WorldWideScience

Sample records for magic nuclei

  1. Theory of magic nuclei

    International Nuclear Information System (INIS)

    Nosov, V.G.; Kamchatnov, A.M.

    A consistent theory of the shell and magic oscillations of the masses of spherical nuclei is developed on the basis of the Fermi liquid concept of the energy spectrum of nuclear matter. A ''magic'' relationship between the system's dimensions and the limiting momentum of the quasi-particle distribution is derived; an integer number of the de Broglie half-waves falls on the nuclear diameter. An expression for the discontinuity in the nucleon binding energy in the vicinity of a magic nucleus is obtained. The role of the residual interaction is analyzed. It is shown that the width of the Fermi-surface diffuseness due to the residual interaction is proportional to the squared vector of the quasi-particle orbital angular momentum. The values of the corresponding proportionality factors (the coupling constant for quasi particles) are determined from the experimental data for 52 magic nuclei. The rapid drop of the residual interaction with increasing nuclear size is demonstrated. (7 figures, 3 tables) (U.S.)

  2. MAGIC NUCLEI: Tin-100 turns up

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    In the same way as the Periodic Table of chemical elements reflects the successive filling of orbital electron shells, in nuclear physics the socalled 'magic' numbers correspond to closed shells of 2, 8, 20, 28, 50, 82, 126,... neutrons and/or protons. More tightly bound than other nuclei, these are the nuclear analogues of the inert gases. 'Doubly magic' nuclei have closed shells of both neutrons and protons. Examples in nature are helium-4 (2 protons and 2 neutrons), oxygen-16 (8 and 8), calcium-40 (20 and 20) and calcium-48 (20 and 28). Radioactive tin-132 (50+82) has been widely studied

  3. Effective forces in near-magic nuclei

    International Nuclear Information System (INIS)

    Artamonov, S.A.; Isakov, V.I.; Ogloblin, S.G.

    1984-01-01

    Characteristics of 146 Gd, 206 Hg, sup(206, 208)Tl, sup(206, 208, 210)Pb, sup(208, 210)Bi, 210 Po nuclei are calculated on the base of representations on universal effective interaction of finite range. Discrepancy with the experiment for 210 Bi nucleus disappears if the method of ''penalty'' functions is used for search of optimum parameters. New parameters of effective interaction common for all the considered two-quasi-particle nuclei are determined. Parameters of tensor forces undergo most noticeable danges as compared with other calculations. Descriptions of lowest levels not only 210 Bi but also 206 Tl as well as collective states of 208 Pb and a new magic nucleus 146 Gd are improved. The calculated probabilities of electric transitions between ground and one-phonon states in core nuclei also agree with the experiment

  4. On spectroscopic factors of magic and semimagic nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Gnezdilov, N. V.; Tolokonnikov, S. V.

    2014-01-01

    Single-particle spectroscopic factors (SF) of magic and semimagic nuclei are analyzed within the self-consistent theory of finite Fermi systems. The the in-volume energy dependence of the mass operator Σ is taken into account in addition to the energy dependence induced by the surface-phonon coupling effects which is commonly considered. It appears due to the effect of high-lying collective and non-collective particle-hole excitations and persists in nuclear matter. The self-consistent basis of the energy density functional method by Fayans et al. is used. Both the surface and in-volume contributions to the SFs turned out to be of comparable magnitude. Results for magic 208 Pb nucleus and semimagic lead isotopes are presented

  5. Ground-state properties of neutron magic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Kaushik, M. [Shankara Institute of Technology, Department of Physics (India)

    2017-03-15

    A systematic study of the ground-state properties of the entire chains of even–even neutron magic nuclei represented by isotones of traditional neutron magic numbers N = 8, 20, 40, 50, 82, and 126 has been carried out using relativistic mean-field plus Bardeen–Cooper–Schrieffer approach. Our present investigation includes deformation, binding energy, two-proton separation energy, single-particle energy, rms radii along with proton and neutron density profiles, etc. Several of these results are compared with the results calculated using nonrelativistic approach (Skyrme–Hartree–Fock method) along with available experimental data and indeed they are found with excellent agreement. In addition, the possible locations of the proton and neutron drip-lines, the (Z, N) values for the new shell closures, disappearance of traditional shell closures as suggested by the detailed analyzes of results are also discussed in detail.

  6. Shell stabilization of super- and hyperheavy nuclei without magic gaps

    International Nuclear Information System (INIS)

    Bender, M.; Nazarewicz, W.; Oak Ridge National Lab., TN; Warsaw Univ.; Reinhard, P.G.; Oak Ridge National Lab., TN

    2001-05-01

    Quantum stabilization of superheavy elements is quantified in terms of the shell-correction energy. We compute the shell correction using self-consistent nuclear models: the non-relativistic Skyrme-Hartree-Fock approach and the relativistic mean-field model, for a number of parametrizations. All the forces applied predict a broad valley of shell stabilization around Z = 120 and N = 172-184. We also predict two broad regions of shell stabilization in hyperheavy elements with N ∼ 258 and N ∼ 308. Due to the large single-particle level density, shell corrections in the superheavy elements differ markedly from those in lighter nuclei. With increasing proton and neutron numbers, the regions of nuclei stabilized by shell effects become poorly localized in particle number, and the familiar pattern of shells separated by magic gaps is basically gone. (orig.)

  7. Marine Ice Nuclei Collections – MAGIC (MAGIC-IN) Final Campaign Summary

    Energy Technology Data Exchange (ETDEWEB)

    DeMott, Paul J. [Colorado State Univ., Fort Collins, CO (United States); Hill, Thomas C. J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-02-01

    This campaign augmented measurements obtained via deployment of the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Mobile Facility (AMF) in the Marine ARM GPCI1 Investigation of Clouds (MAGIC) field campaign. The measurements, comprised of shipboard aerosol collections obtained during the five legs of the summer 2013 cruises, were sent for offline processing to measure ice nucleating particle (INP) number concentrations. The forty-three sample periods each represented, nominally, 24-hour segments during outbound and inbound transits of the Horizon Spirit. The samples were collected at locations between Los Angeles and Hawaii. Eight samples have been analyzed for immersion freezing temperature spectra thus far, using funding from other grants. Remaining samples are being frozen until support for further processing is obtained. Future analyses will investigate the inorganic/organic proportions of ice nuclei, in addition to determining the genetic composition of the overall biological community associated with INPs. Resulting correlations will be compared with other archived aerosol quantities, meteorological and ocean data (e.g., temperature, wind speed, sea surface temperature, etc…) and satellite ocean color products. These findings will ultimately aid in parameterizing oceanic (e.g., sea spray) INP emissions in regional and global scale models, when illustrating aerosol connections to cloud phases and properties. Independent future analyses of frozen filter samples, as proposed by collaborating investigators at the time of this report, will include single particle analyses of marine boundary layer aerosol compositions and morphology. The MAGIC-IN data are considered representative of the oligotrophic, low Chlorophyll-a (with the exception of near-shore) ocean regions, which exist along the MAGIC transect. Current analyses suggest that INP numbers in the marine boundary layer over this region are typically low, compared to existing

  8. Elucidation of impact of tensor force on the β decay of magic and semi-magic nuclei

    International Nuclear Information System (INIS)

    Minato, Futoshi

    2016-01-01

    The authors theoretically examined the β decay of neutron-rich nuclei with a magic number and semi-magic number, using a proton-neutron random phase approximation method. The tensor force previously believed to have a significant impact on the development of the structure of unstable nuclei was found to potentially have an impact on β decay, too. This paper introduces how β decay half-life is reproduced by the tensor force, with a focus on its microscopic mechanism. It was found that the tensor force plays an important role in the β decay of 34 Si, 68,78 Ni, and 132 Sn. Although the calculation of Gamow-Teller transition (GT transition) leaves room for theoretical confirmation, it is clear that the tensor force has a large impact on the 1+ excited state of GT transition. Therefore, for the reliable prediction of the β decay half-life of unknown nuclei, it is necessary to take into account the impact of tensor force. β decay, along with the mass, radius, and excited state, is one of the characteristics possessed by unstable nuclei, and it is important to increase the knowledge of nuclear structure theory so as to be able to systematically predict the probability of β decay. (A.O.)

  9. Odd-odd neutron-excess nuclei from the magicity region close to 132Sn

    International Nuclear Information System (INIS)

    Erokhina, K.I.; Isakov, V.I.

    1994-01-01

    This is the second publication in a series devoted to theoretical study of neutron-excess nuclei close to the doubly magic nuclide 132 Sn. Odd-odd nuclei from this region are considered by using the quasi-boson approximation. Energy level spectra, electromagnetic transition probabilities, and β-decay properties of nuclei are analyzed. Among other things, the renormalization of the axial-vector constant in the nucleus is determined. Numerical calculations are made for 134 Sb, 130 In, 132 Sb, and 132 In nuclides. Whenever possible, the results are compared with experimental data. 33 refs., 11 figs., 1 tab

  10. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Directory of Open Access Journals (Sweden)

    Leoni S.

    2016-01-01

    Full Text Available The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets, with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic “hybrid” model is introduced: it is based on the coupling between core excitations (both collective and non-collective of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  11. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Science.gov (United States)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  12. Magicity of neutron-rich nuclei within relativistic self-consistent approaches

    Directory of Open Access Journals (Sweden)

    Jia Jie Li

    2016-02-01

    Full Text Available The formation of new shell gaps in intermediate mass neutron-rich nuclei is investigated within the relativistic Hartree–Fock–Bogoliubov theory, and the role of the Lorentz pseudo-vector and tensor interactions is analyzed. Based on the Foldy–Wouthuysen transformation, we discuss in detail the role played by the different terms of the Lorentz pseudo-vector and tensor interactions in the appearing of the N=16, 32 and 34 shell gaps. The nuclei 24O, 48Si and 52,54Ca are predicted with a large shell gap and zero (24O, 52Ca or almost zero (48Si, 54Ca pairing gap, making them candidates for new magic numbers in exotic nuclei. We find from our analysis that the Lorentz pseudo-vector and tensor interactions induce very specific evolutions of single-particle energies, which could clearly sign their presence and reveal the need for relativistic approaches with exchange interactions.

  13. Structure of ground status in magic nuclei and description of their electric transition probabilities

    International Nuclear Information System (INIS)

    Savane, Y.Sy.

    1996-11-01

    The structure of the low-lying states in the even-even semi-magic nuclei ( 106-114 50 Sn) and the reduced transition probabilities B(E2, 6 + 1 → 4 = 1 ) for E2-transition have been investigated in the frame of the quasiparticle-phonon nuclear model. The model wave function includes a quasiparticle + two phonons components. It is shown that the small values of the transitions are connected with the non collective structure of the states. The calculated values are in agreement with the observed property of decreasing of the transition with increasing of mass number. (author). 16 refs, 6 tabs

  14. Doubly magic nuclei from lattice QCD forces at MPS=469 MeV /c2

    Science.gov (United States)

    McIlroy, C.; Barbieri, C.; Inoue, T.; Doi, T.; Hatsuda, T.

    2018-02-01

    We perform ab initio self-consistent Green's function calculations of the closed shell nuclei 4He, 16O, and 40Ca, based on two-nucleon potentials derived from lattice QCD simulations, in the flavor SU(3) limit and at the pseudoscalar meson mass of 469 MeV/c2. The nucleon-nucleon interaction is obtained using the hadrons-to-atomic-nuclei-from-lattice (HAL) QCD method, and its short-distance repulsion is treated by means of ladder resummations outside the model space. Our results show that this approach diagonalizes ultraviolet degrees of freedom correctly. Therefore, ground-state energies can be obtained from infrared extrapolations even for the relatively hard potentials of HAL QCD. Comparing to previous Brueckner Hartree-Fock calculations, the total binding energies are sensibly improved by the full account of many-body correlations. The results suggest an interesting possible behavior in which nuclei are unbound at very large pion masses and islands of stability appear at first around the traditional doubly magic numbers when the pion mass is lowered toward its physical value. The calculated one-nucleon spectral distributions are qualitatively close to those of real nuclei even for the pseudoscalar meson mass considered here.

  15. Study of NpNn scheme in some near magic light nuclei

    International Nuclear Information System (INIS)

    Pradeep Kumar; Singh, M.; Rajesh Kumar; Singh, Y.; Varshney, A.K.; Gupta, D.K.

    2014-01-01

    Study of N p N n is undertaken in present work on light mass near magic even nuclei e.g. Ar, Ca, Ti, Zn, Cr and Ni. Besides deformation β, the energy head of ground band E2 1 + is also studied in N p N n scheme. It is important to look at both of these quantities β and E2 1 + since β is derived from one basic observable B(E2; 2 1 + → 0 1 + ) and E2 1 + is another generally known quantity. The values of B(E2; 2 1 + → 0 1 + and E2 1 + and reach their saturation following different physics and as such while values decrease, the β values increase with the increase of N p N n values

  16. Microscopic model accounting of 2p2p configurations in magic nuclei

    International Nuclear Information System (INIS)

    Kamerdzhiev, S.P.

    1983-01-01

    A model for account of the 2p2h configurations in magic nuclei is described in the framework of the Green function formalism. The model is formulated in the lowest order in the phonon production amplitude, so that the series are expansions not over pure 2p2h configurations, but over con figurations of the type ''1p1h+phonon''. Equations are obtained for the vertex and the density matrix, as well as an expression for the transition probabilities, that are extensions of the corresponding results of the theory of finite Fermi systems, or of the random-phase approximation to the case where the ''1p1h+phonon'' configurations are taken into account. Corrections to the one-particle phenomenological basis which arise with account for complicated configurations are obtained. Comparison with other approaches, using phonons, has shown that they are particular cases of the described model

  17. Spectroscopy of few-particle nuclei around magic 132Sn from fission product γ-ray studies

    International Nuclear Information System (INIS)

    Zhang, C. T.

    1998-01-01

    We are studying the yrast structure of very neutron-rich nuclei around doubly magic 132 Sn by analyzing fission product γ-ray data from a 248 Cm source at Eurogam II. Yrast cascades in several few-valence-particle nuclei have been identified through γγ cross coincidences with their complementary fission partners. Results for two-valence-particle nuclei 132 Sb, 134 Te, 134 Sb and 134 Sn provide empirical nucleon-nucleon interactions which, combined with single-particle energies already known in the one-particle nuclei, are essential for shell-model analysis in this region. Findings for the N = 82 nuclei 134 Te and 135 I have now been extended to the four-proton nucleus 136 Xe. Results for the two-neutron nucleus 134 Sn and the N = 83 isotones 134 Sb, 135 Te and 135 I open up the spectroscopy of nuclei in the northeast quadrant above 132 Sn

  18. Direct mass measurements of 100Sn and magic nuclei near the N=Z line

    International Nuclear Information System (INIS)

    Chartier, M.

    1996-01-01

    The masses of nuclei far from stability are of particular interest in nuclear structure studies, and many methods of varying precision have been developed to undertake their measurement. A direct time of flight technique in conjunction with the SPEG spectrometer at GANIL has been extended to the mass measurement of proton-rich nuclei near N = Z line in the mass region A ≅ 60-80 known to provide input for astrophysical modelling of the rp-process and information relevant to the nuclear structure in a region of high deformation. The radioactive beams were produced via the fragmentation of a 78 Kr beam on a nat Ni target, using the new SISSI device. A purification method based on the stripping of the secondary ions was successfully used for the first time, and the masses of 70 Se and 71 Se were measured. In order to improve the mass resolution for heavier nuclei, another method using the second cyclotron of GANIL (CSS2) as a high resolution spectrometer has been developed. An experiment aimed at measuring the masses of A 100 isobars in the vicinity of the doubly magic nucleus 100 Sn was successfully performed, using this original technique. Secondary ions of 100 Ag, 100 Cd, 100 In and 100 Sn produced via fusion-evaporation reaction 50 Cr + 58 Ni and simultaneously accelerated in the CSS2 cyclotron. The mass of 100 Cd and, for the first time, the masses of 100 Sn were determined directly with respect to the reference mass of 100 Ag. These results have been compared to various theoretical predictions and open the discussion on considerations of spin-isospin symmetry. (author)

  19. Phonon-particle coupling effects in odd-even mass differences of semi-magic nuclei

    Science.gov (United States)

    Saperstein, E. E.; Baldo, M.; Pankratov, S. S.; Tolokonnikov, S. V.

    2017-11-01

    A method to evaluate the particle-phonon coupling (PC) corrections to the single-particle energies in semi-magic nuclei, based on a direct solving the Dyson equation with PC corrected mass operator, is used for finding the odd-even mass difference between 18 even Pb isotopes and their odd-proton neighbors. The Fayans energy density functional (EDF) DF3-a is used which gives rather high accuracy of the predictions for these mass differences already on the mean-field level, with the average deviation from the existing experimental data equal to 0.389 MeV. It is only a bit worse than the corresponding value of 0.333 MeV for the Skyrme EDF HFB-17, which belongs to a family of Skyrme EDFs with the highest overall accuracy in describing the nuclear masses. Account for the PC corrections induced by the low-laying phonons 2 1 + and 3 1 - significantly diminishes the deviation of the theory from the data till 0.218 MeV.

  20. Pseudomagic nuclei

    International Nuclear Information System (INIS)

    Scharff-Goldhaber, G.

    1979-01-01

    It was shown previously that, below a critical angular momentum, yrast bands of nonmagic nuclei are well described by the two-parameter variable moment of inertia model. Some striking exceptions to this rule are found in nuclei which have the same mass number as doubly magic nuclei but possess either one (or two) proton pairs beyond a magic number and one (or two) neutron hole pairs, or vice versa. Yrast bands in these pseudomagic nuclei resemble those in magic nuclei. 17 references

  1. Shape evolution in neutron-rich A ~ 140 nuclei beyond the doubly-magic nucleus 132Sn

    Science.gov (United States)

    Odahara, Atsuko; Eurica Collaboration

    2014-09-01

    Study for the shape evolution enables us to disentangle competition between spherical (single-particle like) shape and deformed (collective-like) shape as a function of neutron number. Neutron-rich nuclei in the northeast region of the doubly-magic 132Sn locates in one of the best mass region where a variety of collective modes, not only prolate deformation but also octupole collectivity, are expected to appear. These neutron-rich A ~140 nuclei were produced by using in-flight fission reaction of the 345 MeV/u 238U86+ beam at RIKEN RI Beam Factory. This experiment was performed in the framework of the EURICA (EUroball RIken Cluster Array) project based on the highly-efficient β- and isomer-decay spectroscopy methods. Around 20 extremely neutron-rich nuclei with Z=51--55 have been studied in this work. New isomers with half lives of longer than hundreds ns were found in some nuclei, such as the neutron-rich Cs isotopes. Also, preliminary results for the β decay of neutron-rich I and Xe isotopes have been obtained. Systematic change of the shape evolution for these neutron-rich isotopes will be discussed.

  2. Pair correlations in near-magic nuclei and the nucleon--phonon interaction

    International Nuclear Information System (INIS)

    Kadmenskii, S.G.; Luk'yanovich, P.A.; Remesov, Y.I.; Furman, V.I.

    1987-01-01

    It is demonstrated that the nucleon-pairing phenomenon is entirely due to the finiteness of nuclei. A technique for taking account of the phonon-exchange-related retarded interaction in the particle--particle channel is developed for nuclei of the ''mag +- 2'' and ''mag +- 3'' types. It is shown that the nucleon--phonon interaction strength computed with allowance for the most collectivized surface oscillation branches makes it possible to ensure the correct attraction scale necessary for the description of the pairing phenomenon. The existence of a more profound similarity between the phenomena of superconductivity of metals and Cooper pairing of nucleons in nuclei is thus demonstrated

  3. Structure of excited states in nuclei near doubly magic {sup 100}SN

    Energy Technology Data Exchange (ETDEWEB)

    Gorska, M.

    1998-11-01

    The three neutron-deficient nuclei {sup 94}Pd, {sup 98}Cd and {sup 104}Sn in the vicinity of {sup 100}Sn were investigated by means of in-beam {gamma}-ray spectroscopy of excited states. The isomeric decays in {sup 94}Pd and {sup 98}Cd were studied for the first time with an exclusive experimental setup for delayed {gamma}-ray detection with complete exit channel identification based on information from neutron and charged-particle filter detectors. The structure of excited states of {sup 94}Pd showed the first indication of increasing proton-neutron interaction towards the N=Z line in this region of nuclei, that in turn might be related to increased proton-neutron pairing correlations predicted in T{sub z}=0 nuclei. The closest neighbours of {sup 100}Sn with two active particles, {sup 98}Cd and {sup 102}Sn, are now known with their lowest excited states. The measured reduced transition probabilities for the decay of the isomeric 8{sup +} and 6{sup +} states in {sup 98}Cd and {sup 102}Sn, respectively, allowed to extract an effective quadrupole charge for neutron and proton in this region of nuclei based on the high configurational purity of the states. While the neutron effective charge appeared to be large and in agreement with expectation, the proton effective charge value is very small (e{sub {pi}}{<=}1). This controversial result, which would indicate that {sup 100}Sn is a very good closed shell nucleus with respect to quadrupole excitation, is not understood. An experimental reason for this result, related to existence of a core excited isomer, observed in the experiment by means of its half life but not {gamma}-rays, which may have escaped observation, can not be definitely excluded and is left as possible explanation. (orig.)

  4. Microscopic theory taking into account 2p2h configurations in the magic nuclei. General comparison with other aprroaches

    International Nuclear Information System (INIS)

    Kamerdzhiev, S.P.

    1982-01-01

    The purposes of the given review are as follows: 1) brief description of subsequent method for accoUntancy of 2p2h-configurations of the nucleus in the second order by quasiparticle-phonon interaction; the method uses Green functions and it represents specification of microscopic model of 2p2h-configuration accountancy; 2) obtaining the basic results of already existing approaches from the obtained analytical expressions. Accountancy of 2p2h-configurations of magic nuclei is necessary for improvement of microscopic description of multipole giant resonances (MGR). An equation for the effective field in a nucleus induced by an external field is obtained. An expression for polarization operator determining probabilities of nucleus transitions from the ground state to the excited one is obtained graphically. Derivation of the described equation for apex of the effective field and expressions for polarization operator which besides 1p1h-configurations account for 2p2h-configurations are the basic results of the paper

  5. Nuclear structure around doubly-magic nuclei: lifetime measurements in the vicinity of 68Ni and search for isomers around 100Sn

    International Nuclear Information System (INIS)

    Celikovic, Igor

    2013-01-01

    In this thesis we investigated the structure of nuclei around 68 Ni as well as the production, separation and identification of proton-rich isotopes lying in the vicinity of the doubly-magic 100 Sn nucleus.In the first part, we discuss the evolution of collectivity and the interplay between collective and single-particle degrees of freedom in nuclei around 68 Ni. We measured lifetimes in Zn isotopes around N = 40 produced in 238 U + 70 Zn deep-inelastic collisions at GANIL. We used a plunger device and the recoil-distance Doppler-shift method. The nuclei of interest were identified by the VAMOS spectrometer and the γ-rays with the EXOGAM array. The reduced electromagnetic transitions probabilities were extracted from the lifetimes. Several transitions and lifetimes are reported for the first time. The experimental results are discussed in the framework of shell model calculations. In the second part, the partial conservation of seniority in the g 9/2 shell and its influence on one-particle transfer is discussed. The third part presents the analysis of an in-beam test performed at RIKEN (Japan) to evaluate two settings of the BigRIPS separator for optimizing the production and selection of 100 Sn. This study has been used to setup our subsequent experiment, dedicated to the measurement of the Gamow-Teller strength in the decay of 100 Sn, to the mapping of the proton drip-line and the study of short-lived isomers in this mass region. Nuclei around 100 Sn were produced by fragmentation of a 345 MeV/u 124 Xe beam on a Be target. The production cross-sections of nuclei around 100 Sn were measured. The search for new isotopes and new isomers in all identified nuclei is presented. (author) [fr

  6. Nuclear physics: Unexpected doubly-magic nucleus

    International Nuclear Information System (INIS)

    Janssens, R.V.F.

    2009-01-01

    Nuclei with a 'magic' number of both protons and neutrons, dubbed doubly magic, are particularly stable. The oxygen isotope 24 O has been found to be one such nucleus - yet it lies just at the limit of stability

  7. Selected properties of nuclei at the magic shell closures from the studies of E1, M1 and E2 transition rates

    International Nuclear Information System (INIS)

    Mach, H.; Baluyut, A.-M.; Smith, D.; Ruchowska, E.; Koester, U.; Fraile, L. M.; Penttilae, H.; Aeystoe, J.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Karvonen, P.; Kessler, T.; Moore, I. D.; Rahaman, S.; Rissanen, J.; Ronkainen, J.; Ronkanen, P.; Saastamoinen, A.

    2009-01-01

    Using the Advanced Time-Delayed method we have studied transition rates in several neutron-rich nuclei at the magic shell closures. These include the heavy Co and Fe nuclei just below the Z = 28 shell closure at the point of transition from spherical to collective structures. Of particular interest is 63 Fe located exactly at the point of transition at N = 37. A substantial increase in the information on this nucleus was obtained from a brief fast timing study conducted at ISOLDE. The new results indicate that 63 Fe seems to depart from a simple shell model structure observed for heavier N = 37 isotones of 65 Ni and 67 Zn.Another region of interest are the heavy Cd and Sn nuclei at N = 72, 74 and the properties of negative parity quasi-particle excitations. These experiments, performed at the IGISOL separator at Jyvaeskylae, revealed interesting properties of the E2 rates in the sequence of E2 transitions connecting the 10 + , 8 + , 6 + , 4 + , 2 + and 0 + members of the multiplet of levels in 122 Sn due to neutrons in the h 11/2 orbit.

  8. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn-Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    Science.gov (United States)

    Prelas, M. A.; Hora, H.; Miley, G. H.

    2014-07-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Qα, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn-Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation.

  9. The matrix elements of the potential energy operator between the Sp(2,R) basis generating functions. Near-magic nuclei

    International Nuclear Information System (INIS)

    Filippov, G.F.; Ovcharenko, V.I.; Teryoshin, Yu.V.

    1980-01-01

    For near-magnetic nuclei, the matrix elements of the central exchange nucleon-nucleon interaction potential energy operator between the generating functions of the total basis of the Sn are obtained. The basis states are highest weigt vectorsp(2,R) irreducible representatio of the SO(3) irredicible representation and in addition, have a definite O(A-1) symmetry. The Sp(2,R) basis generating matrix elements simplify essentially the problem of calculating the spectrum of collective excitations of the atomic nucleus over an intrinsic function of definite O(A-1) symmetry

  10. Identification of new nuclei at and beyond the proton drip-line near the doubly-magic nucleus 100Sn

    International Nuclear Information System (INIS)

    Anne, R.; Auger, G.; Bazin, D.; Corre, J.M.; Hue, R.; Lewitowicz, M.; Saint-Laurent, M.G.; Rykaczewski, K.; Grzywacz, R.; Pfuetzner, M.; Zylicz, J.; Borrel, V.; Guillemaud-Mueller, D.; Mueller, A.C.; Pougheon, F.; Sorlin, O.; Fomichov, A.; Penionzhkevich, Y.; Lukyanov, S.; Tarasov, O.; Huyse, M.; Szerypo, J.; Wauters, J.

    1994-01-01

    The new neutron-deficient nuclei 103 Sb, 104 Sb, 98 In, 91 Pd, 89 Rh and 87 Ru have been identified among the quasi-fragmentation products of a 112 Sn beam (63 MeV/nucleon). The fragment identification based on energy-loss, total kinetic energy and time-of-flight measurements has been independently confirmed via observation of γ-radiation following the decay of known short-lived isomers. The region of known isotopes is extended to the predicted proton drip-line for indium and silver, and beyond it for antimony and rhodium. Tentative evidence for the existence of 105 Te, 99 Sn and 93 Ag is also presented. (authors). 28 refs., 2 figs

  11. Magic and Magical Worlds

    DEFF Research Database (Denmark)

    Børch, Marianne

    2013-01-01

    The article argues that where as Harry POtter lacks the " sense of the numinous" found in Tolkien and Pratchett, it has a special magic that plays upon the fantastic potential of language. Everyday language is full of metaphors, personifications, and strata of archaic beliefs; it has diversified...

  12. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  13. Magic Physics?

    Science.gov (United States)

    Featonby, David

    2010-01-01

    This article examines several readily available "magic tricks" which base their "trickery" on physics principles, and questions the use of the word "magic" in the 21st century, both in popular children's science and in everyday language. (Contains 18 figures.)

  14. Creating Magic Squares.

    Science.gov (United States)

    Lyon, Betty Clayton

    1990-01-01

    One method of making magic squares using a prolongated square is illustrated. Discussed are third-order magic squares, fractional magic squares, fifth-order magic squares, decimal magic squares, and even magic squares. (CW)

  15. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn–Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    Energy Technology Data Exchange (ETDEWEB)

    Prelas, M.A. [University of Missouri, Columbia, MO (United States); Hora, H. [University of New South Wales, Sydney (Australia); Miley, G.H. [University of Illinois, Urbana-Champaign (United States)

    2014-07-04

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Q{sub α}, arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn–Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation. - Highlights: • Use of Bagge procedure confirmed that Z=126 and N=184 are proper magic numbers. • Elements are generated by low energy nuclear reactions in deuterium loaded metal. • Postulated from measured distribution that a compound nucleus {sup 310}X{sub 126} was formed. • Formation of 164 deuterons in Bose–Einstein state clusters with 2 pm spacing.

  16. Nucleus Z=126 with magic neutron number N=184 may be related to the measured Maruhn–Greiner maximum at A/2=155 from compound nuclei at low energy nuclear reactions

    International Nuclear Information System (INIS)

    Prelas, M.A.; Hora, H.; Miley, G.H.

    2014-01-01

    Evaluation of nuclear binding energies from theory close to available measurements of a very high number of superheavy elements (SHE) based on α-decay energies Q α , arrived at a closing shell with a significant neutron number 184. Within the option of several discussed magic numbers for protons of around 120, Bagge's numbers 126 and 184 fit well and are supported by the element generation measurements by low energy nuclear reactions (LENR) discovered in deuterium loaded host metals. These measurements were showing a Maruhn–Greiner maximum from fission of compound nuclei in an excited state with double magic numbers for mutual confirmation. - Highlights: • Use of Bagge procedure confirmed that Z=126 and N=184 are proper magic numbers. • Elements are generated by low energy nuclear reactions in deuterium loaded metal. • Postulated from measured distribution that a compound nucleus 310 X 126 was formed. • Formation of 164 deuterons in Bose–Einstein state clusters with 2 pm spacing

  17. Overview of MAGIC results

    Science.gov (United States)

    Rico, Javier; MAGIC Collaboration

    2016-04-01

    MAGIC is a system of two 17-m diameter Cherenkov telescopes, located at the Observatorio del Roque de los Muchachos, in the Canary island La Palma (Spain). MAGIC performs astronomical observations of gamma-ray sources in the energy range between 50 GeV and 10 TeV. The first MAGIC telescope has been operating since 2004, and in 2009 the system was completed with the second one. During 2011 and 2012 the electronics for the readout system were fully upgraded, and the camera of the first telescope replaced. After that, no major hardware interventions are foreseen in the next years, and the experiment has undertaken a final period of steady astronomical observations. MAGIC studies particle acceleration in the most violent cosmic environments, such as active galactic nuclei, gamma-ray bursts, pulsars, supernova remnants or binary systems. In addition, it addresses some fundamental questions of Physics, such as the origin of Galactic cosmic rays and the nature of dark matter. Moreover, by observing the gamma-ray emission from sources at cosmological distances, we measure the intensity and evolution of the extragalactic background radiation, and perform tests of Lorentz Invariance. In this paper I present the status and some of the latest results of the MAGIC gamma-ray telescopes.

  18. Feminine Magic

    Directory of Open Access Journals (Sweden)

    Kelly, Lynne

    2014-12-01

    Full Text Available Having been introduced to magic by my father, I have adapted the classic methods to work in my role as a mature female teacher. Using performance and mysterious narrative, intriguing props and playing on my femininity, the classic magician routines have served me well when performing for teenagers. Reworking the classic routines in this way ensures that a school magic club for teenagers serves the various needs of both male and female students.

  19. Nuclei and quantum worlds

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2000-01-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  20. Direct mass measurements of {sup 100}Sn and magic nuclei near the N=Z line; Mesures directes des masses de {sup 100}Sn et de noyaux exotiques proches de la ligne N = Z

    Energy Technology Data Exchange (ETDEWEB)

    Chartier, M

    1996-10-31

    The masses of nuclei far from stability are of particular interest in nuclear structure studies, and many methods of varying precision have been developed to undertake their measurement. A direct time of flight technique in conjunction with the SPEG spectrometer at GANIL has been extended to the mass measurement of proton-rich nuclei near N = Z line in the mass region A {approx_equal} 60-80 known to provide input for astrophysical modelling of the rp-process and information relevant to the nuclear structure in a region of high deformation. The radioactive beams were produced via the fragmentation of a {sup 78}Kr beam on a {sup nat}Ni target, using the new SISSI device. A purification method based on the stripping of the secondary ions was successfully used for the first time, and the masses of {sup 70}Se and {sup 71}Se were measured. In order to improve the mass resolution for heavier nuclei, another method using the second cyclotron of GANIL (CSS2) as a high resolution spectrometer has been developed. An experiment aimed at measuring the masses of A 100 isobars in the vicinity of the doubly magic nucleus {sup 100}Sn was successfully performed, using this original technique. Secondary ions of {sup 100}Ag, {sup 100}Cd, {sup 100}In and {sup 100}Sn produced via fusion-evaporation reaction {sup 50}Cr + {sup 58}Ni and simultaneously accelerated in the CSS2 cyclotron. The mass of {sup 100}Cd and, for the first time, the masses of {sup 100}Sn were determined directly with respect to the reference mass of {sup 100}Ag. These results have been compared to various theoretical predictions and open the discussion on considerations of spin-isospin symmetry. (author). 96 refs.

  1. Mummies & Magic.

    Science.gov (United States)

    Casey, Jeanne E.

    1989-01-01

    Covers the cultural and aesthetic significance of Egyptian mummies, as explained in an exhibition at Boston's Museum of Fine Arts. The display, "Mummies & Magic: The Funerary Arts of Ancient Egypt," allowed for restoration work which did much to advance modern knowledge of Egyptian culture and funerary art. (LS)

  2. Identification of new nuclei at and beyond the proton drip-line near the doubly-magic nucleus {sup 100}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Anne, R; Auger, G; Bazin, D; Corre, J M; Hue, R; Lewitowicz, M; Saint-Laurent, M G [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Rykaczewski, K; Grzywacz, R [Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej; [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Pfuetzner, M; Zylicz, J [Warsaw Univ. (Poland). Inst. Fizyki Doswiadczalnej; Borcea, C [Institute of Atomic Physics, Bucharest (Romania); Borrel, V; Guillemaud-Mueller, D; Mueller, A C; Pougheon, F; Sorlin, O [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Doerfler, T; Schmidt-Ott, W D [Goettingen Univ. (Germany); Fomichov, A; Penionzhkevich, Y [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Lukyanov, S; Tarasov, O [Joint Inst. for Nuclear Research, Dubna (Russian Federation); [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Huyse, M; Szerypo, J; Wauters, J [Louvain Univ. (Belgium). Inst. for Nuclear- and Radiationphysics; Janas, Z; Keller, H; Schmidt, K [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    1994-12-31

    The new neutron-deficient nuclei {sup 103}Sb, {sup 104}Sb, {sup 98}In, {sup 91}Pd, {sup 89}Rh and {sup 87}Ru have been identified among the quasi-fragmentation products of a {sup 112}Sn beam (63 MeV/nucleon). The fragment identification based on energy-loss, total kinetic energy and time-of-flight measurements has been independently confirmed via observation of {gamma}-radiation following the decay of known short-lived isomers. The region of known isotopes is extended to the predicted proton drip-line for indium and silver, and beyond it for antimony and rhodium. Tentative evidence for the existence of {sup 105}Te, {sup 99}Sn and {sup 93}Ag is also presented. (authors). 28 refs., 2 figs.

  3. MAGIC highlights

    Directory of Open Access Journals (Sweden)

    López-Coto Rubén

    2016-01-01

    Full Text Available The present generation of Imaging Air Cherenkov Telescopes (IACTs has greatly improved our knowledge on the Very High Energy (VHE side of our Universe. The MAGIC IACTs operate since 2004 with one telescope and since 2009 as a two telescope stereoscopic system. I will outline a few of our latest and most relevant results: the discovery of pulsed emission from the Crab pulsar at VHE, recently found to extend up to 400 GeV and along the “bridge” of the light curve, the measurement of the Crab nebula spectrum over three decades of energy, the discovery of VHE γ-ray emission from the PWN 3C 58, the very rapid emission of IC 310, in addition to dark matter studies. The results that will be described here and the planned deep observations in the next years will pave the path for the future generation of IACTs.

  4. The Versatile Magic Square.

    Science.gov (United States)

    Watson, Gale A.

    2003-01-01

    Demonstrates the transformations that are possible to construct a variety of magic squares, including modifications to challenge students from elementary grades through algebra. Presents an example of using magic squares with students who have special needs. (YDS)

  5. Perception, Illusion, and Magic.

    Science.gov (United States)

    Solomon, Paul R.

    1980-01-01

    Describes a psychology course in which magical illusions were used for teaching the principles of sensation and perception. Students read psychological, philosophical, historical, and magical literature on illusion, performed a magical illusion, and analyzed the illusion in terms of the psychological principles involved. (Author/KC)

  6. Magic among the Trobrianders

    DEFF Research Database (Denmark)

    Sørensen, Jesper

    2008-01-01

    to a classic area of research on magic, namely the Trobriand garden magic, as described by anthropologist Bronislaw Malinowski. In the conclusion, results from this analysis will be related to long-standing problems and theoretical positions in the study of magic outlined in the introduction to the paper....

  7. RMF+BCS description of some traditional neutron magic isotones

    International Nuclear Information System (INIS)

    Saxena, G.; Singh, D.; Kaushik, M.

    2014-01-01

    The traditional neutron magic nuclei with N = 8, 20, 28, 50, 82 and 126, and those with neutron sub-magic number N = 40 are investigated within the relativistic mean-field plus BCS (RMF+BCS) approach. The results indicate appearance of new proton magic numbers as well as the disappearance of conventional magic numbers for nuclei with extreme isospin values. The calculated energies and densities do not indicate any tendency for the proton halo formations in any of the proton rich isotones due to Coulomb interaction and different single particle spectra. However, the potential barrier provided by the Coulomb interaction and that due to the centrifugal force may cause a long delay in the actual decay of proton rich nucleus resulting in the extended drip line. (authors)

  8. A Magic Book Out of Magic Language

    Institute of Scientific and Technical Information of China (English)

    宋媛

    2007-01-01

    Harry Potter books are great successes, enjoyed by readers' all over the world. Harry Potter and the Philosopher's Stone is the debut of the sequel books,which is about magic and the magical life a little boy- Harry Potter, a born wizard.People are always curious and eager to discover the secrets of magic, to meet the end of the heroes' fates, but not many of them pay attention to the book's language. Actually, I think it is the skillful use and application of language that make the book outstanding. Therefore, this paper mainly discusses the language features of Harry Potter and Philosopher's Stone from these four aspects: speech sounds, choice of vocabulary, sentence structures and figures of speech, aiming at exploring and revealing the charms of the magic book.

  9. When "Holiday Magic" Hurts.

    Science.gov (United States)

    Goldstein, Karen

    2001-01-01

    Claims that religious messages in public school are not acceptable and are hurtful to kids who do not subscribe to the beliefs expressed in those messages. Describes the author's personal experience in helping a teacher transform the script for "Christmas Magic" into the more inclusive "Holiday Magic." (RS)

  10. On the charge distribution of calcium nuclei

    International Nuclear Information System (INIS)

    Traeger, F.

    1981-01-01

    The mean square charge radii and the quadrupole moments of Ca nuclei are discussed in the light of theoretical predictions. The very peculiar dependence of the charge radii on the mass number between double magic 40 Ca and double magic 48 Ca can be ascribed to changes of the nuclear deformation, whereas the volume of the nuclear charge remains constant for all the Ca isotopes. Furthermore, correlations between nuclear charge radii and binding energies are discussed. (orig.)

  11. Magic numbers and isotopic effect of ion clusters

    International Nuclear Information System (INIS)

    Wang Guanghou

    1989-04-01

    The magic numbers and isotopic effect as well as stable configurations in relation to the charge state of the clusters are discussed. Ionic (atomic) clusters are small atomic aggregates, a physical state between gas and solid states, and have many interesting properties, some of them are more or less similar to those in nuclei

  12. MAGIC user's group software

    International Nuclear Information System (INIS)

    Warren, G.; Ludeking, L.; McDonald, J.; Nguyen, K.; Goplen, B.

    1990-01-01

    The MAGIC User's Group has been established to facilitate the use of electromagnetic particle-in-cell software by universities, government agencies, and industrial firms. The software consists of a series of independent executables that are capable of inter-communication. MAGIC, SOS, μ SOS are used to perform electromagnetic simulations while POSTER is used to provide post-processing capabilities. Each is described in the paper. Use of the codes for Klystrode simulation is discussed

  13. Structure of Light Neutron-rich Nuclei

    International Nuclear Information System (INIS)

    Dlouhy, Zdenek

    2007-01-01

    In this contribution we searched for irregularities in various separation energies in the frame of mass measurement of neutron-rich nuclei at GANIL. On this basis we can summarize that the new doubly magic nuclei are 8 He, 22 O and 24 O. They are characterized by extra stability and, except 24 O, they cannot accept and bind additional neutrons. However, if we add to these nuclei a proton we obtain 9 Li and 25 F which are the core for two-neutron halo nucleus 11 Li and enables that fluorine can bound even 6 more neutrons, respectively. In that aspect the doubly magic nuclei in the neutron-rich region can form the basis either for neutron halo or very neutron-rich nuclei. (Author)

  14. A Note on Magic Squares

    Science.gov (United States)

    Williams, Horace E.

    1974-01-01

    A method for generating 3x3 magic squares is developed. A series of questions relating to these magic squares is posed. An invesitgation using matrix methods is suggested with some questions for consideration. (LS)

  15. Stability and production of superheavy nuclei

    International Nuclear Information System (INIS)

    Moeller, P.; Los Alamos National Lab., NM; Nix, J.R.

    1997-01-01

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond 208 Pb, that is, at proton number Z 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation

  16. Relativistic mean field theory for unstable nuclei

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2000-01-01

    We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)

  17. Exotic Nuclei and Yukawa's Forces

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Suzuki, Toshio; Utsuno, Yutaka

    2008-01-01

    In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, ... This turned out to be changed, once we entered the regime of exotic nuclei. This shell evolution develops at many places on the nuclear chart in various forms. For example, superheavy magic numbers may be altered. Thus, we are led to a new paradigm as to how and where the nuclear shell evolves, and what consequences arise. The evolution of the shell affects weak process transitions, and plays a crucial role in deformation. The π and ρ mesons generate tensor forces, and are the fundamental elements of such intriguing phenomena. Thus, physics of exotic nuclei arises as a manifestation of Yukawa's forces

  18. The magic of numbers

    CERN Document Server

    Bell, Eric Temple

    1991-01-01

    From one of the foremost interpreters for lay readers of the history and meaning of mathematics: a stimulating account of the origins of mathematical thought and the development of numerical theory. It probes the work of Pythagoras, Galileo, Berkeley, Einstein, and others, exploring how ""number magic"" has influenced religion, philosophy, science, and mathematics

  19. Magic, Morals and Health

    Science.gov (United States)

    Johnson, Warren R.

    2010-01-01

    Magic has to do with the supernatural and the unnatural. It is indifferent to natural law and science and is aloof from scientific inquiry. Its existence depends upon unquestioning faith. Granted such faith, it is extraordinarily potent. If it does not move mountains, it convinces the faithful that it can. It can damage health and perhaps, restore…

  20. The magic metal uranium

    International Nuclear Information System (INIS)

    1985-01-01

    ''Magic Metal'' was the first in a range of programmes for the younger secondary student. It is a very simple explanation of how a nuclear reactor works, of the basics of fission and compares nuclear with other fuels. The concepts employed were developed using classroom trials. (author)

  1. Magical Ideation and Schizophrenia.

    Science.gov (United States)

    George, Leonard; Neufeld, Richard W. J.

    1987-01-01

    Administered the Eckblad and Chapman (1983) Magical Ideation Scale to groups of paranoid and nonparanoid schizophrenics and control subjects. Schizophrenics scored significantly higher than nonschizophrenic patients (mainly cases of affective disorder) and normal control subjects. Discusses theoretical and prognostic utility of this finding.…

  2. New magic angle bumps and magic translation bumps

    International Nuclear Information System (INIS)

    Seeman, J.

    1983-01-01

    SLC beams of opposite charge can be transversely deflected in the same direction by RF fields in the accelerating cavities caused by girder tilts, coupler-asymmetries, or manufacturing errors. A symmetric deflection can be corrected by a magic angle bump if the deflection is located adjacent to one of the linac quadrupoles. However, if the deflection is located between quadrupoles, two magic angle bumps or a magic angle bump and a magic translation bump are needed for the correction. Several examples of translation bumps are included. A new magic angle bump is also presented which is longitudinally compressed and has significantly reduced particle excursions. Finally, if new correctors are added midway along the girders so that the number of correctors are doubled, then the longitudinal extent and the maximum particle excursion of these new magic bumps can be further reduced

  3. A game magically circling

    DEFF Research Database (Denmark)

    Ejsing-Duun, Stine

    2011-01-01

    This chapter analyses the relationship between players, the game world, and the ordinary world in alternative reality games (ARGs) and location-based games (LBGs). These games use technology to create a game world in the everyday scene. The topic of this chapter is the concept of the 'magic circle......', which defines the relationship between play and the ordinary world, and how this concept relates to a new kind of game....

  4. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  5. Few-valence-particle excitations around doubly magic 132Sn

    International Nuclear Information System (INIS)

    Daly, P.J.; Zhang, C.T.; Bhattacharyya, P.

    1996-01-01

    Prompt γ-ray cascades in neutron-rich nuclei around doubly-magic 132 Sn have been studied using a 248 Cm fission source. Yrast states located in the N = 82 isotones 134 Te and 135 I are interpreted as valence proton and neutron particle-hole core excitations with the help of shell model calculations employing empirical nucleon-nucleon interactions from both 132 Sn and 208 Pb regions

  6. Disappearance of neutron magic numbers and deformation coexistence

    International Nuclear Information System (INIS)

    Kimura, Masaaki

    2014-01-01

    The disappearance of N=8, 20 and 28 magic numbers in the neutron excess nuclei is a representative example of the special features of the unstable nuclei. In this lecture of summer school, the problems of the magic number disappearance are presented. And the appearance of the deformation coexistence and the anomalous cluster structure come into the problem with them. At the begging the Antisymmetrized Molecular Dynamic (AMD) framework is explained with finite range two body central force and Gorgny DIS force composed of the zero range spin-orbit force and saturability. Island of inversion is explained in the nuclear chart shown in the figure and energy curves of the nuclei near 32 Mg and the excitation level schemes of 32 Mg are shown in the serial figures. As one of the extreme example of the nuclear structure the deformation of 19 F is picked up. The level schemes and structures of 21 F are shown as well. The molecule-like structure in the island of inversion is clear. The rotational band energy of fluorine isotopes are shown up to 29 F. As a new deformation area, disappearance of N=28 magic number is in the spotlight recently. In this case it is characteristic properties that the parities of the orbits to form the gap must be the same but the angular momenta should be different by 2. According to the AMD research, it is shown that deformations of prolate, three-axis asymmetric and oblate characters coexist in the very low excitation energy region accompanying the disappearance of N=28 gap. The concept of magic numbers has been very fundamental in nuclear physics since the success of shell model. At present its disappearance in the unstable nuclei is one of the most challenging problems in the understanding of the nuclear many body problems. (S. Funahashi)

  7. Qutrit magic state distillation

    International Nuclear Information System (INIS)

    Anwar, Hussain; Browne, Dan E; Campbell, Earl T

    2012-01-01

    Magic state distillation (MSD) is a purification protocol that plays an important role in fault-tolerant quantum computation. Repeated iteration of the steps of an MSD protocol generates pure single non-stabilizer states, or magic states, from multiple copies of a mixed resource state using stabilizer operations only. Thus mixed resource states promote the stabilizer operations to full universality. MSD was introduced for qubit-based quantum computation, but little has been known concerning MSD in higher-dimensional qudit-based computation. Here, we describe a general approach for studying MSD in higher dimensions. We use it to investigate the features of a qutrit MSD protocol based on the five-qutrit stabilizer code. We show that this protocol distils non-stabilizer magic states, and identify two types of states that are attractors of this iteration map. Finally, we show how these states may be converted, via stabilizer circuits alone, into a state suitable for state-injected implementation of a non-Clifford phase gate, enabling non-Clifford unitary computation. (paper)

  8. Science meets magic: photonic metamaterials

    Science.gov (United States)

    Ozbay, Ekmel

    2012-05-01

    The word "magic" is usually associated with movies, fiction, children stories, etc. but seldom with the natural sciences. Recent advances in metamaterials have changed this notion, in which we can now speak of "almost magical" properties that scientists could only dream about only a decade ago. In this article, we review some of the recent "almost magical" progress in the field of meta-materials.

  9. Neutron rich nuclei around 132Sn

    International Nuclear Information System (INIS)

    Bhattacharya, Sarmishtha

    2016-01-01

    The neutron rich nuclei with few particles or holes in 132 Sn have various experimental and theoretical interest to understand the evolution of nuclear structure around the doubly magic shell closure Z=50 and N=82. Some of the exotic neutron rich nuclei in this mass region are situated near waiting points in the r-process path and are of special astrophysical interest. Neutron rich nuclei near 132 Sn have been studied using fission fragment spectroscopy. The lifetime of low lying isomeric states have been precisely measured and the beta decay from the ground and isomeric states have been characterized using gamma-ray spectroscopy

  10. Effects of tensor forces in nuclei

    International Nuclear Information System (INIS)

    Tanihata, Isao

    2013-01-01

    Recent studies of nuclei far from the stability line have revealed drastic changes in nuclear orbitals and reported the appearance of new magic numbers and the disappearance of magic numbers observed at the stability line. One of the important reasons for such changes is considered to be because of the effect of tensor forces on nuclear structure. Although the role of tensor forces in binding very light nuclei such as deuterons and 4 He has been known, direct experimental evidence for the effect on nuclear structure is scarce. In this paper, I review known effects of tensor forces in nuclei and then discuss the recently raised question of s–p wave mixing in a halo nucleus of 11 Li. Following these reviews, the development of a new experiment to see the high-momentum components due to the tensor forces is discussed and some of the new data are presented. (paper)

  11. Structures of exotic nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1987-01-01

    Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185 Au, and competing triaxial and prolate shapes in 71 Se and 176 Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152 Dy, 132 Ce and 135 Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68 Ge and 70 Se. The differences are thought to be related to the competing shell gaps in these nuclei

  12. Garden Gnomes: Magical or Tacky?

    Science.gov (United States)

    Flynt, Deborah

    2012-01-01

    Garden gnomes: magical or tacky? Well, art is in the eye of the beholder, and for the author's advanced seventh-grade art class, garden gnomes are magical. Gnomes have a very long history, dating back to medieval times. A fairytale describes them as brownie-like creatures that are nocturnal helpers. In this article, the author describes how her…

  13. Business, Anthropology, and Magical Systems

    DEFF Research Database (Denmark)

    Moeran, Brian

    2014-01-01

    —encompassing related concepts of alchemy, animism, and enchantmen—is reflected in other business practices, which have developed their own parallel and interlocking systems of magic. Certain forms of capitalism, the—fashion, for example, or finance—may be analysed as a field of magical systems....

  14. A new approach to magic

    Directory of Open Access Journals (Sweden)

    Čvorović Jelena

    2006-01-01

    Full Text Available This paper uses the example of traditional practices of magic to suggest ways to incorporate cultural behaviors within the evolutionary paradigm. The first suggestion is to restrict hypotheses to only identifiable variables. This means avoiding the temptation of following the nonevolutionary social sciences in the practice of basing explanations on unverifiable guesses about what beliefs (or memes in evolutionary jargon may or may not inhabit people's brains. In contrast with previous explanations that magical practices result from beliefs and memes whose primarily purpose is to reduce anxiety, we propose that magic is a form of communication that promotes cooperation and often avoids anti-social behavior. This effect of increased cooperation could explain why traditional forms of magic have probably existed and had significant positive consequences for the participants. To be effective as a means of communication, magical rituals must specify both the content of the message and the receiver of the message. Although the content of the communicative message differs with different types of magic, all magical acts serve a purpose to influence the behavior of the party involved and that is the most significant identifiable effect of such behavior. An advantage of this approach over many previous explanations of magic is that because it focuses on identifiable phenomena, the definitions and explanations used in this approach can be falsified.

  15. Observations of VHE γ-Ray Sources with the MAGIC Telescope

    Science.gov (United States)

    Bartko, H.

    2008-10-01

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since Autumn of 2004 MAGIC has been taking data routinely, observing various objects like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results for individual sources. An outlook to the construction of the second MAGIC telescope is given.

  16. MAGIC: THE GATHERING APUSOVELLUS ANDROIDILLE

    OpenAIRE

    Isopahkala, Ville

    2017-01-01

    Opinnäytetyönä oli omavalintainen android-sovellus Magic: The Gathering –korttipelille. Tavoitteena oli toteuttaa akkuystävällinen apusovellus kyseistä peliä pelaaville käyttäen android studiota. Työssä tutustutaan javaan, androidiin sekä android studioon, niiden historiaan sekä ominaisuuksiin. Magic: The Gathering:iin tutustutaan perustasolla. Opinnäytetyö keskittyy sovellukseen, sen luomiseen, koodauskieleen sekä alustaan. Tarkoituksena ei ole opettaa pelaamaan Magic: The Gatheringiä. Th...

  17. Magical Realities in Interaction Design

    DEFF Research Database (Denmark)

    Rasmussen, Majken

    2013-01-01

    The field of interaction design is littered with examples of artefacts, which seemingly do not adhere to well-known physical causalities and our innate expectations of how artefacts should behave in the world, thereby creating the impression of a magic reality; where things can float in mid-air, ...... to reflect upon the magical realities constructed by technological artefacts......The field of interaction design is littered with examples of artefacts, which seemingly do not adhere to well-known physical causalities and our innate expectations of how artefacts should behave in the world, thereby creating the impression of a magic reality; where things can float in mid...

  18. Exotic nuclei

    International Nuclear Information System (INIS)

    Villari, A.C.C.

    1990-01-01

    The actual tendencies to study exotic nuclei; applications of exotic nuclei beams in material study and medicine; recent results obtained by GANIL and Berkeley Laboratories of measurements of binding energy and radii of light nuclei; the future experiences to be carry out in several international laboratories and; proposal of studies in Brazil using Pelletron-USP accelerator and the LINAC superconductor accelerator, in construction in the same laboratory, are presented. (M.C.K.)

  19. Magic Coset Decompositions

    CERN Document Server

    Cacciatori, Sergio L; Marrani, Alessio

    2013-01-01

    By exploiting a "mixed" non-symmetric Freudenthal-Rozenfeld-Tits magic square, two types of coset decompositions are analyzed for the non-compact special K\\"ahler symmetric rank-3 coset E7(-25)/[(E6(-78) x U(1))/Z_3], occurring in supergravity as the vector multiplets' scalar manifold in N=2, D=4 exceptional Maxwell-Einstein theory. The first decomposition exhibits maximal manifest covariance, whereas the second (triality-symmetric) one is of Iwasawa type, with maximal SO(8) covariance. Generalizations to conformal non-compact, real forms of non-degenerate, simple groups "of type E7" are presented for both classes of coset parametrizations, and relations to rank-3 simple Euclidean Jordan algebras and normed trialities over division algebras are also discussed.

  20. Status of the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Colin, Pierre; Carmona, Emiliano; Schweizer, Thomas; Sitarek, Julian [Max-Planck-Institut fuer Physik, Werner-Heisenberg Institut, Muenchen (Germany)

    2010-07-01

    MAGIC is a system of two 17-m Cherenkov telescopes located on La Palma (Canary islands),sensitive to gamma-rays above 30 GeV. It has been recently upgraded by a second telescope which strongly improves the sensitivity, particularly at low energy. Here we present the status of the MAGIC telescopes and an overview of the recent results obtained in single or stereoscopic mode. We also discuss the real performance of the new stereoscopic system based on Crab Nebula observations.

  1. Hadronic interaction and structure of exotic nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    2009-01-01

    I will overview recent studies on the evolution of the shell structure in stable and exotic nuclei, and will show its relevance to hadronic interaction, including nuclear forces. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The shell structure and existing limit of nuclei depend also on the three-body interaction in a specific way. I will sketch how the Δ-hole excitation induced three-body force (Fujita-Miyazawa force) modifies them. (author)

  2. Possible isomers in nuclei beyond the drip line

    International Nuclear Information System (INIS)

    Ogawa, K.

    1986-12-01

    To search a new decay model which is not observed in nuclei near stability line such as beta-delayed proton emission or direct proton emission provides us a wealth of knowledge on nuclear stability. Besides study of the nuclear decay modes, study of nuclear structures reveals us new aspect of nuclei like new deformed regions or new magic numbers. In these respects the study of a nucleus 100 Sn and its closest neighbours has a special role. (author)

  3. Inelastic scattering to collective states in double-magic nuclei

    International Nuclear Information System (INIS)

    Wambach, J.

    1979-06-01

    The paper discusses several aspects of inelastic scattering to collective states in the framework of the 'Shell Model RPA Approximation' with special emphasis on the analysis of giant resonance states. (orig./WL) [de

  4. Gamow-Teller Strength Distributions for Some Magic Nuclei

    Directory of Open Access Journals (Sweden)

    Necla ÇAKMAK

    2014-12-01

    Full Text Available The total Gamow-Teller strengths and their energy distributions for 96Zr, 96Sr, 54Ca, 28O, 24C and 14C have been obtained within the framework of Random Phase Approximation (RPA. The effective interaction potential has been described by considering the commutativity of the Gamow-Teller operator with the central part of the nuclear Hamiltonian.

  5. Structure of the drip line nuclei probed by separation energies

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Zdeněk

    2006-01-01

    Roč. 15, č. 7 (2006), s. 1471-1475 ISSN 0218-3013 Institutional research plan: CEZ:AV0Z10480505 Keywords : Neutron-rich nuclei * Shell- modell * Magic-number Subject RIV: BE - Theoretical Physics Impact factor: 0.810, year: 2006

  6. Abject Magic: Reasoning Madness in Justine Larbalestier's "Magic or Madness" Trilogy

    Science.gov (United States)

    Potter, Troy

    2013-01-01

    This paper explores the representation of magic and madness in Justine Larbalestier's "Magic or Madness" trilogy (2005-2007). Throughout the series, magic is constructed as an abject and disabling force that threatens to disable magic-wielders, either through madness or death. Despite being represented as a ubiquitous force, the…

  7. Characterization of zeolites by magic-angle-spinning NMR

    International Nuclear Information System (INIS)

    Brunner, E.; Ernst, H.; Freude, D.; Hunger, M.; Pfeifer, H.

    1988-01-01

    Magic-angle-spinning nuclear magnetic resonance (MAS NMR) has been used to study structure defects in TPA/ZSM-5, the dealumination process caused by hydrothermal treatment and acid leaching of zeolites, the influence of Lewis sites upon water as a probe molecule, the boron incorporation into the ZSM-5 framework, and the acid sites and structure defects in SAPO-5. The nuclei under study are 1 H, 11 B, 27 Al, 29 Si, and 31 P. 24 refs.; 7 figs.; 1 table

  8. Level density of radioactive doubly-magic nucleus 56Ni

    International Nuclear Information System (INIS)

    Santhosh Kumar, S.; Rengaiyan, R.; Victor Babu, A.; Preetha, P.

    2012-01-01

    In this work the single particle energies are obtained by diagonalising the Nilsson Hamiltonian in the cylindrical basis and are generated up to N =11 shells for the isotopes of Ni from A = 48-70, emphasizing the three magic nuclei viz, 48 Ni, 56 Ni and 68 Ni. The statistical quantities like excitation energy, level density parameter and nuclear level density which play the important roles in the nuclear structure and nuclear reactions can be calculated theoretically by means of the Statistical or Partition function method. Hence the statistical model approach is followed to probe the dynamical properties of the nucleus in the microscopic level

  9. Finding All Solutions to the Magic Hexagram

    Science.gov (United States)

    Holland, Jason; Karabegov, Alexander

    2008-01-01

    In this article, a systematic approach is given for solving a magic star puzzle that usually is accomplished by trial and error or "brute force." A connection is made to the symmetries of a cube, thus the name Magic Hexahedron.

  10. Magical attachment: Children in magical relations with hospital clowns

    Directory of Open Access Journals (Sweden)

    Lotta Linge

    2012-02-01

    Full Text Available The aim of the present study was to achieve a theoretical understanding of several different-age children's experiences of magic relations with hospital clowns in the context of medical care, and to do so using psychological theory and a child perspective. The method used was qualitative and focused on nine children. The results showed that age was important to consider in better understanding how the children experienced the relation with the hospital clowns, how they described the magical aspects of the encounter and how they viewed the importance of clown encounters to their own well-being. The present theoretical interpretation characterized the encounter with hospital clowns as a magical safe area, an intermediate area between fantasy and reality. The discussion presented a line of reasoning concerning a magical attachment between the child and the hospital clowns, stating that this attachment: a comprised a temporary relation; b gave anonymity; c entailed reversed roles; and d created an emotional experience of boundary-transcending opportunities.

  11. MAGIC MOORE-PENROSE INVERSES AND PHILATELIC MAGIC SQUARES WITH SPECIAL EMPHASIS ON THE DANIELS–ZLOBEC MAGIC SQUARE

    Directory of Open Access Journals (Sweden)

    Ka Lok Chu

    2011-02-01

    Full Text Available We study singular magic matrices in which the numbers in the rows and columns and in the two main diagonals all add up to the same sum. Our interest focuses on such magic matrices for which the Moore–Penrose inverse is also magic. Special attention is given to the “Daniels–Zlobec magic square’’ introduced by the British magician and television performer Paul Daniels (b. 1938 and considered by Zlobec (2001; see also Murray (1989, pp. 30–32. We introduce the concept of a “philatelic magic square” as a square arrangement of images of postage stamps so that the associated nominal values form a magic square. Three philatelic magic squares with stamps especially chosen for Sanjo Zlobec are presented in celebration of his 70th birthday; most helpful in identifying these stamps was an Excel checklist by Männikkö (2009.

  12. It's magic: a unique practice management strategy.

    Science.gov (United States)

    Schwartz, Steven

    2003-11-15

    For thousands of years prior to the advent of modern dentistry, magic has been used to entertain, impress, and motivate individuals. Today's dental professionals are using the concept of The Magic of a Healthy Smile through their use of modern clinical techniques and as a means for practice marketing, patient education, and the reduction of patient stress and fear. This article describes how dentists/magicians have incorporated magic into their practices and the benefits of this useful patient management strategy. A script of the "Happy Tooth Magic Show" and resources for dentists to create their own dental magic show are provided.

  13. Magic While They are Young

    Science.gov (United States)

    Cox, Anne Mae

    1974-01-01

    Magic squares are used both as a vehicle for arithmetic drill and the development of mathematical concepts for second-grade students. By searching for patterns within the squares, additional number concepts are developed along with the concept of symmetry. (JP)

  14. Magical Realism and its European Essence

    Directory of Open Access Journals (Sweden)

    Maryam Ebadi Asayesh

    2017-04-01

    Full Text Available Magical realism is known with its oxymoronic characteristic, magic plus realism. It became known with the boom of the magical realist novel in the 1960s in Latin America and became globally recognized from 1980 onwards. However, it is mostly forgotten that it had started its journey from Europe. The term “magic realism” first appeared in German philosophy in 1798 in Novalis’ notebook. Then, it entered art criticism in 1925 through Roh’s essay and developed in Italy through by Bontempelli. Later, after transformation and formation, magical realism appeared in the novels as a popular mode first in Latin America and then worldwide. The present study charts the path and discusses the development of magical realism from its commencement in Europe. In addition to presenting the views of Novalis, Roh and Bontempelli on initiating the term, it compares their views to show what characteristic in their views inspires today’s magic realism.

  15. Relativistic mean field calculations in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  16. Magic and the aesthetic illusion.

    Science.gov (United States)

    Balter, Leon

    2002-01-01

    The aesthetic illusion is the subjective experience that the content of a work of art is reality. It has an intrinsic relation to magic, an intrapsychic maneuver oriented toward modification and control of the extraspyschic world, principally through ego functioning. Magic is ontogenetically and culturally archaic, expresses the omnipotence inherent in primary narcissism, and operates according to the logic of the primary process. Magic is a constituent of all ego functioning, usually latent in later development. It may persist as an archaic feature or may be evoked regressively in global or circumscribed ways. It causes a general disinhibition of instincts and impulses attended by a sense of confidence, exhiliration, and exuberance. The aesthetic illusion is a combination of illusions: (1) that the daydream embodied by the work of art is the beholder's own, the artist being ignored, and (2) that the artistically described protagonist is a real person with a real "world." The first illusion arises through the beholder's emotional-instinctual gratification from his or her own fantasy-memory constellations; the second comes about because the beholder, by taking the protagonist as proxy, mobilizes the subjective experience of the imaginary protagonist's "reality." The first illusion is necessary for the second to take place; the second establishes the aesthetic illusion proper. Both illusions are instances of magic. Accordingly, the aesthetic illusion is accompanied by a heady experience of excitement and euphoria. The relation among the aesthetic illusion, magic, and enthusiasm is illustrated by an analytic case, J. D. Salinger's "The Laughing Man," Woody Allen's Play It Again, Sam, Don Quixote, and the medieval Cult of the Saints.

  17. Superdeformed nuclei

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Khoo, T.L.

    1991-01-01

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  18. Realistic nuclear shell theory and the doubly-magic 132Sn region

    International Nuclear Information System (INIS)

    Vary, J.P.

    1978-01-01

    After an introduction discussing the motivation and interest in results obtained with isotope separators, the fundamental problem in realistic nuclear shell theory is posed in the context of renormalization theory. Then some of the important developments that have occurred over the last fifteen years in the derivation of the effective Hamiltonian and application of realistic nuclear shell theory are briefly reviewed. Doubly magic regions of the periodic table and the unique advantages of the 132 Sn region are described. Then results are shown for the ground-state properties of 132 Sn as calculated from the density-dependent Hartree-Fock approach with the Skyrme Hamiltonian. A single theoretical Hamiltonian for all nuclei from doubly magic 132 Sn to doubly magic 208 Pb is presented; single-particle energies are graphed. Finally, predictions of shell-model level-density distributions obtained with spectral distribution methods are discussed; calculated level densities are shown for 136 Xe. 10 figures

  19. Observation of Galactic Sources of Very High Energy γ-RAYS with the Magic Telescope

    Science.gov (United States)

    Bartko, H.

    The MAGIC telescope with its 17m diameter mirror is today the largest operating single-dish Imaging Air Cherenkov Telescope (IACT). It is located on the Canary Island La Palma, at an altitude of 2200 m above sea level, as part of the Roque de los Muchachos European Northern Observatory. The MAGIC telescope detects celestial very high energy γ-radiation in the energy band between about 50 GeV and 10 TeV. Since the autumn of 2004 MAGIC has been taking data routinely, observing various objects, like supernova remnants (SNRs), γ-ray binaries, Pulsars, Active Galactic Nuclei (AGN) and Gamma-ray Bursts (GRB). We briefly describe the observational strategy, the procedure implemented for the data analysis, and discuss the results of observations of Galactic Sources.

  20. Density functional theory of nuclei

    International Nuclear Information System (INIS)

    Terasaki, Jun

    2008-01-01

    The density functional theory of nuclei has come to draw attention of scientists in the field of nuclear structure because the theory is expected to provide reliable numerical data in wide range on the nuclear chart. This article is organized to present an overview of the theory to the people engaged in the theory of other fields as well as those people in the nuclear physics experiments. At first, the outline of the density functional theory widely used in the electronic systems (condensed matter, atoms, and molecules) was described starting from the Kohn-Sham equation derived on the variational principle. Then the theory used in the field of nuclear physics was presented. Hartree-Fock and Hartree-Fock-Bogolyubov approximation by using Skyrme interaction was explained. Comparison of the results of calculations and experiments of binding energies and ground state mean square charge radii of some magic number nuclei were shown. The similarity and dissimilarity between the two streams were summarized. Finally the activities of the international project of Universal Nuclear Energy Density Functional (UNEDF) which was started recently lead by US scientist was reported. This project is programmed for five years. One of the applications of the project is the calculation of the neutron capture cross section of nuclei on the r-process, which is absolutely necessary for the nucleosynthesis research. (S. Funahashi)

  1. Colliding nuclei

    International Nuclear Information System (INIS)

    Balian, Roger; Remaud, Bernard; Suraud, E.; Durand, Dominique; Tamain, Bernard; Gobbi, A.; Cugnon, J.; Drapier, Olivier; Govaerts, Jan; Prieels, Rene

    1995-09-01

    This 14. international school Joliot-Curie of nuclear physic deals with nuclei in collision at high energy. Nine lectures are included in the proceedings of this summer school: 1 - From statistical mechanics outside equilibrium to transport equations (Balian, R.); 2 - Modeling of heavy ions reactions (Remaud, B.); 3 - Kinetic equations in heavy ions physics (Suraud, E.); 4 - Colliding nuclei near the Fermi energy (Durand, D.; Tamain, B.); 5 - From the Fermi to the relativistic energy domain: which observable? For which physics? (Gobbi, A.); 6 - Collisions at relativistic and ultra relativistic energies, Theoretical aspects (Cugnon, J.); 7 - Quark-gluon plasma: experimental signatures (Drapier, O.); 8 - Electroweak interaction: a window on physics beyond the standard model (Govaerts, J.); 9 - Symmetry tests in β nuclear process: polarization techniques (Prieels, R.)

  2. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    2000-01-01

    Complete text of publication follows. The uncharted regions of the (N,Z) plane contain information that can answer many questions of fundamental importance for science: How many protons and neutrons can be clustered together by the strong interaction to form a bound nucleus? What are the proton and neutron magic numbers of the exotic nuclei? What are the properties of very short-lived exotic nuclei with extreme neutron-to-proton ratios? What is the effective nucleon-nucleon interaction in a nucleus that has a very large neutron excess? Nuclear life far from stability is different from that around the stability line; the promised access to completely new combinations of proton and neutron numbers offers prospects for new structural phenomena. The main objective of this talk is to discuss some of the challenges and opportunities of research with exotic nuclei. The covered topics will include: Theoretical challenges; Skins and halos in heavy nuclei; Shape coexistence in exotic nuclei; Beta-decays of neutron-rich nuclei. (author)

  3. Magical Formulae for Market Futures

    DEFF Research Database (Denmark)

    Garsten, Christina; Sörbom, Adrienne

    2016-01-01

    Markets are often portrayed as being organized by way of rationalized knowledge, objective reasoning, and the fluctuations of demand and supply. In parallel, and often mixed with this modality of knowledge, magical beliefs and practices are prevalent. Business leaders, management consultants......, and financial advisors are often savvy in the art of creatively blending the ‘objective facts’ of markets with magical formulae, rites, and imaginaries of the future. This article looks at the World Economic Forum's yearly Davos meeting as a large-scale ritual that engages senior executives of global...... corporations, top-level politicians, and civil society leaders to contribute to the overall aim of ‘improving the world’. The Davos gathering has become a vital part of the business calendar, just as much for the intensity of its networking as for the declarations of action from the speakers’ podiums...

  4. Magical thinking decreases across adulthood.

    Science.gov (United States)

    Brashier, Nadia M; Multhaup, Kristi S

    2017-12-01

    Magical thinking, or illogical causal reasoning such as superstitions, decreases across childhood, but almost no data speak to whether this developmental trajectory continues across the life span. In four experiments, magical thinking decreased across adulthood. This pattern replicated across two judgment domains and could not be explained by age-related differences in tolerance of ambiguity, domain-specific knowledge, or search for meaning. These data complement and extend findings that experience, accumulated over decades, guides older adults' judgments so that they match, or even exceed, young adults' performance. They also counter participants' expectations, and cultural sayings (e.g., "old wives' tales"), that suggest that older adults are especially superstitious. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Penggunaan magic dalam politik lokal di Banten

    Directory of Open Access Journals (Sweden)

    Ayatullah Humaeni

    2014-01-01

    Full Text Available Village-head elections frequently become unhealthy competitions among the candidate. They employ various ways to win the election, including using magical means. This article aims to explain social phenomena occur in local politics in the use of magic village-head elections in rural Banten; particularly in two sub-districts, Ciomas and Padarincang. It tries to answer several main research questions: (1 why do the candidates make use of magic during the village election process?; (2 what kinds of magic used by the candidates; (3 How does magic influence the winning chance of village head elections? (4 and how is the process of the magic usage during the village election process?. This article is the result of a field research using ethnographical method based on anthropological perspective. To analyze the data, the researcher uses structural-functional approach. Library research, participant-observation, and depth-interview are methods used to collect the data. Based on the result of field research, it can be concluded that almost all of the candidates in these two sub-districts made use of magic in order to win the village head elections. They visit several magicians and made use of their super natural powers for their own purposes. They believed that magical power possessed by these magicians could influence their winning chance in the village-head elections. Various fundamental reasons also become an important consideration why the candidates need to use magic in local politics process.

  6. Solid state nuclear magnetic resonance studies of cross polarization from quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    De Paul, Susan M. [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    The development of solid-state Nuclear Magnetic Resonance (NMR) has, to a large extent, focused on using spin-1/2 nuclei as probes to investigate molecular structure and dynamics. For such nuclei, the technique of cross polarization is well-established as a method for sensitivity enhancement. However, over two-thirds of the nuclei in the periodic table have a spin-quantum number greater than one-half and are known as quadrupolar nuclei. Such nuclei are fundamental constituents of many inorganic materials including minerals, zeolites, glasses, and gels. It is, therefore, of interest to explore the extent to which polarization can be transferred from quadrupolar nuclei. In this dissertation, solid-state NMR experiments involving cross polarization from quadrupolar nuclei to spin-1/2 nuclei under magic-angle spinning (MAS) conditions are investigated in detail.

  7. Professional Expertise in Magic – Reflecting on professional expertise in magic:An interview study

    Directory of Open Access Journals (Sweden)

    Olli eRissanen

    2014-12-01

    Full Text Available The purpose of the present investigation was to analyse interviews of highly regarded Finnish magicians. Social network analysis (N=120 was used to identify Finland’s most highly regarded magicians (N=16. The selected participants’ careers in professional magic and various aspects of their professional conduct were examined by relying on semi-structured interviews. The results revealed that cultivation of professional level competence in magic usually requires an extensive period of time compared with other domains of expertise. Magic is a unique performing art and it differs from other professions focusing on deceiving the audience. A distinctive feature of magical expertise is that the process takes place entirely through informal training supported by communities of magical practitioners. Three interrelated aspects of magical activity were distinguished: magic tricks, performance, and audience. Although magic tricks constitute a central aspect of magic activity, the participants did not talk about their tricks extensively; this is in accordance with the secretive nature of magic culture.The interviews revealed that a core aspect of the magicians’ activity is performance in front of an audience that repeatedly validates competence cultivated through years of practice. The interviewees reported investing a great deal of effort in planning, orchestrating, and reflecting on their performances. Close interaction with the audience plays an important role in most interviewees’ activity. Many participants put a great deal of effort in developing novel magic tricks. It is common to borrow magic effects from fellow magicians and develop novel methods of implementation. Because magic tricks or programs are not copyrighted, many interviewees considered stealing an unacceptable and unethical aspect of magical activity. The interviewees highlighted the importance of personality and charisma in the successful pursuit of magic activity.

  8. Relativistic exotic nuclei as projectile beams. New perspectives of studies on the properties of nuclei

    International Nuclear Information System (INIS)

    Geissel, H.

    1997-03-01

    Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [de

  9. Algebra Magic Tricks: Algecadabra! Volume 1.

    Science.gov (United States)

    Edwards, Ronald

    This resource book contains 20 magic tricks based on the properties of whole numbers that are intended to spark the interest and imagination of students. Following each activity, students are asked to write about their discoveries and to create their own magic tricks. A matrix of skills for all the activities and lists of the materials required…

  10. Algebra Magic Tricks: Algecadabra! Volume 2.

    Science.gov (United States)

    Edwards, Ronald

    This resource book contains 15 magic tricks based on the properties of whole numbers that are intended to spark the interest and imagination of students. Following each activity, students are asked to write about their discoveries and to create their own magic tricks. A matrix of skills for all the activities and lists of the materials required…

  11. Primordial nuclei

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The recent detection of intergalactic helium by NASA's Astro-2 mission backs up two earlier measurements by ESA and the University of California, San Diego, using instruments aboard the Hubble Space Telescope. Taken together, these results give strong evidence that this helium is primordial, confirming a key prediction of the Big Bang theory. The amount of helium the results imply could also account for some of the Universe's invisible dark matter - material which affects galactic motion but is otherwise undetectable. According to theory, helium nuclei formed at around 100 seconds after the Big Bang, but the amount of helium depended on even earlier events. Initially, protons turned into neutrons with the same probability that neutrons turned into protons. But after about one second, the Universe had cooled down enough for the weak interaction to freeze out. Neutrons continued to decay into the slightly lighter protons, whilst the opposite reaction became much more scarce. At around 100 seconds, thermonuclear fusion reactions could begin, and all the neutrons that were left became absorbed into helium nuclei, leaving the remaining protons locked up in hydrogen. The ratio of helium to hydrogen was therefore determined by events occurring when the Universe was just one second old. Standard models of primordial nucleosynthesis fix this ratio at slightly less than 2 5% by mass. All heavier elements were cooked up much later in the stars, and amount to less than 1 % of the Universe's mass. These predictions have been borne out remarkably well by observation, although proof of the primordial origins of hydrogen and helium has remained elusive until now. Big Bang nucleosynthesis goes on to estimate that primordial baryonic matter in the form of light nuclei could account for around 10% of the Universe's dark matter. All three recent measurements used the same technique of looking at distant quasars, some of the most luminous objects in the Universe, to

  12. Hydrogen and deuterium NMR of solids by magic-angle spinning

    International Nuclear Information System (INIS)

    Eckman, R.R.

    1982-10-01

    The nuclear magnetic resonance of solids has long been characterized by very large specral broadening which arises from internuclear dipole-dipole coupling or the nuclear electric quadrupole interaction. These couplings can obscure the smaller chemical shift interaction and make that information unavailable. Two important and difficult cases are that of hydrogen and deuterium. The development of cross polarization, heteronuclear radiofrequency decoupling, and coherent averaging of nuclear spin interactions has provided measurement of chemical shift tensors in solids. Recently, double quantum NMR and double quantum decoupling have led to measurement of deuterium and proton chemical shift tensors, respectively. A general problem of these experiments is the overlapping of the tensor powder pattern spectra of magnetically distinct sites which cannot be resolved. In this work, high resolution NMR of hydrogen and deuterium in solids is demonstrated. For both nuclei, the resonances are narrowed to obtain liquid-like isotropic spectra by high frequency rotation of the sample about an axis inclined at the magic angle, β/sub m/ = Arccos (3/sup -1/2/), with respect to the direction of the external magnetic field. For deuterium, the powder spectra were narrowed by over three orders of magnitude by magic angle rotation with precise control of β. A second approach was the observation of deuterium double quantum transitions under magic angle rotation. For hydrogen, magic angle rotation alone could be applied to obtain the isotropic spectrum when H/sub D/ was small. This often occurs naturally when the nuclei are semi-dilute or involved in internal motion. In the general case of large H/sub D/, isotropic spectra were obtained by dilution of 1 H with 2 H combined with magic angle rotation. The resolution obtained represents the practical limit for proton NMR of solids

  13. Magic Pointing for Eyewear Computers

    DEFF Research Database (Denmark)

    Jalaliniya, Shahram; Mardanbegi, Diako; Pederson, Thomas

    2015-01-01

    In this paper, we propose a combination of head and eye movements for touchlessly controlling the "mouse pointer" on eyewear devices, exploiting the speed of eye pointing and accuracy of head pointing. The method is a wearable computer-targeted variation of the original MAGIC pointing approach...... which combined gaze tracking with a classical mouse device. The result of our experiment shows that the combination of eye and head movements is faster than head pointing for far targets and more accurate than eye pointing....

  14. Some contributions of MAGIC to the physics ofcosmic rays

    Directory of Open Access Journals (Sweden)

    Gozzini S.R.

    2013-06-01

    Full Text Available Cosmic ray interactions can be investigated indirectly in γ ray astronomy, with the observation of spectral and morphological features of certain classes of sources. MAGIC is a stereoscopic system of two γ ray telescopes, located at La Palma (Canaries, with access to the energy window between 50 GeV and 30 TeV. Sources of high relevance for the study of very high energy hadronic interactions are active galactic nuclei, as blazars and radio galaxies. MAGIC has detectedabout fifty such extragalactic objects; we will present some where theemission is explained with accelerated hadrons in interaction with ambient photons. We will also mention cosmic ray acceleration in galaxy clusters. Other than that, hadron-hadron interactions are supposed to take place in some supernova remnants in interaction with surrounding molecular clouds; we will show some results, in connection with cosmic rays of galactic origin. Finally, about other possible components, wewill mention the measurement of the diffuse electron and positron spectrum. Trustingly, the close connection between particle physics and astrophysics will contribute in future years to many new interesting observations.

  15. MAGIC: First Observational Results and Perspectives for Future Developments

    Science.gov (United States)

    Hengstebeck, T.; Kalekin, O.; Merck, M.; Mirzoyan, R.; Pavel, N.; Schweizer, T.; Shayduk, M.; MAGIC Collaboration

    The MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescope was designed to close the energy gap (~ 10-250 GeV) between ground based and satellite gamma detectors. It is situated on the Roque de los Muchachos, La Palma, Canary Islands at altitude of 2200 m. The main subjects of the investigations with the telescope are: Gamma Ray Bursts, Supernova Remnants, Plerions, Pulsars, Active Galactic Nuclei (AGNs), unidentied EGRET sources, Dark matter and Quantum gravity. More details about physics with a low threshold gamma ray telescope one can nd in [2]. The telescope hardware installation was nished in October 2003. Since that time the observations of the dierent classes of objects have been carried out but the experiment is still in the commission phase.

  16. Stability of bubble nuclei through Shell-Effects

    OpenAIRE

    Dietrich, Klaus; Pomorski, Krzysztof

    1997-01-01

    We investigate the shell structure of bubble nuclei in simple phenomenological shell models and study their binding energy as a function of the radii and of the number of neutron and protons using Strutinsky's method. Shell effects come about, on the one hand, by the high degeneracy of levels with large angular momentum and, on the other, by the big energy gaps between states with a different number of radial nodes. Shell energies down to -40 MeV are shown to occur for certain magic nuclei. E...

  17. Magical mathematics the mathematical ideas that animate great magic tricks

    CERN Document Server

    Diaconis, Persi

    2012-01-01

    Magical Mathematics reveals the secrets of amazing, fun-to-perform card tricks--and the profound mathematical ideas behind them--that will astound even the most accomplished magician. Persi Diaconis and Ron Graham provide easy, step-by-step instructions for each trick, explaining how to set up the effect and offering tips on what to say and do while performing it. Each card trick introduces a new mathematical idea, and varying the tricks in turn takes readers to the very threshold of today's mathematical knowledge. For example, the Gilbreath Principle--a fantastic effect where the cards remain in control despite being shuffled--is found to share an intimate connection with the Mandelbrot set. Other card tricks link to the mathematical secrets of combinatorics, graph theory, number theory, topology, the Riemann hypothesis, and even Fermat's last theorem.

  18. A Magic-Real Gap in Architecture

    DEFF Research Database (Denmark)

    Dayer, Carolina

    2016-01-01

    In 1925, German art critic Franz Roh formalized the notion of Magic Realism (magischer Realismus) as a celebration of everyday life. In Italian literature, the same notion was explored in the works of Massimo Bontempelli. But it was the architect Friedrich Kiesler who imported the notion...... into architecture, stating that ‘Magic Architecture ... holds the balance between the two extremes of man’, his ‘desire for the machine’ and technology on the one hand, his ‘denial of science’ on the other. This paper follows the development of the notion of Magic Realism throughout the twentieth century...

  19. Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei

    Science.gov (United States)

    Saleh Ahmed, Saad M.

    2017-06-01

    The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.

  20. Production and identification of new, neutron-rich nuclei in the {sup 208}Pb region

    Energy Technology Data Exchange (ETDEWEB)

    Rykaczewski, K. [Oak Ridge National Lab., TN (United States). Physics Div.]|[ISOLDE-CERN, Geneva (Switzerland)]|[Univ. of Warsaw (Poland); Kurpeta, J.; Plochocki, A. [Univ. of Warsaw (Poland)] [and others

    1998-11-01

    The recently developed methods allowing the experimental studies on new neutron-rich nuclei beyond doubly-magic {sup 208}Pb are briefly described. An identification of new neutron-rich isotopes {sup 215}Pb and {sup 217}Bi, and new decay properties of {sup 216}Bi studied by means of a pulsed release element selective technique at PS Booster-ISOLDE are reported.

  1. Production and identification of new, neutron-rich nuclei in the 208Pb region

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Kurpeta, J.; Plochocki, A.; Karny, M.; Szerypo, J.; Evensen, A.-H.; Kugler, E.; Lettry, J.; Ravn, H.; Duppen, P. van; Andreyev, A.; Huyse, M.; Woehr, A.; Jokinen, A.; Aeystoe, J.; Nieminen, A.; Huhta, M.; Ramdhane, M.; Walter, G.; Hoff, P.

    1998-01-01

    The recently developed methods allowing the experimental studies on new neutron-rich nuclei beyond doubly-magic 208 Pb are briefly described. An identification of new neutron-rich isotopes 215 Pb and 217 Bi, and new decay properties of 216 Bi studied by means of a pulsed release element selective technique at PS Booster-ISOLDE are reported

  2. People Interview: The science behind the 'magic'

    Science.gov (United States)

    2010-01-01

    INTERVIEW The science behind the 'magic' Grand Illusions is a website dedicated to science-based phenomena, fun and games, and optical illusions. David Smith speaks to two of its key members—Hendrik Ball and Tim Rowett.

  3. Magic gamma rays, extra-atmospheric source

    International Nuclear Information System (INIS)

    Bolufer, P.

    2010-01-01

    Without the atmospheric layer, the cosmos radiation would kill every living, our planet would be like the moon. The cosmic gamma ray to collide with gases in land cover, as it is disintegrated. They are harmless, they form a cone of light that points to the cosmic source comes from. On April 25, 2009 was born on the island of Palma Magic II and Magic I the best observer of atmospheric gamma rays of low intensity. (Author)

  4. Runes, magic and religion : a sourcebook.

    OpenAIRE

    McKinnell, J.; Simek, R.; Düwel, K.

    2004-01-01

    The present source book offers a survey of all types of runic inscriptions with religious or magical connotations from the earliest periods to the late Middle Ages, from Rune on weapons and jewellery to runic gravestones and Christian runic amulets. It is intended as a scholarly answer against the common misconception of the supposedly dominant use of runes in magic. The present volume is structured in 15 units which enable its use as an aid to teaching without being excessively comprehensive.

  5. The magic circle and the puzzle piece

    OpenAIRE

    Juul, Jesper

    2008-01-01

    In a common description, to play a game is to step inside a concrete or metaphorical magic circle where special rules apply. In video game studies, this description has received an inordinate amount of criticism which the paper argues has two primary sources: 1. a misreading of the basic concept of the magic circle and 2. a somewhat rushed application of traditional theoretical concerns onto games. The paper argues that games studies must move beyond conventional criticisms of binary distinct...

  6. Status, first results and prospects for MAGIC

    International Nuclear Information System (INIS)

    Rico, Javier

    2006-01-01

    MAGIC is the world-largest Imaging Air Cherenkov Telescope (IACT) for Very High Energy (VHE) γ-ray astronomy and operates in the range from ∼50 GeV to ∼10 TeV. In this paper we will briefly summarize the status of the project, including the construction of a second (MAGIC-II) telescope, and review the results obtained from the first observations

  7. Seeking the purported magic number N= 32 with high-precision mass spectrometry

    CERN Multimedia

    Schweikhard, L C; Herfurth, F; Boehm, C; Manea, V; Blaum, K; Beck, D; Kowalska, M; Kreim, K D; Stanja, J; Audi, G; Rosenbusch, M; Wienholtz, F; Litvinov, Y

    Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies offer a clear signature for the presence (or disappearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measurements of N = 34 isotones $^{58}$Cr (Z = 24), $^{55}$Sc (Z = 21) and $^{54}$Ca (Z = 20), as well as the N = 32 isotones $^{53}$Sc and $^{52}$Ca. We also propose measuring the mass of $^{60}$Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-reflection time-of-flight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms.

  8. Seeking the purported magic number N= 32 with high-precision mass spectrometry

    CERN Document Server

    Kreim, S; Blaum, K; Bohm, Ch; Borgmann, Ch; Breitenfeldt, M; Cakirli, R B; Herfurth, F; Kowalska, M; Litvinov, Y; Lunney, D; Manea, V; Naimi, S; Neidherr, D; Rosenbusch, M; Schweikhard, L; Stanja, J; Stora, Th; Wienholtz, F; Wolf, R N; Zuber, K

    2011-01-01

    Accounting for the appearance of new magic numbers represents an exacting test for nuclear models. Binding energies o er a clear signature for the presence (or dis- appearance) of shell closures. To determine the strength of the purported N = 32 shell closure, we propose using the Penning-trap spectrometer ISOLTRAP for mass measure- ments of N = 34 isotones 58 Cr ( Z = 24), 55 Sc ( Z = 21) and 54 Ca ( Z = 20), as well as the N = 32 isotones 53 Sc and 52 Ca. We also propose measuring the mass of 60 Cr to test the shell model prediction of a new magic number at N = 34. In addition to the Penning-trap system at ISOLTRAP, we intend to use the newly commissioned multi-re ection time-of- ight mass separator, which enables direct mass measurements on nuclei with half-lives below 50 ms.

  9. The MAGIC telescope for gamma-ray astronomy above 30 GeV

    Science.gov (United States)

    Moralejo, A.; MAGIC Collaboration

    The MAGIC telescope is presently at its commissioning phase at the Roque de los Muchachos Observatory (ORM) on the island of La Palma. MAGIC will become the largest ground-based gamma ray telescope in the world, being sensitive to photons of energies as low as 30 GeV. The spectral range between 10 and 300 GeV remains to date mostly unexplored. Observations in this region of the spectrum are expected to provide key data for the understanding of a wide variety of astrophysical phenomena belonging to the so-called ``non thermal Universe'', like the processes in the nuclei of active galaxies, the radiation mechanisms of pulsars and supernova remnants, and the enigmatic gamma-ray bursts. And overview of the telescope and its Physics goals is presented.

  10. Shell closures, loosely bound structures, and halos in exotic nuclei

    International Nuclear Information System (INIS)

    Saxena, G.; Singh, D.

    2013-01-01

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  11. Shell closures, loosely bound structures, and halos in exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, G., E-mail: gauravphy@gmail.com [Govt. Women Engineering College, Department of Physics (India); Singh, D. [University of Rajasthan, Department of Physics (India)

    2013-04-15

    Inspired by the recent experiments indicating doubly magic nuclei that lie near the drip-line and encouraged by the success of our relativistic mean-field (RMF) plus state-dependent BCS approach to the description of the ground-state properties of drip-line nuclei, we develop this approach further, across the entire periodic table, to explore magic nuclei, loosely bound structures, and halo formation in exotic nuclei. In our RMF+BCS approach, the single-particle continuum corresponding to the RMF is replaced by a set of discrete positive-energy states for the calculations of pairing energy. Detailed analysis of the single-particle spectrum, pairing energies, and densities of the nuclei predict the unusual proton shell closures at proton numbers Z = 6, 14, 16, 34, and unusual neutron shell closures at neutron numbers N = 6, 14, 16, 34, 40, 70, 112. Further, in several nuclei like the neutron-rich isotopes of Ca, Zr, Mo, etc., the gradual filling of lowlying single-particle resonant state together with weakly bound single-particle states lying close to the continuum threshold helps accommodate more neutrons but with an extremely small increase in the binding energy. This gives rise to the occurrence of loosely bound systems of neutron-rich nuclei with a large neutron-to-proton ratio. In general, the halo-like formation, irrespective of the existence of any resonant state, is seen to be due to the large spatial extension of the wave functions for the weakly bound single-particle states with low orbital angular momentum having very small or no centrifugal barriers.

  12. Spectroscopy of N approximately 82 nuclei near the proton drip line

    International Nuclear Information System (INIS)

    Daly, P.J.

    1984-01-01

    The yrast spectroscopy of Z>64 nuclei close to the proton drip line is discussed. This is a region of shell model nuclei in which high-spin excitations are accessible with heavy ion beams, and the occurrence of many isomers will facilitate future spectroscopic study of these nuclei to much higher spins that were observed in these investigations. The study of πhsub(11/2)sup(n) excitations in n=82 nuclei above 146 Gd provided particularly interesting results, since in certain respects their properties match shell model predictions better than those of jsup(n) states near traditional doubly magic nuclei. First results for N=81 nuclei above Z=64 were also reported, but much work remains to be done in the Z>64, N<82 quadrant

  13. Entropy and the Magic Flute

    Science.gov (United States)

    Morowitz, Harold J.

    1996-10-01

    Harold Morowitz has long been highly regarded both as an eminent scientist and as an accomplished science writer. The essays in The Wine of Life , his first collection, were hailed by C.P. Snow as "some of the wisest, wittiest and best informed I have ever read," and Carl Sagan called them "a delight to read." In later volumes he established a reputation for a wide-ranging intellect, an ability to see unexpected connections and draw striking parallels, and a talent for communicating scientific ideas with optimism and wit. With Entropy and the Magic Flute , Morowitz once again offers an appealing mix of brief reflections on everything from litmus paper to the hippopotamus to the sociology of Palo Alto coffee shops. Many of these pieces are appreciations of scientists that Morowitz holds in high regard, while others focus on health issues, such as America's obsession with cheese toppings. There is also a fascinating piece on the American Type Culture Collection, a zoo or warehouse for microbes that houses some 11,800 strains of bacteria, and over 3,000 specimens of protozoa, algae, plasmids, and oncogenes. Here then are over forty light, graceful essays in which one of our wisest experimental biologists comments on issues of science, technology, society, philosophy, and the arts.

  14. Decay properties of nuclei in the neighbourhood of 100Sn

    International Nuclear Information System (INIS)

    Straub, Katrin

    2011-01-01

    This thesis concentrates on nuclear properties of very neutron deficient nuclei near the proton dripline in the neighbourhood of doubly-magic 100 Sn. In an experiment performed in March 2008 at the GSI in Darmstadt, the exotic nuclei were produced in a projectile fragmentation reaction using a 124 Xe primary beam with an energy of 100 AMeV impinging on a 4000 Beryllium target, separated and identified in the FRS and eventually stopped for decay spectroscopy in a complex implantation detector developed at the institute E12. The Germanium array RISING was employed for the measurement of prompt and delayed gamma radiation. Production cross sections and half lives were determined along the proton dripline. The isotopes 99 Sn, 97 In and 95 Cd were identified for the first time. additional nuclei studied in this thesis are 103 Sn, 96 Cd as well as the two tin isotopes 101 Sn and 102 Sn. (orig.)

  15. KIDS Nuclear Energy Density Functional: 1st Application in Nuclei

    Science.gov (United States)

    Gil, Hana; Papakonstantinou, Panagiota; Hyun, Chang Ho; Oh, Yongseok

    We apply the KIDS (Korea: IBS-Daegu-Sungkyunkwan) nuclear energy density functional model, which is based on the Fermi momentum expansion, to the study of properties of lj-closed nuclei. The parameters of the model are determined by the nuclear properties at the saturation density and theoretical calculations on pure neutron matter. For applying the model to the study of nuclei, we rely on the Skyrme force model, where the Skyrme force parameters are determined through the KIDS energy density functional. Solving Hartree-Fock equations, we obtain the energies per particle and charge radii of closed magic nuclei, namely, 16O, 28O, 40Ca, 48Ca, 60Ca, 90Zr, 132Sn, and 208Pb. The results are compared with the observed data and further improvement of the model is shortly mentioned.

  16. Pulsar observations with the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Jezabel R.; Dazzi, F.; Idec, W.; Moretti, E.; Schweizer, T. [Max-Planck-Institut fuer Physik, Munich (Germany); Bonnefoy, S.; Carreto-Fidalgo, D.; Lopez, M. [Universitad Compultense, Madrid (Spain); Galindo, D.; Zanin, R. [Universitat de Barcelona, ICC/IEEC-UB, Barcelona (Spain); Ona Wilhelmi, E. de [Institute for Space Sciences (CSIC/IEEC), Barcelona (Spain); Reichardt, I. [Istituto Nazionale di Fisica Nucleare (INFN), Padova (Italy); Saito, T. [Kyoto University, Hakubi Center (Japan); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is a stereoscopic system of two IACTs, located at the ORM (Spain). Since 2008, MAGIC has played a big role in Pulsar physics due to the discovery of the first VHE gamma-ray emission from the Crab pulsar. Such a discovery was possible thanks to a revolutionary trigger technique used in the initial MAGIC mono system, the Sum-Trigger, that provided a 25 GeV energy threshold. The study of the Crab keeps providing numerous important results for the understanding of pulsar physics. The most recent ones are the bridge emission at VHE and the detection of the Crab pulsations at TeV energies. MAGIC has been also searching for new pulsars, providing recently interesting results about the Geminga pulsar and nebula. This talk reviews the essential MAGIC results about VHE pulsars and their implications for pulsar physics.Also we discuss the development of a new stereo trigger system, the Sum-Trigger-II, and the importance of the observation windows that this system opens for the study of VHE pulsars.

  17. Development and Performances of the Magic Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Dazzi, F.; Mariotti, M.; Moralejo, A.; Peruzzo, L.; Saggion, A.; Tonello, N.

    2002-11-01

    The MAGIC Collaboration is building an imaging Čerenkov telescope at La Palma site (2200 m a.s.l.), in the Canary Islands, to observe gamma rays in the hundred-GeV region. The MAGIC telescope, with its reflecting parabolic dish, 17 m in diameter, and a two-level pattern trigger designed to cope with severe trigger rates, is the Čerenkov telescope with the lowest envisaged energy threshold. Due to its lightweight alto-azimuthal mounting, MAGIC can be repositioned in less than 30 seconds, becoming the only detector, with an adequate effective area, capable to observe GRB phenomena above 30 GeV. MAGIC telescope is characterised by a 30 GeV energy threshold and a sensitivity of 6×l0-11 cm-2s-1 for a 5σ-detection in 50-hours of observation. In this report, some future scientific goals for MAGIC will be highlighted and the technical development for the main elements of the telescope will be detailed. Special emphasis will be given to the construction of the individual metallic mirrors which form the reflecting surface and the development of the fast pattern-recognition trigger.

  18. Origins of magic: review of genetic and epigenetic effects.

    Science.gov (United States)

    Ramagopalan, Sreeram V; Knight, Marian; Ebers, George C; Knight, Julian C

    2007-12-22

    To assess the evidence for a genetic basis to magic. Literature review. Harry Potter novels of J K Rowling. Muggles, witches, wizards, and squibs. Limited. Family and twin studies, magical ability, and specific magical skills. Magic shows strong evidence of heritability, with familial aggregation and concordance in twins. Evidence suggests magical ability to be a quantitative trait. Specific magical skills, notably being able to speak to snakes, predict the future, and change hair colour, all seem heritable. A multilocus model with a dominant gene for magic might exist, controlled epistatically by one or more loci, possibly recessive in nature. Magical enhancers regulating gene expressionmay be involved, combined with mutations at specific genes implicated in speech and hair colour such as FOXP2 and MCR1.

  19. THREE-VALENCE-PARTICE NUCLEI IN THE 132Sn and 208 Pb REGIONS

    International Nuclear Information System (INIS)

    Benchikh, L.; Draoui, B.; Latfaoui, M.; Aissaoui, L.

    2011-01-01

    Full text: Among the nuclei of the nuclear charter, the nuclei around closed shells play a key role in understanding the effective interaction properties between nucleons far from the valley of stability; particulary, the nuclei of a few valence nucleons around doubly magic 208 28Pb126 and 132 50Sn82 nuclei. The interest of both regions 208Pb and 132Sn lies in the fact that there is a great similarity between their nuclear spectroscopic properties. The single energy gaps in both cases are comparable and the orbitals above and below these gaps are similarly ordered. Each single state in the region of 132Sn has its counterpart in that of 208Pb. An interesting predictive consequence, the interactions of the Sn region, difficult region to reach experimentally, can be estimated from their corresponding ones constructed to describe the nuclei of the Pb region. Because of the importance of the similarity existing between the spectroscopy of these two regions, we are interested in nuclei with three valence nucleons in the lead and Tin regions on the basis of experimental data (spin, parity and energy states). In this context, the theoretical study is conducted within the shell model using the MSDI interaction for the energy spectra calculations of the studied nuclei. The calculated results are in good agreement with the available experimental data and show evidence that a close resemblance between the spectroscopy of these two regions persists when moving away from the immediate neighbours of doubly magic 132Sn and 208Pb.

  20. On the difference between proton and neutron spin-orbit splittings in nuclei

    International Nuclear Information System (INIS)

    Isakov, V.I.; Erokhina, K.I.; Mach, H.; Sanchez-Vega, M.; Fogelberg, B.

    2002-01-01

    The latest experimental data on nuclei at 132 Sn permit us for the first time to determine the spin-orbit splittings of neutrons and protons in identical orbits in this neutron-rich doubly magic region and compare the case to that of 208 Pb. Using the new results, which are now consistent for the two neutron-rich doubly magic regions, a theoretical analysis defines the isotopic dependence of the mean-field spin-orbit potential and leads to a simple explicit expression for the difference between the spin-orbit splittings of neutrons and protons. The isotopic dependence is explained in the framework of different theoretical approaches. (orig.)

  1. Atmospheric monitoring in MAGIC and data corrections

    Directory of Open Access Journals (Sweden)

    Fruck Christian

    2015-01-01

    Full Text Available A method for analyzing returns of a custom-made “micro”-LIDAR system, operated alongside the two MAGIC telescopes is presented. This method allows for calculating the transmission through the atmospheric boundary layer as well as thin cloud layers. This is achieved by applying exponential fits to regions of the back-scattering signal that are dominated by Rayleigh scattering. Making this real-time transmission information available for the MAGIC data stream allows to apply atmospheric corrections later on in the analysis. Such corrections allow for extending the effective observation time of MAGIC by including data taken under adverse atmospheric conditions. In the future they will help reducing the systematic uncertainties of energy and flux.

  2. Prospects of studying magical realism in Nigerian literature ...

    African Journals Online (AJOL)

    This paper exposes some of the reasons why magical realism is an interesting topic in literary studies today. It is a brief review of some notable magic realist writers and their popular works. It draws attention to the possibility of studying magical realism in Nigerian literature using the novels of some Nigerian authors who ...

  3. Magic informationally complete POVMs with permutations

    Science.gov (United States)

    Planat, Michel; Gedik, Zafer

    2017-09-01

    Eigenstates of permutation gates are either stabilizer states (for gates in the Pauli group) or magic states, thus allowing universal quantum computation (Planat, Rukhsan-Ul-Haq 2017 Adv. Math. Phys. 2017, 5287862 (doi:10.1155/2017/5287862)). We show in this paper that a subset of such magic states, when acting on the generalized Pauli group, define (asymmetric) informationally complete POVMs. Such informationally complete POVMs, investigated in dimensions 2-12, exhibit simple finite geometries in their projector products and, for dimensions 4 and 8 and 9, relate to two-qubit, three-qubit and two-qutrit contextuality.

  4. Extragalactic observations with the MAGIC telescopes

    International Nuclear Information System (INIS)

    Shore, S.N.

    2014-01-01

    The MAGIC imaging atmospheric Cherenkov telescopes, both as a single detector and now used in stereo mode, have been observing a variety of active galaxies and galactic clusters for almost a decade. This review provides a brief summary of some of the most recent results for blazars observed in the energy range > 50 GeV to tens of TeV. The very high energy emission observed with MAGIC is essential for disentangling the various contributions and timescales to the observed spectra and variability. (author)

  5. Evidence for prevalent Z = 6 magic number in neutron-rich carbon isotopes.

    Science.gov (United States)

    Tran, D T; Ong, H J; Hagen, G; Morris, T D; Aoi, N; Suzuki, T; Kanada-En'yo, Y; Geng, L S; Terashima, S; Tanihata, I; Nguyen, T T; Ayyad, Y; Chan, P Y; Fukuda, M; Geissel, H; Harakeh, M N; Hashimoto, T; Hoang, T H; Ideguchi, E; Inoue, A; Jansen, G R; Kanungo, R; Kawabata, T; Khiem, L H; Lin, W P; Matsuta, K; Mihara, M; Momota, S; Nagae, D; Nguyen, N D; Nishimura, D; Otsuka, T; Ozawa, A; Ren, P P; Sakaguchi, H; Scheidenberger, C; Tanaka, J; Takechi, M; Wada, R; Yamamoto, T

    2018-04-23

    The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in 13-20 C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15 C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.

  6. Low-lying dipole strength of neutron-rich 'island of inversion' nuclei around n ∼ 20

    International Nuclear Information System (INIS)

    Datta Pramanik, U.; Chakraborty, S.; Ray, I.

    2009-01-01

    Magic numbers are the basic building blocks of nuclear structure since last fifty years. Recently, through various experimental results using Radioactive Ion Beam (RIB) facilities, it has been observed that those long cherished magic numbers are not valid anymore in the neutron rich nuclei like 32 Mg etc. The breakdown of magic number was hinted in the late 1980 's by Thibault et. al. in sodium nuclei ( 31,32 Na). Motobayashi et. al. showed large deformation for 32 Mg which leads to the failure of magic number at N = 20. Exploration into the cause of this breakdown shows the filling of higher pf orbitals rather than the pure lower sd orbitals in the ground state of the neutron-rich nuclei like Ne, Na, Mg in the region N∼20. Thus there is obviously an inversion in nuclear orbitals and hence the so called name 'island of inversion'. This year, we have performed an experiment at GSI, Darmstadt. The measurement of dipole threshold strength of neutron-rich nucleus (N∼20) through electromagnetic excitation was done using LAND-FRS setup. Through this dipole strength, we would like to probe directly the quantum numbers of the valence neutrons in neutron rich nuclei like 31-33 Mg, 33-35 Al, 29-30 Na, 25-27 Ne, 24 F etc.

  7. Studies of exotic nuclei

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1997-01-01

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed

  8. Evidences for magicity in superdeformed shapes

    Indian Academy of Sciences (India)

    inertia (0) and nuclear softness parameter (σ) for the SD bands in all the mass regions ... to a good understanding of the observed SD bands and fission isomers. .... to the positions of least level density, we expect the. SD bands near magic nucleon numbers to be more close to exact rigid rotor. The usual. 30 40. 50. 60. 70.

  9. General Magic, Marc Porat y los agentes

    OpenAIRE

    Baiget, Tomàs

    1994-01-01

    General Magic, Inc., Sunnyvale, CA, was a company founded in 1990 as a spinoff of Apple Computer. It was established to create a platform for personal communications products and services and license the technology to a wide variety of manufacturers and service providers. It ceased operations in 2002 after an unsuccessful attempt to raise capital or achieve a strategic merger or acquisition.

  10. Promoting Reasoning through the Magic V Task

    Science.gov (United States)

    Bragg, Leicha A.; Widjaja, Wanty; Loong, Esther Yook-Kin; Vale, Colleen; Herbert, Sandra

    2015-01-01

    Reasoning in mathematics plays a critical role in developing mathematical understandings. In this article, Bragg, Loong, Widjaja, Vale & Herbert explore an adaptation of the Magic V Task and how it was used in several classrooms to promote and develop reasoning skills.

  11. Magic Breakfast: Evaluation Report and Executive Summary

    Science.gov (United States)

    Crawford, Claire; Edwards, Amy; Farquharson, Christine; Greaves, Ellen; Trevelyan, Grace; Wallace, Emma; White, Clarissa

    2016-01-01

    The Magic Breakfast project provided 106 schools with support and resources to offer a free, universal, before-school breakfast club, including to all Year 2 and Year 6 pupils. The aim of the project was to improve attainment outcomes by increasing the number of children who ate a healthy breakfast. The schools in the project were schools in…

  12. Pairing correlations in nuclei

    International Nuclear Information System (INIS)

    Baba, C.V.K.

    1988-01-01

    There are many similarities between the properties of nucleons in nuclei and electrons in metals. In addition to the properties explainable in terms of independent particle motion, there are many important co-operative effects suggesting correlated motion. Pairing correlation which leads to superconductivity in metals and several important properties in nuclei , is an exmple of such correlations. An attempt has been made to review the effects of pairing correlations in nuclei. Recent indications of reduction in pairing correlations at high angular momenta is discussed. A comparision between pairing correlations in the cases of nuclei and electrons in metals is attempted. (author). 20 refs., 10 figs

  13. Superheavy nuclei in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.; Gambhir, Y.K.

    1996-01-01

    We have carried out a study of superheavy nuclei in the framework of the relativistic mean-field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed. (orig.)

  14. Nuclei with exotic constituents

    International Nuclear Information System (INIS)

    Yamazaki, Toshimitsu.

    1990-08-01

    We discuss various interesting features in the behavior of exotic constituents of nuclei such as hyperons and mesons, in particular, with emphases on the aspect of exotic halos which are formed in general by short-range repulsion and long-range attraction. Specifically, Λ and Σ hypernuclei and pionic nuclei are discussed. (author)

  15. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  16. Baryon resonances in nuclei

    International Nuclear Information System (INIS)

    Arenhoevel, H.

    1977-01-01

    The field of baryon resonances in nuclei is reviewed. Theoretical developments and experimental evidence as well are discussed. Special emphasis is laid on electromagnetic processes for the two nucleon system. Some aspects of real isobars in nuclei are touched upon. (orig.) [de

  17. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  18. Pair correlations in nuclei

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi

    2009-01-01

    Except for the closed shell nuclei, almost all nuclei are in the superconducting state at their ground states. This well-known pair correlation in nuclei causes various interesting phenomena. It is especially to be noted that the pair correlation becomes weak in the excited states of nuclei with high angular momentum, which leads to the pair phase transition to the normal state in the high spin limit. On the other hand, the pair correlation becomes stronger in the nuclei with lower nucleon density than in those with normal density. In the region of neutron halo or skin state of unstable nuclei, this phenomenon is expected to be further enhanced to be observed compared to the ground state of stable nuclei. An overview of those interesting aspects caused via the pair correlation is presented here in the sections titled 'pair correlations in ground states', pair correlations in high spin states' and 'pair correlations in unstable nuclei' focusing on the high spin state. (S. Funahashi)

  19. Eta mesons in nuclei

    International Nuclear Information System (INIS)

    Liu, L.C.

    1987-01-01

    The possibility of producing eta-mesic nuclei by the use of pions is discussed. If these nuclei are observed experimentally, then the binding energies of the eta in this new nuclear matter can be used to extract accurately the eta-N-N* coupling constant in a nucleus. The framework for these calculations is the coupled channel isobar model

  20. Magical thinking and memory: distinctiveness effect for tv commercials with magical content.

    Science.gov (United States)

    Subbotsky, Eugene; Mathews, Jayne

    2011-10-01

    The aim of this study was to examine whether memorizing advertised products of television advertisements with magical effects (i.e., talking animals, inanimate objects which turn into humans, objects that appear from thin air or instantly turn into other objects) is easier than memorizing products of advertisements without such effects, by testing immediate and delayed retention. Adolescents and adults viewed two films containing television advertisements and were asked to recall and recognize the films' characters, events, and advertised products. Film 1 included magical effects, but Film 2 did not. On a free-recall test, no differences in the number of items recalled were noted for the two films. On the immediate recognition test, adolescents, but not adults, showed significantly better recognition for the magical than the nonmagical film. When this test was repeated two weeks later, results were reversed: adults, but not adolescents, recognized a significantly larger number of items from the magical film than the nonmagical one. These results are interpreted to accentuate the role of magical thinking in cognitive processes.

  1. Probing the Evolution of the Shell Structures in Exotic Nuclei

    International Nuclear Information System (INIS)

    De Angelis, Giacomo

    2008-01-01

    Magic numbers are a key feature in finite Fermion systems since they are strongly related to the underlying mean field. The size of the shell gaps and their evolution far from stability can be linked to the shape and symmetry of the nuclear mean field. Moreover the study of nuclei with large neutron/proton ratio allow to probe the density dependence of the effective interaction. Changes of the nuclear density and size in nuclei with increasing N/Z ratios are expected to lead to different nuclear symmetries and excitations. In this contribution I will discuss some selected examples which show the big potential of stable beams and of binary reactions for the study of the properties of the neutron-rich nuclear many body systems.

  2. Enhancement of octupole strength in near spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, L.M. [Universidad Autonoma de Madrid, Dep. Fisica Teorica, Facultad de Ciencias, Madrid (Spain)

    2016-09-15

    The validity of the rotational formula used to compute E1 and E3 transition strengths in even-even nuclei is analyzed within the Generator Coordinate Method framework based on mean field wave functions. It turns out that those nuclei with spherical or near spherical shapes the E1 and E3 strengths computed with this formula are strongly underestimated and a sound evaluation of them requires angular-momentum projected wave functions. Results for several isotopic chains with proton number equal to or near magic numbers are analyzed and compared with experimental data. The use of angular-momentum projected wave functions greatly improves the agreement with the scarce experimental data. (orig.)

  3. An Exactly Solvable Supersymmetric Model of Semimagic Nuclei

    International Nuclear Information System (INIS)

    Balantekin, A. B.; Gueven, Nurtac; Pehlivan, Yamac

    2008-01-01

    A simple model of nucleons coupled to angular momentum zero (s-pairs) occupying the valance shell of a semi-magic nuclei is considered. The model has a separable, orbit dependent pairing interaction which dominates over the kinetic term. It is shown that such an interaction leads to an exactly solvable model whose (0 + ) eigenstates and energies can be computed very easily with the help of the algebraic Bethe ansatz method. It is also shown that the model has a supersymmetry which connects the spectra of some semimagic nuclei. The results obtained from this model for the semimagic Ni isotopes from 58 Ni to 68 Ni are given. In addition, a new and easier technique for calculating the energy eigenvalues from the Bethe ansatz equations is also presented.

  4. Magical arts: the poetics of play.

    Science.gov (United States)

    Jacobus, Mary

    2005-01-01

    The paper argues that links between play and magic in British Object Relations point to the persistence of aesthetic concerns within psychoanalysis. Magical thinking is present in British Object Relations psychoanalysis from its beginnings in Klein's play technique and early aesthetic writings, surfacing elsewhere in Susan Isaac's educational experiments and her theories of metaphor. Marion Milner's clinical account of the overlapping areas of illusion and symbol-formation in a boy's war-games link the primitive rituals of Frazer's "The Golden Bough" with her patient's creativity. In Winnicott's concept of the transitional object, the theory of play achieves its apotheosis as a diffusive theory of culture or "private madness," and as a paradigm for psychoanalysis itself. Tracing the non-positivistic, mystical, and poetical elements in British Object Relations underlines the extent to which aesthetics is not just entangled with psychoanalysis, but constitutive of it in its mid-twentieth century manifestations.

  5. MAGIC: Model and Graphic Information Converter

    Science.gov (United States)

    Herbert, W. C.

    2009-01-01

    MAGIC is a software tool capable of converting highly detailed 3D models from an open, standard format, VRML 2.0/97, into the proprietary DTS file format used by the Torque Game Engine from GarageGames. MAGIC is used to convert 3D simulations from authoritative sources into the data needed to run the simulations in NASA's Distributed Observer Network. The Distributed Observer Network (DON) is a simulation presentation tool built by NASA to facilitate the simulation sharing requirements of the Data Presentation and Visualization effort within the Constellation Program. DON is built on top of the Torque Game Engine (TGE) and has chosen TGE's Dynamix Three Space (DTS) file format to represent 3D objects within simulations.

  6. Template analysis for the MAGIC telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, Uta [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    The MAGIC telescopes are two 17-m-diameter Imaging Air Cherenkov Telescopes located on the Canary island of La Palma. They record the Cherenkov light from air showers induced by very high energy photons. The current data analysis uses a parametrization of the two shower images (including Hillas parameters) to determine the characteristics of the primary particle. I am implementing an advanced analysis method that compares shower images on a pixel basis with template images based on Monte Carlo simulations. To reduce the simulation effort the templates contain only pure shower images that are convolved with the telescope response later in the analysis. The primary particle parameters are reconstructed by maximizing the likelihood of the template. By using all the information available in the shower images, the performance of MAGIC is expected to improve. In this presentation I will explain the general idea of a template-based analysis and show the first results of the implementation.

  7. Watching films with magical content facilitates creativity in children.

    Science.gov (United States)

    Subbotsky, Eugene; Hysted, Claire; Jones, Nicola

    2010-08-01

    Two experiments examined the possible link between magical thinking and creativity in preschool children. In Exp. 1, 4- and 6-yr.-old children were shown a film with either a magical or nonmagical theme. Results indicated that the mean scores of children shown the magical film was significantly higher than that of children watching the nonmagical film on the majority of subsequent creativity tests for both age groups. This trend was also found for 6-yr.-olds' drawings of impossible items. In Exp. 2, Exp. 1 was replicated successfully with 6- and 8-yr.-old children. Exposing children to a film with a magical theme did not affect their beliefs about magic. The results were interpreted to accentuate the role of magical thinking in children's cognitive development. Classroom implications of the results were also discussed.

  8. Performance of the MAGIC telescopes under moonlight

    Science.gov (United States)

    Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Bhattacharyya, W.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Griffiths, S.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Ishio, K.; Konno, Y.; Kubo, H.; Kushida, J.; Kuveždić, D.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; Maggio, C.; Majumdar, P.; Makariev, M.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Minev, M.; Mirzoyan, R.; Moralejo, A.; Moreno, V.; Moretti, E.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Ninci, D.; Nishijima, K.; Noda, K.; Nogués, L.; Paiano, S.; Palacio, J.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Rugliancich, A.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Sillanpää, A.; Sitarek, J.; Šnidarić, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Zarić, D.

    2017-09-01

    MAGIC, a system of two imaging atmospheric Cherenkov telescopes, achieves its best performance under dark conditions, i.e. in absence of moonlight or twilight. Since operating the telescopes only during dark time would severely limit the duty cycle, observations are also performed when the Moon is present in the sky. Here we develop a dedicated Moon-adapted analysis to characterize the performance of MAGIC under moonlight. We evaluate energy threshold, angular resolution and sensitivity of MAGIC under different background light levels, based on Crab Nebula observations and tuned Monte Carlo simulations. This study includes observations taken under non-standard hardware configurations, such as reducing the camera photomultiplier tubes gain by a factor ∼1.7 (reduced HV settings) with respect to standard settings (nominal HV) or using UV-pass filters to strongly reduce the amount of moonlight reaching the cameras of the telescopes. The Crab Nebula spectrum is correctly reconstructed in all the studied illumination levels, that reach up to 30 times brighter than under dark conditions. The main effect of moonlight is an increase in the analysis energy threshold and in the systematic uncertainties on the flux normalization. The sensitivity degradation is constrained to be below 10%, within 15-30% and between 60 and 80% for nominal HV, reduced HV and UV-pass filter observations, respectively. No worsening of the angular resolution was found. Thanks to observations during moonlight, the maximal duty cycle of MAGIC can be increased from ∼18%, under dark nights only, to up to ∼40% in total with only moderate performance degradation.

  9. Magical Music in Old Norse Literature

    Directory of Open Access Journals (Sweden)

    Britt-Mari Näsström

    1996-01-01

    Full Text Available No society ever existed without performing music, and most cultures display many variants of music. Music also played and still plays an important part in different religious rites. From the days of yore, music has been intimately connected with the cult, whether it is performed as epic or lyric expressions. The Old Norse society was no exception to this statement and early finds from as far back as the Bronze Age reveal that different instrument were used in daily life. The most conspicuous specimens from this time are the bronze lures, which probably are depicted on the rock-carvings. All these examples emphasise the character of music in Old Norse literature as connected with the magic aspect of religion, and particularly with divination. This does not mean that all music in the Viking Age was performed with a magic purpose, but what has survived in the sources is the conspicuous role of music as something that affected the human mind to the extent that it was experienced as a magic feeling, even able to reveal the future.

  10. Using magic to improve Physics classes

    Directory of Open Access Journals (Sweden)

    Anderson Coser Gaudio

    2015-03-01

    Full Text Available The videos posted on YouTube can be very helpful to teach any subject in the classroom. In Physics, there is a wealth of material just waiting for the teachers to know what to do with them. In this study, we present a report on how we used videos of magic performances as a teaching aid to supplement Physics classes. Since the goal of magic is to challenge a principle or a natural law, it is interesting to use it in order to try to unravel its secret in a scientific way. To illustrate the application of this strategy, we used a performance of the magician Dynamo, held in London, where he quietly walks on the water of the River Thames. Having overcome the surprise of illusion, students are led by the teacher to try to get a physically plausible explanation for the secret of the magic. To carry out this task, we followed the paths of so-called scientific method in their traditionally defined form in schoolbooks. The results are very positive as and clearly point out the engagement of students in the search for the correct explanation. This strategy is recommended for use in high school Physics classes and in the initial semesters in College courses.

  11. Magic in the machine: a computational magician's assistant

    OpenAIRE

    Williams, Howard; McOwan, Peter W.

    2014-01-01

    A human magician blends science, psychology, and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific, or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximize the magical effect required. The complexity is often caused by inter...

  12. Magic in the machine: a computational magician's assistant

    OpenAIRE

    Howard eWilliams; Peter eMcOwan

    2014-01-01

    A human magician blends science, psychology and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximise the magical effect required. The complexity is often caused by interac...

  13. Mathematical Construction of Magic Squares Utilizing Base-N Arithmetic

    Science.gov (United States)

    O'Brien, Thomas D.

    2006-01-01

    Magic squares have been of interest as a source of recreation for over 4,500 years. A magic square consists of a square array of n[squared] positive and distinct integers arranged so that the sum of any column, row, or main diagonal is the same. In particular, an array of consecutive integers from 1 to n[squared] forming an nxn magic square is…

  14. Do you believe in magic? Computer games in everyday life

    OpenAIRE

    Pargman, Daniel; Jakobsson, Peter

    2008-01-01

    Abstract Huizinga's concept of a 'magic circle' has been used to depict computer games and gaming activities as something separate from ordinary life. In this view, games are special (magical) and they only come to life within temporal and spatial borders that are enacted and performed by the participants. This article discusses the concept of a 'magic circle' and finds that it lacks specificity. Attempts t...

  15. Evolution of collectivity in neutron-rich nuclei in the 132Sn region

    International Nuclear Information System (INIS)

    Kshetri, Ritesh; Sarkar, M. Saha; Sarkar, S.

    2006-01-01

    Motivated by the observed regularity in the energy spectra and the structure of the shell model wave functions for the levels of 137 Te and 137 I, a few weakly and moderately deformed neutron-rich odd-A nuclei above the doubly magic nucleus 132 Sn were studied using the particle rotor model (PRM). The calculated energy spectra and branching ratios agree reasonably well with the most recent experimental data. In a few cases ambiguity in level ordering was resolved and spin-parities were assigned to the levels. Observed octupole correlation in some of these nuclei is discussed in the light of the present results

  16. The magic of television: Thinking through magical realism in recent TV [symposium

    Directory of Open Access Journals (Sweden)

    Lynne Joyrich

    2009-11-01

    Full Text Available After decades in which television has been marked as more banal than bewitching, recalling the "magic of television" is more likely to evoke a sense of wonder for the perceived innocence of an earlier televisual audience than for television itself. With TV offered on demand, captured with DVRs, downloaded or watched streaming on the Web, purchased as DVD sets, miniaturized for private screenings, jumbo-sized for public spectacles, monitored in closed circuits, and accessed for open forums, once-mysterious television flows have flowed to new media forms, giving TV an appearing/disappearing, now-you-see-it/now-you-don't magical act of its own. Has TV disappeared, or has it multiplied—redoubled each time it's sawed in half, replicating like rabbits pulled out of a hat? Is it still TV or something else when programs are screened (as if through a magic curtain via today's delivery systems?

  17. New decay studies near the doubly-magic ^78Ni

    Science.gov (United States)

    Rykaczewski, Krzysztof

    2008-10-01

    The nucleus ^78Ni, with a closed proton shell at Z=28 and a closed neutron shell at N=50, is the most neutron-rich doubly-magic nucleus identified to date [1,2]. Spectroscopic studies of nuclei around ^78Ni are important for understading both the evolution of nuclear structure in neutron rich matter and the rapid neutron capture nucleosynthesis process. Additionaly, the beta-delayed neutron emission from neutron-rich fission products contributes to the total number of neutrons inducing fission in nuclear fuel and should be accounted for when running power reactors. The neutrons filling the large 1g9/2 shell between N=40 and N=50 impact the spin-orbit splitting of the respective proton orbital pairs, 2p3/2-2p1/2 and 1f7/2-1f5/2. This can trigger a change in the ground-state proton configuration of very neutron rich nuclei above Z=28 [3,4]. Further, the energy difference beetwen the 2d5/2 and 3s1/2 neutron orbitals above N=50 is decreasing when approaching the ^78Ni region possibly resulting in the appearance of a new subshell closure at N=58. Nuclei in the ^78Ni region are produced at the Holifield Radioactive Ion Beam Facility (HRIBF, Oak Ridge National Laboratory) by means of an on-line isotope separation technique using the fission of a ^238U target induced by a 50 MeV, 10 microAmp proton beam. The decay studies performed at the HRIBF profitted from the post-acceleration of mass-separated radioactive beams to about 200 MeV. A novel method, the so-called ranging- out technique, allowed us to separate the most neutron-rich component of the isobaric cocktail beam [5,6]. New results on the decay of A=76 to A=79 Cu isotopes and of A=83 to A=85 Ga isotopes will be presented. In particular, the measured beta-delayed neutron branching ratios for the Cu isotopes are two to four times larger than previously reported [7]. An energy of 247 keV was established for the 3s1/2 neutron state above the 2d5/2 ground- state in the N=51 isotone ^83Ge suggesting the existence of low

  18. Nucleons in nuclei, however

    International Nuclear Information System (INIS)

    Grange, P.; Mathiot, J.F.; Roy-Stephan, M.; Frascaria, R.; Gales, S.

    1990-01-01

    The topics presented at the 1989 Joliot-Curie Lectures are reported. Two main subjects were retained: a simplified description of the N-body motion of particles in the quasi-particle configuration; study of the dynamics of nuclear components which are not described by nucleons in their ground state. The following themes were presented: quasiparticles and the Green functions, relativistic aspects of the quasiparticle concept, the dimensions of nucleons in the nuclei and the EMC effect, quarks and gluons in the nuclei, the delta in the nuclei, the strangeness, quasiparticles far from the Fermi sea, diffusion of electrons, stellar evolution and nucleosynthesis [fr

  19. Dynamic polarisation of nuclei

    International Nuclear Information System (INIS)

    Borghini, M.; Abragam, A.

    1961-01-01

    In magnetic fields of about 13000 gauss, at a temperature of 1.5 deg. K, in samples of about 2 mm 3 , we have obtained by the 'solid effect' (application of a magnetic field at an appropriate frequency around 35000 MHz), nuclear polarizations /I of a few percent: 19 per cent for hydrogen nuclei in single crystals of La 2 Mg 3 (NO 3 ) 12 , 24H 2 O; 5 per cent for hydrogen nuclei in polystyrene; 6 per cent for fluorine nuclei in single crystals of LiF. (author) [fr

  20. Quarks in nuclei

    International Nuclear Information System (INIS)

    Roberts, R.G.

    1984-11-01

    The paper concerns the behaviour of quarks in nuclei. Confinement size changes and dynamical rescaling; A dependence; low-x region; gluons and confinement size; and nucleons in a nucleus; are all discussed. (U.K.)

  1. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  2. Structure of Warm Nuclei

    International Nuclear Information System (INIS)

    Aaberg, S.; Uhrenholt, H.

    2009-01-01

    We study the structure of nuclei in the energy region between the ground state and the neutron separation energy, here called warm nuclei. The onset of chaos in the nucleus as excitation energy is increased is briefly reviewed. Chaos implies fluctuations of energies and wave functions qualitatively the same for all chaotic nuclei. On the other hand, large structure effects are seen, e.g. in the level-density function at same excitation energies. A microscopic model for the level density is reviewed and we discuss effects on structure of the total level-density function, parity enhancement, and the spin distribution function. Comparisons to data are performed at the neutron separation energy for all observed nuclei, and structure of the level-density function for a few measured cases. The role of structure effects in the level-density function for fission dynamics is exemplified.

  3. Production and identification of heavy Ni isotopes: Evidence for the doubly magic nucleus 7828Ni. Short note

    International Nuclear Information System (INIS)

    Engelmann, C.; Ameil, F.; Bernas, M.; Heinz, A.; Janas, Z.; Kozhuharov, C.; Miehe, C.; Pfuetzner, M.; Roehl, C.; Stephan, C.; Tassan-Got, L.; Voss, B.

    1995-07-01

    We report the first observation of the doubly magic nucleus 78 Ni 50 and the heavy isotopes 77 Ni, 73,74,75 Co, 80 Cu. The isotopes were produced by nuclear fission in collisions of 750 A.MeV projectiles of 238 U on Be target nuclei. The fully-stripped fission products were separated in-flight by the fragment separator FRS and identified event-by-event by measuring the magnetic rigidity, the trajectory, the energy deposit, and the time of flight. Production cross-sections and fission yields for the new Ni-isotopes are given. (orig.)

  4. Hot nuclei and fragmentation

    International Nuclear Information System (INIS)

    Guerreau, D.

    1993-01-01

    A review is made of the present status concerning the production of nuclei above 5 MeV temperature. Considerable progress has been made recently on the understanding of the formation and the fate of such hot nuclei. It appears that the nucleus seems more stable against temperature than predicted by static calculations. However, the occurrence of multifragment production at high excitation energies is now well established. The various experimental features of the fragmentation process are discussed. (author) 59 refs., 12 figs

  5. Atomic nuclei decay modes by spontaneous emission of heavy ions

    International Nuclear Information System (INIS)

    Poenaru, D.N.; Ivascu, M.; Sandulescu, A.

    1984-01-01

    The great majority of the known nuclei, including the so-called stable nuclides, are in fact metastable with respect to several modes of spontaneous superasymmetric splitting. If the lifetime against these processes is larger than 10 30 s, the phenomenon is not detectable with available experimental techniques, hence one can admit stability from the practical point of view. A model extended from the fission theory of alpha decay allows one to estimate the lifetimes and the branching ratios relatively to the alpha decay for these natural radioactivities. From a huge amount of systematical calculations it is concluded that the process should proceed with maximum intensity in the trans-lead nuclei, where the minimum lifetime is obtained for parent nuclei - heavy clusters leading to a magic ( 208 Pb) or almost daughter nucleus. More than 140 nuclides with atomic number smaller than 25 are possible candidates to be emitted from heavy nuclei, with half-life n the 10 10 -10 30 s range. The shell structure and pairing effects are clearly manifested in these new decay modes

  6. What's Magic about Magic Numbers? Chunking and Data Compression in Short-Term Memory

    Science.gov (United States)

    Mathy, Fabien; Feldman, Jacob

    2012-01-01

    Short term memory is famously limited in capacity to Miller's (1956) magic number 7 plus or minus 2--or, in many more recent studies, about 4 plus or minus 1 "chunks" of information. But the definition of "chunk" in this context has never been clear, referring only to a set of items that are treated collectively as a single unit. We propose a new…

  7. A systematic study of superheavy nuclei for Z = 114 and beyond using the relativistic mean field approach

    International Nuclear Information System (INIS)

    Patra, S.K.; Wu, Cheng-Li; Praharaj, C.R.; Gupta, Raj K.

    1999-01-01

    We have studied the structural properties of even-even, neutron deficient, Z=114-126, superheavy nuclei in the mass region A ∼ 270-320, using an axially deformed relativistic mean field model. The calculations are performed with three parameter sets (NL1, TM1 and NL-SH), in order to see the dependence of the structural properties on the force used. The calculated ground state shapes are found to be parameter dependent. For some parameter sets, many of the nuclei are degenerate in their ground state configuration. Special attention is given to the investigation of the magic structures (spherical shell closures) in the superheavy region. We find that some known magic numbers are absent and new closed shells are predicted. Large shell gaps appear at Z=80, 92, (114), 120 and 138, N=138, (164), (172), 184, (198), (228) and 258, irrespective of the parameter sets used. The numbers in parenthesis are those which correspond to relatively smaller gaps. The existence of new magic numbers in the valley of superheavy elements is discussed. It is suggested that nuclei around Z=114 and N = 164 ∼ 172 could be considered as candidates for the next search of superheavy nuclei. The existence of superheavy islands around Z=120 and N=172 or N 184 double shell closure is also discussed

  8. The magic of universal quantum computing with permutations

    OpenAIRE

    Planat, Michel; Rukhsan-Ul-Haq

    2017-01-01

    The role of permutation gates for universal quantum computing is investigated. The \\lq magic' of computation is clarified in the permutation gates, their eigenstates, the Wootters discrete Wigner function and state-dependent contextuality (following many contributions on this subject). A first classification of main types of resulting magic states in low dimensions $d \\le 9$ is performed.

  9. The Belief in Magic in the Age of Science

    Directory of Open Access Journals (Sweden)

    Eugene Subbotsky

    2014-01-01

    Full Text Available The widely spread view on magical beliefs in modern industrial cultures contends that magical beliefs are a bunch of curious phenomena that persist today as an unnecessary addition to a much more important set of rational beliefs. Contrary to this view, in this article, the view is presented, which suggests that the belief in magic is a fundamental property of the human mind. Individuals can consciously consider themselves to be completely rational people and deny that they believe in magic or God despite harboring a subconscious belief in the supernatural. Research also shows how engagement in magical thinking can enhance cognitive functioning, such as creative thinking, perception and memory. Moreover, this article suggests that certain forms of social compliance and obedience to authority historically evolved from magical practices of mind control and are still powered by the implicit belief in magic. Finally, the article outlines areas of life, such as education, religion, political influence, commerce, military and political terror, and entertainment, in which magical thinking and beliefs of modern people can find practical applications.

  10. Progressive Propaganda Critics and the Magic Bullet Myth.

    Science.gov (United States)

    Sproule, J. Michael

    1989-01-01

    Examines the development and historical inaccuracies of the "magic bullet" interpretation of American propaganda studies, which asserts that propaganda critics between the world wars treated messages as "magic bullets" directly and powerfully infused into passive receivers. Considers why this misconception of the progressive…

  11. Early Childhood Corner: Take the Magic Out of Your Classroom!

    Science.gov (United States)

    Andrews, Angela Giglio

    1995-01-01

    Students are often as mystified by mathematical procedures as they are by magic tricks. This article suggests ways of making the estimation of how many jelly beans in a jar and the 20-questions game less magical and more understandable. (MKR)

  12. Overview of galactic results obtained by MAGIC

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Roberta

    2013-06-15

    MAGIC is a system of two atmospheric Cherenkov telescopes which explores the very-high-energy sky, from some tens of GeV up to tens of TeV. Located in the Canary island of La Palma, MAGIC has the lowest energy threshold among the instruments of its kind, well suited to study the still poorly explored energy band below 100 GeV. Although the space-borne gamma-ray telescope Fermi/LAT is sensitive up to 300 GeV, gamma-ray rates drop fast with increasing energy, so γ-ray collection areas larger than 10{sup 4}m{sup 2}, as those provided by grounds-based instruments, are crucial above a few GeV. The combination of MAGIC and Fermi/LAT observations have provided the first astrophysical spectra sampled in the inverse Compton peak region, resulting in a complete coverage from MeV up to TeV energies, as well as the discovery of a pulsed emission in the very-high-energy band. This paper focuses on the latest results on Galactic sources obtained by MAGIC which are highlighted by the detection of the pulsed gamma-ray emission from the Crab pulsar up to 400 GeV. In addition, we will present the morphological study on the W51 complex which allowed to pinpoint the location of the majority of the emission around the interaction point between the supernova remnant W51C and the star forming region W51B, but also to find a possible contribution from the associated pulsar wind nebula. Other important scientific achievements involve the Crab Nebula with an unprecedented spectrum covering three decades in energy starting from 50 GeV and a morphological study of the unidentified source HESS J1857+026 which supports the pulsar wind nebula scenario. Finally we will report on the searches of very-high-energy signals from gamma-ray binaries, mainly LS I 303+ and HESS J0632+057.

  13. Z3 -vertex magic total labeling and Z3 -edge magic total labelingfor the extended duplicate graph of quadrilateral snake

    Science.gov (United States)

    Indira, P.; Selvam, B.; Thirusangu, K.

    2018-04-01

    Based on the works of Kotzig, Rosa and MacDougall et.al., we present algorithms and prove the existence of Z3-vertex magic total labeling and Z3-edge magic total labeling for the extended duplicate graph of quadrilateral snake.

  14. Multifragmentation of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1990-10-01

    It is difficult to deposit a large amount (∼ 1 Gev) of excitation energy into a nucleus. And if one wants to deposit large excitation energy values, the best way consists of shooting a given target nucleus with several nucleons, which can be achieved by using intermediate energy (10-100 MeV/nucleon) heavy ions. Such very excited objects were named hot nuclei. The study of hot nuclei has been undertaken only for 7 years because intermediate energy heavy ion facilities were not available before. The game is then to determine the decay properties of such nuclei, their limits of existence. Their study is connected with general properties of nuclear matter: namely its equation of state. Of special interest, is the onset of a new decay mechanism: multifragmentation, which is the non-sequential disassembly of a hot nucleus into several light nuclei (often called intermediate-mass fragments or IMF) or particles. This paper, shows how this mechanism can reflect fundamental properties of nuclear matter, but also how its experimental signature is difficult to establish. Multifragmentation has also been studied by using very energetic projectiles (protons and heavy ions) in the relativistic or ultra-relativistic region. The multifragmentation question of hot nuclei is far from being solved. One knows that IMF production increases when the excitation energy brought into a system is strongly increased, but very little is known about the mechanisms involved and a clear onset for multifragmentation is not established

  15. Cosmology and unstable nuclei

    International Nuclear Information System (INIS)

    Schramm, D.N.

    1995-01-01

    Primordial nucleosynthesis has established itself as one of the three pillars of Big Bang cosmology. Many of the Big Bang Nucleosynthesis reactions involve unstable nuclei. Hence there is a tight relationship hetween the subject of this conference and cosmology. The prime role of unstable nuclei in cosmology is related to lithium synthesis and the lack of cosmological synthesis of Be and B. These nuclei will thus be focused upon. Nucleosynthesis involves comparing calculated abundances with observed abundances. In general, abundance determinations are dominated by systematic rather than statistical errors, and work on bounding systematics is crucial. The quark-hadron inspired inhomogeneous calculations now unanimously agree that only relatively small variations in Ω b are possible vis-a-vis the homogeneous model; hence the robustness of Ω b ∼0.05 is now apparent. (These calculations depend critically on unstable nuclei.) The above argues that the bulk of the baryons in the universe are not producing visible light. A comparison with the ROSAT cluster data is also shown to be consistent with the standard BBN model. Ω b ∼1 seems to be definitely excluded, so if Ω TOTAL =1, as some recent observations may hint, then non-baryonic dark matter is required. The implications of the recently reported halo microlensing events are discussed. In summary, it is argued that the physics of unstable nuclei affects the fundamental dark matter argument. ((orig.))

  16. Advances/applications of MAGIC and SOS

    Science.gov (United States)

    Warren, Gary; Ludeking, Larry; Nguyen, Khanh; Smithe, David; Goplen, Bruce

    1993-12-01

    MAGIC and SOS have been applied to investigate a variety of accelerator-related devices. Examples include high brightness electron guns, beam-RF interactions in klystrons, cold-test modes in an RFQ and in RF sources, and a high-quality, flexible, electron gun with operating modes appropriate for gyrotrons, peniotrons, and other RF sources. Algorithmic improvements for PIC have been developed and added to MAGIC and SOS to facilitate these modeling efforts. Two new field algorithms allow improved control of computational numerical noise and selective control of harmonic modes in RF cavities. An axial filter in SOS accelerates simulations in cylindrical coordinates. The recent addition of an export/import feature now allows long devices to be modeled in sections. Interfaces have been added to receive electromagnetic field information from the Poisson group of codes and from EGUN and to send beam information to PARMELA for subsequent tracing of bunches through beam optics. Post-processors compute and display beam properties including geometric, normalized, and slice emittances, and phase-space parameters, and video. VMS, UNIX, and DOS versions are supported, with migration underway toward windows environments.

  17. Choice of the density-dependent effective interaction and alpha decay of heavy spherical nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, S.G.; Ratis, Yu.L.; Rybak, K.S.; Furman, V.I.

    1978-01-01

    The parameters of density-dependent effective interaction are studied for some nuclei in the vicinity of a 208 Pb double-magic nucleus. Both nuclei having two nucleons (holes) over magic core and some superfluid nuclei are considered. It is found that the magnitudes of the matrix elements for the zero-range forces (delta forces) are more than three times larger in comparison with the case of the finite-range forces (f forces). Sets of parameters for the effective interaction, which does not lead to the superfluidity of nuclear matter are obtained. Besides, these parameters depend weakly on mass number. It is shown that the attractive part of interaction is substantially larger for the case of f forces than for the delta forces. The theoretical enhancement coefficients for the favoured α decay of 210 Po, 210 Pb and 224 Th nuclei are calculated. For the case of f forces a tendency to saturation of the enhancement coefficients with the increase of the shell-model basis is found

  18. Asymmetry dependence of nucleon correlations in spherical nuclei extracted from a dispersive-optical-model analysis

    International Nuclear Information System (INIS)

    Mueller, J. M.; Shane, R.; Waldecker, S. J.; Dickhoff, W. H.; Charity, R. J.; Sobotka, L. G.; Crowell, A. S.; Esterline, J. H.; Fallin, B.; Howell, C. R.; Westerfeldt, C.; Youngs, M.; Crowe, B. J. III; Pedroni, R. S.

    2011-01-01

    Neutron elastic-scattering angular distributions were measured at beam energies of 11.9 and 16.9 MeV on 40,48 Ca targets. These data plus other elastic-scattering measurements, total and reaction cross-sections measurements, (e,e ' p) data, and single-particle energies for magic and doubly magic nuclei have been analyzed in the dispersive optical-model (DOM), generating nucleon self-energies (optical-model potentials) that can be related, via the many-body Dyson equation, to spectroscopic factors and occupation probabilities. It is found that, for stable nuclei with N≥Z, the imaginary surface potential for protons exhibits a strong dependence on the neutron-proton asymmetry. This result leads to a more modest dependence of the spectroscopic factors on asymmetry. The measured data and the DOM analysis of all considered nuclei clearly demonstrate that the neutron imaginary surface potential displays very little dependence on the neutron-proton asymmetry for nuclei near stability (N≥Z).

  19. Critical-point nuclei

    International Nuclear Information System (INIS)

    Clark, R.M.

    2004-01-01

    It has been suggested that a change of nuclear shape may be described in terms of a phase transition and that specific nuclei may lie close to the critical point of the transition. Analytical descriptions of such critical-point nuclei have been introduced recently and they are described briefly. The results of extensive searches for possible examples of critical-point behavior are presented. Alternative pictures, such as describing bands in the candidate nuclei using simple ΔK = 0 and ΔK = 2 rotational-coupling models, are discussed, and the limitations of the different approaches highlighted. A possible critical-point description of the transition from a vibrational to rotational pairing phase is suggested

  20. Weak interactions with nuclei

    International Nuclear Information System (INIS)

    Walecka, J.D.

    1983-01-01

    Nuclei provide systems where the strong, electomagnetic, and weak interactions are all present. The current picture of the strong interactions is based on quarks and quantum chromodynamics (QCD). The symmetry structure of this theory is SU(3)/sub C/ x SU(2)/sub W/ x U(1)/sub W/. The electroweak interactions in nuclei can be used to probe this structure. Semileptonic weak interactions are considered. The processes under consideration include beta decay, neutrino scattering and weak neutral-current interactions. The starting point in the analysis is the effective Lagrangian of the Standard Model

  1. Quarks in nuclei

    International Nuclear Information System (INIS)

    Rho, M.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1983-01-01

    Some features of quark degrees of freedom in nuclei are discussed in the light of recent developments in QCD. The principal aim of this talk is to propose, and give a tentative support to, the motion that one can study through nuclear matter different facets of the vacuum structure implied by quantum chromodynamics (QCD). This will be done using the recent (exciting) results obtained in particle physics, in particular lattice gauge calculations. Relevance of this aspect of problem to quark degrees of freedom as well as meson degrees of freedom in nuclei will be discussed. (orig.)

  2. Disintegration of comet nuclei

    Science.gov (United States)

    Ksanfomality, Leonid V.

    2012-02-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies.

  3. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on kinematic separation and mass analysis of heavy recoiling nuclei, dynamical effects prior to heavy ion fusion, VACTIV-DELPHI graphical dialog based program for the analysis of gamma-ray spectra, irradiation of nuclear emulsions in relativistic beams of 6 He and 3 H nuclei, optical and structural investigations of PLZT x/65/35 (x = 4, 8 %) ferroelectric ceramics irradiated by a high-current pulsed electron beam, the oscillating charge and first evidence for neutrinoless double beta decay

  4. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on physics from extra dimensions, new physics in the new millennium with GENIUS: double beta decay, dark matter, solar neutrinos, the (μ - , e + ) conversion in nuclei mediated by light Majorana neutrinos, exotic muon-to-positron conversion in nuclei: partial transition sum evaluation by using shell model, solar neutrino problem accounting for self consistent magnetohydrodynamics solution for solar magnetic fields, first neutrino observations from the Sudbury neutrino observatory and status report on BOREXINO and results of the muon-background measurements at CERN

  5. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  6. The influence of flip angle on the magic angle effect

    International Nuclear Information System (INIS)

    Zurlo, J.V.; Blacksin, M.F.; Karimi, S.

    2000-01-01

    Objective. To assess the impact of flip angle with gradient sequences on the ''magic angle effect''. We characterized the magic angle effect in various gradient echo sequences and compared the signal- to-noise ratios present on these sequences with the signal-to-noise ratios of spin echo sequences.Design. Ten normal healthy volunteers were positioned such that the flexor hallucis longus tendon remained at approximately at 55 to the main magnetic field (the magic angle). The tendon was imaged by a conventional spin echo T1- and T2-weighted techniques and by a series of gradient techniques. Gradient sequences were altered by both TE and flip angle. Signal-to-noise measurements were obtained at segments of the flexor hallucis longus tendon demonstrating the magic angle effect to quantify the artifact. Signal-to-noise measurements were compared and statistical analysis performed. Similar measurements were taken of the anterior tibialis tendon as an internal control.Results and conclusions. We demonstrated the magic angle effect on all the gradient sequences. The intensity of the artifact was affected by both the TE and flip angle. Low TE values and a high flip angle demonstrated the greatest magic angle effect. At TE values less than 30 ms, a high flip angle will markedly increase the magic angle effect. (orig.)

  7. Babad Banyumas Wirjaatmadjan: Magical-Religious Values in Banyumas Society

    Directory of Open Access Journals (Sweden)

    Ali Ma'ruf

    2018-04-01

    Full Text Available This research explains the describing of magical-religious values in Banyumas society that contain in Babad Banyumas Wirjaatmajan. Banyumas society as one part of Javanese has trust to something that magical. A Belief system or religion in Javanese has a connection that related to the ancestors. Trust to Magical power in the Banyumas society that grows until now. Words or ancestral discourse are claimed important by Java and Banyumas society that still uphold the traditional values.  Traditional values in Java and Banyumas society always identified with something magical. This research tries to give the knowledge about custom, habit, and the mindset of Banyumas and Javanese society to the magical-religious values that grow in the society through Babad Banyumas Wirjaatmadjan. Magical-Religious values in the research are taken from an ancestral discourse of Banyumas are Raden Baribin, Adipati Wargautama I, and Joko Kaiman that written in Babad Banyumas Wirjaatmadjan. Magical-Religious in Banyumas society, they are pepali of Sabtu Pahing, pepali of eat white cucumber, pepali persecute partridge that all of that is the command of Banyumas society ancestors.

  8. Magic in the machine: a computational magician's assistant

    Directory of Open Access Journals (Sweden)

    Howard eWilliams

    2014-11-01

    Full Text Available A human magician blends science, psychology and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximise the magical effect required. The complexity is often caused by interacting and often conflicting physical and psychological constraints that need to be optimally balanced. Normally this tuning is done by trial and error, combined with human intuitions. Here we focus on applying Artificial Intelligence methods to the creation and optimisation of magic tricks exploiting mathematical principles. We use experimentally derived data about particular perceptual and cognitive features, combined with a model of the underlying mathematical process to provide a psychologically valid metric to allow optimisation of magical impact. In the paper we introduce our optimisation methodology and describe how it can be flexibly applied to a range of different types of mathematics based tricks. We also provide two case studies as exemplars of the methodology at work: a magical jigsaw, and a mind reading card trick effect. We evaluate each trick created through testing in laboratory and public performances, and further demonstrate the real world efficacy of our approach for professional performers through sales of the tricks in a reputable magic shop in London.

  9. Magic in the machine: a computational magician's assistant.

    Science.gov (United States)

    Williams, Howard; McOwan, Peter W

    2014-01-01

    A human magician blends science, psychology, and performance to create a magical effect. In this paper we explore what can be achieved when that human intelligence is replaced or assisted by machine intelligence. Magical effects are all in some form based on hidden mathematical, scientific, or psychological principles; often the parameters controlling these underpinning techniques are hard for a magician to blend to maximize the magical effect required. The complexity is often caused by interacting and often conflicting physical and psychological constraints that need to be optimally balanced. Normally this tuning is done by trial and error, combined with human intuitions. Here we focus on applying Artificial Intelligence methods to the creation and optimization of magic tricks exploiting mathematical principles. We use experimentally derived data about particular perceptual and cognitive features, combined with a model of the underlying mathematical process to provide a psychologically valid metric to allow optimization of magical impact. In the paper we introduce our optimization methodology and describe how it can be flexibly applied to a range of different types of mathematics based tricks. We also provide two case studies as exemplars of the methodology at work: a magical jigsaw, and a mind reading card trick effect. We evaluate each trick created through testing in laboratory and public performances, and further demonstrate the real world efficacy of our approach for professional performers through sales of the tricks in a reputable magic shop in London.

  10. Reduced widths of alpha -decay of near-magic even-even nuclei

    CERN Document Server

    Kar Yan, N

    1972-01-01

    Precision on-line investigations on the linear heavy-ion Berkeley accelerator, and on the CERN synchrophasotron were carried out recently on new alpha -emitters. The results obtained are analysed with a view to finding the degree of correspondence, or disagreement, with the authors' own ideas about alpha -decay processes. The discussion is confined to examining even isotopes of polonium, radon, radium and thorium Several theoretical and experimental plots are given of reduced widths of alpha -disintegration for different regions of shell filling and a comparison is made between barrier penetration coefficients, obtained by rigorous methods and with the aid of WKB- approximation, for /sup 212/Po, /sup 208/Po and /sup 212/Po isotopes. (24 refs).

  11. A relativistic mean-field study of magic numbers in light nuclei from ...

    Indian Academy of Sciences (India)

    the shell gap at N = 6 is larger than at N = 8 and a large gap is observed for N = 16 or 14 for the neutron-rich ... excitation studies [7,8]. Similarly, the ..... positive one-nucleon separation energy defines the drip-line for neutron (or proton). The.

  12. Mean field theory of nuclei and shell model. Present status and future outlook

    International Nuclear Information System (INIS)

    Nakada, Hitoshi

    2003-01-01

    Many of the recent topics of the nuclear structure are concerned on the problems of unstable nuclei. It has been revealed experimentally that the nuclear halos and the neutron skins as well as the cluster structures or the molecule-like structures can be present in the unstable nuclei, and the magic numbers well established in the stable nuclei disappear occasionally while new ones appear. The shell model based on the mean field approximation has been successfully applied to stable nuclei to explain the nuclear structure as the finite many body system quantitatively and it is considered as the standard model at present. If the unstable nuclei will be understood on the same model basis or not is a matter related to fundamental principle of nuclear structure theories. In this lecture, the fundamental concept and the framework of the theory of nuclear structure based on the mean field theory and the shell model are presented to make clear the problems and to suggest directions for future researches. At first fundamental properties of nuclei are described under the subtitles: saturation and magic numbers, nuclear force and effective interactions, nuclear matter, and LS splitting. Then the mean field theory is presented under subtitles: the potential model, the mean field theory, Hartree-Fock approximation for nuclear matter, density dependent force, semiclassical mean field theory, mean field theory and symmetry, Skyrme interaction and density functional, density matrix expansion, finite range interactions, effective masses, and motion of center of mass. The subsequent section is devoted to the shell model with the subtitles: beyond the mean field approximation, core polarization, effective interaction of shell model, one-particle wave function, nuclear deformation and shell model, and shell model of cross shell. Finally structure of unstable nuclei is discussed with the subtitles: general remark on the study of unstable nuclear structure, asymptotic behavior of wave

  13. Nuclei far from stability using exotic targets

    International Nuclear Information System (INIS)

    Wilhelmy, J.B.; Bentley, C.E.; Thomas, K.E.; Brown, R.E.; Flynn, E.R.; Van der Plicht, J.; Mann, L.G.; Struble, G.L.

    1981-01-01

    The meson factories such as the Los Alamos Meson Physics Facility have made possible high fluence medium energy proton beams that can be used for spallation reactions to produce macro quantities of unstable isotopes. Targets of over 10 g/cm 2 can be exposed to total fluence approaching 1 A-hour resulting in spallation yields in the 0.01-10 mg range for many isotopes of potential interest for nuclear structure studies. With the use of hot cell facilities, chemical processing can isolate the desired material and this coupled with subsequent isotope separation can result in usable quantities of material for nuclear target applicaton. With offstable isotopes are target materials, conventional nuclear spectroscopy techniques can be employed to study nuclei far from stability. The irradiation and processing requirements for such an operation, along with the isotope production possibilities, are discussed. Also presented are initial experiments using a 148 Gd (tsub(1/2) = 75a) target to perform the (p,t) reaction to extablish levels in the proposed double magic nucleus 146 Gd. (orig.)

  14. Status, performance and scientific highlights from the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Doert, Marlene [Technische Universitaet Dortmund (Germany); Ruhr-Universitaet Bochum (Germany); Collaboration: MAGIC-Collaboration

    2015-07-01

    The MAGIC telescopes are a system of two 17 m Imaging Air Cherenkov Telescopes, which are located at 2200 m above sea level at the Roque de Los Muchachos Observatory on the Canary Island of La Palma. In this presentation, we report on recent scientific highlights gained from MAGIC observations in the galactic and the extragalactic regime. We also present the current status and performance of the MAGIC system after major hardware upgrades in the years 2011 to 2014 and give an overview of future plans.

  15. Symmetries and nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1987-01-01

    Nuclei are very useful for testing symmetries, and for studies of symmetry breaking. This thesis is illustrated for two improper space-time transformations, parity and time-reversal and for one internal symmetry: charge symmetry and independence. Recent progress and present interest is reviewed. 23 refs., 8 figs., 2 tabs

  16. Electroweak interactions in nuclei

    International Nuclear Information System (INIS)

    Henley, E.M.

    1984-06-01

    Topics include: introduction to electroweak theory; the Weinberg-Salam theory for leptons; the Weinberg-Salam theory for hadrons-the GIM mechanism; electron scattering as a probe of the electroweak interaction (observation of PV, the weak interaction for nucleons, and parity violation in atoms); and time reversed invariance and electric dipole moments of nucleons, nuclei, and atoms. 52 references

  17. Transfer involving deformed nuclei

    International Nuclear Information System (INIS)

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs

  18. Collisions with nuclei

    International Nuclear Information System (INIS)

    Gulamov, K.G.

    1987-01-01

    It is well known that interactions of high energy particles with nuclei, owing to possible intranuclear rescatterings, may provide information about the space-time behaviour of the production process. Therefore the main goals of these investigations are related with the attempts to study the space-time process of hadronization of coloured quarks and gluons produced at the initial stage of an interaction to white final state particles and to clarify the influence of composite quark-gluon structure of both the projectile and target on features of the production mechanisms. Since in both the initial and final states of these reactions the authors have strongly interacting multiparticle systems, it is of importance to study the collective properties of these systems. The questions to the point are: what is the degree of collectivization of particles newly produced in collisions with nuclei and what is the influence of the collective nature of a nucleus itself on the production mechanisms, in particular, what are the manifestations of possible multinucleon (multiquark) configurations in nuclei? It is obvious that the reductability of, say, hadron-nucleus (hA) interaction to hadron-nucleon (hN) collisions is directly related to the above problems. Due to time limitations the author discusses here only a few aspects of low p/sub t/ hA interactions which in his opinion are of importance for better understanding of general regularities of collisions with nuclei and for further investigations of the above problems

  19. Nucleons in nuclei (II)

    International Nuclear Information System (INIS)

    Laget, J.M.

    1988-01-01

    This summary is a review of our understanding of nuclei in terms of hadrons exchanging mesons. The open problems are: the determination of the high momentum components of nuclear systems, the role of the three-body forces and the nature of the short range correlations. The ways of studying these problems are discussed

  20. Electromagnetic structure of nuclei

    International Nuclear Information System (INIS)

    Arnold, R.G.

    1986-07-01

    A brief review is given of selected topics in the electromagnetic structure of nucleons and nuclei, including nucleon form factors from both quantum chromodynamics and electron scattering data, measurements of the deuteron and triton form factors, quasi-elastic scattering, and the EMC effect. 47 refs., 13 figs

  1. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1977-01-01

    History is surveyed of the development of the theory of rotational states in nuclei. The situation in the 40's when ideas formed of the collective states of a nucleus is evoked. The general rotation theory and the relation between the single-particle and rotational motion are briefly discussed. Future prospects of the rotation theory development are indicated. (I.W.)

  2. Mesons and light nuclei

    International Nuclear Information System (INIS)

    Truhlik, E.; Mach, R.

    1992-01-01

    62 papers and one summary talk were presented at the conference, on subject matters in between nuclear physics (mainly light nuclei) and elementary particle physics, as indicated by the session headings (1) Electroweak nuclear interaction (2) Nuclear physics with pions and antiprotons (3) Nuclear physics with strange particles (4) Relativistic nuclear physics (5) Quark degrees of freedom. (Quittner)

  3. Radii of radioactive nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Plagnol, E.; Schutz, Y.

    1989-11-01

    A new simple direct method for the measurement of the total reaction cross section (σ R ) for several light radioactive nuclei (A≤40) is developed. From that, the reduced strong absorption radii (r o 2 ) are obtained. A comparison is made with data obtained by other techniques. A strong isospin dependence of the nuclear radii is observed. (L.C.) [pt

  4. Alpha clustering in nuclei

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1990-01-01

    The effects of nucleon clustering in nuclei are described, with reference to both nuclear structure and nuclear reactions, and the advantages of using the cluster formalism to describe a range of phenomena are discussed. It is shown that bound and scattering alpha-particle states can be described in a unified way using an energy-dependent alpha-nucleus potential. (author)

  5. Particles, imaging and nuclei

    International Nuclear Information System (INIS)

    Harris, J.

    1986-01-01

    The book on particles, imaging and nuclei is one of the Background Readers for the Revised Nuffield Advanced Physics course. The contents contain five educational articles, which extend concepts covered in the course and examine recent developments in physics. Four of the articles on:- particles and the forces of nature, radioisotopes, lasers probe the atomic nucleus, and nuclear history, are indexed separately. (UK)

  6. Structure of exotic nuclei by large-scale shell model calculations

    International Nuclear Information System (INIS)

    Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio

    2006-01-01

    An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component

  7. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    International Nuclear Information System (INIS)

    Mueller, K.T.; California Univ., Berkeley, CA

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-1/2 nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids

  8. Meson-exchange forces and medium polarization in finite nuclei

    International Nuclear Information System (INIS)

    Hengeveld, W.

    1986-01-01

    A G-matrix, derived from a meson-exchange potential in nuclear matter, is applied to finite, semi-magic nuclei. For the open shell the broken-pair model, which can accomodate many particle levels, is used. The excitations of the closed shell are treated as particle-hole states. Energy spectra and electromagnetic transition densities are calculated for 88 Sr and 58 Ni. The standard random-phase approximation for finite systems is extended by including the effects of the exchange of the RPA phonons in the residual interaction selfconsistently. It is shown that this particle-hole interaction is strongly energy dependent due to the presence of poles corresponding to 2p-2h (and more complex) excitations. The RPA eigenvalue problem with this energy-dependent residual interaction also provides solutions for these predominantly 2p2h-like states. In addition a modified normalization condition is obtained. This scheme is applied to 56 Ni( 56 Co) in a large configuration space using a residual interaction of the G-matrix type. The effect of dynamic medium polarization on the properties of giant resonances is illustrated for the case of A=48 nuclei. A large fragmentation of the monopole strength is calculated, which is in accordance with the non-observation of the GMR in light nuclei. Properties of A=48 nuclei are computed with an interaction deduced from the NN scattering data without introduction of additional parameters. The role of medium polarization is illustrated for spectra and (e,e') form factors. It is shown how medium polarization induces a coupling between excitations in even-even and in the adjacent odd-odd nuclei. (Auth.)

  9. Dynamic-angle spinning and double rotation of quadrupolar nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.T. (Lawrence Berkeley Lab., CA (United States) California Univ., Berkeley, CA (United States). Dept. of Chemistry)

    1991-07-01

    Nuclear magnetic resonance (NMR) spectroscopy of quadrupolar nuclei is complicated by the coupling of the electric quadrupole moment of the nucleus to local variations in the electric field. The quadrupolar interaction is a useful source of information about local molecular structure in solids, but it tends to broaden resonance lines causing crowding and overlap in NMR spectra. Magic- angle spinning, which is routinely used to produce high resolution spectra of spin-{1/2} nuclei like carbon-13 and silicon-29, is incapable of fully narrowing resonances from quadrupolar nuclei when anisotropic second-order quadrupolar interactions are present. Two new sample-spinning techniques are introduced here that completely average the second-order quadrupolar coupling. Narrow resonance lines are obtained and individual resonances from distinct nuclear sites are identified. In dynamic-angle spinning (DAS) a rotor containing a powdered sample is reoriented between discrete angles with respect to high magnetic field. Evolution under anisotropic interactions at the different angles cancels, leaving only the isotropic evolution of the spin system. In the second technique, double rotation (DOR), a small rotor spins within a larger rotor so that the sample traces out a complicated trajectory in space. The relative orientation of the rotors and the orientation of the larger rotor within the magnetic field are selected to average both first- and second-order anisotropic broadening. The theory of quadrupolar interactions, coherent averaging theory, and motional narrowing by sample reorientation are reviewed with emphasis on the chemical shift anisotropy and second-order quadrupolar interactions experienced by half-odd integer spin quadrupolar nuclei. The DAS and DOR techniques are introduced and illustrated with application to common quadrupolar systems such as sodium-23 and oxygen-17 nuclei in solids.

  10. MAGIC: Marine ARM GPCI Investigation of Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, ER; Wiscombe, WJ; Albrecht, BA; Bland, GL; Flagg, CN; Klein, SA; Kollias, P; Mace, G; Reynolds, RM; Schwartz, SE; Siebesma, AP; Teixeira, J; Wood, R; Zhang, M

    2012-10-03

    The second Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF2) will be deployed aboard the Horizon Lines cargo container ship merchant vessel (M/V) Spirit for MAGIC, the Marine ARM GPCI1 Investigation of Clouds. The Spirit will traverse the route between Los Angeles, California, and Honolulu, Hawaii, from October 2012 through September 2013 (except for a few months in the middle of this time period when the ship will be in dry dock). During this field campaign, AMF2 will observe and characterize the properties of clouds and precipitation, aerosols, and atmospheric radiation; standard meteorological and oceanographic variables; and atmospheric structure. There will also be two intensive observational periods (IOPs), one in January 2013 and one in July 2013, during which more detailed measurements of the atmospheric structure will be made.

  11. Rigidity of the magic pentagram game

    Science.gov (United States)

    Kalev, Amir; Miller, Carl A.

    2018-01-01

    A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.

  12. Rigidity of the magic pentagram game.

    Science.gov (United States)

    Kalev, Amir; Miller, Carl A

    2018-01-01

    A game is rigid if a near-optimal score guarantees, under the sole assumption of the validity of quantum mechanics, that the players are using an approximately unique quantum strategy. Rigidity has a vital role in quantum cryptography as it permits a strictly classical user to trust behavior in the quantum realm. This property can be traced back as far as 1998 (Mayers and Yao) and has been proved for multiple classes of games. In this paper we prove ridigity for the magic pentagram game, a simple binary constraint satisfaction game involving two players, five clauses and ten variables. We show that all near-optimal strategies for the pentagram game are approximately equivalent to a unique strategy involving real Pauli measurements on three maximally-entangled qubit pairs.

  13. Possible GRB Observation with the MAGIC Telescope

    Science.gov (United States)

    Bastieri, D.; Bigongiari, C.; Mariotti, M.; Peruzzo, L.; Saggion, A.

    2001-08-01

    The MAGIC Telescope, with its reflecting parabolic dish of 17 m of diameter and its careful design of a robust, lightweight, alto-azimuthal mount, is an ideal detector for GRB phenomena. The telescope is an air Cherenkov telescope that, even in the first phase, equipped with standard PMTs, can reach an energy threshold below 30 GeV. The threshold is going to drop well below 10 GeV in the envisaged second phase, when chamber PMTs will be substituted by high quantum efficiency APDs. The telescope can promptly respond to GRB alerts coming, for instance, from GCN, and can reposition itself in less than 30 seconds, 20 seconds being the time to turn half a round for the azimuth bearing. In this report, the effective area of the detector as a function of energy and zenith angle is taken into account, in order to evaluate the expected yearly occurrence and the response to different kinds of GRBs.

  14. The decay of hot nuclei

    International Nuclear Information System (INIS)

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs

  15. Isotope shifts in unstable nuclei

    International Nuclear Information System (INIS)

    Rebel, H.

    1980-05-01

    Current experimental investigations of isotope shifts in atomic spectra of unstable nuclei and the resulting information about size and shape of nuclei far off stability are discussed with reference to some representative examples. (orig.)

  16. Energetic Nuclei, Superdensity and Biomedicine

    Science.gov (United States)

    Baldin, A. M.

    1977-01-01

    High-energy, relativistic nuclei were first observed in cosmic rays. Studing these nuclei has provided an opportunity for analyzing the composition of cosmic rays and for experimentally verifying principles governing the behavior of nuclear matter at high and super-high temperatures. Medical research using accelerated nuclei is suggested.…

  17. Magic with moulds: Meiotic and mitotic crossing over in Neurospora ...

    Indian Academy of Sciences (India)

    2006-02-16

    Feb 16, 2006 ... Home; Journals; Journal of Biosciences; Volume 31; Issue 1. Commentary: Magic with moulds: Meiotic and mitotic crossing over in Neurospora inversions and duplications. Durgadas P Kasbekar. Volume 31 Issue 1 March 2006 pp 3-4 ...

  18. Comparison of the effectiveness of polymer gel dosimeters (Magic ...

    African Journals Online (AJOL)

    demonstrate that the gel dosimeters are best suited for nuclear medicine. Keywords: Magic ... International Pharmaceutical Abstract, Chemical Abstracts, Embase, Index Copernicus, EBSCO, African. Index Medicus .... Reaction rate. 2.15E-6.

  19. Maximum nonlocality and minimum uncertainty using magic states

    Science.gov (United States)

    Howard, Mark

    2015-04-01

    We prove that magic states from the Clifford hierarchy give optimal solutions for tasks involving nonlocality and entropic uncertainty with respect to Pauli measurements. For both the nonlocality and uncertainty tasks, stabilizer states are the worst possible pure states, so our solutions have an operational interpretation as being highly nonstabilizer. The optimal strategy for a qudit version of the Clauser-Horne-Shimony-Holt game in prime dimensions is achieved by measuring maximally entangled states that are isomorphic to single-qudit magic states. These magic states have an appealingly simple form, and our proof shows that they are "balanced" with respect to all but one of the mutually unbiased stabilizer bases. Of all equatorial qudit states, magic states minimize the average entropic uncertainties for collision entropy and also, for small prime dimensions, min-entropy, a fact that may have implications for cryptography.

  20. Disintegration of comet nuclei

    International Nuclear Information System (INIS)

    Ksanfomality, Leonid V

    2012-01-01

    The breaking up of comets into separate pieces, each with its own tail, was seen many times by astronomers of the past. The phenomenon was in sharp contrast to the idea of the eternal and unchangeable celestial firmament and was commonly believed to be an omen of impending disaster, especially for comets with tails stretching across half the sky. It is only now that we have efficient enough space exploration tools to see comet nuclei and even - in the particular case of small comet Hartley-2 in 2010 - to watch their disintegration stage. There are also other suspected candidates for disintegration in the vast family of comet nuclei and other Solar System bodies. (physics of our days)

  1. Pions scatter by nuclei

    International Nuclear Information System (INIS)

    Huefner, J.

    1975-01-01

    Are pions a good tool to study nuclei. If the emphasis of this question rests on ''tool'', the answer must be ''not yet.'' The reason: one does not even understand how a pion interacts with a nucleus. This is part of the many-body problem for strongly interacting particles and its study is a basic problem in physics. One must investigate questions like: Can one understand pion-nucleus interactions from pion-nucleon physics. How does a Δ-resonance look in nuclei. Once one has solved those basic problems, there will be spinoffs in medical, technical and nuclear areas. Then pions can be used as a tool to study nuclear properties

  2. Chaos in collective nuclei

    International Nuclear Information System (INIS)

    Whelan, N.D.

    1993-01-01

    Random Matrix Theory successfully describes the statistics of the low-lying spectra of some nuclei but not of others. It is currently believed that this theory applies to systems in which the corresponding classical motion is chaotic. This conjecture is tested for collective nuclei by studying the Interacting Boson Model. Quantum and classical measures of chaos are proposed and found to be in agreement throughout the parameter space of the model. For some parameter values the measures indicate the presence of a previously unknown approximate symmetry. A phenomenon called partial dynamical symmetry is explored and shown to lead to a suppression of chaos. A time dependent function calculated from the quantum spectrum is discussed. This function is sensitive to the extent of chaos and provides a robust method of analyzing experimental spectra

  3. Framing Performance Magic: The Role of Contract, Discourse and Effect

    Directory of Open Access Journals (Sweden)

    Landman, Todd

    2013-10-01

    Full Text Available A wide continuum of genres in performance magic has developed since the Victorian period, including stage magic, street magic, close-up magic, comedy magic, mentalism, bizarre and mystery entertainment. Each of these genres frames its performance on a different contract between the performer and the audience, the discourse used during performance and the effect on the audience both in terms of its perception of what has transpired and the personal meaning attached to the effect. This article examines this interplay between contract, discourse and effect in theory and practice. The article constructs a typology of performance magic which is then explored through an examination of audience perception and feedback from a drama workshop and focus group conducted at the University of Huddersfield in October 2012. The group experienced three performances framed around the idea of the magician, the mentalist, and the mystic, and the ensuing discussion revealed a wide range of insights into these different framings of performance. The reactions and ensuing discussions involved different understandings of trust, plausibility, explanation, authority, and dynamic interaction.

  4. MAGIC: A Tool for Combining, Interpolating, and Processing Magnetograms

    Science.gov (United States)

    Allred, Joel

    2012-01-01

    Transients in the solar coronal magnetic field are ultimately the source of space weather. Models which seek to track the evolution of the coronal field require magnetogram images to be used as boundary conditions. These magnetograms are obtained by numerous instruments with different cadences and resolutions. A tool is required which allows modelers to fmd all available data and use them to craft accurate and physically consistent boundary conditions for their models. We have developed a software tool, MAGIC (MAGnetogram Interpolation and Composition), to perform exactly this function. MAGIC can manage the acquisition of magneto gram data, cast it into a source-independent format, and then perform the necessary spatial and temporal interpolation to provide magnetic field values as requested onto model-defined grids. MAGIC has the ability to patch magneto grams from different sources together providing a more complete picture of the Sun's field than is possible from single magneto grams. In doing this, care must be taken so as not to introduce nonphysical current densities along the seam between magnetograms. We have designed a method which minimizes these spurious current densities. MAGIC also includes a number of post-processing tools which can provide additional information to models. For example, MAGIC includes an interface to the DA VE4VM tool which derives surface flow velocities from the time evolution of surface magnetic field. MAGIC has been developed as an application of the KAMELEON data formatting toolkit which has been developed by the CCMC.

  5. Magic and reality in the literature of the Cuban revolution

    Directory of Open Access Journals (Sweden)

    María Jesús Martín Sastre

    2013-12-01

    Full Text Available There is no innocent literature. Literature is made by love, by hate, by a woman, by an idea, by an injustice, by a hope, to praise or to criticize, but I think literature has never been isolated, pure, detached. [...] Literature cannot escape life and history (Manuel Cofiño Lopez, 1985: 9697. Cofiño Lopezs own literature is no exception. The clear contrast that he presents in The Last Woman and the upcoming battle between magic and reality, ignorance and culture, past and present has a purpose. The author raises the need to end with the old beliefs in order to progress.This inextricable link between magic and reality of the Revolution is present in several novels of the Cuban Revolution. It shows how the two interact, as well as how past and present intermingle. Moreover, we find that magic is present throughout, and is fully compatible with the Revolution. This does not make it erroneous to believe in the stories of Magic Realism. It is a mistake on the part of the revolution and those who write about it for attempting to deny people the magic of their superstitions and beliefs, since magic is not the enemy of progress. They are part of their lives and their culture, and are something that should be respected.

  6. NMR longitudinal relaxation enhancement in metal halides by heteronuclear polarization exchange during magic-angle spinning

    Energy Technology Data Exchange (ETDEWEB)

    Shmyreva, Anna A. [Center for Magnetic Resonance, St. Petersburg State University, St. Petersburg 198504 (Russian Federation); Safdari, Majid; Furó, István [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Dvinskikh, Sergey V., E-mail: sergeid@kth.se [Department of Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm (Sweden); Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034 (Russian Federation)

    2016-06-14

    Orders of magnitude decrease of {sup 207}Pb and {sup 199}Hg NMR longitudinal relaxation times T{sub 1} upon magic-angle-spinning (MAS) are observed and systematically investigated in solid lead and mercury halides MeX{sub 2} (Me = Pb, Hg and X = Cl, Br, I). In lead(II) halides, the most dramatic decrease of T{sub 1} relative to that in a static sample is in PbI{sub 2}, while it is smaller but still significant in PbBr{sub 2}, and not detectable in PbCl{sub 2}. The effect is magnetic-field dependent but independent of the spinning speed in the range 200–15 000 Hz. The observed relaxation enhancement is explained by laboratory-frame heteronuclear polarization exchange due to crossing between energy levels of spin-1/2 metal nuclei and adjacent quadrupolar-spin halogen nuclei. The enhancement effect is also present in lead-containing organometal halide perovskites. Our results demonstrate that in affected samples, it is the relaxation data recorded under non-spinning conditions that characterize the local properties at the metal sites. A practical advantage of fast relaxation at slow MAS is that spectral shapes with orientational chemical shift anisotropy information well retained can be acquired within a shorter experimental time.

  7. Chaotic behavior in nuclei

    International Nuclear Information System (INIS)

    Mitchel, G.; Shriner, J.

    2005-01-01

    Although the predictions of Random Matrix Theory (RMT) were available by the early 1960s, data of sufficiently high quality to adequately test the theory were only obtained a decade later by Rainwater. It was another decade later that Bohigas, Haq and Pandey combined the best available nuclear resonance data - the Columbia neutron resonances in heavy nuclei and the TUNL proton resonances in lighter nuclei - to form the Nuclear Data Ensemble. They obtained excellent agreement for the level statistics with the RMT predictions. The expected Porter-Thomas (PT) distribution was considered very early. However, since the widths (amplitudes squared) are measured, the predicted Gaussian distribution for the amplitudes was only qualitatively confirmed. A much more sensitive test was performed by measuring two widths and the relative phase between the two amplitudes. By comparison of the width and amplitude correlations, the Gaussian distribution was confirmed at the 1% level. Following the Bohigas conjecture - that quantum analogs of classically chaotic systems obey RMT - there was an explosion of activity utilizing level statistics in many different quantum systems. In nuclei the focus was verifying the range of applicability of RMT. Of particular interest was the effect of collectivity and of excitation energy on statistical properties. The effect of symmetry breaking on level statistics was examined and early predictions by Dyson were confirmed. The effect of symmetry breaking on the width distribution was also measured for the first time. Although heuristic arguments predicted no change from the PT distribution, experimentally there was a large deviation from the PT prediction. Later theoretical efforts were consistent with this result. The stringent conditions placed on the experiments - for eigenvalue tests the data need to be essentially perfect (few or no missing levels or mis assigned quantum numbers) - has limited the amount of suitable experimental data. The

  8. Impact of electron-captures on nuclei near N = 50 on core-collapse supernovae

    Science.gov (United States)

    Titus, R.; Sullivan, C.; Zegers, R. G. T.; Brown, B. A.; Gao, B.

    2018-01-01

    The sensitivity of the late stages of stellar core collapse to electron-capture rates on nuclei is investigated, with a focus on electron-capture rates on 74 nuclei with neutron number close to 50, just above doubly magic 78Ni. It is demonstrated that variations in key characteristics of the evolution, such as the lepton fraction, electron fraction, entropy, stellar density, and in-fall velocity are about 50% due to uncertainties in the electron-capture rates on nuclei in this region, although thousands of nuclei are included in the simulations. The present electron-capture rate estimates used for the nuclei in this high-sensitivity region of the chart of isotopes are primarily based on a simple approximation, and it is shown that the estimated rates are likely too high, by an order of magnitude or more. Electron-capture rates based on Gamow-Teller strength distributions calculated in microscopic theoretical models will be required to obtain better estimates. Gamow-Teller distributions extracted from charge-exchange experiments performed at intermediate energies serve to guide the development and benchmark the models. A previously compiled weak-rate library that is used in the astrophysical simulations was updated as part of the work presented here, by adding additional rate tables for nuclei near stability for mass numbers between 60 and 110.

  9. Shell and isotopic effects in neutron interaction with nuclei. [Optical model and nucleus asymmetry correlations

    Energy Technology Data Exchange (ETDEWEB)

    Pasechnik, M V

    1978-01-01

    Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.

  10. Elusive active galactic nuclei

    Science.gov (United States)

    Maiolino, R.; Comastri, A.; Gilli, R.; Nagar, N. M.; Bianchi, S.; Böker, T.; Colbert, E.; Krabbe, A.; Marconi, A.; Matt, G.; Salvati, M.

    2003-10-01

    A fraction of active galactic nuclei do not show the classical Seyfert-type signatures in their optical spectra, i.e. they are optically `elusive'. X-ray observations are an optimal tool to identify this class of objects. We combine new Chandra observations with archival X-ray data in order to obtain a first estimate of the fraction of elusive active galactic nuclei (AGN) in local galaxies and to constrain their nature. Our results suggest that elusive AGN have a local density comparable to or even higher than optically classified Seyfert nuclei. Most elusive AGN are heavily absorbed in the X-rays, with gas column densities exceeding 1024 cm-2, suggesting that their peculiar nature is associated with obscuration. It is likely that in elusive AGN the nuclear UV source is completely embedded and the ionizing photons cannot escape, which prevents the formation of a classical narrow-line region. Elusive AGN may contribute significantly to the 30-keV bump of the X-ray background.

  11. Keith's MAGIC: Cloning and the Cell Cycle.

    Science.gov (United States)

    Wells, D N

    2013-10-01

    Abstract Professor Keith Campbell's critical contribution to the discovery that a somatic cell from an adult animal can be fully reprogrammed by oocyte factors to form a cloned individual following nuclear transfer (NT)(Wilmut et al., 1997 ) overturned a dogma concerning the reversibility of cell fate that many scientists had considered to be biologically impossible. This seminal experiment proved the totipotency of adult somatic nuclei and finally confirmed that adult cells could differentiate without irreversible changes to the genetic material.

  12. Role of shell corrections in doubly magic "2"0"8Pb radioactivity within quantum mechanical fragmentation theory

    International Nuclear Information System (INIS)

    Mandeep Kaur; Singh, BirBikram; Sukhmanpreet Kaur

    2017-01-01

    The liquid drop energy (V_L_D_M) along with shell corrections (δU) plays an important role to give the proper understanding of binding energies of atomic nuclei. It is relevant mention here that to study the excited state decay of nuclear systems Gupta and collaborators developed dynamical cluster decay model (DCM) by refitting the binding energies at T=0, to get temperature dependent binding energies with shell corrections included, for the same. Also, in literature different types of temperature dependent binding energies formulas are available. In DCM, the temperature dependent binding energies have been included as given by Davidson et al. In the process, shell corrections, δU were also calculated along with VLDM to reproduce the available experimental binding energies at T=0. It is relevant to mention here that the nuclear shell structure plays main role in the process of cluster radioactivity (CR) as very well explored by the quantum mechanical fragmentation theory (QMFT)-based preformed cluster decay model (PCM), which is the special case of DCM at T=0. Within PCM, Gupta and collaborators also studied the role of deformations or orientations in the decay of number of radioactive nuclei in trans-lead region, specifically, which lead to doubly magic "2"0"8Pb daughter nucleus through emission of clusters i.e. "1"4C, "1"8","2"0O, "2"2Ne, "2"3F, "2"4","2"6 Ne, "2"8","3"0Mg and "3"2","3"4Si, along with many other CR decays. As mentioned earlier, the nuclear shell structure plays an important role in the decay of radioactive nuclei to doubly magic "2"0"8Pb through cluster

  13. Nuclei transmutation by collisions with fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalski, Z.; Strugalska-Gola, E.; Drzymala, A.

    1998-01-01

    Atomic nuclei change their mass- and charge-numbers if bombarded by fast hadrons and nuclei; the transmutation appears as a complicated process. It proceeds in a definite way - through a few stages or phases. Adequate identification of the nucleons and light nuclear fragments emitted and evaporated in a hadron-nucleus or nucleus-nucleus collisions and in the collision-induced intranuclear reactions allows one to estimate quantitatively the nuclei transmutations in the various stages (phases) of the process

  14. Science by night – it's magic!

    CERN Document Server

    CERN Bulletin

    2010-01-01

    The control rooms of the LHC and its experiments threw open their doors to 150 youngsters on European Researchers Night and the place was buzzing with excitement all evening!    It's just possible that a few scientists' vocations were born last Friday night, as the sixth European Researchers Night took place across Europe. CERN was taking part for the first time and invited young people aged from 12 to 19 into the control rooms of the LHC machine and five experiments. From 5.00 in the afternoon until 1.00 in the morning, 150 youngsters and physics teachers got the opportunity to sit with scientists at the controls of the accelerator and experiments. This meeting of minds went down very well for all concerned, the scientists being only too happy to wax lyrical about their passion. The youngsters were thrilled with their visit and amazed at being allowed so close to the controls of these mighty machines. The night-time setting added an extra touch of magic to the whole event. Some just could...

  15. Contextuality supplies the 'magic' for quantum computation.

    Science.gov (United States)

    Howard, Mark; Wallman, Joel; Veitch, Victor; Emerson, Joseph

    2014-06-19

    Quantum computers promise dramatic advantages over their classical counterparts, but the source of the power in quantum computing has remained elusive. Here we prove a remarkable equivalence between the onset of contextuality and the possibility of universal quantum computation via 'magic state' distillation, which is the leading model for experimentally realizing a fault-tolerant quantum computer. This is a conceptually satisfying link, because contextuality, which precludes a simple 'hidden variable' model of quantum mechanics, provides one of the fundamental characterizations of uniquely quantum phenomena. Furthermore, this connection suggests a unifying paradigm for the resources of quantum information: the non-locality of quantum theory is a particular kind of contextuality, and non-locality is already known to be a critical resource for achieving advantages with quantum communication. In addition to clarifying these fundamental issues, this work advances the resource framework for quantum computation, which has a number of practical applications, such as characterizing the efficiency and trade-offs between distinct theoretical and experimental schemes for achieving robust quantum computation, and putting bounds on the overhead cost for the classical simulation of quantum algorithms.

  16. Anomalous carbon nuclei

    International Nuclear Information System (INIS)

    Gasparian, A.P.

    1984-01-01

    Results are presented from a bubble chamber experiment to search for anomalous mean free path (MFP) phenomena for secondary multicharged fragments (Zsub(f)=5 and 6) of the beam carbon nucleus at 4.2 GeV/c per nucleon. A total of 50000 primary interactions of carbon with propane (C 3 H 8 ) were created. Approximately 6000 beam tragments with charges Zsub(f)=5 and 6 were analyzed in detail to find out an anomalous decrease of MFP. The anomaly is observed only for secondary 12 C nuclei

  17. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2001-01-01

    The present collection of letters from JINR, Dubna, contains eight separate records on the interaction of high energy Λ 6 He hypernuclear beams with atomic nuclei, the position-sensitive detector of a high spatial resolution on the basis of a multiwire gas electron multiplier, pseudorapidity hadron density at the LHC energy, high precision laser control of the ATLAS tile-calorimeter module mass production at JINR, a new approach to ECG's features recognition involving neural network, subcriticity of a uranium target enriched in 235 U, beam space charge effects in high-current cyclotron injector CI-5, a homogeneous static gravitational field and the principle of equivalence

  18. Active galactic nuclei

    CERN Document Server

    Beckmann, Volker

    2012-01-01

    This AGN textbook includes phenomena based on new results in the X-Ray domain from new telescopes such as Chandra and XMM Newton not mentioned in any other book. Furthermore, it considers also the Fermi Gamma Ray Space Telescope with its revolutionary advances of unprecedented sensitivity, field of view and all-sky monitoring. Those and other new developments as well as simulations of AGN merging events and formations, enabled through latest super-computing capabilities. The book gives an overview on the current knowledge of the Active Galacitc Nuclei phenomenon. The spectral energy d

  19. Elementary excitations in nuclei

    International Nuclear Information System (INIS)

    Lemmer, R.H.

    1987-01-01

    The role of elementary quasi-particle and quasi-hole excitations is reviewed in connection with the analysis of data involving high-lying nuclear states. This article includes discussions on: (i) single quasi-hole excitations in pick-up reactions, (ii) the formation of single quasi-hole and quasi-particle excitations (in different nuclei) during transfer reactions, followed by (iii) quasi-particle quasi-hole excitations in the same nucleus that are produced by photon absorption. Finally, the question of photon absorption in the vicinity of the elementary Δ resonance is discussed, where nucleonic as well as nuclear degrees of freedom can be excited

  20. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains six separate records on the DELPHI experiment at LEP, the Fermi-surface dynamics of rotating nuclei, production of large samples of the silica dioxide aerogel in the 37-litre autoclave and test of its optical properties, preliminary radiation resource results on scintillating fibers, a new algorithm for the direct transformation method of time to digital with the high time resolution and development and design of analogue read-out electronics for HADES drift chamber system

  1. Cumulation of light nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Bondarev, V.K.; Golovanov, L.B.

    1977-01-01

    Limit fragmentation of light nuclei (deuterium, helium) bombarded with 8,6 GeV/c protons was investigated. Fragments (pions, protons and deuterons) were detected within the emission angle 50-150 deg with regard to primary protons and within the pulse range 150-180 MeV/c. By the kinematics of collision of a primary proton with a target at rest the fragments observed correspond to a target mass upto 3 GeV. Thus, the data obtained correspond to teh cumulation upto the third order

  2. Active galactic nuclei

    CERN Document Server

    Blandford, RD; Woltjer, L

    1990-01-01

    Starting with this volume, the Lecture Notes of the renowned Advanced Courses of the Swiss Society for Astrophysics and Astronomy will be published annually. In each course, three extensive lectures given by leading experts in their respective fields cover different and essential aspects of the subject. The 20th course, held at Les Diablerets in April 1990, dealt with current research on active galactic nuclei; it represents the most up-to-date views on the subject, presented with particular regard for clarity. The previous courses considered a wide variety of subjects, beginning with ""Theory

  3. Analysis of some modes of multibody decays of low excited actinide nuclei

    International Nuclear Information System (INIS)

    Pyatkov, Yu V; Lavrova, J E; Kamanin, D V; Alexandrov, A A; Alexandrova, I A; Goryainova, Z I; Kuznetsova, E A; Strekalovsky, A O; Strekalovsky, O V; Zhuchko, V E; Mkaza, N; Malaza, V

    2017-01-01

    Careful studies of the fission fragments mass correlation distributions let us to reveal specific linear structures in the region of a big missing mass. It became possible due to applying of effective cleaning of this region from the background linked with scattered fragments. One of the most pronounced structure looks like a rectangle bounded by the magic nuclei. The fission events aggregated in the rectangle show a very low total kinetic energy. We propose possible scenario of forming and decay of the multi-cluster prescission configuration decisive for the experimental findings. This approach is valid as well for treating of another rare decay modes discovered in the past. (paper)

  4. Measurements of lifetimes and magnetic moments in A∼90 nuclei with EUROBALL Cluster detectors

    International Nuclear Information System (INIS)

    Jungclaus, A.; Fischer, V.; Kast, D.

    1998-01-01

    Mass A∼90 nuclei with several valence nucleons outside the doubly-magic 100 Sn core are an ideal testing ground for the validity of the spherical shell model. Electromagnetic decay properties as well as magnetic dipole moments of excited states are the key quantities revealing the structure of the wave functions and the mechanisms responsible for strong dipole sequences. The present article discusses by means of two examples the advantages of employing the most recent developments both concerning detector technology and experimental methods

  5. Exotic nuclei and radioactive beams

    International Nuclear Information System (INIS)

    Chomaz, P.

    1996-01-01

    The Nuclei called exotic are all the nuclei that it is necessary to recreate in laboratory to study them. Their life time is too short -in relation to earth age- for it remains enough on earth. The researchers are going to have at their s disposal at GANIL (Caen) with the S.P.I.R.A.L. project, exotic nuclei beams and will study new kinds of nuclear reactions to better understand the atom nucleus. (N.C.). 2 refs., 9 figs

  6. Isolation of Nuclei and Nucleoli.

    Science.gov (United States)

    Pendle, Alison F; Shaw, Peter J

    2017-01-01

    Here we describe methods for producing nuclei from Arabidopsis suspension cultures or root tips of Arabidopsis, wheat, or pea. These methods could be adapted for other species and cell types. The resulting nuclei can be further purified for use in biochemical or proteomic studies, or can be used for microscopy. We also describe how the nuclei can be used to obtain a preparation of nucleoli.

  7. Testing the mutually enhanced magicity effect in nuclear incompressibility via the giant monopole resonance in the {sup 204,206,208}Pb isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Patel, D. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Garg, U., E-mail: garg@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fujiwara, M. [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); Adachi, T. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); Akimune, H. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Berg, G.P.A. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Harakeh, M.N. [Kernfysisch Versneller Instituut, University of Groningen, 9747 AA Groningen (Netherlands); GANIL, CEA/DSM-CNRS/IN2P3, 14076 Cean (France); Itoh, M. [Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578 (Japan); Iwamoto, C. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Long, A.; Matta, J.T. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Murakami, T. [Division of Physics and Astronomy, Kyoto University, Kyoto 606-8502 (Japan); Okamoto, A. [Department of Physics, Konan University, Kobe 568-8501 (Japan); Sault, K. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Talwar, R. [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Uchida, M. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8850 (Japan); and others

    2013-10-07

    Using inelastic α-scattering at extremely forward angles, including 0°, the strength distributions of the isoscalar giant monopole resonance (ISGMR) have been measured in the {sup 204,206,208}Pb isotopes in order to examine the proposed mutually enhanced magicity (MEM) effect on the nuclear incompressibility. The MEM effect had been suggested as a likely explanation of the “softness” of nuclear incompressibility observed in the ISGMR measurements in the Sn and Cd isotopes. Our experimental results rule out any manifestation of the MEM effect in nuclear incompressibility and leave the question of the softness of the open-shell nuclei unresolved still.

  8. The presence of magical thinking in obsessive compulsive disorder.

    Science.gov (United States)

    Einstein, Danielle A; Menzies, Ross G

    2004-05-01

    Two research groups have raised the possibility that magical ideation may be a fundamental feature of obsessive-compulsive disorder. It has been proposed to underlie thought action fusion and superstitious beliefs. In this study, the Magical Ideation scale, the Lucky Behaviours and Lucky Beliefs scales, the Thought Action Fusion-Revised scale, the Padua Inventory, and the Obsessive Compulsive Inventory-Short Version were completed by 60 obsessive compulsive patients at a hospital clinic. Of all the measures, the Magical Ideation (MI) scale was found to be the most strongly related to obsessive compulsive symptoms. Large and significant relationships between MI scores and the measures of OCD were obtained even when alternative constructs (Lucky Behaviours, Lucky Beliefs, Thought Action Fusion-Revised scales) were held constant. No other variable remained significantly related to the Obsessive Compulsive Inventory-Short Version when magical ideation scores were held constant. The findings suggest that a general magical thinking tendency may underpin previous observed links between superstitiousness, thought action fusion and OCD severity.

  9. Does magical thinking produce neutralising behaviour? An experimental investigation.

    Science.gov (United States)

    Bocci, Laura; Gordon, P Kenneth

    2007-08-01

    Magical thinking is of relevance to obsessive compulsive disorder (OCD), and has been most widely investigated in relation to the cognitive bias known as thought-action fusion (TAF). This is seen as playing a role in the formation of fears about responsibility for harm. We suggest that magical thinking may also characterise some types of neutralising behaviour, which arise in response to those fears, and are a hallmark of the disorder. In an experimental study of 51 undergraduate students, we assessed whether the use of neutralising behaviours in response to an induction of fears of increasing likelihood for harm is related to a propensity for magical thinking. The 75.5% of participants demonstrated at least one form of neutralising behaviour in response to a TAF-induction task. Neutralising was associated with stronger and more persistent responses to the task, and with questionnaire measures of magical ideation. Those who neutralised did not report higher levels of OCD symptoms. It appears that neutralising is a common response in circumstances that provoke a sense of responsibility for harm. Its occurrence may be linked to magical thinking, however, the results from this experimental investigation suggested that this process may not be specific to OCD.

  10. A framework for using magic to study the mind.

    Science.gov (United States)

    Rensink, Ronald A; Kuhn, Gustav

    2014-01-01

    Over the centuries, magicians have developed extensive knowledge about the manipulation of the human mind-knowledge that has been largely ignored by psychology. It has recently been argued that this knowledge could help improve our understanding of human cognition and consciousness. But how might this be done? And how much could it ultimately contribute to the exploration of the human mind? We propose here a framework outlining how knowledge about magic can be used to help us understand the human mind. Various approaches-both old and new-are surveyed, in terms of four different levels. The first focuses on the methods in magic, using these to suggest new approaches to existing issues in psychology. The second focuses on the effects that magic can produce, such as the sense of wonder induced by seeing an apparently impossible event. Third is the consideration of magic tricks-methods and effects together-as phenomena of scientific interest in their own right. Finally, there is the organization of knowledge about magic into an informative whole, including the possibility of a science centered around the experience of wonder.

  11. Stability of superheavy nuclei

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.

  12. Cluster structures in light nuclei

    International Nuclear Information System (INIS)

    Horiuchi, H.

    2000-01-01

    Complete text of publication follows. Clustering in neutron-rich nuclei is discussed. To understand the novel features (1,2,3) of the clustering in neutron-rich nuclei, the basic features of the clustering in stable nuclei (4) are briefly reviewed. In neutron-rich nuclei, the requirement of the stability of clusters is questioned and the threshold rule is no more obeyed. Examples of clustering in Be and B isotopes (4,5) are discussed in some detail. Possible existence of novel type of clustering near neutron dripline is suggested (1). (author)

  13. Level structures in Yb nuclei far from stable nuclei

    International Nuclear Information System (INIS)

    Hashizume, Akira

    1982-01-01

    Applying n-γ, γ-γ coincidence techniques, the excited levels in 158 Yb and in 157 Yb nuclei were studied. Stress is placed ona neutron detection technique to assign (HI,xn) reactions which produce the nuclei far from β stability line. (author)

  14. Performing Fabulous Monsters: Re-inventing the Gothic Personae in Bizarre Magic

    OpenAIRE

    Taylor, Nik; Nolan, Stuart

    2015-01-01

    Bizarre magick is a form of performance magic that favours theatrical character, storytelling, overt allegory, symbolism and metaphor, and themes of the supernatural, fantastic, amazing and weird. While the form has its roots in Victorian stage magic, it realised itself as a movement in the 1970s through a counter-cultural reaction against the big boxes and card flourishes of a disenchanted, contemporary, mainstream stage magic. Bizarre magicians sought to re-enchant performance magic with th...

  15. Magical Realism in Neil Gaiman’s Coraline

    Directory of Open Access Journals (Sweden)

    Hosseinpour Saeede

    2016-07-01

    Full Text Available Magical realism, as a narrative mode or genre in adults’ literature, has been in vogue since its revivifying with the publication of Gabriel Garcia Marquez’s One Hundred Years of Solitude (1967. However, the depiction of the genre in children’s and juvenile literature is a new trend; the presence of its elements have been traced and proved feasibly applicable in the interpretation of recent children’s fiction such as David Almond’s Skelling (1998. In this regard, the main concern of the present article is to sift the characteristic features of magical realism within Neil Gaiman’s Coraline (2002 through the application of Wendy B. Faris’s theoretical framework of the genre therewith Tzvetan Todorov’s definition of the fantastic in order to introduce the novel as an exemplar of magical realism in the domain of children’s literature.

  16. Magic state parity-checker with pre-distilled components

    Directory of Open Access Journals (Sweden)

    Earl T. Campbell

    2018-03-01

    Full Text Available Magic states are eigenstates of non-Pauli operators. One way of suppressing errors present in magic states is to perform parity measurements in their non-Pauli eigenbasis and postselect on even parity. Here we develop new protocols based on non-Pauli parity checking, where the measurements are implemented with the aid of pre-distilled multiqubit resource states. This leads to a two step process: pre-distillation of multiqubit resource states, followed by implementation of the parity check. These protocols can prepare single-qubit magic states that enable direct injection of single-qubit axial rotations without subsequent gate-synthesis and its associated overhead. We show our protocols are more efficient than all previous comparable protocols with quadratic error reduction, including the protocols of Bravyi and Haah.

  17. Recent results on galactic sources with MAGIC telescope

    International Nuclear Information System (INIS)

    De los Reyes, R.

    2009-01-01

    Located at the Canary island of La Palma, the single-dish MAGIC telescope currently has the lowest energy threshold achieved by any Cherenkov telescope, which can be as low as 25 GeV. In the last two years, the MAGIC telescope has detected a significant amount of galactic sources that emit at very high energies (up to several TeV). Here we present the most recent results that have yielded important scientific highlights in astrophysics, which include the first detection of gamma-ray emission from a pulsar, an X-ray binary system and a stellar-mass black hole. We also make a review of the latest results of the MAGIC observations on galactic sources, which will include also γ-ray unidentified sources (TeV J2032+4130), the Galactic Centre, X-ray binaries (LSI +61 303), pulsars (Crab pulsar) and SNRs (IC443).

  18. The Rhetorical Goddess: A Feminist Perspective on Women in Magic

    Directory of Open Access Journals (Sweden)

    Bruns, Laura C.

    2014-12-01

    Full Text Available Although female magicians have existed since the rise of entertainment magic, women have faced difficulty in entering the “fraternity” of the magic community. As an art form largely based around persuasion, it is useful to study the performance of magic as a text. It is additionally useful to study female magicians within this context of rhetoric. Not only will examining the rhetoric of female magicians provide insights on the rhetoric of women in this unique arena, but also of women in a historically gendered and underrepresented field. Research into this area may disclose other details regarding the communicative differences between women and men and how communication is adapted within a gendered communication paradigm.

  19. Magical Realism in the Holocaust Literature of the Postwar Generations

    DEFF Research Database (Denmark)

    Ortner, Jessica

    2014-01-01

    This article investigates the use of magical realism in two Holocaust novels written by the contemporary Austrian writers Doron Rabinovici and Robert Schindel, who both are descendants of Holocaust survivors. I will argue that Rabinovici and Schindel not only use the narrative technique of magic...... Schindel’s novel Born-Where (Gebürtig, 1994) visualize the situation of being torn between two contradictory perceptions of the world: on the one hand, the “normal” perception of the world, based on the present norms of society, and on the other hand, a perception of the traumatic world bestowed by family...... history, which clearly subverts those present norms. Whereas the magical element in The Search for M. is inherent in the contradictions of the story line, it is shown in a bewildering narrative structure in Born-Where (Genette, 1980)....

  20. 77 FR 58416 - Large Scale Networking (LSN); Middleware and Grid Interagency Coordination (MAGIC) Team

    Science.gov (United States)

    2012-09-20

    ..., Grid, and cloud projects. The MAGIC Team reports to the Large Scale Networking (LSN) Coordinating Group... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD.... Dates/Location: The MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00pm, at...

  1. 78 FR 70076 - Large Scale Networking (LSN)-Middleware and Grid Interagency Coordination (MAGIC) Team

    Science.gov (United States)

    2013-11-22

    ... projects. The MAGIC Team reports to the Large Scale Networking (LSN) Coordinating Group (CG). Public... Coordination (MAGIC) Team AGENCY: The Networking and Information Technology Research and Development (NITRD... MAGIC Team meetings are held on the first Wednesday of each month, 2:00-4:00 p.m., at the National...

  2. Experiments with relativistic exotic nuclei at the FRS

    International Nuclear Information System (INIS)

    Geissel, H.

    1994-11-01

    The concept and experimental programme of the secondary nuclear beam facility BRENDA at GSI is presented. The central part of BRENDA is the magnetic spectrometer FRS providing spatially separated monoisotopic exotic beams of all elements up to uranium. The FRS as a versatile magnetic spectrometer for experiments with heavy ions in the energy range of (0.1-2) A.GeV has been used to study peripheral nuclear collisions from oxygen up to uranium projectiles. In the uranium experiments we discovered that projectile fission is a powerful tool to investigate new neutron-rich fission fragments. In the medium mass region we have identified the doubly magic nucleus 100 Sn and measured its half-life. Light halo nuclei have been studied in kinematically complete experiments with the FRS in combination with the dipole magnet ALADIN, and the neutron detector LAND. The FRS combined with the storage and cooler ring ESR offers new precision experiments, e.g., direct mass measurements, decay studies of highly-charged nuclei, or nuclear structure studies in inverse kinematics. (orig.)

  3. Electron scattering off nuclei

    International Nuclear Information System (INIS)

    Gattone, A.O.

    1989-01-01

    Two recently developed aspects related to the scattering of electrons off nuclei are presented. On the one hand, a model is introduced which emphasizes the relativistic aspects of the problem in the impulse approximation, by demanding strict maintenance of the algebra of the Poincare group. On the other hand, the second model aims at a more sophisticated description of the nuclear response in the case of collective excitations. Basically, it utilizes the RPA formalism with a new development which enables a more careful treatment of the states in the continuum as is the case for the giant resonances. Applications of both models to the description of elastic scattering, inelastic scattering to discrete levels, giant resonances and the quasi-elastic region are discussed. (Author) [es

  4. Antideuteron annihilation on nuclei

    International Nuclear Information System (INIS)

    Cugnon, J.

    1992-01-01

    An investigation of antideuteron annihilation on nuclei within an intranuclear cascade (INC) model is presented. Two models are set up to describe the annihilation itself, which either implies the antideuteron as a whole and occurs at a single point, or which may be considered as two independent nucleon-antinucleon annihilation occurring at different points and different times. Particular attention is paid to the energy transferred from the pions issued from the annihilation to the nuclear system and to the possibility of having a multifragmentation of the target. The latter feature is investigated within a percolation model. The pion distribution and the energy distribution are also discussed. Predictions of proton multiplicity distributions are compared with experiment. (orig.)

  5. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2002-01-01

    The present collection of letters from JINR, Dubna, contains ten separate records on Wien filter using in exploring on low-energy radioactive nuclei, memory effects in dissipative nucleus-nucleus collision, topological charge and topological susceptibility in connection with translation and gauge invariance, solutions of the multitime Dirac equation, the maximum entropy technique. System's statistical description, the charged conductor inside dielectric. Solution of boundary condition by means of auxiliary charges and the method of linear algebraic equations, optical constants of the TGS single crystal irradiated by power pulsed electron beam, interatomic pair potential and n-e amplitude from slow neutron scattering by noble gases, the two-coordinate multiwire proportional chamber of the high spatial resolution and neutron drip line in the region of O-Mg isotopes

  6. Particles and nuclei, letters

    International Nuclear Information System (INIS)

    2000-01-01

    The present collection of letters from JINR, Dubna, contains seven separate records on the integral representation for structure functions and target mass effects, multiscale properties of DNA primary structure including cross-scale correlations, dissipative evolution of the elementary act, the fine structure of the M T =1 Gamow-Teller resonance in 147g Tb→ 147 Gd β + /EC decay, the behaviour of the TVO temperature sensors in the magnetic fields, a fast method for searching for tracks in multilayer drift chambers of HADES spectrometer, a novel approach to particle track etching including surfactant enhanced control of pore morphology, azimuthal correlations of secondary particles in 32 S induced interactions with Ag(Br) nuclei at 4.5 GeV/ c/ nucleon

  7. Pulsars: gigantic nuclei

    International Nuclear Information System (INIS)

    Xu, Renxin

    2011-01-01

    What is the real nature of pulsars? This is essentially a question of the fundamental strong interaction between quarks at low-energy scale and hence of the non-perturbative quantum chromo-dynamics, the solution of which would certainly be meaningful for us to understand one of the seven millennium prize problems (i.e., "Yang-Mills Theory") named by the Clay Mathematical Institute. After a historical note, it is argued here that a pulsar is very similar to an extremely big nucleus, but is a little bit different from the gigantic nucleus speculated 80 years ago by L. Landau. The paper demonstrates the similarity between pulsars and gigantic nuclei from both points of view: the different manifestations of compact stars and the general behavior of the strong interaction. (author)

  8. Clusters in nuclei

    CERN Document Server

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is today one of those domains of heavy-ion nuclear physics that faces the greatest challenges, yet also contains the greatest opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physicists has decided to collaborate in producing a comprehensive collection of lectures and tutorial reviews covering the field. This third volume follows the successful Lect. Notes Phys. 818 (Vol. 1) and 848 (Vol. 2), and comprises six extensive lectures covering the following topics:  - Gamma Rays and Molecular Structure - Faddeev Equation Approach for Three Cluster Nuclear Reactions - Tomography of the Cluster Structure of Light Nuclei Via Relativistic Dissociation - Clustering Effects Within the Dinuclear Model : From Light to Hyper-heavy Molecules in Dynamical Mean-field Approach - Clusterization in Ternary Fission - Clusters in Light N...

  9. Pion production in nuclei

    International Nuclear Information System (INIS)

    Afnan, I.R.; Thomas, A.W.

    1976-01-01

    A method has been suggested for relating μ-capture in nuclei to pion absorption through partially conserved axial vector current hypothesis. The success of the method relies heavily on the knowledge of the pion absorption amplitude at a momentum transfer equal to the μ-meson mass. That is we need to know the pion absorption amplitude off the mass-shell. The simplest nucleus for which this suggestion can be examined is μ-capture in deuterium. The Koltum-Reitan model is used to determine the pion absorption amplitude off the mass shell. In particular the senstivity of this off-mass-shell extrapolution to details of the N-N interaction is studied. (author)

  10. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1998-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors)

  11. IBA in deformed nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics

  12. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Collaboration: La Direction des Sciences de la Matiere du CEA (FR); Le Fonds National de la Recherche Scientifique de Belgique (BE)

    1998-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular, the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of this collective motions is a very good tool to understand the properties of the nucleus itself. The purpose of this article is to stress some aspects of these collective vibrations. We have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. Understanding of these phenomena remains one of the important subjects of actuality in the context of quantal systems in strong interaction. In particular, the study of the states with one or two vibration quanta provides a direct information on the structure of nuclei close to their ground states. Moreover, some collective states appear to be very robust against the onset of chaos. This is the case of the hot giant dipole built on top of a hot nucleus which seems to survive up to rather high temperatures. Their sudden disappearance is still a subject of controversy. It may be that the mean-field and the associated collective states are playing a crucial role also in catastrophic processes such as the phase-transitions. Indeed, when the system is diluted the collective vibrations may become unstable and it seems that these unstable modes provide a natural explanation to the self organization of the system in drops. Finally, considering the diversity of the different structures of exotic nuclei one may expect new vibration types. All these studies are showing the diversity of the collective motions of strongly correlated quantum systems such as the nucleus but many open questions remain to be solved. (authors) 304 refs., 53 figs., 5 tabs.

  13. Gesture Recognition for Educational Games: Magic Touch Math

    Science.gov (United States)

    Kye, Neo Wen; Mustapha, Aida; Azah Samsudin, Noor

    2017-08-01

    Children nowadays are having problem learning and understanding basic mathematical operations because they are not interested in studying or learning mathematics. This project proposes an educational game called Magic Touch Math that focuses on basic mathematical operations targeted to children between the age of three to five years old using gesture recognition to interact with the game. Magic Touch Math was developed in accordance to the Game Development Life Cycle (GDLC) methodology. The prototype developed has helped children to learn basic mathematical operations via intuitive gestures. It is hoped that the application is able to get the children motivated and interested in mathematics.

  14. Elemental magic, v.2 the technique of special effects animation

    CERN Document Server

    Gilland, Joseph

    2012-01-01

    Design beautiful, professional-level animated effects with these detailed step-by-step tutorials from former Disney animator and animated effects expert Joseph Gilland. Filled with beautiful, full-color artwork, Elemental Magic, Volume II, breaks down the animated effect process from beginning to end-including booming explosions, gusting winds, magical incantations, and raging fires. He also breaks down the process of effects ""clean-up,"" as well as timing and frame rates. The companion website includes real-time footage of the author lecturing as he animates the drawings from the

  15. Decay properties of {sup 256-339}Ds superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Santhosh, K.P.; Nithya, C. [Kannur University, School of Pure and Applied Physics, Payyanur, Kerala (India)

    2017-09-15

    The decay properties of 84 isotopes of darmstadtium superheavy nuclei (Z = 110) have been studied using various theoretical models. The proton emission half-lives, the alpha decay half-lives, the spontaneous fission half-lives and the cluster decay half-lives of all the isotopes are evaluated. The one-proton emission half-lives and the alpha decay half-lives are predicted using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The calculated alpha half-lives are compared with the available experimental results as well as with the predictions of other theoretical models. The predicted half-lives matches well with the experimental results. The one-proton half-lives are also compared with the predictions using other formalisms. The shell-effect-dependent formula of Santhosh et al. has been employed for calculating the spontaneous fission half-lives. A theoretical comparison of spontaneous fission half-lives with four different formalisms is performed. By comparing the one-proton emission half-lives, the alpha decay half-lives and the spontaneous fission half-lives decay modes are predicted for all the isotopes of Ds. It is seen that the isotopes within the range 256 ≤ A ≤ 263 and 279 ≤ A ≤ 339 decay through spontaneous fission and the isotopes 264 ≤ A ≤ 278 exhibit alpha decay. Cluster decay half-lives are calculated using different models including the Coulomb and proximity potential (CPPM), for determining the magicities in the superheavy region. The effect of magicity at N = 184 and N = 202 were confirmed from the plot of log{sub 10}T{sub 1/2} versus neutron number of the daughter nuclei for the emission of different clusters. We hope that the systematic and detailed study of all the possible decay modes of {sup 256-339}Ds using various theoretical models will be helpful in the experimental identification of the isotopes of the element in the future. (orig.)

  16. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  17. 'Magic coins' and 'magic squares': the discovery of astrological sigils in the Oldenburg Letters.

    Science.gov (United States)

    Roos, Anna Marie

    2008-09-20

    Enclosed in a 1673 letter to Henry Oldenburg were two drawings of a series of astrological sigils, coins and amulets from the collection of Strasbourg mathematician Julius Reichelt (1637-1719). As portrayals of particular medieval and early modern sigils are relatively rare, this paper will analyse the role of these medals in medieval and early modern medicine, the logic behind their perceived efficacy, and their significance in early modern astrological and cabalistic practice. I shall also demonstrate their change in status in the late seventeenth century from potent magical healing amulets tied to the mysteries of the heavens to objects kept in a cabinet for curiosos. The evolving perception of the purpose of sigils mirrored changing early modem beliefs in the occult influences of the heavens upon the body and the natural world, as well as the growing interests among virtuosi in collecting, numismatics and antiquities.

  18. Oligo-branched peptides for tumor targeting: from magic bullets to magic forks.

    Science.gov (United States)

    Falciani, Chiara; Pini, Alessandro; Bracci, Luisa

    2009-02-01

    Selective targeting of tumor cells is the final goal of research and drug discovery for cancer diagnosis, imaging and therapy. After the invention of hybridoma technology, the concept of magic bullet was introduced into the field of oncology, referring to selective killing of tumor cells, by specific antibodies. More recently, small molecules and peptides have also been proposed as selective targeting agents. We analyze the state of the art of tumor-selective agents that are presently available and tested in clinical settings. A novel approach based on 'armed' oligo-branched peptides as tumor targeting agents, is discussed and compared with existing tumor-selective therapies mediated by antibodies, small molecules or monomeric peptides. Oligo-branched peptides could be novel drugs that combine the advantages of antibodies and small molecules.

  19. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  20. Quarks in Few Body Nuclei

    Directory of Open Access Journals (Sweden)

    Holt Roy J.

    2016-01-01

    Full Text Available Electron scattering at very high Bjorken x from hadrons provides an excellent test of models, has an important role in high energy physics, and from nuclei, provides a window into short range correlations. Light nuclei have a key role because of the relatively well-known nuclear structure. The development of a novel tritium target for Jefferson Lab has led to renewed interest in the mass three system. For example, deep inelastic scattering experiments in the light nuclei provide a powerful means to determine the neutron structure function. The isospin dependence of electron scattering from mass-3 nuclei provide information on short range correlations in nuclei. The program using the new tritium target will be presented along with a summary of other experiments aimed at revealing the large-x structure of the nucleon.

  1. Mechanism of f-decay - spontaneous emission of fragments by heavy nuclei

    International Nuclear Information System (INIS)

    Rubchenya, V.A.; Ehjsmont, V.P.; Yavshits, S.G.

    1987-01-01

    A new type of model of radioactive decay - spontaneous emission of fragments by heavy nuclei, for which f-decay has been suggested, is formulated. The consideration is based on representation about a disintegrating configuration, for which the probability of f-cluster formation is close to 1. The moments method is used to determine the parameters of the disintegrating configuration. The probability of disintegrating configuration formation is determined by collective properties of a disintegrating nucleus. Effect of nucleon shells of the daughter nucleus and fragment leads to more compact disintegrating configuration and to decay energy increase, that's why at f-decay magic nuclei are formed. Probable spontaneous f-decay values calculated agree satisfactorily with experimental data. The calculational results testify to considerable decrease of f-decay probability at Z≥94

  2. New Insight into the Observation of Spectroscopic Strength Reduction in Atomic Nuclei: Implication for the Physical Meaning of Spectroscopic Factors

    International Nuclear Information System (INIS)

    Timofeyuk, N. K.

    2009-01-01

    Experimental studies of one-nucleon knockout from magic nuclei suggest that their nucleon orbits are not fully occupied. This conflicts a commonly accepted view of the shell closure associated with such nuclei. The conflict can be reconciled if the overlap between initial and final nuclear states in a knockout reaction are calculated by a nonstandard method. The method employs an inhomogeneous equation based on correlation-dependent effective nucleon-nucleon interactions and allows the simplest wave functions, in which all nucleons occupy only the lowest nuclear orbits, to be used. The method also reproduces the recently established relation between reduction of spectroscopic strength, observed in knockout reactions on other nuclei, and nucleon binding energies. The implication of the inhomogeneous equation method for the physical meaning of spectroscopic factors is discussed.

  3. Identification of 100Sn and other proton drip-line nuclei in the reaction 112Sn + natNi at 63 MeV/nucleon

    International Nuclear Information System (INIS)

    Lewitowicz, M.; Anne, R.; Auger, G.; Bazin, D.; Corre, J.M.; Borcea, C.; Borrel, V.; Fomichov, A.; Grzywacz, R.; and others.

    1996-01-01

    The doubly-magic nucleus 100 Sn and six new neutron-deficient nuclei in the A∼100 region were identified in the reaction 112 Sn + nat Ni at 63 MeV/nucleon. The experiment was carried out using the high acceptance device SISSI and the Alpha and LISE3 spectrometers at GANIL. The identification of the reaction products (A, Z and Q) was made using the measurements of time-of-flight, energy-loss and kinetic energy. (author)

  4. The tensor part of the Skyrme energy density functional. I. Spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lesinski, T.; Meyer, J. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France); Bender, M. [DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France)]|[Universite Bordeaux, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175 Gradignan (France); Bennaceur, K. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France)]|[DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Duguet, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2007-04-15

    We perform a systematic study of the impact of the J-vector{sup 2} tensor term in the Skyrme energy functional on properties of spherical nuclei. In the Skyrme energy functional, the tensor terms originate both from zero-range central and tensor forces. We build a set of 36 parameterizations which cover a wide range of the parameter space of the isoscalar and isovector tensor term coupling constants with a fit protocol very similar to that of the successful SLy parameterizations. We analyze the impact of the tensor terms on a large variety of observables in spherical mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and known anomalies of radii. The major findings of our study are (i) tensor terms should not be added perturbatively to existing parameterizations, a complete refit of the entire parameter set is imperative. (ii) The free variation of the tensor terms does not lower the {chi}{sup 2} within a standard Skyrme energy functional. (iii) For certain regions of the parameter space of their coupling constants, the tensor terms lead to instabilities of the spherical shell structure, or even the coexistence of two configurations with different spherical shell structure. (iv) The standard spin-orbit interaction does not scale properly with the principal quantum number, such that single-particle states with one or several nodes have too large spin-orbit splittings, while those of node-less intruder levels are tentatively too small. Tensor terms with realistic coupling constants cannot cure this problem. (v) Positive values of the coupling constants of proton-neutron and like-particle tensor terms allow for a qualitative description of the evolution of spin-orbit splittings in chains of Ca, Ni and Sn isotopes. (vi) For the same values of the tensor term coupling constants, however, the overall

  5. K-bar-mesic nuclei

    International Nuclear Information System (INIS)

    Dote, Akinobu; Akaishi, Yoshinori; Yamazaki, Toshimitsu

    2005-01-01

    New nuclei 'K-bar-Mesic Nuclei' having the strangeness are described. At first it is shown that the strongly attractive nature of K-bar N interaction is reasoned inductively from consideration of the relation between Kaonic hydrogen atom and Λ (1405) which is an excited state of hyperon Λ. The K-bar N interactions are reviewed and summarized into three categories: 1. Phenomenological approach with density dependent K-bar N interaction (DD), relativistic mean field (RMF) approach, and hybrid of them (RMF+DD). 2. Boson exchange model. 3. Chiral SU(3) theory. The investigation of some light K-bar-nuclei by Akaishi and Yamazaki using phenomenological K-bar N interaction is explained in detail. Studies by antisymmetrized molecular dynamics (AMD) approach are also presented. From these theoretical researches, the following feature of K-bar-mesic nuclei are revealed: 1) Ground state is discrete and bound by 100 MeV or more. 2) Density is very high in side the K-bar-mesic nuclei. 3) Strange structures develop which are not seen in ordinary nuclei. Finally some recent experiments to explore K-bar-mesic nuclei are reviewed. (S. Funahashi)

  6. Magical Realism in Ahmad Sa'dawiy's Frankenstein fi Bagdad

    Directory of Open Access Journals (Sweden)

    Mahmudah Mahmudah

    2016-11-01

    Full Text Available This article discusses the use of magic realism as a literary device in the Iraqi novel Frankenstein fī Bagdād written by Aḥmad Sa‘dāwiy. The novel is set in the period of inter-ethnic conflict which arose after the American invasion of 2003. Hādī, the main character of the novel, ‘creates a monster’ namely Syismah from the corpses of the many bomb victims in Baghdad. The writer combines setting of the novel with belief of the Iraq people, horoscope practice, and magic, in mystical and illogical atmosphere. Given its magic realist qualities, the analysis draws on the approach of Wendy B. Faris. The article identifies five key elements from magic realism present in the novel, and discusses the relationship between these elements in order to better understand the social, ideological, and political context of the novel. The analysis shows that there are relationships between two worlds: death and life, human and ghost, physical and metaphysical, natural and supernatural.

  7. A note on 'Oriental magic mirrors and the Laplacian image'

    International Nuclear Information System (INIS)

    Riesz, Ferenc

    2006-01-01

    Berry has shown (2006 Eur. J. Phys. 27 109-18) that the image of an oriental magic mirror (an essentially flat mirror with small surface relief) is the Laplacian of the surface relief for low-curvature features. In this note, an alternative derivation is presented and the physical meaning of the used approximations is explained. (note)

  8. How Has the Emergence of Digital Culture Affected Professional Magic?

    Directory of Open Access Journals (Sweden)

    Olli Rissanen

    2017-10-01

    Full Text Available We examined how the emerging digital culture has affected magicians’ careers, the development of their expertise and the general practices of their professions. We used social network analysis (n=120 to identify Finland’s most highly regarded magicians (n=16 representing different generations. The participants were theme interviewed and also collected self-report questionnaire data. The results revealed that digital transformations have strongly affected the magical profession in terms of changing their career paths and entry into the profession. Magic used to be a secretive culture, where access to advanced knowledge was controlled by highly regarded gatekeepers who shared their knowledge with a selected group of committed newcomers as a function of their extended efforts. Openly sharing magical knowledge on the Internet has diminished the traditionally strong role of these gatekeepers. Although online tutorials have made magical know-how more accessible to newcomers, professional communities and networks play a crucial role in the cultivation of advanced professional competences.

  9. Mayer–Jensen Shell Model and Magic Numbers

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 12; Issue 12. Mayer-Jensen Shell Model and Magic Numbers - An Independent Nucleon Model with Spin-Orbit Coupling. R Velusamy. General Article Volume 12 Issue 12 December 2007 pp 12-24 ...

  10. First observation of the doubly magic nucleus 78Ni50

    International Nuclear Information System (INIS)

    Bernas, M.; Armbruster, P.; Engelmann, Ch.; Geissel, H.; Heinz, A.; Czajkowski, S.

    1995-01-01

    The doubly magic nucleus of 78 Ni has been identified for the first time and the associated production yield was measured in the projectile-fission reaction of 238 U on Pb and Be targets at relativistic energies. (K.A.)

  11. Sexual selection and magic traits in speciation with gene flow

    Directory of Open Access Journals (Sweden)

    Maria R. SERVEDIO, Michael KOPP

    2012-06-01

    Full Text Available The extent to which sexual selection is involved in speciation with gene flow remains an open question and the subject of much research. Here, we propose that some insight can be gained from considering the concept of magic traits (i.e., traits involved in both reproductive isolation and ecological divergence. Both magic traits and other, “non-magic”, traits can contribute to speciation via a number of specific mechanisms. We argue that many of these mechanisms are likely to differ widely in the extent to which they involve sexual selection. Furthermore, in some cases where sexual selection is present, it may be prone to inhibit rather than drive speciation. Finally, there are a priori reasons to believe that certain categories of traits are much more effective than others in driving speciation. The combination of these points suggests a classification of traits that may shed light on the broader role of sexual selection in speciation with gene flow. In particular, we suggest that sexual selection can act as a driver of speciation in some scenarios, but may play a negligible role in potentially common categories of magic traits, and may be likely to inhibit speciation in common categories of non-magic traits [Current Zoology 58 (3: 507–513, 2012].

  12. Marine ARM GPCI Investigation of Clouds (MAGIC) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Ernie R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-12-01

    The Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign, which deployed the second ARM Mobile Facility (AMF2) aboard the Horizon Lines cargo container ship Spirit as it ran its regular route between Los Angeles, California and Honolulu, Hawaii, measured properties of clouds and precipitation, aerosols, radiation, and atmospheric, meteorological, and oceanic conditions with the goal of obtaining statistics of these properties to achieve better understanding of the transition between stratocumulus and cumulus cloud regimes that occur in that region. This Sc-Cu transition is poorly represented in models, and a major reason for this is the lack of high-quality and comprehensive data that can be used to constrain, validate, and improve model representation of the transition. MAGIC consisted of 20 round trips between Los Angeles and Honolulu, and thus over three dozen transects through the transition, totaling nearly 200 days at sea between September, 2012 and October, 2013. During this time MAGIC collected a unique and unprecedented data set, including more than 550 successful radiosonde launches. An Intensive Observational Period (IOP) occurred in July, 2013 during which more detailed measurements of the atmospheric structure were made. MAGIC was very successful in its operations and overcame numerous logistical and technological challenges, clearly demonstrating the feasibility of a marine AMF2 deployment and the ability to make accurate measurements of clouds and precipitation, aerosols, and radiation while at sea.

  13. Intuition in Coaching: It's Not Magic

    Science.gov (United States)

    St. Pierre, Peter; Smith, Mark

    2014-01-01

    Many coaches have been called instinctive for decisions they have made, whether in game situations, recruiting, or other aspects of their job. Coaches often report having "gut feelings" before making important decisions. The purpose of this article is to dispel the notion of intuition as a magical ability, and begin to look at it as an…

  14. Pre-School Children's Encounters with "The Magic Flute"

    Science.gov (United States)

    Nyland, Berenice; Acker, Aleksandra; Ferris, Jill; Deans, Jan

    2011-01-01

    This article describes a music programme in an Australian early learning centre. Through a repertoire of songs, games and instruments, the children were introduced to music forms, including opera. Mozart's Magic Flute was presented to these children by watching the Metropolitan Opera's latest film performance. Because this opera seized the…

  15. Harm potential of magic mushroom use: A review

    NARCIS (Netherlands)

    van Amsterdam, Jan; Opperhuizen, Antoon; van den Brink, Wim

    2011-01-01

    In 2007, the Minister of Health of the Netherlands requested the CAM (Coordination point Assessment and Monitoring new drugs) to assess the overall risk of magic mushrooms. The present paper is an updated redraft of the review, written to support the assessment by CAM experts. It summarizes the

  16. The Magic of Universal Quantum Computing with Permutations

    Directory of Open Access Journals (Sweden)

    Michel Planat

    2017-01-01

    Full Text Available The role of permutation gates for universal quantum computing is investigated. The “magic” of computation is clarified in the permutation gates, their eigenstates, the Wootters discrete Wigner function, and state-dependent contextuality (following many contributions on this subject. A first classification of a few types of resulting magic states in low dimensions d≤9 is performed.

  17. Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing.

    Science.gov (United States)

    Howard, Mark; Campbell, Earl

    2017-03-03

    Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. First, we show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill-type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states. When magic states are interspersed with Clifford gates, Pauli measurements, and stabilizer ancillas-the most general synthesis scenario-then the class of synthesizable unitaries is hard to characterize. Our techniques can place nontrivial lower bounds on the number of magic states required for implementing a given target unitary. Guided by these results, we have found new and optimal examples of such synthesis.

  18. Monopole transitions in hot nuclei

    International Nuclear Information System (INIS)

    Sujkowski, Z.

    1994-01-01

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs

  19. Monopole transitions in hot nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Sujkowski, Z. [Soltan Inst. for Nuclear Studies, Otwock-Swierk (Poland)

    1994-12-31

    Monopole transitions can be a signature of shape changing in a hot, pulsating nucleus (the low energy E0 mode) and/or a measure of the compressibility of finite nuclei (GMR, the breathing mode). Experimental information pertaining to GMR is reviewed. Recipes for deducing the incompressibility modules for infinite nuclear matter from data on GMR are discussed. Astrophysical implications are outlined. The first attempts at locating the GMR strength in moderately hot nuclei are described. Prospects for improving the experimental techniques to make an observation of this strength in selected nuclei unambiguous are discussed. (author). 46 refs, 8 figs.

  20. Electron scattering for exotic nuclei

    International Nuclear Information System (INIS)

    Suda, T.

    2013-01-01

    An electron scattering facility is under construction in RIKEN RI Beam Factory, Japan, which is dedicated to the structure studies of short-lived nuclei. This is the world's first and currently only facility of its type. The construction is nearly completed, and the first electron scattering experiment off short-lived nuclei will be carried out in the beginning of next year. The charge density distributions of short-lived nuclei will be precisely determined by elastic electron scattering for the first time. Physics pursued at this facility including future perspectives are explained

  1. Cavitation inception from bubble nuclei

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2015-01-01

    , and experimental investigations of bubbles and cavitation inception have been presented. These results suggest that cavitation nuclei in equilibrium are gaseous voids in the water, stabilized by a skin which allows diffusion balance between gas inside the void and gas in solution in the surrounding liquid....... The cavitation nuclei may be free gas bubbles in the bulk of water, or interfacial gaseous voids located on the surface of particles in the water, or on bounding walls. The tensile strength of these nuclei depends not only on the water quality but also on the pressure-time history of the water. A recent model...

  2. Gluon density in nuclei

    International Nuclear Information System (INIS)

    Ayala, A.L.

    1996-01-01

    In this talk we present our detailed study (theory and numbers) on the shadowing corrections to the gluon structure functions for nuclei. Starting from rather controversial information on the nucleon structure function which is originated by the recent HERA data, we develop the Glauber approach for the gluon density in a nucleus based on Mueller formula and estimate the value of the shadowing corrections in this case. Then we calculate the first corrections to the Glauber approach and show that these corrections are big. Based on this practical observation we suggest the new evolution equation which takes into account the shadowing corrections and solve it. We hope to convince you that the new evolution equation gives a good theoretical tool to treat the shadowing corrections for the gluons density in a nucleus and, therefore, it is able to provide the theoretically reliable initial conditions for the time evolution of the nucleus-nucleus cascade. The initial conditions should be fixed both theoretically and phenomenologically before to attack such complicated problems as the mixture of hard and soft processes in nucleus-nucleus interactions at high energy or the theoretically reliable approach to hadron or/and parton cascades for high energy nucleus-nucleus interaction. 35 refs., 24 figs., 1 tab

  3. Supersymmetry in nuclei

    CERN Document Server

    Jolie, J

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He sup 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold sup 1 sup 9 sup 5 sup - sup 1 sup 9 sup 6 and Platinum sup 1 sup 9 sup 4 - sup 1 sup 9 sup 5 , it means that the description of these energy levels is simplified and can be made by a co...

  4. Supersymmetry in nuclei

    International Nuclear Information System (INIS)

    Jolie, J.

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold 195-196 and Platinum 194 - 195 , it means that the description of these energy levels is simplified and can be made by a common set of quantum numbers. (A.C.)

  5. Photon interactions with nuclei

    International Nuclear Information System (INIS)

    Thornton, S.T.; Sealock, R.M.

    1989-01-01

    This document is a progress report for DOE Grant No. FG05-89ER40501, A000. The grant began March, 1989. Our primary research effort has been expended at the LEGS project at Brookhaven National Laboratory. This report will summarize our present research effort at LEGS as well as data analysis and publications from previous experiments performed at SLAC. In addition the principal investigators are heavily involved in the CLAS collaboration in Hall B at CEBAF. We have submitted several letters of intent and proposals and have made commitments to construct experimental equipment for CEBAF. We expect our primary experimental effort to continue at LEGS until CEBAF becomes operational. This report will be divided into separate sections describing our progress at LEGS, SLAC, and CEBAF. We will also discuss our significant efforts in the education and training of both undergraduate and graduate students. Photon detectors are described as well as experiments on delta deformation in nuclei of quasielastic scattering and excitation of the delta by 4 He(e,e')

  6. Parity violation in nuclei

    International Nuclear Information System (INIS)

    Robertson, R.G.H.

    1980-01-01

    A summary of parity violating effects in nuclei is given. Thanks to vigorous experimental and theoretical effort, it now appears that a reasonably well-defined value for the weak isovector π-nucleon coupling constant can be obtained. There is one major uncertainty in the analysis, namely the M2/E1 mixing ratio for the 2.79 MeV transition in 21 Ne. This quantity is virtually impossible to calculate reliably and must be measured. If it turns out to be much larger than 1, then a null result in 21 Ne is expected no matter what the weak interaction, so an experimental determination is urgently needed. The most promising approach is perhaps a measurement of the pair internal conversion coefficient. Of course, a direct measurement of a pure isovector case is highly desirable, and it is to be hoped that the four ΔT = 1 experiments will be pushed still further, and that improved calculations will be made for the 6 Li case. Nuclear parity violation seems to be rapidly approaching an interesting and useful synthesis

  7. Fragmentation of relativistic nuclei

    International Nuclear Information System (INIS)

    Cork, B.

    1975-06-01

    Nuclei with energies of several GeV/n interact with hadrons and produce fragments that encompass the fields of nuclear physics, meson physics, and particle physics. Experimental results are now available to explore problems in nuclear physics such as the validity of the shell model to explain the momentum distribution of fragments, the contribution of giant dipole resonances to fragment production cross sections, the effective Coulomb barrier, and nuclear temperatures. A new approach to meson physics is possible by exploring the nucleon charge-exchange process. Particle physics problems are explored by measuring the energy and target dependence of isotope production cross sections, thus determining if limiting fragmentation and target factorization are valid, and measuring total cross sections to determine if the factorization relation, sigma/sub AB/ 2 = sigma/sub AA/ . sigma/sub BB/, is violated. Also, new experiments have been done to measure the angular distribution of fragments that could be explained as nuclear shock waves, and to explore for ultradense matter produced by very heavy ions incident on heavy atoms. (12 figures, 2 tables)

  8. Symmetries in nuclei

    International Nuclear Information System (INIS)

    Arima, A.

    2003-01-01

    (1) There are symmetries in nature, and the concept of symmetry has been used in art and architecture. The symmetry is evaluated high in the European culture. In China, the symmetry is broken in the paintings but it is valued in the architecture. In Japan, however, the symmetry has been broken everywhere. The serious and interesting question is why these differences happens? (2) In this lecture, I reviewed from the very beginning the importance of the rotational symmetry in quantum mechanics. I am sorry to be too fundamental for specialists of nuclear physics. But for people who do not use these theories, I think that you could understand the mathematical aspects of quantum mechanics and the relation between the angular momentum and the rotational symmetry. (3) To the specialists of nuclear physics, I talked about my idea as follows: dynamical treatment of collective motions in nuclei by IBM, especially the meaning of the degeneracy observed in the rotation bands top of γ vibration and β vibration, and the origin of pseudo-spin symmetry. Namely, if there is a symmetry, a degeneracy occurs. Conversely, if there is a degeneracy, there must be a symmetry. I discussed some details of the observed evidence and this correspondence is my strong belief in physics. (author)

  9. Collective excitations in nuclei

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    1997-01-01

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author)

  10. Collective excitations in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph

    1997-12-31

    The properties of the nucleus cannot be reduced to the properties of its constituents: it is a complex system. The fact that many properties of the nucleus are consequences of the existence of mean-field potential is a manifestation of this complexity. In particular the nucleons can thus self-organize in collective motions such as giant resonances. Therefore the study of these collective motions is a very good to understand the properties of the nucleus itself. The purpose of this article was to stress some aspects of these collective vibrations. In particular we have studied how an ensemble of fermions as the nucleus can self-organize in collective vibrations which are behaving like a gas of bosons in weak interaction. The understanding of these phenomena remains one of the important subjects of actually in the context of quantal systems in strong interaction. In particular the study of the states with one or two vibration quanta provides a direct information on the structure if nuclei close to their ground states. (author) 270 refs.

  11. Synthesis and decay process of superheavy nuclei with Z=119-122 via hot-fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Ghahramany, N.; Ansari, A. [Shiraz University, Department of Physics and Biruni Observatory, College of Science, Shiraz (Iran, Islamic Republic of)

    2016-09-15

    In this research article attempts have been made to calculate the superheavy-nuclei synthesis characteristics including, the potential energy parameters, fusion probability, fusion and evaporation residue (ER) cross sections as well as, decay properties of compound nucleus and the residue nuclei formation probability for elements with Z=119-122 by using the hot-fusion reactions. It is concluded that, although a selection of double magic projectiles such as {sup 48}Ca with high binding energy, simplifies the calculations significantly due to spherical symmetric shape of the projectile, resulting in high evaporation residue cross section, unfortunately, nuclei with Z > 98 do not exist in quantities sufficient for constructing targets for the hot-fusion reactions. Therefore, practically our selection is fusion reactions with titanium projectile because the mass production of target nuclei for experimental purposes is more feasible. Based upon our findings, it is necessary, for new superheavy-nuclei production with Z > 119, to use neutron-rich projectiles and target nuclei. Finally, the maximal evaporation residue cross sections for the synthesis of superheavy elements with Z=119-122 have been calculated and compared with the previously founded ones in the literature. (orig.)

  12. Mg isotopes and the disappearance of magic N=20 - Laser and beta-NMR studies

    CERN Document Server

    Kowalska, M

    2006-01-01

    Collinear laser spectroscopy and beta-NMR spectroscopy with optical pumping were applied at ISOLDE/CERN to measure for the first time the magnetic moments of neutron-rich 27Mg, 29Mg, 31Mg and 33Mg, along with the spins of the two latter. The magnetic moment of 27Mg was derived from its hyperfine structure detected in UV fluorescent light, whereas the nuclear magnetic resonance observed in beta-decay asymmetry from a polarised ensemble of nuclei gave the magnetic moment of 29Mg. For 31Mg and 33Mg, the hyperfine structure and nuclear magnetic resonance gave the spin and the magnetic moment. The preliminary results for 27Mg and 29Mg are consistent with a large neutron shell gap at N=20, whereas data on 31Mg show that for this nucleus N=20 is not a magic number, which is also the case for 33Mg, based on preliminary analysis. Thus, the two latter isotopes belong to the island of inversion.

  13. Dynamic polarization of radioactive nuclei

    International Nuclear Information System (INIS)

    Kiselev, Yu.F.; Lyuboshits, V.L.; )

    2001-01-01

    Radioactive nuclei, embedded into a frozen polarized proton target, atr proposed to polarize by means of some dynamic polarization methods. Angular distributions of γ-quanta emitted ny 22 Na(3 + ) in the cascade β-γ-radiation are calculated. It is shown that this distribution does not depend on the spin temperature sing at the Boltzmann distribution of populations among the Zeeman magnetic substates, whereas the tensor polarization of quadrupole nuclei, placed in the electric field of the crystal, causes the considerable sing dependence. The new method promises wide opportunities for the magnetic structure investigations as well as for the study of spin-spin interaction dynamics of rare nuclei in dielectrics. Physical-technical advantages and disadvantages of the given method are discussed for the polarization of heavy nuclei in the on-line implantation mode [ru

  14. The delta in nuclei. Experiments

    International Nuclear Information System (INIS)

    Roy-Stephan, M.

    1989-01-01

    Experimental aspects of the Δ excitation will be presented. The Δ excitation in nuclei will be compared to the free Δ excitation. Various probes will be reviewed and their specific features will be underlined [fr

  15. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... Research Center for Electron-Photon Science, Tohoku University, 1-2-1 ... nuclei precisely determined by elastic scattering [1]. .... In order to fulfill these requirements, a window-frame shaped dipole magnet with a gap.

  16. Nuclear structure of the N = Z odd - odd nuclei around N=28 closed shell interpreted with IBFFM

    International Nuclear Information System (INIS)

    Dragulescu, E.; Serbanut, G. C.; Serbanut, I.

    2001-01-01

    In the very recent years the knowledge of the level structure at lower and higher energies in the fpg shell N=Z nuclei has renewed a growing interest due to major improvements in the theoretical techniques. Going away from closed shell, the shell model calculations rapidly exhaust computer capabilities and we must resort to the model observed on collective phenomena. The fpg odd-odd N = Z nuclei close to the doubly magic 56 Ni nucleus are good candidates to investigate the competition between collective and single-particle excitations. Here part of the results obtained from an exhaustive systematic study of the self conjugate doubly-odd nuclei with A > 62: 62 Ga and 66 As nuclei using the interacting - boson - fermion - fermion - model (IBFFM) is presented. The odd-odd nuclei are described in the framework of the IBFFM by coupling valence shell proton and neutron quasiparticles to even-even core described in the interacting - boson model. In the first step of the calculations the core parameters for 60 Zn and 64 Ge cores were fitted to the energies of their excited states. In the second step of calculations, we have adjusted the IBFM proton Hamiltonian to the low - lying levels of 63 Ga and 67 As nuclei and IBFM neutron Hamiltonian of low - lying levels of 61 Zn and 65 Ge nuclei involved in the cases of the structure of odd-odd 62 Ga and 66 As nuclei. We have finally calculated the level spectra and electromagnetic properties of above mentioned nuclei. The IBFFM positive - parity energy spectra are compared with experimental ones. The calculations show a reasonable agreement with experimental data and existing shell - model calculations. (authors)

  17. Collisions between complex atomic nuclei

    International Nuclear Information System (INIS)

    Vaagen, J. S.

    1977-08-01

    The use of heavy ion accelerators in the study of nuclear structure and states is reviewed. The reactions discussed are the quasielastic reactions in which small amounts of energy and few particles are exchanged between the colliding nuclei. The development of heavy ion accelerators is also discussed, as well as detection equipment. Exotic phenomena, principally the possible existence of superheavy nuclei, are also treated. (JIW)

  18. Particles and nuclei in PANIC

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-07-15

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa.

  19. Particles and nuclei in PANIC

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    PANIC is the triennal International Conference on Particles and Nuclei, and judging from the latest PANIC, held in Kyoto from 20-24 April there is no need for panic yet. Faced with two pictures – one of nuclei described in nucleon and meson terms, and another of nucleons containing quarks and gluons – physicists are intrigued to know what new insights from the quark level can tell us about nuclear physics, or vice versa

  20. Investigation of copper nuclei

    International Nuclear Information System (INIS)

    Delfini, M.G.

    1983-01-01

    An extensive study has been performed on copper isotopes in the mass region A=63-66. The results of a precise measurement are presented on the properties of levels of 64 Cu and 66 Cu. They were obtained by bombarding the 63 Cu and 65 Cu nuclei with neutrons. The gamma spectra collected after capture of thermal, 2-keV, 24-keV neutrons have been analysed and combined to give a rather extensive set of precise level energies and gamma transition strengths. From the angular distribution of the gamma rays it is possible to obtain information concerning the angular momentum J of several low-lying states. The level schemes derived from such measurements have been used as a test for calculations in the framework of the shell model. The spectral distributions of eigenstates in 64 Cu for different configuration spaces are presented and discussed. In this study the relative importance of configurations with n holes in the 1f7/2 shell with n up to 16, are investigated. It is found that the results strongly depend on the values of the single-particle energies. The results of the spectral-distribution method were utilized for shell-model calculations. From the information obtained from the spectral analysis it was decided to adopt a configuration space which includes up to one hole in the 1f7/2 shell and up to two particles in the 1g9/2 shell. Further, restrictions on seniority and on the coupling of the two particles in the 1g9/2 orbit have been applied and their effects have been studied. It is found that the calculated excitation energies reproduce the measured values in a satisfactory way, but that some of the electromagnetic properties are less well in agreement with experimental data. (Auth.)

  1. Quest for superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Heenen, P.H. [Universite Libre de Bruxelles, Service de Physique Nucleaire Theorique (Belgium); Nazarewicz, W. [Tennessee Univ., Knoxville, TN (United States). Dept. of Physics; Warsaw Univ. (Poland). Inst. Fizyki Teoretycznej

    2002-02-01

    This article draws the long history of the discovery of new heavy nuclei since its beginning in 1940 when neptunium was found, and presents the current status of research in this field. The last 3 years have brought a number of experimental surprises which have truly rejuvenated the field. In January 1999, scientists from Dubna (Russia) reported the synthesis of 1 atom of element 114 ({sup 298}Uuq) in a hot fusion reaction between a {sup 48}Ca beam and a {sup 244}Pu target. This discovery was followed by 3 other reports from Dubna. First using the {sup 242}Pu({sup 48}Ca,3n) reaction, they produced {sup 287}Uuq. In 1999 the synthesis of another isotope of Z=114, the even-even {sup 288}Uuq was reported. The element Z=116 ({sup 292}Uuh) was discovered as a product of the {sup 248}Cm({sup 48}Ca,4n) reaction. The GSI (Germany) group found a new even isotope of the element 110: {sup 270}Uun and also {sup 272}Uuu (element 111) and {sup 277}Uub (element 112). 2 new isotopes of the element 107: {sup 266}Bh and {sup 267}Bh have been found at Berkeley (Usa). The synthesis of the new element Z=118 ({sup 293}Uuo) announced in 1999 by the Berkeley group was retracted 2 years later. The lifetimes reported for the elements {sup 284}Uub and {sup 280}Uun are by many orders of magnitude longer than those of the isotopes with Z{<=}112 previously discovered at GSI. (A.C.)

  2. AMD study of unstable nuclei

    International Nuclear Information System (INIS)

    Horiuchi, Hisashi; Dote, Akinobu; Kimura, Masaaki

    2000-01-01

    The formulation of AMD which can describe both mean-field states and clustering states is briefly explained. The results of the application of the AMD model to various isotopes are given. Many problems are discussed which include formation of molecular orbits, new-type of clustering near neutron drip-line, opposite deformation of neutron and proton density distributions, breaking of the neutron magic numbers N=8 and N=20, and so on. The discussions are not necessarily only for the ground states or ground rotational bands but also for the excited states or excited rotational bands in the case of Be isotopes. (author)

  3. AMD study of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Hisashi; Dote, Akinobu; Kimura, Masaaki [Kyoto Univ. (Japan). Dept. of Physics; Kanada-En' yo, Yoshiko [Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    2000-01-01

    The formulation of AMD which can describe both mean-field states and clustering states is briefly explained. The results of the application of the AMD model to various isotopes are given. Many problems are discussed which include formation of molecular orbits, new-type of clustering near neutron dripline, opposite deformation of neutron and proton density distributions, breaking of the neutron magic numbers N=8 and N=20, and so on. The discussions are not necessarily only for the ground states or ground rotational bands but also for the excited states or excited rotational bands in the case of Be isotopes. (author)

  4. Decay properties of nuclei close to Z = 108 and N = 162

    International Nuclear Information System (INIS)

    Dvorak, Jan

    2007-01-01

    The goal of the research conducted in the frame of this thesis was to investigate the decay properties of the nuclides 269-271 Hs and their daughters using an improved chemical separation and detection system. Shell stabilization was predicted in the region around Z=108 and N=162 in calculations, taking into account possible higher orders of deformations of the nuclei. The nucleus 270 Hs with a closed proton and a closed neutron deformed shell, was predicted to be ''deformed doubly magic''. Nuclei around 270 Hs can be produced only via fusion reactions at picobarn levels, resulting in a production rates of few atoms per day. Investigating short-lived nuclei using rapid chemical separation and subsequent on-line detection methods provides an independent and alternative means to electromagnetic on-line separators. Chemical separation of Hs in the form of HsO 4 provides an excellent tool to study the formation reactions and nuclear structure in this region of the chart of nuclides due to a high overall efficiency and a very high purification factor. The goal was accomplished, as element 108, hassium, was produced in the reaction 248 Cm( 26 Mg,xn) 274-x Hs and chemically isolated. After gas phase separation of HsO 4 , 26 genetically linked decay chains have been observed. These were attributed to decays of three different Hs isotopes produced in the 3-5n evaporation channels. The known decay chain of 269 Hs, the 5n evaporation product, serves as an anchor point, thus allowing the unambiguous assignment of the observed decay chains to the 5n, 4n, and 3n channels, respectively. Decay properties of five nuclei have been unambiguously established for the first time, including the one for the the doubly-magic nuclide 270 Hs. This hassium isotope is the next doubly magic nucleus after the well known 208 Pb and the first experimentally observed even-even nucleus on the predicted N=162 neutron shell. The observed decay properties provide strong indications for enhanced nuclear

  5. $\\gamma$ and fast-timing spectroscopy of the doubly magic $^{132}$Sn and its one- and two-neutron particle/hole neighbours

    CERN Multimedia

    We propose to use fast-timing and spectroscopy to study five nuclei including the doubly magic $^{132}$Sn and its four neighbours: two-neutron hole $^{130}$Sn, one-neutron hole $^{131}$Sn, one-neutron particle $^{133}$Sn and two-neutron particle $^{134}$Sn. There is an increasing interest in these nuclei since they serve to test nuclear models using state-of-the-art interactions and many body approaches, and they provide information relevant to deduce single particle states. In addition properties of these nuclei are very important to model the astrophysical $\\textit{r-process}$. The present ISOLDE facility provides unique capabilities to study these Sn nuclei populated in the $\\beta$-decay of In isomers, produced from a UCx target unit equipped with neutron converter and ionized with RILIS, capable of selective isomer ionization. The increased production yields for $^{132}$In are estimated to be 200 larger than in the previous work done at OSIRIS. We will use the recently commissioned Isolde Decay Station (I...

  6. Spectrin-like proteins in plant nuclei

    NARCIS (Netherlands)

    Ruijter, de N.C.A.; Ketelaar, T.; Blumenthal, S.S.D.; Emons, A.M.C.; Schel, J.H.N.

    2000-01-01

    We analysed the presence and localization of spectrin-like proteins in nuclei of various plant tissues, using several anti-erythrocyte spectrin antibodies on isolated pea nuclei and nuclei in cells. Western blots of extracted purified pea nuclei show a cross-reactive pair of bands at 220–240 kDa,

  7. From heavy nuclei to super-heavy nuclei

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2003-01-01

    The existence of super-heavy nuclei has been predicted nearly fifty years ago. Due to the strong coulomb repulsion, the stabilisation of these nuclei is possible only through shell effects. The reasons for this fragile stability, as well as the theoretical predictions concerning the position of the island of stability are presented in the first part of this lecture. In the second part, experiments and experimental techniques which have been used to synthesize or search for super-heavy elements are described. Spectroscopic studies performed in very heavy elements are presented in the following section. We close this lecture with techniques that are currently being developed in order to reach the superheavy island and to study the structure of very-heavy nuclei. (author)

  8. Complete destruction of heavy nuclei by hadrons and nuclei

    International Nuclear Information System (INIS)

    Tolstov, K.D.

    1980-01-01

    The total disintegration is considered of Ag and Pb nuclei and 4 He, 12 C nuclei With a momentum of 4.5 GeV/c per nucleon. It is shown that nucleons are mainly emitted, and there is no residual nUcleus the mass of which is comparable to that of the primary nucleus. The probability of total nucleus disintegration is considered as a function of projectile energy and the mass. The multiplicity, energy and emission angle of particles are considerred as well. It is shown that the density of nuclear matter in the overlap zone of colliding nuclei exceeds the usual one by a factor of approximately 4. A comparison is made with interaction models. A conclusion is drawn of the collective interaction mechanism (perhaps, of the shock wave type) of particle ejection from the target nucleus at the first stage of interaction and of explosive decay of the residual nucleus at the next one

  9. Experimental magic state distillation for fault-tolerant quantum computing.

    Science.gov (United States)

    Souza, Alexandre M; Zhang, Jingfu; Ryan, Colm A; Laflamme, Raymond

    2011-01-25

    Any physical quantum device for quantum information processing (QIP) is subject to errors in implementation. In order to be reliable and efficient, quantum computers will need error-correcting or error-avoiding methods. Fault-tolerance achieved through quantum error correction will be an integral part of quantum computers. Of the many methods that have been discovered to implement it, a highly successful approach has been to use transversal gates and specific initial states. A critical element for its implementation is the availability of high-fidelity initial states, such as |0〉 and the 'magic state'. Here, we report an experiment, performed in a nuclear magnetic resonance (NMR) quantum processor, showing sufficient quantum control to improve the fidelity of imperfect initial magic states by distilling five of them into one with higher fidelity.

  10. Magical properties of a 2540 km baseline superbeam experiment

    International Nuclear Information System (INIS)

    Raut, Sushant K.; Singh, Ravi Shanker; Uma Sankar, S.

    2011-01-01

    Lack of any information on the CP violating phase δ CP weakens our ability to determine neutrino mass hierarchy. Magic baseline of 7500 km was proposed to overcome this problem. However, to obtain large enough fluxes, at this very long baseline, one needs new techniques of generating high intensity neutrino beams. In this Letter, we highlight the magical properties of a 2540 km baseline. At such a baseline, using a narrow band neutrino superbeam whose no oscillation event rate peaks around the energy 3.5 GeV, we can determine neutrino mass hierarchy independently of the CP phase. For sin 2 2θ 13 ≥0.05, a very modest exposure of 10 Kiloton-years is sufficient to determine the hierarchy. For 0.02≤sin 2 2θ 13 ≤0.05, an exposure of about 100 Kiloton-years is needed.

  11. Magic turtle dans le canton du Jura: concept marketing

    OpenAIRE

    Hauser, Magali; Perruchoud-Massy, Marie-Françoise

    2012-01-01

    Depuis juin 2009, Saint-Ursanne/Clos du Doubs est une région pilote du Projet Enjoy Switzerland/ASM ayant pour but d’intervenir sur le développement et la sensibilisation du tourisme dans la région. En parallèle, la Maison du Tourisme, entreprise proposant principalement des offres touristiques dans la région, a ouvert ses portes l’année dernière. Ces deux entités ont travaillé ensemble afin de développer une nouvelle offre touristique intitulée « Magic turtle ». Le Magic turtle, pensé par de...

  12. Reflection asymmetric shapes in nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.; Carpenter, M.P.; Emling, H.

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N∼134, Z∼88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin ∼8ℎ. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin ∼7ℎ. The nuclei which exhibit octupole deformation in this mass region are 144 Ba, 146 Ba and 146 Ce; 142 Ba, 148 Ce, 150 Ce and 142 Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab

  13. Self-censorship in Massimo Bontempelli’s Magical Realism

    Directory of Open Access Journals (Sweden)

    Wissia Fiorucci

    2015-05-01

    Full Text Available This article aims to investigate the interplay between censorship, self-censorship and the narrative strategies of magical realism in Il figlio di due madri by Italian author Massimo Bontempelli (1878–1960. Having been head of the National Fascist Writers Union from the mid- to late-1920s, critics have noted that Bontempelli’s detachment from the Fascist credo emerges in his work from the mid- to late-1930s. I intend to problematise this perspective, by recognising the significance of Il figlio di due madri (1929 in the development of Bontempelli’s anti-Fascist sentiment. This work preceded (by several years Bontempelli’s official break with Fascism in 1936, when he published an article against the political control of the arts and caesarianism in La gazzetta del popolo. An anti-Fascist sentiment had, however, in my view already been expressed in Bontempelli’s works of magical realism Il figlio di due madri (1929 and Vita e morte di Adria e dei suoi figli (1930. These two novels deal with controversial topics that, I would claim, refute some of Fascism’s foremost principles, an appraisal that was disguised through deliberate acts of self-censorship. More precisely, it is through his deconstruction of mimetic writing that Bontempelli’s critique of the regime comes into existence, as the narrative strategies I deem instrumental to his self-censorship (e.g. authorial reticence, metaphor, mythopoiesis reflect the poetics of magical realism in «its inherent transgressive and subversive qualities» (Bowers 2004: 63. By conveying a rejection of the systematised understanding of literature that Bontempelli associates with literary realisms, at the same time he conveys his ideological refusal of dogmatic views of reality. Thus, in his mystifying realism, magic acts as both a tool for concealing his ideology—a tool for self-censorship, that is—and as the very means by which this ideology can be generated.

  14. The MAGIC gamma-ray telescope: status and first results

    International Nuclear Information System (INIS)

    Fernandez, Enrique

    2006-01-01

    MAGIC, a 17 m diameter Cherenkov telescope for gamma ray astronomy, has recently been commissioned at the Roque de los Muchachos site in the Island of La Palma, of the Canary Islands. The telescope was proposed in 1998 with the goal of lowering the threshold of observation of gamma rays by ground detectors to 20-30 GeV energies. This paper describes its main design features, its physics objectives and its first operations

  15. Discovering magic of mobile technology in business: strategic marketing perspective

    OpenAIRE

    Bolat, Elvira

    2016-01-01

    Mobile technology penetrated all aspects of social and business existence. Studies around mobile technology mostly address the use and adoption process of mobile marketing or mobile commerce from a consumer perspective rather than from a business perspective. Another concern of majority of studies on the use of mobile technology is a focus on technical nature of mobile devices despite the fact that true magic of technology resides in its mobilisation and usage – the deployment of mobile techn...

  16. Against Better Knowledge: The Magical Force of Amodal Volume Completion

    Directory of Open Access Journals (Sweden)

    Vebjørn Ekroll

    2013-12-01

    Full Text Available In a popular magic routine known as “multiplying billiard balls”, magicians fool their audience by using an empty shell that the audience believes to be a complete ball. Here, we present some observations suggesting that the spectators do not merely entertain the intellectual belief that the balls are all solid, but rather automatically and immediately perceive them as such. Our observations demonstrate the surprising potency and genuinely perceptual origin of amodal volume completion.

  17. The central pixel of the MAGIC telescope for optical observations

    Science.gov (United States)

    Lucarelli, F.; Barrio, J. A.; Antoranz, P.; Asensio, M.; Camara, M.; Contreras, J. L.; Fonseca, M. V.; Lopez, M.; Miranda, J. M.; Oya, I.; Reyes, R. De Los; Firpo, R.; Sidro, N.; Goebel, F.; Lorenz, E.; Otte, N.

    2008-05-01

    The MAGIC telescope has been designed for the observation of Cherenkov light generated in Extensive Air Showers initiated by cosmic particles. However, its 17 m diameter mirror and optical design makes the telescope suitable for direct optical observations as well. In this paper, we report about the development of a system based on the use of a dedicated photo-multiplier (PMT) for optical observations. This PMT is installed in the centre of the MAGIC camera (the so-called central pixel). An electro-to-optical system has been developed in order to transmit the PMT output signal by an optical fibre to the counting room, where it is digitized and stored for off-line analysis. The performance of the system using the optical pulsation of the Crab nebula as calibration source is presented. The time required for a 5σ detection of the Crab pulsar in the optical band is less than 20 s. The central pixel will be mainly used to perform simultaneous observations of the Crab pulsar both in the optical and γ-ray regimes. It will also allow for periodic testing of the precision of the MAGIC timing system using the Crab rotational optical pulses as a very precise timing reference.

  18. MAGIC Database and Interfaces: An Integrated Package for Gene Discovery and Expression

    Directory of Open Access Journals (Sweden)

    Lee H. Pratt

    2006-03-01

    Full Text Available The rapidly increasing rate at which biological data is being produced requires a corresponding growth in relational databases and associated tools that can help laboratories contend with that data. With this need in mind, we describe here a Modular Approach to a Genomic, Integrated and Comprehensive (MAGIC Database. This Oracle 9i database derives from an initial focus in our laboratory on gene discovery via production and analysis of expressed sequence tags (ESTs, and subsequently on gene expression as assessed by both EST clustering and microarrays. The MAGIC Gene Discovery portion of the database focuses on information derived from DNA sequences and on its biological relevance. In addition to MAGIC SEQ-LIMS, which is designed to support activities in the laboratory, it contains several additional subschemas. The latter include MAGIC Admin for database administration, MAGIC Sequence for sequence processing as well as sequence and clone attributes, MAGIC Cluster for the results of EST clustering, MAGIC Polymorphism in support of microsatellite and single-nucleotide-polymorphism discovery, and MAGIC Annotation for electronic annotation by BLAST and BLAT. The MAGIC Microarray portion is a MIAME-compliant database with two components at present. These are MAGIC Array-LIMS, which makes possible remote entry of all information into the database, and MAGIC Array Analysis, which provides data mining and visualization. Because all aspects of interaction with the MAGIC Database are via a web browser, it is ideally suited not only for individual research laboratories but also for core facilities that serve clients at any distance.

  19. Hybrid magic state distillation for universal fault-tolerant quantum computation

    OpenAIRE

    Zheng, Wenqiang; Yu, Yafei; Pan, Jian; Zhang, Jingfu; Li, Jun; Li, Zhaokai; Suter, Dieter; Zhou, Xianyi; Peng, Xinhua; Du, Jiangfeng

    2014-01-01

    A set of stabilizer operations augmented by some special initial states known as 'magic states', gives the possibility of universal fault-tolerant quantum computation. However, magic state preparation inevitably involves nonideal operations that introduce noise. The most common method to eliminate the noise is magic state distillation (MSD) by stabilizer operations. Here we propose a hybrid MSD protocol by connecting a four-qubit H-type MSD with a five-qubit T-type MSD, in order to overcome s...

  20. Protonic decay of oriented nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S.G.

    2002-01-01

    On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid

  1. Nuclei in a neutron star

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Yamada, M.

    1994-01-01

    We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)

  2. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  3. Nuclei, hadrons, and elementary particles

    International Nuclear Information System (INIS)

    Bopp, F.W.

    1989-01-01

    This book is a short introduction to the physics of the nuclei, hadrons, and elementary particles for students of physics. Important facts and model imaginations on the structure, the decay, and the scattering of nuclei, the 'zoology' of the hadrons and basic facts of hadronic scattering processes, a short introduction to quantum electrodynamics and quantum chromodynamics and the most important processes of lepton and parton physics, as well as the current-current approach of weak interactions and the Glashow-Weinberg-Salam theory are presented. (orig.) With 153 figs., 10 tabs [de

  4. Octupole shapes in heavy nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1994-01-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets

  5. Exotic Nuclei Arena in JHP

    International Nuclear Information System (INIS)

    Nomura, T.

    1991-12-01

    The Exotic Nuclei Arena planned in Japanese Hadron Project aims to accelerate various unstable nuclei produced in 1-GeV proton-induced reactions up to 6.5 MeV/u by means of heavy-ion linacs. The present status of research and development for the Earena is briefly reported. The construction of the prototype facility to accelerate unstable beams up to 0.8 MeV/u is planned in 1992-94, in which the existing cyclotron in INS is used as the primary accelerator. (author)

  6. Spinodal decomposition of atomic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, P. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France); Colonna, M.; Guarnera, A. [Grand Accelerateur National d`Ions Lourds (GANIL), 14 - Caen (France)]|[LNS, Catania (Italy)

    1996-12-31

    Multifragmentation of atomic nuclei is discussed. It is shown that this description of the dynamics of first order phase transitions in infinite and finite system is now partially achieved. An important conclusion is that in some specific cases well-defined collective motions were initiating the self-organisation of the unstable matter in fragments. In the case of finite systems the possible signals kept from this early fragmentation stage can inform on the possible occurrence of a liquid-gas phase transition in nuclei. (K.A.). 21 refs.

  7. Spinodal decomposition of atomic nuclei

    International Nuclear Information System (INIS)

    Chomaz, P.; Colonna, M.; Guarnera, A.

    1996-01-01

    Multifragmentation of atomic nuclei is discussed. It is shown that this description of the dynamics of first order phase transitions in infinite and finite system is now partially achieved. An important conclusion is that in some specific cases well-defined collective motions were initiating the self-organisation of the unstable matter in fragments. In the case of finite systems the possible signals kept from this early fragmentation stage can inform on the possible occurrence of a liquid-gas phase transition in nuclei. (K.A.)

  8. Are there superheavy atomic nuclei

    International Nuclear Information System (INIS)

    Herrmann, G.

    1982-04-01

    The author presents a populary introduction to the formation of nuclei with special regards to superheavy nuclei. After a general description of the methods of physics the atomic hypothesis is considered. Thereafter the structure of the nucleus is discussed, and the different isotopes are considered. Then radioactivity is described as an element transmutation. Thereafter the thermonuclear reactions in the sun are considered. Then the synthesis of elements using heavy ion reactions is described. In this connection the transuranium elements and the superheavy elements are considered. (orig./HSI) [de

  9. Rare-earth nuclei: Radii, isotope-shifts and deformation properties in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.

    1996-01-01

    A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β 2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N=82, the RMF theory predicts the well-known onset of prolate deformation at about N=88, which saturates at about N=102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)

  10. The mechanism of total disintegration of heavy nuclei by fast hadrons and nuclei

    International Nuclear Information System (INIS)

    Strugalska-Gola, E.; Strugalski, Z.

    1997-01-01

    The mechanism of the total disintegration of atomic nuclei by fast hadrons and nuclei is considered. The passage of energetic hadrons through layers of intranuclear matter, accompanied by emission of fast nucleons with kinetic energies from about 20 up to about 500 MeV from definite local small regions in the nuclei around projectile courses in them, allows one to explain simply the occurrence of the total destruction of nuclei involved in the collisions. Light nuclei may be totally disintegrated by fast hadrons and nuclei; heavier nuclei may be totally disintegrated only in central collisions of nuclei with similar mass numbers

  11. Cluster structure in Cf nuclei

    International Nuclear Information System (INIS)

    Singh, Shailesh K.; Biswal, S.K.; Bhuyan, M.; Patra, S.K.; Gupta, R.K.

    2014-01-01

    Due to the availability of advance experimental facilities, it is possible to probe the nuclei upto their nucleon level very precisely and analyzed the internal structure which will help us to resolve some mysterious problem of the decay of nuclei. Recently, the relativistic nuclear collision, confirmed the α cluster type structure in the 12 C which is the mile stone for the cluster structure in nuclei. The clustering phenomena in light and intermediate elements in nuclear chart is very interesting. There is a lot of work done by our group in the clustering behaviour of the nuclei. In this paper, the various prospectus of clustering in the isotopes of Cf nucleus including fission state is discussed. Here, 242 Cf isotope for the analysis, which is experimentally known is taken. The relativistic mean field model with well established NL3 parameter set is taken. For getting the exact ground state configuration of the isotopes, the calculation for minimizing the potential energy surface is performed by constraint method. The clustering structure of other Cf isotopes is discussed

  12. Nuclear astrophysics of light nuclei

    DEFF Research Database (Denmark)

    Fynbo, Hans Otto Uldall

    2013-01-01

    A review of nuclear astrophysics of light nuclei using radioactive beams or techniques developed for radioactive beams is given. We discuss Big Bang nucleosynthesis, with special focus on the lithium problem, aspects of neutrino-physics, helium-burning and finally selected examples of studies...

  13. Particle detection from oriented nuclei

    International Nuclear Information System (INIS)

    Wouters, J.; Moor, P. de; Schuurmans, P.; Severijns, N.; Vanderpoorten, W.; Vanneste, L.

    1992-01-01

    A survey is given of particle emission from nuclei that have been spin oriented by cryogenical means. Experiments and recent developments with detectors in the low temperature environment and their on-line application are reviewed. The most recent results are mentioned. Some phenomena to be unraveled in future studies are pointed out. (orig.)

  14. Rotational damping motion in nuclei

    International Nuclear Information System (INIS)

    Egido, J.L.; Faessler, A.

    1991-01-01

    The recently proposed model to explain the mechanism of the rotational motion damping in nuclei is exactly solved. When compared with the earlier approximative solution, we find significative differences in the low excitation energy limit (i.e. Γ μ 0 ). For the strength functions we find distributions going from the Wigner semicircle through gaussians to Breit-Wigner shapes. (orig.)

  15. Percolation and multifragmentation of nuclei

    International Nuclear Information System (INIS)

    Shmakov, S.Yu.; Uzhinskij, V.V.

    1989-01-01

    A method to build the 'cold' nuclei as percolation clusters is suggested. Within the framework of definite assumptions of the character of nucleon-nucleon couplings breaking resulting from the nuclear reactions as description of the multifragmentation process in the hadron-nucleus and nucleus-nucleus reactions at high energies is obtained. 19 refs.; 6 figs

  16. Octupole correlation effects in nuclei

    International Nuclear Information System (INIS)

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions

  17. Electron scattering for exotic nuclei

    Indian Academy of Sciences (India)

    2014-11-04

    Nov 4, 2014 ... A brand-new electron scattering facility, the SCRIT Electron Scattering Facility, will soon start its operation at RIKEN RI Beam Factory, Japan. This is the world's first electron scattering facility dedicated to the structure studies of short-lived nuclei. The goal of this facility is to determine the charge density ...

  18. Inverted spin sequences in the spectra of odd-odd nuclei in the 2S-1d and 2P-1f shells

    International Nuclear Information System (INIS)

    Sharma, Arvind; Sharma, S.D.

    1990-01-01

    In case of odd-odd nuclei, near magic numbers, there are found inverted sequences as well as few rotational members. In order to explain the unique feature of the spectra of odd-odd nuclei, we have applied modified form of rotational-vibrational model with two parameters A and B. It is found that level orders in inverted as well as in rotational sequences are very well reproduced on the basis of this model. In case of inverted spin sequences, the sign of B is found to be positive. The ratio of B/A is ≅ 10 -2 as compared to its value of the order of 10 -3 in case of even-even and odd-A nuclei. We infer that pair correlations are responsible for these invertions. The simple model applied here worked well to predict these inverted spectra. (author)

  19. Magijos ritualas Senekos Medėjoje | Magic Ritual in Seneca’s Medea

    Directory of Open Access Journals (Sweden)

    Jovita Dikmonienė

    2013-12-01

    Full Text Available Magic Ritual in Seneca’s Medea Jovita Dikmonienė Summary The present article deals with the magic ritual in Seneca’s Medea. Seneca, following Ovid’s Metamorphoses, created in the tragedy a witchcraft scene which describes magic numbers, herbs, and rituals dedicated to Hecate. Unlike Ovid, Seneca focuses on rituals involving snakes, conjuring up the dead, and supernatural performative utterances, and emphasises the feeling of anger, which inspired Medea to practise infernal magic. In magic, Romans gave particular importance to the number “three” and the numbers that can be divided by three. Seneca also mentions these numbers. During the performance of the ritual by Medea, Hecate barks three times, a dragon with a trident tongue appears, and tripods play during the ritual. Medea sends to Creusa not two, as in Euripides’ tragedy, but three poisoned gifts: a robe, a necklace, and a crown. Seneca’s Medea makes a wreath to Hecate from nine snakes. Magical, hallucinogenic herbs play an important role in magic. Seneca, like Ovid in his Metamorphoses, describes Medea’s ritual whereby she prepares a magical blend of herbs to poison Creusa. Prometheus’ grass used by Medea is probably mandrake. However, Seneca, like Ovid, does not provide the exact names of the herbs used in magic. Some researchers argue that Seneca described the magic ritual in order to highlight Medea’s desire to control the environment. According to the author of the present article, this claim is only partially true. Magic was necessary for Medea not only to control the environment, but also to control herself. The magic ritual helped her to prepare herself for revenge by transforming her consciousness. With the help of magic her sorrow and pity were transformed into aggression, she overcame her fear and prepared herself to kill her children. Medea’s ritual can be described as the magic of the fight, because it allowed her to transform her consciousness into the

  20. Solid state NMR, basic theory and recent progress for quadrupole nuclei with half-integer spin

    International Nuclear Information System (INIS)

    Dieter, F.

    1998-01-01

    This review describes the basic theory and some recently developed techniques for the study of quadrupole nuclei with half integer spins in powder materials. The latter is connected to the introduction of the double rotation (DOR) by A. Samoson et al. (1) and to the introduction of the multiple quantum magic-angle spinning (MQ MAS) technique by L. Frydman et. al. (2). For integer spins, especially the solid-state deuterium magnetic resonance, we refer to the review of G.L. Hoatson and R.L. Vold: '' 2 H-NMR Spectroscopy of Solids and Liquid Crystals'' (3). For single crystals we refer to O. Kanert and M. Mehring: ''Static quadrupole effects in disordered cubic solids''(4) and we would like also to mention the ''classic'' review of M.H. Cohen and F. Reif: ''Quadrupole effects in NMR studies of solids'' (5). Some more recent reviews in the field under study are D. Freude and J. Haase ''Quadrupole effects in solid-state NMR'' (6). Ch. Jager: ''Satellite Transition Spectroscopy of Quadrupolar Nuclei'' (7) and B.F. Chmelka and J.W. Zwanziger: ''Solid State NMR Line Narrowing Methods for Quadrupolar Nuclei - Double Rotation and Dynamic-Angle Spinning'' (8). A survey of nuclear quadrupole frequency data published before the end of 1982 is given by H. Chihara and N. Nakamura in Landolt-Bornstein, Vol. 20 (9). Values of the chemical shift of quadrupole nuclei in solids can be found in books such as ''Multinuclear NMR'' edited by J. Mason (10). In section 9 of ref (6) some electric field gradient and chemical shift data published from 1983 to 1992 for the most studied quadrupole nuclei sup 27 Al, sup 23 Na, and sup 17 O are given

  1. Coulomb Excitation of Neutron-Rich $A\\approx$140 Nuclei

    CERN Multimedia

    Van duppen, P L E

    2002-01-01

    Investigating the isospin dependence of the product between the B( E2; 0$_{1}^{+} \\rightarrow 2_{1}^{+}$)-value and the 2$_{1}^{+}$-excitation energy E$_{2^{+}}$ in even-even nuclei around $A\\!\\approx$140 one observes a rather smooth trend close to the valley of stability but clear indication for a reduction from the extrapolated B(E2)-values by one order of magnitude for some very neutron-rich nuclei. While close to the valley of stability the strong neutron-proton interaction results in an equilibration of the neutron and proton deformations with a predominate isoscalar character of the collective 2$^{+}$ excitation, it is conceivable that more loosely bound neutrons cannot polarize a close-to-magic proton core that well any more. This might result in a decoupling of the shape of the outer neutrons from the core and in a strong isovector admixture to the lowest lying 2$^{+}$ level. In this way the 2$^{+}$ -energies could be further lowered in neutron-rich nuclei, while the quadrupole moments of the proton c...

  2. Universal correlations of nuclear observables and the structure of exotic nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Zamfir, N.V.

    1996-01-01

    Despite the apparent complexity of nuclear structural evolution, recent work has shown a remarkable underlying simplicity that is unexpected, global, and which leads to new signatures for structure based on the easiest-to-obtain data. As such they will be extremely valuable for use in the experiments with low intensity radioactive beams. Beautiful correlations based either on extrinsic variables such as N p N n or the P-factor or correlations between collective observables themselves have been discovered. Examples to be discussed include a tri-partite classification of structural evolution, leading to a new paradigm that discloses certain specific classes of nuclei, universal trajectories for B(E2: w 1 + → 0 1 + ) values and their use in extracting hexadecapole deformations from this observable alone, the use of these B(E2) values to identify shell gaps and magic numbers in exotic nuclei, the relationship of β and γ deformations, and single nucleon separation energies. Predictions for nuclei far off stability by interpolation will also be discussed

  3. Computer simulation of structures and distributions of particles in MAGIC fluid

    International Nuclear Information System (INIS)

    Zhu Yongsheng; Umehara, Noritsugu; Ido, Yasushi; Sato, Atsushi

    2006-01-01

    MAGIC (MAG-netic Intelligent Compound) is a solidified magnetic ferrofluid (MF) containing both magnetic particles (MPs) and abrasive particles (APs, nonmagnetic) of micron size. The distribution of APs in MAGIC can be controlled by applying a magnetic field during cooling process of MAGIC fluid. In this paper, the influences of magnetic field, size and concentration of particles on the final structures of MPs and the distributions of APs in MAGIC fluid are preliminarily investigated using Stokesian dynamic (SD) simulation method. Simulation results show that MPs prefer to form strip-like structures in MAGIC fluid, the reason for this phenomenon is mainly attributed to the strong dipolar interactions between them. It is also found that MPs prefer to form big agglomerations in weak magnetic field while chains and strip-like structures in strong magnetic field; no long chains or strip-like structures of MPs are observed in low-concentration MAGIC fluid; and for big-size MPs, pure wall-like structures are formed. Evaluation on the distribution of APs with uniformity coefficient shows that strong magnetic field, high concentration and small-size particles can induce more uniform distribution of APs in MAGIC fluid, the uniformity of APs in MAGIC is about 10% higher than that in normal grinding tools

  4. "You Will": Technology, Magic, and the Cultural Contexts of Technical Communication.

    Science.gov (United States)

    Kitalong, Karla Saari

    2000-01-01

    Provides some background on the use of magical language in technical contexts, gives examples of magical discourse in technology advertisements and newsmagazine articles, and proposes a technical communication pedagogy of media analysis. Notes that the proposed pedagogy involves students conducting diagnostic critiques of media texts and affords…

  5. Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research.

    Science.gov (United States)

    Mychaskiw, George

    2011-09-06

    Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology"Any sufficiently advanced technology is indistinguishable from magic".-Arthur C. Clarke.

  6. Molecules, magic and forgetful fruit flies: the supernatural science of medical gas research

    OpenAIRE

    Mychaskiw George

    2011-01-01

    Abstract Medical gas research often involves the study of molecules under extraphysiologic conditions, that is, conditions that do not exist in nature. This "supernatural" nature of medical gas research sometimes produces results that appear to be almost "magic" to those schooled in traditional physiology "Any sufficiently advanced technology is indistinguishable from magic". -Arthur C. Clarke

  7. The Cultural Work of Magical Realism in Three Young Adult Novels

    Science.gov (United States)

    Latham, Don

    2007-01-01

    Magical realism as a literary mode is often subversive and transgressive, questioning the values and assumptions of the dominant society that it depicts. Young adult literature, by contrast, is typically thought to serve a socializing function, helping to integrate young readers into adult society. What then is the cultural work of magical realism…

  8. Magic cards: a new augmented-reality approach.

    Science.gov (United States)

    Demuynck, Olivier; Menendez, José Manuel

    2013-01-01

    Augmented reality (AR) commonly uses markers for detection and tracking. Such multimedia applications associate each marker with a virtual 3D model stored in the memory of the camera-equipped device running the application. Application users are limited in their interactions, which require knowing how to design and program 3D objects. This generally prevents them from developing their own entertainment AR applications. The Magic Cards application solves this problem by offering an easy way to create and manage an unlimited number of virtual objects that are encoded on special markers.

  9. Graceful, harmonious and magic type labelings relations and techniques

    CERN Document Server

    López, Susana C

    2017-01-01

    Aimed toward upper undergraduate and graduate students in mathematics, this book examines the foremost forms of graph labelings including magic, harmonious, and graceful labelings. An overview of basic graph theory concepts and notation is provided along with the origins of graph labeling. Common methods and techniques are presented introducing readers to links between graph labels. A variety of useful techniques are presented to analyze and understand properties of graph labelings. The classical results integrated with new techniques, complete proofs, numerous exercises, and a variety of open problems, will provide readers with a solid understanding of graph labelings.

  10. Enhancing Pseudo-Telepathy in the Magic Square Game

    Science.gov (United States)

    Pawela, Łukasz; Gawron, Piotr; Puchała, Zbigniew; Sładkowski, Jan

    2013-01-01

    We study the possibility of reversing an action of a quantum channel. Our principal objective is to find a specific channel that reverses as accurately as possible an action of a given quantum channel. To achieve this goal we use semidefinite programming. We show the benefits of our method using the quantum pseudo-telepathy Magic Square game with noise. Our strategy is to move the pseudo-telepathy region to higher noise values. We show that it is possible to reverse the action of a noise channel using semidefinite programming. PMID:23762246

  11. Cluster growing process and a sequence of magic numbers

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2003-01-01

    demonstrate that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence for the clusters of noble gas atoms......We present a new theoretical framework for modeling the cluster growing process. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system, and absorbing its energy at each step, we find cluster growing paths up to the cluster sizes of more than 100 atoms. We...

  12. Atmospheric Monitoring at the Site of the MAGIC Telescopes

    Directory of Open Access Journals (Sweden)

    Will Martin

    2017-01-01

    Full Text Available The MAGIC telescopes in La Palma, Canary Islands, measure the Cherenkov light emitted by gamma ray-induced extended air showers in the atmosphere. The good knowledge of the atmospheric parameters is important, both for the correct and safe operations of the telescopes, but also for subsequent data analysis. A weather station measures the state variables of the atmosphere, temperature, humidity and wind, an elastic Lidar system and an infrared pyrometer determine the optical transmission of the atmosphere. Using an AllSky camera, the cloud cover can be estimated. The measured values are completed by data from global atmospheric models based on numeric weather forecasts.

  13. Status and recent results of the MAGIC telescope system

    Energy Technology Data Exchange (ETDEWEB)

    Fruck, Christian [Max-Planck-Institut fuer Physik, Muenchen (Germany); Collaboration: MAGIC-Collaboration

    2016-07-01

    MAGIC is an instrument for pointed ground-based observations of the gamma-ray sky in the 50 GeV to 80 TeV regime. The two 17 m diameter Imaging Air Cherenkov Telescopes are located on 2200 m a.s.l. at the Roque de los Muchachos Observatory on the Canary island La Palma. We will report the status and recent technical developments of the instrument, highlight the most important scientific results obtained with observations of Galactic and extragalactic objects, and will summarize future plans.

  14. Shape of 44Ar: Onset of deformation in neutron-rich nuclei near 48Ca

    International Nuclear Information System (INIS)

    Zielinska, M.; Goergen, A.; Clement, E.; Korten, W.; Dossat, C.; Ljungvall, J.; Obertelli, A.; Theisen, Ch.; Delaroche, J.-P.; Girod, M.; Buerger, A.; Catford, W.; Iwanicki, J.; Napiorkowski, P. J.; Srebrny, J.; Wrzosek, K.; Libert, J.; PiePtak, D.; Rodriguez-Guzman, R.; Sletten, G.

    2009-01-01

    The development of deformation and shape coexistence in the vicinity of doubly magic 48 Ca, related to the weakening of the N=28 shell closure, was addressed in a low-energy Coulomb excitation experiment using a radioactive 44 Ar beam from the SPIRAL facility at GANIL. The 2 1 + and 2 2 + states in 44 Ar were excited on 208 Pb and 109 Ag targets at two different beam energies. B(E2) values between all observed states and the spectroscopic quadrupole moment of the 2 1 + state were extracted from the differential Coulomb excitation cross sections, indicating a prolate shape of the 44 Ar nucleus and giving evidence of an onset of deformation already two protons and two neutrons away from doubly magic 48 Ca. New Hartree-Fock-Bogoliubov based configuration mixing calculations have been performed with the Gogny D1S interaction for 44 Ar and neighboring nuclei using two different approaches: the angular momentum projected generator coordinate method considering axial quadrupole deformations and a five-dimensional approach including the triaxial degree of freedom. The experimental values and new calculations are furthermore compared to shell-model calculations and to relativistic mean-field calculations. The new results give insight into the weakening of the N=28 shell closure and the development of deformation in this neutron-rich region of the nuclear chart.

  15. Cavitation nuclei measurements - A review

    International Nuclear Information System (INIS)

    Billet, M.L.

    1985-01-01

    The measurement of cavitation nuclei has been the goal of many cavitation research laboratories and has resulted in the development of many methods. Two significantly different approaches have been developed. One is to measure the particulate-microbubble distribution by utilizing acoustical, electrical or optical methods. The other approach measures a liquid tension and a rate of cavitation events for a liquid in order to establish a cavitation susceptibility. Comparisons between various methods indicate that most methods are capable of giving an indication of the nuclei distribution. Measurements obtained in the ocean environment indicate an average of three bubbles per cubic centimeter are present; whereas, water tunnel bubble distributions vary from much less than one to over a hundred per cubic centimeter

  16. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1981-01-01

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru

  17. Phonon operators for deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1982-01-01

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  18. Nuclear treasure island [superheavy nuclei

    CERN Document Server

    CERN. Geneva

    1999-01-01

    Summary form only given. Soon after the experiments at Dubna, which synthesized element 114 and made the first footprints on the beach of the "island of nuclear stability", two new superheavy elements have been discovered at the Lawrence Berkeley National Laboratory. Element 118 and its immediate decay product, element 116, were manufactured at Berkeley's 88 inch cyclotron by fusing targets of lead-208 with an intense beam of 449 MeV krypton-86 ions. Although both new nuclei almost instantly decay into lighter ones, the decay sequence is consistent with theories that have long predicted the island of stability for nuclei with approximately 114 protons and 184 neutrons. Theorist Robert Smolanczuk, visiting from the Soltan Institute for Nuclear Studies in Poland, had calculated that this reaction should have particularly favourable production rates. Now that this route has been signposted, similar reactions could be possible: new elements and isotopes, tests of nuclear stability and mass models, and a new under...

  19. Moessbauer effects on oriented nuclei

    International Nuclear Information System (INIS)

    Sayouti, E.H.

    1984-01-01

    Standard nuclear orientation methods (not sensitive to the polarization) do not give information on the sign of the magnetic moment. Mossbauer effect separates right-hand and left-hand circularly polarized components, thus its detection on oriented nuclei (T approximately 10 mK) gives the sign of the magnetic moment of oriented state. In this thesis we applied this method to study the 3/2 - ground states of 191 Pt and 193 Os, which are in the prolate-oblate transition region, where assignement of experimental levels to theoretical states is often umbiguous. We show that for those nuclei the sign of the magnetic moment is the signature of the configuration, and its determination establishes the correspondance between experimental and theoretical levels [fr

  20. Clusters in nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Beck, Christian

    2010-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is presently one of the domains of heavy-ion nuclear physics facing both the greatest challenges and opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physics decided to team up in producing a comprehensive collection of lectures and tutorial reviews covering the field. This first volume, gathering seven extensive lectures, covers the follow topics: - Cluster Radioactivity - Cluster States and Mean Field Theories - Alpha Clustering and Alpha Condensates - Clustering in Neutron-rich Nuclei - Di-neutron Clustering - Collective Clusterization in Nuclei - Giant Nuclear Molecules By promoting new ideas and developments while retaining a pedagogical nature of presentation throughout, these lectures will both serve as a reference and as advanced teaching material for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  1. Mesons and quarks in nuclei

    International Nuclear Information System (INIS)

    Oset, E.

    1980-01-01

    A short review of the topic of mesons in nuclei is exposed paying particular attention to the relationship between several mesonic processes. Special emphasis is put into the microscopic pictures that can ultimately relate all these processes with the elementary coupling of mesons to the nuclear hadronic components. The importance of the short range part of the nuclear interaction opens the doors to a more basic understanding in terms of the quark components of nucleons and isobars. (orig.)

  2. Exclusive photoreactions on light nuclei

    International Nuclear Information System (INIS)

    Maruyama, K.

    1989-08-01

    The mechanism of photon absorption on light nuclei in the Δ-resonance region is discussed. The present status of experimental results is briefly summarized. A recent data from 1.3-GeV Tokyo ES using a π sr spectrometer is introduced. Exclusive measurements of the photodisintegration of 3 He and 4 He may be a clear way to identify 2N, 3N and 4N absorptions. (author)

  3. Fission barriers of light nuclei

    International Nuclear Information System (INIS)

    Grotowski, K.; Planeta, R.; Blann, M.; Komoto, T.

    1989-01-01

    Experimental fission excitation functions for compound nuclei /sup 52/Fe, /sup 49/Cr, /sup 46/V, and /sup 44/Ti formed in heavy-ion reactions are analyzed in the Hauser-Feshbach/Bohr-Wheeler formalism using fission barriers based on the rotating liquid drop model of Cohen et al. and on the rotating finite range model of Sierk. We conclude that the rotating finite range approach gives better reproduction of experimental fission yields, consistent with results found for heavier systems

  4. Isotopic dependence of photoneutron cross sections around Strontium (Z=38) and Cesium (Z=55) nuclei

    International Nuclear Information System (INIS)

    Nakamura, T.; Uno, Y.; Yamadera, A.; Kase, T.

    1992-01-01

    We measured the average cross sections of (γ,n) reactions for 84 Sr, 86 Sr, 88 Sr, 85 Rb, 87 Rb, 98 Ru and 104 Ru isotopes in giant resonance region (9 to 25 MeV) using Bremsstrahlung radiation of 60 MeV maximum energy. We investigated the isotopic dependence of the average (γ,n) cross sections in giant resonance region from our experimental data and those estimated from other experimental data for Ge, Se, Zr, Mo, Sn, Te, Ce, Nd and Sm isotopes. As a result, we found that the average cross section data become highest for nuclei of neutron magic number of N = 50 and 82 except for Mo nucleus

  5. The creation of new nuclei

    International Nuclear Information System (INIS)

    Armbruster, P.; Hessberger, F.P.

    1998-01-01

    In the last 60 years physicists have created 20 artificial elements beyond uranium. In 1934 Enrico Fermi predicted the creation of new elements by bombarding atoms with neutrons. This method led to the discovery of neptunium (Z=93), plutonium, americium, curium, berkelium, californium, einsteinium and fermium (Z=100). In fact the capture of a neutron is followed by a beta-decay which increases the atomic number (Z) by one unit. Beyond Z=100 beta-decay no more occurs so a new approach was necessary. Between the American Lawrence Berkeley Laboratory and the Russian Dubna Institute a fierce competition broke out to produce new elements by bombarding transuranium nuclei with light elements such as helium, carbon, nitrogen. This new method required heavy equipment: ion accelerator and detectors but led to the creation of all the elements from Z=101 to Z=106. A new idea was to provoke the fusion of heavy nuclei such as lead and bismuth with colliding argon, nickel or zinc ion beams. This method called 'cold fusion' opened the way to reach the nuclei beyond Z=107. In 1996 the element Z=112 was the last discovered. The next step could be the element Z=114 for which a particular stability is expected. (A.C.)

  6. Radii of nuclei off stability

    International Nuclear Information System (INIS)

    Sugimoto, Kenzo

    1982-01-01

    An experiment is proposed to determine systematically the radii of the nuclei produced through the projectile fragmentation process in high energy heavy-ion collision. The measurement of total reaction cross section using the projectile fragments of a single nuclide on a target give information about nuclear radii. The production cross section of the fragments is appreciable for many nuclides. Therefore, it is possible to map systematically the reaction radii of the nuclei which can be produced as the projectile fragments. In an experiment using the projectile fragments as the incident beam, the cross section can be expressed as a function of the radii of a projectile and a target. An experiment with He-8 produced by the fragmentation of C-12 is proposed. The He-8 has four neutrons in the p-3/2 orbit outside the He-4 core. Proton and neutron distributions for He isotopes were calculated on the basis of the Hartree-Fock method. The information related to this kind of distribution can be obtained by the proposed experiment. The nuclear structure effect is seen in the nuclear radii of other unstable nuclei. The experimental examples of the isotope shift measurement and the excitation energy are presented. (Kato, T.)

  7. Thermodynamical description of excited nuclei

    International Nuclear Information System (INIS)

    Bonche, P.

    1989-01-01

    In heavy ion collisions it has been possible to obtain composite systems at rather high excitation energies corresponding to temperatures of several MeV. The theoretical studies of these systems are based on concepts borrowed from thermodynamics or statistical physics, such as the temperature. In these lectures, we present the concepts of statistical physics which are involved in the physics of heavy ion as they are produced nowadays in the laboratory and also during the final stage of a supernova collapse. We do not attempt to describe the reaction mechanisms which yield such nuclear systems nor their decay by evaporation or fragmentation. We shall only study their static properties. The content of these lectures is organized in four main sections. The first one gives the basic features of statistical physics and thermodynamics necessary to understand quantum mechanics at finite temperature. In the second one, we present a study of the liquid-gas phase transition in nuclear physics. A phenomenological approach of the stability of hot nuclei follows. The microscopic point of view is proposed in the third part. Starting from the basic concepts derived in the first part, it provides a description of excited or hot nuclei which confirms the qualitative results of the second part. Furthermore it gives a full description of most properties of these nuclei as a function of temperature. Finally in the last part, a microscopic derivation of the equation of state of nuclear matter is proposed to study the collapse of a supernova core

  8. The colours of Hubble Sc galaxy nuclei

    International Nuclear Information System (INIS)

    Iskudaryan, S.G.

    1975-01-01

    The colorimetric data on the nuclei of the Sc galaxies are given. Comparison of the following parameters: color of a nucleus, integral color of a galaxy, Byurakan class, and spectral type of normal spirals gives the possibility to conclude: (1) The colors of the nuclei of the Sc galaxies have a high dispersion in its values. In all Byurakan classes the galaxies with intensely red and blue nuclei occur; (2) Some Sc galaxies exhibit a discrepancy between the spectral and morphological types. The results of colorimetry of nuclei indicate that almost all such Sc galaxies have intensely red nuclei which, naturally, provide for these late spectral types. It can be assumed that the intensely red color of the nuclei of such Sc galaxies is a result of a new type of activity of these nuclei; and (3) some Sc galaxies show the characteristics of the Markarian objects

  9. Cross polarization with phase and amplitude modulation of radio frequency fields in NMR-experiments with sample rotation at magic angle

    International Nuclear Information System (INIS)

    Dvinskij, S.V.; Chizhik, V.I.

    2006-01-01

    One analyzes cross polarization of nuclei within a rotating system of coordinates as applied to the NMR-experiments with a specimen rotation under the magic angle. One worded a concept of simultaneous phase and amplitude modulation according to which the Hamiltonian form of the restored dipole interaction persisted if inversion of difference of radiofrequency field amplitudes occurred simultaneously with phase inversion. One presents a theoretical substantiation in terms of the average Hamiltonian theory. The concept is demonstrated both experimentally and by means of numerical analysis for a number of special cases. Phase periodic inversion in cross polarized experiments is shown to result into practically important advantage of suppression of interactions of chemical shift and influence of effects of coarse adjustment of radiofrequency field parameters [ru

  10. Magic moment? Maternal marriage for children born out of wedlock.

    Science.gov (United States)

    Gibson-Davis, Christina

    2014-08-01

    To test the existence of the "magic moment" for parental marriage immediately post-birth and to inform policies that preferentially encourage biological over step parent marriage, this study estimates the incidence and stability of maternal marriage for children born out of wedlock. Data came from the National Survey of Family Growth on 5,255 children born non maritally. By age 15, 29 % of children born non maritally experienced a biological-father marriage, and 36 % experienced a stepfather marriage. Stepfather marriages occurred much later in a child's life-one-half occurred after the child turned age 7-and had one-third higher odds of dissolution. Children born to black mothers had qualitatively different maternal marriage experiences than children born to white or Hispanic mothers, with less biological-parent marriage and higher incidences of divorce. Findings support the existence of the magic moment and demonstrate that biological marriages were more enduring than stepfather marriages. Yet relatively few children born out of wedlock experienced stable, biological-parent marriages as envisioned by marriage promotion programs.

  11. The Illusory Beliefs Inventory: a new measure of magical thinking and its relationship with obsessive compulsive disorder.

    Science.gov (United States)

    Kingdon, Bianca L; Egan, Sarah J; Rees, Clare S

    2012-01-01

    Magical thinking has been proposed to have an aetiological role in obsessive compulsive disorder (OCD). To address the limitations of existing measures of magical thinking we developed and validated a new 24-item measure of magical thinking, the Illusory Beliefs Inventory (IBI). The validation sample comprised a total of 1194 individuals across two samples recruited via an Internet based survey. Factor analysis identified three subscales representing domains relevant to the construct of magical thinking: Magical Beliefs, Spirituality, and Internal State and Thought Action Fusion. The scale had excellent internal consistency and evidence of convergent and discriminant validity. Evidence of criterion-related concurrent validity confirmed that magical thinking is a cognitive domain associated with OCD and is largely relevant to neutralizing, obsessing and hoarding symptoms. It is important for future studies to extend the evidence of the psychometric properties of the IBI in new populations and to conduct longitudinal studies to examine the aetiological role of magical thinking.

  12. An fMRI investigation of expectation violation in magic tricks

    Directory of Open Access Journals (Sweden)

    Amory H. Danek

    2015-02-01

    Full Text Available Magic tricks violate the expected causal relationships that form an implicit belief system about what is possible in the world around us. Observing a magic effect seemingly invalidates our implicit assumptions about what action causes which outcome. We aimed at identifying the neural correlates of such expectation violations by contrasting 24 video clips of magic tricks with 24 control clips in which the expected action-outcome relationship is upheld. Using fMRI, we measured the brain activity of 25 normal volunteers while they watched the clips in the scanner. Additionally, we measured the professional magician who had performed the magic tricks under the assumption that, in contrast to naïve observers, the magician himself would not perceive his own magic tricks as an expectation violation. As the main effect of magic – control clips in the normal sample, we found higher activity for magic in the head of the caudate nucleus bilaterally, the left inferior frontal gyrus and the left anterior insula. As expected, the magician’s brain activity substantially differed from these results, with mainly parietal areas (supramarginal gyrus bilaterally activated, supporting our hypothesis that he did not experience any expectation violation. These findings are in accordance with previous research that has implicated the head of the caudate nucleus in processing changes in the contingency between action and outcome, even in the absence of reward or feedback.

  13. Exotic light nuclei and nuclei in the lead region

    International Nuclear Information System (INIS)

    Poppelier, N.A.F.M.

    1989-01-01

    Three methods are discussed for modifying, or renormalizing, a truncated nuclear hamiltonian such that the wave functions obtained by diagonalizing this modified or effective hamiltoniandescribe the nucleus as well as possible: deriving the hamiltonian directly from a realistic nucleon-nucleon interaction between free nucleons; parametrizing the hamiltonian in terms of a number of parameters and determining these parameters from a least-squares fit of calculated properties to experimental data; approximating the nucleon-nucleon (NN) interaction between two nucleons in a nucleus by a simple analytic expression. An effective hamiltonian derived following the second method is applied in a theoretical study of exotic nuclei in the region of Z=2-9 and A=4-30 and the problem of the neutron halo in 11 Li is discussed. Results of shell-model calculations of 20i Pb and nuclei in its neighbourhood are presented in which an effective hamiltonian was employed derived with the last method. The quenching of M1 strength in 208 Pb, and the spectroscopic factors measured in proton knock-out reactions could be described quite satisfactory. Finally, a method is presented for deriving the effective hamiltonian directly from the realistic NN interaction with algebraic techniques. (H.W.). 114 refs.; 34 figs.; 12 tabs.; schemes

  14. Isospin mixing in light nuclei

    International Nuclear Information System (INIS)

    Ludwig, E.J.; Clegg, T.B.; Fauber, R.E.; Karwowski, H.J.; Mooney, T.M.; Thompson, W.J.

    1985-01-01

    This program has provided accurate measurements of isospin mixing (ΔT = 1,2) in proton elastic scattering on even-even target nuclei up to A = 40. In order to improve experimental results and to test the hypothesis that isospin mixing is dominated by mixing in the target ground state (as opposed to mixing in the compound system) the authors have undertaken to (1) extend the proton scattering results to additional T = 3/2 states in certain compound systems and (2) examine processes which can proceed by only isotensor mixing (ΔT = 2) in order to isolate the effects of that contribution

  15. Nucleon transfer between heavy nuclei

    International Nuclear Information System (INIS)

    Von Oertzen, W.

    1984-02-01

    Nucleon transfer reactions between heavy nuclei are characterized by the classical behaviour of the scattering orbits. Thus semiclassical concepts are well suited for the description of these reactions. In the present contribution the characteristics of single and multinucleon transfer reactions at energies below and above the Coulomb barrier are shown for systems like Sn+Sn, Xe+U and Ni+Pb. The role of the pairing interaction in the transfer of nucleon pairs is illustrated. For strong transitions the coupling of channels and the absorption into more complicated channels is taken into account in a coupled channels calculation

  16. Microscopic structure for light nuclei

    International Nuclear Information System (INIS)

    Sharma, V.K.

    1995-01-01

    The microscopic structure for light nuclei e.g. 4 He, 7 Li and 8 Be is considered in the frame work of the generator coordinate method (GCM). The physical interpretation of our GCM is also discussed. The GC amplitudes are used to calculate the various properties like charge and magnetic RMS radii, form factors, electromagnetic moments, astrophysical S-factor, Bremsstrahlung weighted cross sections, relative wavefunctions and vertex functions etc. All the calculated quantities agree well with the values determined experimentally. (author). 30 refs., 10 figs., 2 tabs

  17. Microscopic properties of superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Lennart B

    1999-04-01

    Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments

  18. Magic neutrino mass matrix and the Bjorken-Harrison-Scott parameterization

    International Nuclear Information System (INIS)

    Lam, C.S.

    2006-01-01

    Observed neutrino mixing can be described by a tribimaximal MNS matrix. The resulting neutrino mass matrix in the basis of a diagonal charged lepton mass matrix is both 2-3 symmetric and magic. By a magic matrix, I mean one whose row sums and column sums are all identical. I study what happens if 2-3 symmetry is broken but the magic symmetry is kept intact. In that case, the mixing matrix is parameterized by a single complex parameter U e3 , in a form discussed recently by Bjorken, Harrison, and Scott

  19. γ astrophysics above 10-30 GeV with the MAGIC telescope

    International Nuclear Information System (INIS)

    Mirzoyan, Razmick

    1999-01-01

    The project on the 17 m oe telescope, dubbed MAGIC (Major Atmospheric Gamma Imaging Cherenkov Telescope), is dedicated for γ astrophysics in the energy range from 10-30 GeV till 50-100 TeV. MAGIC will for the first time allow to explore with very high sensitivity the energy range 10-300 GeV and to bridge the existing energy gap between satellite and ground-based air Cherenkov measurements. We believe MAGIC will serve as a prototype for future multi-telescope γ ray observatories

  20. Exotic nuclei: another aspect of nuclear structure

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Blumenfeld, Y.; Flocard, H.; Garcia Borge, M.J.; Nowacki, F.; Rombouts, S.; Theisen, Ch.; Marques, F.M.; Lacroix, D.; Dessagne, P.; Gaeggeler, H.

    2002-01-01

    This document gathers the lectures made at the Joliot Curie international summer school in 2002 whose theme that year was exotic nuclei. There were 11 contributions whose titles are: 1) interactions, symmetry breaking and effective fields from quarks to nuclei; 2) status and perspectives for the study of exotic nuclei: experimental aspects; 3) the pairing interaction and the N = Z nuclei; 4) borders of stability region and exotic decays; 5) shell structure of nuclei: from stability to decay; 6) variational approach of system with a few nucleons; 7) from heavy to super-heavy nuclei; 8) halos, molecules and multi-neutrons; 9) macroscopic approaches for fusion reactions; 10) beta decay: a tool for spectroscopy; 11) the gas phase chemistry of super-heavy elements

  1. On the distribution of quarks in nuclei

    International Nuclear Information System (INIS)

    Baldin, A.M.; Panebrattsev, V.S.; Stavinskij, V.S.

    1984-01-01

    On the basis of the data on cumulative proton, deuteron and nuclear fragment production in hadr on-nucleon reactions and deep inelastic muon-nucleon scattering quark distributions in light, intemediate and heavy nuclei have been investigated. Conditions of limiting fragmentation of hadrons and nuclei in the studied processes have been investigated to obtain quark-parton structure functions (Gs 2 ) of the studied hadrons or nuclei. Invariant differential cross sections of π + , π - , K + meson production on aluminium, deuterium and lead nuclei and their dependence on scale variable at the transverse momentum value Psub(T) approximately 0 have been obtained. Properties of structure functions G 2 and behaviour of different nuclei differential cross sections of limiting fragmentation have been investigated. It is concluded that considered regularities testify to the presence of multiquark states in nuclei, different by its structure from nUcleons

  2. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  3. Maruhn-Greiner Maximum for Confirmation of Low Energy Nuclear Reactions (LENR) via a Compound Nucleus with Double Magic Numbers

    Science.gov (United States)

    Hora, Heinrich; Miley, George

    2007-03-01

    One of the most convincing facts about LENR due to deuterons (ds) or protons of very high concentration in host metals of palladium is the measurement of the large scale minimum in the reaction probability with product elements centered around the nucleon number A = 153. The local maximum was measured in this region is similar to fission of uranium at A = 119 where the local maximum follows the Maruhn-Greiner mechanism^1. We suggest this phenomenon can be explained by the strong screening of the Maxwellian ds on the degenerate rigid electron background within the swimming electrons at the metal surface or thin filem interfaces. The deuterons behave like neutrals at distances of above 2 picometers (pm) and form clusters due to soft attraction in the range of thermal energy; 10 pm diameter clusters can react over long time scales (10^6 s) with Pd leading to double magic number compound nuclei 306x126 decaying via fission to an A=153 element distribution. J. Maruhn et al, Phys. Rev. Letters 32, 548 (1974) H. Hora, G.H. Miley, CzechJ. Phys. 48, 1111 (1998)

  4. Relativistic exotic nuclei as projectile beams. New perspectives of studies on the properties of nuclei; Relativistische exotische Kerne als Projektilstrahlen. Neue Perspektiven zum Studium der Kerneigenschaften

    Energy Technology Data Exchange (ETDEWEB)

    Geissel, H

    1997-03-01

    Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [Deutsch] Die Untersuchungen der Produktionsquerschnitte und der Kinematik fuehr ten zu einer Verfeinerung der Modellvorstellungen der peripheren Kernr eaktionen an exotischen Kernen bei Energien im Bereich von 100- 1000 A MeV. Die hohe Selektivitaet und Aufloesung waren die Voraussetzung, da ss schon bei den vergleichsweise niedrigen Projektilstrahlintensitaete n des SIS eine grosse Anzahl von neuen Isotopen am Fragmentseparator F RS entdeckt werden konnten. Besonders erwaehnenswert sind die beiden d oppelt magischen Kerne Ni 78 und Sn 100, die mit anderen experimentel len Anlagen vorher nicht zugaenglich waren.Die Spaltung relativistisch er Uranionen hat sich als eine besonders ergiebige Quelle fuer mittels chwere neutronenreiche Kerne erwiesen. Die Kenntnisse der Struktur lei chter Neutronen- Halokerne konnten erweitert werden. Die uebergrosse r aeumliche Ausdehnung der Halokerne wurde aufgezeigt.

  5. Laser method of free atom nuclei orientation

    International Nuclear Information System (INIS)

    Barabanov, A.L.

    1987-01-01

    Orientation process of free atom (atoms in beams) nuclei, scattering quanta of circularly polarized laser radiation is considered. A method for the evaluation of nuclei orientation parameters is developed. It is shown that in the process of pumping between the ground and first excited atomic states with electron shell spins J 1 and J 2 , so that J 2 = J 1 + 1, a complete orientation of nuclei can be attained

  6. Are there multiquark bags in nuclei

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Scmatkov, M.Zh.

    1983-01-01

    Arguments are presented favouring the idea that multiquark bags do eXist in nuclei. Such hypothesis makes possible to reveal the relationship among three different scopes of phenomena: deep inelastic scattering of leptons by nUclei, large q 2 (where q 2 is a square of momentum transfer) behaviour of the form factors of light nuclei and yield of cumulative proton.s

  7. Understanding Nuclei in the upper sd - shell

    OpenAIRE

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta; Kshetri, Ritesh; Sarkar, S.

    2013-01-01

    Nuclei in the upper-$sd$ shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A$\\simeq$ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array...

  8. Possible existence of backbending in actinide nuclei

    International Nuclear Information System (INIS)

    Dudek, J.; Nazarewicz, W.; Szymanski, Z.

    1982-01-01

    The possibilities for the backbending effect to occur in actinide nuclei are studied using the pairing-self-consistent independent quasiparticle method. The Hamiltonian used is that of the deformed Woods-Saxon potential plus monopole pairing term. The results of the calculations explain why there is no backbending in most actinide nuclei and simultaneously suggest that in some light neutron deficient nuclei around Th and 22 Ra a backbending effect may occur

  9. Nuclei quadrupole coupling constants in diatomic molecule

    International Nuclear Information System (INIS)

    Ivanov, A.I.; Rebane, T.K.

    1993-01-01

    An approximate relationship between the constants of quadrupole interaction of nuclei in a two-atom molecule is found. It enabled to establish proportionality of oscillatory-rotation corrections to these constants for both nuclei in the molecule. Similar results were obtained for the factors of electrical dipole-quadrupole screening of nuclei. Applicability of these relationships is proven by the example of lithium deuteride molecule. 4 refs., 1 tab

  10. Nuclei at the limits of particle stability

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab

  11. Gustave Flaubert, Charles Dickens, and Isaac Pulvermacher's "magic band".

    Science.gov (United States)

    Waits, Robert K

    2013-01-01

    Around 1850, Isaac L. Pulvermacher (1815-1884) joined the ranks of so-called "galvanists" who had, for nearly a century, been touting the shocks and sparks of electricity as a miracle cure for all ills, including neurological complaints such as palsy and hemiplegia. The famed authors, Gustave Flaubert (1821-1880), in France, and Charles Dickens (1812-1870), in England, although contemporaries, apparently never met or corresponded. But during their lives, they both became aware of Pulvermacher and his patented Hydro-Electric Chains, claimed to impart vigor and cure nearly every complaint. Pulvermacher's chains made a cameo appearance in Madame Bovary (1857), Flaubert's controversial (and most successful) novel. Among Dickens's last letters (1870) was an order for I. L. Pulvermacher and Company's "magic band." Since the Victorian age, electrical and magnetic cures, for better or worse, continue to be products of both the medical profession and quackery. © 2013 Elsevier B.V. All rights reserved.

  12. Magic and artifice in the collection of Athanasius Kircher.

    Science.gov (United States)

    Waddell, Mark A

    2010-03-01

    Situated at the center of intellectual life in baroque Rome, the museum administered by the Jesuit naturalist Athanasius Kircher (1602-1680) simultaneously instructed and bemused its audiences with an exuberant mix of exotic animals, classical art and technological marvels. Kircher's playful use of spectacle and his irrepressible fondness for "magic" were derided by contemporaries as frivolous wonder-mongering, but the lavish machines at the heart of his museum were more than mere showpieces. Instead, they presented audiences with a compelling vision of the natural world in which the hidden foundations of the universe could be captured and displayed by artifice. Kircher's collection was in itself a vast instrument of revelation, conceived on a grander scale than the telescope of Galileo but rooted all the same in contemporary scientific culture. 2009 Elsevier Ltd. All rights reserved.

  13. Mathematical card magic fifty-two new effects

    CERN Document Server

    Mulcahy, Colm

    2013-01-01

    Mathematical card effects offer both beginning and experienced magicians an opportunity to entertain with a minimum of props. Featuring mostly original creations, Mathematical Card Magic: Fifty-Two New Effects presents an entertaining look at new mathematically based card tricks. Each chapter contains four card effects, generally starting with simple applications of a particular mathematical principle and ending with more complex ones. Practice a handful of the introductory effects and, in no time, you'll establish your reputation as a "mathemagician." Delve a little deeper into each chapter and the mathematics gets more interesting. The author explains the mathematics as needed in an easy-to-follow way. He also provides additional details, background, and suggestions for further explorations.Suitable for recreational math buffs and amateur card lovers or as a text in a first-year seminar, this color book offers a diverse collection of new mathemagic principles and effects.

  14. Methods for magnetic resonance analysis using magic angle technique

    Science.gov (United States)

    Hu, Jian Zhi [Richland, WA; Wind, Robert A [Kennewick, WA; Minard, Kevin R [Kennewick, WA; Majors, Paul D [Kennewick, WA

    2011-11-22

    Methods of performing a magnetic resonance analysis of a biological object are disclosed that include placing the object in a main magnetic field (that has a static field direction) and in a radio frequency field; rotating the object at a frequency of less than about 100 Hz around an axis positioned at an angle of about 54.degree.44' relative to the main magnetic static field direction; pulsing the radio frequency to provide a sequence that includes a phase-corrected magic angle turning pulse segment; and collecting data generated by the pulsed radio frequency. In particular embodiments the method includes pulsing the radio frequency to provide at least two of a spatially selective read pulse, a spatially selective phase pulse, and a spatially selective storage pulse. Further disclosed methods provide pulse sequences that provide extended imaging capabilities, such as chemical shift imaging or multiple-voxel data acquisition.

  15. Egyptian imprints on Geto-Dacian magical medicine.

    Science.gov (United States)

    Baran, Dana

    2010-12-01

    Several characteristics of Egyptian culture and civilization could be identified in prehistoric and ancient historic Geto-Dacian territories, belonging to modern Romania (Fig. 1). From early times, magic, religion and philosophy have been part of pre-scientific medicine. Therefore these aspects are to be tackled when speaking of medicine in mythological or legendary ages. Progress of ancient Geto-Dacian medicine was principally ascribed to the interface of local civilizations with ancient Egypt, Greece and Rome. Such connections were well documented and understood in historic times and were mainly based on texts of renowned Greek and Roman historians. Egyptian impact upon Dacia, -the ancient name of today's Romania-, was often explained in terms of indirect Greek- or Roman-mediated influences.The Greek and then the Roman colonies on the Black sea shore, together with later Roman colonies in Dacia Felix, founded in the heart of Transylvania, enabled access for Romania to Mediterranean cultures, including that of Egypt.

  16. Multicultourism in Mexico’s Magical Village Cuetzalan

    DEFF Research Database (Denmark)

    Jacobsen, Casper

    multiplied.To take the temperature of this political space, this thesis examines one expression of the surge of political multiculturalism; the tourism program Magical Villages (Pueblos Mágicos) launched in 2001 by Mexico's federal government. Through a focus on the participant town and mestizo municipal...... and social life in Cuetzalan by means of a translocal frame governmentality that introduces institutional conventions into the social field and urban setting. The thesis thereby highlights contradictive and counterintuitive views of political multiculturalism in contemporary Mexico (2001 to 2014).While...... between majority society and indigenous minorities. Accordingly, the thesis shows that in the wake of the multiculturalist surge in Mexico, what has taken place by and large is a reconstitution of thepolitical field, rather than a political and societal reorganization.One significant mode of redirection...

  17. The Art of Magic in the Time of Trump

    DEFF Research Database (Denmark)

    Opstrup, Kasper

    During the last decade marked by financial and ecological crises, precarity, migration and the return of authoritarian conditions, there has been a marked occult revival in both the arts and the broader popular culture. This paper examines the occult art-activism against Trump and place it in a w......During the last decade marked by financial and ecological crises, precarity, migration and the return of authoritarian conditions, there has been a marked occult revival in both the arts and the broader popular culture. This paper examines the occult art-activism against Trump and place...... it in a wider perspective of eco, gender and anti-fascist critique, and the 'mystical utopianism' of new social and religious movements. Examples include The Magical Resistance who meet once a month in a Brooklyn book shop to cast spells to bind Trump, rendering him incapable of hurting anybody, the Yerbamala...

  18. Magic, science and masculinity: marketing toy chemistry sets.

    Science.gov (United States)

    Al-Gailani, Salim

    2009-12-01

    At least since the late nineteenth century, toy chemistry sets have featured in standard scripts of the achievement of eminence in science, and they remain important in constructions of scientific identity. Using a selection of these toys manufactured in Britain and the United States, and with particular reference to the two dominant American brands, Gilbert and Chemcraft, this paper suggests that early twentieth-century chemistry sets were rooted in overlapping Victorian traditions of entertainment magic and scientific recreations. As chemistry set marketing copy gradually reoriented towards emphasising scientific modernity, citizenship, discipline and educational value, pre-twentieth-century traditions were subsumed within domestic-and specifically masculine-tropes. These developments in branding strategies point to transformations in both users' engagement with their chemistry sets and the role of scientific toys in domestic play. The chemistry set serves here as a useful tool for measuring cultural change and lay engagement with chemistry.

  19. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  20. Mass-23 nuclei in astrophysics

    International Nuclear Information System (INIS)

    Fraser, P R; Amos, K; Van der Kniff, D; Canton, L; Karataglidis, S; Svenne, J P

    2015-01-01

    The formation of mass-23 nuclei by radiative capture is of great interest in astrophysics. A topical problem associated with these isobars is the so-called 22 Na puzzle of ONe white dwarf novae, where the abundance of 22 Na observed is not as is predicted by current stellar models, indicating there is more to learn about how the distribution of elements in the universe occurred. Another concerns unexplained variations in elements abundance on the surface of aging red giant stars. One method for theoretically studying nuclear scattering is the Multi-Channel Algebraic Scattering (MCAS) formalism. Studies to date have used a simple collective-rotor prescription to model the target states which couple to projectile nucleons. While, in general, the target states considered all belong to the ground state rotor band, for some systems it is necessary to include coupling to states outside of this band. Herein we discuss an extension of MCAS to allow coupling of different strengths between such states and the ground state band. This consideration is essential when studying the scattering of neutrons from 22 Ne, a necessary step in studying the mass-23 nuclei mentioned above. (paper)

  1. Schizotypy and mindfulness: Magical thinking without suspiciousness characterizes mindfulness meditators

    Directory of Open Access Journals (Sweden)

    Elena Antonova

    2016-09-01

    Full Text Available Despite growing evidence for demonstrated efficacy of mindfulness in various disorders, there is a continuous concern about the relationship between mindfulness practice and psychosis. As schizotypy is part of the psychosis spectrum, we examined the relationship between long-term mindfulness practice and schizotypy in two independent studies. Study 1 included 24 experienced mindfulness practitioners (19 males from the Buddhist tradition (meditators and 24 meditation-naïve individuals (all males. Study 2 consisted of 28 meditators and 28 meditation-naïve individuals (all males. All participants completed the Schizotypal Personality Questionnaire (Raine, 1991, a self-report scale containing 9 subscales (ideas of reference, excessive social anxiety, magical thinking, unusual perceptual experiences, odd/eccentric behavior, no close friends, odd speech, constricted affect, suspiciousness. Participants of study 2 also completed the Five-Facet Mindfulness Questionnaire which assesses observing (Observe, describing (Describe, acting with awareness (Awareness, non-judging of (Non-judgment and non-reactivity to inner experience (Non-reactivity facets of trait mindfulness. In both studies, meditators scored significantly lower on suspiciousness and higher on magical thinking compared to meditation-naïve individuals and showed a trend towards lower scores on excessive social anxiety. Excessive social anxiety correlated negatively with Awareness and Non-judgment; and suspiciousness with Awareness, Non-judgment and Non-reactivity facets across both groups. The two groups did not differ in their total schizotypy score. We conclude that mindfulness practice is not associated with an overall increase in schizotypal traits. Instead, the pattern suggests that mindfulness meditation, particularly with an emphasis on the Awareness, Non-judgment and Non-reactivity aspects, may help to reduce suspiciousness and excessive social anxiety.

  2. A Dialectics of Reason and Instinct: Thomas Mann’s Magic Mountain

    Directory of Open Access Journals (Sweden)

    Ciro Schmidt Andrade

    Full Text Available The whole Thomas Mann’s work is a reflection of the permanent tension between instinct and reason, the irruption of the repressed and life order. This is particularly manifested in his work The Magic Mountain.

  3. The Power of the Word and the Mastery of Nature: Renaissance Magic and Francis Bacon

    Czech Academy of Sciences Publication Activity Database

    Špelda, Daniel

    19/43/, - (2005), s. 7-36. ISBN 80-7007-236-9. ISSN 0231-5955 Institutional research plan: CEZ:AV0Z90090514 Keywords : magic * renaissance philosophy * Francis Bacon Subject RIV: AA - Philosophy ; Religion

  4. MAGIC: conoscere i mari italiani e individuarne i geo-rischi

    Directory of Open Access Journals (Sweden)

    Alessandro Bosman

    2010-03-01

    Full Text Available MAGIC project: Marine Geohazard along the Italian Coasts MAGIC Project is funded by the Italian Civil Protection  Department (DPC to produce a bathymetric database as reference for compiling maps (1:50.000 of marine geo-hazard. During its 5-year life span (2007-2012, MAGIC will allow the acquisition of high-resolution multibeam bathymetry along the Italian continental margins and will involve the entire Italian scientific community currently active in the field of Marine Geology. More than 73.000 nautical miles of multibeam data will be analyzed, allowing comparison of geological features produced by sedimentary and tectonic processes (i.e. volcanic events, submarine landslide, active faulting. The main objective of MAGIC is to furnish the DPC  accurate depiction of superficial geology and relatedgeo-hazard on the most sensitive and hazard-prone areas.

  5. Nuclear Magnetic Resonance Spectroscopy Applications: Proton NMR In Biological Objects Subjected To Magic Angle Spinning

    International Nuclear Information System (INIS)

    Wind, Robert A.; Hu, Jian Zhi

    2005-01-01

    Proton NMR in Biological Objects Submitted to Magic Angle Spinning, In Encyclopedia of Analytical Science, Second Edition (Paul J. Worsfold, Alan Townshend and Colin F. Poole, eds.), Elsevier, Oxford 6:333-342. Published January 1, 2005. Proposal Number 10896

  6. The asymptotic hadron spectrum, anti-nuclei, hyper-nuclei and quark phase

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1978-01-01

    The only hope of determining the hadronic spectrum in the high mass region is through a study of matter produced in very high energy nuclear collisions. Along the way, exotic nuclei, i.e., anti-nuclei and hyper-nuclei may be produced in appreciable numbers, and the detection of a quark phase may be possible. (orig.) [de

  7. Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)

    2005-01-01

    Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.

  8. Protecting Against Child-Killing Demons: Uterus Amulets in the Late Antique and Byzantine Magical World

    OpenAIRE

    Björklund, Heta

    2017-01-01

    This doctoral dissertation examines medicinal-magical amulets pertaining to the uterus and the protection of women and children, the accompanying tradition of magical texts, and the mythology and folktales of demons believed to kill children and parturient women. The amulets and the folktales of the demons they were believed to protect against are intertwined. The amulets cannot be studied merely as archaeological or art historical objects, but must be taken together with folktales and narrat...

  9. Western aeronautical test range real-time graphics software package MAGIC

    Science.gov (United States)

    Malone, Jacqueline C.; Moore, Archie L.

    1988-01-01

    The master graphics interactive console (MAGIC) software package used on the Western Aeronautical Test Range (WATR) of the NASA Ames Research Center is described. MAGIC is a resident real-time research tool available to flight researchers-scientists in the NASA mission control centers of the WATR at the Dryden Flight Research Facility at Edwards, California. The hardware configuration and capabilities of the real-time software package are also discussed.

  10. Penentuan Nilai Motorik Halus Anak Dengan Game Magic Maze Menggunakan Metode Mamdani

    OpenAIRE

    Fadly, Muhammad

    2015-01-01

    Motor development is a very important factor in the development of the whole child. fine motor skills are very important because it affects the other terms of learning in early childhood. Therefore, it made the game Magic Maze to assess motor skills early childhood. Game Magic Maze in this study using Mamdani method in determining the values to a child's fine motor skills. Maze game will be made on the PC. 081402045

  11. Magic vs. Science in the Historiography of Science: The Social-Historical Construction of Rationality

    Directory of Open Access Journals (Sweden)

    Carlos Alvarez Maia

    2017-12-01

    Full Text Available The historiography of scientific studies has suffered from a great impact, that is rarely referred to, from anthropological analyses of magic in so-called primitive societies. The emphasis brought by criticism during the 1950/1960’s of Evans-Pritchard’s 1937 classic, Witchcraft, Oracles and Magic among the Azande, brought a fresh look at certainties already consolidated in Western thought, especially those relating to rational human characteristics and science. For the history, these criticisms were interesting because they were presented science as a historically situated activity, in the same way as magic. It favours, therefore, the proximity of historians tout court with the history of the sciences that resists its absences even today. This renewal helped to create a scenario that would enable David Bloor to develop the strong program of Sociology of Knowledge in the 1970s. Such a program indicates the analogous process that involves both the social production of beliefs and that of scientific truths. The comparison between magic and science usually presents them in a hierarchy. As if there were an evolutionary process in which magical thinking necessarily preceded scientific thought. The one, more precarious, would belong to the prehistory of the scientific thought, which would be the climax of modern rational action. In this paper I evaluate the proximity of magic-science from the point of view of contemporary studies about scientific activity, questioning the concepts of rationality and logic as if they were exclusive qualities of scientific activity. A kind of metaphysical gift that would show the superiority of individuals over others, as much as of science over magic. I give special emphasis to the exposition of how rationality and logic are socio-historical characteristics acquired throughout history by human subjects in their experiential practices, and which are present both in magic and technical activities; these, an embryo of

  12. The magic lens box: Simplifying the development of mixed reality games

    OpenAIRE

    Wetzel, R.; Lindt, I.; Waern, A.; Johnson, S.

    2008-01-01

    Mixed Reality games are becoming more and more popular these days and offer unique experiences to the players. However, development of such games typically still requires expert knowledge and access to Mixed Reality toolkits or frameworks. In this paper, we present the so-called Magic Lens Box that follows a different approach. Based on standard hardware The Magic Lens Box enables game designers with little technological background to create their own Mixed Reality games in a simple yet power...

  13. "Head versus heart": Effect of monetary frames on expression of sympathetic magical concerns

    OpenAIRE

    Paul Rozin; Heidi Grant; Stephanie Weinberg; Scott Parker

    2007-01-01

    Most American respondents give ``irrational,'' magical responses in a variety of situations that exemplify the sympathetic magical laws of similarity and contagion. In most of these cases, respondents are aware that their responses (usually rejections, as of fudge crafted to look like dog feces, or a food touched by a sterilized, dead cockroach) are not ``scientifically'' justified, but they are willing to avow them. We interpret this, in some sense, as ``heart over head.'' We report in this ...

  14. Composite hadrons and relativistic nuclei

    International Nuclear Information System (INIS)

    Blankenbecler, R.

    1978-01-01

    Lectures are presented describing a model of hadronic scattering at large momentum transfer, either transverse or longitudinal. This model emphasizes in this regime the importance of forces involving the interchange of constituents of the hadrons, hence its name, the constituent interchange model CIM. The CIM is a rearrangement of standard perturbation theory to take into account the fact that the binding force is very strong in color singlet states (singlet dominance). The hard scattering expansion, incoherence problems, nuclear wave functions and counting rules, interaction between nuclei, pion and proton yields and form factors, structure functions and nonscaling, massive lepton pairs, hadrons at large transverse momentum, and quark-quark scattering are treated. 49 references

  15. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  16. Order against chaos in nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1995-01-01

    Order and chaos and order-to-chaos transition are treated in terms of nuclear wave functions. A quasiparticle-phonon interaction is responsible for the fragmentation of one- and many-quasiparticle and phonon states and for the mixing of closely spaced states. Complete damping of one-quasiparticle states cannot be considered as a transition to chaos due to large many-quasiparticle or quasiparticle-phonon terms in their wave functions. An experimental investigation of the strength distribution of many-quasiparticle and quasiparticle-phonon states should uncover a new region of a regularity in nuclei at intermediate excitation energy. A chaotic behaviour of nuclear states can be shifted to higher excitation energies. ((orig.))

  17. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  18. Electric quadrupole strength in nuclei

    International Nuclear Information System (INIS)

    Kirson, M.W.

    1979-01-01

    Isoscalar electric quadrupole strength distributions in nuclei are surveyed, and it is concluded that the strength is shared, in most cases, roughly equally between low-lying transitions and the giant quadrupole state. The same is not true of the isovector case. A simple extension of the schematic model gives a remarkably successul description of the data, and emphasizes the vital importance of the coupling between high-lying and low-lying quadrupole modes. The standadrd simple representation of the giant quadrupole resonance as produced by operating on the nuclear ground state with the quadrupole transition operator is not applicable to the isoscalar case. It is suggested that giant resonances fall into broad classes of similar states, with considerable qualitative differences between the distinct classes. (author)

  19. Cavitation Nuclei: Experiments and Theory

    DEFF Research Database (Denmark)

    Mørch, Knud Aage

    2009-01-01

    The Swedish astrophysicist and Nobel Prize winner Hannes Alfven said: Theories come and go - the experiment is here forever. Often a theory, which we set up to describe an observed physical phenomenon, suffers from the lack of knowledge of decisive parameters, and therefore at best the theory...... becomes insufficient. Contrary, the experiment always reveals nature itself, though at prevailing experimental conditions. With essential parameters being out of control and even maybe unidentified, apparently similar experiments may deviate way beyond our expectations. However, these discrepancies offer...... us a chance to reflect on the character of the unknown parameters. In this way non-concordant experimental results may hold the key to the development of better theories - and to new experiments for the testing of their validity. Cavitation and cavitation nuclei are phenomena of that character....

  20. Effect of science magic applied in interactive lecture demonstrations on conceptual understanding

    Science.gov (United States)

    Taufiq, Muhammad; Suhandi, Andi; Liliawati, Winny

    2017-08-01

    Research about the application of science magic-assisting Interactive Lecture Demonstrations (ILD) has been conducted. This research is aimed at providing description about the comparison of the improvement of the conceptual understanding of lesson on pressure between students who receive physics lesson through science magic-assisting ILD and students who receive physics lesson through ILD without science magic. This research used a quasi-experiment methods with Control Group Pretest-Posttest Design. The subject of the research is all students of class VIII in one of MTs (Islamic junior high school) in Pekalongan. Research samples were selected using random sampling technique. Data about students' conceptual understanding was collected using test instrument of conceptual understanding in the form of multiple choices. N-gain average calculation was performed in order to determine the improvement of students' conceptual understanding. The result of the research shows that conceptual understanding of students on lesson about pressure who received lesson with ILD using science magic is higher than students who received lesson with ILD without science magic . Therefore, the conclusion is that the application of science magic ILD is more effective to improve the conceptual understanding of lesson on pressure.

  1. Femtometer toroidal structures in nuclei

    International Nuclear Information System (INIS)

    Forest, J.L.; Pandharipande, V.R.; Pieper, S.C.; Wiringa, R.B.; Schiavilla, R.; Arriaga, A.

    1996-01-01

    The two-nucleon density distributions in states with isospin T=0, spin S=1, and projection M S =0 and ±1 are studied in 2 H, 3,4 He, 6,7 Li, and 16 O. The equidensity surfaces for M S =0 distributions are found to be toroidal in shape, while those of M S =±1 have dumbbell shapes at large density. The dumbbell shapes are generated by rotating tori. The toroidal shapes indicate that the tensor correlations have near maximal strength at r 3 He, 4 He, and 6 Li. The toroidal distribution has a maximum-density diameter of ∼1 fm and a half-maximum density thickness of ∼0.9 fm. Many realistic models of nuclear forces predict these values, which are supported by the observed electromagnetic form factors of the deuteron, and also predicted by classical Skyrme effective Lagrangians, related to QCD in the limit of infinite colors. Due to the rather small size of this structure, it could have a revealing relation to certain aspects of QCD. Experiments to probe this structure and its effects in nuclei are suggested. Pair distribution functions in other T,S channels are also discussed; those in T,S=1,1 have anisotropies expected from one-pion-exchange interactions. The tensor correlations in T,S=0,1 states are found to deplete the number of T,S=1,0 pairs in nuclei and cause a reduction in nuclear binding energies via many-body effects. copyright 1996 The American Physical Society

  2. Quarks and mesons in nuclei

    International Nuclear Information System (INIS)

    Rho, M.

    1981-01-01

    Quantum chromodynamics is believed to be candidate theory for the strong interactions and contains as its ingredients spinor quark fields and vector gluons, none of which can perhaps be ever liberated and detected in laboratories. A nucleus consists of nucleons bound by nuclear force which are however separately observable and which seem to preserve their identities even under extreme conditions. An intriguing question is: when compressed to high densities or heated to high temperature, at what point does a nuclear matter cease to be describable in terms of nucleon and meson degrees of freedom, but become a plasma of quarks and gluons; and how does this transition occur. This is not an idle question. If quarks and gluons are never to be observed isolated, then it may be that at low energies (or at low densities) they are not the right variables to do physics with. Instead hadrons must be. On the other hand, asymptotic freedom - the unique property of non-abelian gauge theories to which QCD belongs that quark-gluon and gluon-gluon interactions get weaker at short distances - tells us that at some large matter density the matter must necessarily be in the form of quark gas interacting only weakly. This means that a change in degrees of freedom must take place. We would like to know where this occurs and how. In this talk, I would like to address to this question by discussing first the large success we have had in understanding the role that mesons play in finite nuclei and nuclear matter and then attempting to correlate nucleon and meson degrees of freedom to quark-gluon degrees of freedom. In my opinion we are now at a stage where we feel fairly confident in our understanding of nucleon-meson structure of nuclei and nuclear matter and any further progress in deeper understanding of nuclear dynamics - and strong interactions - must come from QCD or its effective version, bags or strings. (orig.)

  3. Maruhn-Greiner Maximum of Uranium Fission for Confirmation of Low Energy Nuclear Reactions LENR via a Compound Nucleus with Double Magic Numbers

    Science.gov (United States)

    Hora, H.; Miley, G. H.

    2007-12-01

    One of the most convincing facts about LENR due to deuterons of very high concentration in host metals as palladium is the measurement of the large scale minimum of the reaction probability depending on the nucleon number A of generated elements at A = 153 where a local maximum was measured. This is similar to the fission of uranium at A = 119 where the local maximum follows from the Maruhn-Greiner theory if the splitting nuclei are excited to about MeV energy. The LENR generated elements can be documented any time after the reaction by SIMS or K-shell X-ray excitation to show the very unique distribution with the local maximum. An explanation is based on the strong Debye screening of the Maxwellian deuterons within the degenerate rigid electron background especially within the swimming electron layer at the metal surface or at interfaces. The deuterons behave like neutrals at distances of about 2 picometers. They may form clusters due to soft attraction in the range above thermal energy. Clusters of 10 pm diameter may react over long time probabilities (megaseconds) with Pd nuclei leading to a double magic number compound nucleus which splits like in fission to the A = 153 element distribution.

  4. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  5. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  6. Microscopic Cluster Theory for Exotic Nuclei

    International Nuclear Information System (INIS)

    Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S

    2006-01-01

    For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory

  7. Reentrainment of radioactive nuclei from filters

    International Nuclear Information System (INIS)

    Dincklage, R.-D. von

    1982-01-01

    The possible relevance of atomic phenomena for the reentrainment of radioactive nuclei is discussed. The considerations are based on the coulombic fragmentation mechanism. Nuclei of potential interest in reprocessing technology are identified. Future experiments have been shown to be of definite need in this field. (author)

  8. Thermodynamics of pairing phase transition in nuclei

    International Nuclear Information System (INIS)

    Karim, Afaque; Ahmad, Shakeb

    2014-01-01

    The pairing gaps, pairing energy, heat capacity and entropy are calculated within BCS (Bardeen- Cooper-Schrieffer) based quasi particle approach, including thermal fluctuations on pairing field within pairing model for all nuclei (light, medium, heavy and super heavy nuclei). Quasi particles approach in BCS theory was introduced and reformulated to study various properties. For thermodynamic behavior of nuclei at finite temperatures, the anomalous averages of creation and annihilation operators are introduced. It is solved self consistently at finite temperatures to obtain BCS Hamiltonian. After doing unitary transformation, we obtained the Hamiltonian in the diagonal form. Thus, one gets temperature dependence gap parameter and pairing energy for nuclei. Moreover, the energy at finite temperatures is the sum of the condensation energy and the thermal energy of fermionic quasi particles. With the help of BCS Hamiltonian, specific heat, entropy and free energy are calculated for different nuclei. In this paper the gap parameter occupation number and pairing energy as a function of temperature which is important for all the light, medium, heavy and super heavy nuclei is calculated. Moreover, the various thermo dynamical quantities like specific heat, entropy and free energy is also obtained for different nuclei. Thus, the thermodynamics of pairing phase transition in nuclei is studied

  9. Mean-field models and exotic nuclei

    International Nuclear Information System (INIS)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.

    1998-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  10. Static and dynamical properties of hot nuclei

    International Nuclear Information System (INIS)

    Suraud, E.

    1990-01-01

    We briefly review our understanding of the formation of excited/hot nuclei in heavy-ion collisions at some tens of MeV/A. We recall the major theoretical frameworks used for describing as well the entrance channel of the reaction as the structure properties of hot nuclei. We finally focus on multifragmentation within insisting upon the theoretical challenge it does represent

  11. Masses of nuclei close to the dripline

    International Nuclear Information System (INIS)

    Herfurth, F.; Blaum, K.; Audi, G.; Lunney, D.; Beck, D.; Kluge, H.J.; Rodriguez, D.; Sikler, G.; Weber, C.; Bollen, G.; Schwarz, S.; Kellerbauer, A.

    2003-01-01

    Mass measurements of radioactive nuclides are one of the cornerstones of our understanding of the nucleus. The Penning trap spectrometer ISOLTRAP performs direct mass measurements far away from the valley of stability, as well as high-precision measurements of key nuclei to anchor long decay chains. Both schemes provide valuable information on the dripline itself and on nuclei in its close vicinity. (orig.)

  12. Quasars, Seyfert galaxies and active galactic nuclei

    International Nuclear Information System (INIS)

    Osterbrock, D.E.

    1987-01-01

    This chapter is devoted to the spectroscopic methods for analyzing the observed plasma in the nuclei of quasars, Seyfert galazies, and active galactic nuclei. Both the narrow-line region and the broad-line region are discussed. Physical models are presented

  13. Single Particle Entropy in Heated Nuclei

    International Nuclear Information System (INIS)

    Guttormsen, M.; Chankova, R.; Hjorth-Jensen, M.; Rekstad, J.; Siem, S.; Sunde, A. C.; Syed, N. U. H.; Agvaanluvsan, U.; Schiller, A.; Voinov, A.

    2006-01-01

    The thermal motion of single particles represents the largest contribution to level density (or entropy) in atomic nuclei. The concept of single particle entropy is presented and shown to be an approximate extensive (additive) quantity for mid-shell nuclei. A few applications of single particle entropy are demonstrated

  14. Quantum phase transitions in atomic nuclei

    International Nuclear Information System (INIS)

    Zamfir, N.V.

    2005-01-01

    Studies of quantum phase transitions in mesoscopic systems and applications to atomic nuclei are presented. Analysis in terms of the Interacting Boson Model shows that the main features persist even for moderate number of particles. Experimental evidence in rare-earth nuclei is discussed. New order and control parameters for systems with the same number of particles are proposed. (author)

  15. Decay properties of nuclei close to Z = 108 and N = 162

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, Jan

    2007-07-12

    The goal of the research conducted in the frame of this thesis was to investigate the decay properties of the nuclides {sup 269-271}Hs and their daughters using an improved chemical separation and detection system. Shell stabilization was predicted in the region around Z=108 and N=162 in calculations, taking into account possible higher orders of deformations of the nuclei. The nucleus {sup 270}Hs with a closed proton and a closed neutron deformed shell, was predicted to be ''deformed doubly magic''. Nuclei around {sup 270}Hs can be produced only via fusion reactions at picobarn levels, resulting in a production rates of few atoms per day. Investigating short-lived nuclei using rapid chemical separation and subsequent on-line detection methods provides an independent and alternative means to electromagnetic on-line separators. Chemical separation of Hs in the form of HsO{sub 4} provides an excellent tool to study the formation reactions and nuclear structure in this region of the chart of nuclides due to a high overall efficiency and a very high purification factor. The goal was accomplished, as element 108, hassium, was produced in the reaction {sup 248}Cm({sup 26}Mg,xn){sup 274-x}Hs and chemically isolated. After gas phase separation of HsO{sub 4}, 26 genetically linked decay chains have been observed. These were attributed to decays of three different Hs isotopes produced in the 3-5n evaporation channels. The known decay chain of {sup 269}Hs, the 5n evaporation product, serves as an anchor point, thus allowing the unambiguous assignment of the observed decay chains to the 5n, 4n, and 3n channels, respectively. Decay properties of five nuclei have been unambiguously established for the first time, including the one for the the doubly-magic nuclide {sup 270}Hs. This hassium isotope is the next doubly magic nucleus after the well known {sup 208}Pb and the first experimentally observed even-even nucleus on the predicted N=162 neutron shell. The

  16. Structure and clusters of light unstable nuclei

    International Nuclear Information System (INIS)

    En'yo, Yoshiko

    2010-01-01

    As it is known, cluster structures are often observed in light nuclei. In the recent evolution of unstable nuclear research (on nuclei having unbalanced number of neutron and proton) further new types of clusters are coming to be revealed. In this report, structures of light unstable nuclei and some of the theoretical models to describe them are reviewed. The following topics are picked up. 1. Cluster structure and theoretical models, 2. Cluster structure of unstable nuclei (low excited state). 3. Cluster structure of neutron excess beryllium isotopes. 4. Cluster gas like state in C isotope. 5. Dineutron structure of He isotopes. Numbers of strange nuclear structures of light nuclei are illustrated. Antisymmetrized molecular dynamics (AMD) is the recently developed theoretical framework which has been successfully used in heavy ion reactions and nuclear structure studies. Successful application of AMD to the isotopes of Be, B and C are illustrated. (S. Funahashi)

  17. Investigation of the structure of core-coupled odd-proton copper nuclei in fpg valence space using the projected shell model

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Anuradha; Singh, Suram; Bharti, Arun [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-01-15

    By employing a systematically parametrized Hamiltonian and the best fit of the various input parameters, high-spin yrast energy states for an isotopic chain of odd mass {sup 59-69}Cu nuclei have been investigated by using a novel computational quantum mechanical framework-projected shell model. Comparison of calculations and experiments yields good agreement. The present study of various intriguing nuclear structure properties along the yrast lines in these odd proton isotopes reflects some interesting informative nuclear physics results. The calculations successfully describe the formation of the yrast level structures from multi-quasi-particle configurations based on πf x νg bands for {sup 59-69}Cu isotopes. The present calculations indicate the evolution of the nuclear structure near the magic nuclei, Ni, and also provide an indication of coexistence of both, collective as well as single-particle, levels for {sup 69}Cu nucleus at N=40. (orig.)

  18. Development of an ion guide coupled to an on-line isotope separation system on Sara. Identification and study of isospin exotic nuclei at Isolde and Sara

    International Nuclear Information System (INIS)

    Bouldjedri, A.

    1992-06-01

    This work is concerned with the study of exotic nuclei located on both sides of the stability-line and known as neutron rich and neutron deficient respectively. For the former, produced by alpha particle-induced fission, an on-line isotope separation with an ion guide (IGISOL) has been developed and submitted to several off-line and on-line optimization tests showing capacity to spectroscopic studies. In the case of neutron deficient nuclei near the magicity Z=82, 182 Tl(3s) has been identified and its decaying modes and those of 183 Tl ground state, studied, using the on-line separator ISOLDE. On the other hand, the β decay of 172,175 Ir produced in 32 S induced reaction is studied using a helium jet system on the SARA accelerator. Existence of isomers is derived from half-lives measurements

  19. Strength of Coriolis Coupling in actinide nuclei

    International Nuclear Information System (INIS)

    Peker, L.K.; Rasmussen, J.O.; Hamilton, J.H.

    1982-01-01

    Coriolis Coupling V/sub cor/ plays an important role in deformed nuclei. V/sub cor/ is proportional to h 2 /J[j (j + 1) -Ω (Ω + 1)]/sup 1/2/ and therefore is particularly significant in the nuclei with large j and low Ω Nilsson levels close to Fermi surface: n(i/sub 13/2/) in A = 150 to 170 rare-earth nuclei and p(i/sub 13/2/) and n(j/sub 15/2/) in A greater than or equal to 224 actinide nuclei. Because of larger j (n(j/sub 15/2/) versus n(i/sub 13/2/)) and smaller deformations (β approx. = 0.22 versus β 0.28) it was reasonable to expect that in actinide nuclei Coriolis effects are stronger than in the rare earth nuclei. Recently it was realized that the strength of observed Coriolis effects depends not only on the genuine Coriolis Coupling but also on the interplay between Coriolis ad pairing forces which leads to an interference between the wave functions of two mixing rotational bands. As a consequence the effective interaction V/sub eff/ of both bands is an oscillating function of the degree of shell filling (or chemical potential lambda F). It was shown that in the rare earth nuclei this interference strongly influenced conclusions about the trends in the Coriolis coupling strength and explained many of the observed band-mixing features (the sharpness of back banding curves, details of the blocking effect etc.). From theoretical analysis it was concluded that in the majority of actinide nuclei the effective interaction V/sub eff/ is strong, and therefore the Coriolis band-mixing have to be very strong. In this paper we would like to demonstrate that contrary to these predictions experimental data suggest that Coriolis band mixing in studied actinide nuclei is relatively weak and possibly significantly weaker than in rare earth nuclei

  20. Gabriel García Márquez’s One Hundred Years of Solitude as a Grotesque Magical Realist Text

    OpenAIRE

    DILER, Hatice Elif

    2015-01-01

    Since the 1960s magical realism has been a significant narrative mode used by postmodernist and postcolonial authors all over the world. Disregarding the conventional classical realism and its techniques, magical realist authors have used postmodernist techniques to achieve their postcolonial aims. Their attempts to find innovative techniques have resulted in embracing the Rabelaisian aesthetics and Bakthinian concerns in their works. Grotesque realism is considered a type of magical realism....

  1. RADIO VARIABILITY IN SEYFERT NUCLEI

    International Nuclear Information System (INIS)

    Mundell, C. G.; Ferruit, P.; Nagar, N.; Wilson, A. S.

    2009-01-01

    Comparison of 8.4 GHz radio images of a sample of eleven, early-type Seyfert galaxies with previous observations reveals possible variation in the nuclear radio flux density in five of them over a seven year period. Four Seyferts (NGC 2110, NGC 3081, MCG -6-30-15, and NGC 5273) show a decline in their 8.4 GHz nuclear flux density between 1992 and 1999, while one (NGC 4117) shows an increase; the flux densities of the remaining six Seyferts (Mrk 607, NGC 1386, Mrk 620, NGC 3516, NGC 4968, and NGC 7465) have remained constant over this period. New images of MCG -5-23-16 are also presented. We find no correlation between radio variability and nuclear radio luminosity or Seyfert nuclear type, although the sample is small and dominated by type 2 Seyferts. Instead, a possible correlation between the presence of nuclear radio variability and the absence of hundred parsec-scale radio emission is seen, with four out of five marginally resolved or unresolved nuclei showing a change in nuclear flux density, while five out of six extended sources show no nuclear variability despite having unresolved nuclear sources. NGC 2110 is the only source in our sample with significant extended radio structure and strong nuclear variability (∼38% decline in nuclear flux density over seven years). The observed nuclear flux variability indicates significant changes are likely to have occurred in the structure of the nucleus on scales smaller than the VLA beam size (i.e., within the central ∼0.''1 (15 pc)), between the two epochs, possibly due to the appearance and fading of new components or shocks in the jet, consistent with previous detection of subparsec-scale nuclear structure in this Seyfert. Our results suggest that all Seyferts may exhibit variation in their nuclear radio flux density at 8.4 GHz, but that variability is more easily recognized in compact sources in which emission from the variable nucleus is not diluted by unresolved, constant flux density radio jet emission

  2. New relativistic effective interaction for finite nuclei, infinite nuclear matter, and neutron stars

    Science.gov (United States)

    Kumar, Bharat; Patra, S. K.; Agrawal, B. K.

    2018-04-01

    We carry out the study of finite nuclei, infinite nuclear matter, and neutron star properties with the newly developed relativistic force, the Institute of Physics Bhubaneswar-I (IOPB-I). Using this force, we calculate the binding energies, charge radii, and neutron-skin thickness for some selected nuclei. From the ground-state properties of superheavy nuclei (Z =120 ), it is noticed that considerable shell gaps appear at neutron numbers N =172 , 184, and 198, manifesting the magicity at these numbers. The low-density behavior of the equation of state for pure neutron matter is compatible with other microscopic models. Along with the nuclear symmetry energy, its slope and curvature parameters at the saturation density are consistent with those extracted from various experimental data. We calculate the neutron star properties with the equation of state composed of nucleons and leptons in β -equilibrium, which are in good agreement with the x-ray observations by Steiner [Astrophys. J. 722, 33 (2010), 10.1088/0004-637X/722/1/33] and Nättilä [Astron. Astrophys. 591, A25 (2016), 10.1051/0004-6361/201527416]. Based on the recent observation of GW170817 with a quasi-universal relation, Rezzolla et al. [Astrophys. J. Lett. 852, L25 (2018), 10.3847/2041-8213/aaa401] have set a limit for the maximum mass that can be supported against gravity by a nonrotating neutron star in the range 2.01 ±0.04 ≲M (M⊙)≲2.16 ±0.03 . We find that the maximum mass of the neutron star for the IOPB-I parametrization is 2.15 M⊙ . The radius and tidal deformability of a canonical neutron star of mass 1.4 M⊙ are 13.2 km and 3.9 ×1036g cm2s2 , respectively.

  3. A new spin on nuclei

    International Nuclear Information System (INIS)

    Clark, R.; Wadsworth, B.

    1998-01-01

    Magnetic rotation is a new phenomenon that is forcing physicists to rethink their understanding of what goes on inside the nucleus The rotation of quantum objects has a long and distinguished history in physics. In 1912 the Danish scientist Niels Bjerrum was the first to recognize that the rotation of molecules is quantized. In 1938 Edward Teller and John Wheeler observed similar features in the spectra of excited nuclei, and suggested that this was caused by the nucleus rotating. But a more complete explanation had to wait until 1951, when Aage Bohr (the son of Niels) pointed out that rotation was a consequence of the nucleus deforming from its spherical shape. We owe much of our current understanding of nuclear rotation to the work of Bohr and Ben Mottelson, who shared the 1975 Nobel Prize for Physics with James Rainwater for developing a model of the nucleus that combined the individual and collective motions of the neutrons and protons inside the nucleus. What makes it possible for a nucleus to rotate? Quantum mechanically, a perfect sphere cannot rotate because it appears the same when viewed from any direction and there is no point of reference against which its change in position can be detected. To see the rotation the spherical symmetry must be broken to allow an orientation in space to be defined. For example, a diatomic molecule, which has a dumbbell shape, can rotate about the two axes perpendicular to its axis of symmetry. A quantum mechanical treatment of a diatomic molecule leads to a very simple relationship between rotational energy, E, and angular momentum. This energy is found to be proportional to J(J + 1), where J is the angular momentum quantum number. The molecule also has a magnetic moment that is proportional to J. These concepts can be applied to the atomic nucleus. If the distribution of mass and/or charge inside the nucleus becomes non-spherical then the nucleus will be able to rotate. The rotation is termed ''collective'' because many

  4. Symmetry and Phase Transitions in Nuclei

    International Nuclear Information System (INIS)

    Iachello, F.

    2009-01-01

    Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)

  5. [Incorporation of an organic MAGIC (Model of Acidification of Groundwater in Catchments) and testing of the revised model using independent data sources]. [MAGIC Model

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T.J.

    1992-09-01

    A project was initiated in March, 1992 to (1) incorporate a rigorous organic acid representation, based on empirical data and geochemical considerations, into the MAGIC model of acidification response, and (2) test the revised model using three sets of independent data. After six months of performance, the project is on schedule and the majority of the tasks outlined for Year 1 have been successfully completed. Major accomplishments to data include development of the organic acid modeling approach, using data from the Adirondack Lakes Survey Corporation (ALSC), and coupling the organic acid model with MAGIC for chemical hindcast comparisons. The incorporation of an organic acid representation into MAGIC can account for much of the discrepancy earlier observed between MAGIC hindcasts and paleolimnological reconstructions of preindustrial pH and alkalinity for 33 statistically-selected Adirondack lakes. Additional work is on-going for model calibration and testing with data from two whole-catchment artificial acidification projects. Results obtained thus far are being prepared as manuscripts for submission to the peer-reviewed scientific literature.

  6. Neutron interaction with doubly-magic {sup 40}Ca

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.B. [Argonne National Lab., IL (United States)]|[Univ. of Arizona, Tucson, AZ (United States)

    1993-11-01

    Differential neutron elastic and inelastic-scattering cross sections of elemental calcium (96.94% doubly-magic {sup 40}Ca) are measured from {approx} 1.5 to 10 MeV with sufficient detail to determine their energy-averaged behavior in the highly fluctuating environment. These results, combined with values previously reported in the literature, are assessed in the contexts of optical-statistical, dispersive optical, and coupled-channels models, applicable to the energy domain 0 {yields} 30+ MeV, with particular emphasis on the lower energies where the interpretations are sensitive to the dispersion relationship and the effective mass. The interpretations define the energy dependencies of the potential parameters (resolving prior ambiguities), suggest that previous estimates of the prominent low-energy (n,p) and (n,a) reactions are too large, reasonably describe observables to at least 30 MeV, and provide a vehicle for extrapolation into the bound-state regime that gives a good description of hole- and particle-state binding energies. The resulting real-potential parameters (in contrast to many {sup 40}Ca parameters reported in the literature) are shown consistent with global trends.

  7. Aplikasi Augmented Reality Magic Book Pengenalan Binatang Untuk Siswa TK

    Directory of Open Access Journals (Sweden)

    I Dewa Gede Wahya Dhiyatmika

    2015-11-01

    Full Text Available Augmented Reality is a technology combining 2 or 3 dimensional virtual objects into a real 3 dimensional environment and projected real time. Children at 5 to 7 years old, are in their golden age where they are getting more sensitive to stimulus and easier on learning new things, that they are easier on receiving new and interesting things. So, it seems to be important for children at this age to learn about living creature around them, one of it is learning about animals. Media about animal introduction for kindergarten students, such as book with 2 dimensional animal form, seems like incapable yet to excite children on learning about animal species. This Augmented Reality Magic Book Animals Introduction Application for Kindergarten Students has been developed using Android base with marker that identified 3 dimensional animal objects, their voices, and the informations about the animals using Augmented Reality Technology. Augmented Reality technology makes animal introduction to children become easier and more interesting, this application shows 3 dimensional form of animals and their voices with more innovative interface using Smartphone.

  8. Radiolabelled monoclonal antibodies: magic bullets for colorectal carcinoma

    International Nuclear Information System (INIS)

    Slade, Linda

    1997-01-01

    Radiolabelled monoclonal antibodies (MoAbs) have been heralded as highly specific detection agents for many types of tumours. However, because of the many problems that have been associated with the use of these agents, their development and successes did not meet expectations. This paper discusses the use of radiolabelled MoAbs in the diagnosis and staging of colorectal cancer, the type of antibodies and radionuclides investigated over the past thirty years, and the advantages and disadvantages of each. An attempt is made to define the role of radioimmunoscintigraphy (RIS) in the investigation and management of patients with colorectal cancer. It appears that this technique can improve tumour detection, especially when used in conjunction with other imaging modalities. High sensitivities and specificities have been found using radio-labelled MoAbs for investigation of colorectal carcinoma. However, the author estimates there are a number of areas that require further research and improvement before naming radiolabelled MoAbs as 'magic bullets' for colorectal cancer. 8 refs., 3 tabs

  9. Neutrino parameters with magical beta-beam at INO

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Sanjib Kumar; Choubey, Sandhya; Raychaudhuri, Amitava [Harish-Chandra Research Institute, Allahabad (India)], E-mail: sanjib@hri.res.in

    2008-11-01

    We have studied the physics reach of an experiment where neutrinos produced in a beta-beam facility at CERN are observed in a large magnetized iron calorimeter (ICAL) at the India-based Neutrino Observatory (INO). The idea of beta-beam is based on the production of a pure, intense, collimated beam of electron neutrinos or their antiparticles via the beta decay of accelerated radioactive ions circulating in a storage ring. Interestingly, the CERN-INO distance of 7152 km happens to be tantalizingly close to the so-called 'magic' baseline where the sensitivity to the neutrino mass ordering (sign of {delta}m{sup 2}{sub 31} {identical_to} m{sup 2}{sub 3} - m{sup 2}{sub 1}) and more importantly, {theta}{sub 13}, goes up significantly, while the sensitivity to the unknown CP phase is absent. This permits such an experiment involving the golden P{sub e{mu}} channel to make precise measurements of the mixing angle {theta}{sub 13} and neutrino mass hierarchy avoiding the issues of intrinsic degeneracies and correlations which plague other baselines.

  10. Neutron interaction with doubly-magic 40Ca

    International Nuclear Information System (INIS)

    Smith, A.B.

    1993-11-01

    Differential neutron elastic and inelastic-scattering cross sections of elemental calcium (96.94% doubly-magic 40 Ca) are measured from ∼ 1.5 to 10 MeV with sufficient detail to determine their energy-averaged behavior in the highly fluctuating environment. These results, combined with values previously reported in the literature, are assessed in the contexts of optical-statistical, dispersive optical, and coupled-channels models, applicable to the energy domain 0 → 30+ MeV, with particular emphasis on the lower energies where the interpretations are sensitive to the dispersion relationship and the effective mass. The interpretations define the energy dependencies of the potential parameters (resolving prior ambiguities), suggest that previous estimates of the prominent low-energy (n,p) and (n,a) reactions are too large, reasonably describe observables to at least 30 MeV, and provide a vehicle for extrapolation into the bound-state regime that gives a good description of hole- and particle-state binding energies. The resulting real-potential parameters (in contrast to many 40 Ca parameters reported in the literature) are shown consistent with global trends

  11. The 'Magic Light': A Discussion on Laser Ethics.

    Science.gov (United States)

    Stylianou, Andreas; Talias, Michael A

    2015-08-01

    Innovations in technology and science form novel fields that, although beneficial, introduce new bio-ethical issues. In their short history, lasers have greatly influenced our everyday lives, especially in medicine. This paper focuses particularly on medical and para-medical laser ethics and their origins, and presents the complex relationships within laser ethics through a three-dimensional matrix model. The term 'laser' and the myth of the 'magic light' can be identified as landmarks for laser related ethical issues. These ethical issues are divided into five major groups: (1) media, marketing, and advertising; (2) economic outcomes; (3) user training; (4) the user-patient/client relationship; and (5) other issues. In addition, issues arising from two of the most common applications of lasers, laser eye surgery and laser tattoo removal, are discussed. The aim of this paper is to demonstrate that the use of medical and para-medical lasers has so greatly influenced our lives that the scientific community must initiate an earnest discussion of medical laser ethics.

  12. Beyond magic traits: Multimodal mating cues in Heliconius butterflies.

    Science.gov (United States)

    Mérot, Claire; Frérot, Brigitte; Leppik, Ene; Joron, Mathieu

    2015-11-01

    Species coexistence involves the evolution of reproductive barriers opposing gene flow. Heliconius butterflies display colorful patterns affecting mate choice and survival through warning signaling and mimicry. These patterns are called "magic traits" for speciation because divergent natural selection may promote mimicry shifts in pattern whose role as mating cue facilitates reproductive isolation. By contrast, between comimetic species, natural selection promotes pattern convergence. We addressed whether visual convergence interferes with reproductive isolation by testing for sexual isolation between two closely related species with similar patterns, H. timareta thelxinoe and H. melpomene amaryllis. Experiments with models confirmed visual attraction based on wing phenotype, leading to indiscriminate approach. Nevertheless, mate choice experiments showed assortative mating. Monitoring male behavior toward live females revealed asymmetry in male preference, H. melpomene males courting both species equally while H. timareta males strongly preferred conspecifics. Experiments with hybrid males suggested an important genetic component for such asymmetry. Behavioral observations support a key role for short-distance cues in determining male choice in H. timareta. Scents extracts from wings and genitalia revealed interspecific divergence in chemical signatures, and hybrid female scent composition was significantly associated with courtship intensity by H. timareta males, providing candidate chemical mating cues involved in sexual isolation. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  13. Collective models of transition nuclei Pt. 2

    International Nuclear Information System (INIS)

    Dombradi, Zs.

    1982-01-01

    The models describing the even-odd and odd-odd transition nuclei (nuclei of moderate ground state deformation) are reviewed. The nuclear core is described by models of even-even nuclei, and the interaction of a single particle and the core is added. Different models of particle-core coupling (phenomenological models, collective models, nuclear field theory, interacting boson-fermion model, vibration nucleon cluster model) and their results are discussed. New developments like dynamical supersymmetry and new research trends are summarized. (D.Gy.)

  14. Coulomb energy differences in mirror nuclei

    International Nuclear Information System (INIS)

    Lenzi, Silvia M

    2006-01-01

    By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells

  15. Bound states of Θ+ in nuclei

    International Nuclear Information System (INIS)

    Oset, E.; Cabrera, D.; Li, Q.B.; Magas, V.K.; Vicente Vacas, M.J.

    2005-01-01

    We study the binding energy and the width of the Θ + in nuclei, associated to the KN and KπN components. The first one leads to negligible contributions while the second one leads to a sizeable attraction, enough to bind the Θ + in nuclei. Pauli blocking and binding effects on the KN decay reduce considerably the Θ + decay width in nuclei and medium effects associated to the KπN component also lead to a very small width, as a consequence of which one finds separation between the bound levels considerably larger than the width of the states

  16. Is there chirality in atomic nuclei?

    International Nuclear Information System (INIS)

    Meng Jie

    2009-01-01

    Static chiral symmetries are common in nature, for example, the macroscopic spirals of snail shells, the microscopic handedness of certain molecules, and human hands. The concept of chirality in atomic nuclei was first proposed in 1997, and since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Recent theoretical and experimental progress in the verification of chirality in atomic nuclei will be reviewed, together with a discussion of the problems that await to be solved in the future. (authors)

  17. Bubble nuclei in relativistic mean field theory

    International Nuclear Information System (INIS)

    Shukla, A.; Aberg, S.; Patra, S.K.

    2011-01-01

    Bubble nuclei are characterized by a depletion of their central density, i.e. the formation of the proton or neutron void and subsequently forming proton or neutron bubble nuclei. Possibility of the formation of bubble nuclei has been explored through different nuclear models and in different mass regions. Advancements in experimental nuclear physics has led our experimental access to many new shapes and structures, which were inaccessible hitherto. In the present paper, the possibility of observing nuclear bubble in oxygen isotopes, particularly for 22 O has been studied

  18. Formation and decay of hot nuclei

    International Nuclear Information System (INIS)

    Tamain, B.

    1992-09-01

    The mechanisms involved in hot nuclei formation and decay and their eventual connexion with fundamental properties of nuclear matter are discussed, i.e. its equation of state is considered. After a brief review of the reactions in which hot nuclei can be formed, the variables which are used to describe them, the corresponding theoretical descriptions and their limits when extreme states are reached are discussed. Experimental evidences for hot nuclei formation are presented, with the corresponding decay properties used as signatures. (R.P.) 64 refs.; 25 figs.; 2 tabs

  19. Hot nuclei: high temperatures, high angular momenta

    International Nuclear Information System (INIS)

    Guerreau, D.

    1991-01-01

    A review is made of the present status concerning the production of hot nuclei above 5 MeV temperature, concentrating mainly on the possible experimental evidences for the attainment of a critical temperature, on the existence of dynamical limitations to the energy deposition and on the experimental signatures for the formation of hot spinning nuclei. The data strongly suggest a nuclear disassembly in collisions involving very heavy ions at moderate incident velocities. Furthermore, hot nuclei seem to be quite stable against rotation on a short time scale. (author) 26 refs.; 12 figs

  20. Evolution of planetary nebula nuclei

    International Nuclear Information System (INIS)

    Shaw, R.A.

    1985-01-01

    The evolution of planetary nebula nuclei (PNNs) is examined with the aid of the most recent available stellar evolution calculations and new observations of these objects. Their expected distribution in the log L-log T plane is calculated based upon the stellar evolutionary models of Paczynski, Schoenberner and Iben, the initial mass function derived by Miller and Scalo, and various assumptions concerning mass loss during post-main sequence evolution. The distribution is found to be insensitive both to the assumed range of main-sequence progenitor mass and to reasonable variations in the age and the star forming history of the galactic disk. Rather, the distribution is determined by the strong dependence of the rate of stellar evolution upon core mass, the steepness of the initial mass function, and to a lesser extent the finite lifetime of an observable planetary nebula. The theoretical distributions are rather different than any of those inferred from earlier observations. Possible observational selection effects that may be responsible are examined, as well as the intrinsic uncertainties associated with the theoretical model predictions. An extensive photometric and smaller photographic survey of southern hemisphere planetary nebulae (PNs) is presented