at 1000 °C. Higher annealing temperature critically decreases the amount of Si, which yields an increased number of the graphene layers and formation of multi-layer graphene (MLG). The proposed action mechanism involves silicidation of Co during thermal treatment, which influences the existing chemical form of Co, and thus, the graphene formation and variations in a number of the formed graphene layers.

  7. Room-temperature Electrochemical Synthesis of Carbide-derived Carbons and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury [Drexel Univ., Philadelphia, PA (United States). Nanomaterials Group. Materials Science and Engineering Dept.

    2015-02-28

    This project addresses room-temperature electrochemical etching as an energy-efficient route to synthesis of 3D nanoporous carbon networks and layered 2D carbons and related structures, as well as provides fundamental understanding of structure and properties of materials produced by this method. Carbide-derived-carbons (CDCs) are a growing class of nanostructured carbon materials with properties that are desirable for many applications, such as electrical energy and gas storage. The structure of these functional materials is tunable by the choice of the starting carbide precursor, synthesis method, and process parameters. Moving from high-temperature synthesis of CDCs through vacuum decomposition above 1400°C and chlorination above 400°C, our studies under the previous DOE BES support led to identification of precursor materials and processing conditions for CDC synthesis at temperatures as low as 200°C, resulting in amorphous and highly reactive porous carbons. We also investigated synthesis of monolithic CDC films from carbide films at 250-1200°C. The results of our early studies provided new insights into CDC formation, led to development of materials for capacitive energy storage, and enabled fundamental understanding of the electrolyte ions confinement in nanoporous carbons.

  8. Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, Samar J. [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)]. E-mail: samar@mail.ucf.edu; Bhatt, Himesh A. [Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida, Orlando, FL 32816-2450 (United States)

    2007-05-16

    During recent years, there have been efforts in developing nanocrystalline bioceramics, to enhance their mechanical and biological properties for use in tissue engineering applications. In this research, we made an attempt to synthesize nanocrystalline bioactive hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}, HAp) ceramic powder in the lower-end of nano-range (2-10 nm), using a simple low-temperature sol-gel technique and studied its densification behavior. We further studied the effects of metal ion dopants during synthesis on powder morphology, and the properties of the sintered structures. Calcium nitrate and triethyl phosphite were used as precursors for calcium and phosphorous, respectively, for sol-gel synthesis. Calculated quantities of magnesium oxide and zinc oxide were incorporated as dopants into amorphous dried powder, prior to calcination at 250-550 {sup o}C. The synthesized powders were analyzed for their phases using X-ray diffraction technique and characterized for powder morphology and particle size using transmission electron microscopy (TEM). TEM analysis showed that the average particle size of the synthesized powders were in the range of 2-10 nm. The synthesized nano-powders were uniaxially compacted and then sintered at 1250 {sup o}C and 1300 {sup o}C for 6 h, separately, in air. A maximum average sintered density of 3.29 g/cm{sup 3} was achieved in structures sintered at 1300 {sup o}C, developed from nano-powder doped with magnesium. Vickers hardness testing was performed to determine the hardness of the sintered structures. Uniaxial compression tests were performed to evaluate the mechanical properties. Bioactivity and biodegradation behavior of the sintered structures were assessed in simulated body fluid (SBF) and maintained in a dynamic state.

  9. Boron carbide synthesis by carbothermic reduction of boron oxide

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Paschoal, J.O.A.

    1988-01-01

    Boron carbide (B 4 C) is a ceramic material of technological applications due to its extreme hardness and high chemical as well as thermal stability. Some parameters of the process for obtaining B 4 C by carbothermic reduction of B 2 O 3 have been determined. The starting powders and the final products have been analysed by chemical, spectrographic and X-ray diffraction methods. The results show that the B 4 C obtained by the carbothermic reduction process is suitable for applications with a definite determination of the free carbon content. (author) [pt

  10. High-gravity combustion synthesis and in situ melt infiltration: A new method for preparing cemented carbides

    International Nuclear Information System (INIS)

    Liu, Guanghua; Li, Jiangtao; Yang, Zengchao; Guo, Shibin; Chen, Yixiang

    2013-01-01

    A new method of high-gravity combustion synthesis and in situ melt infiltration is reported for preparing cemented carbides, where hot nickel melt is in situ synthesized from a highly exothermic combustion reaction and then infiltrated into tungsten carbide powder compacts. The as-prepared sample showed a homogeneous microstructure, and its relative density, hardness and flexural strength were 94.4%, 84 HRA and 1.49 GPa, respectively. Compared with conventional powder metallurgy approaches, high-gravity combustion synthesis offers a fast and furnace-free way to produce cemented carbides

  11. Synthesis and characterisation of star polymer/silicon carbide nanocomposites

    International Nuclear Information System (INIS)

    Majewski, Peter; Choudhury, Namita Roy; Spori, Doris; Wohlfahrt, Ellen; Wohlschloegel, Markus

    2006-01-01

    A new type of composite material's preparation and property are reported in this paper. The composite was formed by solution blending a styrene ethylene butylenes (SEBS) star polymer with silicon carbide at various compositions. The composites were characterised using spectroscopic, microscopic and thermal techniques. Photo-acoustic Fourier transform infrared spectroscopy (PA-FT-IR) and transmission electron microscopy (TEM) results show that the SiC resides uniformly in the organic network. Thermogravimetric analysis (TGA) of the hybrid shows that the thermal stability of the composite is higher than that of the star polymer. The maximum decomposition temperature increases by 73 deg. C. Dynamic mechanical analysis (DMA) of the hybrid shows that the storage modulus of the star polymer increases after the composite formation, indicating the existence of thermodynamically stable SiC nanoparticles mostly in the micro-phase separated multiarm structure of the polymer

  12. SYNTHESIS OF STYRENE-BUTADIENE STATISTIC COPOLYMERS CONTAINING MAGNESIUM INITIATOR

    Directory of Open Access Journals (Sweden)

    A. V. Firsova

    2015-01-01

    Full Text Available The article discusses the use of organomagnesium initiators in the synthesis of styrene-butadiene random copolymer (SBR obtained solution polymerization and their influence on the properties of rubber. Selected organic magnesium dialkyl initiator is combined with a modifier, which is a mixed alkoxide of an alkali and alkaline earth metals, which allows to control the micr ostructure of the diene polymer and its molecular weight characteristics. Alcohol derivatives selected high-boiling alcohols tetra (hydroxypropyl ethylenediamine (lapromol 294 and tetrahydrofurfuryl alcohol (TGFS. Selection of high-boiling alcohols due to the fact that the destruction of alkoxide with aqueous polymer degassing they do not fall into the return solvent and almost fall into the exact water. The metal components of alkoxides are lithium, sodium, potassium, magnesium and calcium. The resulting solutions are stable when stored modifier t hroughout the year even at -40 °C. The scheme of obtaining the new catalyst systems based organomagnesium and alcoxide of alkali and alkaline earth metals, which yields as functionalized SBR with a statistical and a distribution block of butadiene and styrene was developed. The process of copolymerization with styrene to butadiene organomagnesium initiators as using an organolithium compound (n-butyllithium was carried out, and without it. Found that the addition of n-butyllithium in the reaction mixture leads to a sharp increase in the rate of reaction. The results of studies of the effect of composition of the initiator system on the structure of diene polymers. It was revealed that a mixed initiator system affords a high conversion of monomers (to 90 % in 1 hour 1,2-polybutadiene content increased to 60 %. The process of polymerization of only a mixture of organomagnesium initiators and alcoxide of alkali and alkaline earth metals are not actively proceeds, conversion of the monomers reaches to 90 % in 4 hours, the microstructure

  13. Controlled formation of iron carbides and their performance in Fischer-Tropsch synthesis

    KAUST Repository

    Wezendonk, Tim A.

    2018-04-19

    Iron carbides are unmistakably associated with the active phase for Fischer-Tropsch synthesis (FTS). The formation of these carbides is highly dependent on the catalyst formulation, the activation method and the operational conditions. Because of this highly dynamic behavior, studies on active phase performance often lack the direct correlation between catalyst performance and iron carbide phase. For the above reasons, an extensive in situ Mössbauer spectroscopy study on highly dispersed Fe on carbon catalysts (Fe@C) produced through pyrolysis of a Metal Organic Framework was coupled to their FTS performance testing. The preparation of Fe@C catalysts via this MOF mediated synthesis allows control over the active phase formation and therefore provides an ideal model system to study the performance of different iron carbides. Reduction of fresh Fe@C followed by low-temperature Fischer-Tropsch (LTFT) conditions resulted in the formation of the ε′-Fe2.2C, whereas carburization of the fresh catalysts under high-temperature Fischer-Tropsch (HTFT) resulted in the formation of χ-Fe5C2. Furthermore, the different activation methods did not alter other important catalyst properties, as pre- and post-reaction transmission electron microscopy (TEM) characterization confirmed that the iron nanoparticle dispersion was preserved. The weight normalized activities (FTY) of χ-Fe5C2 and ε′-Fe2.2C are virtually identical, whilst it is found that ε′-Fe2.2C is a better hydrogenation catalyst than χ-Fe5C2. The absence of differences under subsequent HTFT experiments, where χ-Fe5C2 is the dominating phase, is a strong indication that the iron carbide phase is responsible for the differences in selectivity.

  14. Synthesis of silicon carbide by carbothermal reduction of silica

    International Nuclear Information System (INIS)

    Abel, Joao Luis

    2009-01-01

    The production of silicon carbide (SiC) in an industrial scale still by carbothermal reduction of silica. This study aims to identify, in a comparative way, among the common reducers like petroleum coke, carbon black, charcoal and graphite the carbothermal reduction of silica from the peat. It is shown, that the peat, also occurs in nature together with high purity silica sand deposits, where the proximity of raw materials and their quality are key elements that determine the type, purity and cost of production of SiC. Tests were running from samples produced in the electric resistance furnace with controlled atmosphere at temperatures of 1550 degree C, 1600 degree C and 1650 degree C, both the precursors and products of reaction of carbothermal reduction were characterized by applying techniques of X-ray diffraction, scanning electron microscopy (SEM) and Energy-Dispersive X-ray analysis Spectroscopy (EDS). The results showed the formation of SiC for all common reducers, as well as for peat, but it was not possible to realize clearly the difference between them, being necessary, specific tests. (author)

  15. Niobium carbide synthesis by solid-gas reaction using a rotating cylinder reactor

    International Nuclear Information System (INIS)

    Fontes, F.A.O.; Gomes, K.K.P.; Oliveira, S.A.; Souza, C.P.; Sousa, J.F.; Rio Grande do Norte Univ., Natal, RN

    2004-01-01

    A rotating cylinder reactor was designed for the synthesis of niobium carbide powders at 1173 K. Niobium carbide, NbC, was prepared by carbothermal reduction starting from commercial niobium pentoxide powders. The reactor was heated using a custom-made, two-part, hinged, electric furnace with programmable temperature control. The design and operational details of the reactor are presented. The longitudinal temperature gradient inside the reactor was determined. Total reaction time was monitored by a gas chromatograph equipped with an FID detector for determination of methane concentrations. The results show that time of reaction depended on rotation speed. NbC was also prepared in a static-bed alumina reactor using the same conditions as in the previous case. The niobium carbide powders were characterized by X-ray diffraction and compared with commercially available products. Morphological, particle size distribution and surface area analyses were obtained using SEM, LDPS and BET, respectively. Therefore, the present study offers a significant technological contribution to the synthesis of NbC powders in a rotating cylinder reactor. (author)

  16. Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals

    International Nuclear Information System (INIS)

    Chen, Bo; Yang, Lishan; Heng, Hua; Chen, Jingzhong; Zhang, Linfei; Xu, Liqiang; Qian, Yitai; Yang, Jian

    2012-01-01

    General and simple methods for the syntheses of borides, carbides and nitrides are highly desirable, since those materials have unique physical properties and promising applications. Here, a series of boride (TiB 2 , ZrB 2 , NbB 2 , CeB 6 , PrB 6 , SmB 6 , EuB 6 , LaB 6 ), carbide (SiC, TiC, NbC, WC) and nitride (TiN, BN, AlN, MgSiN 2 , VN) micro/nanocrystals were prepared from related oxides and amorphous boron/active carbon/NaN 3 with the assistance of metallic Na and elemental S. In-situ temperature monitoring showed that the reaction temperature could increase quickly to ∼850 °C, once the autoclave was heated to 100 °C. Such a rapid temperature increase was attributed to the intense exothermic reaction between Na and S, which assisted the formation of borides, carbides and nitrides. The as-obtained products were characterized by XRD, SEM, TEM, and HRTEM techniques. Results in this report will greatly benefit the future extension of this approach to other compounds. - Graphical abstract: An additive-assisted approach is successfully developed for the syntheses of borides, carbides and nitrides micro/nanocrystals with the assistance of the exothermic reaction between Na and S. Highlights: ► An additive-assisted synthesis strategy is developed for a number of borides, carbides and nitrides. ► The reaction mechanism is demonstrated by the case of SiC nanowires. ► The formation of SiC nanowires is initiated by the exothermic reaction of Na and S.

  17. Reactions of zinc hydride and magnesium hydride with pyridine; synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes

    NARCIS (Netherlands)

    Koning, A.J. de; Boersma, J.; Kerk, G.J.M. van der

    1980-01-01

    The synthesis and characterization of 1,4-dihydro-1-pyridylzinc and -magnesium complexes are described. Zinc hydride and magnesium hydride dissolve in and react with pyridine, and the reaction has been studied in detail in the case of zinc hydride. Evaporation of the solvent after 1–2 hours at 0°C

  18. Synthesis of niobium carbide by a high energy milling technique of powder metallurgy

    International Nuclear Information System (INIS)

    Antonello, Rodrigo Tecchio; Gonzalez, Cezar Henrique; Urtiga Filho, Severino Leopoldino; Araujo Filho, Oscar Olimpio de; Ambrozio Filho, Francisco

    2010-01-01

    The aim of this work is to obtain and characterize the Niobium Carbide (NbC) by a suitable high energy milling technique using a SPEX Mill vibratory type and niobium and carbon (graphite) powders. Since this carbide is scarced in the national market and it's necessary to apply this NbC as a reinforcement in two molybdenum high speed steels (AISI M2 and AISI M3:2) object of another work motivated this research. The powders were submitted to a high energy milling procedure for suitable times and conditions and then were characterized by means of Scanning Electronic Microscopy (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (DRX) techniques. The ball-to-powder weight ratio was 10:1. The analysed samples showed that the high-energy milling is an alternative route of the NbC synthesis. (author)

  19. Synthesis of niobium carbide (NbC) by powder metallurgy high energy milling technique

    International Nuclear Information System (INIS)

    Antonello, Rodrigo Tecchio; Urtiga Filho, Severino Leopoldino; Araujo Filho, Oscar Olimpio de; Ambrozio Filho, Francisco; Gonzalez, Cezar Henrique

    2009-01-01

    The aim of this work is to obtain and characterize the Niobium Carbide (NbC) by a suitable high energy milling technique using a SPEX Mill vibratory type and niobium and carbon (graphite) powders. Since this carbide is scarce in the national market and it's necessary to apply this NbC as a reinforcement in two molybdenum high speed steels (AISI M2 and AISI M3:2) object of another work motivated this research. The powders were submitted to a high energy milling procedure for suitable times and conditions and then were characterized by means of Scanning Electronic Microscopy (SEM) and X-ray diffraction (DRX) techniques. The ball-to-powder weight ratio was 10:1. The analysed samples showed that the high-energy milling is an alternative route of the NbC synthesis. (author)

  20. Magnesium Borate Synthesis by Microwave Energy: A New Method

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2013-01-01

    Full Text Available Magnesium borates are one of the major groups of boron minerals that have important properties such as high heat and corrosion resistances and high coefficients of elasticity. In this study, magnesium borate minerals are synthesized using boric acid and magnesium oxide with a new method of microwave, and the synthesized minerals are characterized by various analysis techniques. The results show that pure, “magnesium borate hydrate” minerals are obtained at the end of various steps. The characterization of the products is determined with the techniques of X-Ray Diffraction (XRD, Fourier Transform Infrared Spectroscopy (FT-IR, Raman Spectroscopy, and Scanning Electron Microscopy (SEM. Additionally, overall “magnesium borate hydrate” yields are calculated and found about 67% at 270 W, 8 minutes and 360 W, 3 minutes of reaction times, respectively.

  1. Study of the synthesis of nanocrystalline mixed tantalum–zirconium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Simonenko, E. P., E-mail: ep-simonenko@mail.ru; Simonenko, N. P.; Ezhov, Yu. S.; Sevastyanov, V. G.; Kuznetsov, N. T. [Russian Academy of Sciences, Kurnakov Institute of General and Inorganic Chemistry (Russian Federation)

    2015-12-15

    The synthesis conditions of refractory tantalum–zirconium carbide Ta{sub 0.8}Zr{sub 0.2}C on the basis of Ta{sub 2}O{sub 5}–ZrO{sub 2}–C ultrafine initial blend prepared via the sol–gel method are explored. The initial blend is prepared via hydrolysis in the presence of Ta(OC{sub 5}H{sub 11}){sub 5} and [Zr(O{sub 2}C{sub 5}H{sub 7}){sub 4–x}(OC{sub 5}H{sub 11}){sub x}] carbon source polymer solutions, gel drying, and carbonization at a temperature of 450°C. A series of the carbothermal synthesis experiments is implemented at various temperatures and exposure times. The synthesis conditions are shown to affect not only the phase composition of products but also their oxidation resistance related to the particle size.

  2. Guidelines for Synthesis and Processing of 2D Titanium Carbide (Ti3C2Tx MXene)

    KAUST Repository

    Alhabeb, Mohamed

    2017-08-25

    Two-dimensional (2D) transition metal carbides, carbonitrides and nitrides (MXenes) were discovered in 2011. Since the original discovery, more than 20 different compositions have been synthesized by the selective etching of MAX phase and other precursors and many more theoretically predicted. They offer a variety of different properties, making the family promising candidates in a wide range of applications, such as energy storage, electromagnetic interference shielding, water purification, electrocatalysis and medicine. These solution-processable materials have the potential to be highly scalable, deposited by spin, spray or dip coating, painted or printed, or fabricated in a variety of ways. Due to this promise, the amount of research on MXenes has been increasing, and methods of synthesis and processing are expanding quickly. The fast evolution of the material can also be noticed in the wide range of synthesis and processing protocols that determine the yield of delamination, as well as the quality of the 2D flakes produced. Here we describe the experimental methods and best practices we use to synthesize the most studied MXene, titanium carbide (Ti3C2Tx), using different etchants and delamination methods. We also explain effects of synthesis parameters on the size and quality of Ti3C2Tx and suggest the optimal processes for the desired application.

  3. Synthesis of microsphere silicon carbide/nanoneedle manganese oxide composites and their electrochemical properties as supercapacitors

    Science.gov (United States)

    Kim, Myeongjin; Yoo, Youngjae; Kim, Jooheon

    2014-11-01

    Synthesis of microsphere silicon carbide/nanoneedle MnO2 (SiC/N-MnO2) composites for use as high-performance materials in supercapacitors is reported herein. The synthesis procedure involves the initial treatment of silicon carbide (SiC) with hydrogen peroxide to obtain oxygen-containing functional groups to provide anchoring sites for connection of SiC and the MnO2 nanoneedles (N-MnO2). MnO2 nanoneedles are subsequently formed on the SiC surface. The morphology and microstructure of the as-prepared composites are characterized via X-ray diffractometry, field-emission scanning electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The characterizations indicate that MnO2 nanoneedles are homogeneously formed on the SiC surface in the composite. The capacitive properties of the as-prepared SiC/N-MnO2 electrodes are evaluated using cyclic voltammetry, galvanostatic charge/discharge testing, and electrochemical impedance spectroscopy in a three-electrode experimental setup using a 1-M Na2SO4 aqueous solution as the electrolyte. The SiC/N-MnO2(5) electrode, for which the MnO2/SiC feed ratio is 5:1, displays a specific capacitance as high as 273.2 F g-1 at 10 mV s-1.

  4. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics

    International Nuclear Information System (INIS)

    Reau, A.

    2008-12-01

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC f /SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  5. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides

    OpenAIRE

    Gobara, Mohamed; Shamekh, Mohamed; Akid, Robert

    2015-01-01

    A composite consisting of magnesium matrix reinforced with a network of TiC–Ti2AlC–TiB2 particulates has been fabricated using a practical in-situ reactive infiltration technique. The microstructural and phase composition of the magnesium matrix composite (R-Mg) was investigated using SEM/EDS and XRD. The analyses revealed the complete formation of TiC, Ti2AlC and TiB2 particles in the magnesium matrix. Comparative compression tests of R-Mg and AZ91D alloy showed that the reinforcing particle...

  6. Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides

    Directory of Open Access Journals (Sweden)

    Mohamed Gobara

    2015-06-01

    Full Text Available A composite consisting of magnesium matrix reinforced with a network of TiC–Ti2AlC–TiB2 particulates has been fabricated using a practical in-situ reactive infiltration technique. The microstructural and phase composition of the magnesium matrix composite (R-Mg was investigated using SEM/EDS and XRD. The analyses revealed the complete formation of TiC, Ti2AlC and TiB2 particles in the magnesium matrix. Comparative compression tests of R-Mg and AZ91D alloy showed that the reinforcing particles improve the mechanical properties of Mg alloy. EIS and potentiodynamic polarization results indicated that the reinforcing particles significantly improve the corrosion resistance of the reinforced alloy in 3.5% NaCl solution.

  7. Synthesis and studies of some magnesium complexes of aromatic hydrazones

    International Nuclear Information System (INIS)

    Adeniyi, A.A.; Oyedeji, O.O.; Aremu, J.A.; Okedeyi, J.O.; Bourne, S.A.

    2006-01-01

    Six esters were synthesized from their parent acids, while their corresponding hydrazides were subsequently synthesized from these asters. The hydrazides, on reaction with benzaldehyde, produced their respective hydrazones, namely, benzoic hydrazone (BH), m-nitrobenzoic hydrazone (m-NBH), p-nitrobenzoic hydrazone (p-NBH), 3,5 dinitrobenzoic hydrazone (3,5-dnbh), m-aminobenzoic hydrazone (m-ABH), and p-aminobenzoic hydrazone (p-ABH). These hydrazones, on interaction with magnesium chloride yielded their corresponding magnesium complexes. These complexes were off-white, grey or brownish in colour. These complexes were characterized on the basis of spectral data and metal analysis. Metal to ligand stoichiometry of 1: 3/2 and 1: 5/2 has been proposed for the complexes. The relevant infrared bands in the ligands and complexes were used to assign the probable point(s) of coordination. (author)

  8. NewIn-situ synthesis method of magnesium matrix composites reinforced with TiC particulates

    Directory of Open Access Journals (Sweden)

    Zhang Xiuqing

    2006-12-01

    Full Text Available Magnesium matrix composites reinforced with TiC particulates was prepared using a new in-situ synthesis method of remelting and dilution technique. And measurements were performed on the composites. The results of x ray diffraction (XRD analysis confirmed that TiC particulates were synthesized during the sintering process, and they retained in magnesium matrix composites after the remelting and dilution processing. From the microstructure characterization and electron probe microanalysis (EPMA, we could see that fine TiC particulates distributed uniformly in the matrix material.

  9. Synthesis and characterization of nanostructured titanium carbide for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Paviter; Singh, Harwinder; Singh, Bikramjeet; Kaur, Manpreet; Kaur, Gurpreet; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com [Advanced Functional Material Laboratory, Department of Nanotechnology,, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140 406 Punjab (India); Kumar, Manjeet [Department of Materials Engineering, Defense Institute of Advanced Technology (DU), Pune-411 025 (India); Bala, Rajni [Department of Mathematics Punjabi University Patiala-147 002 Punjab (India)

    2016-04-13

    Titanium carbide (TiC) nanoparticles have been successfully synthesized by carbo-thermic reaction of titanium and acetone at 800 °C. This method is relatively low temperature synthesis route. It can be used for large scale production of TiC. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA) techniques. XRD analysis confirmed the formation of single phase TiC. XRD analysis confirmed that the particles are spherical in shape with an average particle size of 13 nm. DTA analysis shows that the phase is stable upto 900 °C and the material can be used for high temperature applications.

  10. Chemical synthesis and stabilization of magnesium substituted brushite

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun [Department of Biomedical Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Mechanical Engineering and Materials Sceince, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2010-08-30

    Hydroxyapatite (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) is the most ubiquitous calcium phosphate phase used in implant coatings and more recently in gene/drug delivery applications due to its chemical stability under normal physiological conditions (37 deg. C, pH {approx} 7.5, 1 atm.). However, different calcium phosphate phases, such as brushite (CaH(PO{sub 4}){center_dot}2(H{sub 2}O)) and tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) which are thermodynamically unstable under physiological conditions are also being explored for biomedical applications. One way of stabilizing these phases under physiological conditions is to introduce magnesium to substitute for calcium in the brushite lattice. The role of magnesium as a stabilizing agent for synthesizing brushite under physiological conditions at room temperature has been studied. Chemical analysis, Fourier transform infrared spectroscopy and X-ray diffraction have also been conducted to validate the formation of magnesium substituted brushite under physiological conditions.

  11. Novel low temperature synthesis of spinel nano-magnesium chromites from secondary resources

    Energy Technology Data Exchange (ETDEWEB)

    El-Sheikh, S.M., E-mail: selsheikh2001@gmail.com [Nanostructured Materials Laboratory, Advanced Material Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt); Rabbah, M., E-mail: mahmoud.rabah@ymail.com [Electrochemical and Chemical Treatment Laboratory, Minerals Department, Central Metallurgical R and D Institute (CMRDI), P.O. Box 78, Helwan, 11421 Cairo (Egypt)

    2013-09-20

    Graphical abstract: FE-SEM micrograph and TEM image of magnesium chromite sample heated at 500 °C. - Highlights: • No study has been reported to prepare spinel magnesium chromite form waste resources. • Novel low synthesis temperature of magnesium chromite. • Selective removal of Ca ions from industrial waste tannery solution is rarely reported. • The method applied is simple and safe. - Abstract: A novel low temperature method for synthesis of nano-crystalline magnesium chromites from the tannery waste solution was investigated. Magnesium and chromium hydroxides gel was co-precipitated at pH 8.5 using ammonia solution. MgCr{sub 2}O{sub 4} was obtained by heating the gel formed at different temperatures 300–500 °C for to 8 h. FT-IR, TG-DTG-DTA, FE-SEM and TEM were used to investigate the produced materials. XRD patterns of the primary oxides revealed the formation of amorphous oxide phase by heating at 300 °C. Heating at 400 °C produces nano-crystallite magnesium chromites partly having the structure MgCrO{sub 4} and mainly MgCr{sub 2}O{sub 4} and traces of Cr{sub 2}O{sub 3}{sup +} 500 °C MgCrO{sub 4} mostly decomposed into MgCr{sub 2}O{sub 4} structure{sub .} After 8 h of heating at 500 °C, Cr{sub 2}O{sub 3} completely disappeared. A high surface area about 42.6 m{sup 2}/g and mesoporous structure was obtained for the produced sample at 500 °C for 8 h. A thermodynamic model has been suggested to explain the findings.

  12. Active carbon supported molybdenum carbides for higher alcohols synthesis from syngas

    DEFF Research Database (Denmark)

    Wu, Qiongxiao; Chiarello, Gian Luca; Christensen, Jakob Munkholt

    This work provides an investigation of the high pressure CO hydrogenation to higher alcohols on K2CO3 promoted active carbon supported molybdenum carbide. Both activity and selectivity to alcohols over supported molybdenum carbides increased significantly compared to bulk carbides in literatures...

  13. Self-propelled magnesium based micromotors: synthesis and magnetic steering

    Directory of Open Access Journals (Sweden)

    Jin Dongdong

    2015-01-01

    Full Text Available In this work the magnesium based Janus micromotors were prepared by an asymmetric coating of Co-Au bilayer on the surface of Mg microparticles. The micromotor could efficiently self-propel in phosphate buffer saline (PBS with a highest speed of 221 μm·s−1 without any extra additives through the macrogalvanic corrosion and pitting corrosion mechanism. The influence of pH value of PBS buffer on the motion of micromotor was also investigated. Moreover, we demonstrated that the motion of micromotor could be controlled by an external magnetic field rapidly and accurately, indicating the potential application in biomedicine.

  14. Microwave assisted synthesis and characterization of magnesium substituted calcium phosphate bioceramics

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Nida Iqbal [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, M. A. Jinnah Campus, Defence Road, Off Raiwind Road, Lahore (Pakistan); Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Ijaz, Kashif; Zahid, Muniza; Khan, Abdul S. [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, M. A. Jinnah Campus, Defence Road, Off Raiwind Road, Lahore (Pakistan); Abdul Kadir, Mohammed Rafiq [Medical Implant Technology Group (MEDITEG), Faculty of Bioscience and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor Darul Takzim (Malaysia); Hussain, Rafaqat [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Skudai, Johore (Malaysia); Anis-ur-Rehman [Department of Physics, COMSATS Institute of Information Technology, Chakshahzad Campus, Islamabad (Pakistan); Darr, Jawwad A. [Clean Materials Technology Group, Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Ihtesham-ur-Rehman [The Kroto Research Institute, North Campus, University of Sheffield, Broad Lane, Sheffield S3 7HQ (United Kingdom); Chaudhry, Aqif A., E-mail: aqifanwar@ciitlahore.edu.pk [Interdisciplinary Research Centre in Biomedical Materials, COMSATS Institute of Information Technology, M. A. Jinnah Campus, Defence Road, Off Raiwind Road, Lahore (Pakistan)

    2015-11-01

    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900 °C for 1 h) reduced twelve folds (to 2 h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1 h) at 900 °C. - Highlights: • Microwave irradiation of suspensions of calcium phosphates accelerated maturation. • Reactions took 2 h to complete as compared to 18 h required traditionally. • Magnesium contents higher than 1 wt.% lead to the presence of non-apatitic phases. • Agglomerates with micron and sub-micron porosity were obtained after heat-treatment.

  15. High pressure synthesis and investigations of properties of boron allotropes and boron carbide

    International Nuclear Information System (INIS)

    Chuvashova, Irina

    2017-01-01

    This work aimed at the development of the high-pressure high-temperature (HPHT) synthesis of single crystals of boron allotropes and boron-rich compounds, which could be used further for precise investigations of their structures, properties, and behavior at extreme conditions. To summarize, the present work resulted in the HPHT synthesis of the first previously unknown non-icosahedral boron allotrope ζ-B. This finding confirmed earlier theoretical predictions, which stayed unproven for decades because of experimental challenges which couldn't be overcome until recently. Structural stability of α-B and β-B in the Mbar pressure range and B 13 C 2 up to 68 GPa was experimentally proven. Accurate measurements of the unit cell and B 12 icosahedra volumes of the stoichiometric boron carbide B 13 C 2 as a function of pressure led to conclusion that they undergo a similar reduction upon compression that is typical for covalently bonded solids. Neither 'molecular-like' nor 'inversed molecular-like' solid behavior upon compression was detected that has closed a long-standing scientific dispute. A comparison of the compressional behavior of B 13 C 2 with that of α-B and γ-B allotropes and B 4 C showed that it is determined by the types of bonding involved in the course of compression.

  16. High pressure synthesis and investigations of properties of boron allotropes and boron carbide

    Energy Technology Data Exchange (ETDEWEB)

    Chuvashova, Irina

    2017-06-12

    This work aimed at the development of the high-pressure high-temperature (HPHT) synthesis of single crystals of boron allotropes and boron-rich compounds, which could be used further for precise investigations of their structures, properties, and behavior at extreme conditions. To summarize, the present work resulted in the HPHT synthesis of the first previously unknown non-icosahedral boron allotrope ζ-B. This finding confirmed earlier theoretical predictions, which stayed unproven for decades because of experimental challenges which couldn't be overcome until recently. Structural stability of α-B and β-B in the Mbar pressure range and B{sub 13}C{sub 2} up to 68 GPa was experimentally proven. Accurate measurements of the unit cell and B{sub 12} icosahedra volumes of the stoichiometric boron carbide B{sub 13}C{sub 2} as a function of pressure led to conclusion that they undergo a similar reduction upon compression that is typical for covalently bonded solids. Neither 'molecular-like' nor 'inversed molecular-like' solid behavior upon compression was detected that has closed a long-standing scientific dispute. A comparison of the compressional behavior of B{sub 13}C{sub 2} with that of α-B and γ-B allotropes and B{sub 4}C showed that it is determined by the types of bonding involved in the course of compression.

  17. Synthesis of Binary Magnesium-Transition Metal Oxides via Inverse Coprecipitation

    Science.gov (United States)

    Yagi, Shunsuke; Ichikawa, Yuya; Yamada, Ikuya; Doi, Takayuki; Ichitsubo, Tetsu; Matsubara, Eiichiro

    2013-02-01

    Synthesis of binary magnesium-transition metal oxides, MgM2O4 (M: Cr, Mn, Fe, Co) and MgNiO2, was performed by calcination at relatively low temperatures of 500 and 750 °C for 24 h through inverse coprecipitation of carbonate hydroxide precursors. The important roles of the precipitation agent, sodium carbonate, were clarified by considering equilibria in an aqueous solution. The structure parameters of the obtained binary magnesium-transition metal oxide powders, specifically the occupancy of atomic sites, were evaluated from synchrotron X-ray diffraction (XRD) profiles by Rietveld refinement in addition to the magnetic properties at room temperature. The present work provides general guidelines for low-cost and high-volume synthesis of complex oxides, which are easily decomposed at high temperatures.

  18. A facile synthesis of phenazine and quinoxaline derivatives using magnesium sulfate heptahydrate as a catalyst

    Directory of Open Access Journals (Sweden)

    BAHADOR KARAMI

    2011-09-01

    Full Text Available Convenient and simple procedures for the synthesis of phenazine and quinoxaline derivatives were developed via a reaction of o-phenylenediamines and 1,2-dicarbonyl compounds. In addition, the synthesis of two new 1,4-benzodiazine derivatives and the catalytic activity of magnesium sulfate heptahydrate (MgSO4·7H2O in the room temperature condensation of o-phenylenediamines and 1,2-dicarbonyl compounds in ethanol as solvent are reported. This method has many appealing attributes, such as excellent yields, short reaction times, and simple work-up procedures.

  19. Synthesis and Characterization of Magnesium Substituted Aluminophosphate Molecular Sieves with AEL Structure

    Institute of Scientific and Technical Information of China (English)

    Benjing Xu; Ling Qian; Xinmei Liu; Chunmin Song; Zifeng Yan

    2004-01-01

    MAPO-11 molecular sieves were synthesized by hydrothermal methods. The influence of precursor of magnesium, Mg/Al ratio, synthesis temperature, synthesis time and the type of template on the formation and properties of MAPO-11 molecular sieves was examined. The samples were characterized by the techniques of X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric/differential thermogravimetric analysis (TG-DGA), etc. The results show that the shape and size of crystal were influenced by the precursor of Mg, the Mg/Al ratio and the type of template, and the TG-DGA analysis shows that MAPO-11 molecular sieves as-synthesized have poor thermal stability.

  20. Synthesis and properties of topologically ordered porous magnesium

    International Nuclear Information System (INIS)

    Kirkland, N.T.; Kolbeinsson, I.; Woodfield, T.; Dias, G.J.; Staiger, M.P.

    2011-01-01

    A processing method is described for the preparation of controllable macroscopic architectures in open-cell porous magnesium (Mg). Various macroscopic architectures were devised with computer aided design (CAD). The CAD models were then fabricated as positive templates by 3D printing using an acrylic polymer. The polymer templates could be infiltrated using a specially formulated sodium chloride (NaCl) slurry. Complete removal of the polymer then resulted in a negative NaCl template that was infiltrated with liquid Mg. Optimization of the parameters for the processing of the negative NaCl template was achieved by initially investigating the effect of sintering conditions on the microstructure and mechanical properties of bulk NaCl. Subsequent removal of the NaCl by solvent washing results in Mg with ordered porosity that faithfully reproduced the macroscopic features of the CAD models. The dimensions of the macroscopic features of the positive polymer and NaCl templates were compared to assess the accuracy of replication.

  1. Effect of aging hardening on in situ synthesis magnesium matrix composites

    International Nuclear Information System (INIS)

    Zhang Xiuqing; Liao Lihua; Ma Naiheng; Wang Haowei

    2006-01-01

    Magnesium matrix composites reinforced with TiC particulates was synthesized using in situ synthesis technique. The result of XRD revealed the presence of TiC in precursor blocks and TiC/AZ91 composites. Effect of aging hardening on the composites was described using Brinell hardness measurements and scanning electron microscopy (SEM). The results revealed that the aging hardening peak of TiC/AZ91 composite appeared earlier comparatively with that of AZ91 magnesium alloy. And the appearance of aging hardening peak was earlier under the higher aging temperature such as 200 deg. C. The precipitating behavior of Mg 17 Al 12 phase in AZ91 alloy and TiC/AZ91 composites was described. Little discontinuous was discovered in the composites, and the amount of continuous precipitate in the composite matrix is smaller comparatively to that of AZ91 alloy. These results were analyzed with the fine grain size, much more interface between TiC and magnesium and high-density dislocation in magnesium matrix, which was contributed to the addition of TiC particulates

  2. Synthesis of Magnesium Nickel Boride Aggregates via Borohydride Autogenous Pressure.

    Science.gov (United States)

    Shahbazi, Mahboobeh; Cathey, Henrietta E; Mackinnon, Ian D R

    2018-03-23

    We demonstrate synthesis of the ternary intermetallic MgNi₃B₂ using autogenous pressure from the reaction of NaBH₄ with Mg and Ni metal powder. The decomposition of NaBH₄ to H₂ and B₂H₆ commences at low temperatures in the presence of Mg and/or Ni and promotes formation of Ni-borides and MgNi₃B₂ with the increase in temperature. MgNi₃B₂ aggregates with Ni-boride cores are formed when the reaction temperature is >670 °C and autogenous pressure is >1.7 MPa. Morphologies and microstructures suggest that solid-gas and liquid-gas reactions are dominant mechanisms and that Ni-borides form at a lower temperature than MgNi₃B₂. Magnetic measurements of the core-shell MgNi₃B₂ aggregates are consistent with ferromagnetic behaviour in contrast to stoichiometric MgNi₃B₂ which is diamagnetic at room temperature.

  3. Synthesis of hybrid sol-gel coatings for corrosion protection of we54-ae magnesium alloy

    International Nuclear Information System (INIS)

    Hernández-Barrios, C A; Peña, D Y; Coy, A E; Duarte, N Z; Hernández, L M; Viejo, F

    2013-01-01

    The present work shows some preliminary results related to the synthesis, characterization and corrosion evaluation of different hybrid sol-gel coatings applied on the WE54-AE magnesium alloy attending to the two experimental variables, i.e. the precursors ratio and the aging time, which may affect the quality and the electrochemical properties of the coatings resultant. The experimental results confirmed that, under some specific experimental conditions, it was possible to obtain homogeneous and uniform, porous coatings with good corrosion resistance that also permit to accommodate corrosion inhibitors

  4. The Synthesis and Physical Properties of Magnesium Borate Mineral of Admontite Synthesized from Sodium Borates

    Directory of Open Access Journals (Sweden)

    Azmi Seyhun Kipcak

    2014-01-01

    Full Text Available Magnesium borates are significant compounds due to their advanced mechanical and thermal durability properties. This group of minerals can be used in ceramic industry, in detergent industry, and as neutron shielding material, phosphor of thermoluminescence by dint of their extraordinary specialties. In the present study, the synthesis of magnesium borate via hydrothermal method from sodium borates and physical properties of synthesized magnesium borate minerals were investigated. The characterization of the products was carried out by X-ray diffraction (XRD, Fourier transform infrared (FT-IR and Raman spectroscopies, and differential thermal analysis and thermal gravimetry (DTA/TG. The surface morphology was examined by scanning electron microscopy (SEM. B2O3 content was determined through titration. The electrical resistivity/conductivity properties of products were measured by Picoammeter Voltage Source. UV-vis spectrometer was used to investigate optical absorption characteristics of synthesized minerals in the range 200–1000 nm at room temperature. XRD results identified the synthesized borate minerals as admontite [MgO(B2O33·7(H2O] with code number “01-076-0540” and mcallisterite [Mg2(B6O7(OH62·9(H2O] with code number “01-070-1902.” The FT-IR and Raman spectra of the obtained samples were similar with characteristic magnesium borate bands. The investigation of the SEM images remarked that both nano- and microscale minerals were produced. The reaction yields were between 75.1 and 98.7%.

  5. Synthesis of carbide fuels from nano-structured precursors: impact on carbo-reduction and physico-chemical properties

    International Nuclear Information System (INIS)

    Saravia, Alvaro

    2015-01-01

    The classical way classically used for manufacturing carbide fuels consists of carbo-reducing at high temperature (1600 C) and under primary vacuum a mixture of AnO 2 and graphite powders. These conditions are disadvantageous for the synthesis of mixed (U,Pu)C carbides on account of plutonium volatilization. Therefore, one of the main aims of these studies is to decrease the carbo-reduction temperature. The experiments focused mainly on the lowering of the uranium oxide temperature. This result has been obtained with the use of uranium oxide and carbon nano-structured precursors. To achieve this goal colloidal suspensions of uranium oxide have been prepared and stabilized by cellulosic ethers. Cellulosic ethers are both stabiliser for uranium oxide nanoparticles and carbon source for carbo-reduction. It has been shown that these precursors are more efficient for carbo-reduction than the standard precursors: a reduction of 300 C of carbo-reduction temperature has been obtained. The impact of these precursors on carbo-reduction and on physico-chemical properties as well as the structural and microstructural characterizations of the obtained carbides have been carried out. (author) [fr

  6. Synthesis and phase transformation mechanism of Nb{sub 2}C carbide phases

    Energy Technology Data Exchange (ETDEWEB)

    Vishwanadh, B., E-mail: visubathula@gmail.com [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India); Murthy, T.S.R.Ch. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India); Arya, A.; Tewari, R.; Dey, G.K. [Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400 094 (India)

    2016-06-25

    In the present work, Niobium carbide samples were prepared through powder metallurgy route using spark plasma sintering technique. Some of these samples were heat treated at 900 °C up to 7 days. In order to investigate the phase transformation in Nb{sub 2}C carbide, the as-prepared and heat treated samples were characterized by X-ray diffraction, scanning electron microscopy and electron back scattered diffraction (EBSD) and transmission electron microscopy techniques. EBSD could index the same area of the sample in terms of any of the three allotropes of Nb{sub 2}C carbide phases (γ-Nb{sub 2}C, β-Nb{sub 2}C and α-Nb{sub 2}C) with good confidence index. From the EBSD patterns orientation relationships (OR) among γ, β and α-Nb{sub 2}C have been determined. Based on this OR when crystals of the three allotropes were superimposed, it has revealed that the basic Nb metal atom lattice (hcp lattice) in all the Nb{sub 2}C phases is same. The only difference exists in the carbides is the ordering of carbon atoms and vacancies in the octahedral positions of the hcp Nb metal atom lattice. Crystallographic analysis showed that for the transformation of γ-Nb{sub 2}C → β-Nb{sub 2}C → α-Nb{sub 2}C, large movement of Nb atoms is not required; but only by ordering of carbon atoms ensues the phase transformation. Literature shows that in the Nb–C system formation of the α-Nb{sub 2}C is not well established. Therefore, first principle calculations were carried out on these carbides. It revealed that the formation energy for α-Nb{sub 2}C is lower than the β and γ-Nb{sub 2}C carbides which indicate that the formation of α-Nb{sub 2}C is thermodynamically feasible. - Highlights: • Nb{sub 2}C carbide was produced by Spark Plasma Sintering in a single process. • Phase transformation mechanism of different Nb{sub 2}C carbide phases is studied. • In all the three Nb{sub 2}C carbides (γ, β, α), the base Nb lattice remains same. • Among γ, β and α-Nb{sub 2}C

  7. Microstructure of reactive synthesis TiC/Cr18Ni8 stainless steel bonded carbides

    Institute of Scientific and Technical Information of China (English)

    Jiang Junsheng; Liu Junbo; Wang Limei

    2008-01-01

    TiC/Cr18Ni8 steel bonded carbides were synthesized by vacuum sintering with mixed powders of iron, ferrotitanium, ferrochromium, colloidal graphite and nickel as raw materials. The microstructure and microhardness of the steel bonded carbides were analyzed by scanning electron microscope (SEM),X-ray diffraction (XRD) and Rockwell hardometer. Results show that the phases of steel bonded carbides mainly consist of TiC and Fe-Cr-Ni solid solution. The synthesized TiC particles are fine. Most of them are not more than 1 μm With the increase of sintering temperature, the porosity of TiC/Cr18Ni8 steel bonded carbides decreases and the density and hardness increase, but the size of TiC panicles slightly increases. Under the same sintering conditions, the density and hardness of steel bonded carbides with C/Ti atomic ratio 0.9 are higher than those with C/Ti atomic ratio 1.0.The TiC particles with C/Ti atomic ratio 0.9 are much finer and more homogeneous.

  8. Metal Immiscibility Route to Synthesis of Ultrathin Carbides, Borides, and Nitrides.

    Science.gov (United States)

    Wang, Zixing; Kochat, Vidya; Pandey, Prafull; Kashyap, Sanjay; Chattopadhyay, Soham; Samanta, Atanu; Sarkar, Suman; Manimunda, Praveena; Zhang, Xiang; Asif, Syed; Singh, Abhisek K; Chattopadhyay, Kamanio; Tiwary, Chandra Sekhar; Ajayan, Pulickel M

    2017-08-01

    Ultrathin ceramic coatings are of high interest as protective coatings from aviation to biomedical applications. Here, a generic approach of making scalable ultrathin transition metal-carbide/boride/nitride using immiscibility of two metals is demonstrated. Ultrathin tantalum carbide, nitride, and boride are grown using chemical vapor deposition by heating a tantalum-copper bilayer with corresponding precursor (C 2 H 2 , B powder, and NH 3 ). The ultrathin crystals are found on the copper surface (opposite of the metal-metal junction). A detailed microscopy analysis followed by density functional theory based calculation demonstrates the migration mechanism, where Ta atoms prefer to stay in clusters in the Cu matrix. These ultrathin materials have good interface attachment with Cu, improving the scratch resistance and oxidation resistance of Cu. This metal-metal immiscibility system can be extended to other metals to synthesize metal carbide, boride, and nitride coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Synthesis and magnetic properties of highly dispersed tantalum carbide nanoparticles decorated on carbon spheres

    CSIR Research Space (South Africa)

    Bhattacharjee, K

    2016-01-01

    Full Text Available The decoration of carbon spheres (CS) by highly dispersed tantalum carbide nanoparticles (TaC NPs) was achieved, for the first time by a unique carbothermal reduction method at 1350 °C for 30 min under reduced oxygen partial pressure. TaC NPs...

  10. Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion route

    International Nuclear Information System (INIS)

    Saberi, Ali; Golestani-Fard, Farhad; Sarpoolaky, Hosein; Willert-Porada, Monika; Gerdes, Thorsten; Simon, Reinhard

    2008-01-01

    Nanocrystalline magnesium aluminate spinel (MgAl 2 O 4 ) was synthesized using metal nitrates, citric acid and ammonium solutions. The precursor and the calcined powders at different temperatures were characterized by X-ray diffraction (XRD), simultaneous thermal analysis (STA), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The combustion mechanism was also studied by a quadrupole mass spectrometer (QMS) which coupled to STA. The generated heat through the combustion of the mixture of ammonium nitrate and citrate based complexes decreased the synthesis temperature of MgAl 2 O 4 spinel. The synthesized MgAl 2 O 4 spinel at 900 deg. C has faced shape with crystallite size in the range of 18-24 nm

  11. ENTIRELY AQUEOUS SOLUTION-GEL ROUTE FOR THE PREPARATION OF ZIRCONIUM CARBIDE, HAFNIUM CARBIDE AND THEIR TERNARY CARBIDE POWDERS

    Directory of Open Access Journals (Sweden)

    Zhang Changrui

    2016-07-01

    Full Text Available An entirely aqueous solution-gel route has been developed for the synthesis of zirconium carbide, hafnium carbide and their ternary carbide powders. Zirconium oxychloride (ZrOCl₂.8H₂O, malic acid (MA and ethylene glycol (EG were dissolved in water to form the aqueous zirconium carbide precursor. Afterwards, this aqueous precursor was gelled and transformed into zirconium carbide at a relatively low temperature (1200 °C for achieving an intimate mixing of the intermediate products. Hafnium and the ternary carbide powders were also synthesized via the same aqueous route. All the zirconium, hafnium and ternary carbide powders exhibited a particle size of ∼100 nm.

  12. Low-temperature synthesis of homogeneous nanocrystalline cubic silicon carbide films

    International Nuclear Information System (INIS)

    Cheng Qijin; Xu, S.

    2007-01-01

    Silicon carbide films are fabricated by inductively coupled plasma chemical vapor deposition from feedstock gases silane and methane heavily diluted with hydrogen at a low substrate temperature of 300 deg. C. Fourier transform infrared absorption spectroscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy analyses show that homogeneous nanocrystalline cubic silicon carbide (3C-SiC) films can be synthesized at an appropriate silane fraction X[100%xsilane flow(SCCM)/silane+methane flow(SCCM)] in the gas mixture. The achievement of homogeneous nanocrystalline 3C-SiC films at a low substrate temperature of 300 deg. C is a synergy of a low deposition pressure (22 mTorr), high inductive rf power (2000 W), heavy dilution of feedstock gases silane and methane with hydrogen, and appropriate silane fractions X (X≤33%) in the gas mixture employed in our experiments

  13. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Directory of Open Access Journals (Sweden)

    Lkhamsuren Bayarjargal

    2011-09-01

    Full Text Available Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p; T stability, compressibility and hardness is described as obtained from experiments.

  14. Synthesis of Binary Transition Metal Nitrides, Carbides and Borides from the Elements in the Laser-Heated Diamond Anvil Cell and Their Structure-Property Relations

    Science.gov (United States)

    Friedrich, Alexandra; Winkler, Björn; Juarez-Arellano, Erick A.; Bayarjargal, Lkhamsuren

    2011-01-01

    Transition metal nitrides, carbides and borides have a high potential for industrial applications as they not only have a high melting point but are generally harder and less compressible than the pure metals. Here we summarize recent advances in the synthesis of binary transition metal nitrides, carbides and borides focusing on the reaction of the elements at extreme conditions generated within the laser-heated diamond anvil cell. The current knowledge of their structures and high-pressure properties like high-(p,T) stability, compressibility and hardness is described as obtained from experiments. PMID:28824101

  15. High temperature synthesis of ceramic composition by directed reaction of molten titanium or zirconium with boron carbide

    International Nuclear Information System (INIS)

    Johnson, W.B.

    1990-01-01

    Alternative methods of producing ceramics and ceramic composites include sintering, hot pressing and more recently hot isostatic pressing (HIP) and self-propagating high temperature synthesis (SHS). Though each of these techniques has its advantages, each suffers from several restrictions as well. Sintering may require long times at high temperatures and for most materials requires sintering aids to get full density. These additives can, and generally do, change (often degrade) the properties of the ceramic. Hot pressing and hot isostatic pressing are convenient methods to quickly prepare samples of some materials to full density, but generally are expensive and may damage some types of reinforcements during densification. This paper focuses on the preparation and processing of composites prepared by the directed reaction of molten titanium or zirconium with boron carbide. Advantages and disadvantages of this approach when compared to traditional methods are discussed, with reference to specific examples. Examples of microstructure are properties of these materials are reported

  16. Guidelines for Synthesis and Processing of 2D Titanium Carbide (Ti3C2Tx MXene)

    KAUST Repository

    Alhabeb, Mohamed; Maleski, Kathleen; Anasori, Babak; Lelyukh, Pavel; Clark, Leah; Sin, Saleesha; Gogotsi, Yury

    2017-01-01

    been increasing, and methods of synthesis and processing are expanding quickly. The fast evolution of the material can also be noticed in the wide range of synthesis and processing protocols that determine the yield of delamination, as well

  17. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Seyfoori, A., E-mail: klm.1985@yahoo.com [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); National Cell Bank, Pasteur Institute of Iran, 13164 Tehran (Iran, Islamic Republic of); Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A. [School of Metallurgy and Materials Engineering, Iran University of Science and Technology, 16846-13114 Tehran (Iran, Islamic Republic of); Aliofkhazraei, M. [Department of Materials Engineering, Faculty of Engineering, Tarbiat Modares University, 14115-143 Tehran (Iran, Islamic Republic of)

    2013-10-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained.

  18. Synthesis of biphasic calcium phosphate containing nanostructured films by micro arc oxidation on magnesium alloy

    International Nuclear Information System (INIS)

    Seyfoori, A.; Mirdamadi, Sh.; Seyedraoufi, Z.S.; Khavandi, A.; Aliofkhazraei, M.

    2013-01-01

    The present research reports the synthesis of an innovative nanostructured composite film containing biphasic calcium phosphate (BCP) by the micro arc oxidation (MAO) method on AZ31 magnesium alloy. Nanometric structure of the used hydroxyapatite powder and the coatings were characterized by means of transmission and field-emission scanning electron microscope, respectively. Electrochemical behaviors of the pure MAO and nanocomposite films were also evaluated by electrochemical impedance spectroscopy and potentiodynamic polarization tests in simulated body fluid (SBF) environment. The results showed higher corrosion resistance of nanocomposite film compared to pure MAO coating, which was related to the blocking feature of the nanoparticles from the diffusing of the corrosive medium through the substrate. In addition, by immersing the specimens in simulated body fluid, greater apatite forming ability of the nanocomposite coating was proved. - Highlights: • Synthesis of innovative biphasic calcium phosphate containing nanostructured films via micro arc oxidation. • Nanocomposite film has lower degradation rate than pure MAO film. • Greater apatite forming ability for nanocomposite coating compared with pure MAO film is obtained

  19. Rf-plasma synthesis of nanosize silicon carbide and nitride. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buss, R.J.

    1997-02-01

    A pulsed rf plasma technique is capable of generating ceramic particles of 10 manometer dimension. Experiments using silane/ammonia and trimethylchlorosilane/hydrogen gas mixtures show that both silicon nitride and silicon carbide powders can be synthesized with control of the average particle diameter from 7 to 200 nm. Large size dispersion and much agglomeration appear characteristic of the method, in contrast to results reported by another research group. The as produced powders have a high hydrogen content and are air and moisture sensitive. Post-plasma treatment in a controlled atmosphere at elevated temperature (800{degrees}C) eliminates the hydrogen and stabilizes the powder with respect to oxidation or hydrolysis.

  20. Effective synthesis of silicon carbide nanotubes by microwave heating of blended silicon dioxide and multi-walled carbon nanotube

    Energy Technology Data Exchange (ETDEWEB)

    Tony, Voo Chung Sung; Voon, Chun Hong; Lee, Chang Chuan and others, E-mail: chvoon@unimap.edu.my [Institute of Nano Electronic Engineering, University Malaysia (Malaysia)

    2017-11-15

    Silicon carbide nanotube (SiCNTs) has been proven as a suitable material for wide applications in high power, elevated temperature and harsh environment. For the first time, we reported in this article an effective synthesis of SiCNTs by microwave heating of SiO{sub 2} and MWCNTs in molar ratio of 1:1, 1:3, 1:5 and 1:7. Blend of SiO{sub 2} and MWCNTs in the molar ratio of 1:3 was proven to be the most suitable for the high yield synthesis of β-SiCNTs as confirmed by X-ray diffraction pattern. Only SiCNTs were observed from the blend of MWCNTs and SiO{sub 2} in the molar ratio of 1:3 from field emission scanning electron microscopy imaging. High magnification transmission electron microscopy showed that tubular structure of MWCNT was preserved with the inter-planar spacing of 0.25 nm. Absorption bands of Si-C bond were detected at 803 cm-1 in Fourier transform infrared spectrum. Thermal gravimetric analysis revealed that SiCNTs from ratio of 1:3 showed the lowest weight loss. Thus, our synthetic process indicates high yield conversion of SiO{sub 2} and MWCNTs to SiCNTs was achieved for blend of SiO{sub 2} and MWCNTs in molar ratio of 1:3. (author)

  1. Synthesis and characterization of group V metal carbide and nitride catalysts

    Science.gov (United States)

    Kwon, Heock-Hoi

    1998-11-01

    Group V transition metal carbides and nitrides were prepared via the temperature programmed reaction (TPR) of corresponding oxides with NHsb3 or a CHsb4/Hsb2 mixture. Except for the tantalum compounds, phase-pure carbides and nitrides were prepared. The vanadium carbides and nitrides were the most active and selective catalysts. Therefore the principal focus of the research was the preparation, characterization, and evaluation of high surface area vanadium nitride catalysts. A series of vanadium nitrides with surface areas up to 60 msp2/g was prepared. Thermal gravimetric analysis coupled with x-ray diffraction and scanning electron microscopy indicated that the solid-state reaction proceeded by the sequential reduction of Vsb2Osb5 to VOsb{0.9} and concluded with the topotactic substitution of nitrogen for oxygen in VOsb{0.9}. The transformation of Vsb2Osb5 to VN was pseudomorphic. An experimental design was executed to determine effects of the heating rates and space velocities on the VN microstructures. The heating rates had minor effects on the surface areas and pore size distributions; however, increasing the space velocity significantly increased the surface area. The materials were mostly mesoporous. Oxygen chemisorption on the vanadium nitrides scaled linearly with the surface area. The corresponding O/Vsbsurface ratio was ≈0.6. The vanadium nitrides were active for butane activation and pyridine hydrodenitrogenation. During butane activation, their selectivities towards dehydrogenation products were as high as 98%. The major product in pyridine hydrodenitrogenation was pentane. The reaction rates increased almost linearly with the surface area suggesting that these reactions were structure insensitive. The vanadium nitrides were not active for crotonaldehyde hydrogenation; however, they catalyzed an interesting ring formation reaction that produced methylbenzaldehyde and xylene from crotonaldehyde. A new method was demonstrated for the production of very

  2. Effect of temperature on synthesis and properties of aluminum-magnesium mechanical alloys

    International Nuclear Information System (INIS)

    Umbrajkar, Swati M.; Schoenitz, Mirko; Jones, Steven R.; Dreizin, Edward L.

    2005-01-01

    The synthesis of an Al 0.7 Mg 0.3 mechanical alloy was studied using a planetary mill. Several distinct temperature regimes of mechanical alloying were achieved using milling jars equipped with finned heat sinks and an external air conditioner installed to cool the entire milling chamber. Wireless temperature sensors were attached to the milling jars to monitor the process temperature. Intermediate and final products were collected and were analyzed by electron microscopy and X-ray diffraction. The temperature history of the milling jars exhibited two peaks during mechanical alloying. The first peak occurred when particles of the starting powders deformed to produce flakes. The second peak was observed when the flakes agglomerated and re-fragmented forming layered composites that served as precursors for the mechanical alloy. The temperature of milling affected the magnesium solubility of the produced Al-Mg mechanical alloys. Decreasing the milling temperature from ∼70-80 deg. C to 20-30 deg. C resulted in an increase of the dissolved Mg concentration in Al from 2-3 at.% to ∼25 at.% for the Al 0.7 Mg 0.3 composition. The formation of intermetallic phases was favored at higher milling temperatures, where high solubilities cannot be achieved

  3. Effect of temperature on synthesis and properties of aluminum-magnesium mechanical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Umbrajkar, Swati M. [New Jersey Institute of Technology, Department of Mechanical Engineering, Newark, NJ 07102-1982 (United States); Schoenitz, Mirko [New Jersey Institute of Technology, Department of Mechanical Engineering, Newark, NJ 07102-1982 (United States); Jones, Steven R. [New Jersey Institute of Technology, Department of Mechanical Engineering, Newark, NJ 07102-1982 (United States); Dreizin, Edward L. [New Jersey Institute of Technology, Department of Mechanical Engineering, Newark, NJ 07102-1982 (United States)]. E-mail: dreizin@njit.edu

    2005-10-27

    The synthesis of an Al{sub 0.7}Mg{sub 0.3} mechanical alloy was studied using a planetary mill. Several distinct temperature regimes of mechanical alloying were achieved using milling jars equipped with finned heat sinks and an external air conditioner installed to cool the entire milling chamber. Wireless temperature sensors were attached to the milling jars to monitor the process temperature. Intermediate and final products were collected and were analyzed by electron microscopy and X-ray diffraction. The temperature history of the milling jars exhibited two peaks during mechanical alloying. The first peak occurred when particles of the starting powders deformed to produce flakes. The second peak was observed when the flakes agglomerated and re-fragmented forming layered composites that served as precursors for the mechanical alloy. The temperature of milling affected the magnesium solubility of the produced Al-Mg mechanical alloys. Decreasing the milling temperature from {approx}70-80 deg. C to 20-30 deg. C resulted in an increase of the dissolved Mg concentration in Al from 2-3 at.% to {approx}25 at.% for the Al{sub 0.7}Mg{sub 0.3} composition. The formation of intermetallic phases was favored at higher milling temperatures, where high solubilities cannot be achieved.

  4. Influence of oxygen on the ion-beam synthesis of silicon carbide buried layers in silicon

    International Nuclear Information System (INIS)

    Artamanov, V.V.; Valakh, M.Ya.; Klyui, N.I.; Mel'nik, V.P.; Romanyuk, A.B.; Romanyuk, B.N.; Yukhimchuk, V.A.

    1998-01-01

    The properties of silicon structures with silicon carbide (SiC) buried layers produced by high-dose carbon implantation followed by a high-temperature anneal are investigated by Raman and infrared spectroscopy. The influence of the coimplantation of oxygen on the features of SiC buried layer formation is also studied. It is shown that in identical implantation and post-implantation annealing regimes a SiC buried layer forms more efficiently in CZ Si wafers or in Si (CZ or FZ) subjected to the coimplantation of oxygen. Thus, oxygen promotes SiC layer formation as a result of the formation of SiO x precipitates and accommodation of the volume change in the region where the SiC phase forms. Carbon segregation and the formation of an amorphous carbon film on the SiC grain boundaries are also discovered

  5. Synthesis of tantalum carbide and nitride nanoparticles using a reactive mesoporous template for electrochemical hydrogen evolution

    KAUST Repository

    Alhajri, Nawal Saad; Yoshida, Hiroshi; Anjum, Dalaver H.; Garcia Esparza, Angel T.; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2013-01-01

    Tantalum carbide and nitride nanocrystals were prepared through the reaction of a tantalum precursor with mesoporous graphitic (mpg)-C 3N4. The effects of the reaction temperature, the ratio of the Ta precursor to the reactive template (mpg-C3N4), and the selection of the carrier gas (Ar, N2 and NH3) on the resultant crystal phases and structures were investigated. The produced samples were characterized using powder X-ray diffraction (XRD), CHN elemental analyses, thermogravimetric analyses (TGA), nitrogen sorption, a temperature-programmed reaction with mass spectroscopy (MS), X-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). The results indicate that the different tantalum phases with cubic structure, TaN, Ta2CN, and TaC, can be formed under a flow of nitrogen when formed at different temperatures. The Ta3N5 phase with a Ta5+ oxidation state was solely obtained at 1023 K under a flow of ammonia, which gasified the C 3N4 template and was confirmed by detecting the decomposed gaseous products via MS. Significantly, the formation of TaC, Ta2CN, and TaN can be controlled by altering the weight ratio of the C 3N4 template relative to the Ta precursor at 1573 K under a flow of nitrogen. The high C3N4/Ta precursor ratio generally resulted in high carbide content rather than a nitride one, consistent with the role of mpg-C3N4 as a carbon source. Electrochemical measurements revealed that the synthesized nanomaterials were consistently able to produce hydrogen under acidic conditions (pH 1). The obtained Tafel slope indicates that the rate-determining step is the Volmer discharge step, which is consistent with adsorbed hydrogen being weakly bound to the surface during electrocatalysis. © 2013 The Royal Society of Chemistry.

  6. From nitrides to carbides: topotactic synthesis of the eta-carbides Fe3Mo3C and Co3Mo3C.

    Science.gov (United States)

    Alconchel, Silvia; Sapiña, Fernando; Martínez, Eduardo

    2004-08-21

    The molybdenum bimetallic interstitial carbides Fe(3)Mo(3)C and Co(3)Mo(3)C have been synthesized by temperature-programmed reaction (TPR) between the molybdenum bimetallic interstitial nitrides Fe(3)Mo(3)N and Co(3)Mo(3)N and a flowing mixture of CH(4) and H(2) diluted in Ar. These compounds have been characterized by X-ray diffraction, laser Raman spectroscopy, elemental analysis, energy dispersive analysis of X rays, thermal analysis (in air) and scanning electron microscopy (field emission). Their structures have been refined from X-ray powder diffraction data. These carbides crystallize in the cubic system, space group Fd3m[a= 11.11376(6) and 11.0697(3)[Angstrom] for Fe and Co compounds, respectively].

  7. Synthesis, characterization, and in-vitro cytocompatibility of amorphous β-tri-calcium magnesium phosphate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Satish S., E-mail: sss42@pitt.edu [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Roy, Abhijit, E-mail: abr20@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Lee, Boeun, E-mail: bol11@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Banerjee, Ipsita [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Department of Mechanical Engineering and Materials Science, University of Pittsburgh, PA 15261 (United States)

    2016-10-01

    Biphasic mixtures of crystalline β-tricalcium magnesium phosphate (β-TCMP) and an amorphous calcium magnesium phosphate have been synthesized and reported to support enhanced hMSC differentiation in comparison to β-tricalcium phosphate (β-TCP) due to the release of increased amounts of bioactive ions. In the current study, completely amorphous β-TCMP has been synthesized which is capable of releasing increased amounts of Mg{sup 2+} and PO{sub 4}{sup 3−} ions, rather than a biphasic mixture as earlier reported. The amorphous phase formed was observed to crystallize between temperatures of 400–600 °C. The scaffolds prepared with amorphous β-TCMP were capable of supporting enhanced hMSC proliferation and differentiation in comparison to commercially available β-TCP. However, a similar gene expression of mature osteoblast markers, OCN and COL-1, in comparison to biphasic β-TCMP was observed. To further study the role of Mg{sup 2+} and PO{sub 4}{sup 3−} ions in regulating hMSC osteogenic differentiation, the capability of hMSCs to mineralize in growth media supplemented with Mg{sup 2+} and PO{sub 4}{sup 3−} ions was studied. Interestingly, 5 mM PO{sub 4}{sup 3−} supported mineralization while the addition of 5 mM Mg{sup 2+} to 5 mM PO{sub 4}{sup 3−} inhibited mineralization. It was therefore concluded that the release of Ca{sup 2+} ions from β-TCMP scaffolds also plays a role in regulating osteogenic differentiation on these scaffolds and it is noted that further work is required to more accurately determine the exact role of Mg{sup 2+} in regulating hMSC osteogenic differentiation. - Highlights: • Synthesis of amorphous Mg containing beta tricalcium phosphate ceramics • Amorphous beta TCMP supports enhanced hMSC proliferation and differentiation. • Amorphous beta TCMP shows comparable OCN and COL-1 expression to biphasic TCMP. • Presence of 5 mM Mg{sup 2+} and PO{sub 4}{sup 3−} ions in growth media inhibits hMSC mineralization.

  8. Self propagating high temperature synthesis of mixed carbide and boride powder systems for cutting tools manufacturing

    International Nuclear Information System (INIS)

    Vallauri, D.; Cola, P.L. de; Piscone, F.; Amato, I.

    2001-01-01

    TiC-TiB 2 composites have been produced via SHS technique starting from low cost raw materials like TiO 2 , B 4 C, Mg. The influence of the diluent phase (Mg, TiC) content on combustion temperature has been investigated. The use of magnesium as the reductant phase allowed acid leaching of the undesired oxide product (MgO), leaving pure hard materials with fine particle size suitable to be employed in cutting tools manufacturing through cold pressing and sintering route. The densification has shown to be strongly dependent on the wetting additions. The influence of the metal binder and wetting additions on the sintering process has been investigated. A characterization of the obtained materials was performed by the point of view of cutting tools life (hardness, toughness, strength). (author)

  9. Synthesis and characterization of magnesium gluconate contained poly(lactic-co-glycolic acid)/chitosan microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Rahman, Shekh M. [Department of Chemical, Biological and Bioengineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Mahoney, Christopher [Department of Bioengineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15250 (United States); Sankar, Jagannathan [NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Department of Mechanical Engineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); Marra, Kacey G. [NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States); Department of Bioengineering, University of Pittsburgh, 4200 Fifth Avenue, Pittsburgh, PA 15250 (United States); Department of Plastic Surgery, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15250 (United States); McGowan Institute for Regenerative Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15250 (United States); Bhattarai, Narayan, E-mail: nbhattar@ncat.edu [Department of Chemical, Biological and Bioengineering, North Carolina A& T State University, 1601 East Market Street, Greensboro, NC 27411 (United States); NSF Engineering Research Center for Revolutionizing Metallic Biomaterials, North Carolina A& T State University, Greensboro, NC 27411 (United States)

    2016-01-15

    Graphical abstract: - Highlights: • Magnesium gluconate contained PLGA/chitosan microspheres were fabricated. • In vitro release of magnesium ions was performed using Xylidyl Blue assay. • Chitosan coated PLGA can significantly control the release of magnesium ions. • Cellular compatibility was tested using adipose-derived stem cells and PC12 cells. • The cells encounter acceptably low levels of damage in contact with microspheres. - Abstract: The goal of this study was to fabricate and investigate the chitosan coated poly(lactic-co-glycolic acid) (PLGA) microspheres for the development of controlled release magnesium delivery system. PLGA based microspheres are ideal vehicles for many controlled release drug delivery applications. Chitosan is a naturally occurring biodegradable and biocompatible polysaccharide, which can coat the surface of PLGA to alter the release of drugs. Magnesium gluconate (MgG) was encapsulated in the PLGA and PLGA/chitosan microspheres by utilizing the double emulsion solvent evaporation technique for controlled release study. The microspheres were tested with respect to several physicochemical and biological properties, including morphology, chemical structure, chitosan adsorption efficiency, magnesium encapsulation efficiency, in vitro release of magnesium ions, and cellular compatibility using both human adipose-derived stem cells (ASCs) and PC12 cells. Chitosan coated PLGA microspheres can significantly control the release of magnesium ions compared to uncoated PLGA microspheres. Both coated and uncoated microspheres showed good cellular compatibility.

  10. Mechanically activated synthesis of nanocrystalline ternary carbide Fe{sub 3}Mo{sub 3}C

    Energy Technology Data Exchange (ETDEWEB)

    Zakeri, M. [Materials Science Department, Islamic Azad University (Saveh branch), Saveh (Iran, Islamic Republic of)], E-mail: M_zakeri@iau-saveh.ac.ir; Rahimipour, M.R. [Ceramic Department, Materials and Energy Research Center, Tehran (Iran, Islamic Republic of); Khanmohammadian, A. [Materials Science Department, Islamic Azad University (Saveh branch), Saveh (Iran, Islamic Republic of)

    2008-09-25

    In this investigation, Fe{sub 3}Mo{sub 3}C ternary carbide was synthesized from the elemental powders of 3Mo/3Fe/C by mechanical milling and subsequent heat treatment. Structural and morphological evolutions of powders were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that no phase transformation occurs during milling. A nanostructure Mo (Fe) solid solution obtained after 30 h of milling. With increasing milling time to 70 h no change takes place except grain size reduction to 9 nm and strain enhancement to 0.86%. Milled powders have spheroid shape and very narrow size distribution about 2 {mu}m at the end of milling. Fe{sub 3}Mo{sub 3}C was synthesized during annealing of 70 h milled sample at 700 deg. C. Undesired phases of MoOC and Fe{sub 2}C form at 1100 deg. C. No transformation takes place during annealing of 10 h milled sample at 700 deg. C. Mean grain size and strain get to 69 nm and 0.23% respectively with annealing of 70 h milled sample at 1100 deg. C.

  11. Mechanically activated synthesis of nanocrystalline ternary carbide Fe3Mo3C

    International Nuclear Information System (INIS)

    Zakeri, M.; Rahimipour, M.R.; Khanmohammadian, A.

    2008-01-01

    In this investigation, Fe 3 Mo 3 C ternary carbide was synthesized from the elemental powders of 3Mo/3Fe/C by mechanical milling and subsequent heat treatment. Structural and morphological evolutions of powders were studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Results showed that no phase transformation occurs during milling. A nanostructure Mo (Fe) solid solution obtained after 30 h of milling. With increasing milling time to 70 h no change takes place except grain size reduction to 9 nm and strain enhancement to 0.86%. Milled powders have spheroid shape and very narrow size distribution about 2 μm at the end of milling. Fe 3 Mo 3 C was synthesized during annealing of 70 h milled sample at 700 deg. C. Undesired phases of MoOC and Fe 2 C form at 1100 deg. C. No transformation takes place during annealing of 10 h milled sample at 700 deg. C. Mean grain size and strain get to 69 nm and 0.23% respectively with annealing of 70 h milled sample at 1100 deg. C

  12. Laser ablation synthesis of tantalum carbide particles with specific phase assemblage and special interface

    Energy Technology Data Exchange (ETDEWEB)

    Lin, S.S.; Shen, P. [National Sun Yat-sen University, Department of Materials and Optoelectronic Science, Kaohsiung (China); Chen, S.Y. [I-Shou University, Department of Mechanical and Automation Engineering, Kaohsiung (China)

    2015-07-15

    Pulsed laser ablation of bulk TaC in vacuum under a high power density was used to fabricate fine-sized tantalum carbide particles, i.e., γ-TaC{sub 1-x} with varied extent of carbon deficiency and α-Ta{sub 2}C surrounded by an amorphous phase of Ta-doped carbon clusters or lamellae according to X-ray and electron diffraction. The predominant γ-TaC{sub 1-x} has a high x value (∝0.4) and almost spherical shape when rapidly solidified as submicron-sized particulates, whereas x ∝ 0.2 and facetted with occasional {111} coalescence twin when condensed as nanoparticles. The minor α-Ta{sub 2}C occurred either as nanocondensates with hexagonal crystal form or as a stable epitaxial intergrowth with the γ-TaC{sub 1-x} particulate having close-packed planes in parallel with the precipitation process. The γ-TaC{sub 1-x} and α-Ta{sub 2}C nanocondensates were also coalesced approaching a secondary relationship, i.e., [011]{sub TaC1-x}//[01 anti 1]{sub Ta2C} and (100){sub TaC1-x}//(0001){sub Ta2C} having a fair coincidence site lattice at the interface. The refractory materials have a bimodal minimum band gap (ca. 3.8 and 2.3 eV) for potential optocatalytic and tribology applications at high temperatures. (orig.)

  13. Synthesis of Novel (Polymer Blend-Titanium Carbide Nanocomposites and Studying their Characterizations for Piezoelectric Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Hashima

    2018-05-01

    Full Text Available Piezoelectric nanocomposites are very important for many applications as a pressure sensors. Fabrication of (polyvinyl alcohol - polyvinyl pyrrolidinone -titanium carbide nanocompos- ites and study their structural, electrical, dielectric and optical properties have been in- vestigated. The effect of adding the TiC nanoparticles on structural, electrical, dielectric and optical properties of polymeric blend has been studied. The results showed that the electrical conductivity of (PVA-PVP-TiC nanocomposites is increasing with the increase of TiC nanoparticles concentrations at room temperature. The FTIR analysis showed there is no interactions between (PVA- PVP polymer blend and TiC nanoparticles. The dielectric studies showed the dielectric constant and dielectric loss of nanocomposites increase with the increase of TiC nanoparticles concentrations and they decrease as frequency increased. The A.C electrical conductivity increases with the increase of TiC nanoparticles concentra- tions and frequency. The results of optical properties showed that the optical absorbance of (PVA- PVP polymer blend increases with the increase of TiC nanoparticles concentrations. The optical constants change with increase in TiC nanoparticles concentrations. The piezo- electric application results of (PVA-PVP-TiC nanocomposites showed that the electrical resistance of (PVA-PVP-TiC nanocomposites decreases with an increase of the pressure which make it is suitable for piezoelectric applications or pressure sensors.

  14. STUDY OF GRINDING PROCESS OF TITANIUM CARBIDE PRODUCED WITH SELF-PROPAGATING HIGH TEMPERATURE SYNTHESIS (SPHTS)

    International Nuclear Information System (INIS)

    Kovziridze, Z.; Tabatadze, G.; Donadze, G.; Lezhava, A.; Gventsadze, D.

    2006-01-01

    It is stated that the specific character of SPHTS-preparations of TiC_x consists in crystal lattice strength reflecting the condition of synthesis in ''burning wave''. The use of roentgenographic and other methods of analysis allows to estimate the effect of the conditions of synthesis, causing carbon sublattice defect on grinding intensity of TiC_x phases. Study of the kinetics of vibro-grinding of TiC_x-phases in ethanol and benzene medium allows to establish high grinding intensity of the phases close to stoichiometry and the possibility of high depresion powderds (S_s_p H'' 4.5-6 m"2/g). (author)

  15. Plasma synthesis of titanium nitride, carbide and carbonitride nanoparticles by means of reactive anodic arc evaporation from solid titanium

    International Nuclear Information System (INIS)

    Kiesler, D.; Bastuck, T.; Theissmann, R.; Kruis, F. E.

    2015-01-01

    Plasma methods using the direct evaporation of a transition metal are well suited for the cost-efficient production of ceramic nanoparticles. In this paper, we report on the development of a simple setup for the production of titanium-ceramics by reactive anodic arc evaporation and the characterization of the aerosol as well as the nanopowder. It is the first report on TiC X N 1 − X synthesis in a simple anodic arc plasma. By means of extensive variations of the gas composition, it is shown that the composition of the particles can be tuned from titanium nitride over a titanium carbonitride phase (TiC X N 1 − X ) to titanium carbide as proven by XRD data. The composition of the plasma gas especially a very low concentration of hydrocarbons around 0.2 % of the total plasma gas is crucial to tune the composition and to avoid the formation of free carbon. Examination of the particles by HR-TEM shows that the material consists mostly of cubic single crystalline particles with mean sizes between 8 and 27 nm

  16. Nitrides and carbides of molybdenum and tungsten with high specific-surface area: their synthesis, structure, and catalytic properties

    International Nuclear Information System (INIS)

    Volpe, L.

    1985-01-01

    Temperature-programmed reactions between trioxides of molybdenum or tungsten and ammonia provide a new method to synthesize dimolybdenum and ditungsten nitrides with specific surface areas to two-hundred-and-twenty and ninety-one square meters per gram, respectively. These are the highest values on record for any unsupported metallic powders. They correspond to three-four nonometer particles. The reaction of molybdenum trioxide with ammonia is topotactic in the sense that one-zero-zero planes of dimolybdenum nitride are parallel to zero-one-zero planes of molybdenum trioxide. As the trioxide transforms, it passes through an oxynitride intermediate with changing bulk structure and increasing surface area and extent of reduction. The nitride product consists of platelets, pseudomorphous with the original trioxide, which can be regarded as highly porous defect single crystals. By treating small particles of dimolybdenum or ditungsten nitride with methane-dihydrogen mixtures it is possible to replace interstitial nitrogen atoms by carbon atoms, without sintering, and thus to prepare carbides of molybdenum and tungsten with very high specific surface areas. Molybdenum nitride powders catalyze ammonia synthesis. A pronounced increase in the catalytic activity with increasing particle size confirms the structure-sensitive character of this reaction

  17. Synthesis and characterization of hafnium carbide microcrystal chains with a carbon-rich shell via CVD

    International Nuclear Information System (INIS)

    Tian, Song; Li, Hejun; Zhang, Yulei; Liu, Sen; Fu, Yangxi; Li, Yixian; Qiang, Xinfa

    2013-01-01

    Graphical abstract: Novel HfC microcrystal chains have been synthesized via a catalyst-assisted chemical vapor deposition process. SEM results show the chains have a periodically changing diameter and a nanoscale sharpening tip. Analysis of TEM/SAED/EELS/EDX data shows the single-crystal chains grow along a [0 0 1] direction and consist of a HfC core and a thin carbon-rich shell with embedded HfC nanocrystallites surrounding the core. This work achieves the controllable preparation of nanoscale HfC sharpening tips for application as a point electron emission source and facilitates the application of HfC ultrafast laser-triggered tips in attosecond science. Highlights: •HfC microcrystal chains were synthesized by a catalyst-assisted CVD. •The chains grow along a [0 0 1] direction and have a periodically changing diameter. •Single-crystal HfC core is sheathed by a thin carbon-rich shell. •A growth mechanism model is proposed to explain the growth of microcrystal chians. •This work achieves the controllable preparation of nanoscale HfC sharpening tips. -- Abstract: Novel hafnium carbide (HfC) microcrystal chains, with a periodically changing diameter and a nanoscale sharpening tip at the chain end, have been synthesized via a catalyst-assisted chemical vapor deposition (CVD) process. The as-synthesized chains with many octahedral microcrystals have diameters of between several hundreds of nm and 6 μm and lengths of ∼500 μm. TEM diffraction studies show that the chains are single-crystalline HfC and preferentially grow along a [0 0 1] crystal orientation. TEM/EELS/EDX analysis proves the chains are composed of a HfC core and a thin (several tens of nm to 100 nm) carbon-rich shell with the embedded HfC nanocrystallites (typically below 10 nm) surrounding the core. The growth mechanism model for the chains based on the vapor–liquid–solid process, the vapor–solid process, and the HfC crystal growth characteristics is discussed

  18. Hydrophilic Graphene Preparation from Gallic Acid Modified Graphene Oxide in Magnesium Self-Propagating High Temperature Synthesis Process

    Science.gov (United States)

    Cao, Lei; Li, Zhenhuan; Su, Kunmei; Cheng, Bowen

    2016-10-01

    Hydrophilic graphene sheets were synthesized from a mixture of magnesium and gallic acid (GA) modified graphene oxide (GO) in a self-propagating high-temperature synthesis (SHS) process, and hydrophilic graphene sheets displayed the higher C/O ratio (16.36), outstanding conductivity (~88900 S/m) and excellent water-solubility. GO sheets were connected together by GA, and GA was captured to darn GO structure defects through the formation of hydrogen bonds and ester bonds. In SHS process, the most oxygen ions of GO reacted with magnesium to prevent the escape of carbon dioxide and carbon monoxide to from the structure defects associated with vacancies, and GA could take place the high-temperature carbonization, during which a large-area graphene sheets formed with a part of the structure defects being repaired. When only GO was reduced by magnesium in SHS process, and the reduced GO (rGO) exhibited the smaller sheets, the lower C/O ratio (15.26), the weaker conductivity (4200 S/m) and the poor water-solubility because rGO inevitably left behind carbon vacancies and topological defects. Therefore, the larger sheet, less edge defects and free structure defects associated with vacancies play a key role for graphene sheets good dispersion in water.

  19. Synthesis, characterization, and hydrogen uptake studies of magnesium nanoparticles by solution reduction method

    International Nuclear Information System (INIS)

    Rather, Sami ullah

    2014-01-01

    Graphical abstract: X-ray diffraction (XRD) pattern of magnesium nanoparticles synthesized by solution reduction method with and without TOPO. - Highlights: • Simple and convenient method of preparing Mg nanoparticles. • Characterized by XRD, SEM, FESEM and TEM. • Trioctylphosphine oxide offers a greater control over the size of the particles. • Hydrogen uptake of samples at different temperatures and pressure of 4.5 MPa. - Abstract: Facile and simple, surfactant-mediated solution reduction method was used to synthesize monodisperse magnesium nanoparticles. Little amount of magnesium oxide nanoparticles were also formed due to the presence of TOPO and easy oxidation of magnesium, eventhough, all precautions were taken to avoid oxidation of the sample. Precise size control of particles was achieved by carefully varying the concentration ratio of two different types of surfactants, – trioctylphosphine oxide and hexadecylamine. Recrystallized magnesium nanoparticle samples with and without TOPO were analyzed by X-ray diffraction, scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope. The peak diameters of particles were estimated from size distribution analysis of the morphological data. The particles synthesized in the presence and absence of TOPO found to have diameters 46.5 and 34.8 nm, respectively. This observed dependence of particle size on the presence of TOPO offers a convenient method to control the particle size by simply using appropriate surfactant concentrations. Exceptional enhancement in hydrogen uptake and kinetics in synthesized magnesium nanoparticles as compared to commercial magnesium sample was due to the smaller particle size and improved morphology. Overall hydrogen uptake not affected by the little variation in particle size with and without TOPO

  20. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    International Nuclear Information System (INIS)

    Nonkumwong, Jeeranan; Pakawanit, Phakkhananan; Wipatanawin, Angkana; Jantaratana, Pongsakorn; Ananta, Supon; Srisombat, Laongnuan

    2016-01-01

    In this work, the core-magnesium ferrite (MgFe_2O_4) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe_2O_4 nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe_2O_4 core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe_2O_4 core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe_2O_4-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe_2O_4-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe_2O_4 core. Both of MgFe_2O_4 and MgFe_2O_4-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe_2O_4-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe_2O_4 nanoparticles • In vitro cytotoxicity study of complete coated MgFe_2O_4-Au core-shell nanoparticles

  1. Synthesis and cytotoxicity study of magnesium ferrite-gold core-shell nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Nonkumwong, Jeeranan [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Pakawanit, Phakkhananan [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Wipatanawin, Angkana [Division of Biochemistry and Biochemical Technology, Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Jantaratana, Pongsakorn [Department of Physics, Faculty of Science, Kasetsart University, Bangkok 11900 (Thailand); Ananta, Supon [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Srisombat, Laongnuan, E-mail: slaongnuan@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2016-04-01

    In this work, the core-magnesium ferrite (MgFe{sub 2}O{sub 4}) nanoparticles were prepared by hydrothermal technique. Completed gold (Au) shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles was obtained by varying core/shell ratios via a reduction method. Phase identification, morphological evolution, optical properties, magnetic properties and cytotoxicity to mammalian cells of these MgFe{sub 2}O{sub 4} core coated with Au nanoparticles were examined by using a combination of X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy, UV–visible spectroscopy (UV–vis), vibrating sample magnetometry and resazurin microplate assay techniques. In general, TEM images revealed different sizes of the core-shell nanoparticles generated from various core/shell ratios and confirmed the completed Au shell coating on MgFe{sub 2}O{sub 4} core nanoparticles via suitable core/shell ratio with particle size less than 100 nm. The core-shell nanoparticle size and the quality of coating influence the optical properties of the products. The UV–vis spectra of complete coated MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles exhibit the absorption bands in the near-Infrared (NIR) region indicating high potential for therapeutic applications. Based on the magnetic property measurement, it was found that the obtained MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles still exhibit superparamagnetism with lower saturation magnetization value, compared with MgFe{sub 2}O{sub 4} core. Both of MgFe{sub 2}O{sub 4} and MgFe{sub 2}O{sub 4}-Au core-shell also showed in vitro non-cytotoxicity to mouse areola fibroblast (L-929) cell line. - Highlights: • Synthesis of MgFe{sub 2}O{sub 4}-Au core-shell nanoparticles with particle size < 100 nm • Complete Au shell coating on the surfaces of MgFe{sub 2}O{sub 4} nanoparticles • In vitro cytotoxicity study of complete coated MgFe{sub 2}O{sub 4}-Au core

  2. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Science.gov (United States)

    Chhina, H.; Campbell, S.; Kesler, O.

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 °C and compared to that of HiSpec 4000™ Pt/Vulcan XC-72R in 0.5 M H 2SO 4. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000™. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization.

  3. High surface area synthesis, electrochemical activity, and stability of tungsten carbide supported Pt during oxygen reduction in proton exchange membrane fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Chhina, H. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada); Campbell, S. [Automotive fuel cell corporation, 9000 Glenlyon Parkway, Burnaby, BC (Canada); Kesler, O. [Department of Mechanical and Industrial Engineering, 5 King' s College Road, University of Toronto, Toronto, Ontario (Canada)

    2008-04-15

    The oxidation of carbon catalyst supports to carbon dioxide gas leads to degradation in catalyst performance over time in proton exchange membrane fuel cells (PEMFCs). The electrochemical stability of Pt supported on tungsten carbide has been evaluated on a carbon-based gas diffusion layer (GDL) at 80 C and compared to that of HiSpec 4000 trademark Pt/Vulcan XC-72R in 0.5 M H{sub 2}SO{sub 4}. Due to other electrochemical processes occurring on the GDL, detailed studies were also performed on a gold mesh substrate. The oxygen reduction reaction (ORR) activity was measured both before and after accelerated oxidation cycles between +0.6 V and +1.8 V vs. RHE. Tafel plots show that the ORR activity remained high even after accelerated oxidation tests for Pt/tungsten carbide, while the ORR activity was extremely poor after accelerated oxidation tests for HiSpec 4000 trademark. In order to make high surface area tungsten carbide, three synthesis routes were investigated. Magnetron sputtering of tungsten on carbon was found to be the most promising route, but needs further optimization. (author)

  4. Metal Carbides for Biomass Valorization

    Directory of Open Access Journals (Sweden)

    Carine E. Chan-Thaw

    2018-02-01

    Full Text Available Transition metal carbides have been utilized as an alternative catalyst to expensive noble metals for the conversion of biomass. Tungsten and molybdenum carbides have been shown to be effective catalysts for hydrogenation, hydrodeoxygenation and isomerization reactions. The satisfactory activities of these metal carbides and their low costs, compared with noble metals, make them appealing alternatives and worthy of further investigation. In this review, we succinctly describe common synthesis techniques, including temperature-programmed reaction and carbothermal hydrogen reduction, utilized to prepare metal carbides used for biomass transformation. Attention will be focused, successively, on the application of transition metal carbide catalysts in the transformation of first-generation (oils and second-generation (lignocellulose biomass to biofuels and fine chemicals.

  5. Synthesis and mechanical behavior of carbon nanotube-magnesium composites hybridized with nanoparticles of alumina

    International Nuclear Information System (INIS)

    Thakur, Sanjay Kumar; Srivatsan, T.S.; Gupta, Manoj

    2007-01-01

    Carbon nanotubes reinforced magnesium based composites were prepared with diligence and care using the powder metallurgy route coupled with rapid microwave sintering. Nanometer-sized particles of alumina were used to hybridize the carbon nanotubes reinforcement in the magnesium matrix so as to establish the intrinsic influence of hybridization on mechanical behavior of the resultant composite material. The yield strength, tensile strength and strain-to-failure of the carbon nanotubes-magnesium composites were found to increase with the addition of nanometer-sized alumina particles to the composite matrix. Scanning electron microscopy observations of the fracture surfaces of the samples deformed and failed in uniaxial tension revealed the presence of cleavage-like features on the fracture surface indicative of the occurrence of locally brittle fracture mechanism in the composite microstructure

  6. Synthesis and characterization of magnesium doped cerium oxide for the fuel cell application

    International Nuclear Information System (INIS)

    Kumar, Amit; Kumari, Monika; Kumar, Mintu; Kumar, Sacheen; Kumar, Dinesh

    2016-01-01

    Cerium oxide has attained much attentions in global nanotechnology market due to valuable application for catalytic, fuel additive, and widely as electrolyte in solid oxide fuel cell. Doped cerium oxide has large oxygen vacancies that allow for greater reactivity and faster ion transport. These properties make cerium oxide suitable material for SOFCs application. Cerium oxide electrolyte requires lower operation temperature which shows improvement in processing and the fabrication technique. In our work, we synthesized magnesium doped cerium oxide by the co-precipitation method. With the magnesium doping catalytic reactivity of CeO_2 was increased. Synthesized nanoparticle were characterized by the XRD and UV absorption techniques.

  7. Magnesium Gluconate

    Science.gov (United States)

    Magnesium gluconate is used to treat low blood magnesium. Low blood magnesium is caused by gastrointestinal disorders, prolonged vomiting or ... disease, or certain other conditions. Certain drugs lower magnesium levels as well.This medication is sometimes prescribed ...

  8. Gas-phase synthesis of magnesium nanoparticles : A high-resolution transmission electron microscopy study

    NARCIS (Netherlands)

    Kooi, B.J.; Palasantzas, G.; de Hosson, J.T.M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg{1010} facets. Oxidation of Mg yields a MgO shell (similar to 3 nm

  9. Synthesis and Structural Characterization of Magnesium Based Coordination Networks in Different Solvents

    Energy Technology Data Exchange (ETDEWEB)

    D Banerjee; J Finkelstein; A Smirnov; P Forster; L Borkowski; S Teat; J Parise

    2011-12-31

    Three magnesium based metal-organic frameworks, Mg{sub 3}(3,5-PDC){sub 3}(DMF){sub 3} {center_dot} DMF [1], Mg(3,5-PDC)(H{sub 2}O) {center_dot} (H{sub 2}O) [3], and Mg{sub 4}(3,5-PDC){sub 4}(DMF){sub 2}(H{sub 2}O){sub 2} {center_dot} 2DMF {center_dot} 4.5H{sub 2}O [4], and a 2-D coordination polymer, [Mg(3,5-PDC)(H{sub 2}O){sub 2}] [2] [PDC = pyridinedicarboxylate], were synthesized using a combination of DMF, methanol, ethanol, and water. Compound 1 [space group P2{sub 1}/n, a = 12.3475(5) {angstrom}, b = 11.1929(5) {angstrom}, c = 28.6734(12) {angstrom}, {beta} = 98.8160(10){sup o}, V = 3916.0(3) {angstrom}{sup 3}] consists of a combination of isolated and corner-sharing magnesium octahedra connected by the organic linkers to form a 3-D network with a 12.2 {angstrom} x 4.6 {angstrom} 1-D channel. The channel contains coordinated and free DMF molecules. In compound 2 [space group C2/c, a = 9.964(5) {angstrom}, b = 12.0694(6) {angstrom}, c = 7.2763(4) {angstrom}, {beta} = 106.4970(6){sup o}, V = 836.70(6) {angstrom}{sup 3}], PDC connects isolated seven coordinated magnesium polyhedra into a layered structure. Compound 3 [space group P6{sub 1}22, a = 11.479(1) {angstrom}, c = 14.735(3) {angstrom}, V = 1681.7(4) {angstrom}{sup 3}] (previously reported) contains isolated magnesium octahedra connected by the organic linker with each other forming a 3D network. Compound 4 [space group P2{sub 1}/c, a = 13.7442(14) {angstrom}, b = 14.2887(15) {angstrom}, c = 14.1178(14) {angstrom}, {beta} = 104.912(2){sup o}, V = 2679.2(5) {angstrom}{sup 3}] also exhibits a 3D network based on isolated magnesium octahedra with square cavities containing both disordered DMF and water molecules. The structural topologies originate due to the variable coordination ability of solvent molecules with the metal center. Water molecules coordinate with the magnesium metal centers preferably over other polar solvents (DMF, methanol, ethanol) used to synthesize the coordination networks. Despite

  10. Synthesis and Structure Characterization of Phenol-Urea-Formaldehyde Resins in the Presence of Magnesium Oxide as Catalyst

    Directory of Open Access Journals (Sweden)

    Dong-Bin Fan

    2014-08-01

    Full Text Available The objective of this research was to provide a useful approach of polymer synthesis for accelerating the fast cure of phenol-urea-formaldehyde (PUF resin as wood adhesive by optimizing its structure and composition. The PUF resins containing high contents of very reactive groups such as para-methylol groups were synthesized by reacting methylolurea, phenol, and formaldehyde in the presence of magnesium oxide (MgO as catalyst. The effects of synthesis parameters including F/(P + U, OH/P, and MgO/P mole ratios on the structure, composition, curing characteristics, and their relationships of PUF resins were investigated. The results indicated that MgO seemed to be an efficacious catalyst for PUF resin synthesis and promote its faster cure. The increase in the F/(P + U mole ratio or/and OH/P mole ratio appeared to be beneficial for the formation of para-methylol groups and cocondensed methylene linkages between phenolic methylol groups and urea units, and for the removal of unreacted urea. In case of Catalyst/P mole ratio, an appropriate dosage of added metal-ion was very important for synthesizing the high-content reactive groups of PUF resins, otherwise leading to the reverse effects.

  11. Sol-gel synthesis of magnesium oxide-silicon dioxide glass compositions

    Science.gov (United States)

    Bansal, Narottam P.

    1988-01-01

    MgO-SiO2 glasses containing up to 15 mol pct MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol pct MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol pct MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol pct) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  12. Synthesis, characterization and thermoelectric properties of metal borides, boron carbides and carbaborides; Synthese, Charakterisierung und thermoelektrische Eigenschaften ausgewaehlter Metallboride, Borcarbide und Carbaboride

    Energy Technology Data Exchange (ETDEWEB)

    Guersoy, Murat

    2015-07-06

    This work reports on the solid state synthesis and structural and thermoelectrical characterization of hexaborides (CaB{sub 6}, SrB{sub 6}, BaB{sub 6}, EuB{sub 6}), diboride dicarbides (CeB{sub 2}C{sub 2}, LaB{sub 2}C{sub 2}), a carbaboride (NaB{sub 5}C) and composites of boron carbide. The characterization was performed by X-ray diffraction methods and Rietveld refinements based on structure models from literature. Most of the compounds were densified by spark plasma sintering at 100 MPa. As high-temperature thermoelectric properties the Seebeck coefficients, electrical conductivities, thermal diffusivities and heat capacities were measured between room temperature and 1073 K. ZT values as high as 0.5 at 1273 K were obtained for n-type conducting EuB{sub 6}. High-temperature X-ray diffraction also confirmed its thermal stability. The solid solutions Ca{sub x}Sr{sub 1-x}B{sub 6}, Ca{sub x}Ba{sub 1-x}B{sub 6} and Sr{sub x}Ba{sub 1-x}B{sub 6} (x = 0, 0.25, 0.5, 0.75, 1) are also n-type but did not show better ZT values for the ternary compounds compared to the binaries, but for CaB{sub 6} the values of the figure of merit (ca. 0.3 at 1073 K) were significantly increased (ca. 50 %) compared to earlier investigations which is attributed to the densification process. Sodium carbaboride, NaB{sub 5}C, was found to be the first p-type thermoelectric material that crystallizes with the hexaboride-structure type. Seebeck coefficients of ca. 80 μV . K{sup -1} were obtained. Cerium diboride dicarbide, CeB{sub 2}C{sub 2}, and lanthanum diboride dicarbide, LaB{sub 2}C{sub 2}, are metallic. Both compounds were used as model compounds to develop compacting strategies for such layered borides. Densities obtained at 50 MPa were determined to be higher than 90 %. A new synthesis route using single source precursors that contain boron and carbon was developed to open the access to new metal-doped boron carbides. It was possible to obtain boron carbide, but metal-doping could not be

  13. Novel synthesis of magnesium hydroxide nanoparticles modified with organic phosphate and their effect on the flammability of acrylonitrile-butadiene styrene nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Attia, Nour F., E-mail: drnour2005@yahoo.com [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt); Goda, Emad S.; Nour, M.A. [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt); Sabaa, M.W. [Chemistry Department, Faculty of Science, Cairo University, NahdetMisr Street, Giza 12613 (Egypt); Hassan, M.A., E-mail: Mohamed_a_hassan@hotmail.com [Fire Protection Laboratory, Chemistry Division, National Institute of Standards, 136, Giza 12211 (Egypt)

    2015-11-15

    New and facile method for the synthesis and modification of magnesium hydroxide nanoparticles has been developed. The organic phosphate was used to facilitate the synthesis and wrapping of magnesium hydroxide nanoparticles with organic phosphate shell. The size of the nanoparticles wrapped with phosphate has an average diameter range from 46 to 125 nm. The preparation method has governed the nanoparticles diameter based on reaction time. Thermal stability and morphological properties of the new nanoparticles coated phosphates were investigated. The developed magnesium hydroxide nanoparticles-organic phosphate achieved a very good compatibility when dispersed in acrylonitrile-butadiene styrene polymer (ABS) produced dispersed nanocomposites. The flammability and thermal properties of the new polymer nanocomposites were studied. The rate of burning of the nanocomposites was reduced to 9.8 mm/min compared to 15, 21.9 and 42.5 mm/min for polymer-conventional magnesium hydroxide composite, polymer-conventional magnesium hydroxide-organic phosphate composite and virgin polymer, respectively. The peak heat release rate (PHRR) and total heat release (THR) of the new nanocomposites were recorded as 243.4 kW/m{sup 2} and 19.2 MJ/m{sup 2}, respectively, achieved 71% reduction for PHRR and 55% for THR. The synergism between magnesium hydroxide nanoparticles and organic phosphates shell was also studied. The developed nanoparticles suppressed the emission of toxic gases. The different materials were characterized using thermal gravimetric analysis, fourier transform infrared spectroscopy, transmission electron microscopy. The flammability properties were evaluated using UL94 horizontal method and cone calorimeter. The dispersion of magnesium hydroxide nanoparticles-organic phosphate in ABS was studied using scanning electron microscope. - Highlights: • Novel and facile nanoparticles synthesis and modification have developed. • Magnesium hydroxide nanoparticles size has

  14. Gas-phase synthesis of magnesium nanoparticles: A high-resolution transmission electron microscopy study

    International Nuclear Information System (INIS)

    Kooi, B. J.; Palasantzas, G.; De Hosson, J. Th. M.

    2006-01-01

    Magnesium nanoparticles with size above 10 nm, prepared by gas-phase syntheses, were investigated by high-resolution transmission electron microscopy. The dominant particle shape is a hexagonal prism terminated by Mg(0002) and Mg(1010) facets. Oxidation of Mg yields a MgO shell (∼3 nm thick), which has an orientation relation with the Mg. Inhomogeneous facet oxidation influences their growth kinetics resulting in a relatively broad size and shape distribution. Faceted voids between Mg and MgO shells indicate a fast outward diffusion of Mg and vacancy rearrangement into voids. The faceting of polar (220) planes is assisted by electron irradiation

  15. Chemical synthesis and characterization of magnesium substituted amorphous calcium phosphate (MG-ACP)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Donghyun [Department of Biomedical Engineering, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756 (Korea, Republic of); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Mechanical Engineering and Materials Sceince, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15260 (United States)

    2010-10-12

    Amorphous calcium phosphate (ACP) was synthesized by a simple aqueous precipitation using CaCl{sub 2} and Na{sub 3}PO{sub 4} in the presence of MgCl{sub 2} to ensure the formation of the ACP phase at room temperature. Magnesium substituted ACP phases corresponding to two different compositions representing the two most prominent calcium phosphate phases (hydroxyapatite: Ca + Mg/P = 1.67 and tricalcium phosphate: Ca + Mg/P = 1.5) were synthesized by this simple approach. Both compositions of ACP phases resulted in their transformation into {beta}-tricalcium phosphate upon heat treatment in air at 600 deg. C. X-ray diffraction (XRD), heat treatment, scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and Brunauer-Emmett-Teller (BET) analyses were used to characterize the phase, thermal stability, surface area, and morphology of the synthesized ACP powders corresponding to the two different nominal Ca/P compositions. Although it is known that {alpha}-TCP is the phase that appears upon heat treatment at 600 deg. C unsubstituted ACP, substitution of magnesium ion in ACP (both TCP and HA composition) stabilized the structure of {beta}-TCMP phase at 600 deg. C. Moreover, FT-IR analysis revealed that the ACP phase regardless of the composition, exhibited characteristic bands corresponding to that of HA, with the exception of the ACP corresponding to HA composition which exhibited a prominent OH vibrational mode.

  16. Synthesis and thermal decomposition behaviors of magnesium borohydride ammoniates with controllable composition as hydrogen storage materials.

    Science.gov (United States)

    Yang, Yanjing; Liu, Yongfeng; Li, You; Gao, Mingxia; Pan, Hongge

    2013-02-01

    An ammonia-redistribution strategy for synthesizing metal borohydride ammoniates with controllable coordination number of NH(3) was proposed, and a series of magnesium borohydride ammoniates were easily synthesized by a mechanochemical reaction between Mg(BH(4))(2) and its hexaammoniate. A strong dependence of the dehydrogenation temperature and purity of the released hydrogen upon heating on the coordination number of NH(3) was elaborated for Mg(BH(4))(2)·xNH(3) owing to the change in the molar ratio of H(δ+) and H(δ-), the charge distribution on H(δ+) and H(δ-), and the strength of the coordinate bond N:→Mg(2+). The monoammoniate of magnesium borohydride (Mg(BH(4))(2)·NH(3)) was obtained for the first time. It can release 6.5% pure hydrogen within 50 minutes at 180 °C. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis of Magnesium Ferrites for the Adsorption of Congo Red from Aqueous Solution Using Batch Studies

    Science.gov (United States)

    Erdawati, E.; Darsef, D.

    2018-04-01

    A sol gel method with citric acid as an anionic surfactant was used to fabricate nano magnesium ferrites (MgFe2O4) under different calcination temperatures for 2h, respectively. The microstructure and surface morphology of magnesium ferrite powder were characterized by FTIR, XRD, SEM, and BET. The results of this study are useful for adsorption Congo red. The results showed that increasing solution pH and extending contact time are favorable for improving adsorption efficiency. with initial Congo red concentration of 50 mg/L and 100 mg/L. Adsorption data fits well with the Langmuir isotherm models with a maximum adsorption capacity (qm) and a Langmuir adsorption equilibrium constant (K) of 65.1 mg/g and 0.090 L/mg, respectively. The adsorption kinetic agrees well with pseudo second order model with the pseudo second rate constants (K2) of 0.0468 and0.00189 g/mg/min for solutions with initial congo red of 50 and 100 mg/L, respectively

  18. Graphitic encapsulation of MgO and Fe3C nanoparticles in the reaction of iron pentacarbonyl with magnesium

    International Nuclear Information System (INIS)

    Dyjak, Sławomir; Cudziło, Stanisław; Polański, Marek; Budner, Bogusław; Bystrzycki, Jerzy

    2013-01-01

    A simple method to produce highly ordered carbon nanostructures by combustion synthesis is presented. Graphite-encapsulated magnesium oxide, iron carbide nanoparticles and carbon nanobelts were synthesized by the one-step reduction of iron pentacarbonyl with magnesium. High-resolution transmission electron microscopy analysis of the products revealed nanocrystalline MgO and Fe 3 C particles surrounded by a well-crystallized, tight graphite film. The possible formation mechanism is presented and discussed. - Highlights: • We present a simple method to produce highly ordered carbon nanostructures by combustion synthesis. • The cubic MgO particles are completely coated by tight graphitic shells. • The mechanism of formation a distant carbon film on MgO surface has been discussed. • The presented method can be applied to synthesis of other core-shell structures

  19. Nanosized Magnesium Electrochemically Deposited on a Carbon Nanotubes Suspension: Synthesis and Hydrogen Storage

    Directory of Open Access Journals (Sweden)

    Chaoqi Shen

    2017-10-01

    Full Text Available Herein, we report on a novel method for deposition of magnesium (Mg nanoparticles at the surface of carbon materials. Through the suspension of carbon nanotubes (CNTs in an electrolyte containing di-n-butylmagnesium as a precursor, Mg nanoparticles were effectively deposited at the surface of the CNTs as soon as these touched the working electrode. Through this process, CNTs supported Mg particles as small as 1 nm were synthesized and the distribution of the nanoparticles was found to be influenced by the concentration of the CNTs in the electrolyte. Hydrogenation of these nanoparticles at 100°C was found to lead to low temperature hydrogen release starting at 150°C, owing to shorter diffusion paths and higher hydrogen mobility in small Mg particles. However, these hydrogen properties drastically degraded as soon as the hydrogenation temperature exceeded 200°C and this may be related to the low melting temperature of ultrasmall Mg particles.

  20. Nanosized Magnesium Electrochemically Deposited on a Carbon Nanotubes Suspension: Synthesis and Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chaoqi; Aguey-Zinsou, Kondo-Francois, E-mail: f.aguey@unsw.edu.au [MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2017-10-17

    Herein, we report on a novel method for deposition of magnesium (Mg) nanoparticles at the surface of carbon materials. Through the suspension of carbon nanotubes (CNTs) in an electrolyte containing di-n-butylmagnesium as a precursor, Mg nanoparticles were effectively deposited at the surface of the CNTs as soon as these touched the working electrode. Through this process, CNTs supported Mg particles as small as 1 nm were synthesized and the distribution of the nanoparticles was found to be influenced by the concentration of the CNTs in the electrolyte. Hydrogenation of these nanoparticles at 100°C was found to lead to low temperature hydrogen release starting at 150°C, owing to shorter diffusion paths and higher hydrogen mobility in small Mg particles. However, these hydrogen properties drastically degraded as soon as the hydrogenation temperature exceeded 200°C and this may be related to the low melting temperature of ultrasmall Mg particles.

  1. Synthesis, characterisation and anion exchange properties of copper, magnesium, zinc and nickel hydroxy nitrates

    Science.gov (United States)

    Biswick, Timothy; Jones, William; Pacuła, Aleksandra; Serwicka, Ewa

    2006-01-01

    Anion exchange reactions of four structurally related hydroxy salts, Cu 2(OH) 3NO 3, Mg 2(OH) 3NO 3, Ni 2(OH) 3NO 3 and Zn 3(OH) 4(NO 3) 2 are compared and trends rationalised in terms of the strength of the covalent bond between the nitrate group and the matrix cation. Powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and elemental analysis are used to characterise the materials. Replacement of the nitrate anions in the zinc and copper salts with benzoate anions is possible although exchange of the zinc salt is accompanied by modification of the layer structure from one where zinc is exclusively six-fold coordinated to a structure where there is both six- and four-fold zinc coordination. Magnesium and nickel hydroxy nitrates, on the other hand, hydrolyse to their respective metal hydroxides.

  2. Synthesis Magnesium Hydroxide Nanoparticles and Cellulose Acetate- Mg(OH2-MWCNT Nanocomposite

    Directory of Open Access Journals (Sweden)

    M. Ghorbanali

    2015-04-01

    Full Text Available Mg(OH2 nanoparticles were synthesized by a rapid microwave reaction. The effect of sodium dodecyl sulfonate (SDS as anionic surfactant and cetyl tri-methyl ammonium bromide (CTAB as cationic surfactant on the morphology of magnesium hydroxide nanostructures was investigated. Multi wall carbon nano tubes was organo-modified for better dispersion in cellulose acetate matrix. The influence of Mg(OH2 nanoparticles and modified multi wall carbon nano tubes (MWCNT on the thermal stability of the cellulose acetate (CA matrix was studied using thermo-gravimetric analysis (TGA. Nanostructures were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM and Fourier transform infrared (FT-IR spectroscopy. Thermal decomposition of the nanocomposites shift towards higher temperature in the presence of Mg(OH2 nanostructures. The enhancement of thermal stability of nanocomposites is due to the endothermic decomposition of Mg(OH2 and release of water which dilutes combustible gases.

  3. Facile Synthesis of Porous Silicon Nanofibers by Magnesium Reduction for Application in Lithium Ion Batteries.

    Science.gov (United States)

    Cho, Daehwan; Kim, Moonkyoung; Hwang, Jeonghyun; Park, Jay Hoon; Joo, Yong Lak; Jeong, Youngjin

    2015-12-01

    We report a facile fabrication of porous silicon nanofibers by a simple three-stage procedure. Polymer/silicon precursor composite nanofibers are first fabricated by electrospinning, a water-based spinning dope, which undergoes subsequent heat treatment and then reduction using magnesium to be converted into porous silicon nanofibers. The porous silicon nanofibers are coated with a graphene by using a plasma-enhanced chemical vapor deposition for use as an anode material of lithium ion batteries. The porous silicon nanofibers can be mass-produced by a simple and solvent-free method, which uses an environmental-friendly polymer solution. The graphene-coated silicon nanofibers show an improved cycling performance of a capacity retention than the pure silicon nanofibers due to the suppression of the volume change and the increase of electric conductivity by the graphene.

  4. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    content rather than nitride. In addition, the reactivity of the transition metals of group IV-VI with the reactive template was investigated under a flow of N2 at different temperatures in the range of 1023 to 1573 K while keeping the weight ratio constant at 1:1. The results show that Ti, V, Nb, Ta, and Cr reacted with mpg-C3N4 at 1023 K to form nitride phase with face centered cubic structure. The nitride phase destabilized at higher temperature ≥1223 K through the reaction with the remaining carbon residue originated from the decomposition of the template to form carbonitride and carbide phases. Whereas, Mo and W produce a hexagonal structure of carbide irrespective of the applying reaction temperature. The tendency to form transition metal nitrides and carbides at 1023 K was strongly driven by the free energy of formation. The observed trend indicates that the free energy of formation of nitride is relatively lower for group IV and V transition metals, whereas the carbide phase is thermodynamically more favorable for group VI, in particular for Mo and W. The thermal stability of nitride decreases at high temperature due to the evolution of nitrogen gas. The electrocatalytic activities of the produced nanoparticles were tested for hydrogen evolution reaction in acid media and the results demonstrated that molybdenum carbide nanoparticles exhibited the highest HER current with over potential of 100 mV vs. RHE, among the samples prepared in this study. This result is attributed to the sufficiently small particle size (8 nm on average) and accordingly high surface area (308 m2 g-1). Also, the graphitized carbon layer with a thickness of 1 nm on its surface formed by this synthesis provides excellent electron pathway to the catalyst which will improve the rate of electron transfer reaction.

  5. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Leparoux, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)], E-mail: susanne.leparoux@empa.ch; Diot, C. [Consultant, allee de Mozart 10, F-92300 Chatillon (France); Dubach, A. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland); Vaucher, S. [Empa, Department of Materials Technology, Feuerwerkerstrasse 39, CH-3602 Thun (Switzerland)

    2007-10-15

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  6. Synthesis of silicon carbide coating on diamond by microwave heating of diamond and silicon powder: A heteroepitaxial growth

    International Nuclear Information System (INIS)

    Leparoux, S.; Diot, C.; Dubach, A.; Vaucher, S.

    2007-01-01

    When a powder mixture of diamond and silicon is heated by microwaves, heteroepitaxial growth of SiC is observed on the (1 1 1) as well as on the (1 0 0) faces of the diamond. The SiC over-layer was characterized by X-ray diffraction and scanning electron microscopy. High-resolution scanning electron microscopy shows the presence of triangular silicon carbide on the (1 1 1) faces of diamond while prismatic crystals are found on the (1 0 0) faces. The crystal growth seems to be favored in the plane parallel to the face (1 1 1)

  7. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    "Properties of Magnesium Composites for Material Scientists, Engineers and Selectors is the first book-length reference to provide an insight into current and future magnesium-based materials in terms...

  8. Synthesis and characterization of phosphors based on calcium and magnesium silicates doped with europium and dysprosium

    International Nuclear Information System (INIS)

    Misso, Agatha Matos

    2016-01-01

    Ca and Mg silicates based phosphors were prepared by sol-gel method combined with the molten salts process. The gel of silica was obtained from Na 2 SiO 3 solution by using europium, dysprosium, calcium and magnesium chloride solutions. Therefore, those chlorides were homogeneously dispersed into the gel. The obtained gel was dried and heat treated to 900° C for 1h to allow the fusion of the present salts. Then it was water washed until negative test for Cl - , and dried. The reduction of the europium to Eu 2+ was performed under atmosphere of 5% of H 2 and 95% of Ar to 900° C for 3h, to reach CaMgSi 2 O 6 :Eu 2+ and CaMgSi 2 O 6 :Eu 2+ :Dy 3+ phosphors. Diopside was identified as main crystalline phase and quartz, as secondary phase from XRD (X-ray diffraction) patterns. SEM (scanning electron microscopy) micrographs, of the samples showed needles, spheres, leaves and rods of particles and agglomerates. Thermal analysis (TGA-DTGA) curves revealed that the crystallization temperature of CaMgSi 2 O 6 :Eu 2+ lies around 765° C. Photoluminescence spectroscopy of the phosphors was studied based on interconfigurational 4f N → 4f N-1 5d transition of Eu 2+ ion. The spectra of excitation showed 4f N → 4f N-1 5d transition of Eu 2+ ion broad band, related to the ligand to metal charge transfer transition (LMCT) O 2- (2p) → Eu 3+ in the 250 nm region, when the emission is monitored at 583,5 nm. It also presents the 4f ↔ 4f transitions of Eu 3+ ion bands, showing the 7 F 0 → 5 L 6 transition at 393 nm. From emission spectra with excitation monitored at 393 nm, it can be observed fine peaks between 570 and 750 nm which are characteristics of 5 D 0 → 7 F J (J = 0 - 5) transition of Eu 3+ ion, indicating that the Eu 3+ ion occupies a site with center of inversion. Finally, the obtained results indicate that the developed method is suitable to synthesize CaMgSi 2 O 6 :Eu 2+ and CaMgSi 2 O 6 :Eu 2+ :Dy 3+ phosphors, as it has been proposed. (author)

  9. Magnesium - distribution and basic metabolism

    African Journals Online (AJOL)

    losses of water, sodium, chloride and potassium are concerned. However, it has ... (calcium and magnesium carbonate), although only 10% of the element in soil is ... DNA transcription, RNA aggregation, protein synthesis and various cell ...

  10. Carbonate loss from two magnesium-substituted carbonated apatites prepared by different synthesis techniques

    International Nuclear Information System (INIS)

    Barinov, S.M.; Rau, J.V.; Fadeeva, I.V.; Cesaro, S. Nunziante; Ferro, D.; Trionfetti, G.; Komlev, V.S.; Bibikov, V.Yu.

    2006-01-01

    This study was aimed at the investigation of the thermal stability of Mg-substituted carbonated apatites over the wide temperature range. Two different apatites were studied, which were prepared by either precipitation from aqueous solution or by solid-liquid interaction. The following methods were employed: FTIR spectroscopy of the condensed gas phase to evaluate the CO and CO 2 release with increasing temperature, FTIR of the solid residue after heating, XRD analysis, thermogravimetry and scanning electron microscopy. Decomposition behavior was shown to depend significantly on the synthesis method. Wet-synthesized powders are significantly less thermally stable compared with those prepared by solid-liquid interaction. Intensive release of carbon oxides from the former was observed at 300 deg. C, whereas the latter powder was relatively stable up to temperature about 1000 deg. C

  11. Synthesis of magnesium- and manganese-doped hydroxyapatite structures assisted by the simultaneous incorporation of strontium

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Mirna Pereira [Laboratório de Biomateriais, P" 2CEM/UFS, Av. Marechal Rondon, s/n, São Cristóvão 49100-000, Sergipe (Brazil); Dulce de Almeida Soares, Gloria [Dep. de Eng. Metal. e de Materiais, COPPE/UFRJ, CP 68505, Rio de Janeiro 21941-972 (Brazil); Dentzer, Joseph; Anselme, Karine [Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR7361, Université de Haute-Alsace, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Sena, Lídia Ágata de; Kuznetsov, Alexei [Divisão de Metrologia de Materiais, Inmetro, Av. N. Sra. das Graças, 50, Duque de Caxias 25250-020, Rio de Janeiro (Brazil); Santos, Euler Araujo dos, E-mail: euler@ufs.br [Laboratório de Biomateriais, P" 2CEM/UFS, Av. Marechal Rondon, s/n, São Cristóvão 49100-000, Sergipe (Brazil)

    2016-04-01

    Samples of crystalline hydroxyapatite (HA) with and without the addition of individual Mg{sup 2+}, Mn{sup 2+} and Sr{sup 2+} ions and samples with the addition of all three ions simultaneously were prepared using the precipitation method in an aqueous medium. Chemical, structural, spectroscopic and thermophysical analyses of the synthesized samples were conducted. The obtained results indicate that Sr{sup 2+} ions were easily incorporated into the HA crystal structure, whereas it was difficult to incorporate Mg{sup 2+} and Mn{sup 2+} ions into the HA lattice when these ions were individually introduced into the samples. The synthesis of HA with Mg{sup 2+} or Mn{sup 2+} ions is characterized by the formation of HA with a low concentration of doping elements that is outweighed by the amount of these atoms present in less biocompatible phases that formed simultaneously. However, the incorporation of Sr{sup 2+} along with Mg{sup 2+} and Mn{sup 2+} ions into the samples allowed for the synthesis of HA with considerably higher concentrations of Mg{sup 2+} and Mn{sup 2+} in the crystal lattice. - Graphical abstract: Sr{sup 2+} ions were easily incorporated into the HA lattice, whereas Mg{sup 2+} and Mn{sup 2+} ions were hardly retained in the HA structure after heating to 1000 °C when they were individually incorporated in the samples. Nevertheless, co-substitution with Sr{sup 2+} ions allowed for better fixation of the Mg{sup 2+} and Mn{sup 2+} ions into the HA lattice. - Highlights: • Mg{sup 2+} and Mn{sup 2+} ions have a great difficulty being stabilized in the apatite lattice. • Sr{sup 2+} ions can stabilize Mg{sup 2+} and Mn{sup 2+} in the hydroxyapatite structure. • Except for Mn{sup 2+}, Sr{sup 2+} and Mg{sup 2+} obstruct the release of CO{sub 2}.

  12. Magnesium Hydroxide

    Science.gov (United States)

    Magnesium hydroxide is used on a short-term basis to treat constipation.This medication is sometimes prescribed ... Magnesium hydroxide come as a tablet and liquid to take by mouth. It usually is taken as ...

  13. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some people use it as ... one to four times daily depending on which brand is used and what condition you have. Follow ...

  14. Synthesis of supported and unsupported NiMo carbides and their properties for the catalytic hydrocracking of n-octane

    International Nuclear Information System (INIS)

    Torre, A I Reyes de la; Banda, J A Melo; Alamilla, R GarcIa; Sandoval Robles, G; Rojas, E Terres; Lopez Ortega, A; Dominguez, J M

    2004-01-01

    Unsupported and γ-Al 2 O 3 -, MCM-41-supported (Ni, Mo) carbides were prepared and modified by 'in situ' polymer (PAN: polyacrylonitrile) pyrolysis. The supported catalysts were impregnated with Ni and Mo metals, i.e. 2.8 atom Mo/nm 2 , whose atomic ratio was Ni/Ni+Mo = 0.5. X-ray diffraction (XRD) showed single NiC, MoC phases in all cases, with relatively low surface areas, as verified by N 2 adsorption (BET). The catalytic behaviour of the supported (Ni, Mo)C phases for n-C 8 hydrocracking depended on the support type. (Ni, Mo)C/MCM41-PAN-P (P = pyrolyzed) showed a total conversion of 40% while it was only 15% on Ni,MoC/γ-Al 2 O 3 . The most active catalysts were (Ni, Mo)C unsupported catalysts, i.e., 90% total conversion. In all cases the hydrocracking selectivity favoured lighter hydrocarbons (C 1 -C 4 )

  15. Synthesis, characterization and adsorptive properties of carbon with iron nanoparticles and iron carbide for the removal of As(V) from water.

    Science.gov (United States)

    Gutierrez-Muñiz, O E; García-Rosales, G; Ordoñez-Regil, E; Olguin, M T; Cabral-Prieto, A

    2013-01-15

    This manuscript presents the synthesis of carbon modified with iron nanoparticles (CFe) and iron carbide (CarFe) from the pyrolyzed crown leaves of pineapple (Ananas comosus) treated with iron salts. The materials that were obtained were used for the removal of As(V) from aqueous media. The carbonaceous materials were characterized by Scanning Electron Microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), X-Ray Photoelectron Spectroscopy (XPS) and Mossbauer Spectroscopy. The specific area (BET), number site density and point of zero charge (pH(pzc)) were also determined. The kinetic parameters were obtained by fitting the experimental data to the pseudo-first-order and pseudo-second-order models. Different isotherm models were applied to describe the As(V) adsorption behavior. The kinetics of As(V) sorption by CFe and CarFe was well defined for the pseudo-second-order model (R(2) = 0.9994 and 0.999, respectively). The maximum As(V) uptake was 1.8 mg g(-1) for CFe and 1.4 mg g(-1) for CarFe. The results obtained indicated that both materials are equally useful for As(V) sorption. The As(V) experimental isotherm data were described by the Freundlich model for CFe and CarFe. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. RBS and ERDA determinations of depth distributions of high-dose carbon ions implanted in silicon for silicon-carbide synthesis study

    International Nuclear Information System (INIS)

    Intarasiri, S.; Kamwanna, T.; Hallen, A.; Yu, L.D.; Janson, M.S.; Thongleum, C.; Possnert, G.; Singkarat, S.

    2006-01-01

    For ion beam synthesis of silicon carbide (SiC), a knowledge of the depth distribution of implanted carbon ions in silicon is crucial for successful development. Based on its simplicity and availability, we selected Rutherford backscattering spectrometry (RBS) as an analysis technique for this purpose. A self-developed computer program dedicated to extract depth profiles of lighter impurities in heavier matrix is established. For control, calculated results are compared with an other ion beam analysis (IBA) technique superior for studying lighter impurity in heavier substrate i.e. elastic recoil detection analysis (ERDA). The RBS was performed with a 1.7-MV Tandetron accelerator using He 2+ as the probe ions. The ERDA was performed with a 5-MV Pelletron accelerator using I 8+ as the probe ions. This work shows that the RBS-extracted data had no significant deviations from those of ERDA and simulations by SRIM2003 and SIIMPL computer codes. We also found that annealing at temperatures as high as 1000 deg. C had quite limited effect on the redistribution of carbon in silicon

  17. Magnesium in Prevention and Therapy

    Science.gov (United States)

    Gröber, Uwe; Schmidt, Joachim; Kisters, Klaus

    2015-01-01

    Magnesium is the fourth most abundant mineral in the body. It has been recognized as a cofactor for more than 300 enzymatic reactions, where it is crucial for adenosine triphosphate (ATP) metabolism. Magnesium is required for DNA and RNA synthesis, reproduction, and protein synthesis. Moreover, magnesium is essential for the regulation of muscular contraction, blood pressure, insulin metabolism, cardiac excitability, vasomotor tone, nerve transmission and neuromuscular conduction. Imbalances in magnesium status—primarily hypomagnesemia as it is seen more common than hypermagnesemia—might result in unwanted neuromuscular, cardiac or nervous disorders. Based on magnesium’s many functions within the human body, it plays an important role in prevention and treatment of many diseases. Low levels of magnesium have been associated with a number of chronic diseases, such as Alzheimer’s disease, insulin resistance and type-2 diabetes mellitus, hypertension, cardiovascular disease (e.g., stroke), migraine headaches, and attention deficit hyperactivity disorder (ADHD). PMID:26404370

  18. Synthesis and characterization of tungsten carbide doped cobalt via gas-solid reaction in rotary bed reactor; Sintese e caracterizacao de carbeto de tungstenio dopado com cobalto via reacao gas-solido em reator de leito rotativo

    Energy Technology Data Exchange (ETDEWEB)

    Tertuliano, R.S.C.; Araujo, C.P.B. de; Frota, A.V.V.M.; Moriyama, A.L.L.; Souza, C.P. de, E-mail: ruasavio@hotmail.com [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Departamento de Engenharia Quimica

    2016-07-01

    The search for materials with high added value, high applicability and sustainability, motivates innovations in all areas of engineering. In this context, so-called doped carbides, ceramic and metal compounds are included. This work proposes the synthesis and characterization of tungsten carbide doped cobalt (WC-Co) through the gas-solid reaction in a rotating bed reactor. The production stages of the material are: precursor synthesis by wetting, drying at 80 deg C, characterization of the precursor by MEV, DRX and FRX, gas-solid reaction at 750 deg C in a reducing atmosphere of CH{sub 4} / H{sub 2} in a rotary reactor at 34 rpm and characterization of the reaction product by the techniques already mentioned. The results showed that tungsten carbide powders were produced with cobalt inserted into the structure, with high surface area, nanometric grains and with potential for applications in the areas of catalysis, reactors and fuel cells, showing the relevance of this type of research.

  19. Continuous synthesis of magnesium-hydroxide, zinc-oxide, and silver nanoparticles by microwave plasma in water

    International Nuclear Information System (INIS)

    Hattori, Yoshiaki; Mukasa, Shinobu; Toyota, Hiromichi; Inoue, Toru; Nomura, Shinfuku

    2011-01-01

    Nanoparticles are continuously synthesized from submerged magnesium, zinc, and silver rods 1–2 mm in diameter by microwave plasma in pure water at 20 kPa. Magnesium-hydroxide nanoplates shaped as triangles, truncated triangles or hexagons with 25–125 nm in size are synthesized with a production rate of 60 g h −1 . Zinc-oxide nanoparticles formed as sharp sticks with diameters of 50 nm and lengths of 150–200 nm are synthesized with a production rate of 14 g h −1 . Silver nanoparticles with a diameter of approximately 6 nm are synthesized with a production rate of 0.8 g h −1 . The excitation temperature is estimated by applying the Boltzmann plot method in assumption of local thermodynamic equilibrium. The excitation temperatures obtained from hydrogen, magnesium, and zinc lines are 3300 ± 100 K, 4000 ± 500 K, and 3200 ± 500 K, respectively.

  20. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    .... With the popularity of magnesium-based materials in the automotive, aerospace, electronics, and sports equipment industries, and its unique role as a lightweight, energy-saving and high-performance...

  1. Magnesium, magnesium alloys, and magnesium composites

    National Research Council Canada - National Science Library

    Gupta, M; Sharon, Nai Mui Ling

    2011-01-01

    ... of science, characteristics, and applications. It emphasizes the properties of magnesium-based composites and the effects of different types of reinforcements, from micron length to nanometer scale, on the properties of the resulting composites...

  2. Synthesis of IV-VI Transition Metal Carbide and Nitride Nanoparticles Using a Reactive Mesoporous Template for Electrochemical Hydrogen Evolution Reaction

    KAUST Repository

    Alhajri, Nawal Saad

    2016-01-01

    Interstitial carbides and nitrides of early transition metals in Groups IV-VI exhibit platinum-like behavior which makes them a promising candidate to replace noble metals in a wide variety of reactions. Most synthetic methods used to prepare

  3. Preparation of magnesium metal matrix composites by powder metallurgy process

    Science.gov (United States)

    Satish, J.; Satish, K. G., Dr.

    2018-02-01

    Magnesium is the lightest metal used as the source for constructional alloys. Today Magnesium based metal matrix composites are widely used in aerospace, structural, oceanic and automobile applications for its light weight, low density(two thirds that of aluminium), good high temperature mechanical properties and good to excellent corrosion resistance. The reason of designing metal matrix composite is to put in the attractive attributes of metals and ceramics to the base metal. In this study magnesium metal matrix hybrid composite are developed by reinforcing pure magnesium with silicon carbide (SiC) and aluminium oxide by method of powder metallurgy. This method is less expensive and very efficient. The Hardness test was performed on the specimens prepared by powder metallurgy method. The results revealed that the micro hardness of composites was increased with the addition of silicon carbide and alumina particles in magnesium metal matrix composites.

  4. NANOSIZED MAGNESIUM OXIDE AS CATALYST FOR THE RAPID AND GREEN SYNTHESIS OF SUBSTITUTED 2-AMINO-2-CHROMENES

    Science.gov (United States)

    A nanosized magnesium oxide catalyzed three-component condensation reaction of aldehyde, malononitrile and ¿-naphthol proceeded rapidly in water/PEG to afford corresponding 2-amino-2-chromenes in high yields at room temperature. The greener protocol was found to be fairly general...

  5. Formation mechanism of spheroidal carbide in ultra-low carbon ductile cast iron

    Directory of Open Access Journals (Sweden)

    Bin-guo Fu

    2016-09-01

    Full Text Available The formation mechanism of the spheroidal carbide in the ultra-low carbon ductile cast iron fabricated by the metal mold casting technique was systematically investigated. The results demonstrated that the spheroidal carbide belonged to eutectic carbide and crystallized in the isolated eutectic liquid phase area. The formation process of the spheroidal carbide was related to the contact and the intersection between the primary dendrite and the secondary dendrite of austenite. The oxides of magnesium, rare earths and other elements can act as heterogeneous nucleation sites for the spheroidal carbide. It was also found that the amount of the spheroidal carbide would increase with an increase in carbon content. The cooling rate has an important influence on the spheroidal carbide under the same chemical composition condition.

  6. Synthesis and evaluation of MgF2 coatings by chemical conversion on magnesium alloys for producing biodegradable orthopedic implants of temporary use

    International Nuclear Information System (INIS)

    Casanova, P Y; Jaimes, K J; Parada, N J; Viejo, F; Hernández-Barrios, C A; Aparicio, M; Coy, A E

    2013-01-01

    The aim of the present work was the synthesis of biodegradable MgF 2 coatings by chemical conversion on the commercial Elektron 21 and AZ91D magnesium alloys, in aqueous HF solutions for different concentrations and temperatures. The chemical composition and morphology of the coatings were analyzed by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD). On the other hand, their corrosion behavior was evaluated by gravimetric and electrochemical measurements in Hank's solution at 37°C for different immersion times. The experimental results revealed that chemical conversion in HF produced MgF 2 coatings which corrosion resistance was enhanced by increasing the HF concentration. Further, the microstructure and composition of the base alloy played a key role on the growth and degradation mechanisms of the MgF 2 coatings

  7. Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition

    KAUST Repository

    Tan, Hua

    2012-09-01

    In this work, Ru nanoparticles confined in the channels of ordered mesoporous alumina (MA) and magnesium oxide-modified ordered MA are prepared for the first time via a two-solvent technique, combined with the amorphous citrate route. Structural characterizations reveal that uniform 2-3 nm Ru nanoparticles are highly dispersed in the blockage-free channels of mesoporous supports. The Ru nanoparticles confined in MA modified with 20% molar ratio magnesium oxide exhibited a high catalytic activity and stability during ammonia decomposition due to the optimized particle size, basic support, lack of chlorine, and confined space provided by the channels of the mesoporous supports. © 2012 Elsevier B.V. All rights reserved.

  8. Synthesis of Ru nanoparticles confined in magnesium oxide-modified mesoporous alumina and their enhanced catalytic performance during ammonia decomposition

    KAUST Repository

    Tan, Hua; Li, Kun; Sioud, Salim; Cha, Dong Kyu; Amad, Maan H.; Hedhili, Mohamed N.; Al-Talla, Zeyad

    2012-01-01

    In this work, Ru nanoparticles confined in the channels of ordered mesoporous alumina (MA) and magnesium oxide-modified ordered MA are prepared for the first time via a two-solvent technique, combined with the amorphous citrate route. Structural characterizations reveal that uniform 2-3 nm Ru nanoparticles are highly dispersed in the blockage-free channels of mesoporous supports. The Ru nanoparticles confined in MA modified with 20% molar ratio magnesium oxide exhibited a high catalytic activity and stability during ammonia decomposition due to the optimized particle size, basic support, lack of chlorine, and confined space provided by the channels of the mesoporous supports. © 2012 Elsevier B.V. All rights reserved.

  9. Plastic deformation of particles of zirconium and titanium carbide subjected to vibration grinding

    Energy Technology Data Exchange (ETDEWEB)

    Kravchik, A.E.; Neshpor, V.S.; Savel' ev, G.A.; Ordan' yan, S.S.

    1976-12-01

    A study is made of the influence of stoichiometry on the characteristics of microplastic deformation in powders of zirconium and titanium carbide subjected to vibration grinding. The carbide powders were produced by direct synthesis from the pure materials: metallic titanium and zirconium and acetylene black. As to the nature of their elastic deformation, zirconium and titanium carbides can be considered elastic-isotropic materials. During vibration grinding, the primary fracture planes are the (110) planes. Carbides of nonstoichiometric composition are more brittle.

  10. Synthesis of nano-sized MgO particle and thin film from diethanolamine-stabilized magnesium-methoxide

    International Nuclear Information System (INIS)

    Jung, Hyun Suk; Lee, J.-K.; Young Kim, J.; Hong, Kug Sun

    2003-01-01

    The effects of diethanolamine (DEA) addition on the crystallization behavior of magnesium methoxide and the stabilization behavior of the Mg-alkoxide were investigated using differential scanning calorimetry, thermogravimetry, X-ray powder diffraction, transmission electron microscopy, and X-ray photoemission spectroscopy. 20 mol% DEA additions to magnesium methoxide showed enhanced stability such that a time-dependent change in the sol was not observed in air. Moreover, the DEA addition enhanced the crystallization process. Crystalline MgO in the 20 mol% of DEA-added magnesium methoxide powder was observed at 300 deg. C for samples processed in O 2 and a high degree of crystallinity was observed at 400 deg. C when processed in O 2 . The enhanced crystallization of Mg-methoxide with added DEA in O 2 is discussed in terms of structural relaxation and heat generation during the ignition of an organic species of DEA. Using a DEA added sol, a MgO thin film with a high degree of crystallinity was prepared at 400 deg. C in O 2

  11. Development of nano-structured silicon carbide ceramics: from synthesis of the powder to sintered ceramics; Elaboration de ceramiques nanostructurees en carbure de silicium: de la synthese de la poudre a la ceramique frittee

    Energy Technology Data Exchange (ETDEWEB)

    Reau, A.

    2008-12-15

    The materials used inside future nuclear reactors will be subjected to very high temperature and neutrons flux. Silicon carbide, in the form of SiC{sub f}/SiC nano-structured composite is potentially interesting for this type of application. It is again necessary to verify the contribution of nano-structure on the behaviour of this material under irradiation. To verify the feasibility and determine the properties of the matrix, it was envisaged to produce it by powder metallurgy from SiC nanoparticles. The objective is to obtain a fully dense nano-structured SiC ceramic without additives. For that, a parametric study of the phases of synthesis and agglomeration was carried out, the objective of which is to determine the active mechanisms and the influence of the key parameters. Thus, studying the nano-powder synthesis by laser pyrolysis allowed to produce, with high production rates, homogeneous batches of SiC nanoparticles whose size can be adjusted between 15 and 90 nm. These powders have been densified by an innovating method: Spark Plasma Sintering (SPS). The study and the optimization of the key parameters allowed the densification of silicon carbide ceramic without sintering aids while preserving the nano-structure of material. The thermal and mechanical properties of final materials were studied in order to determine the influence of the microstructure on their properties. (author)

  12. Facile synthesis of silicon carbide-titanium dioxide semiconducting nanocomposite using pulsed laser ablation technique and its performance in photovoltaic dye sensitized solar cell and photocatalytic water purification

    Energy Technology Data Exchange (ETDEWEB)

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Baig, Umair [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Center of Excellence for Scientific Research Collaboration with MIT, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2016-08-15

    Highlights: • SiC–TiO{sub 2} semiconducting nanocomposites synthesized by nanosecond PLAL technique. • Synthesized nanocomposites were morphologically and optically characterized. • Nanocomposites were applied for the photocatalytic degradation of toxic organic dye. • Photovoltaic performance was investigated in dye sensitized solar cell. - Abstract: Separation of photo-generated charge carriers (electron and holes) is a major approach to improve the photovoltaic and photocatalytic performance of metal oxide semiconductors. For harsh environment like high temperature applications, ceramic like silicon carbide is very prominent. In this work, 10%, 20% and 40% by weight of pre-oxidized silicon carbide was coupled with titanium dioxide (TiO{sub 2}) to form nanocomposite semiconductor via elegant pulsed laser ablation in liquid technique using second harmonic 532 nm wavelength of neodymium-doped yttrium aluminium garnet (Nd-YAG) laser. In addition, the effect of silicon carbide concentration on the performance of silicon carbide-titanium dioxide nanocomposite as photo-anode in dye sensitized solar cell and as photocatalyst in photodegradation of methyl orange dye in water was also studied. The result obtained shows that photo-conversion efficiency of the dye sensitized solar cell was improved from 0.6% to 1.65% and the percentage of methyl orange dye removed was enhanced from 22% to 77% at 24 min under ultraviolet–visible solar spectrum in the nanocomposite with 10% weight of silicon carbide. This remarkable performance enhancement could be due to the improvement in electron transfer phenomenon by the presence of silicon carbide on titanium dioxide.

  13. Production of magnesium metal

    Science.gov (United States)

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  14. Synthesis Of Magnesium-Aluminum Layered Double Hydroxides By Mechanochemical Method And Its Solid State Reaction Kinetics

    Directory of Open Access Journals (Sweden)

    Hongbo Y.

    2015-06-01

    Full Text Available A mechanochemical method is developed in preparing magnesium-aluminum-layered double hydroxides (MgAl-LDHs. This approach includes activation process and diffusion process. In order to verify the LDHs structure and study the reaction kinetics, X-ray diffraction (XRD patterns, inductively coupled plasma(ICP and physical adsorption instrument were characterized. The results show that activation time can change the surface of particles and affect the reaction grade. During the diffusion process, reaction time is the most important factor. The reaction energy (ΔQ was calculated that is 6kJ/mol.

  15. Replacing Chlorine with Hydrogen Chloride as a Possible Reactant for Synthesis of Titanium Carbide Derived Carbon Powders for High-Technology Devices

    International Nuclear Information System (INIS)

    Tallo, Indrek; Thomberg, Thomas; Jänes, Alar; Lust, Enn

    2013-01-01

    Micro- and mesoporous carbide-derived carbons were synthesized from titanium carbide (TiC) powder via gas phase reaction by using different reactants (Cl 2 and HCl) within the temperature range from 700 to 1100 °C. Analysis of XRD results show that TiC-derived carbons (TiC-CDC) consist mainly of graphitic crystallites. The first-order Raman spectra showed the graphite-like absorption peaks at ∼1577 cm 1 and the disorder-induced peaks at ∼1338 cm- 1 . The energy-related properties of supercapacitors based on 1 M (C 2 H 5 ) 3 CH 3 NBF 4 in acetonitrile and carbide-derived carbons (TiC-CDC (Cl 2 ) and TiC-CDC (HCl)) as electrode materials were also investigated using cyclic voltammetry, electrochemical impedance spectroscopy, galvanostatic charge/discharge and constant power methods. The Ragone plots for carbide-derived carbons prepared by using different reactants (Cl 2 , HCl) are quite similar and at high power loads TiC-CDC (Cl 2 ) material synthesized at 900 °C, i.e. materials with optimal porous structure, deliver higher power at constant energy

  16. One-step synthesis of 2D-layered carbon wrapped transition metal nitrides from transition metal carbides (MXenes) for supercapacitors with ultrahigh cycling stability.

    Science.gov (United States)

    Yuan, Wenyu; Cheng, Laifei; Wu, Heng; Zhang, Yani; Lv, Shilin; Guo, Xiaohui

    2018-03-13

    A novel one-step method to synthesize 2D carbon wrapped TiN (C@TiN) was proposed via using 2D metal carbides (MXenes) as precursors. This study provides a novel approach to synthesize carbon wrapped metal nitrides.

  17. Corrosion resistant cemented carbide

    International Nuclear Information System (INIS)

    Hong, J.

    1990-01-01

    This paper describes a corrosion resistant cemented carbide composite. It comprises: a granular tungsten carbide phase, a semi-continuous solid solution carbide phase extending closely adjacent at least a portion of the grains of tungsten carbide for enhancing corrosion resistance, and a substantially continuous metal binder phase. The cemented carbide composite consisting essentially of an effective amount of an anti-corrosion additive, from about 4 to about 16 percent by weight metal binder phase, and with the remaining portion being from about 84 to about 96 percent by weight metal carbide wherein the metal carbide consists essentially of from about 4 to about 30 percent by weight of a transition metal carbide or mixtures thereof selected from Group IVB and of the Periodic Table of Elements and from about 70 to about 96 percent tungsten carbide. The metal binder phase consists essentially of nickel and from about 10 to about 25 percent by weight chromium, the effective amount of an anti-corrosion additive being selected from the group consisting essentially of copper, silver, tine and combinations thereof

  18. Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles.

    Science.gov (United States)

    Chen, Lian-Yi; Xu, Jia-Quan; Choi, Hongseok; Pozuelo, Marta; Ma, Xiaolong; Bhowmick, Sanjit; Yang, Jenn-Ming; Mathaudhu, Suveen; Li, Xiao-Chun

    2015-12-24

    Magnesium is a light metal, with a density two-thirds that of aluminium, is abundant on Earth and is biocompatible; it thus has the potential to improve energy efficiency and system performance in aerospace, automobile, defence, mobile electronics and biomedical applications. However, conventional synthesis and processing methods (alloying and thermomechanical processing) have reached certain limits in further improving the properties of magnesium and other metals. Ceramic particles have been introduced into metal matrices to improve the strength of the metals, but unfortunately, ceramic microparticles severely degrade the plasticity and machinability of metals, and nanoparticles, although they have the potential to improve strength while maintaining or even improving the plasticity of metals, are difficult to disperse uniformly in metal matrices. Here we show that a dense uniform dispersion of silicon carbide nanoparticles (14 per cent by volume) in magnesium can be achieved through a nanoparticle self-stabilization mechanism in molten metal. An enhancement of strength, stiffness, plasticity and high-temperature stability is simultaneously achieved, delivering a higher specific yield strength and higher specific modulus than almost all structural metals.

  19. Synthesis of a novel alkali-activated magnesium slag-based nanostructural composite and its photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yao Jun, E-mail: zhangyaojun@xauat.edu.cn; Kang, Le; Liu, Li Cai; Si, Hai Xiao; Zhang, Ji Fang

    2015-03-15

    Highlights: • A novel type of AMSNC is firstly synthesized by three-step reactions. • Magnesium slag-based nanomaterial is applied for degradation of wastewater. • Photocatalytic activities depend on the absorption edges of nanomaterials. • A photocatalytic degradation mechanism was proposed. - Abstract: A novel type of alkali-activated magnesium slag-based nanostructural composite (AMSNC) co-loaded bimetallic oxide semiconductors of NiO and CuO were synthesized by alkaline activation, ion exchange and wet co-impregnation methods, and then firstly employed as a photocatalyst for the degradation of indigo carmine dye. The XRD, TEM and HRTEM results revealed that CuO in the form of tenorite with mean particle size of about 15 nm and NiO in amorphous phase dispersed on the surface of AMSNC support. The decrease of photoluminescence with increasing amount of NiO and CuO demonstrated that the recombination of photogenerated electrons–holes pairs was prevented when the photogenerated electrons transferred from the metal oxide semiconductor to the AMSNC matrix. The 10(NiO + CuO)/AMSNC specimen showed that the photocatalytic degradation efficiency was up to 100% under UV irradiation for 1 h due to the synergistic effect between the AMSNC and active species of NiO and CuO. The mesoporous structures of specimens acted as critical role for the adsorption of dye molecules, and the photocatalytic degradation of indigo carmine dye obeyed first-order reaction kinetics. A degradation mechanism of photocatalytic oxidation was proposed in the paper.

  20. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2012-01-01

    Seawater and natural brines accounted for about 57 percent of magnesium compounds produced in the United States in 2011. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties LLC from well brines in Michigan. Caustic-calcined magnesia was recovered from seawater by Premier Magnesia LLC in Florida, from well brines in Michigan by Martin Marietta and from magnesite in Nevada by Premier Magnesia. Intrepid Potash Wendover LLC and Great Salt Lake Minerals Corp. recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from seawater by SPI Pharma Inc. in Delaware and Premier Magnesia in Florida, and by Martin Marietta from its brine operation in Michigan.

  1. ON THE SYNTHESIS OF MOLYBDENUM CARBIDE WITH COBALT ADDITION VIA GAS-SOLID REACTIONS IN A CH4/H2 ATMOSPHERE

    Directory of Open Access Journals (Sweden)

    C. P. B. Araujo

    Full Text Available Abstract Due to ever more severe environmental regulations regarding SOx, NOx and other pollutants' emissions, there has been an interest in developing new and improved catalysts for hydroprocessing reactions. Mo2C has been reported to display good selectivity and activity for those reactions, especially for HDS. Addition of another metal to the carbide structure may improve catalytic properties. Mo2C with low cobalt addition (2.5 and 5% was obtained via gas-solid reaction in a fixed bed reactor with CH4 (5%/H2 atmosphere. XRD and TG/DTA analysis of the precursors were carried out in order to understand its mass loss profile, doping metal presence and phase distributions. CoMoO4 as well as MoO3 were identified after calcining doped precursors at 600 °C/180min. SEM, XRD, XRF, TOC, BET and laser granulometric analysis of the reaction products were also performed. Compositions verified by XRF and theoretical values were compatible. At 700 °C both carbide (Mo2C and oxide (MoO2 phases are present, as identified in XRD analysis and observed by SEM. At 750 °C only single phase Mo2C was verified by XRD, indicating Co dispersion on the carbide matrix. Morphology at this temperature is compatible with pure Mo2C, though XRF indicates Co presence on the material.

  2. A novel route to nanosized molybdenum boride and carbide and/or metallic molybdenum by thermo-synthesis method from MoO3, KBH4, and CCl4

    International Nuclear Information System (INIS)

    Li Yuanzhi; Fan Yining; Chen Yi

    2003-01-01

    Nanosized molybdenum boride and carbide were synthesized from MoO 3 , KBH 4 , and CCl 4 by thermo-synthesis method at lower temperature. The relative content of Mo, Mo 2 C, and molybdenum boride in the product was decided by the molar ratio between MoO 3 , KBH 4 , and CCl 4 . Increasing the molar ratio of CCl 4 to MoO 3 was favorable to the production of Mo 2 C. Increasing the molar ratio of KBH 4 to MoO 3 was favorable to the production of molybdenum boride. By carefully adjusting the reaction conditions and annealing in Ar at 900 deg. C, a single phase of MoB could be obtained

  3. Ti-Mg alloy powder synthesis via mechanochemical reduction of TiO 2 by elemental magnesium

    CSIR Research Space (South Africa)

    Mushove, T

    2009-04-01

    Full Text Available This paper reports the preliminary results of an investigation on the synthesis of a Ti-Mg alloy powder through mechanochemical processing of TiO 2 and Mg powders. TiO 2 was mixed with elemental Mg according to a nominal stoichiometric composition...

  4. Magnesium compounds

    Science.gov (United States)

    Kramer, D.A.

    2007-01-01

    Seawater and natural brines accounted for about 52 percent of U.S. magnesium compounds production in 2006. Dead-burned magnesia was produced by Martin Marietta Magnesia Specialties from well brines in Michigan. Caustic-calcined magnesia was recovered from sea-water by Premier Chemicals in Florida; from well brines in Michigan by Martin Marietta and Rohm and Haas; and from magnesite in Nevada by Premier Chemicals. Intrepid Potash-Wendover and Great Salt Lake Minerals recovered magnesium chloride brines from the Great Salt Lake in Utah. Magnesium hydroxide was produced from brucite by Applied Chemical Magnesias in Texas, from seawater by SPI Pharma in Delaware and Premier Chemicals in Florida, and by Martin Marietta and Rohm and Haas from their operations mentioned above. About 59 percent of the magnesium compounds consumed in the United States was used for refractories that are used mainly to line steelmaking furnaces. The remaining 41 percent was consumed in agricultural, chemical, construction, environmental and industrial applications.

  5. Synthesis and characterization of in situ TiC–TiB2 composite coatings by reactive plasma spraying on a magnesium alloy

    International Nuclear Information System (INIS)

    Zou Binglin; Tao Shunyan; Huang Wenzhi; Khan, Zuhair S.; Fan Xizhi; Gu Lijian; Wang Ying; Xu Jiaying; Cai Xiaolong; Ma Hongmei; Cao Xueqiang

    2013-01-01

    Highlights: ► TiC–TiB 2 composites coatings were produced on Mg alloy by reactive plasma spraying. ► Phase composition, microstructure and wear resistance of the coatings were studied. ► The resultant product in the coatings was composed of TiC and TiB 2 . ► The produced coatings displayed porous and dense microstructures. ► The synthesized coatings exhibited good wear resistance for Mg alloy substrate. - Abstract: TiC–TiB 2 composite coatings were successfully synthesized using the technique of reactive plasma spraying (RPS) on a magnesium alloy. Phase composition, microstructure and wear resistance of the coatings were characterized by using X-ray diffraction, scanning electron microscopy and pin-on-disk wear test, respectively. The results showed that the resultant product in the RPS coatings was composed of TiC and TiB 2 . Depending on the ignition of self-propagating high-temperature synthesis reaction in the agglomerate particles, the RPS coatings displayed porous and dense microstructures. The porosity of the RPS coatings, to some extent, decreased when the feed powders were plasma sprayed with Ni powders. The RPS coatings provided good wear resistance for the substrate under various loads. For high loads (e.g., ≥15 N), the wear resistance could be significantly improved by the proper addition of Ni into the RPS coatings.

  6. Iron Carbides and Nitrides: Ancient Materials with Novel Prospects.

    Science.gov (United States)

    Ye, Zhantong; Zhang, Peng; Lei, Xiang; Wang, Xiaobai; Zhao, Nan; Yang, Hua

    2018-02-07

    Iron carbides and nitrides have aroused great interest in researchers, due to their excellent magnetic properties, good machinability and the particular catalytic activity. Based on these advantages, iron carbides and nitrides can be applied in various areas such as magnetic materials, biomedical, photo- and electrocatalysis. In contrast to their simple elemental composition, the synthesis of iron carbides and nitrides still has great challenges, particularly at the nanoscale, but it is usually beneficial to improve performance in corresponding applications. In this review, we introduce the investigations about iron carbides and nitrides, concerning their structure, synthesis strategy and various applications from magnetism to the catalysis. Furthermore, the future prospects are also discussed briefly. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Synthesis and characterization of magnesium oxide nanocrystallites and probing the vacancy-type defects through positron annihilation studies

    Science.gov (United States)

    Das, Anjan; Mandal, Atis Chandra; Roy, Soma; Prashanth, Pendem; Ahamed, Sk Izaz; Kar, Subhrasmita; Prasad, Mithun S.; Nambissan, P. M. G.

    2016-09-01

    Magnesium oxide nanocrystallites exhibit certain abnormal characteristics when compared to those of other wide band gap oxide semiconductors in the sense they are most prone to water absorption and formation of a hydroxide layer on the surface. The problem can be rectified by heating and pure nanocrystallites can be synthesized with controllable sizes. Inevitably the defect properties are distinctly divided between two stages, the one with the hydroxide layer (region I) and the other after the removal of the layer by annealing (region II). The lattice parameters, the optical band gap and even the positron annihilation characteristics are conspicuous by their distinct behavior in the two stages of the surface configurations of nanoparticles. While region I was specific with the formation of positronium-hydrogen complexes that drastically altered the defect-specific positron lifetimes, pick-off annihilation of orthopositronium atoms marked region II. The vacancy clusters within the nanocrystallites also trapped positrons. They agglomerated due to the effect of the higher temperatures and resulted in the growth of the nanocrystallites. The coincidence Doppler broadening spectroscopic measurements supported these findings and all the more indicated the trapping of positrons additionally into the neutral divacancies and negatively charged trivacancies. This is apart from the Mg2+ monovacancies which acted as the dominant trapping centers for positrons.

  8. Magnetic study of interatomic interactions, synthesis, structural and mass spectroscopy investigations of lanthanum gallate doped with cobalt and magnesium

    International Nuclear Information System (INIS)

    Korolev, D.A.; Chezhina, N.V.; Lopatin, S.I.

    2015-01-01

    Highlights: • Single phase LaCo x Ga 1−1.2x Mg 0.2x O 3 and LaCo x Ga 1−1.5x Mg 0.5x O 3 solutions were obtained. • Two crystalline modifications of solid solutions were found by Rietveld method. • Ferromagnetic clusters including Co, Mg and accompanying oxygen vacancies are found. • Magnetic behavior of clusters is of superparamagnetic type. - Abstract: For the first time by X-ray method two phases of the solid solutions LaCo x Ga 1−1.2x Mg 0.2x O 3−δ and LaCo x Ga 1−1.5x Mg 0.5x O 3−δ (x = 0.01–0.10) with different structure were found – rhombohedral and orthorhombic phases. On the basis of the data on evaporation of the components a synthetic procedure was advanced allowing the losses of cobalt to be minimized. The study of magnetic characteristics of obtained solid solutions showed the formation of high nuclearity clusters containing cobalt atoms, and also magnesium and associated vacancies even in diluted solid solutions. Clusters are characterized by a competition between ferro- and antiferromagnetic exchange interactions, whereas the long order exchange is antiferromagnetic

  9. Magnetic study of interatomic interactions, synthesis, structural and mass spectroscopy investigations of lanthanum gallate doped with cobalt and magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, D.A., E-mail: chemdim@mail.ru; Chezhina, N.V.; Lopatin, S.I.

    2015-03-05

    Highlights: • Single phase LaCo{sub x}Ga{sub 1−1.2x}Mg{sub 0.2x}O{sub 3} and LaCo{sub x}Ga{sub 1−1.5x}Mg{sub 0.5x}O{sub 3} solutions were obtained. • Two crystalline modifications of solid solutions were found by Rietveld method. • Ferromagnetic clusters including Co, Mg and accompanying oxygen vacancies are found. • Magnetic behavior of clusters is of superparamagnetic type. - Abstract: For the first time by X-ray method two phases of the solid solutions LaCo{sub x}Ga{sub 1−1.2x}Mg{sub 0.2x}O{sub 3−δ} and LaCo{sub x}Ga{sub 1−1.5x}Mg{sub 0.5x}O{sub 3−δ} (x = 0.01–0.10) with different structure were found – rhombohedral and orthorhombic phases. On the basis of the data on evaporation of the components a synthetic procedure was advanced allowing the losses of cobalt to be minimized. The study of magnetic characteristics of obtained solid solutions showed the formation of high nuclearity clusters containing cobalt atoms, and also magnesium and associated vacancies even in diluted solid solutions. Clusters are characterized by a competition between ferro- and antiferromagnetic exchange interactions, whereas the long order exchange is antiferromagnetic.

  10. Tribology of carbide derived carbon films synthesized on tungsten carbide

    Science.gov (United States)

    Tlustochowicz, Marcin

    Tribologically advantageous films of carbide derived carbon (CDC) have been successfully synthesized on binderless tungsten carbide manufactured using the plasma pressure compaction (P2CRTM) technology. In order to produce the CDC films, tungsten carbide samples were reacted with chlorine containing gas mixtures at temperatures ranging from 800°C to 1000°C in a sealed tube furnace. Some of the treated samples were later dechlorinated by an 800°C hydrogenation treatment. Detailed mechanical and structural characterizations of the CDC films and sliding contact surfaces were done using a series of analytical techniques and their results were correlated with the friction and wear behavior of the CDC films in various tribosystems, including CDC-steel, CDC-WC, CDC-Si3N4 and CDC-CDC. Optimum synthesis and treatment conditions were determined for use in two specific environments: moderately humid air and dry nitrogen. It was found that CDC films first synthesized at 1000°C and then hydrogen post-treated at 800°C performed best in air with friction coefficient values as low as 0.11. However, for dry nitrogen applications, no dechlorination was necessary and both hydrogenated and as-synthesized CDC films exhibited friction coefficients of approximately 0.03. A model of tribological behavior of CDC has been proposed that takes into consideration the tribo-oxidation of counterface material, the capillary forces from adsorbed water vapor, the carbon-based tribofilm formation, and the lubrication effect of both chlorine and hydrogen.

  11. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    M.A. Malik

    2013-01-01

    Full Text Available Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Ramanmicroscopy in the composites microstructure.

  12. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    OpenAIRE

    Malika M.A.; Majchrzak K.; Braszczyńska-Malik K.N.

    2013-01-01

    Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.

  13. Microstructural Characterization of Cast Magnesium Matrix Composites by Raman Microscopy

    Directory of Open Access Journals (Sweden)

    Malika M.A.

    2013-03-01

    Full Text Available Cast magnesium matrix composites reinforced with silicon carbide particles were investigated by using Raman microscopy. 3C, 4H and 6H polytypes of SiC particles were identified in the investigated composites. Additionally, Mg2Si compound was detected by Raman microscopy in the composites microstructure.

  14. Magnesium borate radiothermoluminescent detectors

    International Nuclear Information System (INIS)

    Kazanskaya, V.A.; Kuzmin, V.V.; Minaeva, E.E.; Sokolov, A.D.

    1974-01-01

    In the report the technology of obtaining polycrystalline magnesium borate activated by dysprosium is described briefly and the method of preparing the tabletted detectors from it is presented. The dependence of the light sum of the samples on the proportion of the components and on the sintering regime has shown that the most sensitive material is obtained at the proportion of boric anhydride and magnesium oxide 2.2-2.4 and at the dysprosium concentration about 1 milligram-atom per gram molecule of the base. The glow curve of such a material has a simple form with one peak the maximum of which is located at 190-200 0 C. The measurement of the main dosimetric characteristics of the magnesium borate tabletted detectors and the comparison with similar parmaeters of the lithium fluoride tabletted detectors have shown that at practically identical effective number the former detectors have the following substantial advantages: the sensitivity is ten-twenty times as large, they are substantially more technological on synthesis of the radiothermoluminophor and during the production of the tabletted detectors, they have a simple glow curve, they do not require the utilization of the thermocycling during the use. (author)

  15. Structural and surface properties of highly ordered mesoporous magnesium-aluminium composite oxides derived from facile synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dahai, E-mail: pandahai@foxmail.com; Dong, Zhaoyang; He, Min; Chen, Wei; Chen, Shuwei; Yu, Feng; Fan, Binbin; Cui, Xingyu; Li, Ruifeng, E-mail: rfli@tyut.edu.cn

    2017-01-15

    Highly ordered mesoporous magnesium-aluminium composite oxides (denoted as OMMA-x) with a variety of n{sub Al}/n{sub Mg} ratios have been successfully synthesized via a facile strategy, and a salt effect was proposed to explain the formation mechanism. The incorporation of Mg can significantly improve the structural and surface properties of ordered mesoporous alumina (OMA) material. The resultant OMMA-x exhibited a much more ordered 2-D hexagonal mesostructure, a narrower pore size distribution, a higher specific surface area and pore volume, and a stronger basicity than those of OMA. More importantly, the highly homogeneous incorporation of Mg at the atomic level and the formation of framework Mg−O−Al bonds could effectively suppress the formation of crystalline alumina during the calcination process. As a result, OMMA-x demonstrated a superior thermal stability. For example, the ordered mesostructure of OMMA-8 could be well maintained with a high surface area of 182 m{sup 2}/g even after thermal treatment at 1000 °C. - Graphical abstract: A schematic procedure to illustrate the preparation of highly ordered mesoporous Mg-Al composite oxides (OMMA-x) with highly homogeneously dispersed Mg species and enhanced structural stability. - Highlights: • Mesoporous Mg-Al composite oxides with excellent structural and surface properties. • A highly homogeneous incorporation of Mg into the mesoporous framework of alumina. • A superior structural stability up to 1000 °C coupled with a large surface area. • A salt effect from the addition of Mg(NO{sub 3}){sub 2}·6H{sub 2}O to explain the formation mechanism.

  16. Synthesis and characterization of mesoporous tungsten carbide/carbon nanocomposites%介孔碳化钨/炭纳米复合材料的制备与表征

    Institute of Scientific and Technical Information of China (English)

    夏燎原; 胡云楚; 吴义强

    2012-01-01

    碳化钨作为一种潜在的催化剂可广泛应用于电化学催化和有机合成反应,本文通过一种简单可行的“软模板”法制备了介孔碳化钨/炭纳米复合材料,主要包括“油包水”微乳液形成、模板诱导自组装、高温碳化还原过程.采用X-射线衍射、透射电镜和比表面积和孔径分布等方法对材料进行了表征与分析.结果表明,该复合材料具有蠕虫状的介孔结构、高的比表面积、碳化钨粒子(约40 nm)均匀的分布在炭载体上,介孔碳化钨/炭纳米复合材料可用于燃料电池、化学传感器和电催化有机合成反应.%Tungsten carbide (WC) can be used as potential catalysts for various electrocatalyst and chemical reactions.A simply soft-template route to fabricate mesoporous tungsten carbide/carbon (WC/C) composites was prepared by W/O emulsion and triblock copolymer self-assembly strategies,followed by a high-temperature carbothermal reduction.XRD,TEM and BET surface area and pore size distribution techniques were employed to characterize the mesoporous WC/C nanocomposites.The results show that the resultant materials have wormlike mesostructure,nnaoscale (about 40 nm) and welldispersed tungsten carbide particles,and high surface areas.Furthermore,the mesoporous WC/C nanocomposites could have great potential applications in fuel cell electrocatalyst,sensors and organic synthesis reactions.

  17. Low magnesium level

    Science.gov (United States)

    Low magnesium level is a condition in which the amount of magnesium in the blood is lower than normal. The medical ... that convert or use energy ( metabolism ). When the level of magnesium in the body drops below normal, ...

  18. New quaternary carbide Mg1.52Li0.24Al0.24C0.86 as a disorder derivative of the family of hexagonal close-packed (hcp) structures and the effect of structure modification on the electrochemical behaviour of the electrode.

    Science.gov (United States)

    Pavlyuk, Volodymyr; Kulawik, Damian; Ciesielski, Wojciech; Pavlyuk, Nazar; Dmytriv, Grygoriy

    2018-03-01

    Magnesium alloys are the basis for the creation of light and ultra-light alloys. They have attracted attention as potential materials for the accumulation and storage of hydrogen, as well as electrode materials in metal-hydride and magnesium-ion batteries. The search for new metal hydrides has involved magnesium alloys with rare-earth transition metals and doped by p- or s-elements. The synthesis and characterization of a new quaternary carbide, namely dimagnesium lithium aluminium carbide, Mg 1.52 Li 0.24 Al 0.24 C 0.86 , belonging to the family of hexagonal close-packed (hcp) structures, are reported. The title compound crystallizes with hexagonal symmetry (space group P-6m2), where two sites with -6m2 symmetry and one site with 3m. symmetry are occupied by an Mg/Li statistical mixture (in Wyckoff position 1a), an Mg/Al statistical mixture (in position 1d) and C atoms (2i). The cuboctahedral coordination is typical for Mg/Li and Mg/Al, and the C atom is enclosed in an octahedron. Electronic structure calculations were used for elucidation of the ability of lithium or aluminium to substitute magnesium, and evaluation of the nature of the bonding between atoms. The presence of carbon in the carbide phase improves the corrosion resistance of the Mg 1.52 Li 0.24 Al 0.24 C 0.86 alloy compared to the ternary Mg 1.52 Li 0.24 Al 0.24 alloy and Mg.

  19. Synthesis and characterization of strontium and magnesium substituted lanthanum gallate-nickel cermet anode for solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Pradyot [Max-Planck-Institut fuer Metallforschung and Institut fuer Nichtmetallische, Anorganische Materialien, Universitaet Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, Stuttgart 70569 (Germany)]. E-mail: pdatta@rediffmail.com; Majewski, Peter [University of South Australia, Ian Wark Research Institute, Mawson Lakes, SA 5095 (Australia); Aldinger, Fritz [Max-Planck-Institut fuer Metallforschung and Institut fuer Nichtmetallische, Anorganische Materialien, Universitaet Stuttgart, Pulvermetallurgisches Laboratorium, Heisenbergstrasse 3, Stuttgart 70569 (Germany)

    2007-04-15

    La{sub 0.90}Sr{sub 0.10}Ga{sub 0.85}Mg{sub 0.15}O{sub 3-{delta}} (LSGM) was prepared by solid state synthesis and mixed with various amounts of Ni and NiO, respectively. The optimum sintering temperature of the material was identified by dilatometric studies to be above 1300 deg. C. The interaction between LSGM and NiO was studied by X-ray diffraction after sintering at 1300 and 1400 deg. C in air as well as after reduction in hydrogen atmosphere at 800 and 1000 deg. C. The LaSrGa{sub 3}O{sub 7} compound was detected after sintering, whereas, LaSrGaO{sub 4} was found after reduction treatment of the material. Diffusion of Ni into LSGM was thought to be the reason for the presence of the above mentioned phases. After the treatment, LSGM contained 2.3 at% of Ni determined by energy dispersive X-ray analysis (EDX). The thermal expansion coefficient of LSGM with varying contents of Ni was observed to increase with increasing the Ni content.

  20. Synthesis and characterization of strontium and magnesium substituted lanthanum gallate-nickel cermet anode for solid oxide fuel cells

    International Nuclear Information System (INIS)

    Datta, Pradyot; Majewski, Peter; Aldinger, Fritz

    2007-01-01

    La 0.90 Sr 0.10 Ga 0.85 Mg 0.15 O 3-δ (LSGM) was prepared by solid state synthesis and mixed with various amounts of Ni and NiO, respectively. The optimum sintering temperature of the material was identified by dilatometric studies to be above 1300 deg. C. The interaction between LSGM and NiO was studied by X-ray diffraction after sintering at 1300 and 1400 deg. C in air as well as after reduction in hydrogen atmosphere at 800 and 1000 deg. C. The LaSrGa 3 O 7 compound was detected after sintering, whereas, LaSrGaO 4 was found after reduction treatment of the material. Diffusion of Ni into LSGM was thought to be the reason for the presence of the above mentioned phases. After the treatment, LSGM contained 2.3 at% of Ni determined by energy dispersive X-ray analysis (EDX). The thermal expansion coefficient of LSGM with varying contents of Ni was observed to increase with increasing the Ni content

  1. Shock Response of Boron Carbide

    National Research Council Canada - National Science Library

    Dandekar, D. P. (Dattatraya Purushottam)

    2001-01-01

    .... The present work was undertaken to determine tensile/spall strength of boron carbide under plane shock wave loading and to analyze all available shock compression data on boron carbide materials...

  2. The Effects of Magnesium Ions on the Enzymatic Synthesis of Ligand-Bearing Artificial DNA by Template-Independent Polymerase

    Directory of Open Access Journals (Sweden)

    Yusuke Takezawa

    2016-06-01

    Full Text Available A metal-mediated base pair, composed of two ligand-bearing nucleotides and a bridging metal ion, is one of the most promising components for developing DNA-based functional molecules. We have recently reported an enzymatic method to synthesize hydroxypyridone (H-type ligand-bearing artificial DNA strands. Terminal deoxynucleotidyl transferase (TdT, a template-independent DNA polymerase, was found to oligomerize H nucleotides to afford ligand-bearing DNAs, which were subsequently hybridized through copper-mediated base pairing (H–CuII–H. In this study, we investigated the effects of a metal cofactor, MgII ion, on the TdT-catalyzed polymerization of H nucleotides. At a high MgII concentration (10 mM, the reaction was halted after several H nucleotides were appended. In contrast, at lower MgII concentrations, H nucleotides were further appended to the H-tailed product to afford longer ligand-bearing DNA strands. An electrophoresis mobility shift assay revealed that the binding affinity of TdT to the H-tailed DNAs depends on the MgII concentration. In the presence of excess MgII ions, TdT did not bind to the H-tailed strands; thus, further elongation was impeded. This is possibly because the interaction with MgII ions caused folding of the H-tailed strands into unfavorable secondary structures. This finding provides an insight into the enzymatic synthesis of longer ligand-bearing DNA strands.

  3. Electrocatalysis on tungsten carbide

    International Nuclear Information System (INIS)

    Fleischmann, R.

    1975-01-01

    General concepts of electrocatalysis, the importance of the equilibrium rest potential and its standardization on polished WC-electrodes, the influence of oxygen in the catalysts upon the oxidation of hydrogen, and the attained results of the hydrogen oxidation on tungsten carbide are treated. (HK) [de

  4. Oxide films on magnesium and magnesium alloys

    International Nuclear Information System (INIS)

    Shih, T.-S.; Liu, J.-B.; Wei, P.-S.

    2007-01-01

    Magnesium alloys are very active and readily ignite during heating and melting. In this study, we discuss the combustion of magnesium and magnesium alloys and propose prospective anti-ignition mechanisms for magnesium alloys during the heating process. When magnesium and magnesium alloys were heated in air, the sample surfaces produced layers of thermally formed oxides. These thermally formed oxides played an important role in affecting the combustion of the magnesium and magnesium alloys. When magnesium was heated in air, brucite that formed in the early stage was then transformed into periclase by dehydroxylation. By extending the heating time, more periclase formed and increased in thickness which was associated with microcracks formation. When magnesium was heated in a protective atmosphere (SF 6 ), a film of MgF 2 formed at the interface between the oxide layer and the Mg substrate. This film generated an anti-ignition behavior which protected the substrate from oxidation. When solution-treated AZ80 alloy was heated, spinel developed at the interface between the thermally formed oxide layer and the Mg substrate, improving the anti-ignition properties of the substrate. In addition, we also explain the effects of beryllium in an AZB91 alloy on the ignition-proofing behavior

  5. Joining elements of silicon carbide

    International Nuclear Information System (INIS)

    Olson, B.A.

    1979-01-01

    A method of joining together at least two silicon carbide elements (e.g.in forming a heat exchanger) is described, comprising subjecting to sufficiently non-oxidizing atmosphere and sufficiently high temperature, material placed in space between the elements. The material consists of silicon carbide particles, carbon and/or a precursor of carbon, and silicon, such that it forms a joint joining together at least two silicon carbide elements. At least one of the elements may contain silicon. (author)

  6. Magnesium oxychloride cement concrete

    Indian Academy of Sciences (India)

    TECS

    exposure to water and salt attack by replacing 10% magnesium chloride solution by magnesium sulphate solution ... Having tremendous load bearing capacity, it can withstand .... retention coefficients for similar concrete compositions.

  7. Calcium and magnesium determination

    International Nuclear Information System (INIS)

    Bhattacharya, S.K.

    1982-01-01

    The roles of calcium and magnesium in human health and disease have been extensively studied. Calcium and magnesium have been determined in biological specimens by atomic absorption spectroscopy using stiochiometric nitrous oxide-acetylene flame

  8. Choline Magnesium Trisalicylate

    Science.gov (United States)

    Choline magnesium trisalicylate is used to relieve the pain, tenderness, inflammation (swelling), and stiffness caused by arthritis and painful ... used to relieve pain and lower fever. Choline magnesium trisalicylate is in a class of nonsteroidal anti- ...

  9. Comparative sinterability of combustion synthesized and commercial titanium carbides

    International Nuclear Information System (INIS)

    Manley, B.W.

    1984-11-01

    The influence of various parameters on the sinterability of combustion synthesized titanium carbide was investigaged. Titanium carbide powders, prepared by the combustion synthesis process, were sintered in the temperature range 1150 to 1600 0 C. Incomplete combustion and high oxygen contents were found to be the cause of reduced shrinkage during sintering of the combustion syntheized powders when compared to the shrinkage of commercial TiC. Free carbon was shown to inhibit shrinkage. The activation energy for sintering was found to depend on stoichiometry (C/Ti). With decreasing C/Ti, the rate of sintering increased. 29 references, 16 figures, 13 tables

  10. Magnesium and Space Flight

    Directory of Open Access Journals (Sweden)

    Scott M. Smith

    2015-12-01

    Full Text Available Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female, 35 ± 7 years old. We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions.

  11. Magnesium and Space Flight

    Science.gov (United States)

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  12. Thermodynamic modelling of phase equilibrium in system Ti-B-Si-C, synthesis and phases composition of borides and carbides layers on titanic alloyVT-1 at electron beam treatment in vacuum

    Science.gov (United States)

    Smirnyagina, N. N.; Khaltanova, V. M.; Lapina, A. E.; Dasheev, D. E.

    2017-01-01

    Composite layers on the basis of carbides and borides the titan and silicon on titanic alloy VT-1 are generated at diffused saturation in vacuum. Formation in a composite of MAX phase Ti3SiC2 is shown. Thermodynamic research of phase equilibrium in systems Ti-Si-C and Ti-B-C in the conditions of high vacuum is executed. The thermodynamics, formation mechanisms of superfirm layers borides and carbides of the titan and silicon are investigated.

  13. Self-assembly synthesis of hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes with excellent performance for fast removal of cationic dyes

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yaxi; Cui, Guijia; Liu, Yan; Li, Haizhen; Sun, Zebin; Yan, Shiqiang, E-mail: yansq@lzu.edu.cn

    2016-11-30

    Highlights: • Hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes were synthesized for the first time. • MgSNTs showed excellent prformance for the removal of low concentration methylene blue and high concentration rodamine B. • It could be easily discovered from solution. - Abstract: In this work, novel hollow double silica @ mesoporous magnesium silicate magnetic hierarchical nanotubes (MgSNTs) were successfully synthesized by using magnetic mesoporous silica nanocapsules (MSNCs) as morphology templates via a hydrothermal method for the first time. MgSNTs were characterized by transmission electron microscopy, Mapping, X-ray diffraction, Fourier transform infraed spetroscopy, N{sub 2} adorption-desorption, X-ray photoelectron spectroscopy and vibrating sample magnetometry. The synthesized MgSNTs with high specific surface area (588 m{sup 2}/g), average pore width (7.13 nm) and pore volume (1.05 cm{sup 3}/g) had high removal efficiency for low concentration methylene blue (70 mg/L, 299 mg/g) and high adsorption capacities for high concentration rodamine B (300 mg/L, 752 mg/g). Besides, it could be easily recovered due with the help of γ-Fe{sub 2}O{sub 3} in the inner chamber. Moreover, the adsorption capacity, the influence of pH, adsorption kinetics and adsorption mechanism were also carefully and comprehensively investigated. The results indicated that magnetic magnesium silicate nanotubes (MgSNTs) using mesoporous silica nanocapsules as the assisted templates were promsing adsorbents for water purification.

  14. Tungsten carbide encapsulated in nitrogen-doped carbon with iron/cobalt carbides electrocatalyst for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie; Chen, Jinwei, E-mail: jwchen@scu.edu.cn; Jiang, Yiwu; Zhou, Feilong; Wang, Gang; Wang, Ruilin, E-mail: rl.wang@scu.edu.cn

    2016-12-15

    Graphical abstract: A hybrid catalyst was prepared via a quite green and simple method to achieve an one-pot synthesis of the N-doping carbon, tungsten carbides, and iron/cobalt carbides. It exhibited comparable electrocatalytic activity, higher durability and ability to methanol tolerance compared with commercial Pt/C to ORR. - Highlights: • A novel type of hybrid Fe/Co/WC@NC catalysts have been successfully synthesized. • The hybrid catalyst also exhibited better durability and methanol tolerance. • Multiple effective active sites of Fe{sub 3}C, Co{sub 3}C, WC, and NC help to improve catalytic performance. - Abstract: This work presents a type of hybrid catalyst prepared through an environmental and simple method, combining a pyrolysis of transition metal precursors, a nitrogen-containing material, and a tungsten source to achieve a one-pot synthesis of N-doping carbon, tungsten carbides, and iron/cobalt carbides (Fe/Co/WC@NC). The obtained Fe/Co/WC@NC consists of uniform Fe{sub 3}C and Co{sub 3}C nanoparticles encapsulated in graphitized carbon with surface nitrogen doping, closely wrapped around a plate-like tungsten carbide (WC) that functions as an efficient oxygen reduction reaction (ORR) catalyst. The introduction of WC is found to promote the ORR activity of Fe/Co-based carbide electrocatalysts, which is attributed to the synergistic catalysts of WC, Fe{sub 3}C, and Co{sub 3}C. Results suggest that the composite exhibits comparable electrocatalytic activity, higher durability, and ability for methanol tolerance compared with commercial Pt/C for ORR in alkaline electrolyte. These advantages make Fe/Co/WC@NC a promising ORR electrocatalyst and a cost-effective alternative to Pt/C for practical application as fuel cell.

  15. Magnesium and Osteoporosis

    Directory of Open Access Journals (Sweden)

    Ferda Özdemir

    2004-03-01

    Full Text Available Osteoporosis (OP is a condition of bone fragility resulting from micro-architectural deterioration and decreased bone mass. OP depends on the interaction of genetic, hormonal, environmental and nutritional factors. Chronic low intakes of vitamin D and possibly magnesium, zinc, fluoride and vitamins K, B12, B6 and folic acid may predispose to osteoporosis. Magnesium is a mineral needed by every cell of your body. It helps maintain normal muscle and nerve function, keeps heart rhythm steady, and bones strong. Mg serves as co-factors for enzymes that help build bone matrix. Magnesium deficiency occurs due to excessive loss of magnesium in urine, gastrointestinal system disorders that cause a loss of magnesium or limit magnesium absorption, or a chronic low intake of magnesium. Signs of magnesium deficiency include confusion, disorientation, loss of appetite, depression, muscle contractions and cramps, tingling, numbness, abnormal heart rhythms, coronary spasm, and seizures. Magnesium deficiency alters calcium metabolism and the hormones that regulates calcium. Several studies have suggested that magnesium supplementation may improve bone mineral density and prevent fractures.

  16. An extremely bulky tris(pyrazolyl)methanide: a tridentate ligand for the synthesis of heteroleptic magnesium(II) and ytterbium(II) alkyl, hydride, and iodide complexes.

    Science.gov (United States)

    Lalrempuia, Ralte; Stasch, Andreas; Jones, Cameron

    2015-02-01

    The tris(pyrazolyl)methane compound HC(3-Ad-5-Mepz)3 [1, 3-Ad-5-Mepz=3-(1-adamantyl)-5-methylpyrazolyl] and its regioisomer, HC(3-Ad-5-Mepz)2 (3-Me-5-Adpz), were synthesized and crystallographically characterized. Deprotonation of 1 with MeLi afforded the lithium complex [{κ(3) -N-C(3-Ad-5-Mepz)3 }Li(thf)], which incorporates a tris(pyrazolyl)methanide ligand of unprecedented bulk. Reaction of 1 with MeMgI gave the ionic coordination complex [{κ(3) -N-HC(3-Ad-5-Mepz)3 }MgMe]I, which was readily deprotonated to afford the neutral compound [{κ(3) -N-C(3-Ad-5-Mepz)3 }MgMe]. The related magnesium butyl compound [{κ(3) -N-C(3-Ad-5-Mepz)3 }MgBu] was prepared from the reaction of 1 and MgBu2 . Treating this with LiAlH4 or LiAlD4 led to rare examples of terminal magnesium hydride/deuteride complexes, [{κ(3) -N-C(3-Ad-5-Mepz)3 }MgH/D]. All neutral magnesium alkyl and hydride compounds were crystallographically authenticated. Reaction of [{κ(3) κN-C(3-Ad-5-Mepz)3 }Li(thf)] with [YbI2 (thf)2 ] yielded the first structurally characterized f-block tris(pyrazolyl)methanide complex, [{κ(3) -N-C(3-Ad-5-Mepz)3 }YbI(thf)]. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Microstructural Study of Titanium Carbide Coating on Cemented Carbide

    DEFF Research Database (Denmark)

    Vuorinen, S.; Horsewell, Andy

    1982-01-01

    Titanium carbide coating layers on cemented carbide substrates have been investigated by transmission electron microscopy. Microstructural variations within the typically 5µm thick chemical vapour deposited TiC coatings were found to vary with deposit thickness such that a layer structure could...... be delineated. Close to the interface further microstructural inhomogeneities were obsered, there being a clear dependence of TiC deposition mechanism on the chemical and crystallographic nature of the upper layers of the multiphase substrate....

  18. Microstructure Characteristics of Fe-Matrix Composites Reinforced by In-Situ Carbide Particulates

    Science.gov (United States)

    Huang, Xiaodong; Song, Yanpei

    2017-10-01

    Carbide particulates reinforced iron-matrix composites were prepared by in-situ synthesis reaction between Ti, V and C on liquid alloys surface. The microstructure of the composite was characterized by SEM, TEM and OM. The results showed that the main phases were α-Fe, carbide particulate; besides, there were small amounts of γ-Fe and graphite (G) in the composite. The carbides were TiVC2 and VC in the shape of short bar and graininess. The matrix consisted of martensite and small amounts of retained austenite.

  19. Magnesium motorcycle applications

    International Nuclear Information System (INIS)

    Jianyong Cao; Zonghe Zhang; Dongxia Xiang; Jun Wang

    2005-01-01

    Magnesium, the lightest engineering structural metal, has been comprehensively used in castings of aviation and aerospace, communication and transportation, and IT components. This paper introduced the history, advantages and difficulties of magnesium castings for motorcycle application as well as its application state in China. It also indicated the production situation of magnesium motorcycle components in CQMST and difficulties need to overcome for further development. (orig.)

  20. Magnesium in pregnancy.

    Science.gov (United States)

    Dalton, Lynne M; Ní Fhloinn, Deirdre M; Gaydadzhieva, Gergana T; Mazurkiewicz, Ola M; Leeson, Heather; Wright, Ciara P

    2016-09-01

    Magnesium deficiency is prevalent in women of childbearing age in both developing and developed countries. The need for magnesium increases during pregnancy, and the majority of pregnant women likely do not meet this increased need. Magnesium deficiency or insufficiency during pregnancy may pose a health risk for both the mother and the newborn, with implications that may extend into adulthood of the offspring. The measurement of serum magnesium is the most widely used method for determining magnesium levels, but it has significant limitations that have both hindered the assessment of deficiency and affected the reliability of studies in pregnant women. Thus far, limited studies have suggested links between magnesium inadequacy and certain conditions in pregnancy associated with high mortality and morbidity, such as gestational diabetes, preterm labor, preeclampsia, and small for gestational age or intrauterine growth restriction. This review provides recommendations for further study and improved testing using measurement of red cell magnesium. Pregnant women should be counseled to increase their intake of magnesium-rich foods such as nuts, seeds, beans, and leafy greens and/or to supplement with magnesium at a safe level. © The Author(s) 2016. Published by Oxford University Press on behalf of the International Life Sciences Institute. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Tungsten--carbide critical assembly

    International Nuclear Information System (INIS)

    Hansen, G.E.; Paxton, H.C.

    1975-06-01

    The tungsten--carbide critical assembly mainly consists of three close-fitting spherical shells: a highly enriched uranium shell on the inside, a tungsten--carbide shell surrounding it, and a steel shell on the outside. Ideal critical specifications indicate a rather low computed value of k/sub eff/. Observed and calculated fission-rate distributions for 235 U, 238 U, and 237 Np are compared, and calculated leakage neutrons per fission in various energy groups are given. (U.S.)

  2. Magnesium Technology : Preface

    NARCIS (Netherlands)

    Sillekens, W.H.; Agnew, S.R.; Neelameggham, N.R.; Mathaudhu, S.N.

    2011-01-01

    The Magnesium Technology Symposium, which takes place every year at the TMS Annual Meeting & Exhibition, is one of the largest yearly gatherings of magnesium specialists in the world. Papers are presented in all aspects of the field, ranging from primary production to applications to recycling.

  3. Nutrition and magnesium absorption

    NARCIS (Netherlands)

    Brink, E.J.

    1992-01-01

    The influence of various nutrients present in dairy products and soybean-based products on absorption of magnesium has been investigated. The studies demonstrate that soybean protein versus casein lowers apparent magnesium absorption in rats through its phytate component. However, true

  4. Synthesis and electrochemical study of Mg{sub 1.5}MnO{sub 3}: A defect spinel cathode for rechargeable magnesium battery

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Partha [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Jampani, Prashanth H., E-mail: pjampani@pitt.edu [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Hong, DaeHo [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Gattu, Bharat [Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Poston, James A.; Manivannan, Ayyakkannu [US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Datta, Moni Kanchan [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Kumta, Prashant N., E-mail: pkumta@pitt.edu [Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); US Department of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 (United States); Mechanical Engineering and Materials Science, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); Chemical and Petroleum Engineering, Swanson School of Engineering, University of Pittsburgh, PA 15261 (United States); School of Dental Medicine, University of Pittsburgh, PA 15261 (United States); Center for Complex Engineered Multifunctional Materials, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2015-12-15

    Graphical abstract: Mg{sub 1.5}MnO{sub 3}, a defect oxide spinel derived by the Pechini route, was tested as cathode for rechargeable magnesium battery. TEM and XRD analyses of Mg{sub 1.5}MnO{sub 3} shows the formation of ∼100 nm sized nano particles in the cubic defect spinel structure (space group: Fd3m; unit cell: 0.833294 nm). Cyclic voltammetry illustrates a reversible reaction occurring between 0.3 and 1.5 V versus magnesium. Galvanostatic cycling of the Mg{sub 1.5}MnO{sub 3} cathode exhibits a low capacity of ∼12.4 mAh/g up to 20 cycle with ∼99.9% Coulombic efficiency when cycled at a current rate of ∼C/27. XPS (X-ray photoelectron spectroscopy) surface probe of magnesiated/de-magnesiated electrodes confirm a change in the redox center of Mn-ions during intercalation/de-intercalation of Mg-ion from the Mg{sub 1.5}MnO{sub 3} electrode. The low capacity of Mg{sub 1.5}MnO{sub 3} electrode mainly stem from the kinetic limitation of Mg-ion removal from the defect oxide spinel as the electrochemical impedance spectroscopy results of electrodes after 1st and 2nd cycle show that charge transfer resistance, R{sub e}, increases post charge state whereas interfacial resistance, R{sub i}, increases after discharge state, respectively. - Highlights: • Pechini process yields 100 nm sized particles of the defect cubic spinel Mg{sub 1.5}MnO{sub 3}. • Stable capacity of ∼12.4 mAh/g obtained at C/27 rate and 99.9% Coulombic efficiency. • XPS shows change in valence state of Mn{sup 3+}/Mn{sup 4+} center with cycling. • Low capacity stems from increase in charge-transfer and interfacial resistances with cycling. - Abstract: Mg{sub 1.5}MnO{sub 3}, a defect oxide spinel (space group: Fd3m; unit cell: 0.833294 nm) of particle size ∼100 nm derived by the Pechini route was tested as a cathode for rechargeable magnesium battery. Cyclic voltammetry illustrates a reversible reaction occurring in the 0.3–2.0 V potential window versus magnesium. The spinel however

  5. Synthesis and photoluminescence property of silicon carbide ...

    Indian Academy of Sciences (India)

    Administrator

    The β-SiC nanowires thin films exhibit the strong photoluminescence (PL) peak at a wavelength of. 400 nm, which is significantly ... in the nanowires. Keywords. SiC nanowires; nanocrystalline diamond; crystal growth; photoluminescence. 1. ... unique mechanical, electrical and thermal properties. Due to the wide band gap ...

  6. Electrochemical synthesis of double molybdenum carbides

    NARCIS (Netherlands)

    Dolmatov, V.; Kuznetsov, S.A.; Rebrov, E.V.; Schouten, J.C.; Gaune-Escard, M.; Haarberg, G.M.

    2014-01-01

    Written to record and report on recent research progresses in the field of molten salts, Molten Salts Chemistry and Technology focuses on molten salts and ionic liquids for sustainable supply and application of materials. Including coverage of molten salt reactors, electrodeposition, aluminium

  7. Production of titanium carbide from ilmenite

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2008-03-01

    Full Text Available The production of titanium carbide (TiC powders from ilmenite ore (FeTiO3 powder by means of carbothermal reduction synthesis coupled with hydrochloric acid (HCl leaching process was investigated. A mixture of FeTiO3 and carbon powders was reacted at 1500oC for 1 hr under flowing argon gas. Subsequently, synthesized product of Fe-TiC powders were leached by 10% HCl solutions for 24 hrs to get final product of TiC powders. The powders were characterized using X-ray diffraction, scanning electron and transmission electron microscopy. The product particles were agglomerated in the stage after the leaching process, and the size of this agglomerate was 12.8 μm with a crystallite size of 28.8 nm..

  8. Non-oxidic nanoscale composites: single-crystalline titanium carbide nanocubes in hierarchical porous carbon monoliths.

    Science.gov (United States)

    Sonnenburg, Kirstin; Smarsly, Bernd M; Brezesinski, Torsten

    2009-05-07

    We report the preparation of nanoscale carbon-titanium carbide composites with carbide contents of up to 80 wt%. The synthesis yields single-crystalline TiC nanocubes 20-30 nm in diameter embedded in a hierarchical porous carbon matrix. These composites were generated in the form of cylindrical monoliths but can be produced in various shapes using modern sol-gel and nanocasting methods in conjunction with carbothermal reduction. The monolithic material is characterized by a combination of microscopy, diffraction and physisorption. Overall, the results presented in this work represent a concrete design template for the synthesis of non-oxidic nanoscale composites with high surface areas.

  9. Porous silicon carbide (SIC) semiconductor device

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1996-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  10. Synthesis of Mg(OH)2, MgO, and Mg nanoparticles using laser ablation of magnesium in water and solvents

    Energy Technology Data Exchange (ETDEWEB)

    Tran, P.X.; Howard, B.H.; Martello, D.V.; Soong, Y.; Chyu, M.K.

    2008-01-01

    laser ablation of magnesium in deionized water (OW), solutions of OW and sodium dodecyl sulfate (50S) with different concentrations, acetone and 2-propanol has been conducted, The results showed that ablation in acetone and 2-propanol yielded MgO and Mg nanocrystallites as isolated particles and agglomerated chains probably intermixed with organic residues resulting from the alterationj decomposition of the solvents under the high-energy conditions. Brucite-like Mg(OH)2 particles were mainly produced by laser ablation of Mg in either OW or OW~SOS solutions. Ablation in OW yielded particles of fiber-like shapes having a diameter of about 5-lOnm and length as long as 150nm. Materials produced in DW-SOS solutions were composed of various size and shape particles, Some had rough surfaces with irregular shapes. Small particles were about 20-30nm and larger particles were about 120 nm. Particles with rod-like, triangular, and plate-like shapes were also observed.

  11. Synthesis of Mg(OH)2, MgO, and Mg nanoparticles using laser ablation of magnesium in water and solvents

    Energy Technology Data Exchange (ETDEWEB)

    Phuoc, Tran X. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Howard, Bret. H. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Martello, Donald V. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Soong, Yee [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Chyu, Minking K. [Univ. of Pittsburgh, PA (United States)

    2008-11-01

    Laser ablation of magnesium in deionized water (DW), solutions of DW and sodium dodecyl sulfate (SDS) with different concentrations, acetone and 2-propanol has been conducted. The results showed that ablation in acetone and 2-propanol yielded MgO and Mg nanocrystallites as isolated particles and agglomerated chains probably intermixed with organic residues resulting from the alteration/decomposition of the solvents under the high-energy conditions. Brucite-like Mg(OH)2 particles were mainly produced by laser ablation of Mg in either DW or DW-SDS solutions. Ablation in DW yielded particles of fiber-like shapes having a diameter of about 5-10nm and length-as long as 150 nm. Materials produced in DW-SDS solutions were composed of various size and shape particles. Some had rough surfaces with irregular shapes. Small particles were about 20-30 nm and larger particles were about 120 nm. Particles with rodlike, triangular, and plate-like shapes were also observed.

  12. Synthesis of Mg(OH) 2, MgO, and Mg nanoparticles using laser ablation of magnesium in water and solvents

    Science.gov (United States)

    Phuoc, Tran X.; Howard, Bret. H.; Martello, Donald V.; Soong, Yee; Chyu, Minking K.

    2008-11-01

    Laser ablation of magnesium in deionized water (DW), solutions of DW and sodium dodecyl sulfate (SDS) with different concentrations, acetone and 2-propanol has been conducted. The results showed that ablation in acetone and 2-propanol yielded MgO and Mg nanocrystallites as isolated particles and agglomerated chains probably intermixed with organic residues resulting from the alteration/decomposition of the solvents under the high-energy conditions. Brucite-like Mg(OH) 2 particles were mainly produced by laser ablation of Mg in either DW or DW-SDS solutions. Ablation in DW yielded particles of fiber-like shapes having a diameter of about 5-10 nm and length as long as 150 nm. Materials produced in DW-SDS solutions were composed of various size and shape particles. Some had rough surfaces with irregular shapes. Small particles were about 20-30 nm and larger particles were about 120 nm. Particles with rod-like, triangular, and plate-like shapes were also observed.

  13. New Icosahedral Boron Carbide Semiconductors

    Science.gov (United States)

    Echeverria Mora, Elena Maria

    Novel semiconductor boron carbide films and boron carbide films doped with aromatic compounds have been investigated and characterized. Most of these semiconductors were formed by plasma enhanced chemical vapor deposition. The aromatic compound additives used, in this thesis, were pyridine (Py), aniline, and diaminobenzene (DAB). As one of the key parameters for semiconducting device functionality is the metal contact and, therefore, the chemical interactions or band bending that may occur at the metal/semiconductor interface, X-ray photoemission spectroscopy has been used to investigate the interaction of gold (Au) with these novel boron carbide-based semiconductors. Both n- and p-type films have been tested and pure boron carbide devices are compared to those containing aromatic compounds. The results show that boron carbide seems to behave differently from other semiconductors, opening a way for new analysis and approaches in device's functionality. By studying the electrical and optical properties of these films, it has been found that samples containing the aromatic compound exhibit an improvement in the electron-hole separation and charge extraction, as well as a decrease in the band gap. The hole carrier lifetimes for each sample were extracted from the capacitance-voltage, C(V), and current-voltage, I(V), curves. Additionally, devices, with boron carbide with the addition of pyridine, exhibited better collection of neutron capture generated pulses at ZERO applied bias, compared to the pure boron carbide samples. This is consistent with the longer carrier lifetimes estimated for these films. The I-V curves, as a function of external magnetic field, of the pure boron carbide films and films containing DAB demonstrate that significant room temperature negative magneto-resistance (> 100% for pure samples, and > 50% for samples containing DAB) is possible in the resulting dielectric thin films. Inclusion of DAB is not essential for significant negative magneto

  14. Production of silicon carbide bodies

    International Nuclear Information System (INIS)

    Parkinson, K.

    1981-01-01

    A body consisting essentially of a coherent mixture of silicon carbide and carbon for subsequent siliconising is produced by casting a slip comprising silicon carbide and carbon powders in a porous mould. Part of the surface of the body, particularly internal features, is formed by providing within the mould a core of a material which retains its shape while casting is in progress but is compressed by shrinkage of the cast body as it dries and is thereafter removable from the cast body. Materials which are suitable for the core are expanded polystyrene and gelatinous products of selected low elastic modulus. (author)

  15. High yield silicon carbide prepolymers

    International Nuclear Information System (INIS)

    Baney, R.H.

    1982-01-01

    Prepolymers which exhibit good handling properties, and are useful for preparing ceramics, silicon carbide ceramic materials and articles containing silicon carbide, are polysilanes consisting of 0 to 60 mole% (CH 3 ) 2 Si units and 40 to 100 mole% CH 3 Si units, all Si valences being satisfied by CH 3 groups, other Si atoms, or by H atoms, the latter amounting to 0.3 to 2.1 weight% of the polysilane. They are prepared by reducing the corresponding chloro- or bromo-polysilanes with at least the stoichiometric amount of a reducing agent, e.g. LiAlH 4 . (author)

  16. Transition metal carbide and boride abrasive particles

    International Nuclear Information System (INIS)

    Valdsaar, H.

    1978-01-01

    Abrasive particles and their preparation are discussed. The particles consist essentially of a matrix of titanium carbide and zirconium carbide, at least partially in solid solution form, and grains of crystalline titanium diboride dispersed throughout the carbide matrix. These abrasive particles are particularly useful as components of grinding wheels for abrading steel. 1 figure, 6 tables

  17. Magnesium in diet

    Science.gov (United States)

    ... sources of magnesium: Fruits or vegetables (such as bananas, dried apricots, and avocados) Nuts (such as almonds ... deficiency: Low blood calcium level (hypocalcemia) Low blood potassium level (hypokalemia) Recommendations These are the recommended daily ...

  18. Magnesium in Disease Prevention and Overall Health12

    Science.gov (United States)

    Volpe, Stella Lucia

    2013-01-01

    Magnesium is the fourth most abundant mineral and the second most abundant intracellular divalent cation and has been recognized as a cofactor for >300 metabolic reactions in the body. Some of the processes in which magnesium is a cofactor include, but are not limited to, protein synthesis, cellular energy production and storage, reproduction, DNA and RNA synthesis, and stabilizing mitochondrial membranes. Magnesium also plays a critical role in nerve transmission, cardiac excitability, neuromuscular conduction, muscular contraction, vasomotor tone, blood pressure, and glucose and insulin metabolism. Because of magnesium’s many functions within the body, it plays a major role in disease prevention and overall health. Low levels of magnesium have been associated with a number of chronic diseases including migraine headaches, Alzheimer’s disease, cerebrovascular accident (stroke), hypertension, cardiovascular disease, and type 2 diabetes mellitus. Good food sources of magnesium include unrefined (whole) grains, spinach, nuts, legumes, and white potatoes (tubers). This review presents recent research in the areas of magnesium and chronic disease, with the goal of emphasizing magnesium’s role in disease prevention and overall health. PMID:23674807

  19. PREPARATION OF TANTALUM CARBIDE FROM AN ORGANOMETALLIC PRECURSOR

    Directory of Open Access Journals (Sweden)

    C. P. SOUZA

    1999-03-01

    Full Text Available In this work we have synthesized an organometallic oxalic precursor from tantalum oxide. This oxide was solubilized by heating with potassium hydrogen sulfate. In order to precipitate Ta2O5.nH2O, the fused mass obtained was dissolved in a sulfuric acid solution and neutralized with ammonia. The hydrated tantalum oxide precipitated was dissolved in an equimolar solution of oxalic acid/ammonium oxalate. The synthesis and the characterization of the tantalum oxalic precursor are described. Pyrolysis of the complex in a mixture of hydrogen and methane at atmospheric pressure was studied. The gas-solid reaction made it possible to obtain tantalum carbide, TaC, in the powder form at 1000oC. The natural sintering of TaC powder in an inert atmosphere at 1400°C during 10 hours, under inert atmosphere made it possible to densify the carbide to 96% of the theoretical value.

  20. Synthesis and characterization of SiC based composite materials for immobilizing radioactive graphite

    Science.gov (United States)

    Wang, Qing; Teng, Yuancheng; Wu, Lang; Zhang, Kuibao; Zhao, Xiaofeng; Hu, Zhuang

    2018-06-01

    In order to immobilize high-level radioactive graphite, silicon carbide based composite materials{ (1-x) SiC· x MgAl2O4 (0.1 ≤ x≤0.4) } were fabricated by solid-state reaction at 1370 °C for 2 h in vacuum. Residual graphite and precipitated corundum were observed in the as-synthesized product, which attributed to the interface reaction of element silicon and magnesium compounds. To further understand the reasons for the presence of graphite and corundum, the effects of mole ratio of Si/C, MgAl2O4 content and non-stoichiometry of MgAl2O4 on the synthesis were investigated. To immobilize graphite better, residual graphite should be eliminated. The target product was obtained when the mole ratio of Si/C was 1.3:1, MgAl2O4 content was x = 0.2, and the mole ratio of Al to Mg in non-stoichiometric MgAl2O4 was 1.7:1. In addition, the interface reaction between magnesium compounds and silicon not graphite was displayed by conducting a series of comparative experiments. The key factor for the occurrence of interface reaction is that oxygen atom is transferred from magnesium compound to SiO gas. Infrared and Raman spectrum revealed the increased disorders of graphite after being synthesized.

  1. Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications

    Science.gov (United States)

    Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil

    2016-01-01

    The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.

  2. Magnesium Borohydride: From Hydrogen Storage to Magnesium Battery**

    OpenAIRE

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-01-01

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH_4)_2 electrolyte was utilized in a rechargeable magnesium battery.

  3. INVESTIGATION OF MAGNESIUM ALLOYS MACHINABILITY

    Directory of Open Access Journals (Sweden)

    Berat Barıs BULDUM

    2013-01-01

    Full Text Available Magnesium is the lightest structural metal. Magnesium alloys have a hexagonal lattice structure, which affects the fundamental properties of these alloys. Plastic deformation of the hexagonal lattice is more complicated than in cubic latticed metals like aluminum, copper and steel. Magnesium alloy developments have traditionally been driven by industry requirements for lightweight materials to operate under increasingly demanding conditions. Magnesium alloys have always been attractive to designers due to their low density, only two thirds that of aluminium and its alloys [1]. The element and its alloys take a big part of modern industry needs. Especially nowadays magnesium alloys are used in automotive and mechanical (trains and wagons manufacture, because of its lightness and other features. Magnesium and magnesium alloys are the easiest of all metals to machine, allowing machining operations at extremely high speed. All standard machining operations such as turning, drilling, milling, are commonly performed on magnesium parts.

  4. Aluminum Hydroxide and Magnesium Hydroxide

    Science.gov (United States)

    Aluminum Hydroxide, Magnesium Hydroxide are antacids used together to relieve heartburn, acid indigestion, and upset stomach. They ... They combine with stomach acid and neutralize it. Aluminum Hydroxide, Magnesium Hydroxide are available without a prescription. ...

  5. Magnesium Tube Hydroforming

    International Nuclear Information System (INIS)

    Liewald, M.; Pop, R.; Wagner, S.

    2007-01-01

    Magnesium alloys can be considered as alternative materials towards achieving light weight structures with high material stiffness. The formability of two magnesium alloys, viz. AZ31 and ZM21 has been experimentally tested using the IHP forming process. A new die set up for hot IHP forming has been designed and the process experimentally investigated for temperatures up to 400 deg. C. Both alloys exhibit an increase in formability with increasing forming temperature. The effect of annealing time on materials forming properties shows a fine grained structure for sufficient annealing times as well as deterioration with a large increase at the same time. The IHP process has also been used to demonstrate practicability and feasibility for real parts from manufacture a technology demonstrator part using the magnesium alloy ZM21

  6. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.; Kjøller, John; Larsen, Bent

    1980-01-01

    The reaction of hydrogen with commercially pure magnesium powder (above 99.7%) was investigated in the temperature range 250–400 °C. Hydrogen is readily sorbed above the dissociation pressure. During the initial exposure the magnesium powder sorbs hydrogen slowly below 400 °C but during the second...... that the particles do not disintegrate is explained by a sintering process at the working temperatures. Exposure to air does not impair the sorption ability; on the contrary, it appears that surface oxidation plays an important role in the reaction. Some handling problems, e.g. the reaction of the hydride with water...

  7. Superconductivity in borides and carbides

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2007-01-01

    It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)

  8. Helium diffusion in irradiated boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.

    1981-03-01

    Boron carbide has been internationally adopted as the neutron absorber material in the control and safety rods of large fast breeder reactors. Its relatively large neutron capture cross section at high neutron energies provides sufficient reactivity worth with a minimum of core space. In addition, the commercial availability of boron carbide makes it attractive from a fabrication standpoint. Instrumented irradiation experiments in EBR-II have provided continuous helium release data on boron carbide at a variety of operating temperatures. Although some microstructural and compositional variations were examined in these experiments most of the boron carbide was prototypic of that used in the Fast Flux Test Facility. The density of the boron carbide pellets was approximately 92% of theoretical. The boron carbide pellets were approximately 1.0 cm in diameter and possessed average grain sizes that varied from 8 to 30 μm. Pellet centerline temperatures were continually measured during the irradiation experiments

  9. Disorder and defects are not intrinsic to boron carbide

    Science.gov (United States)

    Mondal, Swastik; Bykova, Elena; Dey, Somnath; Ali, Sk Imran; Dubrovinskaia, Natalia; Dubrovinsky, Leonid; Parakhonskiy, Gleb; van Smaalen, Sander

    2016-01-01

    A unique combination of useful properties in boron-carbide, such as extreme hardness, excellent fracture toughness, a low density, a high melting point, thermoelectricity, semi-conducting behavior, catalytic activity and a remarkably good chemical stability, makes it an ideal material for a wide range of technological applications. Explaining these properties in terms of chemical bonding has remained a major challenge in boron chemistry. Here we report the synthesis of fully ordered, stoichiometric boron-carbide B13C2 by high-pressure-high-temperature techniques. Our experimental electron-density study using high-resolution single-crystal synchrotron X-ray diffraction data conclusively demonstrates that disorder and defects are not intrinsic to boron carbide, contrary to what was hitherto supposed. A detailed analysis of the electron density distribution reveals charge transfer between structural units in B13C2 and a new type of electron-deficient bond with formally unpaired electrons on the C-B-C group in B13C2. Unprecedented bonding features contribute to the fundamental chemistry and materials science of boron compounds that is of great interest for understanding structure-property relationships and development of novel functional materials.

  10. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    Science.gov (United States)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  11. Crystallization of nodular cast iron with carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2008-12-01

    Full Text Available In this paper a crystallization process of nodular cast iron with carbides having a different chemical composition have been presented. It have been found, that an increase of molybdenum above 0,30% causes the ledeburutic carbides crystallization after (γ+ graphite eutectic phase crystallization. When Mo content is lower, these carbides crystallize as a pre-eutectic phase. In this article causes of this effect have been given.

  12. Magnesium fluoride recovery method

    International Nuclear Information System (INIS)

    Gay, R.L.; McKenzie, D.E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag formed in the production of metallic uranium by the reduction of depleted uranium tetrafluoride with metallic magnesium in a retort wherein the slag contains the free metals magnesium and uranium and also oxides and fluorides of the metals. The slag having a radioactivity level of at least about 7,000 rhoCi/gm. The method comprises the steps of: grinding the slag to a median particle size of about 200 microns; contacting the ground slag in a reaction zone with an acid having a strength of from about 0.5 to 1.5 N for a time of from about 4 to about 20 hours in the presence of a catalytic amount of iron; removing the liquid product; treating the particulate solid product; repeating the last two steps at least one more time to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 rhoCi/gm

  13. The structure and function of supported molybdenum nitride and molybdenum carbide hydrotreating catalysts

    Science.gov (United States)

    Dolce, Gregory Martin

    1997-11-01

    A series of gamma-Alsb2Osb3 supported molybdenum nitrides and carbides were prepared by the temperature programmed reaction of supported molybdates with ammonia and methane/hydrogen mixtures, respectively. In the first part of this research, the effects of synthesis heating rates and molybdenum loading on the catalytic properties of the materials were examined. A significant amount of excess carbon was deposited on the surface of the carbides during synthesis. The materials consisted of small particles which were very highly dispersed. Oxygen chemisorption indicated that the nitride particles may have been two-dimensional. The dispersion of the carbides, however, appeared to decrease as the loading increased. The catalysts were evaluated for hydrodenitrogenation (HDN), hydrodesulfurization (HDS), and hydrodeoxygenation (HDO). The molybdenum loading had the largest effect on the activity of the materials. For the nitrides, the HDN and HDS activities were inverse functions of the loading. This suggested that the most active HDN and HDS sites were located at the perimeter of the two-dimensional particles. The HDN and HDS activities of the carbides followed the same trend as the oxygen uptake. This result suggested that oxygen titrated the active sites on the supported carbides. Selected catalysts were evaluated for methylcarbazole HDN, dibenzothiophene HDS, and dibenzofuran HDO. The activity and selectivity of the nitrides and carbides were competitive with a presulfided commercial catalyst. In the second part of this work, a series of supported nitrides and carbides were prepared using a wider range of loadings (5-30 wt% Mo). Thermogravimetric analysis was used to determine the temperature at which excess carbon was deposited on the carbides. By modifying the synthesis parameters, the deposition of excess carbon was effectively inhibited. The dispersions of the supported nitrides and carbides were constant and suggested that the materials consisted of two

  14. FOCUS ON MAGNESIUM BASED DRUGS

    Directory of Open Access Journals (Sweden)

    I. I. Esenova

    2011-01-01

    Full Text Available Magnesium deficiency in the organism is one of the most common human deficiency states. The prevalence of magnesium deficiency is about 15%, and suboptimal magnesium level is observed more than in 30% of people in the general population. Clinical signs of hypomagnesaemia are observed in 40% of patients in general care hospitals, in 70% of patients - in intensive care units, and magnesium deficiency occurs in 90% of patients with acute coronary syndrome. Magnesium metabolic disorders in the organism accelerate significantly development of complications of coronary heart disease, hypertension, type 2 diabetes, asthma and a number of neurological and psychiatric diseases. The value of this macro in the body is well studied, and its daily need is identified depending on age and sex. It is known that magnesium intake with the food does not cover an organism need. It is a rationale for preventive and therapeutic use of magnesium based drugs in various diseases. Organic salts of magnesium are recommended for these purposes. Magnesium metabolic disorders, approaches to pharmacotherapeutic correction of magnesium deficiency, advantages of magnesium salts of orotic acid are reviewed.

  15. Synthesis of nanocrystalline fluorinated hydroxyapatite

    Indian Academy of Sciences (India)

    Fluorinated hydroxyapatite; nanocrystalline; microwave synthesis; dissolution. ... HA by the presence of other ions such as carbonate, magnesium, fluoride, etc. ... Fourier transform infrared spectroscopy (FT–IR) and laser Raman spectroscopy.

  16. ELASTO-PLASTIC DEFORMATION OF COMPOSITE POWDERS WITH LAYERED CARBON AND CARBIDE-FORMING ELEMENT COATING

    Directory of Open Access Journals (Sweden)

    V. N. Kovalevsky

    2012-01-01

    Full Text Available Coating structure formation under magnetron spraying of titanium and carbon cathodes and combined cathodes, namely cobalt (EP 131 – nickel, tungsten – carbon have been investigated under conditions of carbide separate synthesis within the temperature range of 650–1200 °C. Usage of cobalt and nickel particles as matrix material leads to their rapid thermal expansion under heating during sintering process in the dilatometer. Subsequent plastic deformation of sintered samples provides obtaining a composite powder material that is a composite with framing structure of cobalt, titanium and tungsten carbides in the coatings.

  17. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution

    International Nuclear Information System (INIS)

    Hiromoto, Sachiko; Yamamoto, Akiko

    2009-01-01

    Anticorrosion coatings are crucial for practical applications of magnesium alloys, which are used to reduce the weight of vehicles, aircraft, electronics enclosures etc. Hydroxyapatite (HAp) potentially offers high corrosion resistance and no environmental toxicity because its thermodynamic structural stability is high and it is a basic component of bone. However, direct synthesis of HAp on magnesium in aqueous solutions has been a scientific challenge because Mg ions prevent HAp crystallization. A new method of direct synthesis of HAp on magnesium was developed using a Ca chelate compound, which can maintain a sufficiently high concentration of Ca ions on the magnesium surface to overcome prevention of HAp crystallization with Mg ions. Highly crystallized HAp coatings were successfully formed on pure magnesium and AZ series alloys. Corrosion behavior of HAp-coated pure magnesium was examined by cyclic dry and wet tests with 1 g m -2 NaCl on the surface and polarization tests in a 3.5 wt% NaCl solution. A HAp-coated pure magnesium showed no noticeable corrosion pits after the dry and wet test. HAp-coated specimens showed 10 3 -10 4 times lower anodic current density than as-polished specimen in the polarization test. The results demonstrate the remarkable anticorrosion performance of HAp coatings on magnesium for the first time.

  18. High corrosion resistance of magnesium coated with hydroxyapatite directly synthesized in an aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Hiromoto, Sachiko [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)], E-mail: hiromoto.sachiko@nims.go.jp; Yamamoto, Akiko [Biomaterials Center, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2009-11-30

    Anticorrosion coatings are crucial for practical applications of magnesium alloys, which are used to reduce the weight of vehicles, aircraft, electronics enclosures etc. Hydroxyapatite (HAp) potentially offers high corrosion resistance and no environmental toxicity because its thermodynamic structural stability is high and it is a basic component of bone. However, direct synthesis of HAp on magnesium in aqueous solutions has been a scientific challenge because Mg ions prevent HAp crystallization. A new method of direct synthesis of HAp on magnesium was developed using a Ca chelate compound, which can maintain a sufficiently high concentration of Ca ions on the magnesium surface to overcome prevention of HAp crystallization with Mg ions. Highly crystallized HAp coatings were successfully formed on pure magnesium and AZ series alloys. Corrosion behavior of HAp-coated pure magnesium was examined by cyclic dry and wet tests with 1 g m{sup -2} NaCl on the surface and polarization tests in a 3.5 wt% NaCl solution. A HAp-coated pure magnesium showed no noticeable corrosion pits after the dry and wet test. HAp-coated specimens showed 10{sup 3}-10{sup 4} times lower anodic current density than as-polished specimen in the polarization test. The results demonstrate the remarkable anticorrosion performance of HAp coatings on magnesium for the first time.

  19. Muonium states in silicon carbide

    International Nuclear Information System (INIS)

    Patterson, B.D.; Baumeler, H.; Keller, H.; Kiefl, R.F.; Kuendig, W.; Odermatt, W.; Schneider, J.W.; Estle, T.L.; Spencer, D.P.; Savic, I.M.

    1986-01-01

    Implanted muons in samples of silicon carbide have been observed to form paramagnetic muonium centers (μ + e - ). Muonium precession signals in low applied magnetic fields have been observed at 22 K in a granular sample of cubic β-SiC, however it was not possible to determine the hyperfine frequency. In a signal crystal sample of hexagonal 6H-SiC, three apparently isotropic muonium states were observed at 20 K and two at 300 K, all with hyperfine frequencies intermediate between those of the isotropic muonium centers in diamond and silicon. No evidence was seen of an anisotropic muonium state analogous to the Mu * state in diamond and silicon. (orig.)

  20. Low temperature study of nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Tashmetov, M.Yu.

    2005-05-01

    By low temperature neutron diffraction method was studied structure in nonstoichiometric titanium carbide from room temperature up to 12K. It is found of low temperature phase in titanium carbide- TiC 0.71 . It is established region and borders of this phase. It is determined change of unit cell parameter. (author)

  1. Elastic modulus and fracture of boron carbide

    International Nuclear Information System (INIS)

    Hollenberg, G.W.; Walther, G.

    1978-12-01

    The elastic modulus of hot-pressed boron carbide with 1 to 15% porosity was measured at room temperature. K/sub IC/ values were determined for the same porosity range at 500 0 C by the double torsion technique. The critical stress intensity factor of boron carbide with 8% porosity was evaluated from 25 to 1200 0 C

  2. Magnesium borohydride: from hydrogen storage to magnesium battery.

    Science.gov (United States)

    Mohtadi, Rana; Matsui, Masaki; Arthur, Timothy S; Hwang, Son-Jong

    2012-09-24

    Beyond hydrogen storage: The first example of reversible magnesium deposition/stripping onto/from an inorganic salt was seen for a magnesium borohydride electrolyte. High coulombic efficiency of up to 94 % was achieved in dimethoxyethane solvent. This Mg(BH(4))(2) electrolyte was utilized in a rechargeable magnesium battery. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first...... example of a cationic terminal carbide complex, [RuC(Cl)(CH3CN)(PCy3)2]+, is described and characterized by NMR, MS, X-ray crystallography, and computational studies. The experimentally observed irregular variation of the carbide 13C chemical shift is shown to be accurately reproduced by DFT, which also...... demonstrates that details of the coordination geometry affect the carbide chemical shift equally as much as variations in the nature of the auxiliary ligands. Furthermore, the kinetics of formation of the sqaure pyramidal dicyano complex, trans-[RuC(CN)2(PCy3)2], from RuC has been examined and the reaction...

  4. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen.The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  5. Microsegregation in Nodular Cast Iron with Carbides

    Directory of Open Access Journals (Sweden)

    Pietrowski S.

    2012-12-01

    Full Text Available In this paper results of microsegregation in the newly developed nodular cast iron with carbides are presented. To investigate the pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The distribution of linear elements on the eutectic cell radius was examined. To investigate the microsegregation pearlitic and bainitic cast iron with carbides obtained by Inmold method were chosen. The linear distribution of elements on the eutectic cell radius was examined. Testing of the chemical composition of cast iron metal matrix components, including carbides were carried out. The change of graphitizing and anti-graphitizing element concentrations within eutectic cell was determined. It was found, that in cast iron containing Mo carbides crystallizing after austenite + graphite eutectic are Si enriched.

  6. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.

    2012-12-17

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting

    KAUST Repository

    Garcia Esparza, Angel T.; Cha, Dong Kyu; Ou, Yiwei; Kubota, Jun; Domen, Kazunari; Takanabe, Kazuhiro

    2012-01-01

    Tungsten carbide exhibits platinum-like behavior, which makes it an interesting potential substitute for noble metals in catalytic applications. Tungsten carbide nanocrystals (≈5 nm) are directly synthesized through the reaction of tungsten precursors with mesoporous graphitic C3N 4 (mpg-C3N4) as the reactive template in a flow of inert gas at high temperatures. Systematic experiments that vary the precursor compositions and temperatures used in the synthesis selectively generate different compositions and structures for the final nanocarbide (W 2C or WC) products. Electrochemical measurements demonstrate that the WC phase with a high surface area exhibits both high activity and stability in hydrogen evolution over a wide pH range. The WC sample also shows excellent hydrogen oxidation activity, whereas its activity in oxygen reduction is poor. These tungsten carbides are successful cocatalysts for overall water splitting and give H2 and O2 in a stoichiometric ratio from H 2O decomposition when supported on a Na-doped SrTiO3 photocatalyst. Herein, we present tungsten carbide (on a small scale) as a promising and durable catalyst substitute for platinum and other scarce noble-metal catalysts in catalytic reaction systems used for renewable energy generation. Platinum replacement: The phase-controlled synthesis of tungsten carbide nanoparticles from the nanoconfinement of a mesoporous graphite C 3N4 (mpg-C3N4) reactive template is shown. The nanomaterials catalyze hydrogen evolution/oxidation reactions, but are inactive in the oxygen reduction reaction. Tungsten carbide is an effective cocatalyst for photocatalytic overall water splitting (see picture). Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Boron carbide nanostructures: A prospective material as an additive in concrete

    Science.gov (United States)

    Singh, Paviter; Kaur, Gurpreet; Kumar, Rohit; Kumar, Umesh; Singh, Kulwinder; Kumar, Manjeet; Bala, Rajni; Meena, Ramovatar; Kumar, Akshay

    2018-05-01

    In recent decades, manufacture and ingestion of concrete have increased particularly in developing countries. Due to its low cost, safety and strength, concrete have become an economical choice for protection of radiation shielding material in nuclear reactors. As boron carbide has been known as a neutron absorber material makes it a great candidate as an additive in concrete for shielding radiation. This paper presents the synthesis of boron carbide nanostructures by using ball milling method. The X-ray diffraction pattern, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope analysis confirms the formation of boron carbide nanostructures. The effect of boron carbide nanostructures on the strength of concrete samples was demonstrated. The compressive strength tests of concrete cube B4C powder additives for 0 % and 5 % of total weight of cement was compared for different curing time period such as 7, 14, 21 and 28 days. The high compressive strength was observed when 5 wt % boron carbide nanostructures were used as an additive in concrete samples after 28 days curing time and showed significant improvement in strength.

  9. Combustion of Na2B4O7 + Mg + C to synthesis B4C powders

    International Nuclear Information System (INIS)

    Jiang Guojian; Xu Jiayue; Zhuang Hanrui; Li Wenlan

    2009-01-01

    Boron carbide powder was fabricated by combustion synthesis (CS) method directly from mixed powders of borax (Na 2 B 4 O 7 ), magnesium (Mg) and carbon. The adiabatic temperature of the combustion reaction of Na 2 B 4 O 7 + 6 Mg + C was calculated. The control of the reactions was achieved by selecting reactant composition, relative density of powder compact and gas pressure in CS reactor. The effects of these different influential factors on the composition and morphologies of combustion products were investigated. The results show that, it is advantageous for more Mg/Na 2 B 4 O 7 than stoichiometric ratio in Na 2 B 4 O 7 + Mg + C system and high atmosphere pressure in the CS reactor to increase the conversion degree of reactants to end product. The final product with the minimal impurities' content could be fabricated at appropriate relative density of powder compact. At last, boron carbide without impurities could be obtained after the acid enrichment and distilled water washing.

  10. Function of magnesium aluminate hydrate and magnesium nitrate ...

    Indian Academy of Sciences (India)

    MgO was added both as spinel (MgAl2O4) forming precursor i.e. magnesium aluminate hydrate, and magnesium nitrate. Sintering investigations were conducted in the temperature range 1500–1600°C with 2 h soaking. Structural study of sintered pellets was carried out by extensive XRD analysis. Scanning electron mode ...

  11. Plasma metallization of refractory carbide powders

    International Nuclear Information System (INIS)

    Koroleva, E.B.; Klinskaya, N.A.; Rybalko, O.F.; Ugol'nikova, T.A.

    1986-01-01

    The effect of treatment conditions in plasma on properties of produced metallized powders of titanium, tungsten and chromium carbides with the main particle size of 40-80 μm is considered. It is shown that plasma treatment permits to produce metallized powders of carbide materials with the 40-80 μm particle size. The degree of metallization, spheroidization, chemical and phase composition of metallized carbide powders are controlled by dispersivity of the treated material, concentration of a metal component in the treated mixtures, rate of plasma flow and preliminary spheroidization procedure

  12. Magnesium Hall Thruster

    Science.gov (United States)

    Szabo, James J.

    2015-01-01

    This Phase II project is developing a magnesium (Mg) Hall effect thruster system that would open the door for in situ resource utilization (ISRU)-based solar system exploration. Magnesium is light and easy to ionize. For a Mars- Earth transfer, the propellant mass savings with respect to a xenon Hall effect thruster (HET) system are enormous. Magnesium also can be combusted in a rocket with carbon dioxide (CO2) or water (H2O), enabling a multimode propulsion system with propellant sharing and ISRU. In the near term, CO2 and H2O would be collected in situ on Mars or the moon. In the far term, Mg itself would be collected from Martian and lunar regolith. In Phase I, an integrated, medium-power (1- to 3-kW) Mg HET system was developed and tested. Controlled, steady operation at constant voltage and power was demonstrated. Preliminary measurements indicate a specific impulse (Isp) greater than 4,000 s was achieved at a discharge potential of 400 V. The feasibility of delivering fluidized Mg powder to a medium- or high-power thruster also was demonstrated. Phase II of the project evaluated the performance of an integrated, highpower Mg Hall thruster system in a relevant space environment. Researchers improved the medium power thruster system and characterized it in detail. Researchers also designed and built a high-power (8- to 20-kW) Mg HET. A fluidized powder feed system supporting the high-power thruster was built and delivered to Busek Company, Inc.

  13. Magnesium for Hydrogen Storage

    DEFF Research Database (Denmark)

    Pedersen, Allan Schrøder; Kjøller, John; Larsen, B.

    1983-01-01

    A study of the hydrogenation characteristics of fine magnesium powder during repeated cycling has been performed using a high-pressure microbalance facility. No effect was found from the cycling regarding kinetics and storage capacity. The reaction rate of the absorption process was fast...... at temperatures around 600 K and above, but the reversed reaction showed somewhat slower kinetics around 600 K. At higher temperatures the opposite was found. The enthalpy and entropy change by the hydrogenation, derived from pressure-concentration isotherms, agree fairly well with those reported earlier....

  14. Electrolytes for magnesium electrochemical cells

    Science.gov (United States)

    Burrell, Anthony K.; Sa, Niya; Proffit, Danielle Lee; Lipson, Albert; Liao, Chen; Vaughey, John T.; Ingram, Brian J.

    2017-07-04

    An electrochemical cell includes a high voltage cathode configured to operate at 1.5 volts or greater; an anode including Mg.sup.0; and an electrolyte including an ether solvent and a magnesium salt; wherein: a concentration of the magnesium salt in the ether is 1 M or greater.

  15. Hydrostatic extrusion of magnesium alloys

    NARCIS (Netherlands)

    Sillekens, W.H.; Bohlen, J.

    2012-01-01

    This chapter deals with the capabilities and limitations of the hydrostatic extrusion process for the manufacturing of magnesium alloy sections. Firstly, the process basics for the hydrostatic extrusion of materials in general and of magnesium in particular are introduced. Next, some recent research

  16. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  17. Vanadium carbide coatings: deposition process and properties

    International Nuclear Information System (INIS)

    Borisova, A.; Borisov, Y.; Shavlovsky, E.; Mits, I.; Castermans, L.; Jongbloed, R.

    2001-01-01

    Vanadium carbide coatings on carbon and alloyed steels were produced by the method of diffusion saturation from the borax melt. Thickness of the vanadium carbide layer was 5-15 μm, depending upon the steel grade and diffusion saturation parameters. Microhardness was 20000-28000 MPa and wear resistance of the coatings under conditions of end face friction without lubrication against a mating body of WC-2Co was 15-20 times as high as that of boride coatings. Vanadium carbide coatings can operate in air at a temperature of up to 400 o C. They improve fatigue strength of carbon steels and decrease the rate of corrosion in sea and fresh water and in acid solutions. The use of vanadium carbide coatings for hardening of various types of tools, including cutting tools, allows their service life to be extended by a factor of 3 to 30. (author)

  18. Magnesium-molybdenum compounds as matrixes of 99m Tc generators

    International Nuclear Information System (INIS)

    Jimenez M, T.S.

    2005-01-01

    In order to finding new production alternatives of 99 Mo/ 99m Tc generators, easy to produce and with high elutriation efficiencies, it is proposed in this work to develop a generator with basis of magnesium and molybdenum that could be irradiated after their synthesis, given the short half life of the only radioisotope produced by the magnesium: 27 Mg (t 1/2 = 9.46 m). It is necessary to mention that have not been reported works in relation to this type of compound, being then important to carry out basic studies on the formation and behavior of these in relation to their matrix functions of those generated of 99 Mo/ 99m Tc. In this work it was determined the effect that has, the magnesium salt used in the synthesis of those molybdenum-magnesium compounds, the molar ratio Mo: Mg, the concentration of the magnesium salt, the pH of the used ammonium molybdates in the synthesis of the final compounds and the washing of the molybdates of synthesized magnesium, in the performance of the 99 Mo/ 99m Tc generators. Parameters like the elutriation efficiency, the radionuclide purity, radiochemical and chemical of the eluates and their pH, were determined in each case, also its were characterized the synthesized compounds using: neutron activation analysis (NAA), X-ray diffraction (XRD) and scanning electron microscopy of high vacuum (SEM), besides of complementary techniques: infrared spectroscopy (IR), and thermal gravimetric analysis (TGA). (Author)

  19. Stable carbides in transition metal alloys

    International Nuclear Information System (INIS)

    Piotrkowski, R.

    1991-01-01

    In the present work different techniques were employed for the identification of stable carbides in two sets of transition metal alloys of wide technological application: a set of three high alloy M2 type steels in which W and/or Mo were total or partially replaced by Nb, and a Zr-2.5 Nb alloy. The M2 steel is a high speed steel worldwide used and the Zr-2.5 Nb alloy is the base material for the pressure tubes in the CANDU type nuclear reactors. The stability of carbide was studied in the frame of Goldschmidt's theory of interstitial alloys. The identification of stable carbides in steels was performed by determining their metallic composition with an energy analyzer attached to the scanning electron microscope (SEM). By these means typical carbides of the M2 steel, MC and M 6 C, were found. Moreover, the spatial and size distribution of carbide particles were determined after different heat treatments, and both microstructure and microhardness were correlated with the appearance of the secondary hardening phenomenon. In the Zr-Nb alloy a study of the α and β phases present after different heat treatments was performed with optical and SEM metallographic techniques, with the guide of Abriata and Bolcich phase diagram. The α-β interphase boundaries were characterized as short circuits for diffusion with radiotracer techniques and applying Fisher-Bondy-Martin model. The precipitation of carbides was promoted by heat treatments that produced first the C diffusion into the samples at high temperatures (β phase), and then the precipitation of carbide particles at lower temperature (α phase or (α+β)) two phase field. The precipitated carbides were identified as (Zr, Nb)C 1-x with SEM, electron microprobe and X-ray diffraction techniques. (Author) [es

  20. Point defects and transport properties in carbides

    International Nuclear Information System (INIS)

    Matzke, Hj.

    1984-01-01

    Carbides of transition metals and of actinides are interesting and technologically important. The transition-metal carbides (or carbonitrides) are extensively being used as hard materials and some of them are of great interest because of the high transition temperature for superconductivity, e.g. 17 K for Nb(C,N). Actinide carbides and carbonitrides, (U,Pu)C and (U,Pu)(C,N) are being considered as promising advanced fuels for liquid metal cooled fast breeder nuclear reactors. Basic interest exists in all these materials because of their high melting points (e.g. 4250 K for TaC) and the unusually broad range of homogeneity of nonstoichiometric compositions (e.g. from UCsub(0.9) to UCsub(1.9) at 2500 K). Interaction of point defects to clusters and short-range ordering have recently been studied with elastic neutron diffraction and diffuse scattering techniques, and calculations of energies of formation and interaction of point defects became available for selected carbides. Diffusion measurements also exist for a number of carbides, in particular for the actinide carbides. The existing knowledge is discussed and summarized with emphasis on informative examples of particular technological relevance. (Auth.)

  1. Combustion and extinction of magnesium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  2. 21 CFR 184.1443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium sulfate. 184.1443 Section 184.1443 Food... Specific Substances Affirmed as GRAS § 184.1443 Magnesium sulfate. (a) Magnesium sulfate (MgSO4·7H2O, CAS... magnesium oxide, hydroxide, or carbonate with sulfuric acid and evaporating the solution to crystallization...

  3. Mineral resource of the month: magnesium

    Science.gov (United States)

    Kramer, Deborah A.

    2012-01-01

    Magnesium is the eighthmost abundant element in Earth’s crust, and the second-most abundant metal ion in seawater. Although magnesium is found in more than 60 minerals, only brucite, dolomite, magnesite and carnallite are commercially important for their magnesium content. Magnesium and its compounds also are recovered from seawater, brines found in lakes and wells, and bitterns (salts).

  4. 21 CFR 184.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium oxide. 184.1431 Section 184.1431 Food and... Substances Affirmed as GRAS § 184.1431 Magnesium oxide. (a) Magnesium oxide (MgO, CAS Reg. No. 1309-48-4... powder (light) or a relatively dense white powder (heavy) by heating magnesium hydroxide or carbonate...

  5. 21 CFR 184.1426 - Magnesium chloride.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium chloride. 184.1426 Section 184.1426 Food... Specific Substances Affirmed as GRAS § 184.1426 Magnesium chloride. (a) Magnesium chloride (MgC12·6H2O, CAS... hydrochloric acid solution and crystallizing out magnesium chloride hexahydrate. (b) The ingredient meets the...

  6. Magnesium deficiency: What is our status

    Science.gov (United States)

    Low magnesium intake has been implicated in a broad range of cardiometabolic conditions, including diabetes, hypertension, and cardiovascular disease. Dietary magnesium and total body magnesium status have a widely-used but imperfect biomarker in serum magnesium. Despite serum magnesium’s limitation...

  7. Easy access to nucleophilic boron through diborane to magnesium boryl metathesis

    Science.gov (United States)

    Pécharman, Anne-Frédérique; Colebatch, Annie L.; Hill, Michael S.; McMullin, Claire L.; Mahon, Mary F.; Weetman, Catherine

    2017-04-01

    Organoboranes are some of the most synthetically valuable and widely used intermediates in organic and pharmaceutical chemistry. Their synthesis, however, is limited by the behaviour of common boron starting materials as archetypal Lewis acids such that common routes to organoboranes rely on the reactivity of boron as an electrophile. While the realization of convenient sources of nucleophilic boryl anions would open up a wealth of opportunity for the development of new routes to organoboranes, the synthesis of current candidates is generally limited by a need for highly reducing reaction conditions. Here, we report a simple synthesis of a magnesium boryl through the heterolytic activation of the B-B bond of bis(pinacolato)diboron, which is achieved by treatment of an easily generated magnesium diboranate complex with 4-dimethylaminopyridine. The magnesium boryl is shown to act as an unambiguous nucleophile through its reactions with iodomethane, benzophenone and N,N'-di-isopropyl carbodiimide and by density functional theory.

  8. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  9. Tungsten carbide and tungsten-molybdenum carbides as automobile exhaust catalysts

    International Nuclear Information System (INIS)

    Leclercq, L.; Daubrege, F.; Gengembre, L.; Leclercq, G.; Prigent, M.

    1987-01-01

    Several catalyst samples of tungsten carbide and W, Mo mixed carbides with different Mo/W atom ratios, have been prepared to test their ability to remove carbon monoxide, nitric oxide and propane from a synthetic exhaust gas simulating automobile emissions. Surface characterization of the catalysts has been performed by X-ray photoelectron spectroscopy (XPS) and selective chemisorption of hydrogen and carbon monoxide. Tungsten carbide exhibits good activity for CO and NO conversion, compared to a standard three-way catalyst based on Pt and Rh. However, this W carbide is ineffective in the oxidation of propane. The Mo,W mixed carbides are markedly different having only a very low activity. 9 refs.; 10 figs.; 5 tabs

  10. High temperature evaporation of titanium, zirconium and hafnium carbides

    International Nuclear Information System (INIS)

    Gusev, A.I.; Rempel', A.A.

    1991-01-01

    Evaporation of cubic nonstoichiometric carbides of titanium, zirconium and hafnium in a comparatively low-temperature interval (1800-2700) with detailed crystallochemical sample certification is studied. Titanium carbide is characterized by the maximum evaporation rate: at T>2300 K it loses 3% of sample mass during an hour and at T>2400 K titanium carbide evaporation becomes extremely rapid. Zirconium and hafnium carbide evaporation rates are several times lower than titanium carbide evaporation rates at similar temperatures. Partial pressures of metals and carbon over the carbides studied are calculated on the base of evaporation rates

  11. Silicon carbide production by Self-Propagating High Temperature (SHS) technique

    International Nuclear Information System (INIS)

    Lima, Eduardo de Souza; Schneider, Pedro Luiz; Mattoso, Irani Guedes; Costa, Carlos Roberto Correia da; Louro, Luis Henrique Leme

    1997-01-01

    Samples of silicon carbide (SiC) were synthesized from a mixture of silicon and carbon powders, using the Self-Propagating High Temperature Synthesis (SHS) technique. Three mixtures were tried, using silicon particles of the same average size but carbon particles of different average sizes. The method tried is characterized by an ignition temperature of 1450 deg C and the short duration of the synthesis ( 2-3 min). The samples were characterized by X-ray diffraction and scattering electron microscopy. (author)

  12. Magnesium Repair by Cold Spray

    National Research Council Canada - National Science Library

    Champagne, V. K; Leyman, P.F; Helfritch, D. J

    2008-01-01

    .... Army Research Laboratory has developed a cold spray process to reclaim magnesium components that shows significant improvement over existing methods and is in the process of qualification for use on rotorcraft...

  13. Effect of magnesium deficiency on renal magnesium and calcium transport in the rat.

    OpenAIRE

    Carney, S L; Wong, N L; Quamme, G A; Dirks, J H

    1980-01-01

    Recollection of micropuncture experiments were performed on acutely thyroparathyroidectomized rats rendered magnesium deficient by dietary deprivation. Urinary magnesium excretion fell from a control of 15 to 3% of the filtered load after magnesium restriction. The loop of Henle, presumably the thick ascending limb, was the major modulator for renal magnesium homeostasis. The transport capacity for magnesium, however, was less in deficient rats than control animals. Absolute magnesium reabsor...

  14. Correcting magnesium deficiencies may prolong life

    Directory of Open Access Journals (Sweden)

    Rowe WJ

    2012-02-01

    Full Text Available William J RoweFormer Assistant Clinical Professor of Medicine, Medical University of Ohio at Toledo, Ohio, USAAbstract: The International Space Station provides an extraordinary facility to study the accelerated aging process in microgravity, which could be triggered by significant reductions in magnesium (Mg ion levels with, in turn, elevations of catecholamines and vicious cycles between the two. With space flight there are significant reductions of serum Mg (P < 0.0001 that have been shown in large studies of astronauts and cosmonauts. The loss of the functional capacity of the cardiovascular system with space flight is over ten times faster than the course of aging on Earth. Mg is an antioxidant and calcium blocker and in space there is oxidative stress, insulin resistance, and inflammatory conditions with evidence in experimental animals of significant endothelial injuries and damage to mitochondria. The aging process is associated with progressive shortening of telomeres, repetitive DNA sequences, and proteins that cap and protect the ends of chromosomes. Telomerase can elongate pre-existing telomeres to maintain length and chromosome stability. Low telomerase triggers increased catecholamines while the sensitivity of telomere synthesis to Mg ions is primarily seen for the longer elongation products. Mg stabilizes DNA and promotes DNA replication and transcription, whereas low Mg might accelerate cellular senescence by reducing DNA stability, protein synthesis, and function of mitochondria. Telomerase, in binding to short DNAs, is Mg dependent. On Earth, in humans, a year might be required to detect changes in telomeres, but in space there is a predictably much shorter duration required for detection, which is therefore more reasonable in time and cost. Before and after a space mission, telomere lengths and telomerase enzyme activity can be determined and compared with age-matched control rats on Earth. The effect of Mg supplementation

  15. Joining of boron carbide using nickel interlayer

    International Nuclear Information System (INIS)

    Vosughi, A.; Hadian, A. M.

    2008-01-01

    Carbide ceramics such as boron carbide due to their unique properties such as low density, high refractoriness, and high strength to weight ratio have many applications in different industries. This study focuses on direct bonding of boron carbide for high temperature applications using nickel interlayer. The process variables such as bonding time, temperature, and pressure have been investigated. The microstructure of the joint area was studied using electron scanning microscope technique. At all the bonding temperatures ranging from 1150 to 1300 d eg C a reaction layer formed across the ceramic/metal interface. The thickness of the reaction layer increased by increasing temperature. The strength of the bonded samples was measured using shear testing method. The highest strength value obtained was about 100 MPa and belonged to the samples bonded at 1250 for 75 min bonding time. The strength of the joints decreased by increasing the bonding temperature above 1250 d eg C . The results of this study showed that direct bonding technique along with nickel interlayer can be successfully utilized for bonding boron carbide ceramic to itself. This method may be used for bonding boron carbide to metals as well.

  16. Timeline (Bioavailability) of Magnesium Compounds in Hours: Which Magnesium Compound Works Best?

    Science.gov (United States)

    Uysal, Nazan; Kizildag, Servet; Yuce, Zeynep; Guvendi, Guven; Kandis, Sevim; Koc, Basar; Karakilic, Aslı; Camsari, Ulas M; Ates, Mehmet

    2018-04-21

    Magnesium is an element of great importance functioning because of its association with many cellular physiological functions. The magnesium content of foods is gradually decreasing due to food processing, and magnesium supplementation for healthy living has become increasingly popular. However, data is very limited on the bioavailability of various magnesium preparations. The aim of this study is to investigate the bioavailability of five different magnesium compounds (magnesium sulfate, magnesium oxide, magnesium acetyl taurate, magnesium citrate, and magnesium malate) in different tissues. Following a single dose 400 mg/70 kg magnesium administration to Sprague Dawley rats, bioavailability was evaluated by examining time-dependent absorption, tissue penetration, and the effects on the behavior of the animals. Pharmacokinetically, the area under the curve calculation is highest in the magnesium malate. The magnesium acetyl taurate was found to have the second highest area under the curve calculation. Magnesium acetyl taurate was rapidly absorbed, able to pass through to the brain easily, had the highest tissue concentration level in the brain, and was found to be associated with decreased anxiety indicators. Magnesium malate levels remained high for an extended period of time in the serum. The commonly prescribed dietary supplements magnesium oxide and magnesium citrate had the lowest bioavailability when compared to our control group. More research is needed to investigate the bioavailability of magnesium malate and acetyl taurate compounds and their effects in specific tissues and on behavior.

  17. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    Laterite obtained from Ikpayongo was stabilized with 2-10 % cement and 2-10 % Calcium Carbide waste, for use .... or open dumping which have effect on surface and ... Table 1: Chemical Composition of Calcium Carbide Waste and Cement.

  18. Method of fabricating porous silicon carbide (SiC)

    Science.gov (United States)

    Shor, Joseph S. (Inventor); Kurtz, Anthony D. (Inventor)

    1995-01-01

    Porous silicon carbide is fabricated according to techniques which result in a significant portion of nanocrystallites within the material in a sub 10 nanometer regime. There is described techniques for passivating porous silicon carbide which result in the fabrication of optoelectronic devices which exhibit brighter blue luminescence and exhibit improved qualities. Based on certain of the techniques described porous silicon carbide is used as a sacrificial layer for the patterning of silicon carbide. Porous silicon carbide is then removed from the bulk substrate by oxidation and other methods. The techniques described employ a two-step process which is used to pattern bulk silicon carbide where selected areas of the wafer are then made porous and then the porous layer is subsequently removed. The process to form porous silicon carbide exhibits dopant selectivity and a two-step etching procedure is implemented for silicon carbide multilayers.

  19. The diffusion bonding of silicon carbide and boron carbide using refractory metals

    International Nuclear Information System (INIS)

    Cockeram, B.V.

    1999-01-01

    Joining is an enabling technology for the application of structural ceramics at high temperatures. Metal foil diffusion bonding is a simple process for joining silicon carbide or boron carbide by solid-state, diffusive conversion of the metal foil into carbide and silicide compounds that produce bonding. Metal diffusion bonding trials were performed using thin foils (5 microm to 100 microm) of refractory metals (niobium, titanium, tungsten, and molybdenum) with plates of silicon carbide (both α-SiC and β-SiC) or boron carbide that were lapped flat prior to bonding. The influence of bonding temperature, bonding pressure, and foil thickness on bond quality was determined from metallographic inspection of the bonds. The microstructure and phases in the joint region of the diffusion bonds were evaluated using SEM, microprobe, and AES analysis. The use of molybdenum foil appeared to result in the highest quality bond of the metal foils evaluated for the diffusion bonding of silicon carbide and boron carbide. Bonding pressure appeared to have little influence on bond quality. The use of a thinner metal foil improved the bond quality. The microstructure of the bond region produced with either the α-SiC and β-SiC polytypes were similar

  20. Fission product phases in irradiated carbide fuels

    International Nuclear Information System (INIS)

    Ewart, F.T.; Sharpe, B.M.; Taylor, R.G.

    1975-09-01

    Oxide fuels have been widely adopted as 'first charge' fuels for demonstration fast reactors. However, because of the improved breeding characteristics, carbides are being investigated in a number of laboratories as possible advanced fuels. Irradiation experiments on uranium and mixed uranium-plutonium carbides have been widely reported but the instances where segregate phases have been found and subjected to electron probe analysis are relatively few. Several observations of such segregate phases have now been made over a period of time and these are collected together in this document. Some seven fuel pins have been examined. Two of the irradiations were in thermal materials testing reactors (MTR); the remainder were experimental assemblies of carbide gas bonded oxycarbide and sodium bonded oxycarbide in the Dounreay Fast Reactor (DFR). All fuel pins completed their irradiation without failure. (author)

  1. Joining of porous silicon carbide bodies

    Science.gov (United States)

    Bates, Carl H.; Couhig, John T.; Pelletier, Paul J.

    1990-05-01

    A method of joining two porous bodies of silicon carbide is disclosed. It entails utilizing an aqueous slip of a similar silicon carbide as was used to form the porous bodies, including the sintering aids, and a binder to initially join the porous bodies together. Then the composite structure is subjected to cold isostatic pressing to form a joint having good handling strength. Then the composite structure is subjected to pressureless sintering to form the final strong bond. Optionally, after the sintering the structure is subjected to hot isostatic pressing to further improve the joint and densify the structure. The result is a composite structure in which the joint is almost indistinguishable from the silicon carbide pieces which it joins.

  2. Determination of free carbon content in boron carbide ceramic powders

    International Nuclear Information System (INIS)

    Castro, A.R.M. de; Lima, N.B. de; Paschoal, J.O.A.

    1990-01-01

    Boron carbide is a ceramic material of technological importance due to its hardness and high chemical and thermal stabilities. Free carbon is always found as a process dependent impurity in boron carbide. The development of procedures for its detection is required because its presence leads to a degradation of the boron carbide properties. In this work, several procedures for determining free carbon content in boron carbide specimens are reported and discussed for comparison purposes. (author) [pt

  3. Fabrication of uranium carbide/beryllium carbide/graphite experimental-fuel-element specimens

    International Nuclear Information System (INIS)

    Muenzer, W.A.

    1978-01-01

    A method has been developed for fabricating uranium carbide/beryllium carbide/graphite fuel-element specimens for reactor-core-meltdown studies. The method involves milling and blending the raw materials and densifying the resulting blend by conventional graphite-die hot-pressing techniques. It can be used to fabricate specimens with good physical integrity and material dispersion, with densities of greater than 90% of the theoretical density, and with a uranium carbide particle size of less than 10 μm

  4. 21 CFR 862.1495 - Magnesium test system.

    Science.gov (United States)

    2010-04-01

    ... magnesium levels in serum and plasma. Magnesium measurements are used in the diagnosis and treatment of hypomagnesemia (abnormally low plasma levels of magnesium) and hypermagnesemia (abnormally high plasma levels of magnesium). (b) Classification. Class I. ...

  5. Morphology study of refractory carbide powders

    International Nuclear Information System (INIS)

    Vavrda, J.; Blazhikova, Ya.

    1982-01-01

    Refractory carbides were investigated using JSM-U3 electron microscope of Joelco company at 27 KV accelerating voltage. Some photographs of each powder were taken with different enlargements to characterise the sample upon the whole. It was shown that morphological and especially topographic study of powders enables to learn their past history (way of fabrication and treatment). The presence of steps of compact particle fractures and cracks is accompanied by occurence of fine dispersion of carbides subjected to machining after facrication. On the contrary, the character of crystallographic surfaces and features of surface growth testify to the way of crystallization

  6. Silicon carbide microsystems for harsh environments

    CERN Document Server

    Wijesundara, Muthu B J

    2011-01-01

    Silicon Carbide Microsystems for Harsh Environments reviews state-of-the-art Silicon Carbide (SiC) technologies that, when combined, create microsystems capable of surviving in harsh environments, technological readiness of the system components, key issues when integrating these components into systems, and other hurdles in harsh environment operation. The authors use the SiC technology platform suite the model platform for developing harsh environment microsystems and then detail the current status of the specific individual technologies (electronics, MEMS, packaging). Additionally, methods

  7. Tool steel for cold worck niobium carbides

    International Nuclear Information System (INIS)

    Goldenstein, H.

    1984-01-01

    A tool steel was designed so as to have a microstructure with the matrix similar a cold work tool steel of D series, containing a dispersion of Niobium carbides, with no intention of putting Niobium in solution on the matrix. The alloy was cast, forged and heat treated. The alloy was easily forged; the primary carbide morfology, after forging, was faceted, tending to equiaxed. The hardness obtained was equivalent to the maximum hardness of a D-3 sttel when quenched from any temperature between 950 0 C, and 1200 0 , showing a very small sensitivy to the quenching temperature. (Author) [pt

  8. Myth or Reality-Transdermal Magnesium?

    Science.gov (United States)

    Gröber, Uwe; Werner, Tanja; Vormann, Jürgen; Kisters, Klaus

    2017-07-28

    In the following review, we evaluated the current literature and evidence-based data on transdermal magnesium application and show that the propagation of transdermal magnesium is scientifically unsupported. The importance of magnesium and the positive effects of magnesium supplementation are extensively documented in magnesium deficiency, e.g., cardiovascular disease and diabetes mellitus. The effectiveness of oral magnesium supplementation for the treatment of magnesium deficiency has been studied in detail. However, the proven and well-documented oral magnesium supplementation has become questioned in the recent years through intensive marketing for its transdermal application (e.g., magnesium-containing sprays, magnesium flakes, and magnesium salt baths). In both, specialist and lay press as well as on the internet, there are increasing numbers of articles claiming the effectiveness and superiority of transdermal magnesium over an oral application. It is claimed that the transdermal absorption of magnesium in comparison to oral application is more effective due to better absorption and fewer side effects as it bypasses the gastrointestinal tract.

  9. Advanced Silicon Carbide from Molecular Engineering and Actinide Fuels

    International Nuclear Information System (INIS)

    Meyer, D.J.M.; Garcia, J.; Guillaneux, D.; Wong-Chi-Man, M.; Moreau, J.J.E.

    2008-01-01

    In the frame of nuclear fuels studies for generation IV, carbides or oxycarbides assemblies are one of the engaged material for high temperature reactors. The design of the fuels is not yet defined but some structures are actually considered with SiC as matrix for the actinide fuel. In this work we have studied the synthesis of a multi-scale structure controlled SiC matrix using molecular silicon organometallic precursors. The aim of this work was to develop a way to obtain multi-scale SiC matrix material which could be engineered to fit in any fuel structure defined for generation IV fuels. The control of this multi-scale structure was done using several simulation methods specific of the low temperature solution synthesis of the precursor. In a first step, we have focused our effort on the synthesis of the SiC material. A first level of template was successfully done by the use of solid silica 500 nm balls. A second level of template was studied by the use of meso-porous silica, structured at a 50 nm level. At least, supra-molecular simulation in non aqueous media was considered with the difficulty to build a molecular assembly (inverse micelles). In a second step, we have functionalized the primary silane phase with actinide complexing agent in order to blend directly the actinide inside this primary phase in a controlled way. During these studies, a new one pot synthesis route to obtain the functionalized primary silane phase was developed. (authors)

  10. Effect of oxygen on the hydrogenation properties of magnesium films

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Chorkendorff, Ib

    2006-01-01

    The effect of magnesium oxide on the magnesium and hydrogen desorption properties of magnesium films have been investigated. We find that by capping metallic magnesium films with oxide overlayers the apparent desorption energy of magnesium is increased from 146 kJ/mol to 314 kJ/mol. The results...... are discussed in light of previous investigations of ball-milled magnesium powders....

  11. Alkoxide-based magnesium electrolyte compositions for magnesium batteries

    Science.gov (United States)

    Dai, Sheng; Sun, Xiao-Guang; Liao, Chen; Guo, Bingkun

    2018-01-30

    Alkoxide magnesium halide compounds having the formula: RO--Mg--X (1) wherein R is a saturated or unsaturated hydrocarbon group that is unsubstituted, or alternatively, substituted with one or more heteroatom linkers and/or one or more heteroatom-containing groups comprising at least one heteroatom selected from fluorine, nitrogen, oxygen, sulfur, and silicon; and X is a halide atom. Also described are electrolyte compositions containing a compound of Formula (1) in a suitable polar aprotic or ionic solvent, as well as magnesium batteries in which such electrolytes are incorporated.

  12. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    Science.gov (United States)

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  13. Cu_2O Hybridized Titanium Carbide with Open Conductive Frameworks for Lithium-ion Batteries

    International Nuclear Information System (INIS)

    Zhang, Huang; Dong, Hui; Zhang, Xuan; Xu, Yunlong; Fransaer, Jan

    2016-01-01

    Though MXenes, a new family of 2D transition metal carbides, are generating considerable interests as electrode materials for batteries and supercapacitors, further application is hindered by their low capacities and poor rate capabilities. Here we propose a simple route for the synthesis of Cu_2O particle hybridized titanium carbide Ti_2CT_x (T = O, OH) composites via a solvothermal method. Electrodes containing Cu_2O/MXene were fabricated without carbon black, and tested as anodes for lithium ion batteries. A discharge capacity of 143 mAh g"−"1 was obtained at a discharge current density of 1000 mA g"−"1 and the capacity retention was near 100% after 200 cycles. The hybrid electrodes with open conductive frameworks exhibited significantly improved electrochemical performance, suggesting a new method for preparing MXene-based composites for energy storage application.

  14. Preparation of aluminum nitride-silicon carbide nanocomposite powder by the nitridation of aluminum silicon carbide

    NARCIS (Netherlands)

    Itatani, K.; Tsukamoto, R.; Delsing, A.C.A.; Hintzen, H.T.J.M.; Okada, I.

    2002-01-01

    Aluminum nitride (AlN)-silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g-1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich

  15. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method

    International Nuclear Information System (INIS)

    Zamanpour, Mehdi; Bennett, Steven P.; Majidi, Leily; Chen, Yajie; Harris, Vincent G.

    2015-01-01

    Highlights: • High-coercivity cobalt carbides were synthesized by polyol method. • No rare earth elements were used during synthesis process. • Process parameters (reaction temperature, precursors’ concentrations, surfactants and reaction duration) were studied/optimized. • Process was scaled-up to synthesis more than 5 g powders per batch. - Abstract: Cobalt carbide magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co 2 C and Co 3 C phases possessing magnetization values exceeding 47 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of the reaction temperature, hydroxyl ion concentrations and the reaction duration on the crystallographic structure and magnetic properties of the nanoparticles. The crystallographic structure and particle size of the Co x C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties

  16. Process optimization and properties of magnetically hard cobalt carbide nanoparticles via modified polyol method

    Energy Technology Data Exchange (ETDEWEB)

    Zamanpour, Mehdi; Bennett, Steven P. [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Majidi, Leily [Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115 (United States); Chen, Yajie [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits (CM3IC), Northeastern University, Boston, MA 02115 (United States); Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2015-03-15

    Highlights: • High-coercivity cobalt carbides were synthesized by polyol method. • No rare earth elements were used during synthesis process. • Process parameters (reaction temperature, precursors’ concentrations, surfactants and reaction duration) were studied/optimized. • Process was scaled-up to synthesis more than 5 g powders per batch. - Abstract: Cobalt carbide magnetic nanoparticles were successfully synthesized via a modified polyol process without using a rare-earth catalyst during the synthesis process. The present results show admixtures of Co{sub 2}C and Co{sub 3}C phases possessing magnetization values exceeding 47 emu/g and coercivity values exceeding 2.3 kOe at room temperature. Moreover, these experiments have illuminated the important role of the reaction temperature, hydroxyl ion concentrations and the reaction duration on the crystallographic structure and magnetic properties of the nanoparticles. The crystallographic structure and particle size of the Co{sub x}C nanoparticles were characterized by X-ray diffractometry and scanning electron microscopy. Vibrating sample magnetometry was used to determine magnetic properties. Scale-up of synthesis to more than 5 g per batch was demonstrated with no significant degradation of magnetic properties.

  17. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Lieber, C.M.; Wong, E.W.; Dai, H.; Maynor, B.W.; Burns, L.D.

    1996-01-01

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe 3 C, and BC x having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  18. Surface metallurgy of cemented carbide tools

    International Nuclear Information System (INIS)

    Chopra, K.L.; Kashyap, S.C.; Rao, T.V.; Rajagopalan, S.; Srivastava, P.K.

    1983-01-01

    Transition metal carbides, owing to their high melting point, hardness and wear resistance, are potential candidates for specific application in rockets, nuclear engineering equipment and cutting tools. Tungsten carbide sintered with a binder (either cobalt metal or a mixture of Co + TiC and/or TaC(NbC)) is used for cutting tools. The surface metallurgy of several commercially available cemented carbide tools was studied by Auger electron spectroscopy and X-ray photoelectron spectroscopy techniques. The tool surfaces were contaminated by adsorbed oxygen up to a depth of nearly 0.3 μm causing deterioration of the mechanical properties of the tools. Studies of fractured samples indicated that the tool surfaces were prone to oxygen adsorption. The fracture path passes through the cobalt-rich regions. The ineffectiveness of a worn cutting tool is attributed to the presence of excessive iron from the steel workpiece and carbon and oxygen in the surface layers of the tool. The use of appropriate hard coatings on cemented carbide tools is suggested. (Auth.)

  19. Silicon Carbide Power Devices and Integrated Circuits

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan; Samsel, Isaak; LaBel, Ken; Chen, Yuan; Ikpe, Stanley; Wilcox, Ted; Phan, Anthony; Kim, Hak; Topper, Alyson

    2017-01-01

    An overview of the NASA NEPP Program Silicon Carbide Power Device subtask is given, including the current task roadmap, partnerships, and future plans. Included are the Agency-wide efforts to promote development of single-event effect hardened SiC power devices for space applications.

  20. Low temperature CVD deposition of silicon carbide

    International Nuclear Information System (INIS)

    Dariel, M.; Yeheskel, J.; Agam, S.; Edelstein, D.; Lebovits, O.; Ron, Y.

    1991-04-01

    The coating of graphite on silicon carbide from the gaseous phase in a hot-well, open flow reactor at 1150degC is described. This study constitutes the first part of an investigation of the process for the coating of nuclear fuel by chemical vapor deposition (CVD)

  1. Anomalous Seebeck coefficient in boron carbides

    International Nuclear Information System (INIS)

    Aselage, T.L.; Emin, D.; Wood, C.; Mackinnon, I.D.R.; Howard, I.A.

    1987-01-01

    Boron carbides exhibit an anomalously large Seebeck coefficient with a temperature coefficient that is characteristic of polaronic hopping between inequivalent sites. The inequivalence in the sites is associated with disorder in the solid. The temperature dependence of the Seebeck coefficient for materials prepared by different techniques provides insight into the nature of the disorder

  2. Reaction of boron carbide with molybdenum disilicide

    International Nuclear Information System (INIS)

    Novikov, A.V.; Melekhin, V.F.; Pegov, V.S.

    1989-01-01

    The investigation results of interaction in the B 4 C-MoSi 2 system during sintering in vacuum are presented. Sintering of boron carbide with molybdenum disilicide is shown to lead to the formation of MoB 2 , SiC, Mo 5 Si 3 compounds, the presence of carbon-containing covering plays an important role in sintering

  3. Mechanical characteristics of microwave sintered silicon carbide

    Indian Academy of Sciences (India)

    In firing of products by conventionally sintered process, SiC grain gets oxidized producing SiO2 (∼ 32 wt%) and deteriorates the quality of the product substantially. Partially sintered silicon carbide by such a method is a useful material for a varieties of applications ranging from kiln furniture to membrane material.

  4. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...

  5. Magnesium sulphate for fetal neuroprotection

    DEFF Research Database (Denmark)

    Bickford, Celeste D; Magee, Laura A; Mitton, Craig

    2013-01-01

    of cerebral palsy (CP) averted and quality-adjusted life years (QALYs). RESULTS: From a health system and a societal perspective, respectively, a savings of $2,242 and $112,602 is obtained for each QALY gained and a savings of $30,942 and $1,554,198 is obtained for each case of CP averted when magnesium......BACKGROUND: The aim of this study was to assess the cost-effectiveness of administering magnesium sulphate to patients in whom preterm birth at ... sensitivity analyses were used to compare the administration of magnesium sulphate with the alternative of no treatment. Two separate cost perspectives were utilized in this series of analyses: a health system and a societal perspective. In addition, two separate measures of effectiveness were utilized: cases...

  6. Telomere Homeostasis: Interplay with Magnesium

    Directory of Open Access Journals (Sweden)

    Donogh Maguire

    2018-01-01

    Full Text Available Telomere biology, a key component of the hallmarks of ageing, offers insight into dysregulation of normative ageing processes that accompany age-related diseases such as cancer. Telomere homeostasis is tightly linked to cellular metabolism, and in particular with mitochondrial physiology, which is also diminished during cellular senescence and normative physiological ageing. Inherent in the biochemistry of these processes is the role of magnesium, one of the main cellular ions and an essential cofactor in all reactions that use ATP. Magnesium plays an important role in many of the processes involved in regulating telomere structure, integrity and function. This review explores the mechanisms that maintain telomere structure and function, their influence on circadian rhythms and their impact on health and age-related disease. The pervasive role of magnesium in telomere homeostasis is also highlighted.

  7. Magnesium and related low alloys

    International Nuclear Information System (INIS)

    Bernard, J.; Caillat, R.; Darras, R.

    1959-01-01

    In the first part the authors examine the comparative corrosion of commercial magnesium, of a magnesium-zirconium alloy (0,4 per cent ≤ Zr ≤ 0,7 per cent) of a ternary magnesium-zinc-zirconium alloy (0,8 per cent ≤ Zn ≤ 1,2 per cent) and of english 'Magnox type' alloys, in dry carbon dioxide-free air, in damp carbon dioxide-free air, and in dry and damp carbon dioxide, at temperatures from 300 to 600 deg. C. In the second part the structural stability of these materials is studied after annealings, of 10 to 1000 hours at 300 to 450 deg. C. Variations in grain after these heat treatments and mechanical stretching properties at room temperature are presented. Finally various creep rate and life time diagrams are given for these materials, for temperatures ranging from 300 to 450 deg. C. (author) [fr

  8. 2D metal carbides and nitrides (MXenes) for energy storage

    KAUST Repository

    Anasori, Babak; Lukatskaya, Maria R.; Gogotsi, Yury

    2017-01-01

    The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research.

  9. 2D metal carbides and nitrides (MXenes) for energy storage

    KAUST Repository

    Anasori, Babak

    2017-01-17

    The family of 2D transition metal carbides, carbonitrides and nitrides (collectively referred to as MXenes) has expanded rapidly since the discovery of Ti3C2 in 2011. The materials reported so far always have surface terminations, such as hydroxyl, oxygen or fluorine, which impart hydrophilicity to their surfaces. About 20 different MXenes have been synthesized, and the structures and properties of dozens more have been theoretically predicted. The availability of solid solutions, the control of surface terminations and a recent discovery of multi-transition-metal layered MXenes offer the potential for synthesis of many new structures. The versatile chemistry of MXenes allows the tuning of properties for applications including energy storage, electromagnetic interference shielding, reinforcement for composites, water purification, gas- and biosensors, lubrication, and photo-, electro- and chemical catalysis. Attractive electronic, optical, plasmonic and thermoelectric properties have also been shown. In this Review, we present the synthesis, structure and properties of MXenes, as well as their energy storage and related applications, and an outlook for future research.

  10. Magnesium and related low alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, J; Caillat, R; Darras, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    In the first part the authors examine the comparative corrosion of commercial magnesium, of a magnesium-zirconium alloy (0,4 per cent {<=} Zr {<=} 0,7 per cent) of a ternary magnesium-zinc-zirconium alloy (0,8 per cent {<=} Zn {<=} 1,2 per cent) and of english 'Magnox type' alloys, in dry carbon dioxide-free air, in damp carbon dioxide-free air, and in dry and damp carbon dioxide, at temperatures from 300 to 600 deg. C. In the second part the structural stability of these materials is studied after annealings, of 10 to 1000 hours at 300 to 450 deg. C. Variations in grain after these heat treatments and mechanical stretching properties at room temperature are presented. Finally various creep rate and life time diagrams are given for these materials, for temperatures ranging from 300 to 450 deg. C. (author) [French] Dans une premiere partie les auteurs etudient la corrosion comparee du magnesium commercial, d'un alliage magnesium-zirconium (0,4 pour cent {<=} Zr {<=} 0,7 pour cent), d'un alliage ternaire magnesium-zinc-zirconium (0,8 pour cent {<=} Zn {<=} 1,2 pour cent), et d'alliages anglais 'type Magnox', dans l'air sec decarbonate, l'air humide decarbonate, le gaz carbonique sec et humide a des temperatures de 300 a 600 deg. C. Dans une seconde partie, est etudiee la stabilite structurale de ces materiaux apres des recuits de 300 a 450 deg. C, et de 10 a 1000 heures. Sont presentees les variations, apres ces traitements thermiques, de la grosseur du grain, et des caracteristiques mecaniques de traction a la temperature ambiante. Enfin, quelques diagrammes de vitesse de fluage et de durees de vie sont presentes sur ces materiaux pour des temperatures variant entre 300 et 450 deg. C. (auteur)

  11. 21 CFR 582.5431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.5431 Section 582.5431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance...

  12. 21 CFR 582.1431 - Magnesium oxide.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium oxide. 582.1431 Section 582.1431 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1431 Magnesium oxide. (a) Product. Magnesium oxide. (b) Conditions of use. This substance is...

  13. EFFECT OF MAGNESIUM SULFATE (A LAXATIVE) ON ...

    African Journals Online (AJOL)

    use with little success . Magnesium sulfate also known as Epsom salt or bitter salt is a hydrate salt with a chemical name of magnesium sulfate heptahydrate . Chemical formula is MgSO. 7HO and trade name is. Andrews liver salt. Dried magnesium sulfate is an osmotic laxative or a saline laxative that acts by increasing the.

  14. 21 CFR 582.5443 - Magnesium sulfate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium sulfate. 582.5443 Section 582.5443 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5443 Magnesium sulfate. (a) Product. Magnesium sulfate. (b) Conditions of use. This...

  15. The suitability of silicon carbide for photocatalytic water oxidation

    Science.gov (United States)

    Aslam, M.; Qamar, M. T.; Ahmed, Ikram; Rehman, Ateeq Ur; Ali, Shahid; Ismail, I. M. I.; Hameed, Abdul

    2018-04-01

    Silicon carbide (SiC), owing to its extraordinary chemical stability and refractory properties, is widely used in the manufacturing industry. Despite the semiconducting nature and morphology-tuned band gap, its efficacy as photocatalysts has not been thoroughly investigated. The current study reports the synthesis, characterization and the evaluation of the capability of silicon carbide for hydrogen generation from water splitting. The optical characterization of the as-synthesized powder exposed the formation of multi-wavelength absorbing entities in synthetic process. The structural analysis by XRD and the fine microstructure analysis by HRTEM revealed the cubic 3C-SiC (β-SiC) and hexagonal α-polymorphs (2H-SiC and 6H-SiC) as major and minor phases, respectively. The Mott-Schottky analysis verified the n-type nature of the material with the flat band potential of - 0.7 V. In the electrochemical evaluation, the sharp increase in the peak currents in various potential ranges, under illumination, revealed the plausible potential of the material for the oxidation of water and generation of hydrogen. The generation of hydrogen and oxygen, as a consequence of water splitting in the actual photocatalytic experiments, was observed and measured. A significant increase in the yield of hydrogen was noticed in the presence of methanol as h + scavenger, whereas a retarding effect was offered by the Fe3+ entities that served as e - scavengers. The combined effect of both methanol and Fe3+ ions in the photocatalytic process was also investigated. Besides hydrogen gas, the other evolved gasses such as methane and carbon monoxide were also measured to estimate the mechanism of the process.

  16. New catalysts for coal processing: Metal carbides and nitrides

    Energy Technology Data Exchange (ETDEWEB)

    S. Ted Oyama; David F. Cox

    1999-12-03

    The subject of this research project was to investigate the catalytic properties of a new class of materials, transition metal carbides and nitrides, for treatment of coal liquid and petroleum feedstocks. The main objectives were: (1) preparation of catalysts in unsupported and supported form; (2) characterization of the materials; (3) evaluation of their catalytic properties in HDS and HDN; (4) measurement of the surface properties; and (5) observation of adsorbed species. All of the objectives were substantially carried out and the results will be described in detail below. The catalysts were transition metal carbides and nitrides spanning Groups 4--6 in the Periodic Table. They were chosen for study because initial work had shown they were promising materials for hydrotreating. The basic strategy was first to prepare the materials in unsupported form to identify the most promising catalyst, and then to synthesize a supported form of the material. Already work had been carried out on the synthesis of the Group VI compounds Mo{sub 2}C, Mo{sub 2}N, and WC, and new methods were developed for the Group V compounds VC and NbC. All the catalysts were then evaluated in a hydrotreating test at realistic conditions. It was found that the most active catalyst was Mo{sub 2}C, and further investigations of the material were carried out in supported form. A new technique was employed for the study of the bulk and surface properties of the catalysts, near edge x-ray absorption spectroscopy (NEXAFS), that fingerprinted the electronic structure of the materials. Finally, two new research direction were explored. Bimetallic alloys formed between two transition metals were prepared, resulting in catalysts having even higher activity than Mo{sub 2}C. The performance of the catalysts in hydrodechloration was also investigated.

  17. Research Progress in Plasma arc welding of Magnesium Alloys and Magnesium Matrix Composites

    Science.gov (United States)

    Hui, Li; Yang, Zou; Yongbo, Li; Lei, Jiao; Ruijun, Hou

    2017-11-01

    Magnesium alloys and magnesium matrix composites by means of its excellent performance have wide application prospect in electronics, automotive, biotechnology, aerospace field, and welding technology has become a key of restricting its application. This paper describes the welding characteristics of magnesium, the obvious advantages in the application and the domestic and foreign research advance technology of plasma arc welding of magnesium, and summarizes the existing problems and development trends of plasma arc welding technology of magnesium.

  18. Magnesium Diboride Current Leads

    Science.gov (United States)

    Panek, John

    2010-01-01

    A recently discovered superconductor, magnesium diboride (MgB2), can be used to fabricate conducting leads used in cryogenic applications. Dis covered to be superconducting in 2001, MgB2 has the advantage of remaining superconducting at higher temperatures than the previously used material, NbTi. The purpose of these leads is to provide 2 A of electricity to motors located in a 1.3 K environment. The providing environment is a relatively warm 17 K. Requirements for these leads are to survive temperature fluctuations in the 5 K and 11 K heat sinks, and not conduct excessive heat into the 1.3 K environment. Test data showed that each lead in the assembly could conduct 5 A at 4 K, which, when scaled to 17 K, still provided more than the required 2 A. The lead assembly consists of 12 steelclad MgB2 wires, a tensioned Kevlar support, a thermal heat sink interface at 4 K, and base plates. The wires are soldered to heavy copper leads at the 17 K end, and to thin copper-clad NbTi leads at the 1.3 K end. The leads were designed, fabricated, and tested at the Forschungszentrum Karlsruhe - Institut foer Technische Physik before inclusion in Goddard's XRS (X-Ray Spectrometer) instrument onboard the Astro-E2 spacecraft. A key factor is that MgB2 remains superconducting up to 30 K, which means that it does not introduce joule heating as a resistive wire would. Because the required temperature ranges are 1.3-17 K, this provides a large margin of safety. Previous designs lost superconductivity at around 8 K. The disadvantage to MgB2 is that it is a brittle ceramic, and making thin wires from it is challenging. The solution was to encase the leads in thin steel tubes for strength. Previous designs were so brittle as to risk instrument survival. MgB2 leads can be used in any cryogenic application where small currents need to be conducted at below 30 K. Because previous designs would superconduct only at up to 8 K, this new design would be ideal for the 8-30 K range.

  19. Microstructures and mechanical properties of magnesium alloy and stainless steel weld-joint made by friction stir lap welding

    International Nuclear Information System (INIS)

    Wei, Yanni; Li, Jinglong; Xiong, Jiangtao; Huang, Fu; Zhang, Fusheng

    2012-01-01

    Highlights: → Friction stir lap welding technology with cutting pin was successfully employed to form lap joint of magnesium and steel. → The cutting pin made the lower steel participate in deformation and the interface was no longer flat. → A saw-toothed structure formed due to a mechanical mixing of the magnesium and steel was found at the interface. → A high-strength joint was produced which fractured in the magnesium side. -- Abstract: Friction stir lap welding was conducted on soft/hard metals. A welding tool was designed with a cutting pin of rotary burr made of tungsten carbide, which makes the stirring pin possible to penetrate and cut the surface layer of the hard metal. Magnesium alloy AZ31 and stainless steel SUS302 were chosen as soft/hard base metals. The structures of the joining interface were analyzed by scanning electron microscopy (SEM). The joining strength was evaluated by tensile shear test. The results showed that flower-like interfacial morphologies were presented with steel flashes and scraps, which formed bonding mechanisms of nail effect by long steel flashes, zipper effect by saw-tooth structure and metallurgical bonding. The shear strength of the lap joint falls around the shear strength of butt joint of friction stir welded magnesium alloy.

  20. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.

    1990-11-01

    In photosynthetic organisms, the biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins, and various lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX (Proto). Insertion of iron leads to the formation of hemes, while insertion of magnesium is the first step unique to chlorophyll formation. This project is directed toward identifying the enzyme(s) responsible for magnesium chelation and elucidating the mechanism which regulates the flux of precursors through the branch point enzymes in isolated chloroplasts. Using intact chloroplasts from greening cucumber cotyledons, we have confirmed the ATP requirement for Mg-Proto formation. Use of non-hydrolyzable ATP analogs, uncouplers and ionophores has led to the conclusions that ATP hydrolysis is necessary, but that this hydrolysis is not linked to the requirement for membrane intactness by transmembrane ion gradients or electrical potentials. The enzyme(s) are flexible with respect to the porphyrin substrate specificity, accepting porphyrins with -vinyl, -ethyl, or -H substituents at the 2 and 4 positions. The activity increases approximately four-fold during greening. Possible physiological feedback inhibitors such as heme, protochlorophyllide, and chlorophyllide had no specific effect on the activity. The activity has now been assayed in barely, corn and peas, with the system from peas almost ten-fold more active than the cucumber system. Work is continuing in pea chloroplasts with the development of a continuous assay and investigation of the feasibility of characterizing an active, organelle-free preparation. 6 figs.

  1. Synthesis of carbon nanotubes by CVD method using iron and molybdenum-based catalysts supported on ceramic matrices

    International Nuclear Information System (INIS)

    Teixeira, Ana Paula de Carvalho

    2010-01-01

    , while the MgMo0 4 phase is observed in systems with Mo/Fe ratios greater than 0.2. In spite of the differences between the two methods of preparation, the influence of molybdenum is practically the same in the two series of catalysts studied. In both cases, the reaction yield was directly proportional to the molybdenum concentration. When the Mo concentration, however, was much higher than the Fe concentration, the CN synthesis yield decreased. The highest yields, therefore, were found when the Mo/Fe ratio was equal to 1. We propose that excess molybdenum leads to the formation of Mo metallic agglomerates that do not catalyze the CN synthesis by chemical vapor deposition. We also observed that the presence of molybdenum brought about the formation of multi-walled carbon structures (multi-walled nanotubes - MWNT - and bamboo-like structures), while iron promoted the preferential formation of nanotubes with one - SWNT - or few walls. Besides carbon and MgO nanostructures, iron carbide (Fe 3 C) and molybdenum carbide (Mo 2 C) (catalysts containing Mo) were also formed in all of the samples grown with CVD, and the quantity of Mo 2 C increased with the increase in the Mo content in the catalyst. Based on the results obtained and the literature, two distinct regimes of action of Mo in the studied catalysts on the CVD carbon nanotubes synthesis from ethylene are proposed, when carried out in the conditions used in this work: 1) catalytic systems containing only Fe or small concentrations of Mo (MolFe =O, 0.02, 0.05, and 0.10). In this system, part of the Mo-containing species associate with the Fe phases present in the catalysts. During the decomposition of ethylene, Fe associates in particles with metallic Mo or Mo carbide. This association brings about the formation of MWNTs and carbon nanostructures with a higher degree of defects. The iron particles from the magnesium-ferrite phase or from the Fe solid solution in Mg bring about the formation of SWNTs and CNs with only a

  2. On the effect of interaction of molybdenum trioxide and magnesium oxide in water

    International Nuclear Information System (INIS)

    Bunin, V.M.; Karelin, A.I.; Solov'eva, L.N.

    1992-01-01

    Interaction of molybdenum trioxide and magnesium oxide in water was studied. It is shown that molybdenum trioxide forms consecutively magnesium molybdate, dimolybdate and magnesium polymolybdates with magnesium oxide

  3. A SEARCH FOR MAGNESIUM IN EUROPA'S ATMOSPHERE

    International Nuclear Information System (INIS)

    Hörst, S. M.; Brown, M. E.

    2013-01-01

    Europa's tenuous atmosphere results from sputtering of the surface. The trace element composition of its atmosphere is therefore related to the composition of Europa's surface. Magnesium salts are often invoked to explain Galileo Near Infrared Mapping Spectrometer spectra of Europa's surface, thus magnesium may be present in Europa's atmosphere. We have searched for magnesium emission in the Hubble Space Telescope Faint Object Spectrograph archival spectra of Europa's atmosphere. Magnesium was not detected and we calculate an upper limit on the magnesium column abundance. This upper limit indicates that either Europa's surface is depleted in magnesium relative to sodium and potassium, or magnesium is not sputtered as efficiently resulting in a relative depletion in its atmosphere.

  4. Tribological Characteristics of Tungsten Carbide Reinforced Arc Sprayed Coatings using Different Carbide Grain Size Fractions

    Directory of Open Access Journals (Sweden)

    W. Tillmann

    2017-06-01

    Full Text Available Tungsten carbide reinforced coatings play an important role in the field of surface engineering to protect stressed surfaces against wear. For thermally sprayed coatings, it is already shown that the tribological properties get mainly determined by the carbide grain size fraction. Within the scope of this study, the tribological characteristics of iron based WC-W2C reinforced arc sprayed coatings deposited using cored wires consisting of different carbide grain size fractions were examined. Microstructural characteristics of the produced coatings were scrutinized using electron microscopy and x-ray diffraction analyses. Ball-on-disk test as well as Taber Abraser and dry sand rubber wheel test were employed to analyze both the dry sliding and the abrasive wear behavior. It was shown that a reduced carbide grain size fraction as filling leads to an enhanced wear resistance against sliding. In terms of the Taber Abraser test, it is also demonstrated that a fine carbide grain size fraction results in an improved wear resistant against abrasion. As opposed to that, a poorer wear resistance was found within the dry sand rubber wheel tests. The findings show that the operating mechanisms for both abrasion tests affect the stressed surface in a different way, leading either to microcutting or microploughing.

  5. Neutron irradiation damage in transition metal carbides

    International Nuclear Information System (INIS)

    Matsui, Hisayuki; Nesaki, Kouji; Kiritani, Michio

    1991-01-01

    Effects of neutron irradiation on the physical properties of light transition metal carbides, TiC x , VC x and NbC x , were examined, emphasizing the characterization of irradiation induced defects in the nonstoichiometric composition. TiC x irradiated with 14 MeV (fusion) neutrons showed higher damage rates with increasing C/Ti (x) ratio. A brief discussion is made on 'cascade damage' in TiC x irradiated with fusion neutrons. Two other carbides (VC x and NbC x ) were irradiated with fission reactor neutrons. The irradiation effects on VC x were not so simple, because of the complex irradiation behavior of 'ordered' phases. For instance, complete disordering was revealed in an ordered phase, 'V 8 C 7 ', after an irradiation dose of 10 25 n/m 2 . (orig.)

  6. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  7. METHOD FOR PRODUCING CEMENTED CARBIDE ARTICLES

    Science.gov (United States)

    Onstott, E.I.; Cremer, G.D.

    1959-07-14

    A method is described for making molded materials of intricate shape where the materials consist of mixtures of one or more hard metal carbides or oxides and matrix metals or binder metals thereof. In one embodiment of the invention 90% of finely comminuted tungsten carbide powder together with finely comminuted cobalt bonding agent is incorporated at 60 deg C into a slurry with methyl alcohol containing 1.5% paraffin, 3% camphor, 3.5% naphthalene, and 1.8% toluene. The compact is formed by the steps of placing the slurry in a mold at least one surface of which is porous to the fluid organic system, compacting the slurry, removing a portion of the mold from contact with the formed object and heating the formed object to remove the remaining organic matter and to sinter the compact.

  8. Radiation stability of proton irradiated zirconium carbide

    International Nuclear Information System (INIS)

    Yang, Yong; Dickerson, Clayton A.; Allen, Todd R.

    2009-01-01

    The use of zirconium carbide (ZrC) is being considered for the deep burn (DB)-TRISO fuel as a replacement for the silicon carbide coating. The radiation stability of ZrC was studied using 2.6 MeV protons, across the irradiation temperature range from 600 to 900degC and to doses up to 1.75 dpa. The microstructural characterization shows that the irradiated microstructure is comprised of a high density of nanometer-sized dislocation loops, while no irradiation induced amorphization or voids are observed. The lattice expansion induced by point defects is found to increase as the dose increases for the samples irradiated at 600 and 800degC, while for the 900degC irradiation, a slight lattice contraction is observed. The radiation hardening is also quantified using a micro indentation technique for the temperature and doses studies. (author)

  9. Oxidation of boron carbide at high temperatures

    International Nuclear Information System (INIS)

    Steinbrueck, Martin

    2005-01-01

    The oxidation kinetics of various types of boron carbides (pellets, powder) were investigated in the temperature range between 1073 and 1873 K. Oxidation rates were measured in transient and isothermal tests by means of mass spectrometric gas analysis. Oxidation of boron carbide is controlled by the formation of superficial liquid boron oxide and its loss due to the reaction with surplus steam to volatile boric acids and/or direct evaporation at temperatures above 1770 K. The overall reaction kinetics is paralinear. Linear oxidation kinetics established soon after the initiation of oxidation under the test conditions described in this report. Oxidation is strongly influenced by the thermohydraulic boundary conditions and in particular by the steam partial pressure and flow rate. On the other hand, the microstructure of the B 4 C samples has a limited influence on oxidation. Very low amounts of methane were produced in these tests

  10. An improved method of preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1979-01-01

    A method of preparing silicon carbide is described which comprises forming a desired shape from a polysilane of the average formula:[(CH 3 ) 2 Si][CH 3 Si]. The polysilane contains from 0 to 60 mole percent (CH 3 ) 2 Si units and from 40 to 100 mole percent CH 3 Si units. The remaining bonds on the silicon are attached to another silicon atom or to a halogen atom in such manner that the average ratio of halogen to silicon in the polysilane is from 0.3:1 to 1:1. The polysilane has a melt viscosity at 150 0 C of from 0.005 to 500 Pa.s and an intrinsic viscosity in toluene of from 0.0001 to 0.1. The shaped polysilane is heated in an inert atmosphere or in a vacuum to an elevated temperature until the polysilane is converted to silicon carbide. (author)

  11. Hadfield steels with Nb and Ti carbides

    International Nuclear Information System (INIS)

    Vatavuk, J.; Goldenstein, H.

    1987-01-01

    The Hadfield Steels and the mechanisms responsible for its high strain hardening rate were reviewed. Addition of carbide forming alloying elements to the base compostion was discussed, using the matrix sttel concept. Three experimental crusher jaws were cast, with Nb and Nb + Ti added to the usual Hadfiedl compostion, with enough excess carbon to allow the formation of MC carbides. Samples for metallographic analysis were prepared from both as cast and worn out castings. The carbic morphology was described. Partition of alloying elements was qualitatively studied, using Energy Dispersive Espectroscopy in SEM. The structure of the deformed layer near the worn surface was studied by optical metalography and microhardness measurements. The results showed that fatigue cracking is one of the wear mechanisms is operation in association with the ciclic work hardening of the surface of worn crusher jaws. (Author) [pt

  12. MexiB 6 AS A RESULT OF FORTIFICATION OF ETHYLMETHYLHYDROXYPYRIDINE SUCCINATE WITH MAGNESIUM AND PYRIDOXINE: PROTEOME EFFECTS

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2016-01-01

    Full Text Available The efficacy of ethylmethylhydroxypyridine succinate (EMHPS  depends on the concentration and activity of proteomic proteins. To provide the body with magnesium and pyridoxine is an important condition for the efficacy of EMHPS because these micronutrients are essential for maintaining neuronal function.Objective: to analyze the biological effects of pyridoxineand magnesium-dependent proteins providing the molecular mechanisms of multi-targeted action of EMHPS,  pyridoxine, and magnesium.Material and methods. Proteins that interact with both pyridoxine and magnesium were found in the genomic and proteomic databases. A list of 78 vitamin B6-dependent proteins, which is based on the available human genome records in NCBIPROTEIN, EMBL,  UNIPROT,  and HumanProteomeMap databases, was analyzed using a functional binding assay. The same assay was also applied to analyze a list 720 magnesium-dependent proteins.Results. The analysis has shown that 78 pyridoxine-dependent proteomic proteins are necessary for: 1 the synthesis and processing of amino acids; 2 cell energy metabolism (ATP synthesis, and 3 the synthesis of neurotransmitters and neuronal membranes. MexiB 6 has numerous synergistic interactions between the molecules of EMHPS,  pyridoxine, and magnesium. The combination of the components of EMHPS,  pyridoxine and magnesium in MexiB 6 (triple synergism allows prediction that the drug has more pronounced clinical effects than the molecules of EMHPS,  which emerges in its antihypoxic and antioxidant activities, the improvement of synaptic transmission of a signal, the neutralization of homocysteine, and the regulation of lipid and carbohydrate metabolism (restoration of cell sensitivity to insulin and carbohydrates in patients with atherosclerosis and in those at risk for diabetes mellitus or obesity. Pyridoxineand magnesium-induced potentiation of the effects of EMHPS may enhance its activity.

  13. High resolution imaging of boron carbide microstructures

    International Nuclear Information System (INIS)

    MacKinnon, I.D.R.; Aselage, T.; Van Deusen, S.B.

    1986-01-01

    Two samples of boron carbide have been examined using high resolution transmission electron microscopy (HRTEM). A hot-pressed B 13 C 2 sample shows a high density of variable width twins normal to (10*1). Subtle shifts or offsets of lattice fringes along the twin plane and normal to approx.(10*5) were also observed. A B 4 C powder showed little evidence of stacking disorder in crystalline regions

  14. Spark plasma sintering of tantalum carbide

    International Nuclear Information System (INIS)

    Khaleghi, Evan; Lin, Yen-Shan; Meyers, Marc A.; Olevsky, Eugene A.

    2010-01-01

    A tantalum carbide powder was consolidated by spark plasma sintering. The specimens were processed under various temperature and pressure conditions and characterized in terms of relative density, grain size, rupture strength and hardness. The results are compared to hot pressing conducted under similar settings. It is shown that high densification is accompanied by substantial grain growth. Carbon nanotubes were added to mitigate grain growth; however, while increasing specimens' rupture strength and final density, they had little effect on grain growth.

  15. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  16. Molybdenum Carbide Synthesis Using Plasmas for Fuel Cells

    Science.gov (United States)

    2013-06-01

    S. A. Hong, I. H. Oh, and S. J. Shin, “Performance and life time analysis of the kW-class PEMFC stack,” Journal of Power Sources, vol. 106, pp. 295...pp. 591–596, 1998. [25] M. Gotz and H. Wendt, “Binary and ternary anode catalyst formulations including the elements W, Sn and Mo for PEMFCs ...and R. C. Urian, “Electrocatalysis of CO Tolerance by Carbon-Supported PtMo Electrocatalysts in PEMFCs ,” Journal of Electrochemical Society, vol

  17. Synthesis of High Purity Sinterable Silicon Carbide Powder

    Science.gov (United States)

    1989-11-01

    10 G-500 TORCH 50 kW (Max) : kW (Derated) BTU/HR (Derated) RE, E-500 »CTOR/AFTERCOOLEP B70" .0X 72" T/T ISO M BTU/HR Copper B-500 DUST...Fourth and Canal Streets Post Office Box 27003 Richmond, VA 23219 137. Stephen C. Danforth Rutgers University Bowser Road Post Office Box 909

  18. Synthesis and investigation of silicon carbide nanowires by HFCVD

    Indian Academy of Sciences (India)

    We found that increasing substrate temperature increases silicon and oxygen doping amount. We also found that electrical resistivity and surface roughness increased by increasing substrate temperature. This study showed that SiC nanowires with high density grew on the free catalyst glass substrate, and the alignment of ...

  19. Direct chemical synthesis of MnO2 nanowhiskers on MXene surfaces for supercapacitor applications

    KAUST Repository

    Baby, Rakhi Raghavan; Ahmed, Bilal; Anjum, Dalaver H.; Alshareef, Husam N.

    2016-01-01

    Transition metal carbides (MXenes) are an emerging class of two dimensional (2D) materials with promising electrochemical energy storage performance. Herein, for the first time, by direct chemical synthesis, nanocrystalline ε-MnO2 whiskers were

  20. Anticorrosive magnesium hydroxide coating on AZ31 magnesium alloy by hydrothermal method

    International Nuclear Information System (INIS)

    Zhu Yanying; Wu Guangming; Xing Guangjian; Li Donglin; Zhao Qing; Zhang Yunhong

    2009-01-01

    Magnesium alloys are potential biodegradable biomaterials in orthopedic surgery. However, the rapid degradation rate has limited their application in biomedical field. A great deal of studies have been done to improve the resistance of magnesium alloys. In this article, An anticorrosive magnesium hydroxide coating with a thickness of approximately 100μm was formed on an AZ31 magnesium alloy by hydrothermal method. The morphology of the coatings were observed by an optical microscope and SEM. And the samples were soaked in hank's solution (37 deg. C) to investigate the corrosion resistance. Magnesium alloy AZ31 with magnesium hydroxide coatings present superior corrosion resistance than untreated samples.

  1. Electronic specific heat of transition metal carbides

    International Nuclear Information System (INIS)

    Conte, R.

    1964-07-01

    The experimental results that make it possible to define the band structure of transition metal carbides having an NaCI structure are still very few. We have measured the electronic specific heat of some of these carbides of varying electronic concentration (TiC, either stoichiometric or non-stoichiometric, TaC and mixed (Ti, Ta) - C). We give the main characteristics (metallography, resistivity, X-rays) of our samples and we describe the low temperature specific heat apparatus which has been built. In one of these we use helium as the exchange gas. The other is set up with a mechanical contact. The two use a germanium probe for thermometer. The measurement of the temperature using this probe is described, as well as the various measurement devices. The results are presented in the form of a rigid band model and show that the density of the states at the Fermi level has a minimum in the neighbourhood of the group IV carbides. (author) [fr

  2. Laser deposition of carbide-reinforced coatings

    International Nuclear Information System (INIS)

    Cerri, W.; Martinella, R.; Mor, G.P.; Bianchi, P.; D'Angelo, D.

    1991-01-01

    CO 2 laser cladding with blown powder presents many advantages: fusion bonding with the substrate with low dilution, metallurgical continuity in the metallic matrix, high solidification rates, ease of automation, and reduced environmental contamination. In the present paper, laser cladding experimental results using families of carbides (tungsten and titanium) mixed with metallic alloys are reported. As substrates, low alloy construction steel (AISI 4140) (austenitic stainless steel) samples have been utilized, depending on the particular carbide reinforcement application. The coating layers obtained have been characterized by metallurgical examination. They show low dilution, absence of cracks, and high abrasion resistance. The WC samples, obtained with different carbide sizes and percentages, have been characterized with dry and rubber wheel abrasion tests and the specimen behaviour has been compared with the behaviour of materials used for similar applications. The abrasion resistance proved to be better than that of other widely used hardfacing materials and the powder morphology have a non-negligible influence on the tribological properties. (orig.)

  3. Doping of silicon carbide by ion implantation

    International Nuclear Information System (INIS)

    Gimbert, J.

    1999-01-01

    It appeared that in some fields, as the hostile environments (high temperature or irradiation), the silicon compounds showed limitations resulting from the electrical and mechanical properties. Doping of 4H and 6H silicon carbide by ion implantation is studied from a physicochemical and electrical point of view. It is necessary to obtain n-type and p-type material to realize high power and/or high frequency devices, such as MESFETs and Schottky diodes. First, physical and electrical properties of silicon carbide are presented and the interest of developing a process technology on this material is emphasised. Then, physical characteristics of ion implantation and particularly classical dopant implantation, such as nitrogen, for n-type doping, and aluminium and boron, for p-type doping are described. Results with these dopants are presented and analysed. Optimal conditions are extracted from these experiences so as to obtain a good crystal quality and a surface state allowing device fabrication. Electrical conduction is then described in the 4H and 6H-SiC polytypes. Freezing of free carriers and scattering processes are described. Electrical measurements are carried out using Hall effect on Van der Panw test patterns, and 4 point probe method are used to draw the type of the material, free carrier concentrations, resistivity and mobility of the implanted doped layers. These results are commented and compared to the theoretical analysis. The influence of the technological process on electrical conduction is studied in view of fabricating implanted silicon carbide devices. (author)

  4. Magnesium substitutions in rare-earth metal germanides with the Gd5Si4 type. Synthesis, structure determination and magnetic properties of RE5-xMgxGe4 (RE=Gd-Tm, Lu and Y)

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J L [Los Alamos National Laboratory; Thompson, Joe D [Los Alamos National Laboratory; Tobash, P H [UNIV. OF DE; Bobev, S [UNIV. OF DE

    2009-01-01

    A series of magnesium-substituted rare-earth metal germanides with a general formula RE{sub 5-x}Mg{sub x}Ge{sub 4} (x {approx} 1.0-2.3; RE =Gd-Tm, Lu, Y) have been synthesized by high-temperature reactions and structurally characterized by single-crystal X-ray diffraction. These compounds crystallize with the common Gd{sub 5}Si{sub 4} type in the orthorhombic space group Pnma (No. 62; Z =4; Pearson's code oP36) and do not appear to undergo temperature-induced crystallographic phase transitions down to 120 K. Replacing rare-earth metal atoms with Mg, up to nearly 45 % at., reduces the valence electron count and is clearly expressed in the subtle changes of the Ge-Ge and metal-metal bonding. Magnetization measurements as a function of the temperature and the applied field reveal complex magnetic structures at cryogenic temperatures, and Curie-Weiss paramagnetic behavior at higher temperatures. The observed local moment magnetism is consistent with RE+ ground states in all cases. In the magnetically ordered phases, the magnetization cannot reach saturation in fields up to 50 kOe. The structural trends across the series and the variations of hte magnetic properties as a function of the Mg content are also discussed. KEYWORDS: Rare-earth intermetallics, germanides, crystal structure,Gd{sub 5}Si{sub 4} type.

  5. Hydrothermal development and characterization of the wear-resistant boron carbide from Pandanus: a natural carbon precursor

    Science.gov (United States)

    Saritha Devi, H. V.; Swapna, M. S.; Ambadas, G.; Sankararaman, S.

    2018-04-01

    Boron carbide (B4C) is a prominent semiconducting material that finds applications in the field of science and technology. The excellent physical, thermal and electronic properties make it suitable as ceramic armor, wear-resistant, lens polisher and neutron absorber in the nuclear industry. The existing methods of synthesis of boron carbide involve the use of toxic chemicals that adversely affect the environment. In the present work, we report for the first time the use of the hydrothermal method, for converting the cellulose from Pandanus leaves as the carbon precursor for the synthesis of B4C. The carbon precursor is changed into porous functionalized carbon by treating with sodium borohydride (NaBH4), followed by treating with boric acid to obtain B4C. The samples are characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared, Raman, photoluminescent and Ultraviolet-Visible absorption spectroscopy. The formation of B4C from natural carbon source— Pandanus presents an eco-friendly, economic and non-toxic approach for the synthesis of refractory carbides.

  6. Microhardness and grain size of disordered nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.

    1999-01-01

    Effect of the disordered nonstoichiometric titanium carbide on its microhardness and grain size is studied. It is established that decrease in defectiveness of carbon sublattice of disordered carbide is accompanied by microhardness growth and decrease in grain size. Possible causes of the TiC y microhardness anomalous behaviour in the area 0.8 ≤ y ≤ 0.9 connected with plastic deformation mechanism conditioned by peculiarities of the electron-energetic spectrum of nonstoichiometric carbide are discussed [ru

  7. Fabrication of chamfered uranium-plutonium mixed carbide pellets

    International Nuclear Information System (INIS)

    Arai, Yasuo; Iwai, Takashi; Shiozawa, Kenichi; Handa, Muneo

    1985-10-01

    Chamfered uranium-plutonium mixed carbide pellets for high burnup irradiation test in JMTR were fabricated in glove boxes with purified argon gas. The size of die and punch in a press was decided from pellet densities and dimensions including the angle of chamfered parts. No chip or crack caused by adopting chamfered pellets was found in both pressing and sintering stages. In addition to mixed carbide pellets, uranium carbide pellets used as insulators were also successfully fabricated. (author)

  8. Magnesium-based implants: a mini-review.

    Science.gov (United States)

    Luthringer, Bérengère J C; Feyerabend, Frank; Willumeit-Römer, Regine

    2014-01-01

    The goal of this review is to bring to the attention of the readership of Magnesium Research another facet of the importance of magnesium, i.e. magnesium-based biomaterials. A concise history of biomaterials and magnesium are thus presented. In addition, historical and current, clinical magnesium-based applications are presented.

  9. Carbides in Nodular Cast Iron with Cr and Mo

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2007-07-01

    Full Text Available In these paper results of elements microsegregation in carbidic nodular cast iron have been presented. A cooling rate in the centre of the cross-section and on the surface of casting and change of moulding sand temperature during casting crystallization and its self-cooling have been investigated. TDA curves have been registered. The linear distribution of elements concentration in an eutectic grain, primary and secondary carbides have been made. It was found, that there are two kinds of carbides: Cr and Mo enriched. A probable composition of primary and secondary carbides have been presented.

  10. Silicon Carbide Corrugated Mirrors for Space Telescopes, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Trex Enterprises Corporation (Trex) proposes technology development to manufacture monolithic, lightweight silicon carbide corrugated mirrors (SCCM) suitable for...

  11. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  12. Magnesium and cadmium in covalently-bonded Lonsdaleite networks: Synthesis, structure, and conding of AETMg{sub 2} and SrTCd{sub 2} (AE = Ca, Sr; T = Pd, Ag, Pt, Au)

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Marcel; Johnscher, Michael; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster, Corrensstrasse 30, 48149 Muenster (Germany); Matar, Samir F. [Universite Bordeaux, ICMCB, UPR 9048, 33600 Pessac (France)

    2013-04-15

    The alkaline earth metal compounds AETMg{sub 2} and AETCd{sub 2} (AE = Ca, Sr; T = Pd, Ag, Pt, Au) were synthesized by induction-melting (or in muffle furnaces) of the elements in sealed niobium ampoules. The new phases were characterized by powder X-ray diffraction. The structures of SrPdMg{sub 2} and SrPdCd{sub 2} were investigated by X-ray diffraction on single crystals: MgCuAl{sub 2} type, Cmcm, a = 436.42(4), b = 1130.1(1), c = 820.54(7) pm, wR{sub 2} = 0.0115, 511 F{sup 2} values for SrPdMg{sub 2} and a = 443.5(2), b = 1063.0(2), c = 810.2(2) pm, wR{sub 2} = 0.0296, 386 F{sup 2} values for SrPdCd{sub 2} with 16 variables for each refinement. The magnesium and cadmium atoms build up [TMg{sub 2}] and [TCd{sub 2}] polyanionic networks, which leave cavities for the calcium and strontium atoms. The bonding variations within the polyanions, which are mainly influenced by the length of the b axis are discussed. Ab initio calculations of electronic structure, charge densities, and chemical bonding, characterize SrPdMg{sub 2} with a larger cohesive energy than SrPdCd{sub 2}. This is illustrated by larger bonding Pd-Mg interactions, opposite to compensating Pd-Cd between bonding and antibonding states. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. The magnesium chelation step in chlorophyll biosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Weinstein, J.D.

    1991-01-01

    The biogenesis of energy transducing membranes requires the coordinate synthesis of prosthetic groups, proteins and lipids. Two of the major prosthetic groups, chlorophyll and heme, share a common biosynthetic pathway that diverges at the point of metal insertion into protoporphyrin IX. Insertion of iron leads to heme, while insertion of magnesium leads to chlorophyll. The Mg-chelatase from intact cucumber chloroplasts has been characterized with regard to substrate specificity, regulation, ATP requirement, and a requirement for intact chloroplasts. Mg-chelatase was isolated from maize, barley and peas and characterized in order to circumvent the intact chloroplast requirement of cucumber Mg-chelatase. Pea Mg-chelatase activity is higher than cucumber Mg-chelatase activity, and lacks the requirement for intact chloroplasts. Studies on isolated pea Mg-chelatase have shown more cofactors are required for the reaction than are seen with ferrochelatase, indicating a greater opportunity for regulatory control of this pathway. Two of the cofactors are proteins, and there appears to be a requirement for a protease-sensitive component which is outside the outer envelope. We are developing a continuous spectrophotometric assay for Mg-chelatase activity, and an assay for free heme which has shown heme efflux from intact chloroplasts. 18 refs. (MHB)

  14. Lightweight Heat Pipes Made from Magnesium

    Science.gov (United States)

    Rosenfeld, John N.; Zarembo, Sergei N.; Eastman, G. Yale

    2010-01-01

    Magnesium has shown promise as a lighter-weight alternative to the aluminum alloys now used to make the main structural components of axially grooved heat pipes that contain ammonia as the working fluid. Magnesium heat-pipe structures can be fabricated by conventional processes that include extrusion, machining, welding, and bending. The thermal performances of magnesium heat pipes are the same as those of equal-sized aluminum heat pipes. However, by virtue of the lower mass density of magnesium, the magnesium heat pipes weigh 35 percent less. Conceived for use aboard spacecraft, magnesium heat pipes could also be attractive as heat-transfer devices in terrestrial applications in which minimization of weight is sought: examples include radio-communication equipment and laptop computers.

  15. Extended vapor-liquid-solid growth of silicon carbide nanowires.

    Science.gov (United States)

    Rajesh, John Anthuvan; Pandurangan, Arumugam

    2014-04-01

    We developed an alloy catalytic method to explain extended vapor-liquid-solid (VLS) growth of silicon carbide nanowires (SiC NWs) by a simple thermal evaporation of silicon and activated carbon mixture using lanthanum nickel (LaNi5) alloy as catalyst in a chemical vapor deposition process. The LaNi5 alloy binary phase diagram and the phase relationships in the La-Ni-Si ternary system were play a key role to determine the growth parameters in this VLS mechanism. Different reaction temperatures (1300, 1350 and 1400 degrees C) were applied to prove the established growth process by experimentally. Scanning electron microscopy and transmission electron microscopy studies show that the crystalline quality of the SiC NWs increases with the temperature at which they have been synthesized. La-Ni alloyed catalyst particles observed on the top of the SiC NWs confirms that the growth process follows this extended VLS mechanism. The X-ray diffraction and confocal Raman spectroscopy analyses demonstrate that the crystalline structure of the SiC NWs was zinc blende 3C-SiC. Optical property of the SiC NWs was investigated by photoluminescence technique at room temperature. Such a new alloy catalytic method may be extended to synthesis other one-dimensional nanostructures.

  16. Studies on the influence of surface pre-treatments on electroless copper coating of boron carbide particles

    International Nuclear Information System (INIS)

    Deepa, J.P.; Resmi, V.G.; Rajan, T.P.D.; Pavithran, C.; Pai, B.C.

    2011-01-01

    Boron carbide is one of the hard ceramic particles which find application as structural materials and neutron shielding material due to its high neutron capture cross section. Copper coating on boron carbide particle is essential for the synthesis of metal-ceramic composites with enhanced sinterability and dispersibility. Surface characteristics of the substrate and the coating parameters play a foremost role in the formation of effective electroless coating. The effect of surface pre-treatment conditions and pH on electroless copper coating of boron carbide particles has been studied. Surface pre-treatement of B 4 C when compared to acid treated and alkali treated particles were carried out. Uniform copper coating was observed at pH 12 in alkali treated particles when compared to others due to the effective removal of inevitable impurities during the production and processing of commercially available B 4 C. A threshold pH 11 was required for initiation of copper coating on boron carbide particles. The growth pattern of the copper coating also varies depending on the surface conditions from acicular to spherical morphology.

  17. Self-Supported Biocarbon-Fiber Electrode Decorated with Molybdenum Carbide Nanoparticles for Highly Active Hydrogen-Evolution Reaction.

    Science.gov (United States)

    Xiao, Jian; Zhang, Yan; Zhang, Zheye; Lv, Qiying; Jing, Feng; Chi, Kai; Wang, Shuai

    2017-07-12

    Devising and facilely synthesizing an efficient noble metal-free electrocatalyst for the acceleration of the sluggish kinetics in the hydrogen-evolution reaction (HER) is still a big challenge for electrolytic water splitting. Herein, we present a simple one-step approach for constructing self-supported biocarbon-fiber cloth decorated with molybdenum carbide nanoparticles (BCF/Mo 2 C) electrodes by a direct annealing treatment of the Mo oxyanions loaded cotton T-shirt. The Mo 2 C nanoparticles not only serve as the catalytic active sites toward the HER but also enhance the hydrophilicity and conductivity of resultant electrodes. As an integrated three-dimensional HER cathode catalyst, the BCF/Mo 2 C exhibits outstanding electrocatalytic performance with extremely low overpotentials of 88 and 115 mV to drive a current density of 20 mA cm -2 in alkaline and acidic media, respectively. In addition, it can continuously work for 50 h with little decrease in the cathodic current density in both alkaline and acidic solutions. Even better, self-supported tungsten carbide and vanadium carbide based electrodes also can be prepared by a similar synthesis process. This work will illuminate an entirely new avenue for the preparation of various self-supported three-dimensional electrodes made of transition-metal carbides for various applications.

  18. Fracture and Residual Characterization of Tungsten Carbide Cobalt Coatings on High Strength Steel

    National Research Council Canada - National Science Library

    Parker, Donald S

    2003-01-01

    Tungsten carbide cobalt coatings applied via high velocity oxygen fuel thermal spray deposition are essentially anisotropic composite structures with aggregates of tungsten carbide particles bonded...

  19. Exoelectron emission from magnesium borate glass ceramics

    International Nuclear Information System (INIS)

    Kawamoto, Takamichi; Yanagisawa, Hideo; Nakamichi, Hiroshi; Kikuchi, Riichi; Kawanishi, Masaharu.

    1986-01-01

    Thermally stimulated exoelectron emission (TSEE) of a magnesium borate glass ceramics was investigated for its application to dosemetric use. It has been found that the TSEE glow patterns of the magnesium borate glass ceramics as well as a Li 2 B 4 O 7 glass ceramics depend on the kind of the radiation used and that the heat resistance of the magnesium borate glass ceramics is higher than that of the Li 2 B 4 O 7 glass ceramics. Therefore, the TSEE glow patterns of the magnesium borate glass ceramics indicate a possibility to be used as the dose measurement for each kind of radiation in the mixed radiation field. (author)

  20. Wide Strip Casting Technology of Magnesium Alloys

    Science.gov (United States)

    Park, W.-J.; Kim, J. J.; Kim, I. J.; Choo, D.

    Extensive investigations relating to the production of high performance and low cost magnesium sheet by strip casting have been performed for the application to automotive parts and electronic devices. Research on magnesium sheet production technology started in 2004 by Research Institute of Industrial Science and Technology (RIST) with support of Pohang Iron and Steel Company (POSCO). POSCO has completed the world's first plant to manufacture magnesium coil. Another big project in order to develop wide strip casting technology for the automotive applications of magnesium sheets was started in succession.

  1. Characterization of Nanometric-Sized Carbides Formed During Tempering of Carbide-Steel Cermets

    Directory of Open Access Journals (Sweden)

    Matus K.

    2016-06-01

    Full Text Available The aim of this article of this paper is to present issues related to characterization of nanometric-sized carbides, nitrides and/or carbonitrides formed during tempering of carbide-steel cermets. Closer examination of those materials is important because of hardness growth of carbide-steel cermet after tempering. The results obtained during research show that the upswing of hardness is significantly higher than for high-speed steels. Another interesting fact is the displacement of secondary hardness effect observed for this material to a higher tempering temperature range. Determined influence of the atmosphere in the sintering process on precipitations formed during tempering of carbide-steel cermets. So far examination of carbidesteel cermet produced by powder injection moulding was carried out mainly in the scanning electron microscope. A proper description of nanosized particles is both important and difficult as achievements of nanoscience and nanotechnology confirm the significant influence of nanocrystalline particles on material properties even if its mass fraction is undetectable by standard methods. The following research studies have been carried out using transmission electron microscopy, mainly selected area electron diffraction and energy dispersive spectroscopy. The obtained results and computer simulations comparison were made.

  2. Reactor irradiation effect on the physical-mechanical properties of zirconium carbides and niobium carbides

    International Nuclear Information System (INIS)

    Andrievskij, R.A.; Vlasov, K.P.; Shevchenko, A.S.; Lanin, A.G.; Pritchin, S.A.; Klyushin, V.V.; Kurushin, S.P.; Maskaev, A.S.

    1978-01-01

    A study has been made of the effect of the reactor radiation by a flux of neutrons 1.5x10 20 n/cm 2 (E>=1 meV) at radiation temperatures of 150 and 1100 deg C on the physico-mechanical properties of carbides of zirconium and niobium and their equimolar hard solution. A difference has been discovered in the behaviour of the indicated carbides under the effect of radiation. Under the investigated conditions of radiation the density of zirconium carbide is being decreased, while in the niobium carbide no actual volumetric changes occur. The increase of the lattice period in ZrC is more significant than in NbC. The electric resistance of ZrC is also changed more significantly than in the case of NbC, while for the microhardness a reverse relationship is observed. Strength and elasticity modulus change insignificantly in both cases. Resistance to crack formation shows a higher reduction for ZrC than for NbC, while the thermal strength shows an approximately similar increase. The equimolar hard solution of ZrC and NbC behaves to great extent similar to ZrC, although the change in electric resistance reminds of NbC while thermal strength changes differently. The study of the microstructure of the specimens has shown that radiation causes a large number of etching patterns-dislocations in NbC which are almost absent in ZrC

  3. Nondestructive neutron activation analysis of silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Vandergraaf, T. T.; Wikjord, A. G.

    1973-10-15

    Instrumentel neutron activation analysis was used to determine trace constituents in silicon carbide. Four commercial powders of different origin, an NBS reference material, and a single crystal were characterized. A total of 36 activation species were identified nondestructively by high resolution gamma spectrometry; quantitative results are given for 12 of the more predominant elements. The limitations of the method for certain elements are discussed. Consideration is given to the depression of the neutron flux by impurities with large neutron absorption cross sections. Radiation fields from the various specimens were estimated assuming all radionuclides have reached their saturation activities. (auth)

  4. Crack propagation and fracture in silicon carbide

    International Nuclear Information System (INIS)

    Evans, A.G.; Lange, F.F.

    1975-01-01

    Fracture mechanics and strength studies performed on two silicon carbides - a hot-pressed material (with alumina) and a sintered material (with boron) - have shown that both materials exhibit slow crack growth at room temperature in water, but only the hot-pressed material exhibits significant high temperature slow crack growth (1000 to 1400 0 C). A good correlation of the observed fracture behaviour with the crack growth predicted from the fracture mechanics parameters shows that effective failure predictions for this material can be achieved using macro-fracture mechanics data. (author)

  5. An improved method for preparing silicon carbide

    International Nuclear Information System (INIS)

    Baney, R.H.

    1980-01-01

    A desired shape is formed from a polysilane and the shape is heated in an inert atmosphere or under vacuum to 1150 to 1600 0 C until the polysilane is converted to silicon carbide. The polysilane contains from 0 to 60 mole percent of (CH 3 ) 2 Si units and from 40 to 100 mole percent of CH 3 Si units. The remaining bonds on silicon are attached to another silicon atom or to a chlorine or bromine atom, such that the polysilane contains from 10 to 43 weight percent of hydrolyzable chlorine or from 21 to 63 weight percent of hydrolyzable bromine. (author)

  6. Hardness of carbides, nitrides, and borides

    International Nuclear Information System (INIS)

    Schroeter, W.

    1981-01-01

    Intermetallic compounds of metals with non-metals such as C, N, and B show different hardness. Wagner's interaction parameter characterizes manner and extent of the interaction between the atoms of the substance dissolved and the additional elements in metallic mixed phases. An attempt has been made to correlate the hardness of carbides, nitrides, and borides (data taken from literature) with certain interaction parameters and associated thermodynamic quantities (ΔH, ΔG). For some metals of periods 4, 5, and 6 corresponding relations were found between microhardness, interaction parameters, heat of formation, and atomic number

  7. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  8. Influence of nanometric silicon carbide on phenolic resin composites ...

    Indian Academy of Sciences (India)

    Abstract. This paper presents a preliminary study on obtaining and characterization of phenolic resin-based com- posites modified with nanometric silicon carbide. The nanocomposites were prepared by incorporating nanometric silicon carbide (nSiC) into phenolic resin at 0.5, 1 and 2 wt% contents using ultrasonication to ...

  9. Determination of free and combined carbon in boron carbide

    International Nuclear Information System (INIS)

    Shankaran, P.S.; Kulkarni, Amit S.; Pandey, K.L.; Ramanjaneyulu, P.S.; Yadav, C.S.; Sayi, Y.S.; Ramakumar, K.L.

    2009-01-01

    A simple, sensitive and fast method for the determination of free and combined carbon in boron carbide samples, based on combustion in presence of oxygen at different temperatures, has been developed. Method has been standardized by analyzing mixture of two different boron carbide samples. Error associated with the method in the determination of free carbon is less than 5%. (author)

  10. Stress in tungsten carbide-diamond like carbon multilayer coatings

    NARCIS (Netherlands)

    Pujada, B.R.; Tichelaar, F.D.; Janssen, G.C.A.M.

    2007-01-01

    Tungsten carbide-diamond like carbon (WC-DLC) multilayer coatings have been prepared by sputter deposition from a tungsten-carbide target and periodic switching on and off of the reactive acetylene gas flow. The stress in the resulting WC-DLC multilayers has been studied by substrate curvature.

  11. Process for the preparation of fine grain metal carbide powders

    International Nuclear Information System (INIS)

    Gortsema, F.P.

    1976-01-01

    Fine grain metal carbide powders are conveniently prepared from the corresponding metal oxide by heating in an atmosphere of methane in hydrogen. Sintered articles having a density approaching the theoretical density of the metal carbide itself can be fabricated from the powders by cold pressing, hot pressing or other techniques. 8 claims, no drawings

  12. stabilization of ikpayongo laterite with cement and calcium carbide

    African Journals Online (AJOL)

    PROF EKWUEME

    the stabilization of soil will ensure economy in road construction, while providing an effective way of disposing calcium carbide waste. KEYWORDS: Cement, Calcium carbide waste, Stabilization, Ikpayongo laterite, Pavement material. INTRODUCTION. Road building in the developing nations has been a major challenge to ...

  13. Selective Production of Renewable para-Xylene by Tungsten Carbide Catalyzed Atom-Economic Cascade Reactions.

    Science.gov (United States)

    Dai, Tao; Li, Changzhi; Li, Lin; Zhao, Zongbao Kent; Zhang, Bo; Cong, Yu; Wang, Aiqin

    2018-02-12

    Tungsten carbide was employed as the catalyst in an atom-economic and renewable synthesis of para-xylene with excellent selectivity and yield from 4-methyl-3-cyclohexene-1-carbonylaldehyde (4-MCHCA). This intermediate is the product of the Diels-Alder reaction between the two readily available bio-based building blocks acrolein and isoprene. Our results suggest that 4-MCHCA undergoes a novel dehydroaromatization-hydrodeoxygenation cascade process by intramolecular hydrogen transfer that does not involve an external hydrogen source, and that the hydrodeoxygenation occurs through the direct dissociation of the C=O bond on the W 2 C surface. Notably, this process is readily applicable to the synthesis of various (multi)methylated arenes from bio-based building blocks, thus potentially providing a petroleum-independent solution to valuable aromatic compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. "Changes in cartilage of rats after treatment with Quinolone and in Magnesium-deficient diet "

    Directory of Open Access Journals (Sweden)

    Shakibaei M

    2002-07-01

    Full Text Available Ultrastructural changes in immature articular carilage were studied after treatment of 5-weeks-old rats with ofloxacin, a fluoroquinolone, and in magnesium deficiency.We concluded that quinolone-induced arthropathy is probably due to chelation of functionally available magnesium in joint cartilage as magnesium deficiency in joint cartilage could impair chondrocyte-matrix- interaction which is mediated by cation-dependent integrin-receptors of the β1-subfamily. With immuno-histochemical methods using monoclonal and polyclonal antibodies we showed that B1 integrins were expressed in rat joint cartilage. Joint cartilage lesions were detected in ofloxacin-treated and magnesium-deficient rats. Lesions were more pronounced in the quinolone-treated group. Expression of several integrins was reduced in the vicinity of lesions after oral treatment with 2×600 mg ofloxacin/kg body wt for one day. Gross-structural lesions (e.g. cleft formation, unmasked collagen fibres in magnesium deficient rats were very similar but changes in intergrin expression were less pronounced. Alterations observed on the ultrastructural level showed striking similarities in magnesium-deficient rats and in rats treated with single doses of 600 mg ofloxacin per kg body wt.Typical observation were: bundle shaped, electron-dense aggregates on the surface and in the cytoplasm of chondrocytes, detachement of the cell membrance from the matrix and necrotic chondrocytes, reduced synthesis and/or reduced of extracellular matrix and swelling of cell organelles such as mitochondria.The results of this study confirm our previously reported finding that quinolone-induced arthropathy probably is caued by a reduction of functionally available magnesium (ionized Mg2+ in cartilage. Furthermore, they provide a basis for aimed studies with human cartilage samples from quinolone-treated patients which might be available postmortal or after hip replacement surgery

  15. Ternary carbide uranium fuels for advanced reactor design applications

    International Nuclear Information System (INIS)

    Knight, Travis; Anghaie, Samim

    1999-01-01

    Solid-solution mixed uranium/refractory metal carbides such as the pseudo-ternary carbide, (U, Zr, Nb)C, hold significant promise for advanced reactor design applications because of their high thermal conductivity and high melting point (typically greater than 3200 K). Additionally, because of their thermochemical stability in a hot-hydrogen environment, pseudo-ternary carbides have been investigated for potential space nuclear power and propulsion applications. However, their stability with regard to sodium and improved resistance to attack by water over uranium carbide portends their usefulness as a fuel for advanced terrestrial reactors. An investigation into processing techniques was conducted in order to produce a series of (U, Zr, Nb)C samples for characterization and testing. Samples with densities ranging from 91% to 95% of theoretical density were produced by cold pressing and sintering the mixed constituent carbides at temperatures as high as 2650 K. (author)

  16. [Effect of magnesium deficiency on photosynthetic physiology and triacylglyceride (TAG) accumulation of Chlorella vulgaris].

    Science.gov (United States)

    Wang, Shan; Zhao, Shu-Xin; Wei, Chang-Long; Yu, Shui-Yan; Shi, Ji-Ping; Zhang, Bao-Guo

    2014-04-01

    As an excellent biological resource, Chlorella has wide applications for production of biofuel, bioactive substances and water environment restoration. Therefore, it is very important to understand the photosynthetic physiology characteristics of Chlorella. Magnesium ions play an important role in the growth of microalgae, not only the central atom of chlorophyll, but also the cofactor of some key enzyme in the metabolic pathway. A laboratory study was conducted to evaluate the effects of magnesium deficiency on several photosynthetic and physiological parameters and the triacylglyceride (TAG) accumulation of the green alga, Chlorella vulgaris, in the photoautotrophic culture process. Chlorella vulgaris biomass, protein, chlorophyll a and chlorophyll b contents decreased by 20%, 43.96%, 27.52% and 28.07% in response to magnesium deficiency, while the total oil content increased by 19.60%. Moreover, magnesium deficiency decreased the maximal photochemical efficiency F(v)/F(m) by 22.54%, but increased the non-photochemical quenching parameters qN. Our results indicated the decline of chlorophyll caused by magnesium, which affected the photosynthesis efficiency, lead to the growth inhibition of Chlorella vulgaris and affected the protein synthesis and increased the triacylglyceride (TAG) accumulation.

  17. Preparation of magnesium hydroxide nanoflowers from boron mud via anti-drop precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Xi [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China); Ma, Hongwen, E-mail: mahw@cugb.edu.cn [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Xiaoqian [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Jiang, Zhouqing [School of Materials Science and Technology, China University of Geosciences, Beijing 100083 (China); Blue Sky Technology Corporation, Beijing 100083 (China)

    2014-08-15

    Highlights: • We use the anti-drop precipitation method for synthesis of magnesium hydroxide. • Boron mud which is solid waste from a borax factory is used as the magnesium source. • The magnesium hydroxide nanoflowers are prepared in a short time. • The as-prepared magnesium hydroxide can be used as an effective flame retardant. - Abstract: Using boron mud as the starting material, the flower-like magnesium hydroxide (MH) has been successfully prepared via anti-drop precipitation method. The effect of NH{sub 3}·H{sub 2}O concentration, aging time, and surfactant on the morphology of MH was investigated. The optimum precipitation conditions are dropping MgSO{sub 4} solution in 5% NH{sub 3}·H{sub 2}O solution, with 3% polyethylene glycol as surfactant, aging for 30 min. XRD, SEM, FI-IR, and TG/DTA have been employed to characterize the as-prepared samples. XRD reveals that MH with high purity has the brucite structure. SEM images show that the flower-like MH exists in the form of mono-disperse well uniform spherical aggregation with diameter of 3–5 μm. TG/DTA shows a total percentage of weight loss 33.6% with a well-defined endothermic peak near 381.3 °C corresponding to the decomposition of MH. Furthermore, it reports that the extremely fast primary nucleation is of significance for crystal growth of MH.

  18. Method for fabricating boron carbide articles

    International Nuclear Information System (INIS)

    Ardary, Z.; Reynolds, C.

    1980-01-01

    Described is a method for fabricating an essentially uniformly dense boron carbide article of a length-to-diameter or width ratio greater than 2 to 1 comprising the steps of providing a plurality of article segments to be joined together to form the article with each of said article segments having a length-to-diameter or width ratio less than 1.5 to 1. Each segment is fabricated by hot pressing a composition consisting of boron carbide powder at a pressure and temperature effective to provide the article segment with a density greater than about 85% of theoretical density, providing each article segment with parallel planar end surfaces, placing a plurality of said article segments in a hot-pressing die in a line with the planar surfaces of adjacent article segments being disposed in intimate contact, and hot pressing the aligned article segments at a temperature and pressure effective to provide said article with a density over the length thereof in the range of about 94 to 98 percent theoretical density and greater than the density provided in the discrete hot pressing of each of the article segments and to provide a bond between adjacent article segments with said bond being at least equivalent in hardness, strength and density to a remainder of said article

  19. Carbon potential measurement on some actinide carbides

    International Nuclear Information System (INIS)

    Anthonysamy, S.; Ananthasivan, K.; Kaliappan, I.; Chandramouli, V.; Vasudeva Rao, P.R.; Mathews, C.K.; Jacob, K.T.

    1994-01-01

    Uranium-Plutonium mixed carbides with a Pu/(U+Pu) ratio of 0.55 are to be used as the fuel in the Fast Breeder Test Reactor (FBTR) at Kalpakkam, India. Carburization of the stainless steel clad by this fuel is determined by its carbon potential. Because the carbon potential of this fuel composition is not available in the literature, it was measured by the methane-hydrogen gas equilibration technique. The sample was equilibrated with purified hydrogen and the equilibrium methane-to-hydrogen ratio in the gas phase was measured with a flame ionization detector. The carbon potential of the ThC-ThC 2 as well as Mo-Mo 2 C system, which is an important binary in the actinide-fission product-carbon systems, were also measured by this technique in the temperature range 973 to 1,173 K. The data for the Mo-Mo 2 C system are in agreement with values reported in the literature. The results for the ThC-ThC 2 system are different from estimated values with large uncertainty limits given in the literature. The data on (U, Pu) mixed carbides indicates the possibility of stainless steel clad attack under isothermal equilibrium conditions

  20. Development of silicon carbide composites for fusion

    International Nuclear Information System (INIS)

    Snead, L.L.

    1993-01-01

    The use of silicon carbide composites for structural materials is of growing interest in the fusion community. However, radiation effects in these materials are virtually unexplored, and the general state of ceramic matrix composites for nonnuclear applications is still in its infancy. Research into the radiation response of the most popular silicon carbide composite, namely, the chemically vapor-deposited (CVD) SiC-carbon-Nicalon fiber system is discussed. Three areas of interest are the stability of the fiber and matrix materials, the stability of the fiber-matrix interface, and the true activation of these open-quotes reduced activityclose quotes materials. Two methods are presented that quantitatively measure the effect of radiation on fiber and matrix elastic modulus as well as the fiber-matrix interfacial strength. The results of these studies show that the factor limiting the radiation performance of the CVD SiC-carbon-Nicalon system is degradation of the Nicalon fiber, which leads to a weakened carbon interface. The activity of these composites is significantly higher than expected and is dominated by impurity isotopes. 52 refs., 12 figs., 3 tabs

  1. In vitro studies on magnesium uptake by rumen epithelium using magnesium-28

    International Nuclear Information System (INIS)

    Martens, H.; Harmeyer, J.; Breves, G.

    1976-01-01

    Magnesium-28 transfer across the rumen epithelium has been studied using surviving epithelia in an in vitro system. Net absorption of magnesium in the direction from lumen to blood could be observed as the result of two opposite unidirectional fluxes of different magnitude. Net uptake of magnesium occurred against an electrical potential difference, and was associated with the presence of an unaltered transmural potential difference in the mucosal tissue. Both the net transfer of magnesium and the transmural potential difference decreased during two hours of incubation. Unidirectional fluxes of magnesium and net efflux from the lumen were markedly reduced although not completely inhibited by the addition of ouabain (10 -4 mol/l). The findings suggest that the mechanism of magnesium absorption by the rumen epithelium can be considered as an active transport process, and that the rumen is the main area of magnesium absorption in the living animal. (author)

  2. Magnesium stannide as a high-capacity anode for magnesium-ion batteries

    Science.gov (United States)

    Nguyen, Dan-Thien; Song, Seung-Wan

    2017-11-01

    Driven by the limited global resources of lithium, magnesium metal batteries are considered as potential energy storage systems. The battery chemistry of magnesium metal anode, however, limits the selection of electrolytes, cathode materials and working temperature, making the realization of magnesium metal batteries complicated. Herein, we report the development of a new magnesium-insertion anode, magnesium stannide (Mg2Sn), and demonstrate reversible electrochemical Mg2+-extraction and insertion of Mg2Sn anode at 0.2 V versus Mg, delivering discharge capacity of 270 mAhg-1 in a half-cell with the electrolyte of PhMgCl/THF and enabling of room temperature magnesium-ion batteries with Mg2Sn anode combined with Mg-free oxide cathode and conventional-type electrolyte of Mg(TFSI)2/diglyme. The combination of Mg2Sn anode with various cathodes and electrolytes holds great promise for enabling room temperature magnesium-ion batteries.

  3. Magnesium growth in magnesium deuteride thin films during deuterium desorption

    Energy Technology Data Exchange (ETDEWEB)

    Checchetto, R., E-mail: riccardo.checchetto@unitn.it [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Miotello, A. [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Mengucci, P.; Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Università Politecnica delle Marche, I-60131 Ancona (Italy)

    2013-12-15

    Highlights: ► Highly oriented Pd-capped magnesium deuteride thin films. ► The MgD{sub 2} dissociation was studied at temperatures not exceeding 100 °C. ► The structure of the film samples was analyzed by XRD and TEM. ► The transformation is controlled by the re-growth velocity of the Mg layers. ► The transformation is thermally activated, activation energy value of 1.3 ± 0.1 eV. -- Abstract: Pd- capped nanocrystalline magnesium thin films having columnar structure were deposited on Si substrate by e-gun deposition and submitted to thermal annealing in D{sub 2} atmosphere to promote the metal to deuteride phase transformation. The kinetics of the reverse deuteride to metal transformation was studied by Thermal Desorption Spectroscopy (TDS) while the structure of the as deposited and transformed samples was analyzed by X-rays diffraction and Transmission Electron Microscopy (TEM). In Pd- capped MgD{sub 2} thin films the deuteride to metal transformation begins at the interface between un-reacted Mg and transformed MgD{sub 2} layers. The D{sub 2} desorption kinetics is controlled by MgD{sub 2}/Mg interface effects, specifically the re-growth velocity of the Mg layers. The Mg re-growth has thermally activated character and shows an activation energy value of 1.3 ± 0.1 eV.

  4. Magnesium Hydride for Load Levelling Energy Storage

    DEFF Research Database (Denmark)

    Vigeholm, B.

    Some of the magnesium properties essential to the applicability of the reaction Mg+H2⇆MgH2 as a hydrogen storage system have been investigated. Three magnesium powders with particle size smaller than 50 μm average diameter were cycled, over 31, 71 and 151 cycles respectively, at 675K (400°C...

  5. Nanostructured magnesium increases bone cell density.

    Science.gov (United States)

    Weng, Lucy; Webster, Thomas J

    2012-12-07

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH(-) which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied.

  6. Nanostructured magnesium increases bone cell density

    International Nuclear Information System (INIS)

    Weng, Lucy; Webster, Thomas J

    2012-01-01

    Magnesium has attracted some attention in orthopedics due to its biodegradability and mechanical properties. Since magnesium is an essential natural mineral for bone growth, it can be expected that as a biomaterial, it would support bone formation. However, upon degradation in the body, magnesium releases OH − which results in an alkaline pH that can be detrimental to cell density (for example, osteoblasts or bone forming cells). For this reason, modification of magnesium may be necessary to compensate for such detrimental effects to cells. This study created biologically inspired nanoscale surface features on magnesium by soaking magnesium in various concentrations of NaOH (from 1 to 10 N) and for various periods of time (from 10 to 30 min). The results provided the first evidence of increased roughness, surface energy, and consequently greater osteoblast adhesion, after 4 h as well as density up to 7 days on magnesium treated with any concentration of NaOH for any length of time compared to untreated controls. For these reasons, this study suggests that soaking magnesium in NaOH could be an inexpensive, simple and effective manner to promote osteoblast functions for numerous orthopedic applications and, thus, should be further studied. (paper)

  7. Comparison of Serum Calcium and Magnesium Between ...

    African Journals Online (AJOL)

    Background: Evidence suggests the involvement of calcium and magnesium metabolism in the pathophysiology of preeclampsia. However, findings from studies are heterogenous and inconsistent. Aim: The study aimed to compare the total serum calcium and magnesium levels in preeclamptic women with that of ...

  8. The Role of Magnesium in Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Anna E. Kirkland

    2018-06-01

    Full Text Available Magnesium is well known for its diverse actions within the human body. From a neurological standpoint, magnesium plays an essential role in nerve transmission and neuromuscular conduction. It also functions in a protective role against excessive excitation that can lead to neuronal cell death (excitotoxicity, and has been implicated in multiple neurological disorders. Due to these important functions within the nervous system, magnesium is a mineral of intense interest for the potential prevention and treatment of neurological disorders. Current literature is reviewed for migraine, chronic pain, epilepsy, Alzheimer’s, Parkinson’s, and stroke, as well as the commonly comorbid conditions of anxiety and depression. Previous reviews and meta-analyses are used to set the scene for magnesium research across neurological conditions, while current research is reviewed in greater detail to update the literature and demonstrate the progress (or lack thereof in the field. There is strong data to suggest a role for magnesium in migraine and depression, and emerging data to suggest a protective effect of magnesium for chronic pain, anxiety, and stroke. More research is needed on magnesium as an adjunct treatment in epilepsy, and to further clarify its role in Alzheimer’s and Parkinson’s. Overall, the mechanistic attributes of magnesium in neurological diseases connote the macromineral as a potential target for neurological disease prevention and treatment.

  9. Magnesium - distribution and basic metabolism | Olhaberry | South ...

    African Journals Online (AJOL)

    Magnesium is extensively distributed in soil, water and plants. It is essential for ehzymatic reactions requiring adenosine triphosphate, and the recommended dietary allowance in man is 5 - 10 mg/kg/d. About 50% of magnesium in man is stored in bone, where it is regulated by parathyroid hormone'and 1,25(OH)2-D3.

  10. A Shortened versus Standard Matched Postpartum Magnesium ...

    African Journals Online (AJOL)

    Magnesium sulphate is currently the most ideal drug for the treatment of eclampsia but its use in Nigeria is still limited due its cost and clinicians inexperience with the drug. The purpose of this study was to determine whether a shortened postpartum course of magnesium sulphate is as effective as the standard Pritchard ...

  11. Magnesium analysis. Spectrophotometric determination of chromium

    International Nuclear Information System (INIS)

    Anon.

    Chromium determination in magnesium used in uranium fabrication by magnesiothermics, applicable for chromium content between 2 to 10 ppm. Magnesium is dissolved in sulfuric acid, oxidized by potassium permanganate, the excess of permanganate is eliminated by sodium nitride. Spectrophotometry at 540 nm of the chromium (VI)-diphenylcarbazide complex [fr

  12. Magnesium removal in the electrolytic zinc industry

    NARCIS (Netherlands)

    Booster, J.L.

    2003-01-01

    Electrolytic zinc plants need to take measures to control the magnesium content in their process liquors, because the natural magnesium bleed does not balance the input from concentrates. Presently used methods are environmentally unfriendly (due to the production of large amounts of waste gypsum)

  13. Magnesium supplementation in children with attention deficit ...

    African Journals Online (AJOL)

    Background: Attention deficit hyperactivity disorder (ADHD) is a common neurodevelopmental disorder with associated mineral deficiency. Aim: To assess magnesium level in ADHD children and compare it to the normal levels in children. Then, to detect the effect of magnesium supplementation as an add on therapy, ...

  14. Improved cytotoxicity testing of magnesium materials

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Janine [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Proefrock, Daniel [Helmholtz-Zentrum Geesthacht, Institute for Coastal Research, Department for Marine Bioanalytical Chemistry, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Hort, Norbert [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Magnesium Processing, Max-Planck Str. 1, D - 21502 Geesthacht (Germany); Willumeit, Regine; Feyerabend, Frank [Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Department for Structural Research on Macromolecules, Max-Planck Str. 1, D - 21502 Geesthacht (Germany)

    2011-06-25

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  15. Improved cytotoxicity testing of magnesium materials

    International Nuclear Information System (INIS)

    Fischer, Janine; Proefrock, Daniel; Hort, Norbert; Willumeit, Regine; Feyerabend, Frank

    2011-01-01

    Metallic magnesium (Mg) and its alloys are highly suitable for medical applications as biocompatible and biodegradable implant materials. Magnesium has mechanical properties similar to bone, stimulates bone regeneration, is an essential non-toxic element for the human body and degrades completely within the body environment. In consequence, magnesium is a promising candidate as implant material for orthopaedic applications. Protocols using the guideline of current ISO standards should be carefully evaluated when applying them for the characterization of the cytotoxic potential of degradable magnesium materials. For as-cast material we recommend using 10 times more extraction medium than recommended by the ISO standards to obtain reasonable results for reliable cytotoxicity rankings of degradable materials in vitro. In addition primary isolated human osteoblasts or mesenchymal stem cells should be used to test magnesium materials.

  16. Imparting passivity to vapor deposited magnesium alloys

    Science.gov (United States)

    Wolfe, Ryan C.

    Magnesium has the lowest density of all structural metals. Utilization of low density materials is advantageous from a design standpoint, because lower weight translates into improved performance of engineered products (i.e., notebook computers are more portable, vehicles achieve better gas mileage, and aircraft can carry more payload). Despite their low density and high strength to weight ratio, however, the widespread implementation of magnesium alloys is currently hindered by their relatively poor corrosion resistance. The objective of this research dissertation is to develop a scientific basis for the creation of a corrosion resistant magnesium alloy. The corrosion resistance of magnesium alloys is affected by several interrelated factors. Among these are alloying, microstructure, impurities, galvanic corrosion effects, and service conditions, among others. Alloying and modification of the microstructure are primary approaches to controlling corrosion. Furthermore, nonequilibrium alloying of magnesium via physical vapor deposition allows for the formation of single-phase magnesium alloys with supersaturated concentrations of passivity-enhancing elements. The microstructure and surface morphology is also modifiable during physical vapor deposition through the variation of evaporation power, pressure, temperature, ion bombardment, and the source-to-substrate distance. Aluminum, titanium, yttrium, and zirconium were initially chosen as candidates likely to impart passivity on vapor deposited magnesium alloys. Prior to this research, alloys of this type have never before been produced, much less studied. All of these metals were observed to afford some degree of corrosion resistance to magnesium. Due to the especially promising results from nonequilibrium alloying of magnesium with yttrium and titanium, the ternary magnesium-yttrium-titanium system was investigated in depth. While all of the alloys are lustrous, surface morphology is observed under the scanning

  17. Irradiation effects in magnesium and aluminium alloys

    International Nuclear Information System (INIS)

    Sturcken, E.F.

    1979-01-01

    Effects of neutron irradiation on microstructure, mechanical properties and swelling of several magnesium and aluminium alloys were studied. The neutron fluences of 2-3 X 10 22 n/cm 2 , >0.2 MeV produced displacement doses of 20 to 45 displacements per atom (dpa). Ductility of the magnesium alloys was severely reduced by irradiation induced recrystallization and precipitation of various forms. Precipitation of transmuted silicon occurred in the aluminium alloys. However, the effect on ductility was much less than for the magnesium alloys. The magnesium and aluminium alloys had excellent resistance to swelling: The best magnesium alloy was Mg/3.0 wt% Al/0.19 wt% Ca; its density decreased by only 0.13%. The best aluminium alloy was 6063, with a density decrease of 0.22%. (Auth.)

  18. Recrystallization of magnesium deformed at low temperatures

    International Nuclear Information System (INIS)

    Fromageau, R.; Pastol, J.L.; Revel, G.

    1978-01-01

    The recrystallization of magnesium was studied after rolling at temperatures ranging between 248 and 373 K. For zone refined magnesium the annealing behaviour as observed by electrical resistivity measurements showed two stages at about 250 K and 400 K due respectively to recrystallization and grain growth. The activation energy associated with the recrystallization stage was 0.75 +- 0.01 eV. In less pure magnesium, with nominal purity 99.99 and 99.9%, the recrystallization stage was decomposed into two substages. Activation energies were determined in relation with deformation temperature and purity. The magnesium of intermediate purity (99.99%) behaved similarly to the lowest purity metal when it was deformed at high temperature and to the purest magnesium when the deformation was made at low temperature. This behaviour was discussed in connection with the theories of Luecke and Cahn. (Auth.)

  19. Porous bioresorbable magnesium as bone substitute

    Energy Technology Data Exchange (ETDEWEB)

    Wen, C.E.; Yamada, Y.; Shimojima, K.; Chino, Y.; Hosokawa, H.; Mabuchi, M. [Inst. for Structural and Engineering Materials, National Inst. of Advanced Industrial Science and Technology, Nagoya (Japan)

    2003-07-01

    Recently magnesium has been recognized as a very promising biomaterial for bone substitutes because of its excellent properties of biocompatibility, biodegradability and bioresorbability. In the present study, magnesium foams were fabricated by using a powder metallurgical process. Scanning electron microscopy equipped with energy dispersive X-ray spectrometer (EDS) and compressive tester were used to characterize the porous magnesium. Results show that the Young's modulus and the peak stress of the porous magnesium increase with decreasing porosity and pore size. This study suggests that the mechanical properties of the porous magnesium with the low porosity of 35% and/or with the small pore size of about 70 {mu}m are close to those of human cancellous bones. (orig.)

  20. On the ionization of interstellar magnesium

    International Nuclear Information System (INIS)

    Gurzadyan, G.A.

    1977-01-01

    It has been shown that two concentric ionization zones of interstellar magnesium must exist around each star: internal, with a radius coinciding with that of the zone of hydrogen ionization Ssub(H); and external, with a radius greater than Ssub(H), by one order. Unlike interstellar hydrogen, interstellar magnesium is ionized throughout the Galaxy. It also transpires that the ionizing radiation of ordinary hot stars cannot provide for the observed high degree of ionization of interstellar magnesium. The discrepance can be eliminated by assuming the existence of circumstellar clouds or additional ionization sources of interstellar magnesium (X-ray background radiation, high-energy particles, etc.). Stars of the B5 and BO class play the main role in the formation of ionization zones of interstellar magnesium; the contribution of O class stars is negligible (<1%). (Auth.)

  1. Benefits of magnesium wheels for consumer cars

    Science.gov (United States)

    Frishfelds, Vilnis; Timuhins, Andrejs; Bethers, Uldis

    2018-05-01

    Advantages and disadvantages of magnesium wheels are considered based on a mechanical model of a car. Magnesium wheels are usually applied to racing cars as they provide slightly better strength/weight ratio than aluminum alloys. Do they provide notable benefits also for the everyday user when the car speeds do not exceed allowed speed limit? Distinct properties of magnesium rims are discussed. Apart from lighter weight of magnesium alloys, they are also good in dissipating the energy of vibrations. The role of energy dissipation in the rim of a wheel is estimated by a quarter car model. Improvements to safety by using the magnesium wheels are considered. Braking distance and responsiveness of the car is studied both with and without using an Anti Blocking System (ABS). Influence of rim weight on various handling parameters of the car is quantitatively tested.

  2. Express and low-cost microwave synthesis of the ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} for application in rechargeable magnesium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Murgia, Fabrizio; Antitomaso, Philippe; Stievano, Lorenzo; Monconduit, Laure [Institut Charles Gerhardt de Montpellier (ICGM, UMR 5253CNRS Université de Montpellier), 2, Place Eugène Bataillon, CC1502, 34095 Montpellier cedex 5 (France); Réseau sur le Stockage Electrochimique de l' Energie (RS2E,FR 3459CNRS), 33, Rue Saint-Leu, 80039 Amiens cedex (France); Berthelot, Romain, E-mail: romain.berthelot@umontpellier.fr [Institut Charles Gerhardt de Montpellier (ICGM, UMR 5253CNRS Université de Montpellier), 2, Place Eugène Bataillon, CC1502, 34095 Montpellier cedex 5 (France); Réseau sur le Stockage Electrochimique de l' Energie (RS2E,FR 3459CNRS), 33, Rue Saint-Leu, 80039 Amiens cedex (France)

    2016-10-15

    The ternary Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} was successfully synthetized using a simple and cost-effective solid-state microwave-assisted reaction. While solid-state routes require days of high-temperature treatment under inert atmosphere, highly pure and crystalline Cu{sub 2}Mo{sub 6}S{sub 8} could be obtained in only 400 s from this precursor, the Chevrel binary phase Mo{sub 6}S{sub 8} was then obtained by copper removal through acidic leaching, and was evaluated as a positive electrode material for Mg-battery. The electrochemical performance in half-cell configuration shows reversible capacity exceeding 80 mAh/g, which is comparable to previous works carried out with materials synthesized by conventional high-temperature solid-state routes. - Graphical abstract: Ultrafast micro-wave synthesis of Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} towards Mo{sub 6}S{sub 8} as positive electrode of Mg-battery. - Highlights: • Chevrel phase Cu{sub 2}Mo{sub 6}S{sub 8} is synthesized by fast microwave-assisted solid-state reaction. • Highly-pure and well-crystalline Cu{sub 2}Mo{sub 6}S{sub 8} is obtained. • Mo{sub 6}S{sub 8} obtained from leaching is tested as a positive electrode for Mg batteries.

  3. Distinction between magnesium diboride and tetraboride by kelvin probe force microscopy

    International Nuclear Information System (INIS)

    Kim, Du-Na; Caron, Arnaud; Park, Hai Woong

    2016-01-01

    We analyze mixtures of magnesium diboride and tetraboride synthesized with magnesium powders of different shapes. To distinguish between magnesium diboride and tetraboride we use the contrast of kelvin probe force microscopy. The microstructural morphology strongly depends on the shape of the magnesium powders used in the reaction between magnesium and magnesium tetraboride to form magnesium diboride. With spherical magnesium powder an equiaxed microstructure of magnesium diboride is formed with residual magnesium tetraboride at the grain boundaries. With plate-like magnesium powders elongated magnesium diboride grains are formed. In this case, residual magnesium tetraboride is found to agglomerate.

  4. Chemical, mechanical, and tribological properties of pulsed-laser-deposited titanium carbide and vanadium carbide

    International Nuclear Information System (INIS)

    Krzanowski, J.E.; Leuchtner, R.E.

    1997-01-01

    The chemical, mechanical, and tribological properties of pulsed-laser-deposited TiC and VC films are reported in this paper. Films were deposited by ablating carbide targets using a KrF (λ = 248 nm) laser. Chemical analysis of the films by XPS revealed oxygen was the major impurity; the lowest oxygen concentration obtained in a film was 5 atom%. Oxygen was located primarily on the carbon sublattice of the TiC structure. The films were always substoichiometric, as expected, and the carbon in the films was identified primarily as carbidic carbon. Nanoindentation hardness tests gave values of 39 GPa for TiC and 26 GPa for VC. The friction coefficient for the TiC films was 0.22, while the VC film exhibited rapid material transfer from the steel ball to the substrate resulting in steel-on-steel tribological behavior

  5. Study on the performance of fuel elements with carbide and carbide-nitride fuel

    International Nuclear Information System (INIS)

    Golovchenko, Yu.M.; Davydov, E.F.; Maershin, A.A.

    1985-01-01

    Characteristics, test conditions and basic results of material testing of fuel elements with carbide and carbonitride fuel irradiated in the BOR-60 reactor up to 3-10% burn-up at specific power rate of 55-70 kW/m and temperatures of the cladding up to 720 deg C are described. Increase of cladding diameter is stated mainly to result from pressure of swelling fuel. The influence of initial efficient porosity of the fuel on cladding deformation and fuel stoichiometry on steel carbonization is considered. Utilization of carbide and carbonitride fuel at efficient porosity of 20% at the given test modes is shown to ensure their operability up to 10% burn-up

  6. Preparation and Fatigue Properties of Functionally Graded Cemented Carbides

    International Nuclear Information System (INIS)

    Liu Yong; Liu Fengxiao; Liaw, Peter K.; He Yuehui

    2008-01-01

    Cemented carbides with a functionally graded structure have significantly improved mechanical properties and lifetimes in cutting, drilling and molding. In this work, WC-6 wt.% Co cemented carbides with three-layer graded structure (surface layer rich in WC, mid layer rich in Co and the inner part of the average composition) were prepared by carburizing pre-sintered η-phase-containing cemented carbides. The three-point bending fatigue tests based on the total-life approach were conducted on both WC-6wt%Co functionally graded cemented carbides (FGCC) and conventional WC-6wt%Co cemented carbides. The functionally graded cemented carbide shows a slightly higher fatigue limit (∼100 MPa) than the conventional ones under the present testing conditions. However, the fatigue crack nucleation behavior of FGCC is different from that of the conventional ones. The crack nucleates preferentially along the Co-gradient and perpendicular to the tension surface in FGCC, while parallel to the tension surface in conventional cemented carbides

  7. Graphite and boron carbide composites made by hot-pressing

    International Nuclear Information System (INIS)

    Miyazaki, K.; Hagio, T.; Kobayashi, K.

    1981-01-01

    Composites consisting of graphite and boron carbide were made by hot-pressing mixed powders of coke carbon and boron carbide. The change of relative density, mechanical strength and electrical resistivity of the composites and the X-ray parameters of coke carbon were investigated with increase of boron carbide content and hot-pressing temperature. From these experiments, it was found that boron carbide powder has a remarkable effect on sintering and graphitization of coke carbon powder above the hot-pressing temperature of 2000 0 C. At 2200 0 C, electrical resistivity of the composite and d(002) spacing of coke carbon once showed minimum values at about 5 to 10 wt% boron carbide and then increased. The strength of the composite increased with increase of boron carbide content. It was considered that some boron from boron carbide began to diffuse substitutionally into the graphite structure above 2000 0 C and densification and graphitization were promoted with the diffusion of boron. Improvements could be made to the mechanical strength, density, oxidation resistance and manufacturing methods by comparing with the properties and processes of conventional graphites. (author)

  8. Magnesium deficiency and increased inflammation: current perspectives

    Directory of Open Access Journals (Sweden)

    Nielsen FH

    2018-01-01

    Full Text Available Forrest H Nielsen Research Nutritionist Consultant, Grand Forks, ND, USA Abstract: Animal studies have shown that magnesium deficiency induces an inflammatory response that results in leukocyte and macrophage activation, release of inflammatory cytokines and acute-phase proteins, and excessive production of free radicals. Animal and in vitro studies indicate that the primary mechanism through which magnesium deficiency has this effect is through increasing cellular Ca2+, which is the signal that results in the priming of cells to give the inflammatory response. Primary pro-inflammatory cytokines such as tumor necrosis factor-α and interleukin (IL-1; the messenger cytokine IL-6; cytokine responders E-selectin, intracellular adhesion molecule-1 and vascular cell adhesion molecule-1; and acute-phase reactants C-reactive protein and fibrinogen have been determined to associate magnesium deficiency with chronic low-grade inflammation (inflammatory stress. When magnesium dietary intake, supplementation, and/or serum concentration suggest/s the presence of magnesium deficiency, it often is associated with low-grade inflammation and/or with pathological conditions for which inflammatory stress is considered a risk factor. When magnesium intake, supplementation, and/or serum concentration suggest/s an adequate status, magnesium generally has not been found to significantly affect markers of chronic low-grade inflammation or chronic disease. The consistency of these findings can be modified by other nutritional and metabolic factors that affect inflammatory and oxidative stress. In spite of this, findings to date provide convincing evidence that magnesium deficiency is a significant contributor to chronic low-grade inflammation that is a risk factor for a variety of pathological conditions such as cardiovascular disease, hypertension, and diabetes. Because magnesium deficiency commonly occurs in countries where foods rich in magnesium are not consumed in

  9. Magnesium sulfate reduces formalin-induced orofacial pain in rats with normal magnesium serum levels.

    Science.gov (United States)

    Srebro, Dragana P; Vučković, Sonja M; Dožić, Ivan S; Dožić, Branko S; Savić Vujović, Katarina R; Milovanović, Aleksandar P; Karadžić, Branislav V; Prostran, Milica Š

    2018-02-01

    In humans, orofacial pain has a high prevalence and is often difficult to treat. Magnesium is an essential element in biological a system which controls the activity of many ion channels, neurotransmitters and enzymes. Magnesium produces an antinociceptive effect in neuropathic pain, while in inflammatory pain results are not consistent. We examined the effects of magnesium sulfate using the rat orofacial formalin test, a model of trigeminal pain. Male Wistar rats were injected with 1.5% formalin into the perinasal area, and the total time spent in pain-related behavior (face rubbing) was quantified. We also spectrophotometrically determined the concentration of magnesium and creatine kinase activity in blood serum. Magnesium sulfate administered subcutaneously (0.005-45mg/kg) produced significant antinociception in the second phase of the orofacial formalin test in rats at physiological serum concentration of magnesium. The effect was not dose-dependent. The maximum antinociceptive effect of magnesium sulfate was about 50% and was achieved at doses of 15 and 45mg/kg. Magnesium did not affect increase the levels of serum creatine kinase activity. Preemptive systemic administration of magnesium sulfate as the only drug can be used to prevent inflammatory pain in the orofacial region. Its analgesic effect is not associated with magnesium deficiency. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  10. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Chenyu; van Duin, Adri C.T.; Sorescu, Dan C.

    2012-06-01

    We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H{sub 2} and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

  11. Part I: Structural Characterization of Doped Nanostructured Magnesium: Understanding Disorder for Enhanced Hydrogen Absorption Kinetics Part II: Synthesis, Film Deposition, and Characterization of Quaternary Metal Chalcogenide Nanocrystals for Photovoltaic Applications

    Science.gov (United States)

    Braun, Max B.

    The production, storage, and subsequent consumption of energy are at the foundation of all human activity and livelihood. The theme of this dissertation is the pursuit of fundamental understanding of the chemistry of materials that are used for energy production and storage. A strong emphasis is placed on a synthetic foundation that allows for systematic investigation into the fundamental chemistry that controls the applicable properties of the materials of interest. This dissertation is written in the "journals format" style--which is accepted by the Graduate School at Colorado State University--and is based on one peer-reviewed publication that has appeared in Chemistry of Materials as well as two manuscripts to be submitted, one to The Journal of Physical Chemistry C, and one to ACS Applied Materials and Interfaces. In order to create a context for these publications, Chapters 1 and 3 provide an overview of the motivations for the projects, and then continue to detail the initial synthetic investigations and considerations for the two projects. In addition to recounting Mg nanocrystals synthetic refinement that was necessary for reproducible hydride kinetic analysis, Chapter 1 also briefly introduces some of the conventional models used for fitting of the hydriding kinetics data. Furthermore, initial investigations into the use of these models for our system are presented. Chapter 2 is a paper to be submitted to The Journal of Physical Chemistry C that describes the local and extended structure characterization of Mg nanocrystals (NCs) with a small amount of nickel added during synthesis. Ni has a dramatic effect on the de/hydriding kinetics of Mg NCs, and this chapter describes the use of a combination of multiple state-of-the-art characterization techniques to gain insight into the structural perturbations due to Ni inclusion in the Mg NCs. This insight is then used to establish the characteristics of Ni inclusion that results in the enhanced hydrogen

  12. Precipitation behavior of carbides in high-carbon martensitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Qin-tian; Li, Jing; Shi, Cheng-bin; Yu, Wen-tao; Shi, Chang-min [University of Science and Technology, Beijing (China). State Key Laboratory of Advanced Metallurgy; Li, Ji-hui [Yang Jiang Shi Ba Zi Group Co., Ltd, Guangdong (China)

    2017-01-15

    A fundamental study on the precipitation behavior of carbides was carried out. Thermo-calc software, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, X-ray diffractometry and high-temperature confocal laser scanning microscopy were used to study the precipitation and transformation behaviors of carbides. Carbide precipitation was of a specific order. Primary carbides (M7C3) tended to be generated from liquid steel when the solid fraction reached 84 mol.%. Secondary carbides (M7C3) precipitated from austenite and can hardly transformed into M23C6 carbides with decreasing temperature in air. Primary carbides hardly changed once they were generated, whereas secondary carbides were sensitive to heat treatment and thermal deformation. Carbide precipitation had a certain effect on steel-matrix phase transitions. The segregation ability of carbon in liquid steel was 4.6 times greater that of chromium. A new method for controlling primary carbides is proposed.

  13. Magnesium

    Science.gov (United States)

    ... deficiency can cause numbness, tingling, muscle cramps, seizures , personality changes, and an abnormal heart rhythm . The following ... Office of Dietary Supplements Frequently Asked Questions: Which brand(s) of dietary supplements should I purchase? For information ...

  14. Synthesis of carbon nanotubes by CVD method using iron and molybdenum-based catalysts supported on ceramic matrices;Sintese de nanotubos de carbono por CVD utilizando catalisadores a base de ferro e molibdenio suportados em matrizes ceramicas

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Ana Paula de Carvalho

    2010-07-01

    all catalytic systems, while the MgMo0{sub 4} phase is observed in systems with Mo/Fe ratios greater than 0.2. In spite of the differences between the two methods of preparation, the influence of molybdenum is practically the same in the two series of catalysts studied. In both cases, the reaction yield was directly proportional to the molybdenum concentration. When the Mo concentration, however, was much higher than the Fe concentration, the CN synthesis yield decreased. The highest yields, therefore, were found when the Mo/Fe ratio was equal to 1. We propose that excess molybdenum leads to the formation of Mo metallic agglomerates that do not catalyze the CN synthesis by chemical vapor deposition. We also observed that the presence of molybdenum brought about the formation of multi-walled carbon structures (multi-walled nanotubes - MWNT - and bamboo-like structures), while iron promoted the preferential formation of nanotubes with one - SWNT - or few walls. Besides carbon and MgO nanostructures, iron carbide (Fe{sub 3}C) and molybdenum carbide (Mo{sub 2}C) (catalysts containing Mo) were also formed in all of the samples grown with CVD, and the quantity of Mo{sub 2}C increased with the increase in the Mo content in the catalyst. Based on the results obtained and the literature, two distinct regimes of action of Mo in the studied catalysts on the CVD carbon nanotubes synthesis from ethylene are proposed, when carried out in the conditions used in this work: 1) catalytic systems containing only Fe or small concentrations of Mo (MolFe =O, 0.02, 0.05, and 0.10). In this system, part of the Mo-containing species associate with the Fe phases present in the catalysts. During the decomposition of ethylene, Fe associates in particles with metallic Mo or Mo carbide. This association brings about the formation of MWNTs and carbon nanostructures with a higher degree of defects. The iron particles from the magnesium-ferrite phase or from the Fe solid solution in Mg bring about

  15. Magnesium bicarbonate as an in situ uranium lixiviant

    International Nuclear Information System (INIS)

    Sibert, J.W.

    1984-01-01

    In the subsurface solution mining of mineral values, especially uranium, in situ, magnesium bicarbonate leaching solution is used instead of sodium, potassium and ammonium carbonate and bicarbonates. The magnesium bicarbonate solution is formed by combining carbon dioxide with magnesium oxide and water. The magnesium bicarbonate lixivant has four major advantages over prior art sodium, potassium and ammonium bicarbonates

  16. Urinary and plasma magnesium and risk of ischemic heart disease

    NARCIS (Netherlands)

    Joosten, Michel M.; Gansevoort, Ron T.; Mukamal, Kenneth J.; van der Harst, Pim; Geleijnse, Johanna M.; Feskens, Edith J. M.; Navis, Gerjan; Bakker, Stephan J. L.

    Background: Previous studies on dietary magnesium and risk of ischemic heart disease (IHD) have yielded inconsistent results, in part because of a lack of direct measures of actual magnesium uptake. Urinary excretion of magnesium, an indicator of dietary magnesium uptake, might provide more

  17. Plasma spraying process of disperse carbides for spraying and facing

    International Nuclear Information System (INIS)

    Blinkov, I.V.; Vishnevetskaya, I.A.; Kostyukovich, T.G.; Ostapovich, A.O.

    1989-01-01

    A possibility to metallize carbides in plasma of impulsing capacitor discharge is considered. Powders granulation occurs during plasma spraying process, ceramic core being completely capped. X-ray phase and chemical analyses of coatings did not show considerable changes of carbon content in carbides before and after plasma processing. This distinguishes the process of carbides metallization in impulsing plasma from the similar processing in arc and high-frequency plasma generator. Use of powder composites produced in the impulsing capacitor discharge, for plasma spraying and laser facing permits 2-3 times increasing wear resistance of the surface layer as against the coatings produced from mechanical powders mixtures

  18. On the carbide formation in high-carbon stainless steel

    International Nuclear Information System (INIS)

    Mujahid, M.; Qureshi, M.I.

    1996-01-01

    Stainless steels containing high Cr as well as carbon contents in excess of 1.5 weight percent have been developed for applications which require high resistance erosion and environmental corrosion. Formation of carbides is one of important parameters for controlling properties of these materials especially erosion characteristics. Percent work includes the study of different type of carbides which from during the heat treatment of these materials. It has been found that precipitation of secondary carbides and the nature of matrix transformation plays an important role in determining the hardness characteristics of these materials. (author)

  19. Separation of Nuclear Fuel Surrogates from Silicon Carbide Inert Matrix

    International Nuclear Information System (INIS)

    Baney, Ronald

    2008-01-01

    The objective of this project has been to identify a process for separating transuranic species from silicon carbide (SiC). Silicon carbide has become one of the prime candidates for the matrix in inert matrix fuels, (IMF) being designed to reduce plutonium inventories and the long half-lives actinides through transmutation since complete reaction is not practical it become necessary to separate the non-transmuted materials from the silicon carbide matrix for ultimate reprocessing. This work reports a method for that required process

  20. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  1. Oxide film assisted dopant diffusion in silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Tin, Chin-Che, E-mail: cctin@physics.auburn.ed [Department of Physics, Auburn University, Alabama 36849 (United States); Mendis, Suwan [Department of Physics, Auburn University, Alabama 36849 (United States); Chew, Kerlit [Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur (Malaysia); Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin [Physical Technical Institute, Uzbek Academy of Sciences, 700084 Tashkent (Uzbekistan); Atabaev, Bakhtiyar [Institute of Electronics, Uzbek Academy of Sciences, 700125 Tashkent (Uzbekistan); Adedeji, Victor [Department of Chemistry, Geology and Physics, Elizabeth City State University, North Carolina 27909 (United States); Rusli [School of Electrical and Electronic Engineering, Nanyang Technological University (Singapore)

    2010-10-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  2. Oxide film assisted dopant diffusion in silicon carbide

    International Nuclear Information System (INIS)

    Tin, Chin-Che; Mendis, Suwan; Chew, Kerlit; Atabaev, Ilkham; Saliev, Tojiddin; Bakhranov, Erkin; Atabaev, Bakhtiyar; Adedeji, Victor; Rusli

    2010-01-01

    A process is described to enhance the diffusion rate of impurities in silicon carbide so that doping by thermal diffusion can be done at lower temperatures. This process involves depositing a thin film consisting of an oxide of the impurity followed by annealing in an oxidizing ambient. The process uses the lower formation energy of silicon dioxide relative to that of the impurity-oxide to create vacancies in silicon carbide and to promote dissociation of the impurity-oxide. The impurity atoms then diffuse from the thin film into the near-surface region of silicon carbide.

  3. Silver diffusion through silicon carbide in microencapsulated nuclear fuels TRISO

    International Nuclear Information System (INIS)

    Cancino T, F.; Lopez H, E.

    2013-10-01

    The silver diffusion through silicon carbide is a challenge that has persisted in the development of microencapsulated fuels TRISO (Tri structural Isotropic) for more than four decades. The silver is known as a strong emitter of gamma radiation, for what is able to diffuse through the ceramic coatings of pyrolytic coal and silicon carbide and to be deposited in the heat exchangers. In this work we carry out a recount about the art state in the topic of the diffusion of Ag through silicon carbide in microencapsulated fuels and we propose the role that the complexities in the grain limit can have this problem. (Author)

  4. Method of producing silicon carbide articles

    International Nuclear Information System (INIS)

    Milewski, J.V.

    1985-01-01

    A method of producing articles comprising reaction-bonded silicon carbide (SiC) and graphite (and/or carbon) is given. The process converts the graphite (and/or carbon) in situ to SiC, thus providing the capability of economically obtaining articles made up wholly or partially of SiC having any size and shape in which graphite (and/or carbon) can be found or made. When the produced articles are made of an inner graphite (and/or carbon) substrate to which SiC is reaction bonded, these articles distinguish SiC-coated graphite articles found in the prior art by the feature of a strong bond having a gradual (as opposed to a sharply defined) interface which extends over a distance of mils. A method for forming SiC whisker-reinforced ceramic matrices is also given. The whisker-reinforced articles comprise SiC whiskers which substantially retain their structural integrity

  5. Carbon in palladium catalysts: A metastable carbide

    International Nuclear Information System (INIS)

    Seriani, Nicola; Mittendorfer, Florian; Kresse, Georg

    2010-01-01

    The catalytic activity of palladium towards selective hydrogenation of hydrocarbons depends on the partial pressure of hydrogen. It has been suggested that the reaction proceeds selectively towards partial hydrogenation only when a carbon-rich film is present at the metal surface. On the basis of first-principles simulations, we show that carbon can dissolve into the metal because graphite formation is delayed by the large critical nucleus necessary for graphite nucleation. A bulk carbide Pd 6 C with a hexagonal 6-layer fcc-like supercell forms. The structure is characterized by core level shifts of 0.66-0.70 eV in the core states of Pd, in agreement with experimental x-ray photoemission spectra. Moreover, this phase traps bulk-dissolved hydrogen, suppressing the total hydrogenation reaction channel and fostering partial hydrogenation. (author)

  6. Stored energy in irradiated silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Snead, L.L.; Burchell, T.D. [Oak Ridge National Lab., TN (United States)

    1997-04-01

    This report presents a short review of the phenomenon of Wigner stored energy release from irradiated graphite and discusses it in relation to neutron irradiation of silicon carbide. A single published work in the area of stored energy release in SiC is reviewed and the results are discussed. It appears from this previous work that because the combination of the comparatively high specific heat of SiC and distribution in activation energies for recombining defects, the stored energy release of SiC should only be a problem at temperatures lower than those considered for fusion devices. The conclusion of this preliminary review is that the stored energy release in SiC will not be sufficient to cause catastrophic heating in fusion reactor components, though further study would be desirable.

  7. Neutron irradiation induced amorphization of silicon carbide

    International Nuclear Information System (INIS)

    Snead, L.L.; Hay, J.C.

    1998-01-01

    This paper provides the first known observation of silicon carbide fully amorphized under neutron irradiation. Both high purity single crystal hcp and high purity, highly faulted (cubic) chemically vapor deposited (CVD) SiC were irradiated at approximately 60 C to a total fast neutron fluence of 2.6 x 10 25 n/m 2 . Amorphization was seen in both materials, as evidenced by TEM, electron diffraction, and x-ray diffraction techniques. Physical properties for the amorphized single crystal material are reported including large changes in density (-10.8%), elastic modulus as measured using a nanoindentation technique (-45%), hardness as measured by nanoindentation (-45%), and standard Vickers hardness (-24%). Similar property changes are observed for the critical temperature for amorphization at this neutron dose and flux, above which amorphization is not possible, is estimated to be greater than 130 C

  8. Boron carbide in pile behaviour Rapsodie experience

    International Nuclear Information System (INIS)

    Kryger, B.; Colin, M.

    1983-04-01

    Results concerning boron carbide irradiation experiments performed in RAPSODIE up to 10 22 .cm - 3 capture density in the temperature range 600-1100 0 lead to the following main conclusions: initial density and grain size lowering contribute to swelling decrease but density is the major parameter for swelling limitation; swelling rate can vary in a wide range (ratio 1 to 3) according to combinations of density (1.8 to 2.3) and grain size (10 to 50 μm) values; a swelling balance reveals that the most important contribution to swelling should be a high density of helium small bubbles (<400 A); helium retention increases with density and grain size and decreases with temperature elevation. A diffusion law is proposed to describe the rate of helium release

  9. Texaco, carbide form hydrogen plant venture

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper reports that Texaco Inc. and Union Carbide Industrial Gases Inc. (UCIG) have formed a joint venture to develop and operate hydrogen plants. The venture, named HydroGEN Supply Co., is owned by Texaco Hydrogen Inc., a wholly owned subsidiary of Texaco, and UCIG Hydrogen Services Inc., a wholly owned subsidiary of UCIG. Plants built by HydroGEN will combine Texaco's HyTEX technology for hydrogen production with UCIG's position in cryogenic and advanced air separation technology. Texaco the U.S. demand for hydrogen is expected to increase sharply during the next decade, while refinery hydrogen supply is expected to drop. The Clean Air Act amendments of 1990 require U.S. refiners to lower aromatics in gasoline, resulting in less hydrogen recovered by refiners from catalytic reforming units. Meanwhile, requirements to reduce sulfur in diesel fuel will require more hydrogen capacity

  10. Ordering effects in nonstoichiometric titanium carbide

    International Nuclear Information System (INIS)

    Lipatnikov, V.N.; Zueva, L.V.; Gusev, A.I.; Kottar, A.

    2000-01-01

    The effect of nonstoichiometry and ordering on crystalline structure and specific electric resistance (ρ) of TiC y (0.52≤y≤0.98) is studied within the temperature range of 300-1100 K. It is shown that the titanium carbide ordering in the areas 0.52≤y≤0.55, 0.56≤y≤0.58 and 0.62≤y≤0.68 leads to formation of the Ti 2 C cubic and trigonal ordered phase and the Ti 3 C 2 rhombic ordered phase correspondingly. Availability of hysteresis on the ρ(T) dependences in the area of the disorder-order reversible equilibrium transition points out to the fact that the TiC y ↔Ti 2 C and TiC y ↔Ti 3 C 2 transformations are the first order phase transitions [ru

  11. Oxalate complexation in dissolved carbide systems

    International Nuclear Information System (INIS)

    Choppin, G.R.; Bokelund, H.; Valkiers, S.

    1983-01-01

    It has been shown that the oxalic acid produced in the dissolution of mixed uranium, plutonium carbides in nitric acid can account for the problems of incomplete uranium and plutonium extraction on the Purex process. Moreover, it was demonstrated that other identified products such as benzene polycarboxylic acids are either too insoluble or insufficiently complexing to be of concern. The stability constants for oxalate complexing of UO 2 +2 and Pu +4 ions (as UO 2 (C 2 O 4 ), Pu(C 2 O 4 ) 2+ and Pu(C 2 O 4 ) 2 , respectively) were measured in nitrate solutions of 4.0 molar ionic strength (0-4 M HNO 3 ) by extraction of these species with TBP. (orig.)

  12. Study on niobium carbide dispersed superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Wada, H; Tachikawa, K [National Research Inst. for Metals, Tokyo (Japan); Oh' asa, M [Science Univ. of Tokyo (Japan)

    1977-11-01

    Niobium carbide (NbC) dispersed superconducting tapes have been fabricated by two metallurgical processes. In the first process, Ni-Nb-C alloys are directly arc melted and hot worked in air and the NbC phase is distributed in the form of fine discrete particles. In the second process, Ni-Nb and Ni-Nb-Cu alloys are arc melted, hot worked and subjected to solid-state carburization. NbC then precipitates along the grain boundaries, forming a network. The highest superconducting transition temperature attained is about 11 K. Taken together with the lattice parameter measurement, this indicates that NbC with a nearly perfect NaCl structure is formed in both processes. Measured values of the upper critical field, the critical current density and the volume fraction of the NbC phase are also discussed.

  13. Single Photon Sources in Silicon Carbide

    International Nuclear Information System (INIS)

    Brett Johnson

    2014-01-01

    Single photon sources in semiconductors are highly sought after as they constitute the building blocks of a diverse range of emerging technologies such as integrated quantum information processing, quantum metrology and quantum photonics. In this presentation, we show the first observation of single photon emission from deep level defects in silicon carbide (SiC). The single photon emission is photo-stable at room temperature and surprisingly bright. This represents an exciting alternative to diamond color centers since SiC possesses well-established growth and device engineering protocols. The defect is assigned to the carbon vacancy-antisite pair which gives rise to the AB photoluminescence lines. We discuss its photo-physical properties and their fabrication via electron irradiation. Preliminary measurements on 3C SiC nano-structures will also be discussed. (author)

  14. Visible light emission from porous silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan; Lu, Weifang

    2017-01-01

    Light-emitting silicon carbide is emerging as an environment-friendly wavelength converter in the application of light-emitting diode based white light source for two main reasons. Firstly, SiC has very good thermal conductivity and therefore a good substrate for GaN growth in addition to the small...... lattice mismatch. Secondly, SiC material is abundant, containing no rear-earth element material as commercial phosphor. In this paper, fabrication of porous SiC is introduced, and their morphology and photoluminescence are characterized. Additionally, the carrier lifetime of the porous SiC is measured...... by time-resolved photoluminescence. The ultrashort lifetime in the order of ~70ps indicates porous SiC is very promising for the application in the ultrafast visible light communications....

  15. White light emission from engineered silicon carbide

    DEFF Research Database (Denmark)

    Ou, Haiyan

    Silicon carbide (SiC) is a wide indirect bandgap semiconductor. The light emission efficiency is low in nature. But this material has very unique physical properties like good thermal conductivity, high break down field etc in addition to its abundance. Therefore it is interesting to engineer its...... light emission property so that to take fully potential applications of this material. In this talk, two methods, i.e. doping SiC heavily by donor-acceptor pairs and making SiC porous are introduced to make light emission from SiC. By co-doping SiC with nitrogen and boron heavily, strong yellow emission...... is demonstrated. After optimizing the passivation conditions, strong blue-green emission from porous SiC is demonstrated as well. When combining the yellow emission from co-doped SiC and blue-green from porous SiC, a high color rendering index white light source is achieved....

  16. Helium behaviour in implanted boron carbide

    Directory of Open Access Journals (Sweden)

    Motte Vianney

    2015-01-01

    Full Text Available When boron carbide is used as a neutron absorber in nuclear power plants, large quantities of helium are produced. To simulate the gas behaviour, helium implantations were carried out in boron carbide. The samples were then annealed up to 1500 °C in order to observe the influence of temperature and duration of annealing. The determination of the helium diffusion coefficient was carried out using the 3He(d,p4He nuclear reaction (NRA method. From the evolution of the width of implanted 3He helium profiles (fluence 1 × 1015/cm2, 3 MeV corresponding to a maximum helium concentration of about 1020/cm3 as a function of annealing temperatures, an Arrhenius diagram was plotted and an apparent diffusion coefficient was deduced (Ea = 0.52 ± 0.11 eV/atom. The dynamic of helium clusters was observed by transmission electron microscopy (TEM of samples implanted with 1.5 × 1016/cm2, 2.8 to 3 MeV 4He ions, leading to an implanted slab about 1 μm wide with a maximum helium concentration of about 1021/cm3. After annealing at 900 °C and 1100 °C, small (5–20 nm flat oriented bubbles appeared in the grain, then at the grain boundaries. At 1500 °C, due to long-range diffusion, intra-granular bubbles were no longer observed; helium segregates at the grain boundaries, either as bubbles or inducing grain boundaries opening.

  17. Radioactive {sup 210}Po in magnesium supplements

    Energy Technology Data Exchange (ETDEWEB)

    Struminska-Parulska, Dagmara Ida [Gdansk Univ. (Poland). Environmental Chemistry and Radiochemistry Chair

    2016-08-01

    The aim of this pioneer study was to determine polonium {sup 210}Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring {sup 210}Po activity concentrations in magnesium supplements, find the correlations between {sup 210}Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest {sup 210}Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g{sup -1} (sample Mg17). The highest annual radiation dose from {sup 210}Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year{sup -1} respectively.

  18. Computational micromechanics of bioabsorbable magnesium stents.

    Science.gov (United States)

    Grogan, J A; Leen, S B; McHugh, P E

    2014-06-01

    Magnesium alloys are a promising candidate material for an emerging generation of absorbable metal stents. Due to its hexagonal-close-packed lattice structure and tendency to undergo twinning, the deformation behaviour of magnesium is quite different to that of conventional stent materials, such as stainless steel 316L and cobalt chromium L605. In particular, magnesium exhibits asymmetric plastic behaviour (i.e. different yield behaviours in tension and compression) and has lower ductility than these conventional alloys. In the on-going development of absorbable metal stents it is important to assess how the unique behaviour of magnesium affects device performance. The mechanical behaviour of magnesium stent struts is investigated in this study using computational micromechanics, based on finite element analysis and crystal plasticity theory. The plastic deformation in tension and bending of textured and non-textured magnesium stent struts with different numbers of grains through the strut dimension is investigated. It is predicted that, unlike 316L and L605, the failure risk and load bearing capacity of magnesium stent struts during expansion is not strongly affected by the number of grains across the strut dimensions; however texturing, which may be introduced and controlled in the manufacturing process, is predicted to have a significant influence on these measures of strut performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Radioactive 210Po in magnesium supplements

    International Nuclear Information System (INIS)

    Struminska-Parulska, Dagmara Ida

    2016-01-01

    The aim of this pioneer study was to determine polonium 210 Po in the most popular magnesium supplements in Poland and estimate the possible related dose assessment to the consumers. The analyzed magnesium pharmaceutics contained organic or inorganic magnesium compounds; some from natural sources. The objectives of this research were to investigate the naturally occurring 210 Po activity concentrations in magnesium supplements, find the correlations between 210 Po concentration in medicament and magnesium chemical form, and calculate the effective radiation dose connected to analyzed magnesium supplement consumption. The highest 210 Po activity concentrations were determined in mineral tablets made from sedimentary rocks, namely dolomite - 3.84 ± 0.15 mBq g -1 (sample Mg17). The highest annual radiation dose from 210 Po taken with 1 tablet of magnesium supplement per day or with 400 mg of pure Mg daily would come from sample Mg17 (dolomite) - 1.35 ± 0.5 and 8.44 ± 0.33 μSv year -1 respectively.

  20. Corrosion of Magnesium in Multimaterial System

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Vineet V.; Agnew, Sean

    2017-08-16

    The TMS Magnesium Committee has been actively involved in presenting cutting-edge research and development and the latest trends related to magnesium and its alloys to industry and academia. Topics including magnesium alloy development, applications, mechanism of deformation and corrosion, thermomechanical processing, modelling, etc. have been captured year after year through the Magnesium Technology symposium and conference proceedings at TMS and through special topics in JOM. Every year, based on the unanimous endorsement from the industry and academia, a topic is selected to address the latest developments within this subject in JOM. In continuation with last year’s coverage of Advances and Achievements in In-Situ Analysis of Corrosions and Structure–Property Relationship in Mg Alloys,[1] this year’s topic focuses on the Corrosion of Magnesium in Multimaterial Systems. Magnesium, the lightest of all the structural materials, has garnered much interest in the transportation, electronics packaging, defense equipments and industries alike and are more commonly being incorporated in multimaterial design concepts.[2-4] However, the application of the same is limited due to its highly corrosive nature, and understanding and mitigating the corrosion of magnesium has been a major research challenge.

  1. Magnesium supplement in pregnancy-induced hypertension. A clinicopathological study

    DEFF Research Database (Denmark)

    Rudnicki, M; Junge, Jette; Frølich, A

    1990-01-01

    as a double-blind randomized controlled study in which 11 women were allocated to magnesium and 7 to placebo treatment. The treatment comprised a 48-hour intravenous magnesium/placebo infusion followed by daily oral magnesium/placebo intake until one day after delivery. Magnesium supplement increased birth....... There was no significant difference when the magnesium group, the placebo group and the control group were compared separately. The present study suggests that magnesium supplement has a beneficial effect on fetal growth in pregnancy-induced hypertension. With regard to the light and electron microscopic changes we were...... unable to demonstrate any significant difference between the magnesium, placebo and control groups....

  2. Corrosion and protection of magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ghali, E. [Laval Univ., Quebec City, PQ (Canada). Dept. of Mining and Metallurgy

    2000-07-01

    The oxide film on magnesium offers considerable surface protection in rural and some industrial environments and the corrosion rate lies between that of aluminum and low carbon steels. Galvanic coupling of magnesium alloys, high impurity content such as Ni, Fe, Cu and surface contamination are detrimental for corrosion resistance of magnesium alloys. Alloying elements can form secondary particles which are noble to the Mg matrix, thereby facilitating corrosion, or enrich the corrosion product thereby possibly inhibiting the corrosion rate. Bimetallic corrosion resistance can be increased by fluxless melt protection, choice of compatible alloys, insulating materials, and new high-purity alloys. Magnesium is relatively insensible to oxygen concentration. Pitting, corrosion in the crevices, filiform corrosion are observed. Granular corrosion of magnesium alloys is possible due to the cathodic grain-boundary constituent. More homogeneous microstructures tend to improve corrosion resistance. Under fatigue loading conditions, microcrack initiation in Mg alloys is related to slip in preferentially oriented grains. Coating that exclude the corrosive environments can provide the primary defense against corrosion fatigue. Magnesium alloys that contain neither aluminum nor zinc are the most SCC resistant. Compressive surface residual stresses as that created by short peening increase SCC resistance. Cathodic polarization or cladding with a SCC resistant sheet alloy are good alternatives. Effective corrosion prevention for magnesium alloy components and assemblies should start at the design stage. Selective surface preparation, chemical treatment and coatings are recommended. Oil application, wax coating, anodizing, electroplating, and painting are possible alternatives. Recently, it is found that a magnesium hydride layer, created on the magnesium surface by cathodic charging in aqueous solution is a good base for painting. (orig.)

  3. A Case of a Magnesium Oxide Bezoar.

    Science.gov (United States)

    Iwamuro, Masaya; Saito, Shunsuke; Yoshioka, Masao; Urata, Haruo; Ueda, Kumiko; Yamamoto, Kazuhide; Okada, Hiroyuki

    2018-06-06

    A 75-year-old Japanese woman presented with nausea and appetite loss. Computed tomography showed a radiopaque substance in the stomach. Esophagogastroduodenoscopy revealed bezoars in the stomach, which were endoscopically retrieved. The bezoars were mainly composed of magnesium and oxide. Although bezoar formation associated with magnesium oxide consumption is infrequently encountered, the present case indicates that pharmacobezoar should be considered among the differential diagnoses in patients who demonstrate a radiopaque mass in the digestive tract and have a history of magnesium oxide use.

  4. Magnesium doping of boron nitride nanotubes

    Science.gov (United States)

    Legg, Robert; Jordan, Kevin

    2015-06-16

    A method to fabricate boron nitride nanotubes incorporating magnesium diboride in their structure. In a first embodiment, magnesium wire is introduced into a reaction feed bundle during a BNNT fabrication process. In a second embodiment, magnesium in powder form is mixed into a nitrogen gas flow during the BNNT fabrication process. MgB.sub.2 yarn may be used for superconducting applications and, in that capacity, has considerably less susceptibility to stress and has considerably better thermal conductivity than these conventional materials when compared to both conventional low and high temperature superconducting materials.

  5. The reference range of serum, plasma and erythrocyte magnesium

    Directory of Open Access Journals (Sweden)

    Suzanna Immanuel

    2006-12-01

    Full Text Available The interest in the clinical importance of serum magnesium level has just recently begun with the analysis and findings of abnormal magnesium level in cardiovascular, metabolic and neuromuscular disorder. Although the serum level does not reflect the body magnesium level, but currently, only serum magnesium determination is widely used. Erythrocyte magnesium is considered more sensitive than serum magnesium as it reflects intracellular magnesium status. According to NCCLS (National Committee for Clinical Laboratory Standards every laboratory is recommended to have its own reference range for the tests it performs, including magnesium determination. The reference range obtained is appropriate for the population and affected by the method and technique. This study aimed to find the reference range of serum and plasma magnesium and also intracellular magnesium i.e. erythrocyte magnesium by direct method, and compare the results of serum and plasma magnesium. Blood was taken from 114-blood donor from Unit Transfusi Darah Daerah (UTDD Budhyarto Palang Merah Indonesia (PMI DKI Jakarta, consisted of 57 male and 57 female, aged 17 – 65 years, clinically healthy according to PMI donor criteria. Blood was taken from blood set, collected into 4 ml vacuum tube without anticoagulant for serum magnesium determination and 3 ml vacuum tube with lithium heparin for determination of erythrocyte and plasma magnesium Determination of magnesium level was performed with clinical chemistry auto analyzer Hitachi 912 by Xylidil Blue method colorimetrically. This study showed no significant difference between serum and heparinized plasma extra cellular magnesium. The reference range for serum or plasma magnesium was 1.30 – 2.00 mEq/L and for erythrocyte magnesium was 4.46 - 7.10 mEq/L. (Med J Indones 2006; 15:229-35Keywords: Reference range, extracellular magnesium, intracellular magnesium

  6. A multidisciplinary study on magnesium

    Directory of Open Access Journals (Sweden)

    Radić-Perić Jelena

    2012-01-01

    Full Text Available During plasma electrolytic oxidation of a magnesium alloy (96% Mg, 3% Al, 1% Zn we obtained a luminescence spectrum in the wave number range between 19 950 and 20 400 cm-1. The broad peak with clearly pronounced structure was assigned to the v’-v” = 0 sequence of the B 1Σ+ → X 1Σ+ electronic transition of MgO. Quantum-mechanical perturbative approach was applied to extract the form of the potential energy curves for the electronic states involved in the observed spectrum, from the positions of spectral bands. These potential curves, combined with the results of quantum-chemical calculations of the electric transition moment, were employed in subsequent variational calculations to obtain the Franck-Condon factors and transition moments for the vibrational transitions observed. Comparing the results of these calculations with the measured intensity distribution within the spectrum we derived relative population of the upper electronic state vibration levels. This enabled us to estimate the plasma temperature. Additionally, the temperature was determined by analysis of the recorded A 2Σ+ (v’ = 0 - X 2П (v” = 0 emission spectrum of OH. The composition of plasma containing magnesium, oxygen, and hydrogen under assumption of local thermal equilibrium was calculated in the temperature range up to 12 000 K and for pressures of 105, 106, 107, and 108 Pa, in order to explain the appearance of the observed spectral features and to contribute to elucidation of processes taking place during the electrolytic oxidation of Mg. [Projekat Ministarstva nauke Republike Srbije, br. 172040

  7. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    Science.gov (United States)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  8. Proteomic profile of mouse fibroblasts exposed to pure magnesium extract.

    Science.gov (United States)

    Zhen, Zhen; Luthringer, Bérengère; Yang, Li; Xi, Tingfei; Zheng, Yufeng; Feyerabend, Frank; Willumeit, Regine; Lai, Chen; Ge, Zigang

    2016-12-01

    Magnesium and its alloys gain wide attention as degradable biomaterials. In order to reveal the molecular mechanism of the influence of biodegradable magnesium on cells, proteomics analysis was performed in this work. After mouse fibroblasts (L929) were cultured with or without Mg degradation products (Mg-extract) for 8, 24, and 48h, changes in protein expression profiles were obtained using isobaric tags for relative and absolute quantitation (iTRAQ) coupled two dimensional liquid chromatography-tandem mass spectrometry (2D LC MS/MS). A total of 867 proteins were identified (relying on at least two peptides). Compared to the control group, 205, 282, and 217 regulated proteins were identified at 8, 24, and 48h, respectively. 65 common proteins were up or down- regulated within all the three time points, which were involved in various physiological and metabolic activities. Consistent with viability, proliferation, and cell cycle analysis, stimulated energy metabolism as well as protein synthesis pathways were discussed, indicating a possible effect of Mg-extract on L929 proliferation. Furthermore, endocytosis and focal adhesion processes were also discussed. This proteomics study uncovers early cellular mechanisms triggered by Mg degradation products and highlights the cytocompatibility of biodegradable metallic materials for biomedical applications such as stents or orthopaedic implants. Copyright © 2016. Published by Elsevier B.V.

  9. Magnesium and iron nanoparticles production using microorganisms and various salts

    Science.gov (United States)

    Kaul, R. K.; Kumar, P.; Burman, U.; Joshi, P.; Agrawal, A.; Raliya, R.; Tarafdar, J. C.

    2012-09-01

    Response of five fungi and two bacteria to different salts of magnesium and iron for production of nanoparticles was studied. Pochonia chlamydosporium, and Aspergillus fumigatus were exposed to three salts of magnesium while Curvularia lunata, Chaetomium globosum, A. fumigatus, A. wentii and the bacteria Alcaligenes faecalis and Bacillus coagulans were exposed to two salts of iron for nanoparticle production. The results revealed that P. chlamydosporium induces development of extracellular nanoparticles in MgCl2 solution while A. fumigatus produces also intracellular nanoparticles when exposed to MgSO4 solution. C. globosum was found as the most effective in producing nanoparticles when exposed to Fe2O3 solution. The FTIR analysis of the nanoparticles obtained from Fe2O3 solution showed the peaks similar to iron (Fe). In general, the species of the tested microbes were selective to different chemicals in their response for synthesis of nanoparticles. Further studies on their characterization and improving the efficiency of promising species of fungi need to be undertaken before tapping their potential as nanonutrients for plants.

  10. Carbide-reinforced metal matrix composite by direct metal deposition

    Science.gov (United States)

    Novichenko, D.; Thivillon, L.; Bertrand, Ph.; Smurov, I.

    Direct metal deposition (DMD) is an automated 3D laser cladding technology with co-axial powder injection for industrial applications. The actual objective is to demonstrate the possibility to produce metal matrix composite objects in a single-step process. Powders of Fe-based alloy (16NCD13) and titanium carbide (TiC) are premixed before cladding. Volume content of the carbide-reinforced phase is varied. Relationships between the main laser cladding parameters and the geometry of the built-up objects (single track, 2D coating) are discussed. On the base of parametric study, a laser cladding process map for the deposition of individual tracks was established. Microstructure and composition of the laser-fabricated metal matrix composite objects are examined. Two different types of structures: (a) with the presence of undissolved and (b) precipitated titanium carbides are observed. Mechanism of formation of diverse precipitated titanium carbides is studied.

  11. Properties of cemented carbides alloyed by metal melt treatment

    International Nuclear Information System (INIS)

    Lisovsky, A.F.

    2001-01-01

    The paper presents the results of investigations into the influence of alloying elements introduced by metal melt treatment (MMT-process) on properties of WC-Co and WC-Ni cemented carbides. Transition metals of the IV - VIll groups (Ti, Zr, Ta, Cr, Re, Ni) and silicon were used as alloying elements. It is shown that the MMT-process allows cemented carbides to be produced whose physico-mechanical properties (bending strength, fracture toughness, total deformation, total work of deformation and fatigue fracture toughness) are superior to those of cemented carbides produced following a traditional powder metallurgy (PM) process. The main mechanism and peculiarities of the influence of alloying elements added by the MMT-process on properties of cemented carbides have been first established. The effect of alloying elements on structure and substructure of phases has been analyzed. (author)

  12. Structure and thermal expansion of NbC complex carbides

    International Nuclear Information System (INIS)

    Khatsinskaya, I.M.; Chaporova, I.N.; Cheburaeva, R.F.; Samojlov, A.I.; Logunov, A.V.; Ignatova, I.A.; Dodonova, L.P.

    1983-01-01

    Alloying dependences of the crystal lattice parameters at indoor temperature and coefficient of thermal linear exspansion within a 373-1273 K range are determined for complex NbC-base carbides by the method of mathematical expemental design. It is shown that temperature changes in the linear expansion coefficient of certain complex carbides as distinct from NbC have an anomaly (minimum) within 773-973 K caused by occurring reversible phase transformations. An increase in the coefficient of thermal linear expansion and a decrease in hardness of NbC-base tungsten-, molybdenum-, vanadium- and hafnium-alloyed carbides show a weakening of a total chemical bond in the complex carbides during alloying

  13. DEVELOPMENT OF CARBIDE AND NITRIDE CERAMICS OF INCREASED RESISTIBILITY

    Directory of Open Access Journals (Sweden)

    O. V. Roman

    2005-01-01

    Full Text Available The developments of carbide and nitrite ceramics of high solidity are presented. It is shown that development of nanotechnology led to creation of thenanostructural ceramics, the composition of which is controlled on cluster level.

  14. Medium temperature reaction between lanthanide and actinide carbides and hydrogen

    International Nuclear Information System (INIS)

    Dean, G.; Lorenzelli, R.; Pascard, R.

    1964-01-01

    Hydrogen is fixed reversibly by the lanthanide and actinide mono carbides in the range 25 - 400 C, as for pure corresponding metals. Hydrogen goes into the carbides lattice through carbon vacancies and the total fixed amount is approximately equal to two hydrogen atoms per initial vacancy. Final products c.n thus be considered as carbo-hydrides of general formula M(C 1-x , H 2x ). The primitive CFC, NaCl type, structure remains unchanged but expands strongly in the case of actinide carbides. With lanthanide carbides, hydrogenation induces a phase transformation with reappearance of the metal structure (HCP). Hydrogen decomposition pressures of all the studied carbo-hydrides are greater than those of the corresponding di-hydrides. (authors) [fr

  15. Analytical chemistry methods for boron carbide absorber material. [Standard

    Energy Technology Data Exchange (ETDEWEB)

    DELVIN WL

    1977-07-01

    This standard provides analytical chemistry methods for the analysis of boron carbide powder and pellets for the following: total C and B, B isotopic composition, soluble C and B, fluoride, chloride, metallic impurities, gas content, water, nitrogen, and oxygen. (DLC)

  16. Spheroidization of transition metal carbides in low temperature plasma

    International Nuclear Information System (INIS)

    Klinskaya, N.A.; Koroleva, E.B.; Petrunichev, V.A.; Rybalko, O.F.; Solov'ev, P.V.; Ugol'nikova, T.A.

    1986-01-01

    Plasma process of preparation of titanium, tungsten and chromium carbide spherical powders with the main particle size 40-80 μm is considered. Spheroidization degree, granulometric and phase composition of the product are investigated

  17. Stochastic Distribution of Wear of Carbide Tools during Machining ...

    African Journals Online (AJOL)

    Journal of the Nigerian Association of Mathematical Physics ... The stochastic point model was used to determine the rate of wear distribution of the carbide tool ... Keywords: cutting speed, feed rate, machining time, tool life, reliability, wear.

  18. Calculation of vapour pressures over mixed carbide fuels

    International Nuclear Information System (INIS)

    Joseph, M.; Mathews, C.K.

    1988-01-01

    Vapour pressure over the uranium-plutonium mixed carbide (Usub(l-p) Pusub(p C) was calculated in the temperature range of 1300-9000 for various compositions (p=0.1 to 0.7). Effects of variation of the sesquicarbide content were also studied. The principle of corresponding states was applied to UC and mixed carbides to obtain the equation of state. (author)

  19. Study of aging and ordering processes in titanium carbide

    International Nuclear Information System (INIS)

    Arbuzov, M.P.; Khaenko, B.V.; Kachkovskaya, Eh.T.

    1977-01-01

    Aging and ordering processes in titanium carbide were investigated on monocrystals (fragments of alloys) with the aid of roentgenographic method. The sequence of phase transformations during aging was ascertained,and a monoclinic structure of the carbon atoms ordering is suggested. The microhardness of titanium carbide was studied as a function of the heat treatment of alloys and the main factors (ordering and dislocation structure) which govern the difference in the microhardness of hardened and aged (annealed) specimens were determined

  20. Simulations of Proton Implantation in Silicon Carbide (SiC)

    Science.gov (United States)

    2016-03-31

    Simulations of Proton Implantation in Silicon Carbide (SiC) Jonathan P. McCandless, Hailong Chen, Philip X.-L. Feng Electrical Engineering, Case...of implanting protons (hydrogen ions, H+) into SiC thin layers on silicon (Si) substrate, and explore the ion implantation conditions that are...relevant to experimental radiation of SiC layers. Keywords: silicon carbide (SiC); radiation effects; ion implantation ; proton; stopping and range of

  1. Bainite obtaining in cast iron with carbides castings

    Directory of Open Access Journals (Sweden)

    S. Pietrowski

    2010-01-01

    Full Text Available In these paper the possibility of upper and lower bainite obtaining in cast iron with carbides castings are presented. Conditions, when in cast iron with carbides castings during continuous free air cooling austenite transformation to upper bainite or its mixture with lower bainte proceeds, have been given. A mechanism of this transformation has been given, Si, Ni, Mn and Mo distribution in the eutectic cell has been tested and hardness of tested castings has been determined.

  2. Single-Event Effects in Silicon Carbide Power Devices

    Science.gov (United States)

    Lauenstein, Jean-Marie; Casey, Megan C.; LaBel, Kenneth A.; Ikpe, Stanley; Topper, Alyson D.; Wilcox, Edward P.; Kim, Hak; Phan, Anthony M.

    2015-01-01

    This report summarizes the NASA Electronic Parts and Packaging Program Silicon Carbide Power Device Subtask efforts in FY15. Benefits of SiC are described and example NASA Programs and Projects desiring this technology are given. The current status of the radiation tolerance of silicon carbide power devices is given and paths forward in the effort to develop heavy-ion single-event effect hardened devices indicated.

  3. A novel plastification agent for cemented carbides extrusion molding

    International Nuclear Information System (INIS)

    Ji-Cheng Zhou; Bai-Yun Huang

    2001-01-01

    A type of novel plastification agent for plasticizing powder extrusion molding of cemented carbides has been developed. By optimizing their formulation and fabrication method, the novel plastification agent, with excellent properties and uniform distribution characters, were manufactured. The thermal debinding mechanism has been studied, the extruding rheological characteristics and debinding behaviors have been investigated. Using the newly developed plastification agent, the cemented carbides extrusion rods, with diameter up to 25 mm, have been manufactured. (author)

  4. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  5. Highly thermal conductive carbon fiber/boron carbide composite material

    International Nuclear Information System (INIS)

    Chiba, Akio; Suzuki, Yasutaka; Goto, Sumitaka; Saito, Yukio; Jinbo, Ryutaro; Ogiwara, Norio; Saido, Masahiro.

    1996-01-01

    In a composite member for use in walls of a thermonuclear reactor, if carbon fibers and boron carbide are mixed, since they are brought into contact with each other directly, boron is reacted with the carbon fibers to form boron carbide to lower thermal conductivity of the carbon fibers. Then, in the present invention, graphite or amorphous carbon is filled between the carbon fibers to provide a fiber bundle of not less than 500 carbon fibers. Further, the surface of the fiber bundle is coated with graphite or amorphous carbon to suppress diffusion or solid solubilization of boron to carbon fibers or reaction of them. Then, lowering of thermal conductivity of the carbon fibers is prevented, as well as the mixing amount of the carbon fiber bundles with boron carbide, a sintering temperature and orientation of carbon fiber bundles are optimized to provide a highly thermal conductive carbon fiber/boron carbide composite material. In addition, carbide or boride type short fibers, spherical graphite, and amorphous carbon are mixed in the boron carbide to prevent development of cracks. Diffusion or solid solubilization of boron to carbon fibers is reduced or reaction of them if the carbon fibers are bundled. (N.H.)

  6. Conceptual design study of LMFBR core with carbide fuel

    International Nuclear Information System (INIS)

    Tezuka, H.; Hojuyama, T.; Osada, H.; Ishii, T.; Hattori, S.; Nishimura, T.

    1987-01-01

    Carbide fuel is a hopeful candidate for demonstration FBR(DFBR) fuel from the plant cost reduction point of view. High thermal conductivity and high heavy metal content of carbide fuel lead to high linear heat rate and high breeding ratio. We have analyzed carbide fuel core characteristics and have clarified the concept of carbide fuel core. By survey calculation, we have obtained a correlation map between core parameters and core characteristics. From the map, we have selected a high efficiency core whose features are better than those of an oxide core, and have obtained reactivity coefficients. The core volume and the reactor fuel inventory are approximately 20% smaller, and the burn-up reactivity loss is 50% smaller compared with the oxide fuel core. These results will reduce the capital cost. The core reactivity coefficients are similar to the conventional oxide DFBR's. Therefore the carbide fuel core is regarded as safe as the oxide core. Except neutron fluence, the carbide fuel core has better nuclear features than the oxide core

  7. The growth mechanism of grain boundary carbide in Alloy 690

    International Nuclear Information System (INIS)

    Li, Hui; Xia, Shuang; Zhou, Bangxin; Peng, Jianchao

    2013-01-01

    The growth mechanism of grain boundary M 23 C 6 carbides in nickel base Alloy 690 after aging at 715 °C was investigated by high resolution transmission electron microscopy. The grain boundary carbides have coherent orientation relationship with only one side of the matrix. The incoherent phase interface between M 23 C 6 and matrix was curved, and did not lie on any specific crystal plane. The M 23 C 6 carbide transforms from the matrix phase directly at the incoherent interface. The flat coherent phase interface generally lies on low index crystal planes, such as (011) and (111) planes. The M 23 C 6 carbide transforms from a transition phase found at curved coherent phase interface. The transition phase has a complex hexagonal crystal structure, and has coherent orientation relationship with matrix and M 23 C 6 : (111) matrix //(0001) transition //(111) carbide , ¯ > matrix // ¯ 10> transition // ¯ > carbide . The crystal lattice constants of transition phase are c transition =√(3)×a matrix and a transition =√(6)/2×a matrix . Based on the experimental results, the growth mechanism of M 23 C 6 and the formation mechanism of transition phase are discussed. - Highlights: • A transition phase was observed at the coherent interfaces of M 23 C 6 and matrix. • The transition phase has hexagonal structure, and is coherent with matrix and M 23 C 6 . • The M 23 C 6 transforms from the matrix directly at the incoherent phase interface

  8. Design, Fabrication and Performance of Boron-Carbide Control Elements

    International Nuclear Information System (INIS)

    Brammer, H.A.; Jacobson, J.

    1964-01-01

    A control blade design, incorporating boron-carbide (B 4 C) in stainless-steel tubes, was introduced into service in boiling water reactors in April 1961. Since that time this blade has become the standard reference control element in General Electric boiling-water reactors, replacing the 2% boron-stainless-steel blades previously used. The blades consist of a sheathed, cruciform array of small vertical stainless-steel tubes filled with compácted boron-carbide powder. The boron-carbide powder is confined longitudinally into several independent compartments by swaging over ball bearings located inside the tubes. The development and use of boron-carbide control rods is discussed in five phases: 1. Summary of experience with boron-steel blades and reasons for transition to boron-carbide control; 2. Design of the boron-carbide blade, beginning with developmental experiments, including early measurements performed in the AEC ''Control Rod Material and Development Program'' at the Vallecitos Atomic Laboratory, through a description of the final control blade configuration; 3. Fabrication of the blades and quality control procedures; 4. Results of confirmatory pre-operational mechanical and reactivity testing; and 5. Post-operational experience with the blades, including information on the results of mechanical inspection and reactivity testing after two years of reactor service. (author) [fr

  9. Study of Serum Magnesium in Surgical Stress

    Directory of Open Access Journals (Sweden)

    Sandip D. Lambe

    2016-10-01

    Full Text Available Background: A deficiency of magnesium is of clinical importance in hospitalized patients. The prevalence of hypomagnesaemia is high in critically ill patients. Knowing the important role of magnesium in surgical cases, it is necessary to anticipate and diagnose magnesium deficiency prior to surgery and in the immediate postoperative period to correct it. Aims and Objectives: The aim of this study was to analyse serum magnesium levels in patients undergoing emergency surgical procedures, planned surgical procedures and normal healthy matched controls and to compare the serum magnesium levels in all the three groups. Materials and Methods: The study participants were divided into three groups: i Group I: patients undergoing emergency major surgery ii Group II: patients undergoing planned major surgery iii Group III: normal healthy controls. Serum Magnesium investigation was done by Xylidyl Blue Method using UV-1800/Shimadzu UV-Spectrophotometer. Results: The mean serum Magnesium in control group was found to be 2.16 ± 0.30 mg/dl. In patients undergoing planned surgery, pre-operative serum magnesium was normal (2.16 ± 0.22 mg/dl but decreased significantly on postoperative day 3 (1.63 ± 0.27 mg/dl and day 6 (1.97 ± 0.12 mg/dl and returned to normal level by post-operative day 9 (2.14 ± 0.14 mg/dl compared to controls. In patients undergoing emergency surgery, serum magnesium was decreased pre-operatively (1.90 ± 0.48 mg/dl.Further significant reduction was found at post-operative day 3 (1.38 ± 0.28 mg/dl, day 6 (1.59 ± 0.30 mg/dl and day 9 (1.88 ± 0.46 mg/dl compared to controls. Mean serum Magnesium overall in emergency surgery patients was reduced significantly compared to planned surgery patients. Conclusion: A transient fall in the serum Magnesium as compared to its pre-operative level was seen in every patient undergoing surgical procedure due to surgical stress. In patients undergoing emergency surgical procedure, the decrease was

  10. Nuclear reactor shield including magnesium oxide

    International Nuclear Information System (INIS)

    Rouse, C.A.; Simnad, M.T.

    1981-01-01

    An improvement is described for nuclear reactor shielding of a type used in reactor applications involving significant amounts of fast neutron flux. The reactor shielding includes means providing structural support, neutron moderator material, neutron absorber material and other components, wherein at least a portion of the neutron moderator material is magnesium in the form of magnesium oxide either alone or in combination with other moderator materials such as graphite and iron

  11. Distribution of magnesium in groundwater of Serbia

    OpenAIRE

    Milosavljević Jovana; Andrijašević Jakov; Todorović Maja

    2013-01-01

    Magnesium is chemical element commonly found in the environment and the main constituent of many types of minerals and rocks. This element is also essential to man. Owing to its abundance in nature, magnesium is present in all water resources and generally occur as the dominant cation, with calcium, in those that feature low TDS levels, whose origin is associated with large formations of sedimentary rocks (limestones, dolomites), and to a lesser extent with...

  12. Understanding the Irradiation Behavior of Zirconium Carbide

    International Nuclear Information System (INIS)

    Motta, Arthur; Sridharan, Kumar; Morgan, Dane; Szlufarska, Izabela

    2013-01-01

    Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450ee)C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known about basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800ee)C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation

  13. Use of spectroscopic techniques for the chemical analysis of biomorphic silicon carbide ceramics

    International Nuclear Information System (INIS)

    Pavon, J.M. Cano; Alonso, E. Vereda; Cordero, M.T. Siles; Torres, A. Garcia de; Lopez-Cepero, J.M.

    2005-01-01

    Biomorphic silicon carbide ceramics are a new class of materials prepared by several complex processing steps including pre-processing (shaping, drying, high-temperature pyrolysis in an inert atmosphere) and reaction with liquid silicon to obtain silicon-carbide. The results of industrial process of synthesis (measured by the SiC content) must be evaluated by means of fast analytical methods. In the present work, diverse samples of biomorphic ceramics derived from wood are studied for to evaluate the capability of the different analytical techniques (XPS, LIBS, FT-IR and also atomic spectroscopy applied to previously dissolved samples) for the analysis of these materials. XPS and LIBS gives information about the major components, whereas XPS and FT-IR can be used to evaluate the content of SiC. On the other hand, .the use of atomic techniques (as ICP-MS and ETA-AAS) is more adequate for the analysis of metal ions, specially at trace level. The properties of ceramics depend decisively of the content of chemical elements. Major components found were C, Si, Al, S, B and Na in all cases. Previous dissolution of the samples was optimised by acid attack in an oven under microwave irradiation

  14. Immunological Response to Biodegradable Magnesium Implants

    Science.gov (United States)

    Pichler, Karin; Fischerauer, Stefan; Ferlic, Peter; Martinelli, Elisabeth; Brezinsek, Hans-Peter; Uggowitzer, Peter J.; Löffler, Jörg F.; Weinberg, Annelie-Martina

    2014-04-01

    The use of biodegradable magnesium implants in pediatric trauma surgery would render surgical interventions for implant removal after tissue healing unnecessary, thereby preventing stress to the children and reducing therapy costs. In this study, we report on the immunological response to biodegradable magnesium implants—as an important aspect in evaluating biocompatibility—tested in a growing rat model. The focus of this study was to investigate the response of the innate immune system to either fast or slow degrading magnesium pins, which were implanted into the femoral bones of 5-week-old rats. The main alloying element of the fast-degrading alloy (ZX50) was Zn, while it was Y in the slow-degrading implant (WZ21). Our results demonstrate that degrading magnesium implants beneficially influence the immune system, especially in the first postoperative weeks but also during tissue healing and early bone remodeling. However, rodents with WZ21 pins showed a slightly decreased phagocytic ability during bone remodeling when the degradation rate reached its maximum. This may be due to the high release rate of the rare earth-element yttrium, which is potentially toxic. From our results we conclude that magnesium implants have a beneficial effect on the innate immune system but that there are some concerns regarding the use of yttrium-alloyed magnesium implants, especially in pediatric patients.

  15. Magnesium-phosphate-glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, T.; Kukacka, L.E.

    1982-09-23

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate, exhibits rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  16. Magnesium phosphate glass cements with ceramic-type properties

    Science.gov (United States)

    Sugama, Toshifumi; Kukacka, Lawrence E.

    1984-03-13

    Rapid setting magnesium phosphate (Mg glass) cementitious materials consisting of magnesium phosphate cement paste, polyborax and water-saturated aggregate exhibiting rapid setting and high early strength characteristics. The magnesium glass cement is prepared from a cation-leachable powder and a bivalent metallic ion-accepting liquid such as an aqueous solution of diammonium phosphate and ammonium polyphosphate. The cation-leachable powder includes a mixture of two different magnesium oxide powders processed and sized differently which when mixed with the bivalent metallic ion-accepting liquid provides the magnesium glass cement consisting primarily of magnesium ortho phosphate tetrahydrate, with magnesium hydroxide and magnesium ammonium phosphate hexahydrate also present. The polyborax serves as a set-retarder. The resulting magnesium mono- and polyphosphate cements are particularly suitable for use as a cementing matrix in rapid repair systems for deteriorated concrete structures as well as construction materials and surface coatings for fireproof structures.

  17. Magnesium-molybdenum compounds as matrices of generators of 99m Tc

    International Nuclear Information System (INIS)

    Jimenez M, T.S.; Monroy G, F.

    2004-01-01

    The generator system of radionuclides more diffused, and used in the world, it is the 99 Mo / 99m Tc. These use 99 Mo, product of fission of the 235 U of very high specific activity, adsorbed on alumina (0.2% of 99 Mo/gram of alumina). An alternative for the production of generators of low activity specifies, via the reaction 98 Mo(n, γ) 99 Mo, it is based on the use of compounds with molybdates base, as matrices of the generators 99 Mo / 99m Tc. In this work is proposed to develop a generator at base of compounds of magnesium molybdates that could be irradiated after its synthesis, given the short half life of the only radioisotope produced by magnesium: 27 Mg (t 1/2 = 9.46 m). In this work two parameters were studied, fundamental in the preparation of the magnesium molybdates, matrices of the generators 99 Mo / 99m Tc, and their influence in the efficiency and radionuclide purity: the washing of the gels previous to its irradiation and the molar ratio Mo:Mg. The magnesium molybdates non washing presents bigger efficiencies (72%), but they don't fulfill a smaller percentage to 0.015% of 99 Mo, neither with a radiochemical purity of 90%, except when the molar ratio Mo: Mg of 1:1.08 which provide the best results. (Author)

  18. IMPACT OF DEPTH OF CUT ON CHIP FORMATION IN AZ91HP MAGNESIUM ALLOY MILLING WITH TOOLS OF VARYING CUTTING EDGE GEOMETRY

    Directory of Open Access Journals (Sweden)

    Olga Gziut

    2015-05-01

    Full Text Available Safety of Mg milling processes can be expressed by means of the form and the number of fractions of chips formed during milling. This paper presents the state of the art of magnesium alloys milling technology in the aspect of chip fragmentation. Furthermore, the impact of the depth of cut ap and the rake angle γ on the number of chip fractions was analysed in the study. These were conducted on AZ91HP magnesium cast alloy and milling was performed with carbide tools of varying rake angle values (γ = 5º and γ = 30º. It was observed that less intense chip fragmentation occurs with decreasing depth of cut ap. The number of chip fractions was lower at the tool rake angle of γ = 30º. The test results were formulated as technological recommendations according to the number of generated chip fractions.

  19. Hafnium carbide nanocrystal chains for field emitters

    International Nuclear Information System (INIS)

    Tian, Song; Li, Hejun; Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang

    2014-01-01

    A hafnium carbide (HfC) nanostructure, i.e., HfC nanocrystal chain, was synthesized by a chemical vapor deposition (CVD) method. X-ray diffractometer, field-emission scanning electron microscope, transmission electron microscope, and energy-dispersive X-ray spectrometer were employed to characterize the product. The synthesized one-dimensional (1D) nanostructures with many faceted octahedral nanocrystals possess diameters of tens of nanometers to 500 nm and lengths of a few microns. The chain-like structures possess a single crystalline structure and preferential growth direction along the [1 0 0] crystal orientation. The growth of the chains occurred through the vapor–liquid–solid process along with a negative-feedback mechanism. The field emission (FE) properties of the HfC nanocrystal chains as the cold cathode emitters were examined. The HfC nanocrystal chains display good FE properties with a low turn-on field of about 3.9 V μm −1 and a high field enhancement factor of 2157, implying potential applications in vacuum microelectronics.

  20. Precision Surface Grinding of Silicon Carbide

    Directory of Open Access Journals (Sweden)

    Mohamed Konneh

    2016-12-01

    Full Text Available Silicon carbide (SiC is well known for its excellent material properties, high durability, high wear resistance, light weight and extreme hardness. Among the engineering applications of this material, it is an excellent candidate for optic mirrors used in an Airbone Laser (ABL device. However, the low fracture toughness and extreme brittleness characteristics of SiC are predominant factors for its poor machinability. This paper presents surface grinding of SiC using diamond cup wheels to assess the performance of diamond grits with respect to the roughness produced on the machined surfaces and also the morphology of the ground work-piece. Resin bonded diamond cup wheels of grit sizes 46 µm, 76 µm and 107 µm; depth of cut of 10 µm, 20 µm and 30 µm; and feed rate of 2 mm/min, 12 mm/min and 22 mm/min were used during this machining investigation. It has been observed that the 76 grit performs better in terms of low surface roughness value and morphology.

  1. Lattice location of impurities in silicon Carbide

    CERN Document Server

    AUTHOR|(CDS)2085259; Correia Martins, João Guilherme

    The presence and behaviour of transition metals (TMs) in SiC has been a concern since the start of producing device-grade wafers of this wide band gap semiconductor. They are unintentionally introduced during silicon carbide (SiC) production, crystal growth and device manufacturing, which makes them difficult contaminants to avoid. Once in SiC they easily form deep levels, either when in the isolated form or when forming complexes with other defects. On the other hand, using intentional TM doping, it is possible to change the electrical, optical and magnetic properties of SiC. TMs such as chromium, manganese or iron have been considered as possible candidates for magnetic dopants in SiC, if located on silicon lattice sites. All these issues can be explored by investigating the lattice site of implanted TMs. This thesis addresses the lattice location and thermal stability of the implanted TM radioactive probes 56Mn, 59Fe, 65Ni and 111Ag in both cubic 3C- and hexagonal 6H SiC polytypes by means of emission cha...

  2. Vapor pressure and thermodynamics of beryllium carbide

    International Nuclear Information System (INIS)

    Rinehart, G.H.; Behrens, R.G.

    1980-01-01

    The vapor pressure of beryllium carbide has been measured over the temperature range 1388 to 1763 K using Knudsen-effusion mass spectrometry. Vaporization occurs incongruently according to the reaction Be 2 C(s) = 2Be(g) + C(s). The equilibrium vapor pressure above the mixture of Be 2 C and C over the experimental temperature range is (R/J K -1 mol -1 )ln(p/Pa) = -(3.610 +- 0.009) x 10 5 (K/T) + (221.43 +- 1.06). The third-law enthalpy change for the above reaction obtained from the present vapor pressures is ΔH 0 (298.15 K) = (740.5 +- 0.1) kJ mol -1 . The corresponding second-law result is ΔH 0 (298.15 K) = (732.0 +- 1.8) kJ mol -1 . The enthalpy of formation for Be 2 C(s) calculated from the present third-law vaporization enthalpy and the enthalpy of formation of Be(g) is ΔH 0 sub(f)(298.15 K) = -(92.5 +- 15.7) kJ mol -1 . (author)

  3. The etching behaviour of silicon carbide compacts

    International Nuclear Information System (INIS)

    Jepps, N.W.; Page, T.F.

    1981-01-01

    A series of microstructural investigations has been undertaken in order to explore the reliability of particular etches in revealing microstructural detail in silicon carbide compacts. A series of specimens has been etched and examined following complete prior microstructural characterization by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffractometry techniques. In particular, the sensitivity of both a molten salt (KOH/KNO 3 ) etch and a commonly-used oxidizing electrolytic 'colour' etch to crystal purity, crystallographic orientation and polytypic structure has been established. The molten salt etch was found to be sensitive to grain boundaries and stacking disorder while the electrolytic etch was found to be primarily sensitive to local purity and crystallographic orientation. Neither etch appeared intrinsically polytype sensitive. Specifically, for the 'colour' etch, the p- or n-type character of impure regions appears critical in controlling etching behaviour; p-type impurities inhibiting, and n-type impurities enhancing, oxidation. The need to interpret etching behaviour in a manner consistent with the results obtained by a variety of other microstructural techniques will be emphasized. (author)

  4. Auger electron spectroscopy studies of boron carbide

    International Nuclear Information System (INIS)

    Madden, H.H.; Nelson, G.C.; Wallace, W.O.

    1986-01-01

    Auger electron spectroscopy has been used to probe the electronic structure of ion bombardment (IB) cleaned surfaces of B 9 C and B 4 C samples. The shapes of the B-KVV and C-KVV Auger lines were found to be relatively insensitive to the bulk stoichiometry of the samples. This indicates that the local chemical environments surrounding B and C atoms, respectively, on the surfaces of the IB cleaned samples do not change appreciably in going from B 9 C to B 4 C. Fracturing the sample in situ is a way of producing a clean representative internal surface to compare with the IB surfaces. Microbeam techniques have been used to study a fracture surface of the B 9 C material with greater spatial resolution than in our studies of IB surfaces. The B 9 C fracture surface was not homogeneous and contained both C-rich and B-rich regions. The C-KVV line for the C-rich regions was graphitic in shape. Much of the C-rich regions was found by IB to be less than 100 nm in thickness. The C-KVV line from the B-rich regions was carbidic and did not differ appreciably in shape from those recorded for the IB cleaned surfaces

  5. Graphene ribbon growth on structured silicon carbide

    Energy Technology Data Exchange (ETDEWEB)

    Stoehr, Alexander; Link, Stefan; Starke, Ulrich [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Baringhaus, Jens; Aprojanz, Johannes; Tegenkamp, Christoph [Institut fuer Festkoerperphysik, Leibniz Universitaet Hannover (Germany); Niu, Yuran [MAX IV Laboratory, Lund University (Sweden); present address: School of Physics and Astronomy, Cardiff University (United Kingdom); Zakharov, Alexei A. [MAX IV Laboratory, Lund University (Sweden); Chen, Chaoyu; Avila, Jose; Asensio, Maria C. [Synchrotron SOLEIL and Universite Paris-Saclay, Gif sur Yvette (France)

    2017-11-15

    Structured Silicon Carbide was proposed to be an ideal template for the production of arrays of edge specific graphene nanoribbons (GNRs), which could be used as a base material for graphene transistors. We prepared periodic arrays of nanoscaled stripe-mesas on SiC surfaces using electron beam lithography and reactive ion etching. Subsequent epitaxial graphene growth by annealing is differentiated between the basal-plane mesas and the faceting stripe walls as monitored by means of atomic force microscopy (AFM). Microscopic low energy electron diffraction (μ-LEED) revealed that the graphene ribbons on the facetted mesa side walls grow in epitaxial relation to the basal-plane graphene with an armchair orientation at the facet edges. The π-band system of the ribbons exhibits linear bands with a Dirac like shape corresponding to monolayer graphene as identified by angle-resolved photoemission spectroscopy (ARPES). (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. The role of magnesium in the electrochemical behaviour of 5XXX aluminium-magnesium alloys

    NARCIS (Netherlands)

    Flores Ramirez, J.R.

    2006-01-01

    An investigation concerning the effects of magnesium on the intergranular corrosion susceptibility of AA5XXX aluminium alloys was carried out. In the present work, magnesium is found to be highly mobile in the bulk metal as well as in the aluminium oxide. This mobility is also found to be dependent

  7. Nanowires of silicon carbide and 3D SiC/C nanocomposites with inverse opal structure

    International Nuclear Information System (INIS)

    Emelchenko, G.A.; Zhokhov, A.A.; Masalov, V.M.; Kudrenko, E.A.; Tereshenko, A.N.; Steinman, E.A.; Khodos, I.I.; Zinenko, V.I.; Agafonov, Yu.A.

    2011-01-01

    Synthesis, morphology, structural and optical characteristics of SiC NWs and SiC/C nanocomposites with an inverse opal lattice have been investigated. The samples were prepared by carbothermal reduction of silica (SiC NWs) and by thermo-chemical treatment of opal matrices (SiC/C) filled with carbon compounds which was followed by silicon dioxide dissolution. It was shown that the nucleation of SiC NWs occurs at the surface of carbon fibers felt. It was observed three preferred growth direction of the NWs: [111], [110] and [112]. HRTEM studies revealed the mechanism of the wires growth direction change. SiC/C- HRTEM revealed in the structure of the composites, except for silicon carbide, graphite and amorphous carbon, spherical carbon particles containing concentric graphite shells (onion-like particles).

  8. The effect of carbon mole ratio on the fabrication of silicon carbide

    Directory of Open Access Journals (Sweden)

    Sutham Niyomwas

    2008-03-01

    Full Text Available Silicon Carbide (SiC particles were synthesized by self-propagating high temperature synthesis (SHS from a powder mixture of SiO2-C-Mg. The reaction was carried out in a SHS reactor under static argon gas at a pressure of 0.5 MPa. The standard Gibbs energy minimization method was used to calculate the equilibrium composition of the reacting species. The effects of carbon mole ratio on the precursor mixture (C/SiO2/Mg: 1/1/2 to 3/1/2 and on the SiC conversion were investigated using X-ray diffraction and scanning electron microscope technique. The as-synthesized products of SiC-MgO powders were leached with 0.1M HCl acid solution to obtain the SiC particles.

  9. Blood compatibility of magnesium and its alloys.

    Science.gov (United States)

    Feyerabend, Frank; Wendel, Hans-Peter; Mihailova, Boriana; Heidrich, Stefanie; Agha, Nezha Ahmad; Bismayer, Ulrich; Willumeit-Römer, Regine

    2015-10-01

    Blood compatibility analysis in the field of biomaterials is a highly controversial topic. Especially for degradable materials like magnesium and its alloys no established test methods are available. The purpose of this study was to apply advanced test methodology for the analysis of degrading materials to get a mechanistic insight into the corrosion process in contact with human blood and plasma. Pure magnesium and two magnesium alloys were analysed in a modified Chandler-Loop setup. Standard clinical parameters were determined, and a thorough analysis of the resulting implant surface chemistry was performed. The contact of the materials to blood evoked an accelerated inflammatory and cell-induced osteoconductive reaction. Corrosion products formed indicate a more realistic, in vivo like situation. The active regulation of corrosion mechanisms of magnesium alloys by different cell types should be more in the focus of research to bridge the gap between in vitro and in vivo observations and to understand the mechanism of action. This in turn could lead to a better acceptance of these materials for implant applications. The presented study deals with the first mechanistic insights during whole human blood contact and its influence on a degrading magnesium-based biomaterial. The combination of clinical parameters and corrosion layer analysis has been performed for the first time. It could be of interest due to the intended use of magnesium-based stents and for orthopaedic applications for clinical applications. An interest for the readers of Acta Biomaterialia may be given, as one of the first clinically approved magnesium-based devices is a wound-closure device, which is in direct contact with blood. Moreover, for orthopaedic applications also blood contact is of high interest. Although this is not the focus of the manuscript, it could help to rise awareness for potential future applications. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  10. Corrosion behavior of porous chromium carbide in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2012-01-01

    Highlights: ► Corrosion behavior of porous Cr 3 C 2 in various SCW conditions was investigated. ► Cr 3 C 2 is stable in SCW at temperature below 420–430 °C. ► Cracks and disintegration were observed at elevated testing temperatures. ► Degradation of Cr 3 C 2 is related to the intermediate product CrOOH. - Abstract: The corrosion behavior of highly porous chromium carbide (Cr 3 C 2 ) prepared by a reactive sintering process was characterized at temperatures ranging from 375 °C to 625 °C in a supercritical water environment with a pressure of 25–30 MPa. The test results show that porous chromium carbide is stable in SCW environments at temperatures under 425 °C, above which disintegration occurred. The porous carbide was also tested under hydrothermal conditions of pressures between 12 MPa and 50 MPa at constant temperatures of 400 °C and 415 °C, respectively. The pressure showed little effect on the stability of chromium carbide in the tests at those temperatures. The mechanism of disintegration of chromium carbide in SCW environments is discussed.

  11. Post traumatic tetanus and role magnesium sulphate

    International Nuclear Information System (INIS)

    Sikendr, R.I.; Samad, B.U.; Memon, M.I.

    2009-01-01

    Tetanus is a life threatening disease. Reported mortality for tetanus is 15-39%. Conventional treatment includes heavy sedation and artificial ventilation. Complications resulting from long term heavy sedation and artificial ventilation contribute to 60% of the total mortality caused by tetanus. In this study magnesium sulphate was used to reduce the need for sedation and artificial ventilation. Objectives of this prospective study were to determine the role of magnesium sulphate in post traumatic tetanus. The study was carried out in surgical Intensive Care at Pakistan Institute of Medical Sciences (PIMS), Islamabad from Jan 2004 to Dec 2007. Forty-four patients presented during this period and 33 patients were included in the study. All patients had tracheostomy done within 48 hours. Every patient was started Magnesium Sulphate therapy for control of spasms after sending baseline investigations. Patients were given ventilatory support when needed. All data was entered in well structured proforma. SPSS-10 was used to analyse data. Thirty-three patients were included in the study and all patients were given magnesium sulphate. Out of these, 45.5% cases were grade 4 tetanus, 73.6% and 63.3% cases did not require artificial ventilation and additional sedation respectively, 51.1% patients remained free of complications of tetanus. Overall mortality was 30.3%. Use of Magnesium Sulphate is safe and reduces the need for sedation and artificial ventilation in high grade tetanus thus contributing to survival benefit in adult post-traumatic tetanus cases. (author)

  12. Magnesium and manganese content of halophilic bacteria

    International Nuclear Information System (INIS)

    de Medicis, E.; Paquette, J.; Gauthier, J.J.; Shapcott, D.

    1986-01-01

    Magnesium and manganese contents were measured by atomic absorption spectrophotometry in bacteria of several halophilic levels, in Vibrio costicola, a moderately halophilic eubacterium growing in 1 M NaCl, Halobacterium volcanii, a halophilic archaebacterium growing in 2.5 NaCl, Halobacterium cutirubrum, an extremely halophilic archaebacterium growing in 4 M NaCl, and Escherichia coli, a nonhalophilic eubacterium growing in 0.17 M NaCl. Magnesium and manganese contents varied with the growth phase, being maximal at the early log phase. Magnesium and manganese molalities in cell water were shown to increase with the halophilic character of the logarithmically growing bacteria, from 30 mmol of Mg per kg of cell water and 0.37 mmol of Mn per kg of cell water for E. coli to 102 mmol of Mg per kg of cell water and 1.6 mmol of Mn per kg of cell water for H cutirubrum. The intracellular concentrations of manganese were determined independently by a radioactive tracer technique in V. costicola and H. volcanii. The values obtained by 54 Mn loading represented about 70% of the values obtained by atomic absorption. The increase of magnesium and manganese contents associated with the halophilic character of the bacteria suggests that manganese and magnesium play a role in haloadaptation

  13. Optical characterisation of cubic silicon carbide

    International Nuclear Information System (INIS)

    Jackson, S.M.

    1998-09-01

    The varied properties of Silicon Carbide (SiC) are helping to launch the material into many new applications, particularly in the field of novel semiconductor devices. In this work, the cubic form of SiC is of interest as a basis for developing integrated optical components. Here, the formation of a suitable SiO 2 buried cladding layer has been achieved by high dose oxygen ion implantation. This layer is necessary for the optical confinement of propagating light, and hence optical waveguide fabrication. Results have shown that optical propagation losses of the order of 20 dB/cm are obtainable. Much of this loss can be attributed to mode leakage and volume scattering. Mode leakage is a function of the effective oxide thickness, and volume scattering related to the surface layer damage. These parameters have been shown to be controllable and so suggests that further reduction in the waveguide loss is feasible. Analysis of the layer growth mechanism by RBS, XTEM and XPS proves that SiO 2 is formed, and that the extent, of formation depends on implant dose and temperature. The excess carbon generated is believed to exit the oxide layer by a number of varying mechanisms. The result of this appears to be a number of stable Si-C-O intermediaries that, form regions to either depth extreme of the SiO 2 layer. Early furnace tests suggest a need to anneal at, temperatures approaching the melting point of the silicon substrate, and that the quality of the virgin material is crucial in controlling the resulting oxide growth. (author)

  14. Kinetics of niobium carbide precipitation in ferrite

    International Nuclear Information System (INIS)

    Gendt, D.

    2001-01-01

    The aim of this study is to develop a NbC precipitation modelling in ferrite. This theoretical study is motivated by the fact it considers a ternary system and focus on the concurrence of two different diffusion mechanisms. An experimental study with TEP, SANS and Vickers micro-hardening measurements allows a description of the NbC precipitation kinetics. The mean radius of the precipitates is characterized by TEM observations. To focus on the nucleation stage, we use the Tomographic Atom Probe that analyses, at an atomistic scale, the position of the solute atoms in the matrix. A first model based on the classical nucleation theory and the diffusion-limited growth describes the precipitation of spherical precipitates. To solve the set of equations, we use a numerical algorithm that furnishes an evaluation of the precipitated fraction, the mean radius and the whole size distribution of the particles. The parameters that are the interface energy, the solubility product and the diffusion coefficients are fitted with the data available in the literature and our experimental results. It allows a satisfactory agreement as regards to the simplicity of the model. Monte Carlo simulations are used to describe the evolution of a ternary alloy Fe-Nb-C on a cubic centred rigid lattice with vacancy and interstitial mechanisms. This is realized with an atomistic description of the atoms jumps and their related frequencies. The model parameters are fitted with phase diagrams and diffusion coefficients. For the sake of simplicity, we consider that the precipitation of NbC is totally coherent and we neglect any elastic strain effect. We can observe different kinetic paths: for low supersaturations, we find an expected precipitation of NbC but for higher supersaturations, the very fast diffusivity of carbon atoms conducts to the nucleation of iron carbide particles. We establish that the occurrence of this second phenomenon depends on the vacancy arrival kinetics and can be related

  15. Carbide process picked for Chinese polyethylene plant

    International Nuclear Information System (INIS)

    Alperowicz, N.

    1993-01-01

    Union Carbide (Danbury, CT) is set to sign up its eighth polyethylene (PE) license in China. The company has been selected to supply its Unipol technology to Jilin Chemical Industrial Corp. (JCIC) for a 100,000-m.t./year linear low-density PE (LLDPE) plant at Jilin. The plant will form part of a $2-billion petrochemical complex, based on a 300,000-m.t./year ethylene unit awarded to a consortium made up of Samsung Engineering (Seoul) and Linde. A 10,000-m.t./year butene-1 unit will also be built. Toyo Engineering, Snamprogetti, Mitsubishi Heavy Industries, and Linde are competing for the contract to supply the LLDPE plant. The signing is expected this spring. Two contenders are vying to supply an 80,000-m.t./year phenol plant for JCIC. They are Mitsui Engineering, offering the Mitsui Petrochemical process, and Chisso, with UOP technology. Four Unipol process PE plants are under construction in China and three are in operation. At Guangzhou, Toyo Engineering is building a 100,000-m.t./year plant, due onstream in 1995, while Snamprogetti is to finish construction of two plants in the same year at Zhonguyan (120,000 m.t./year) and at Maoming (140,000 m.t./year). The Daquing Design Institute is responsible for the engineering of a 60,000-m.t./year Unipol process PE plant, expected onstream early in 1995. Existing Unipol process PE plants are located in Qilu (60,000 m.t./year LLDPE and 120,000 m.t./year HDPE) and at Taching (60,000 m.t./year HDPE)

  16. The initial oxidation of magnesium

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, M.

    2004-07-01

    Pure Magnesium samples have been oxidised in an UHV chamber under controlled conditions. Pressure range was 10{sup -10} Torr to 10{sup -7} Torr, temperature range was 273 K to 435 K. The samples have then been investigated with XPS, Ellipsometry and HERDA. Additionally, furnace oxidations at 750 Torr and 673 K have been carried out and investigated with XPS. From the XPS measurements data concerning layer thickness, composition, oxidation state and binding state have been gained. The ellipsometrie measurements yielded additional data concerning layer thickness as well as the size of the band gap of the developing oxide. With the HERDA measurements, the oxygen content within the oxide layer has been determined yielding additional information about composition and layer thickness. The layer thickness as a function of time have then been modelled with a kinetic growth model of Fromhold and Cook. For the refinement of the XPS data concerning layer thickness and composition, the pronounced plasmon excitations that occur in magnesium have been determined with two different procedures which have been developed in the methodical part of this work. The layer thickness and composition values have thus been corrected. Results: Two oxidation stages could be identified: a strong increase for the first few Langmuirs (1L = 1s x 10{sup -6} Torr), followed by a saturation'' region which was about 1.2 nm to 1.5 nm in magnitude. XPS and ellipsometry results have thereby been in very good agreement. The composition of the developing oxide showed a clear deviation from stoichiometric MgO, mainly caused by an oxygen deficiency; this deficiency has also been confirmed with the HERDA measurements. The Mg/O ratio as a function of layer thickness showed a continous decay starting from very high values for the thinnest layers (>{proportional_to}2.5) down to a saturation value of about 1.4, even for larger layer thicknesses gained with the furnace oxidations. The determination of

  17. Magnesium diboride: one year on

    International Nuclear Information System (INIS)

    Canfield, Paul; Bud'ko, Sergey L.

    2002-01-01

    Last January physicists discovered that an innocuous compound that had been sitting on the shelf for decades was, in fact, a record-breaking intermetallic superconductor. At the end of 2000 superconductivity in metal alloys and compounds appeared to remain trapped by a glass ceiling. Over the previous 10 years the temperature at which certain oxide-based compounds - such as bismuth strontium calcium copper oxide and mercury barium calcium copper oxide - lost their resistance to electric current had soared to well over 100 K. Meanwhile, the transition temperature, Tc, for carbon-based materials, including alkali-doped carbon-60 compounds, had risen close to the boiling point of liquid nitrogen (77 K). During the same period, however, the superconducting transition temperature of intermetallic compounds (materials made solely of metals and metal-like elements) remained close to 20 K - as it had been since the mid-1960s. By February 2001 everything had totally changed. It was as if a firecracker had gone off in the tidy little ant hill of superconductivity research. For the first few months of 2001, groups all over the world raced to understand the properties of a new intermetallic superconductor. The substance that everyone was scrambling to buy or make, the substance that was causing this grand commotion, was magnesium diboride (Mg B 2 ). This seemingly innocuous binary compound, which had been present in many labs for over half a century, had been discovered to superconduct just below 40 K. Even though we already know an amazing amount about Mg B 2 , our knowledge of superconductivity in this compound is only one year old. There is therefore the very real potential to improve its critical properties. In a similar vein, it is almost certain that our understanding of this extreme example of intermetallic superconductivity will greatly improve over the next few years and may even reveal other extreme superconductors. (U.K.)

  18. Potassium and magnesium succinatouranilates – Synthesis and crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Novikov, S.A., E-mail: serg.alex.novikov@gmail.com [Samara National Research University, 443086 Samara (Russian Federation); Grigoriev, M.S. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071 Moscow (Russian Federation); Serezhkina, L.B.; Serezhkin, V.N. [Samara National Research University, 443086 Samara (Russian Federation)

    2017-04-15

    Single crystal X-ray diffraction has been applied to determine the structures of two new uranyl coordination polymers: K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}] [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), where C{sub 4}H{sub 4}O{sub 4}{sup 2-} is succinate anion. Crystals of 1 and 2 contain polymeric complex anions [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} with the same A{sub 2}Q{sup 02}{sub 3} crystallochemical formula (A=UO{sub 2}{sup 2+}, Q{sup 02}=C{sub 4}O{sub 4}H{sub 4}{sup 2-}), and have layered (1) or chain (2) structure. It has been found, that conformation of succinate ions is one of the factors, which affects the structure of [(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]{sup 2-} anions. IR spectra of these new compounds are in good agreement with crystallographic data. Topological analysis of the uranium dicarboxylates with A{sub 2}Q{sup 02}{sub 3} crystallochemical formula has shown the presence of five isomers which differ from each other in coordination sequences and / or dimensionality. - Graphical abstract: Crystal structures of two new uranium(VI) coordination polymers with succinate linkers, namely K{sub 2}[(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}] (1) and [Mg(H{sub 2}O){sub 6}][(UO{sub 2}){sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}]·2H{sub 2}O (2), were determined by single-crystal XRD. Crystals of studied compounds are based on 2D or 1D structural units with the same composition and crystallochemical formula. Topological isomerism in A{sub 2}Q{sup 02}{sub 3} crystallochemical group and conformations of succinate anions in uranyl complexes are under discussion. - Highlights: • Two new uranium coordination polymers were synthesized. • Their structural units have the same composition and crystallochemical formula. • In spite the same composition and CCF dimensionality of units is different. • Structural features of uranyl CPs are affected by linker conformations.

  19. Investigation of magnesium oxychloride cement at the initial hardening stage

    Directory of Open Access Journals (Sweden)

    Averina Galina

    2018-01-01

    Full Text Available The paper investigates the process of variation of magnesium oxychloride cement deformations at the initial hardening stage depending on the activity of magnesium oxide powder which is determined by the parameters of the source material burning. Investigation is focused on magnesium cements obtained from pure magnesium hydroxide. Source materials were burnt at various temperatures with the purpose to obtain magnesium oxide powder with different activity. Regular content of hydrated phases was determined in hardened magnesium cement prepared on the basis of binders with different activity. The study reveals the influence of magnesium oxide powder activity on the process of deformation occurrence in hardened magnesium cement and its tendency to crack formation.

  20. Effect of carbides on erosion resistance of 23-8-N steel

    Indian Academy of Sciences (India)

    8-N nitronic steel, carbides present in the form of bands are observed to accelerate the erosion rate. Coarse ... lar carbides, precipitating at random boundaries, were more likely to ... 23-8-N nitronic steel is basically austenitic stainless steel.