WorldWideScience

Sample records for macula image registration

  1. Mass preserving image registration

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2010-01-01

    The paper presents results the mass preserving image registration method in the Evaluation of Methods for Pulmonary Image Registration 2010 (EMPIRE10) Challenge. The mass preserving image registration algorithm was applied to the 20 image pairs. Registration was evaluated using four different...

  2. Textureless Macula Swelling Detection with Multiple Retinal Fundus Images

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Meriaudeau, Fabrice [ORNL; Karnowski, Thomas Paul [ORNL; Tobin Jr, Kenneth William [ORNL; Grisan, Enrico [University of Padua, Padua, Italy; Favaro, Paolo [Heriot-Watt University, Edinburgh; Ruggeri, Alfredo [University of Padua, Padua, Italy; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2010-01-01

    Retinal fundus images acquired with non-mydriatic digital fundus cameras are a versatile tool for the diagnosis of various retinal diseases. Because of the ease of use of newer camera models and their relatively low cost, these cameras can be employed by operators with limited training for telemedicine or Point-of-Care applications. We propose a novel technique that uses uncalibrated multiple-view fundus images to analyse the swelling of the macula. This innovation enables the detection and quantitative measurement of swollen areas by remote ophthalmologists. This capability is not available with a single image and prone to error with stereo fundus cameras. We also present automatic algorithms to measure features from the reconstructed image which are useful in Point-of-Care automated diagnosis of early macular edema, e.g., before the appearance of exudation. The technique presented is divided into three parts: first, a preprocessing technique simultaneously enhances the dark microstructures of the macula and equalises the image; second, all available views are registered using non-morphological sparse features; finally, a dense pyramidal optical flow is calculated for all the images and statistically combined to build a naiveheight- map of the macula. Results are presented on three sets of synthetic images and two sets of real world images. These preliminary tests show the ability to infer a minimum swelling of 300 microns and to correlate the reconstruction with the swollen location.

  3. Automatic detection of the macula in retinal fundus images using seeded mode tracking approach.

    Science.gov (United States)

    Wong, Damon W K; Liu, Jiang; Tan, Ngan-Meng; Yin, Fengshou; Cheng, Xiangang; Cheng, Ching-Yu; Cheung, Gemmy C M; Wong, Tien Yin

    2012-01-01

    The macula is the part of the eye responsible for central high acuity vision. Detection of the macula is an important task in retinal image processing as a landmark for subsequent disease assessment, such as for age-related macula degeneration. In this paper, we have presented an approach to automatically determine the macula centre in retinal fundus images. First contextual information on the image is combined with a statistical model to obtain an approximate macula region of interest localization. Subsequently, we propose the use of a seeded mode tracking technique to locate the macula centre. The proposed approach is tested on a large dataset composed of 482 normal images and 162 glaucoma images from the ORIGA database and an additional 96 AMD images. The results show a ROI detection of 97.5%, and 90.5% correct detection of the macula within 1/3DD from a manual reference, which outperforms other current methods. The results are promising for the use of the proposed approach to locate the macula for the detection of macula diseases from retinal images.

  4. Simultaneous macula detection and optic disc boundary segmentation in retinal fundus images

    Science.gov (United States)

    Girard, Fantin; Kavalec, Conrad; Grenier, Sébastien; Ben Tahar, Houssem; Cheriet, Farida

    2016-03-01

    The optic disc (OD) and the macula are important structures in automatic diagnosis of most retinal diseases inducing vision defects such as glaucoma, diabetic or hypertensive retinopathy and age-related macular degeneration. We propose a new method to detect simultaneously the macula and the OD boundary. First, the color fundus images are processed to compute several maps highlighting the different anatomical structures such as vessels, the macula and the OD. Then, macula candidates and OD candidates are found simultaneously and independently using seed detectors identified on the corresponding maps. After selecting a set of macula/OD pairs, the top candidates are sent to the OD segmentation method. The segmentation method is based on local K-means applied to color coordinates in polar space followed by a polynomial fitting regularization step. Pair scores are updated, resulting in the final best macula/OD pair. The method was evaluated on two public image databases: ONHSD and MESSIDOR. The results show an overlapping area of 0.84 on ONHSD and 0.90 on MESSIDOR, which is better than recent state of the art methods. Our segmentation method is robust to contrast and illumination problems and outputs the exact boundary of the OD, not just a circular or elliptical model. The macula detection has an accuracy of 94%, which again outperforms other macula detection methods. This shows that combining the OD and macula detections improves the overall accuracy. The computation time for the whole process is 6.4 seconds, which is faster than other methods in the literature.

  5. Biomedical Image Registration

    DEFF Research Database (Denmark)

    This book constitutes the refereed proceedings of the 8th International Workshop on Biomedical Image Registration, WBIR 2018, held in Leiden, The Netherlands, in June 2018. The 11 full and poster papers included in this volume were carefully reviewed and selected from 17 submitted papers. The pap...

  6. Enhanced depth imaging optical coherence tomography of the sclera in dome-shaped macula.

    Science.gov (United States)

    Imamura, Yutaka; Iida, Tomohiro; Maruko, Ichiro; Zweifel, Sandrine A; Spaide, Richard F

    2011-02-01

    To examine the posterior anatomic structure of eyes with dome-shaped macula using enhanced depth imaging spectral-domain optical coherence tomography (EDI-OCT). Retrospective observational case series. Patients with dome-shaped macula, a condition defined as convex elevation of the macula as compared with the surrounding staphylomatous region in a highly myopic eye, were identified through routine examinations using optical coherence tomography (OCT). EDI-OCT was used to examine their posterior anatomic changes. The scleral thickness was measured from the outer border of the choroid to the outer scleral border under the fovea and 3000 μm temporal to the fovea. The mean age of the 15 patients (23 eyes) was 59.3 (± 12.2) years, and the mean refractive error was -13.6 (± 5.0) diopters. The best-corrected visual acuity ranged from 20/15 to 20/800 (median: 20/30). Eight patients (53%) had dome-shaped macula bilaterally. The mean subfoveal scleral thickness in 23 eyes with dome-shaped macula was 570 (± 221) μm, and that in 25 eyes of 15 myopic patients with staphyloma but without dome-shaped macula was 281 (± 85) μm (P macula is the result of a relative localized thickness variation of the sclera under the macula in highly myopic patients, and it cannot be categorized into any of the known types of staphyloma. This finding suggests the ocular expansion in myopia may be more complex than previously thought. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Image registration with uncertainty analysis

    Science.gov (United States)

    Simonson, Katherine M [Cedar Crest, NM

    2011-03-22

    In an image registration method, edges are detected in a first image and a second image. A percentage of edge pixels in a subset of the second image that are also edges in the first image shifted by a translation is calculated. A best registration point is calculated based on a maximum percentage of edges matched. In a predefined search region, all registration points other than the best registration point are identified that are not significantly worse than the best registration point according to a predetermined statistical criterion.

  8. Three-dimensional image reconstruction of macula from stratus optical coherence tomography (OCT) for diagnosis of macular degeneration

    International Nuclear Information System (INIS)

    Arinilhaq; Widita, R

    2016-01-01

    Diagnosis of macular degeneration using a Stratus OCT with a fast macular thickness map (FMTM) method produced six B-scan images of macula from different angles. The images were converted into a retinal thickness chart to be evaluated by normal distribution percentile of data so that it can be classified as normal thickness of macula or as experiencing abnormality (e.g. thickening and thinning). Unfortunately, the diagnostic images only represent the retinal thickness in several areas of the macular region. Thus, this study is aims to obtain the entire retinal thickness in the macula area from Status OCT's output images. Basically, the volumetric image is obtained by combining each of the six images. Reconstruction consists of a series of processes such as pre-processing, segmentation, and interpolation. Linear interpolation techniques are used to fill the empty pixels in reconstruction matrix. Based on the results, this method is able to provide retinal thickness maps on the macula surface and the macula 3D image. Retinal thickness map can display the macula area which experienced abnormalities. The macula 3D image can show the layers of tissue in the macula that is abnormal. The system built cannot replace ophthalmologist in decision making in term of diagnosis. (paper)

  9. Three-dimensional image reconstruction of macula from stratus optical coherence tomography (OCT) for diagnosis of macular degeneration

    Science.gov (United States)

    Arinilhaq; Widita, R.

    2016-03-01

    Diagnosis of macular degeneration using a Stratus OCT with a fast macular thickness map (FMTM) method produced six B-scan images of macula from different angles. The images were converted into a retinal thickness chart to be evaluated by normal distribution percentile of data so that it can be classified as normal thickness of macula or as experiencing abnormality (e.g. thickening and thinning). Unfortunately, the diagnostic images only represent the retinal thickness in several areas of the macular region. Thus, this study is aims to obtain the entire retinal thickness in the macula area from Status OCT's output images. Basically, the volumetric image is obtained by combining each of the six images. Reconstruction consists of a series of processes such as pre-processing, segmentation, and interpolation. Linear interpolation techniques are used to fill the empty pixels in reconstruction matrix. Based on the results, this method is able to provide retinal thickness maps on the macula surface and the macula 3D image. Retinal thickness map can display the macula area which experienced abnormalities. The macula 3D image can show the layers of tissue in the macula that is abnormal. The system built cannot replace ophthalmologist in decision making in term of diagnosis.

  10. Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa.

    Science.gov (United States)

    Tojo, Naoki; Nakamura, Tomoko; Fuchizawa, Chiharu; Oiwake, Toshihiko; Hayashi, Atsushi

    2013-01-01

    The purpose of this study was to examine cone photoreceptors in the macula of patients with retinitis pigmentosa using an adaptive optics fundus camera and to investigate any correlations between cone photoreceptor density and findings on optical coherence tomography and fundus autofluorescence. We examined two patients with typical retinitis pigmentosa who underwent ophthalmological examination, including measurement of visual acuity, and gathering of electroretinographic, optical coherence tomographic, fundus autofluorescent, and adaptive optics fundus images. The cone photoreceptors in the adaptive optics images of the two patients with retinitis pigmentosa and five healthy subjects were analyzed. An abnormal parafoveal ring of high-density fundus autofluorescence was observed in the macula in both patients. The border of the ring corresponded to the border of the external limiting membrane and the inner segment and outer segment line in the optical coherence tomographic images. Cone photoreceptors at the abnormal parafoveal ring were blurred and decreased in the adaptive optics images. The blurred area corresponded to the abnormal parafoveal ring in the fundus autofluorescence images. Cone densities were low at the blurred areas and at the nasal and temporal retina along a line from the fovea compared with those of healthy controls. The results for cone spacing and Voronoi domains in the macula corresponded with those for the cone densities. Cone densities were heavily decreased in the macula, especially at the parafoveal ring on high-density fundus autofluorescence in both patients with retinitis pigmentosa. Adaptive optics images enabled us to observe in vivo changes in the cone photoreceptors of patients with retinitis pigmentosa, which corresponded to changes in the optical coherence tomographic and fundus autofluorescence images.

  11. Adaptive optics fundus images of cone photoreceptors in the macula of patients with retinitis pigmentosa

    Directory of Open Access Journals (Sweden)

    Tojo N

    2013-01-01

    Full Text Available Naoki Tojo, Tomoko Nakamura, Chiharu Fuchizawa, Toshihiko Oiwake, Atsushi HayashiDepartment of Ophthalmology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, JapanBackground: The purpose of this study was to examine cone photoreceptors in the macula of patients with retinitis pigmentosa using an adaptive optics fundus camera and to investigate any correlations between cone photoreceptor density and findings on optical coherence tomography and fundus autofluorescence.Methods: We examined two patients with typical retinitis pigmentosa who underwent ophthalmological examination, including measurement of visual acuity, and gathering of electroretinographic, optical coherence tomographic, fundus autofluorescent, and adaptive optics fundus images. The cone photoreceptors in the adaptive optics images of the two patients with retinitis pigmentosa and five healthy subjects were analyzed.Results: An abnormal parafoveal ring of high-density fundus autofluorescence was observed in the macula in both patients. The border of the ring corresponded to the border of the external limiting membrane and the inner segment and outer segment line in the optical coherence tomographic images. Cone photoreceptors at the abnormal parafoveal ring were blurred and decreased in the adaptive optics images. The blurred area corresponded to the abnormal parafoveal ring in the fundus autofluorescence images. Cone densities were low at the blurred areas and at the nasal and temporal retina along a line from the fovea compared with those of healthy controls. The results for cone spacing and Voronoi domains in the macula corresponded with those for the cone densities.Conclusion: Cone densities were heavily decreased in the macula, especially at the parafoveal ring on high-density fundus autofluorescence in both patients with retinitis pigmentosa. Adaptive optics images enabled us to observe in vivo changes in the cone photoreceptors of

  12. Image Registration: A Necessary Evil

    Science.gov (United States)

    Bell, James; McLachlan, Blair; Hermstad, Dexter; Trosin, Jeff; George, Michael W. (Technical Monitor)

    1995-01-01

    Registration of test and reference images is a key component of nearly all PSP data reduction techniques. This is done to ensure that a test image pixel viewing a particular point on the model is ratioed by the reference image pixel which views the same point. Typically registration is needed to account for model motion due to differing airloads when the wind-off and wind-on images are taken. Registration is also necessary when two cameras are used for simultaneous acquisition of data from a dual-frequency paint. This presentation will discuss the advantages and disadvantages of several different image registration techniques. In order to do so, it is necessary to propose both an accuracy requirement for image registration and a means for measuring the accuracy of a particular technique. High contrast regions in the unregistered images are most sensitive to registration errors, and it is proposed that these regions be used to establish the error limits for registration. Once this is done, the actual registration error can be determined by locating corresponding points on the test and reference images, and determining how well a particular registration technique matches them. An example of this procedure is shown for three transforms used to register images of a semispan model. Thirty control points were located on the model. A subset of the points were used to determine the coefficients of each registration transform, and the error with which each transform aligned the remaining points was determined. The results indicate the general superiority of a third-order polynomial over other candidate transforms, as well as showing how registration accuracy varies with number of control points. Finally, it is proposed that image registration may eventually be done away with completely. As more accurate image resection techniques and more detailed model surface grids become available, it will be possible to map raw image data onto the model surface accurately. Intensity

  13. Medical image registration for analysis

    International Nuclear Information System (INIS)

    Petrovic, V.

    2006-01-01

    Full text: Image registration techniques represent a rich family of image processing and analysis tools that aim to provide spatial correspondences across sets of medical images of similar and disparate anatomies and modalities. Image registration is a fundamental and usually the first step in medical image analysis and this paper presents a number of advanced techniques as well as demonstrates some of the advanced medical image analysis techniques they make possible. A number of both rigid and non-rigid medical image alignment algorithms of equivalent and merely consistent anatomical structures respectively are presented. The algorithms are compared in terms of their practical aims, inputs, computational complexity and level of operator (e.g. diagnostician) interaction. In particular, the focus of the methods discussion is placed on the applications and practical benefits of medical image registration. Results of medical image registration on a number of different imaging modalities and anatomies are presented demonstrating the accuracy and robustness of their application. Medical image registration is quickly becoming ubiquitous in medical imaging departments with the results of such algorithms increasingly used in complex medical image analysis and diagnostics. This paper aims to demonstrate at least part of the reason why

  14. Numerical methods for image registration

    CERN Document Server

    Modersitzki, Jan

    2003-01-01

    Based on the author's lecture notes and research, this well-illustrated and comprehensive text is one of the first to provide an introduction to image registration with particular emphasis on numerical methods in medical imaging. Ideal for researchers in industry and academia, it is also a suitable study guide for graduate mathematicians, computer scientists, engineers, medical physicists, and radiologists.Image registration is utilised whenever information obtained from different viewpoints needs to be combined or compared and unwanted distortion needs to be eliminated. For example, CCTV imag

  15. ACIR: automatic cochlea image registration

    Science.gov (United States)

    Al-Dhamari, Ibraheem; Bauer, Sabine; Paulus, Dietrich; Lissek, Friedrich; Jacob, Roland

    2017-02-01

    Efficient Cochlear Implant (CI) surgery requires prior knowledge of the cochlea's size and its characteristics. This information helps to select suitable implants for different patients. To get these measurements, a segmentation method of cochlea medical images is needed. An important pre-processing step for good cochlea segmentation involves efficient image registration. The cochlea's small size and complex structure, in addition to the different resolutions and head positions during imaging, reveals a big challenge for the automated registration of the different image modalities. In this paper, an Automatic Cochlea Image Registration (ACIR) method for multi- modal human cochlea images is proposed. This method is based on using small areas that have clear structures from both input images instead of registering the complete image. It uses the Adaptive Stochastic Gradient Descent Optimizer (ASGD) and Mattes's Mutual Information metric (MMI) to estimate 3D rigid transform parameters. The use of state of the art medical image registration optimizers published over the last two years are studied and compared quantitatively using the standard Dice Similarity Coefficient (DSC). ACIR requires only 4.86 seconds on average to align cochlea images automatically and to put all the modalities in the same spatial locations without human interference. The source code is based on the tool elastix and is provided for free as a 3D Slicer plugin. Another contribution of this work is a proposed public cochlea standard dataset which can be downloaded for free from a public XNAT server.

  16. Increased-resolution OCT thickness mapping of the human macula: a statistically based registration.

    Science.gov (United States)

    Bernardes, Rui; Santos, Torcato; Cunha-Vaz, José

    2008-05-01

    To describe the development of a technique that enhances spatial resolution of retinal thickness maps of the Stratus OCT (Carl Zeiss Meditec, Inc., Dublin, CA). A retinal thickness atlas (RT-atlas) template was calculated, and a macular coordinate system was established, to pursue this objective. The RT-atlas was developed from principal component analysis of retinal thickness analyzer (RTA) maps acquired from healthy volunteers. The Stratus OCT radial thickness measurements were registered on the RT-atlas, from which an improved macular thickness map was calculated. Thereafter, Stratus OCT circular scans were registered on the previously calculated map to enhance spatial resolution. The developed technique was applied to Stratus OCT thickness data from healthy volunteers and from patients with diabetic retinopathy (DR) or age-related macular degeneration (AMD). Results showed that for normal, or close to normal, macular thickness maps from healthy volunteers and patients with DR, this technique can be an important aid in determining retinal thickness. Efforts are under way to improve the registration of retinal thickness data in patients with AMD. The developed technique enhances the evaluation of data acquired by the Stratus OCT, helping the detection of early retinal thickness abnormalities. Moreover, a normative database of retinal thickness measurements gained from this technique, as referenced to the macular coordinate system, can be created without errors induced by missed fixation and eye tilt.

  17. Image registration method for medical image sequences

    Science.gov (United States)

    Gee, Timothy F.; Goddard, James S.

    2013-03-26

    Image registration of low contrast image sequences is provided. In one aspect, a desired region of an image is automatically segmented and only the desired region is registered. Active contours and adaptive thresholding of intensity or edge information may be used to segment the desired regions. A transform function is defined to register the segmented region, and sub-pixel information may be determined using one or more interpolation methods.

  18. Intraoperative Optical Coherence Tomography Imaging and Assessment of the Macula During Cataract Surgery: A Novel Technique.

    Science.gov (United States)

    Tripathy, Koushik; Chawla, Rohan; Kumawat, Babulal; Sharma, Yog Raj

    2016-09-01

    The authors describe a technique to qualitatively analyze the posterior segment during cataract surgery using intraoperative optical coherence tomography (iOCT). Macular iOCT can be done before and after intraocular lens implantation after the media is rendered clear following phacoemulsification. A handheld irrigating planoconcave contact lens is placed over the cornea with the operating microscope in retroillumination mode. After focusing the microscope and upon getting a clear view of the posterior segment, iOCT is switched on, centered at the macula, and focused. This technique enables the surgeon to intraoperatively analyze and document the macular morphology and vitreoretinal interface. Potential uses of this technique include intraoperative decision-making regarding concurrent use of anti-vascular endothelial growth factor agents or steroids in cases with dense cataracts where preoperative OCT is difficult. [Ophthalmic Surg Lasers Imaging Retina. 2016;47:846-847.]. Copyright 2016, SLACK Incorporated.

  19. Semiautomated Multimodal Breast Image Registration

    Directory of Open Access Journals (Sweden)

    Charlotte Curtis

    2012-01-01

    However, due to the highly deformable nature of breast tissues, comparison of 3D and 2D modalities is a challenge. To enable this comparison, a registration technique was developed to map features from 2D mammograms to locations in the 3D image space. This technique was developed and tested using magnetic resonance (MR images as a reference 3D modality, as MR breast imaging is an established technique in clinical practice. The algorithm was validated using a numerical phantom then successfully tested on twenty-four image pairs. Dice's coefficient was used to measure the external goodness of fit, resulting in an excellent overall average of 0.94. Internal agreement was evaluated by examining internal features in consultation with a radiologist, and subjective assessment concludes that reasonable alignment was achieved.

  20. Performance evaluation of 2D image registration algorithms with the numeric image registration and comparison platform

    International Nuclear Information System (INIS)

    Gerganov, G.; Kuvandjiev, V.; Dimitrova, I.; Mitev, K.; Kawrakow, I.

    2012-01-01

    The objective of this work is to present the capabilities of the NUMERICS web platform for evaluation of the performance of image registration algorithms. The NUMERICS platform is a web accessible tool which provides access to dedicated numerical algorithms for registration and comparison of medical images (http://numerics.phys.uni-sofia.bg). The platform allows comparison of noisy medical images by means of different types of image comparison algorithms, which are based on statistical tests for outliers. The platform also allows 2D image registration with different techniques like Elastic Thin-Plate Spline registration, registration based on rigid transformations, affine transformations, as well as non-rigid image registration based on Mobius transformations. In this work we demonstrate how the platform can be used as a tool for evaluation of the quality of the image registration process. We demonstrate performance evaluation of a deformable image registration technique based on Mobius transformations. The transformations are applied with appropriate cost functions like: Mutual information, Correlation coefficient, Sum of Squared Differences. The accent is on the results provided by the platform to the user and their interpretation in the context of the performance evaluation of 2D image registration. The NUMERICS image registration and image comparison platform provides detailed statistical information about submitted image registration jobs and can be used to perform quantitative evaluation of the performance of different image registration techniques. (authors)

  1. Three dimensional image alignment, registration and fusion

    International Nuclear Information System (INIS)

    Treves, S.T.; Mitchell, K.D.; Habboush, I.H.

    1998-01-01

    Combined assessment of three dimensional anatomical and functional images (SPECT, PET, MRI, CT) is useful to determine the nature and extent of lesions in many parts of the body. Physicians principally rely on their spatial sense of mentally re-orient and overlap images obtained with different imaging modalities. Objective methods that enable easy and intuitive image registration can help the physician arrive at more optimal diagnoses and better treatment decisions. This review describes a simple, intuitive and robust image registration approach developed in our laboratory. It differs from most other registration techniques in that it allows the user to incorporate all of the available information within the images in the registration process. This method takes full advantage of the ability of knowledgeable operators to achieve image registration and fusion using an intuitive interactive visual approach. It can register images accurately and quickly without the use of elaborate mathematical modeling or optimization techniques. The method provides the operator with tools to manipulate images in three dimensions, including visual feedback techniques to assess the accuracy of registration (grids, overlays, masks, and fusion of images in different colors). Its application is not limited to brain imaging and can be applied to images from any region in the body. The overall effect is a registration algorithm that is easy to implement and can achieve accuracy on the order of one pixel

  2. Registration of deformed multimodality medical images

    International Nuclear Information System (INIS)

    Moshfeghi, M.; Naidich, D.

    1989-01-01

    The registration and combination of images from different modalities have several potential applications, such as functional and anatomic studies, 3D radiation treatment planning, surgical planning, and retrospective studies. Image registration algorithms should correct for any local deformations caused by respiration, heart beat, imaging device distortions, and so forth. This paper reports on an elastic matching technique for registering deformed multimodality images. Correspondences between contours in the two images are used to stretch the deformed image toward its goal image. This process is repeated a number of times, with decreasing image stiffness. As the iterations continue, the stretched image better approximates its goal image

  3. An Image Registration Method for Colposcopic Images

    Directory of Open Access Journals (Sweden)

    Efrén Mezura-Montes

    2013-01-01

    sequence and a division of such image into small windows. A search process is then carried out to find the window with the highest affinity in each image of the sequence and replace it with the window in the reference image. The affinity value is based on polynomial approximation of the time series computed and the search is bounded by a search radius which defines the neighborhood of each window. The proposed approach is tested in ten 310-frame real cases in two experiments: the first one to determine the best values for the window size and the search radius and the second one to compare the best obtained results with respect to four registration methods found in the specialized literature. The obtained results show a robust and competitive performance of the proposed approach with a significant lower time with respect to the compared methods.

  4. Edge-based correlation image registration for multispectral imaging

    Science.gov (United States)

    Nandy, Prabal [Albuquerque, NM

    2009-11-17

    Registration information for images of a common target obtained from a plurality of different spectral bands can be obtained by combining edge detection and phase correlation. The images are edge-filtered, and pairs of the edge-filtered images are then phase correlated to produce phase correlation images. The registration information can be determined based on these phase correlation images.

  5. Medical Image Registration and Surgery Simulation

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten

    1996-01-01

    This thesis explores the application of physical models in medical image registration and surgery simulation. The continuum models of elasticity and viscous fluids are described in detail, and this knowledge is used as a basis for most of the methods described here. Real-time deformable models......, and the use of selective matrix vector multiplication. Fluid medical image registration A new and faster algorithm for non-rigid registration using viscous fluid models is presented. This algorithm replaces the core part of the original algorithm with multi-resolution convolution using a new filter, which...... growth is also presented. Using medical knowledge about the growth processes of the mandibular bone, a registration algorithm for time sequence images of the mandible is developed. Since this registration algorithm models the actual development of the mandible, it is possible to simulate the development...

  6. Deformable image registration using convolutional neural networks

    NARCIS (Netherlands)

    Eppenhof, Koen A.J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P.W.

    2018-01-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between

  7. Fast fluid registration of medical images

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus

    1996-01-01

    This paper offers a new fast algorithm for non-rigid viscous fluid registration of medical images that is at least an order of magnitude faster than the previous method by (Christensen et al., 1994). The core algorithm in the fluid registration method is based on a linear elastic deformation...

  8. On combining algorithms for deformable image registration

    NARCIS (Netherlands)

    Muenzing, S.E.A.; Ginneken, van B.; Pluim, J.P.W.; Dawant, B.M.

    2012-01-01

    We propose a meta-algorithm for registration improvement by combining deformable image registrations (MetaReg). It is inspired by a well-established method from machine learning, the combination of classifiers. MetaReg consists of two main components: (1) A strategy for composing an improved

  9. Automated Registration Of Images From Multiple Sensors

    Science.gov (United States)

    Rignot, Eric J. M.; Kwok, Ronald; Curlander, John C.; Pang, Shirley S. N.

    1994-01-01

    Images of terrain scanned in common by multiple Earth-orbiting remote sensors registered automatically with each other and, where possible, on geographic coordinate grid. Simulated image of terrain viewed by sensor computed from ancillary data, viewing geometry, and mathematical model of physics of imaging. In proposed registration algorithm, simulated and actual sensor images matched by area-correlation technique.

  10. Deformable image registration using convolutional neural networks

    Science.gov (United States)

    Eppenhof, Koen A. J.; Lafarge, Maxime W.; Moeskops, Pim; Veta, Mitko; Pluim, Josien P. W.

    2018-03-01

    Deformable image registration can be time-consuming and often needs extensive parameterization to perform well on a specific application. We present a step towards a registration framework based on a three-dimensional convolutional neural network. The network directly learns transformations between pairs of three-dimensional images. The outputs of the network are three maps for the x, y, and z components of a thin plate spline transformation grid. The network is trained on synthetic random transformations, which are applied to a small set of representative images for the desired application. Training therefore does not require manually annotated ground truth deformation information. The methodology is demonstrated on public data sets of inspiration-expiration lung CT image pairs, which come with annotated corresponding landmarks for evaluation of the registration accuracy. Advantages of this methodology are its fast registration times and its minimal parameterization.

  11. TU-B-19A-01: Image Registration II: TG132-Quality Assurance for Image Registration

    International Nuclear Information System (INIS)

    Brock, K; Mutic, S

    2014-01-01

    AAPM Task Group 132 was charged with a review of the current approaches and solutions for image registration in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. As the results of image registration are always used as the input of another process for planning or delivery, it is important for the user to understand and document the uncertainty associate with the algorithm in general and the Result of a specific registration. The recommendations of this task group, which at the time of abstract submission are currently being reviewed by the AAPM, include the following components. The user should understand the basic image registration techniques and methods of visualizing image fusion. The disclosure of basic components of the image registration by commercial vendors is critical in this respect. The physicists should perform end-to-end tests of imaging, registration, and planning/treatment systems if image registration is performed on a stand-alone system. A comprehensive commissioning process should be performed and documented by the physicist prior to clinical use of the system. As documentation is important to the safe implementation of this process, a request and report system should be integrated into the clinical workflow. Finally, a patient specific QA practice should be established for efficient evaluation of image registration results. The implementation of these recommendations will be described and illustrated during this educational session. Learning Objectives: Highlight the importance of understanding the image registration techniques used in their clinic. Describe the end-to-end tests needed for stand-alone registration systems. Illustrate a comprehensive commissioning program using both phantom data and clinical images. Describe a request and report system to ensure communication and documentation. Demonstrate an clinically-efficient patient QA practice for efficient evaluation of image

  12. Image registration in gastric emptying studies

    International Nuclear Information System (INIS)

    Shuter, B.; Cooper, R.G.

    1998-01-01

    Full text: We have previously shown that image registration, based upon a two-dimensional cross-correlation (CC) of logarithmic Laplacian images (LLI), corrected motion in biliary studies in up to 90% of cases with minimal artifact. We have now applied the same technique to gastric emptying studies (GES). GES were acquired on an LFOV gamma camera over a two-hour period as 20-26 pairs of anterior-posterior frames (30 second duration and 64 x 64 matrix) for both solid and liquid components. All images were manually registered so that the solid contents of the stomach lay within an operator-drawn ROI. The anterior images of the solid component for 30 randomly selected patients were subjected to further image registration using CC of LLI, CC of raw images (Rl) (a common approach to image registration) and CC of Laplacian images (Ll). All images were aligned to the third image of the study, on which an ROI was drawn to outline the stomach. The number of images in which stomach counts appeared outside this ROI were tallied, in the original and all re-registered studies. Maximum displacements in X/Y position between images of studies registered by the LLI and Rl methods were also computed to directly compare positional accuracy. Stomachs partially exceeded the limits of the ROI in 27, 9, 53 and 54 frames (total of 710) in the original, LLI, Rl and Ll studies respectively. There were 4, 1, 6 and 7 studies with misregistered stomachs on more than 2 frames. Frames in seven Rl studies differed from the LLI studies in ) X/Y position by 3 pixels or more. Cross-correlation using LLI was the only method which improved upon the original manual registration. The Rl and Ll methods increased the number of misregistered frames. We conclude that in gastric emptying studies, as in biliary studies, object tracking by CC of LLI is the method of choice for image registration

  13. Mid-space-independent deformable image registration.

    Science.gov (United States)

    Aganj, Iman; Iglesias, Juan Eugenio; Reuter, Martin; Sabuncu, Mert Rory; Fischl, Bruce

    2017-05-15

    Aligning images in a mid-space is a common approach to ensuring that deformable image registration is symmetric - that it does not depend on the arbitrary ordering of the input images. The results are, however, generally dependent on the mathematical definition of the mid-space. In particular, the set of possible solutions is typically restricted by the constraints that are enforced on the transformations to prevent the mid-space from drifting too far from the native image spaces. The use of an implicit atlas has been proposed as an approach to mid-space image registration. In this work, we show that when the atlas is aligned to each image in the native image space, the data term of implicit-atlas-based deformable registration is inherently independent of the mid-space. In addition, we show that the regularization term can be reformulated independently of the mid-space as well. We derive a new symmetric cost function that only depends on the transformation morphing the images to each other, rather than to the atlas. This eliminates the need for anti-drift constraints, thereby expanding the space of allowable deformations. We provide an implementation scheme for the proposed framework, and validate it through diffeomorphic registration experiments on brain magnetic resonance images. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. A multicore based parallel image registration method.

    Science.gov (United States)

    Yang, Lin; Gong, Leiguang; Zhang, Hong; Nosher, John L; Foran, David J

    2009-01-01

    Image registration is a crucial step for many image-assisted clinical applications such as surgery planning and treatment evaluation. In this paper we proposed a landmark based nonlinear image registration algorithm for matching 2D image pairs. The algorithm was shown to be effective and robust under conditions of large deformations. In landmark based registration, the most important step is establishing the correspondence among the selected landmark points. This usually requires an extensive search which is often computationally expensive. We introduced a nonregular data partition algorithm using the K-means clustering algorithm to group the landmarks based on the number of available processing cores. The step optimizes the memory usage and data transfer. We have tested our method using IBM Cell Broadband Engine (Cell/B.E.) platform.

  15. Agreement between image grading of conventional (45°) and ultra wide-angle (200°) digital images in the macula in the Reykjavik eye study.

    Science.gov (United States)

    Csutak, A; Lengyel, I; Jonasson, F; Leung, I; Geirsdottir, A; Xing, W; Peto, T

    2010-10-01

    To establish the agreement between image grading of conventional (45°) and ultra wide-angle (200°) digital images in the macula. In 2008, the 12-year follow-up was conducted on 573 participants of the Reykjavik Eye Study. This study included the use of the Optos P200C AF ultra wide-angle laser scanning ophthalmoscope alongside Zeiss FF 450 conventional digital fundus camera on 121 eyes with or without age-related macular degeneration using the International Classification System. Of these eyes, detailed grading was carried out on five cases each with hard drusen, geographic atrophy and chorioretinal neovascularisation, and six cases of soft drusen. Exact agreement and κ-statistics were calculated. Comparison of the conventional and ultra wide-angle images in the macula showed an overall 96.43% agreement (κ=0.93) with no disagreement at end-stage disease; although in one eye chorioretinal neovascularisation was graded as drusenoid pigment epithelial detachment. Of patients with drusen only, the exact agreement was 96.1%. The detailed grading showed no clinically significant disagreement between the conventional 45° and 200° images. On the basis of our results, there is a good agreement between grading conventional and ultra wide-angle images in the macula.

  16. CT image registration in sinogram space.

    Science.gov (United States)

    Mao, Weihua; Li, Tianfang; Wink, Nicole; Xing, Lei

    2007-09-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy.

  17. CT image registration in sinogram space

    International Nuclear Information System (INIS)

    Mao Weihua; Li Tianfang; Wink, Nicole; Xing Lei

    2007-01-01

    Object displacement in a CT scan is generally reflected in CT projection data or sinogram. In this work, the direct relationship between object motion and the change of CT projection data (sinogram) is investigated and this knowledge is applied to create a novel algorithm for sinogram registration. Calculated and experimental results demonstrate that the registration technique works well for registering rigid 2D or 3D motion in parallel and fan beam samplings. Problem and solution for 3D sinogram-based registration of metallic fiducials are also addressed. Since the motion is registered before image reconstruction, the presented algorithm is particularly useful when registering images with metal or truncation artifacts. In addition, this algorithm is valuable for dealing with situations where only limited projection data are available, making it appealing for various applications in image guided radiation therapy

  18. Fractional Regularization Term for Variational Image Registration

    Directory of Open Access Journals (Sweden)

    Rafael Verdú-Monedero

    2009-01-01

    Full Text Available Image registration is a widely used task of image analysis with applications in many fields. Its classical formulation and current improvements are given in the spatial domain. In this paper a regularization term based on fractional order derivatives is formulated. This term is defined and implemented in the frequency domain by translating the energy functional into the frequency domain and obtaining the Euler-Lagrange equations which minimize it. The new regularization term leads to a simple formulation and design, being applicable to higher dimensions by using the corresponding multidimensional Fourier transform. The proposed regularization term allows for a real gradual transition from a diffusion registration to a curvature registration which is best suited to some applications and it is not possible in the spatial domain. Results with 3D actual images show the validity of this approach.

  19. Automated image registration for FDOPA PET studies

    International Nuclear Information System (INIS)

    Kang-Ping Lin; Sung-Cheng Huang, Dan-Chu Yu; Melega, W.; Barrio, J.R.; Phelps, M.E.

    1996-01-01

    In this study, various image registration methods are investigated for their suitability for registration of L-6-[18F]-fluoro-DOPA (FDOPA) PET images. Five different optimization criteria including sum of absolute difference (SAD), mean square difference (MSD), cross-correlation coefficient (CC), standard deviation of pixel ratio (SDPR), and stochastic sign change (SSC) were implemented and Powell's algorithm was used to optimize the criteria. The optimization criteria were calculated either unidirectionally (i.e. only evaluating the criteria for comparing the resliced image 1 with the original image 2) or bidirectionally (i.e. averaging the criteria for comparing the resliced image 1 with the original image 2 and those for the sliced image 2 with the original image 1). Monkey FDOPA images taken at various known orientations were used to evaluate the accuracy of different methods. A set of human FDOPA dynamic images was used to investigate the ability of the methods for correcting subject movement. It was found that a large improvement in performance resulted when bidirectional rather than unidirectional criteria were used. Overall, the SAD, MSD and SDPR methods were found to be comparable in performance and were suitable for registering FDOPA images. The MSD method gave more adequate results for frame-to-frame image registration for correcting subject movement during a dynamic FDOPA study. The utility of the registration method is further demonstrated by registering FDOPA images in monkeys before and after amphetamine injection to reveal more clearly the changes in spatial distribution of FDOPA due to the drug intervention. (author)

  20. Image Registration Methode in Radar Interferometry

    Directory of Open Access Journals (Sweden)

    S. Chelbi

    2015-08-01

    Full Text Available This article presents a methodology for the determination of the registration of an Interferometric Synthetic radar (InSAR pair images with half pixel precision. Using the two superposed radar images Single Look complexes (SLC [1-4], we developed an iterative process to superpose these two images according to their correlation coefficient with a high coherence area. This work concerns the exploitation of ERS Tandem pair of radar images SLC of the Algiers area acquired on 03 January and 04 January 1994. The former is taken as a master image and the latter as a slave image.

  1. Synaptic changes in rat maculae in space and medical imaging: the link

    Science.gov (United States)

    Ross, M. D.

    1998-01-01

    Two different space life sciences missions (SLS-1 and SLS-2) have demonstrated that the synapses of the hair cells of rat vestibular maculae increase significantly in microgravity. The results also indicate that macular synapses are sensitive to stress. These findings argue that vestibular maculae exhibit neuroplasticity to macroenvironmental and microenvironmental changes. This capability should be clinically relevant to rehabilitative training and/or pharmacological treatments for vestibular disease. The results of this ultrastructural research also demonstrated that type I and type II hair cells are integrated into the same neuronal circuitry. The findings were the basis for development of three-dimensional reconstruction software to learn details of macular wiring. This software, produced for scientific research, has now been adapted to reconstruct the face and skull directly from computerized tomography scans. In collaboration with craniofacial reconstructive surgeons at Stanford University Medical Center, an effort is under way to produce a virtual environment workbench for complex craniofacial surgery. When completed, the workbench will help surgeons train for and simulate surgery. The methods are patient specific. This research illustrates the value of basic research in leading to unanticipated medical applications.

  2. Retinal image registration for eye movement estimation.

    Science.gov (United States)

    Kolar, Radim; Tornow, Ralf P; Odstrcilik, Jan

    2015-01-01

    This paper describes a novel methodology for eye fixation measurement using a unique videoophthalmoscope setup and advanced image registration approach. The representation of the eye movements via Poincare plot is also introduced. The properties, limitations and perspective of this methodology are finally discussed.

  3. Image registration for remote sensing

    National Research Council Canada - National Science Library

    Le Moigne, Jacqueline; Netanyahu, Nathan S; Eastman, Roger D

    2011-01-01

    ... for environmental, political and basic science studies. The book brings together invited contributions by 36 distinguished researchers in the field to present a coherent and detailed overview of current research and practice in the application of image...

  4. Quantitative analysis of fluorescence lifetime measurements of the macula using the fluorescence lifetime imaging ophthalmoscope in healthy subjects.

    Science.gov (United States)

    Dysli, Chantal; Quellec, Gwénolé; Abegg, Mathias; Menke, Marcel N; Wolf-Schnurrbusch, Ute; Kowal, Jens; Blatz, Johannes; La Schiazza, Olivier; Leichtle, Alexander B; Wolf, Sebastian; Zinkernagel, Martin S

    2014-04-03

    Fundus autofluorescence (FAF) cannot only be characterized by the intensity or the emission spectrum, but also by its lifetime. As the lifetime of a fluorescent molecule is sensitive to its local microenvironment, this technique may provide more information than fundus autofluorescence imaging. We report here the characteristics and repeatability of FAF lifetime measurements of the human macula using a new fluorescence lifetime imaging ophthalmoscope (FLIO). A total of 31 healthy phakic subjects were included in this study with an age range from 22 to 61 years. For image acquisition, a fluorescence lifetime ophthalmoscope based on a Heidelberg Engineering Spectralis system was used. Fluorescence lifetime maps of the retina were recorded in a short- (498-560 nm) and a long- (560-720 nm) spectral channel. For quantification of fluorescence lifetimes a standard ETDRS grid was used. Mean fluorescence lifetimes were shortest in the fovea, with 208 picoseconds for the short-spectral channel and 239 picoseconds for the long-spectral channel, respectively. Fluorescence lifetimes increased from the central area to the outer ring of the ETDRS grid. The test-retest reliability of FLIO was very high for all ETDRS areas (Spearman's ρ = 0.80 for the short- and 0.97 for the long-spectral channel, P macula in healthy subjects. By using a custom-built software, we were able to quantify fluorescence lifetimes within the ETDRS grid. Establishing a clinically accessible standard against which to measure FAF lifetimes within the retina is a prerequisite for future studies in retinal disease.

  5. Image Segmentation, Registration, Compression, and Matching

    Science.gov (United States)

    Yadegar, Jacob; Wei, Hai; Yadegar, Joseph; Ray, Nilanjan; Zabuawala, Sakina

    2011-01-01

    A novel computational framework was developed of a 2D affine invariant matching exploiting a parameter space. Named as affine invariant parameter space (AIPS), the technique can be applied to many image-processing and computer-vision problems, including image registration, template matching, and object tracking from image sequence. The AIPS is formed by the parameters in an affine combination of a set of feature points in the image plane. In cases where the entire image can be assumed to have undergone a single affine transformation, the new AIPS match metric and matching framework becomes very effective (compared with the state-of-the-art methods at the time of this reporting). No knowledge about scaling or any other transformation parameters need to be known a priori to apply the AIPS framework. An automated suite of software tools has been created to provide accurate image segmentation (for data cleaning) and high-quality 2D image and 3D surface registration (for fusing multi-resolution terrain, image, and map data). These tools are capable of supporting existing GIS toolkits already in the marketplace, and will also be usable in a stand-alone fashion. The toolkit applies novel algorithmic approaches for image segmentation, feature extraction, and registration of 2D imagery and 3D surface data, which supports first-pass, batched, fully automatic feature extraction (for segmentation), and registration. A hierarchical and adaptive approach is taken for achieving automatic feature extraction, segmentation, and registration. Surface registration is the process of aligning two (or more) data sets to a common coordinate system, during which the transformation between their different coordinate systems is determined. Also developed here are a novel, volumetric surface modeling and compression technique that provide both quality-guaranteed mesh surface approximations and compaction of the model sizes by efficiently coding the geometry and connectivity

  6. Deformable image registration in radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Seung Jong; Kim, Si Yong [Dept. of Radiation Oncology, Virginia Commonwealth University, Richmond (United States)

    2017-06-15

    The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

  7. Canny edge-based deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-07

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  8. Optimized imaging using non-rigid registration

    International Nuclear Information System (INIS)

    Berkels, Benjamin; Binev, Peter; Blom, Douglas A.; Dahmen, Wolfgang; Sharpley, Robert C.; Vogt, Thomas

    2014-01-01

    The extraordinary improvements of modern imaging devices offer access to data with unprecedented information content. However, widely used image processing methodologies fall far short of exploiting the full breadth of information offered by numerous types of scanning probe, optical, and electron microscopies. In many applications, it is necessary to keep measurement intensities below a desired threshold. We propose a methodology for extracting an increased level of information by processing a series of data sets suffering, in particular, from high degree of spatial uncertainty caused by complex multiscale motion during the acquisition process. An important role is played by a non-rigid pixel-wise registration method that can cope with low signal-to-noise ratios. This is accompanied by formulating objective quality measures which replace human intervention and visual inspection in the processing chain. Scanning transmission electron microscopy of siliceous zeolite material exhibits the above-mentioned obstructions and therefore serves as orientation and a test of our procedures. - Highlights: • Developed a new process for extracting more information from a series of STEM images. • An objective non-rigid registration process copes with distortions. • Images of zeolite Y show retrieval of all information available from the data set. • Quantitative measures of registration quality were implemented. • Applicable to any serially acquired data, e.g. STM, AFM, STXM, etc

  9. Mass preserving image registration for lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Sporring, Jon; Lo, Pechin Chien Pau

    2012-01-01

    This paper presents a mass preserving image registration algorithm for lung CT images. To account for the local change in lung tissue intensity during the breathing cycle, a tissue appearance model based on the principle of preservation of total lung mass is proposed. This model is incorporated...... on four groups of data: 44 pairs of longitudinal inspiratory chest CT scans with small difference in lung volume; 44 pairs of longitudinal inspiratory chest CT scans with large difference in lung volume; 16 pairs of expiratory and inspiratory CT scans; and 5 pairs of images extracted at end exhale and end...

  10. Registration of Large Motion Blurred CMOS Images

    Science.gov (United States)

    2017-08-28

    raju@ee.iitm.ac.in - Institution : Indian Institute of Technology (IIT) Madras, India - Mailing Address : Room ESB 307c, Dept. of Electrical ...AFRL-AFOSR-JP-TR-2017-0066 Registration of Large Motion Blurred CMOS Images Ambasamudram Rajagopalan INDIAN INSTITUTE OF TECHNOLOGY MADRAS Final...NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) INDIAN INSTITUTE OF TECHNOLOGY MADRAS SARDAR PATEL ROAD Chennai, 600036

  11. Automated landmark-guided deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-07

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency.

  12. Automated landmark-guided deformable image registration

    International Nuclear Information System (INIS)

    Kearney, Vasant; Chen, Susie; Gu, Xuejun; Chiu, Tsuicheng; Liu, Honghuan; Jiang, Lan; Wang, Jing; Yordy, John; Nedzi, Lucien; Mao, Weihua

    2015-01-01

    The purpose of this work is to develop an automated landmark-guided deformable image registration (LDIR) algorithm between the planning CT and daily cone-beam CT (CBCT) with low image quality. This method uses an automated landmark generation algorithm in conjunction with a local small volume gradient matching search engine to map corresponding landmarks between the CBCT and the planning CT. The landmarks act as stabilizing control points in the following Demons deformable image registration. LDIR is implemented on graphics processing units (GPUs) for parallel computation to achieve ultra fast calculation. The accuracy of the LDIR algorithm has been evaluated on a synthetic case in the presence of different noise levels and data of six head and neck cancer patients. The results indicate that LDIR performed better than rigid registration, Demons, and intensity corrected Demons for all similarity metrics used. In conclusion, LDIR achieves high accuracy in the presence of multimodality intensity mismatch and CBCT noise contamination, while simultaneously preserving high computational efficiency. (paper)

  13. Deformable image registration for image guided prostate radiotherapy

    International Nuclear Information System (INIS)

    Cassetta, Roberto; Riboldi, Marco; Baroni, Guido; Leandro, Kleber; Novaes, Paulo Eduardo; Goncalves, Vinicius; Sakuraba, Roberto; Fattori, Giovanni

    2016-01-01

    In this study, we present a CT to CBCT deformable registration method based on the ITK library. An algorithm was developed in order to explore the soft tissue information of the CT-CBCT images to perform deformable image registration (DIR), making efforts to overcome the poor signal-to-noise ratio and HU calibration issues that limits CBCT use for treatment planning purposes. Warped CT images and contours were generated and their impact in adaptive radiotherapy was evaluated by DVH analysis for photon and proton treatments. Considerable discrepancies, related to the treatment planning dose distribution, might be found due to changes in patient’s anatomy. (author)

  14. High performance deformable image registration algorithms for manycore processors

    CERN Document Server

    Shackleford, James; Sharp, Gregory

    2013-01-01

    High Performance Deformable Image Registration Algorithms for Manycore Processors develops highly data-parallel image registration algorithms suitable for use on modern multi-core architectures, including graphics processing units (GPUs). Focusing on deformable registration, we show how to develop data-parallel versions of the registration algorithm suitable for execution on the GPU. Image registration is the process of aligning two or more images into a common coordinate frame and is a fundamental step to be able to compare or fuse data obtained from different sensor measurements. E

  15. Image registration of naval IR images

    Science.gov (United States)

    Rodland, Arne J.

    1996-06-01

    In a real world application an image from a stabilized sensor on a moving platform will not be 100 percent stabilized. There will always be a small unknown error in the stabilization due to factors such as dynamic deformations in the structure between sensor and reference Inertial Navigation Unit, servo inaccuracies, etc. For a high resolution imaging sensor this stabilization error causes the image to move several pixels in unknown direction between frames. TO be able to detect and track small moving objects from such a sensor, this unknown movement of the sensor image must be estimated. An algorithm that searches for land contours in the image has been evaluated. The algorithm searches for high contrast points distributed over the whole image. As long as moving objects in the scene only cover a small area of the scene, most of the points are located on solid ground. By matching the list of points from frame to frame, the movement of the image due to stabilization errors can be estimated and compensated. The point list is searched for points with diverging movement from the estimated stabilization error. These points are then assumed to be located on moving objects. Points assumed to be located on moving objects are gradually exchanged with new points located in the same area. Most of the processing is performed on the list of points and not on the complete image. The algorithm is therefore very fast and well suited for real time implementation. The algorithm has been tested on images from an experimental IR scanner. Stabilization errors were added artificially to the image such that the output from the algorithm could be compared with the artificially added stabilization errors.

  16. A NEW IMAGE REGISTRATION METHOD FOR GREY IMAGES

    Institute of Scientific and Technical Information of China (English)

    Nie Xuan; Zhao Rongchun; Jiang Zetao

    2004-01-01

    The proposed algorithm relies on a group of new formulas for calculating tangent slope so as to address angle feature of edge curves of image. It can utilize tangent angle features to estimate automatically and fully the rotation parameters of geometric transform and enable rough matching of images with huge rotation difference. After angle compensation, it can search for matching point sets by correlation criterion, then calculate parameters of affine transform, enable higher-precision emendation of rotation and transferring. Finally, it fulfills precise matching for images with relax-tense iteration method. Compared with the registration approach based on wavelet direction-angle features, the matching algorithm with tangent feature of image edge is more robust and realizes precise registration of various images. Furthermore, it is also helpful in graphics matching.

  17. Automatic registration of terrestrial point cloud using panoramic reflectance images

    NARCIS (Netherlands)

    Kang, Z.

    2008-01-01

    Much attention is paid to registration of terrestrial point clouds nowadays. Research is carried out towards improved efficiency and automation of the registration process. This paper reports a new approach for point clouds registration utilizing reflectance panoramic images. The approach follows a

  18. DOCUMENT IMAGE REGISTRATION FOR IMPOSED LAYER EXTRACTION

    Directory of Open Access Journals (Sweden)

    Surabhi Narayan

    2017-02-01

    Full Text Available Extraction of filled-in information from document images in the presence of template poses challenges due to geometrical distortion. Filled-in document image consists of null background, general information foreground and vital information imposed layer. Template document image consists of null background and general information foreground layer. In this paper a novel document image registration technique has been proposed to extract imposed layer from input document image. A convex polygon is constructed around the content of the input and the template image using convex hull. The vertices of the convex polygons of input and template are paired based on minimum Euclidean distance. Each vertex of the input convex polygon is subjected to transformation for the permutable combinations of rotation and scaling. Translation is handled by tight crop. For every transformation of the input vertices, Minimum Hausdorff distance (MHD is computed. Minimum Hausdorff distance identifies the rotation and scaling values by which the input image should be transformed to align it to the template. Since transformation is an estimation process, the components in the input image do not overlay exactly on the components in the template, therefore connected component technique is applied to extract contour boxes at word level to identify partially overlapping components. Geometrical features such as density, area and degree of overlapping are extracted and compared between partially overlapping components to identify and eliminate components common to input image and template image. The residue constitutes imposed layer. Experimental results indicate the efficacy of the proposed model with computational complexity. Experiment has been conducted on variety of filled-in forms, applications and bank cheques. Data sets have been generated as test sets for comparative analysis.

  19. An efficient similarity measure technique for medical image registration

    Indian Academy of Sciences (India)

    In this paper, an efficient similarity measure technique is proposed for medical image registration. The proposed approach is based on the Gerschgorin circles theorem. In this approach, image registration is carried out by considering Gerschgorin bounds of a covariance matrix of two compared images with normalized ...

  20. Remote Sensing Image Registration Using Multiple Image Features

    Directory of Open Access Journals (Sweden)

    Kun Yang

    2017-06-01

    Full Text Available Remote sensing image registration plays an important role in military and civilian fields, such as natural disaster damage assessment, military damage assessment and ground targets identification, etc. However, due to the ground relief variations and imaging viewpoint changes, non-rigid geometric distortion occurs between remote sensing images with different viewpoint, which further increases the difficulty of remote sensing image registration. To address the problem, we propose a multi-viewpoint remote sensing image registration method which contains the following contributions. (i A multiple features based finite mixture model is constructed for dealing with different types of image features. (ii Three features are combined and substituted into the mixture model to form a feature complementation, i.e., the Euclidean distance and shape context are used to measure the similarity of geometric structure, and the SIFT (scale-invariant feature transform distance which is endowed with the intensity information is used to measure the scale space extrema. (iii To prevent the ill-posed problem, a geometric constraint term is introduced into the L2E-based energy function for better behaving the non-rigid transformation. We evaluated the performances of the proposed method by three series of remote sensing images obtained from the unmanned aerial vehicle (UAV and Google Earth, and compared with five state-of-the-art methods where our method shows the best alignments in most cases.

  1. [Multimodal medical image registration using cubic spline interpolation method].

    Science.gov (United States)

    He, Yuanlie; Tian, Lianfang; Chen, Ping; Wang, Lifei; Ye, Guangchun; Mao, Zongyuan

    2007-12-01

    Based on the characteristic of the PET-CT multimodal image series, a novel image registration and fusion method is proposed, in which the cubic spline interpolation method is applied to realize the interpolation of PET-CT image series, then registration is carried out by using mutual information algorithm and finally the improved principal component analysis method is used for the fusion of PET-CT multimodal images to enhance the visual effect of PET image, thus satisfied registration and fusion results are obtained. The cubic spline interpolation method is used for reconstruction to restore the missed information between image slices, which can compensate for the shortage of previous registration methods, improve the accuracy of the registration, and make the fused multimodal images more similar to the real image. Finally, the cubic spline interpolation method has been successfully applied in developing 3D-CRT (3D Conformal Radiation Therapy) system.

  2. Efficient Variational Approaches for Deformable Registration of Images

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Akinlar

    2012-01-01

    Full Text Available Dirichlet, anisotropic, and Huber regularization terms are presented for efficient registration of deformable images. Image registration, an ill-posed optimization problem, is solved using a gradient-descent-based method and some fundamental theorems in calculus of variations. Euler-Lagrange equations with homogeneous Neumann boundary conditions are obtained. These equations are discretized by multigrid and finite difference numerical techniques. The method is applied to the registration of brain MR images of size 65×65. Computational results indicate that the presented method is quite fast and efficient in the registration of deformable medical images.

  3. Groupwise registration of MR brain images with tumors

    Science.gov (United States)

    Tang, Zhenyu; Wu, Yihong; Fan, Yong

    2017-09-01

    A novel groupwise image registration framework is developed for registering MR brain images with tumors. Our method iteratively estimates a normal-appearance counterpart for each tumor image to be registered and constructs a directed graph (digraph) of normal-appearance images to guide the groupwise image registration. Particularly, our method maps each tumor image to its normal appearance counterpart by identifying and inpainting brain tumor regions with intensity information estimated using a low-rank plus sparse matrix decomposition based image representation technique. The estimated normal-appearance images are groupwisely registered to a group center image guided by a digraph of images so that the total length of ‘image registration paths’ to be the minimum, and then the original tumor images are warped to the group center image using the resulting deformation fields. We have evaluated our method based on both simulated and real MR brain tumor images. The registration results were evaluated with overlap measures of corresponding brain regions and average entropy of image intensity information, and Wilcoxon signed rank tests were adopted to compare different methods with respect to their regional overlap measures. Compared with a groupwise image registration method that is applied to normal-appearance images estimated using the traditional low-rank plus sparse matrix decomposition based image inpainting, our method achieved higher image registration accuracy with statistical significance (p  =  7.02  ×  10-9).

  4. Imaging of the Macula Indicates Early Completion of Structural Deficit in Autosomal-Dominant Optic Atrophy

    DEFF Research Database (Denmark)

    Rönnbäck, Cecilia; Milea, Dan; Larsen, Michael

    2013-01-01

    Optical coherence tomography (OCT) enables 3-dimensional imaging of the retina, including the layer of ganglion cells that supplies the optic nerve with its axons. We tested OCT as means of diagnosing and phenotyping autosomal-dominant optic atrophy (ADOA)....

  5. Image registration with auto-mapped control volumes

    International Nuclear Information System (INIS)

    Schreibmann, Eduard; Xing Lei

    2006-01-01

    Many image registration algorithms rely on the use of homologous control points on the two input image sets to be registered. In reality, the interactive identification of the control points on both images is tedious, difficult, and often a source of error. We propose a two-step algorithm to automatically identify homologous regions that are used as a priori information during the image registration procedure. First, a number of small control volumes having distinct anatomical features are identified on the model image in a somewhat arbitrary fashion. Instead of attempting to find their correspondences in the reference image through user interaction, in the proposed method, each of the control regions is mapped to the corresponding part of the reference image by using an automated image registration algorithm. A normalized cross-correlation (NCC) function or mutual information was used as the auto-mapping metric and a limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) was employed to optimize the function to find the optimal mapping. For rigid registration, the transformation parameters of the system are obtained by averaging that derived from the individual control volumes. In our deformable calculation, the mapped control volumes are treated as the nodes or control points with known positions on the two images. If the number of control volumes is not enough to cover the whole image to be registered, additional nodes are placed on the model image and then located on the reference image in a manner similar to the conventional BSpline deformable calculation. For deformable registration, the established correspondence by the auto-mapped control volumes provides valuable guidance for the registration calculation and greatly reduces the dimensionality of the problem. The performance of the two-step registrations was applied to three rigid registration cases (two PET-CT registrations and a brain MRI-CT registration) and one deformable registration of

  6. Macula on Europa

    Science.gov (United States)

    1997-01-01

    This image of Europa, an icy satellite of Jupiter about the size of the Earth's Moon, was obtained from a range of 7415 miles (11933 kilometers) by the Galileo spacecraft during its fourth orbit around Jupiter and its first close pass of Europa. The image spans 30 miles by 57 miles (48 km by 91 km) and shows features as small as 800 feet (240 meters) across. The large circular feature centered in the upper middle of the image is called a macula, and could be the scar of a large meteorite impact. The surface of Europa is composed mostly of water ice, so large impact craters on Europa could look different from large bowl-shaped depressions formed by impact into rock, such as on the Moon. On Europa's icy surface, the original impact crater has been modified into a central zone of rugged topography surrounded by circular fractures which reflect adjustments to stress in the surrounding icy crust.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  7. Constrained non-rigid registration for whole body image registration: method and validation

    Science.gov (United States)

    Li, Xia; Yankeelov, Thomas E.; Peterson, Todd E.; Gore, John C.; Dawant, Benoit M.

    2007-03-01

    3D intra- and inter-subject registration of image volumes is important for tasks that include measurements and quantification of temporal/longitudinal changes, atlas-based segmentation, deriving population averages, or voxel and tensor-based morphometry. A number of methods have been proposed to tackle this problem but few of them have focused on the problem of registering whole body image volumes acquired either from humans or small animals. These image volumes typically contain a large number of articulated structures, which makes registration more difficult than the registration of head images, to which the vast majority of registration algorithms have been applied. To solve this problem, we have previously proposed an approach, which initializes an intensity-based non-rigid registration algorithm with a point based registration technique [1, 2]. In this paper, we introduce new constraints into our non-rigid registration algorithm to prevent the bones from being deformed inaccurately. Results we have obtained show that the new constrained algorithm leads to better registration results than the previous one.

  8. Learning-Based Approaches to Deformable Image Registration

    NARCIS (Netherlands)

    Münzing, SEA

    2014-01-01

    Accurate registration of images is an important and often crucial step in many areas of image processing and analysis, yet it is only used in a small percentage of possible applications. Automated registration methods are not considered to be sufficiently robust to handle complex deformations and

  9. Elastic models application for thorax image registration

    International Nuclear Information System (INIS)

    Correa Prado, Lorena S; Diaz, E Andres Valdez; Romo, Raul

    2007-01-01

    This work consist of the implementation and evaluation of elastic alignment algorithms of biomedical images, which were taken at thorax level and simulated with the 4D NCAT digital phantom. Radial Basis Functions spatial transformations (RBF), a kind of spline, which allows carrying out not only global rigid deformations but also local elastic ones were applied, using a point-matching method. The applied functions were: Thin Plate Spline (TPS), Multiquadric (MQ) Gaussian and B-Spline, which were evaluated and compared by means of calculating the Target Registration Error and similarity measures between the registered images (the squared sum of intensity differences (SSD) and correlation coefficient (CC)). In order to value the user incurred error in the point-matching and segmentation tasks, two algorithms were also designed that calculate the Fiduciary Localization Error. TPS and MQ were demonstrated to have better performance than the others. It was proved RBF represent an adequate model for approximating the thorax deformable behaviour. Validation algorithms showed the user error was not significant

  10. [Retinal imaging of the macula and optic disc in neurodegenerative diseases].

    Science.gov (United States)

    Turski, G N; Schmitz-Valckenberg, S; Holz, F G; Finger, R P

    2017-02-01

    Due to current demographic trends, the prevalence of mild cognitive impairment and dementia is expected to increase considerably. For potential new therapies it is important to identify patients at risk as early as possible. Currently, there is no population-based screening. Therefore, identification of biomarkers that will help screen the population at risk is urgently needed. Thus, a literature review on retinal pathology in neurodegenerative diseases was performed. PubMed was searched for studies published up to August 2016 using the following keywords: "mild cognitive impairment", "dementia", "eye", "ocular biomarkers", "OCT" and "OCT angiography". Relevant publications were selected and summarized qualitatively. Multiple studies using noninvasive in vivo optical coherence tomography (OCT) imaging showed nonspecific retinal pathological changes in patients with neurodegenerative diseases such as mild cognitive impairment, Alzheimer's and Parkinson's disease. Pathological changes in macular volume, optic nerve fiber layer thickness and the ganglion cell complex were observed. However, based on available evidence, no ocular biomarkers for neurodegeneration which could be integrated in routine clinical diagnostics have been identified. The potential use of OCT in the early diagnostic workup and monitoring of progression of neurodegenerative diseases needs to be further explored in longitudinal studies with large cohorts.

  11. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  12. Multimodality image registration with software: state-of-the-art

    Energy Technology Data Exchange (ETDEWEB)

    Slomka, Piotr J. [Cedars-Sinai Medical Center, AIM Program/Department of Imaging, Los Angeles, CA (United States); University of California, David Geffen School of Medicine, Los Angeles, CA (United States); Baum, Richard P. [Center for PET, Department of Nuclear Medicine, Bad Berka (Germany)

    2009-03-15

    Multimodality image integration of functional and anatomical data can be performed by means of dedicated hybrid imaging systems or by software image co-registration techniques. Hybrid positron emission tomography (PET)/computed tomography (CT) systems have found wide acceptance in oncological imaging, while software registration techniques have a significant role in patient-specific, cost-effective, and radiation dose-effective application of integrated imaging. Software techniques allow accurate (2-3 mm) rigid image registration of brain PET with CT and MRI. Nonlinear techniques are used in whole-body image registration, and recent developments allow for significantly accelerated computing times. Nonlinear software registration of PET with CT or MRI is required for multimodality radiation planning. Difficulties remain in the validation of nonlinear registration of soft tissue organs. The utilization of software-based multimodality image integration in a clinical environment is sometimes hindered by the lack of appropriate picture archiving and communication systems (PACS) infrastructure needed to efficiently and automatically integrate all available images into one common database. In cardiology applications, multimodality PET/single photon emission computed tomography and coronary CT angiography imaging is typically not required unless the results of one of the tests are equivocal. Software image registration is likely to be used in a complementary fashion with hybrid PET/CT or PET/magnetic resonance imaging systems. Software registration of stand-alone scans ''paved the way'' for the clinical application of hybrid scanners, demonstrating practical benefits of image integration before the hybrid dual-modality devices were available. (orig.)

  13. Multimodality image registration with software: state-of-the-art

    International Nuclear Information System (INIS)

    Slomka, Piotr J.; Baum, Richard P.

    2009-01-01

    Multimodality image integration of functional and anatomical data can be performed by means of dedicated hybrid imaging systems or by software image co-registration techniques. Hybrid positron emission tomography (PET)/computed tomography (CT) systems have found wide acceptance in oncological imaging, while software registration techniques have a significant role in patient-specific, cost-effective, and radiation dose-effective application of integrated imaging. Software techniques allow accurate (2-3 mm) rigid image registration of brain PET with CT and MRI. Nonlinear techniques are used in whole-body image registration, and recent developments allow for significantly accelerated computing times. Nonlinear software registration of PET with CT or MRI is required for multimodality radiation planning. Difficulties remain in the validation of nonlinear registration of soft tissue organs. The utilization of software-based multimodality image integration in a clinical environment is sometimes hindered by the lack of appropriate picture archiving and communication systems (PACS) infrastructure needed to efficiently and automatically integrate all available images into one common database. In cardiology applications, multimodality PET/single photon emission computed tomography and coronary CT angiography imaging is typically not required unless the results of one of the tests are equivocal. Software image registration is likely to be used in a complementary fashion with hybrid PET/CT or PET/magnetic resonance imaging systems. Software registration of stand-alone scans ''paved the way'' for the clinical application of hybrid scanners, demonstrating practical benefits of image integration before the hybrid dual-modality devices were available. (orig.)

  14. Gaussian Process Interpolation for Uncertainty Estimation in Image Registration

    Science.gov (United States)

    Wachinger, Christian; Golland, Polina; Reuter, Martin; Wells, William

    2014-01-01

    Intensity-based image registration requires resampling images on a common grid to evaluate the similarity function. The uncertainty of interpolation varies across the image, depending on the location of resampled points relative to the base grid. We propose to perform Bayesian inference with Gaussian processes, where the covariance matrix of the Gaussian process posterior distribution estimates the uncertainty in interpolation. The Gaussian process replaces a single image with a distribution over images that we integrate into a generative model for registration. Marginalization over resampled images leads to a new similarity measure that includes the uncertainty of the interpolation. We demonstrate that our approach increases the registration accuracy and propose an efficient approximation scheme that enables seamless integration with existing registration methods. PMID:25333127

  15. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  16. Registration accuracy and quality of real-life images.

    Directory of Open Access Journals (Sweden)

    Wei-Yen Hsu

    Full Text Available BACKGROUND: A common registration problem for the application of consumer device is to align all the acquired image sequences into a complete scene. Image alignment requires a registration algorithm that will compensate as much as possible for geometric variability among images. However, images captured views from a real scene usually produce different distortions. Some are derived from the optic characteristics of image sensors, and others are caused by the specific scenes and objects. METHODOLOGY/PRINCIPAL FINDINGS: An image registration algorithm considering the perspective projection is proposed for the application of consumer devices in this study. It exploits a multiresolution wavelet-based method to extract significant features. An analytic differential approach is then proposed to achieve fast convergence of point matching. Finally, the registration accuracy is further refined to obtain subpixel precision by a feature-based modified Levenberg-Marquardt method. Due to its feature-based and nonlinear characteristic, it converges considerably faster than most other methods. In addition, vignette compensation and color difference adjustment are also performed to further improve the quality of registration results. CONCLUSIONS/SIGNIFICANCE: The performance of the proposed method is evaluated by testing the synthetic and real images acquired by a hand-held digital still camera and in comparison with two registration techniques in terms of the squared sum of intensity differences (SSD and correlation coefficient (CC. The results indicate that the proposed method is promising in registration accuracy and quality, which are statistically significantly better than other two approaches.

  17. The role of image registration in brain mapping

    Science.gov (United States)

    Toga, A.W.; Thompson, P.M.

    2008-01-01

    Image registration is a key step in a great variety of biomedical imaging applications. It provides the ability to geometrically align one dataset with another, and is a prerequisite for all imaging applications that compare datasets across subjects, imaging modalities, or across time. Registration algorithms also enable the pooling and comparison of experimental findings across laboratories, the construction of population-based brain atlases, and the creation of systems to detect group patterns in structural and functional imaging data. We review the major types of registration approaches used in brain imaging today. We focus on their conceptual basis, the underlying mathematics, and their strengths and weaknesses in different contexts. We describe the major goals of registration, including data fusion, quantification of change, automated image segmentation and labeling, shape measurement, and pathology detection. We indicate that registration algorithms have great potential when used in conjunction with a digital brain atlas, which acts as a reference system in which brain images can be compared for statistical analysis. The resulting armory of registration approaches is fundamental to medical image analysis, and in a brain mapping context provides a means to elucidate clinical, demographic, or functional trends in the anatomy or physiology of the brain. PMID:19890483

  18. A Novel Technique for Prealignment in Multimodality Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Wu Zhou

    2014-01-01

    Full Text Available Image pair is often aligned initially based on a rigid or affine transformation before a deformable registration method is applied in medical image registration. Inappropriate initial registration may compromise the registration speed or impede the convergence of the optimization algorithm. In this work, a novel technique was proposed for prealignment in both monomodality and multimodality image registration based on statistical correlation of gradient information. A simple and robust algorithm was proposed to determine the rotational differences between two images based on orientation histogram matching accumulated from local orientation of each pixel without any feature extraction. Experimental results showed that it was effective to acquire the orientation angle between two unregistered images with advantages over the existed method based on edge-map in multimodalities. Applying the orientation detection into the registration of CT/MR, T1/T2 MRI, and monomadality images with respect to rigid and nonrigid deformation improved the chances of finding the global optimization of the registration and reduced the search space of optimization.

  19. A novel 3D volumetric voxel registration technique for volume-view-guided image registration of multiple imaging modalities

    International Nuclear Information System (INIS)

    Li Guang; Xie Huchen; Ning, Holly; Capala, Jacek; Arora, Barbara C.; Coleman, C. Norman; Camphausen, Kevin; Miller, Robert W.

    2005-01-01

    Purpose: To provide more clinically useful image registration with improved accuracy and reduced time, a novel technique of three-dimensional (3D) volumetric voxel registration of multimodality images is developed. Methods and Materials: This technique can register up to four concurrent images from multimodalities with volume view guidance. Various visualization effects can be applied, facilitating global and internal voxel registration. Fourteen computed tomography/magnetic resonance (CT/MR) image sets and two computed tomography/positron emission tomography (CT/PET) image sets are used. For comparison, an automatic registration technique using maximization of mutual information (MMI) and a three-orthogonal-planar (3P) registration technique are used. Results: Visually sensitive registration criteria for CT/MR and CT/PET have been established, including the homogeneity of color distribution. Based on the registration results of 14 CT/MR images, the 3D voxel technique is in excellent agreement with the automatic MMI technique and is indicatory of a global positioning error (defined as the means and standard deviations of the error distribution) using the 3P pixel technique: 1.8 deg ± 1.2 deg in rotation and 2.0 ± 1.3 (voxel unit) in translation. To the best of our knowledge, this is the first time that such positioning error has been addressed. Conclusion: This novel 3D voxel technique establishes volume-view-guided image registration of up to four modalities. It improves registration accuracy with reduced time, compared with the 3P pixel technique. This article suggests that any interactive and automatic registration should be safeguarded using the 3D voxel technique

  20. Image Registration Using Redundant Wavelet Transforms

    National Research Council Canada - National Science Library

    Brown, Richard

    2001-01-01

    .... In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency...

  1. Robust image registration for multiple exposure high dynamic range image synthesis

    Science.gov (United States)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  2. elastix: a toolbox for intensity-based medical image registration.

    Science.gov (United States)

    Klein, Stefan; Staring, Marius; Murphy, Keelin; Viergever, Max A; Pluim, Josien P W

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of population studies). A large number of methods for image registration are described in the literature. Unfortunately, there is not one method that works for all applications. We have therefore developed elastix, a publicly available computer program for intensity-based medical image registration. The software consists of a collection of algorithms that are commonly used to solve medical image registration problems. The modular design of elastix allows the user to quickly configure, test, and compare different registration methods for a specific application. The command-line interface enables automated processing of large numbers of data sets, by means of scripting. The usage of elastix for comparing different registration methods is illustrated with three example experiments, in which individual components of the registration method are varied.

  3. Automatic intra-modality brain image registration method

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Ardekani, B.A.; Braun, M.

    1996-01-01

    Full text: Registration of 3D images of brain of the same or different subjects has potential importance in clinical diagnosis, treatment planning and neurological research. The broad aim of our work is to produce an automatic and robust intra-modality, brain image registration algorithm for intra-subject and inter-subject studies. Our algorithm is composed of two stages. Initial alignment is achieved by finding the values of nine transformation parameters (representing translation, rotation and scale) that minimise the nonoverlapping regions of the head. This is achieved by minimisation of the sum of the exclusive OR of two binary head images, produced using the head extraction procedure described by Ardekani et al. (J Comput Assist Tomogr, 19:613-623, 1995). The initial alignment successfully determines the scale parameters and gross translation and rotation parameters. Fine alignment uses an objective function described for inter-modality registration in Ardekani et al. (ibid.). The algorithm segments one of the images to be aligned into a set of connected components using K-means clustering. Registration is achieved by minimising the K-means variance of the segmentation induced in the other image. Similarity of images of the same modality makes the method attractive for intra-modality registration. A 3D MR image, with voxel dimensions, 2x2x6 mm, was misaligned. The registered image shows visually accurate registration. The average displacement of a pixel from its correct location was measured to be 3.3 mm. The algorithm was tested on intra-subject MR images and was found to produce good qualitative results. Using the data available, the algorithm produced promising qualitative results in intra-subject registration. Further work is necessary in its application to intersubject registration, due to large variability in brain structure between subjects. Clinical evaluation of the algorithm for selected applications is required

  4. Supervised Quality Assessment Of Medical Image Registration: Application to intra-patient CT lung registration

    NARCIS (Netherlands)

    Muenzing, S.E.; Ginneken, B. van; Murphy, K.; Pluim, J.P.

    2012-01-01

    A novel method for automatic quality assessment of medical image registration is presented. The method is based on supervised learning of local alignment patterns, which are captured by statistical image features at distinctive landmark points. A two-stage classifier cascade, employing an optimal

  5. Supervised quality assessment of medical image registration : application to intra-patient CT lung registration

    NARCIS (Netherlands)

    Muenzing, S.E.A.; Ginneken, van B.; Murphy, K.; Pluim, J.P.W.

    2012-01-01

    A novel method for automatic quality assessment of medical image registration is presented. The method is based on supervised learning of local alignment patterns, which are captured by statistical image features at distinctive landmark points. A two-stage classifier cascade, employing an optimal

  6. Multimodal image registration based on binary gradient angle descriptor.

    Science.gov (United States)

    Jiang, Dongsheng; Shi, Yonghong; Yao, Demin; Fan, Yifeng; Wang, Manning; Song, Zhijian

    2017-12-01

    Multimodal image registration plays an important role in image-guided interventions/therapy and atlas building, and it is still a challenging task due to the complex intensity variations in different modalities. The paper addresses the problem and proposes a simple, compact, fast and generally applicable modality-independent binary gradient angle descriptor (BGA) based on the rationale of gradient orientation alignment. The BGA can be easily calculated at each voxel by coding the quadrant in which a local gradient vector falls, and it has an extremely low computational complexity, requiring only three convolutions, two multiplication operations and two comparison operations. Meanwhile, the binarized encoding of the gradient orientation makes the BGA more resistant to image degradations compared with conventional gradient orientation methods. The BGA can extract similar feature descriptors for different modalities and enable the use of simple similarity measures, which makes it applicable within a wide range of optimization frameworks. The results for pairwise multimodal and monomodal registrations between various images (T1, T2, PD, T1c, Flair) consistently show that the BGA significantly outperforms localized mutual information. The experimental results also confirm that the BGA can be a reliable alternative to the sum of absolute difference in monomodal image registration. The BGA can also achieve an accuracy of [Formula: see text], similar to that of the SSC, for the deformable registration of inhale and exhale CT scans. Specifically, for the highly challenging deformable registration of preoperative MRI and 3D intraoperative ultrasound images, the BGA achieves a similar registration accuracy of [Formula: see text] compared with state-of-the-art approaches, with a computation time of 18.3 s per case. The BGA improves the registration performance in terms of both accuracy and time efficiency. With further acceleration, the framework has the potential for

  7. System and method for image registration of multiple video streams

    Science.gov (United States)

    Dillavou, Marcus W.; Shum, Phillip Corey; Guthrie, Baron L.; Shenai, Mahesh B.; Deaton, Drew Steven; May, Matthew Benton

    2018-02-06

    Provided herein are methods and systems for image registration from multiple sources. A method for image registration includes rendering a common field of interest that reflects a presence of a plurality of elements, wherein at least one of the elements is a remote element located remotely from another of the elements and updating the common field of interest such that the presence of the at least one of the elements is registered relative to another of the elements.

  8. Avoiding Stair-Step Artifacts in Image Registration for GOES-R Navigation and Registration Assessment

    Science.gov (United States)

    Grycewicz, Thomas J.; Tan, Bin; Isaacson, Peter J.; De Luccia, Frank J.; Dellomo, John

    2016-01-01

    In developing software for independent verification and validation (IVV) of the Image Navigation and Registration (INR) capability for the Geostationary Operational Environmental Satellite R Series (GOES-R) Advanced Baseline Imager (ABI), we have encountered an image registration artifact which limits the accuracy of image offset estimation at the subpixel scale using image correlation. Where the two images to be registered have the same pixel size, subpixel image registration preferentially selects registration values where the image pixel boundaries are close to lined up. Because of the shape of a curve plotting input displacement to estimated offset, we call this a stair-step artifact. When one image is at a higher resolution than the other, the stair-step artifact is minimized by correlating at the higher resolution. For validating ABI image navigation, GOES-R images are correlated with Landsat-based ground truth maps. To create the ground truth map, the Landsat image is first transformed to the perspective seen from the GOES-R satellite, and then is scaled to an appropriate pixel size. Minimizing processing time motivates choosing the map pixels to be the same size as the GOES-R pixels. At this pixel size image processing of the shift estimate is efficient, but the stair-step artifact is present. If the map pixel is very small, stair-step is not a problem, but image correlation is computation-intensive. This paper describes simulation-based selection of the scale for truth maps for registering GOES-R ABI images.

  9. Assessment of rigid multi-modality image registration consistency using the multiple sub-volume registration (MSR) method

    International Nuclear Information System (INIS)

    Ceylan, C; Heide, U A van der; Bol, G H; Lagendijk, J J W; Kotte, A N T J

    2005-01-01

    Registration of different imaging modalities such as CT, MRI, functional MRI (fMRI), positron (PET) and single photon (SPECT) emission tomography is used in many clinical applications. Determining the quality of any automatic registration procedure has been a challenging part because no gold standard is available to evaluate the registration. In this note we present a method, called the 'multiple sub-volume registration' (MSR) method, for assessing the consistency of a rigid registration. This is done by registering sub-images of one data set on the other data set, performing a crude non-rigid registration. By analysing the deviations (local deformations) of the sub-volume registrations from the full registration we get a measure of the consistency of the rigid registration. Registration of 15 data sets which include CT, MR and PET images for brain, head and neck, cervix, prostate and lung was performed utilizing a rigid body registration with normalized mutual information as the similarity measure. The resulting registrations were classified as good or bad by visual inspection. The resulting registrations were also classified using our MSR method. The results of our MSR method agree with the classification obtained from visual inspection for all cases (p < 0.02 based on ANOVA of the good and bad groups). The proposed method is independent of the registration algorithm and similarity measure. It can be used for multi-modality image data sets and different anatomic sites of the patient. (note)

  10. Robust linear registration of CT images using random regression forests

    Science.gov (United States)

    Konukoglu, Ender; Criminisi, Antonio; Pathak, Sayan; Robertson, Duncan; White, Steve; Haynor, David; Siddiqui, Khan

    2011-03-01

    Global linear registration is a necessary first step for many different tasks in medical image analysis. Comparing longitudinal studies1, cross-modality fusion2, and many other applications depend heavily on the success of the automatic registration. The robustness and efficiency of this step is crucial as it affects all subsequent operations. Most common techniques cast the linear registration problem as the minimization of a global energy function based on the image intensities. Although these algorithms have proved useful, their robustness in fully automated scenarios is still an open question. In fact, the optimization step often gets caught in local minima yielding unsatisfactory results. Recent algorithms constrain the space of registration parameters by exploiting implicit or explicit organ segmentations, thus increasing robustness4,5. In this work we propose a novel robust algorithm for automatic global linear image registration. Our method uses random regression forests to estimate posterior probability distributions for the locations of anatomical structures - represented as axis aligned bounding boxes6. These posterior distributions are later integrated in a global linear registration algorithm. The biggest advantage of our algorithm is that it does not require pre-defined segmentations or regions. Yet it yields robust registration results. We compare the robustness of our algorithm with that of the state of the art Elastix toolbox7. Validation is performed via 1464 pair-wise registrations in a database of very diverse 3D CT images. We show that our method decreases the "failure" rate of the global linear registration from 12.5% (Elastix) to only 1.9%.

  11. Quicksilver: Fast predictive image registration - A deep learning approach.

    Science.gov (United States)

    Yang, Xiao; Kwitt, Roland; Styner, Martin; Niethammer, Marc

    2017-09-01

    This paper introduces Quicksilver, a fast deformable image registration method. Quicksilver registration for image-pairs works by patch-wise prediction of a deformation model based directly on image appearance. A deep encoder-decoder network is used as the prediction model. While the prediction strategy is general, we focus on predictions for the Large Deformation Diffeomorphic Metric Mapping (LDDMM) model. Specifically, we predict the momentum-parameterization of LDDMM, which facilitates a patch-wise prediction strategy while maintaining the theoretical properties of LDDMM, such as guaranteed diffeomorphic mappings for sufficiently strong regularization. We also provide a probabilistic version of our prediction network which can be sampled during the testing time to calculate uncertainties in the predicted deformations. Finally, we introduce a new correction network which greatly increases the prediction accuracy of an already existing prediction network. We show experimental results for uni-modal atlas-to-image as well as uni-/multi-modal image-to-image registrations. These experiments demonstrate that our method accurately predicts registrations obtained by numerical optimization, is very fast, achieves state-of-the-art registration results on four standard validation datasets, and can jointly learn an image similarity measure. Quicksilver is freely available as an open-source software. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Behaviors study of image registration algorithms in image guided radiation therapy

    International Nuclear Information System (INIS)

    Zou Lian; Hou Qing

    2008-01-01

    Objective: Study the behaviors of image registration algorithms, and analyze the elements which influence the performance of image registrations. Methods: Pre-known corresponding coordinates were appointed for reference image and moving image, and then the influence of region of interest (ROI) selection, transformation function initial parameters and coupled parameter spaces on registration results were studied with a software platform developed in home. Results: Region of interest selection had a manifest influence on registration performance. An improperly chosen ROI resulted in a bad registration. Transformation function initial parameters selection based on pre-known information could improve the accuracy of image registration. Coupled parameter spaces would enhance the dependence of image registration algorithm on ROI selection. Conclusions: It is necessary for clinic IGRT to obtain a ROI selection strategy (depending on specific commercial software) correlated to tumor sites. Three suggestions for image registration technique developers are automatic selection of the initial parameters of transformation function based on pre-known information, developing specific image registration algorithm for specific image feature, and assembling real-time image registration algorithms according to tumor sites selected by software user. (authors)

  13. On removing interpolation and resampling artifacts in rigid image registration.

    Science.gov (United States)

    Aganj, Iman; Yeo, Boon Thye Thomas; Sabuncu, Mert R; Fischl, Bruce

    2013-02-01

    We show that image registration using conventional interpolation and summation approximations of continuous integrals can generally fail because of resampling artifacts. These artifacts negatively affect the accuracy of registration by producing local optima, altering the gradient, shifting the global optimum, and making rigid registration asymmetric. In this paper, after an extensive literature review, we demonstrate the causes of the artifacts by comparing inclusion and avoidance of resampling analytically. We show the sum-of-squared-differences cost function formulated as an integral to be more accurate compared with its traditional sum form in a simple case of image registration. We then discuss aliasing that occurs in rotation, which is due to the fact that an image represented in the Cartesian grid is sampled with different rates in different directions, and propose the use of oscillatory isotropic interpolation kernels, which allow better recovery of true global optima by overcoming this type of aliasing. Through our experiments on brain, fingerprint, and white noise images, we illustrate the superior performance of the integral registration cost function in both the Cartesian and spherical coordinates, and also validate the introduced radial interpolation kernel by demonstrating the improvement in registration.

  14. Non-rigid image registration using bone growth model

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Gramkow, Claus; Kreiborg, Sven

    1997-01-01

    Non-rigid registration has traditionally used physical models like elasticity and fluids. These models are very seldom valid models of the difference between the registered images. This paper presents a non-rigid registration algorithm, which uses a model of bone growth as a model of the change...... between time sequence images of the human mandible. By being able to register the images, this paper at the same time contributes to the validation of the growth model, which is based on the currently available medical theories and knowledge...

  15. Improved image registration by sparse patch-based deformation estimation.

    Science.gov (United States)

    Kim, Minjeong; Wu, Guorong; Wang, Qian; Lee, Seong-Whan; Shen, Dinggang

    2015-01-15

    Despite intensive efforts for decades, deformable image registration is still a challenging problem due to the potential large anatomical differences across individual images, which limits the registration performance. Fortunately, this issue could be alleviated if a good initial deformation can be provided for the two images under registration, which are often termed as the moving subject and the fixed template, respectively. In this work, we present a novel patch-based initial deformation prediction framework for improving the performance of existing registration algorithms. Our main idea is to estimate the initial deformation between subject and template in a patch-wise fashion by using the sparse representation technique. We argue that two image patches should follow the same deformation toward the template image if their patch-wise appearance patterns are similar. To this end, our framework consists of two stages, i.e., the training stage and the application stage. In the training stage, we register all training images to the pre-selected template, such that the deformation of each training image with respect to the template is known. In the application stage, we apply the following four steps to efficiently calculate the initial deformation field for the new test subject: (1) We pick a small number of key points in the distinctive regions of the test subject; (2) for each key point, we extract a local patch and form a coupled appearance-deformation dictionary from training images where each dictionary atom consists of the image intensity patch as well as their respective local deformations; (3) a small set of training image patches in the coupled dictionary are selected to represent the image patch of each subject key point by sparse representation. Then, we can predict the initial deformation for each subject key point by propagating the pre-estimated deformations on the selected training patches with the same sparse representation coefficients; and (4) we

  16. Remote Sensing Image Registration with Line Segments and Their Intersections

    Directory of Open Access Journals (Sweden)

    Chengjin Lyu

    2017-05-01

    Full Text Available Image registration is a basic but essential step for remote sensing image processing, and finding stable features in multitemporal images is one of the most considerable challenges in the field. The main shape contours of artificial objects (e.g., roads, buildings, farmlands, and airports can be generally described as a group of line segments, which are stable features, even in images with evident background changes (e.g., images taken before and after a disaster. In this study, a registration method that uses line segments and their intersections is proposed for multitemporal remote sensing images. First, line segments are extracted in image pyramids to unify the scales of the reference image and the test image. Then, a line descriptor based on the gradient distribution of local areas is constructed, and the segments are matched in image pyramids. Lastly, triplets of intersections of matching lines are selected to estimate affine transformation between two images. Additional corresponding intersections are provided based on the estimated transformation, and an iterative process is adopted to remove outliers. The performance of the proposed method is tested on a variety of optical remote sensing image pairs, including synthetic and real data. Compared with existing methods, our method can provide more accurate registration results, even in images with significant background changes.

  17. 3-D brain image registration using optimal morphological processing

    International Nuclear Information System (INIS)

    Loncaric, S.; Dhawan, A.P.

    1994-01-01

    The three-dimensional (3-D) registration of Magnetic Resonance (MR) and Positron Emission Tomographic (PET) images of the brain is important for analysis of the human brain and its diseases. A procedure for optimization of (3-D) morphological structuring elements, based on a genetic algorithm, is presented in the paper. The registration of the MR and PET images is done by means of a registration procedure in two major phases. In the first phase, the Iterative Principal Axis Transform (IPAR) is used for initial registration. In the second phase, the optimal shape description method based on the Morphological Signature Transform (MST) is used for final registration. The morphological processing is used to improve the accuracy of the basic IPAR method. The brain ventricle is used as a landmark for MST registration. A near-optimal structuring element obtained by means of a genetic algorithm is used in MST to describe the shape of the ventricle. The method has been tested on the set of brain images demonstrating the feasibility of approach. (author). 11 refs., 3 figs

  18. Elastix : a toolbox for intensity-based medical image registration

    NARCIS (Netherlands)

    Klein, S.; Staring, M.; Murphy, K.; Viergever, M.A.; Pluim, J.P.W.

    2010-01-01

    Medical image registration is an important task in medical image processing. It refers to the process of aligning data sets, possibly from different modalities (e.g., magnetic resonance and computed tomography), different time points (e.g., follow-up scans), and/or different subjects (in case of

  19. Supervised local error estimation for nonlinear image registration using convolutional neural networks

    NARCIS (Netherlands)

    Eppenhof, Koen A.J.; Pluim, Josien P.W.; Styner, M.A.; Angelini, E.D.

    2017-01-01

    Error estimation in medical image registration is valuable when validating, comparing, or combining registration methods. To validate a nonlinear image registration method, ideally the registration error should be known for the entire image domain. We propose a supervised method for the estimation

  20. Markerless registration for image guided surgery. Preoperative image, intraoperative video image, and patient

    International Nuclear Information System (INIS)

    Kihara, Tomohiko; Tanaka, Yuko

    1998-01-01

    Real-time and volumetric acquisition of X-ray CT, MR, and SPECT is the latest trend of the medical imaging devices. A clinical challenge is to use these multi-modality volumetric information complementary on patient in the entire diagnostic and surgical processes. The intraoperative image and patient integration intents to establish a common reference frame by image in diagnostic and surgical processes. This provides a quantitative measure during surgery, for which we have been relied mostly on doctors' skills and experiences. The intraoperative image and patient integration involves various technologies, however, we think one of the most important elements is the development of markerless registration, which should be efficient and applicable to the preoperative multi-modality data sets, intraoperative image, and patient. We developed a registration system which integrates preoperative multi-modality images, intraoperative video image, and patient. It consists of a real-time registration of video camera for intraoperative use, a markerless surface sampling matching of patient and image, our previous works of markerless multi-modality image registration of X-ray CT, MR, and SPECT, and an image synthesis on video image. We think these techniques can be used in many applications which involve video camera like devices such as video camera, microscope, and image Intensifier. (author)

  1. Development of the image registration program for portal and DRR images in radiation therapy

    International Nuclear Information System (INIS)

    Watanabe, Hiroyuki; Ito, Takeshi; Nakazeko, Kazuma; Tachibana, Atsuhi; Hashimoto, Takeyuki; Shinohara, Hiroyuki

    2012-01-01

    In this article, the authors propose an image registration program of portal images and digitally reconstructed radiography (DRR) images used as simulation images for external beam radiation therapy planning. First, the center of the radiation field in a portal image taken using a computed radiograhy cassette is matched to the center of the portal image. Then scale points projected on a DRR image and the portal image are deleted, and the portal image with the radiation field is extracted. Registration of the DRR and portal images is performed using mutual information as the registration criterion. It was found that the absolute displacement misregistrations in two directions (x, y) were 1.2±0.7 mm and 0.5±0.3 mm, respectively, and rotation disagreement about the z axis 0.3±0.3deg. It was concluded the proposed method was applicable to image registration of portal and DRR images in radiation therapy. (author)

  2. Estimation of regional lung expansion via 3D image registration

    Science.gov (United States)

    Pan, Yan; Kumar, Dinesh; Hoffman, Eric A.; Christensen, Gary E.; McLennan, Geoffrey; Song, Joo Hyun; Ross, Alan; Simon, Brett A.; Reinhardt, Joseph M.

    2005-04-01

    A method is described to estimate regional lung expansion and related biomechanical parameters using multiple CT images of the lungs, acquired at different inflation levels. In this study, the lungs of two sheep were imaged utilizing a multi-detector row CT at different lung inflations in the prone and supine positions. Using the lung surfaces and the airway branch points for guidance, a 3D inverse consistent image registration procedure was used to match different lung volumes at each orientation. The registration was validated using a set of implanted metal markers. After registration, the Jacobian of the deformation field was computed to express regional expansion or contraction. The regional lung expansion at different pressures and different orientations are compared.

  3. Entropy-Based Block Processing for Satellite Image Registration

    Directory of Open Access Journals (Sweden)

    Ikhyun Lee

    2012-11-01

    Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.

  4. Cross Correlation versus Normalized Mutual Information on Image Registration

    Science.gov (United States)

    Tan, Bin; Tilton, James C.; Lin, Guoqing

    2016-01-01

    This is the first study to quantitatively assess and compare cross correlation and normalized mutual information methods used to register images in subpixel scale. The study shows that the normalized mutual information method is less sensitive to unaligned edges due to the spectral response differences than is cross correlation. This characteristic makes the normalized image resolution a better candidate for band to band registration. Improved band-to-band registration in the data from satellite-borne instruments will result in improved retrievals of key science measurements such as cloud properties, vegetation, snow and fire.

  5. Diffusion tensor image registration using hybrid connectivity and tensor features.

    Science.gov (United States)

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-07-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. Copyright © 2013 Wiley Periodicals, Inc.

  6. Non-rigid registration of tomographic images with Fourier transforms

    International Nuclear Information System (INIS)

    Osorio, Ar; Isoardi, Ra; Mato, G

    2007-01-01

    Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time

  7. Reducing uncertainties in volumetric image based deformable organ registration

    International Nuclear Information System (INIS)

    Liang, J.; Yan, D.

    2003-01-01

    Applying volumetric image feedback in radiotherapy requires image based deformable organ registration. The foundation of this registration is the ability of tracking subvolume displacement in organs of interest. Subvolume displacement can be calculated by applying biomechanics model and the finite element method to human organs manifested on the multiple volumetric images. The calculation accuracy, however, is highly dependent on the determination of the corresponding organ boundary points. Lacking sufficient information for such determination, uncertainties are inevitable--thus diminishing the registration accuracy. In this paper, a method of consuming energy minimization was developed to reduce these uncertainties. Starting from an initial selection of organ boundary point correspondence on volumetric image sets, the subvolume displacement and stress distribution of the whole organ are calculated and the consumed energy due to the subvolume displacements is computed accordingly. The corresponding positions of the initially selected boundary points are then iteratively optimized to minimize the consuming energy under geometry and stress constraints. In this study, a rectal wall delineated from patient CT image was artificially deformed using a computer simulation and utilized to test the optimization. Subvolume displacements calculated based on the optimized boundary point correspondence were compared to the true displacements, and the calculation accuracy was thereby evaluated. Results demonstrate that a significant improvement on the accuracy of the deformable organ registration can be achieved by applying the consuming energy minimization in the organ deformation calculation

  8. Image registration based on virtual frame sequence analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H.; Ng, W.S. [Nanyang Technological University, Computer Integrated Medical Intervention Laboratory, School of Mechanical and Aerospace Engineering, Singapore (Singapore); Shi, D. (Nanyang Technological University, School of Computer Engineering, Singapore, Singpore); Wee, S.B. [Tan Tock Seng Hospital, Department of General Surgery, Singapore (Singapore)

    2007-08-15

    This paper is to propose a new framework for medical image registration with large nonrigid deformations, which still remains one of the biggest challenges for image fusion and further analysis in many medical applications. Registration problem is formulated as to recover a deformation process with the known initial state and final state. To deal with large nonlinear deformations, virtual frames are proposed to be inserted to model the deformation process. A time parameter is introduced and the deformation between consecutive frames is described with a linear affine transformation. Experiments are conducted with simple geometric deformation as well as complex deformations presented in MRI and ultrasound images. All the deformations are characterized with nonlinearity. The positive results demonstrated the effectiveness of this algorithm. The framework proposed in this paper is feasible to register medical images with large nonlinear deformations and is especially useful for sequential images. (orig.)

  9. Automated dental implantation using image-guided robotics: registration results.

    Science.gov (United States)

    Sun, Xiaoyan; McKenzie, Frederic D; Bawab, Sebastian; Li, Jiang; Yoon, Yongki; Huang, Jen-K

    2011-09-01

    One of the most important factors affecting the outcome of dental implantation is the accurate insertion of the implant into the patient's jaw bone, which requires a high degree of anatomical accuracy. With the accuracy and stability of robots, image-guided robotics is expected to provide more reliable and successful outcomes for dental implantation. Here, we proposed the use of a robot for drilling the implant site in preparation for the insertion of the implant. An image-guided robotic system for automated dental implantation is described in this paper. Patient-specific 3D models are reconstructed from preoperative Cone-beam CT images, and implantation planning is performed with these virtual models. A two-step registration procedure is applied to transform the preoperative plan of the implant insertion into intra-operative operations of the robot with the help of a Coordinate Measurement Machine (CMM). Experiments are carried out with a phantom that is generated from the patient-specific 3D model. Fiducial Registration Error (FRE) and Target Registration Error (TRE) values are calculated to evaluate the accuracy of the registration procedure. FRE values are less than 0.30 mm. Final TRE values after the two-step registration are 1.42 ± 0.70 mm (N = 5). The registration results of an automated dental implantation system using image-guided robotics are reported in this paper. Phantom experiments show that the practice of robot in the dental implantation is feasible and the system accuracy is comparable to other similar systems for dental implantation.

  10. Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks

    NARCIS (Netherlands)

    Eppenhof, K.A.J.; Pluim, J.P.W.

    2018-01-01

    Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D

  11. Collocation for diffeomorphic deformations in medical image registration

    DEFF Research Database (Denmark)

    Darkner, Sune; Pai, Akshay Sadananda Uppinakudru; Liptrot, Matthew George

    2018-01-01

    Diffeomorphic deformation is a popular choice in medical image registration. A fundamental property of diffeomorphisms is in vertibility, implying that once the relation between two points A to B is found, then the relation B to A is given per definition. Consistency is a measure of a numerical a...

  12. The Insight ToolKit Image Registration Framework

    Directory of Open Access Journals (Sweden)

    Brian eAvants

    2014-04-01

    Full Text Available Publicly available scientific resources help establish evaluation standards, provide a platform for teaching and improve reproducibility. Version 4 of the Insight ToolKit ( ITK4 seeks to es- tablish new standards in publicly available image registration methodology. ITK4 makes severaladvances in comparison to previous versions of ITK. ITK4 supports both multivariate images and objective functions; it also unifies high-dimensional (deformation field and low-dimensional (affine transformations with metrics that are reusable across transform types and with com- posite transforms that allow arbitrary series of geometric mappings to be chained together seamlessly. Metrics and optimizers take advantage of multi-core resources, when available.Furthermore, ITK4 reduces the parameter optimization burden via principled heuristics that automatically set scaling across disparate parameter types (rotations versus translations. A related approach also constrains steps sizes for gradient-based optimizers. The result is that tuning for different metrics and/or image pairs is rarely necessary allowing the researcher tomore easily focus on design/comparison of registration strategies. In total, the ITK4 contribu- tion is intended as a structure to support reproducible research practices, will provide a more extensive foundation against which to evaluate new work in image registration and also enable application level programmers a broad suite of tools on which to build. Finally, we contextu- alize this work with a reference registration evaluation study with application to pediatric brainlabeling.

  13. Preconditioned stochastic gradient descent optimisation for monomodal image registration

    NARCIS (Netherlands)

    Klein, S.; Staring, M.; Andersson, J.P.; Pluim, J.P.W.; Fichtinger, G.; Martel, A.; Peters, T.

    2011-01-01

    We present a stochastic optimisation method for intensity-based monomodal image registration. The method is based on a Robbins-Monro stochastic gradient descent method with adaptive step size estimation, and adds a preconditioning matrix. The derivation of the pre-conditioner is based on the

  14. Diffeomorphic image registration with automatic time-step adjustment

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru; Klein, S.; Sommer, Stefan Horst

    2015-01-01

    In this paper, we propose an automated Euler's time-step adjustment scheme for diffeomorphic image registration using stationary velocity fields (SVFs). The proposed variational problem aims at bounding the inverse consistency error by adaptively adjusting the number of Euler's step required to r...... accuracy as a fixed time-step scheme however at a much less computational cost....

  15. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease

    NARCIS (Netherlands)

    Shamonin, D.P.; Bron, E.E.; Lelieveldt, B.P.F.; Smits, M.; Klein, S.; Staring, M.

    2014-01-01

    Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial.

  16. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease

    NARCIS (Netherlands)

    D.P. Shamonin (Denis); E.E. Bron (Esther); B.P.F. Lelieveldt (Boudewijn); M. Smits (Marion); S. Klein (Stefan); M. Staring (Marius)

    2014-01-01

    textabstractNonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be

  17. Registration of Images with N-fold Dihedral Blur

    Czech Academy of Sciences Publication Activity Database

    Pedone, M.; Flusser, Jan; Heikkila, J.

    2015-01-01

    Roč. 24, č. 3 (2015), s. 1036-1045 ISSN 1057-7149 R&D Projects: GA ČR GA13-29225S; GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Image registration * blurred images * N-fold rotational symmetry * dihedral symmetry * phase correlation Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.735, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0441247.pdf

  18. An accelerated image matching technique for UAV orthoimage registration

    Science.gov (United States)

    Tsai, Chung-Hsien; Lin, Yu-Ching

    2017-06-01

    Using an Unmanned Aerial Vehicle (UAV) drone with an attached non-metric camera has become a popular low-cost approach for collecting geospatial data. A well-georeferenced orthoimage is a fundamental product for geomatics professionals. To achieve high positioning accuracy of orthoimages, precise sensor position and orientation data, or a number of ground control points (GCPs), are often required. Alternatively, image registration is a solution for improving the accuracy of a UAV orthoimage, as long as a historical reference image is available. This study proposes a registration scheme, including an Accelerated Binary Robust Invariant Scalable Keypoints (ABRISK) algorithm and spatial analysis of corresponding control points for image registration. To determine a match between two input images, feature descriptors from one image are compared with those from another image. A "Sorting Ring" is used to filter out uncorrected feature pairs as early as possible in the stage of matching feature points, to speed up the matching process. The results demonstrate that the proposed ABRISK approach outperforms the vector-based Scale Invariant Feature Transform (SIFT) approach where radiometric variations exist. ABRISK is 19.2 times and 312 times faster than SIFT for image sizes of 1000 × 1000 pixels and 4000 × 4000 pixels, respectively. ABRISK is 4.7 times faster than Binary Robust Invariant Scalable Keypoints (BRISK). Furthermore, the positional accuracy of the UAV orthoimage after applying the proposed image registration scheme is improved by an average of root mean square error (RMSE) of 2.58 m for six test orthoimages whose spatial resolutions vary from 6.7 cm to 10.7 cm.

  19. Advanced methods for image registration applied to JET videos

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, Teddy, E-mail: teddy.craciunescu@jet.uk [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Murari, Andrea [Consorzio RFX, Associazione EURATOM-ENEA per la Fusione, Padova (Italy); Gelfusa, Michela [Associazione EURATOM-ENEA – University of Rome “Tor Vergata”, Roma (Italy); Tiseanu, Ion; Zoita, Vasile [EURATOM-MEdC Association, NILPRP, Bucharest (Romania); Arnoux, Gilles [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon (United Kingdom)

    2015-10-15

    Graphical abstract: - Highlights: • Development of an image registration method for JET IR and fast visible cameras. • Method based on SIFT descriptors and coherent point drift points set registration technique. • Method able to deal with extremely noisy images and very low luminosity images. • Computation time compatible with the inter-shot analysis. - Abstract: The last years have witnessed a significant increase in the use of digital cameras on JET. They are routinely applied for imaging in the IR and visible spectral regions. One of the main technical difficulties in interpreting the data of camera based diagnostics is the presence of movements of the field of view. Small movements occur due to machine shaking during normal pulses while large ones may arise during disruptions. Some cameras show a correlation of image movement with change of magnetic field strength. For deriving unaltered information from the videos and for allowing correct interpretation an image registration method, based on highly distinctive scale invariant feature transform (SIFT) descriptors and on the coherent point drift (CPD) points set registration technique, has been developed. The algorithm incorporates a complex procedure for rejecting outliers. The method has been applied for vibrations correction to videos collected by the JET wide angle infrared camera and for the correction of spurious rotations in the case of the JET fast visible camera (which is equipped with an image intensifier). The method has proved to be able to deal with the images provided by this camera frequently characterized by low contrast and a high level of blurring and noise.

  20. Verification and Validation of a Fingerprint Image Registration Software

    Directory of Open Access Journals (Sweden)

    Liu Yan

    2006-01-01

    Full Text Available The need for reliable identification and authentication is driving the increased use of biometric devices and systems. Verification and validation techniques applicable to these systems are rather immature and ad hoc, yet the consequences of the wide deployment of biometric systems could be significant. In this paper we discuss an approach towards validation and reliability estimation of a fingerprint registration software. Our validation approach includes the following three steps: (a the validation of the source code with respect to the system requirements specification; (b the validation of the optimization algorithm, which is in the core of the registration system; and (c the automation of testing. Since the optimization algorithm is heuristic in nature, mathematical analysis and test results are used to estimate the reliability and perform failure analysis of the image registration module.

  1. Image registration in the brain: a test of clinical accuracy

    International Nuclear Information System (INIS)

    Rosenman, Julian; Miller, Elizabeth P.; Rinker, Lillian; Mukherji, Suresh; Tracton, Gregg; Cullip, Tim J.; Muller, Keith E.; DeLuca, Marla C.; Major, Stacey A.; Sailer, Scott; Varia, Mahesh

    1997-01-01

    Purpose/Objective: Accurate localization of tumor and normal structures is a critical step in the radiation treatment planning processes and has direct implications for tumor control success as well as normal tissue morbidity. We conducted a study to determine the accuracy of transferring tumor information from diagnostic images to the simulation films and planning CT with conventional methods using the best clinical judgment and compared that to tumor localization using 3D registration software. Materials and Methods: We measured the accuracy with which experienced clinicians could localize tumor volume from diagnostic images to either simulation films or a planning CT, with and without 3D registration software. To obtain absolute registration truth we used the method of identical pairs wherein a CT data set was duplicated and one copy resliced along a different plane than the original while maintaining the exact mathematical transformation between them. A tumor was then added to the resliced CT which became the surrogate diagnostic image. Because we were concerned that a CT/CT pair might be too easy to register, a simulated MR made by re-colorizing the resliced CT (to become a facsimile MR or fMR) was also used as a surrogate diagnostic image. Finally we studied the registration accuracy when a CT/(real)MR pair was used. The registration in this case could not be guaranteed to be exact, but the studies were obtained under carefully controlled conditions and were registered from bony landmarks using commercial radiosurgery software. A team of experts then placed the tumor from the resliced CT, fMR, or real MR to an AP and lateral 'isocenter simulation film' (a digitally reconstructed radiograph made from the unmarked CT) and to the 'planning CT' - also the unmarked CT. A registration of the data sets (CT/CT, CT/fMR and CT/MR) was also done using our 3D registration software. A total of thirty-six tasks on four subjects were performed. Four analyses (each with

  2. Image registration assessment in radiotherapy image guidance based on control chart monitoring.

    Science.gov (United States)

    Xia, Wenyao; Breen, Stephen L

    2018-04-01

    Image guidance with cone beam computed tomography in radiotherapy can guarantee the precision and accuracy of patient positioning prior to treatment delivery. During the image guidance process, operators need to take great effort to evaluate the image guidance quality before correcting a patient's position. This work proposes an image registration assessment method based on control chart monitoring to reduce the effort taken by the operator. According to the control chart plotted by daily registration scores of each patient, the proposed method can quickly detect both alignment errors and image quality inconsistency. Therefore, the proposed method can provide a clear guideline for the operators to identify unacceptable image quality and unacceptable image registration with minimal effort. Experimental results demonstrate that by using control charts from a clinical database of 10 patients undergoing prostate radiotherapy, the proposed method can quickly identify out-of-control signals and find special cause of out-of-control registration events.

  3. The ANACONDA algorithm for deformable image registration in radiotherapy

    International Nuclear Information System (INIS)

    Weistrand, Ola; Svensson, Stina

    2015-01-01

    Purpose: The purpose of this work was to describe a versatile algorithm for deformable image registration with applications in radiotherapy and to validate it on thoracic 4DCT data as well as CT/cone beam CT (CBCT) data. Methods: ANAtomically CONstrained Deformation Algorithm (ANACONDA) combines image information (i.e., intensities) with anatomical information as provided by contoured image sets. The registration problem is formulated as a nonlinear optimization problem and solved with an in-house developed solver, tailored to this problem. The objective function, which is minimized during optimization, is a linear combination of four nonlinear terms: 1. image similarity term; 2. grid regularization term, which aims at keeping the deformed image grid smooth and invertible; 3. a shape based regularization term which works to keep the deformation anatomically reasonable when regions of interest are present in the reference image; and 4. a penalty term which is added to the optimization problem when controlling structures are used, aimed at deforming the selected structure in the reference image to the corresponding structure in the target image. Results: To validate ANACONDA, the authors have used 16 publically available thoracic 4DCT data sets for which target registration errors from several algorithms have been reported in the literature. On average for the 16 data sets, the target registration error is 1.17 ± 0.87 mm, Dice similarity coefficient is 0.98 for the two lungs, and image similarity, measured by the correlation coefficient, is 0.95. The authors have also validated ANACONDA using two pelvic cases and one head and neck case with planning CT and daily acquired CBCT. Each image has been contoured by a physician (radiation oncologist) or experienced radiation therapist. The results are an improvement with respect to rigid registration. However, for the head and neck case, the sample set is too small to show statistical significance. Conclusions: ANACONDA

  4. An efficient direct method for image registration of flat objects

    Science.gov (United States)

    Nikolaev, Dmitry; Tihonkih, Dmitrii; Makovetskii, Artyom; Voronin, Sergei

    2017-09-01

    Image alignment of rigid surfaces is a rapidly developing area of research and has many practical applications. Alignment methods can be roughly divided into two types: feature-based methods and direct methods. Known SURF and SIFT algorithms are examples of the feature-based methods. Direct methods refer to those that exploit the pixel intensities without resorting to image features and image-based deformations are general direct method to align images of deformable objects in 3D space. Nevertheless, it is not good for the registration of images of 3D rigid objects since the underlying structure cannot be directly evaluated. In the article, we propose a model that is suitable for image alignment of rigid flat objects under various illumination models. The brightness consistency assumptions used for reconstruction of optimal geometrical transformation. Computer simulation results are provided to illustrate the performance of the proposed algorithm for computing of an accordance between pixels of two images.

  5. Registration and recognition in images and videos

    CERN Document Server

    Battiato, Sebastiano; Farinella, Giovanni

    2014-01-01

    Computer vision is the science and technology of making machines that see. It is concerned with the theory, design and implementation of algorithms that can automatically process visual data to recognize objects, track and recover their shape and spatial layout. The International Computer Vision Summer School - ICVSS was established in 2007 to provide both an objective and clear overview and an in-depth analysis of the state-of-the-art  research in Computer Vision. The courses are delivered by world renowned experts in the field, from both academia and industry, and cover both theoretical and practical aspects of real Computer Vision problems.  The school is organized every year by University of Cambridge (Computer Vision and Robotics Group) and University of Catania (Image Processing Lab). Different topics are covered each year.This edited volume contains a selection of articles covering some of the talks and tutorials held during the last editions of the school. The chapters provide an in-depth overview o...

  6. Image registration via optimization over disjoint image regions

    Science.gov (United States)

    Pitts, Todd; Hathaway, Simon; Karelitz, David B.; Sandusky, John; Laine, Mark Richard

    2018-02-06

    Technologies pertaining to registering a target image with a base image are described. In a general embodiment, the base image is selected from a set of images, and the target image is an image in the set of images that is to be registered to the base image. A set of disjoint regions of the target image is selected, and a transform to be applied to the target image is computed based on the optimization of a metric over the selected set of disjoint regions. The transform is applied to the target image so as to register the target image with the base image.

  7. Multi-Modality Registration And Fusion Of Medical Image Data

    International Nuclear Information System (INIS)

    Kassak, P.; Vencko, D.; Cerovsky, I.

    2008-01-01

    Digitalisation of health care providing facilities allows US to maximize the usage of digital data from one patient obtained by various modalities. Complex view on to the problem can be achieved from the site of morphology as well as functionality. Multi-modal registration and fusion of medical image data is one of the examples that provides improved insight and allows more precise approach and treatment. (author)

  8. Learning-based deformable image registration for infant MR images in the first year of life.

    Science.gov (United States)

    Hu, Shunbo; Wei, Lifang; Gao, Yaozong; Guo, Yanrong; Wu, Guorong; Shen, Dinggang

    2017-01-01

    Many brain development studies have been devoted to investigate dynamic structural and functional changes in the first year of life. To quantitatively measure brain development in such a dynamic period, accurate image registration for different infant subjects with possible large age gap is of high demand. Although many state-of-the-art image registration methods have been proposed for young and elderly brain images, very few registration methods work for infant brain images acquired in the first year of life, because of (a) large anatomical changes due to fast brain development and (b) dynamic appearance changes due to white-matter myelination. To address these two difficulties, we propose a learning-based registration method to not only align the anatomical structures but also alleviate the appearance differences between two arbitrary infant MR images (with large age gap) by leveraging the regression forest to predict both the initial displacement vector and appearance changes. Specifically, in the training stage, two regression models are trained separately, with (a) one model learning the relationship between local image appearance (of one development phase) and its displacement toward the template (of another development phase) and (b) another model learning the local appearance changes between the two brain development phases. Then, in the testing stage, to register a new infant image to the template, we first predict both its voxel-wise displacement and appearance changes by the two learned regression models. Since such initializations can alleviate significant appearance and shape differences between new infant image and the template, it is easy to just use a conventional registration method to refine the remaining registration. We apply our proposed registration method to align 24 infant subjects at five different time points (i.e., 2-week-old, 3-month-old, 6-month-old, 9-month-old, and 12-month-old), and achieve more accurate and robust registration

  9. Polyaffine parametrization of image registration based on geodesic flows

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Thorup, Signe Strann; Warfield, Simon K.

    2012-01-01

    Image registration based on geodesic flows has gained much popularity in recent years. We describe a novel parametrization of the velocity field in a stationary flow equation. We show that the method offers both precision, flexibility, and simplicity of evaluation. With our representation, which ...... of geodesic shooting for computational anatomy. We avoid to do warp field convolution by interpolation in a dense field, we can easily calculate warp derivatives in a reference frame of choice, and we can consequently avoid interpolation in the image space altogether....

  10. Image registration: An essential part of radiation therapy treatment planning

    International Nuclear Information System (INIS)

    Rosenman, Julian G.; Miller, Elizabeth P.; Tracton, Gregg; Cullip, Tim J.

    1998-01-01

    Purpose: We believe that a three-dimensional (3D) registration of nonplanning (diagnostic) imaging data with the planning computed tomography (CT) offers a substantial improvement in tumor target identification for many radiation therapy patients. The purpose of this article is to review and discuss our experience to date. Methods and Materials: We reviewed the charts and treatment planning records of all patients that underwent 3D radiation treatment planning in our department from June 1994 to December 1995, to learn which patients had image registration performed and why it was thought they would benefit from this approach. We also measured how much error would have been introduced into the target definition if the nonplanning imaging data had not been available and only the planning CT had been used. Results: Between June 1994 and December 1995, 106 of 246 (43%) of patients undergoing 3D treatment planning had image registration. Four reasons for performing registration were identified. First, some tumor volumes have better definition on magnetic resonance imaging (MRI) than on CT. Second, a properly contrasted diagnostic CT sometimes can show the tumor target better than can the planning CT. Third, the diagnostic CT or MR may have been preoperative, with the postoperative planning CT no longer showing the tumor. Fourth, the patient may have undergone cytoreductive chemotherapy so that the postchemotherapy planning CT no longer showed the original tumor volume. In patients in whom the planning CT did not show the tumor volume well an analysis was done to determine how the treatment plan was changed with the addition of a better tumor-defining nonplanning CT or MR. We have found that the use of this additional imaging modality changed the tumor location in the treatment plan at least 1.5 cm for half of the patients, and up to 3.0 cm for ((1)/(4)) of the patients. Conclusions: Multimodality and/or sequential imaging can substantially aid in better tumor

  11. TU-A-19A-01: Image Registration I: Deformable Image Registration, Contour Propagation and Dose Mapping: 101 and 201

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, M [The University of Michigan, Ann Arbor, MI (United States)

    2014-06-15

    Deformable image registration, contour propagation and dose mapping have become common, possibly essential tools for modern image-guided radiation therapy. Historically, these tools have been largely developed at academic medical centers and used in a rather limited and well controlled fashion. Today these tools are now available to the radiotherapy community at large, both as stand-alone applications and as integrated components of both treatment planning and treatment delivery systems. Unfortunately, the details of how these tools work and their limitations are not generally documented or described by the vendors that provide them. Although “it looks right”, determining that unphysical deformations may have occurred is crucial. Because of this, understanding how and when to use, and not use these tools to support everyday clinical decisions is far from straight forward. The goal of this session will be to present both the theory (basic and advanced) and practical clinical use of deformable image registration, contour propagation and dose mapping. To the extent possible, the “secret sauce” that different vendor use to produce reasonable/acceptable results will be described. A detailed explanation of the possible sources of errors and actual examples of these will be presented. Knowing the underlying principles of the process and understanding the confounding factors will help the practicing medical physicist be better able to make decisions (about making decisions) using these tools available. Learning Objectives: Understand the basic (101) and advanced (201) principles of deformable image registration, contour propagation and dose mapping data mapping. Understand the sources and impact of errors in registration and data mapping and the methods for evaluating the performance of these tools. Understand the clinical use and value of these tools, especially when used as a “black box”.

  12. Spatially weighted mutual information image registration for image guided radiation therapy

    International Nuclear Information System (INIS)

    Park, Samuel B.; Rhee, Frank C.; Monroe, James I.; Sohn, Jason W.

    2010-01-01

    Purpose: To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). Methods: It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically ''important'' areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/MVCT image sets. The

  13. Spatially weighted mutual information image registration for image guided radiation therapy.

    Science.gov (United States)

    Park, Samuel B; Rhee, Frank C; Monroe, James I; Sohn, Jason W

    2010-09-01

    To develop a new metric for image registration that incorporates the (sub)pixelwise differential importance along spatial location and to demonstrate its application for image guided radiation therapy (IGRT). It is well known that rigid-body image registration with mutual information is dependent on the size and location of the image subset on which the alignment analysis is based [the designated region of interest (ROI)]. Therefore, careful review and manual adjustments of the resulting registration are frequently necessary. Although there were some investigations of weighted mutual information (WMI), these efforts could not apply the differential importance to a particular spatial location since WMI only applies the weight to the joint histogram space. The authors developed the spatially weighted mutual information (SWMI) metric by incorporating an adaptable weight function with spatial localization into mutual information. SWMI enables the user to apply the selected transform to medically "important" areas such as tumors and critical structures, so SWMI is neither dominated by, nor neglects the neighboring structures. Since SWMI can be utilized with any weight function form, the authors presented two examples of weight functions for IGRT application: A Gaussian-shaped weight function (GW) applied to a user-defined location and a structures-of-interest (SOI) based weight function. An image registration example using a synthesized 2D image is presented to illustrate the efficacy of SWMI. The convergence and feasibility of the registration method as applied to clinical imaging is illustrated by fusing a prostate treatment planning CT with a clinical cone beam CT (CBCT) image set acquired for patient alignment. Forty-one trials are run to test the speed of convergence. The authors also applied SWMI registration using two types of weight functions to two head and neck cases and a prostate case with clinically acquired CBCT/ MVCT image sets. The SWMI registration with

  14. An atlas-based multimodal registration method for 2D images with discrepancy structures.

    Science.gov (United States)

    Lv, Wenchao; Chen, Houjin; Peng, Yahui; Li, Yanfeng; Li, Jupeng

    2018-06-04

    An atlas-based multimodal registration method for 2-dimension images with discrepancy structures was proposed in this paper. Atlas was utilized for complementing the discrepancy structure information in multimodal medical images. The scheme includes three steps: floating image to atlas registration, atlas to reference image registration, and field-based deformation. To evaluate the performance, a frame model, a brain model, and clinical images were employed in registration experiments. We measured the registration performance by the squared sum of intensity differences. Results indicate that this method is robust and performs better than the direct registration for multimodal images with discrepancy structures. We conclude that the proposed method is suitable for multimodal images with discrepancy structures. Graphical Abstract An Atlas-based multimodal registration method schematic diagram.

  15. A review of biomechanically informed breast image registration

    International Nuclear Information System (INIS)

    Hipwell, John H; Vavourakis, Vasileios; Mertzanidou, Thomy; Eiben, Björn; Hawkes, David J; Han, Lianghao

    2016-01-01

    Breast radiology encompasses the full range of imaging modalities from routine imaging via x-ray mammography, magnetic resonance imaging and ultrasound (both two- and three-dimensional), to more recent technologies such as digital breast tomosynthesis, and dedicated breast imaging systems for positron emission mammography and ultrasound tomography. In addition new and experimental modalities, such as Photoacoustics, Near Infrared Spectroscopy and Electrical Impedance Tomography etc, are emerging. The breast is a highly deformable structure however, and this greatly complicates visual comparison of imaging modalities for the purposes of breast screening, cancer diagnosis (including image guided biopsy), tumour staging, treatment monitoring, surgical planning and simulation of the effects of surgery and wound healing etc. Due primarily to the challenges posed by these gross, non-rigid deformations, development of automated methods which enable registration, and hence fusion, of information within and across breast imaging modalities, and between the images and the physical space of the breast during interventions, remains an active research field which has yet to translate suitable methods into clinical practice. This review describes current research in the field of breast biomechanical modelling and identifies relevant publications where the resulting models have been incorporated into breast image registration and simulation algorithms. Despite these developments there remain a number of issues that limit clinical application of biomechanical modelling. These include the accuracy of constitutive modelling, implementation of representative boundary conditions, failure to meet clinically acceptable levels of computational cost, challenges associated with automating patient-specific model generation (i.e. robust image segmentation and mesh generation) and the complexity of applying biomechanical modelling methods in routine clinical practice. (topical review)

  16. Accuracy of deformable image registration on magnetic resonance images in digital and physical phantoms.

    Science.gov (United States)

    Ger, Rachel B; Yang, Jinzhong; Ding, Yao; Jacobsen, Megan C; Fuller, Clifton D; Howell, Rebecca M; Li, Heng; Jason Stafford, R; Zhou, Shouhao; Court, Laurence E

    2017-10-01

    Accurate deformable image registration is necessary for longitudinal studies. The error associated with commercial systems has been evaluated using computed tomography (CT). Several in-house algorithms have been evaluated for use with magnetic resonance imaging (MRI), but there is still relatively little information about MRI deformable image registration. This work presents an evaluation of two deformable image registration systems, one commercial (Velocity) and one in-house (demons-based algorithm), with MRI using two different metrics to quantify the registration error. The registration error was analyzed with synthetic MR images. These images were generated from interpatient and intrapatient variation models trained on 28 patients. Four synthetic post-treatment images were generated for each of four synthetic pretreatment images, resulting in 16 image registrations for both the T1- and T2-weighted images. The synthetic post-treatment images were registered to their corresponding synthetic pretreatment image. The registration error was calculated between the known deformation vector field and the generated deformation vector field from the image registration system. The registration error was also analyzed using a porcine phantom with ten implanted 0.35-mm diameter gold markers. The markers were visible on CT but not MRI. CT, T1-weighted MR, and T2-weighted MR images were taken in four different positions. The markers were contoured on the CT images and rigidly registered to their corresponding MR images. The MR images were deformably registered and the distance between the projected marker location and true marker location was measured as the registration error. The synthetic images were evaluated only on Velocity. Root mean square errors (RMSEs) of 0.76 mm in the left-right (LR) direction, 0.76 mm in the anteroposterior (AP) direction, and 0.69 mm in the superior-inferior (SI) direction were observed for the T1-weighted MR images. RMSEs of 1.1 mm in the LR

  17. Evaluation of whole-body MR to CT deformable image registration

    NARCIS (Netherlands)

    Akbarzadeh, A.; Gutierrez, D.; Baskin, A.; Ay, M. R.; Ahmadian, A.; Alam, N. Riahi; Loevblad, K. O.; Zaidi, H.

    2013-01-01

    Multimodality image registration plays a crucial role in various clinical and research applications. The aim of this study is to present an optimized MR to CT whole-body deformable image registration algorithm and its validation using clinical studies. A 3D intermodality registration technique based

  18. Multi-modal image registration: matching MRI with histology

    Science.gov (United States)

    Alic, Lejla; Haeck, Joost C.; Klein, Stefan; Bol, Karin; van Tiel, Sandra T.; Wielopolski, Piotr A.; Bijster, Magda; Niessen, Wiro J.; Bernsen, Monique; Veenland, Jifke F.; de Jong, Marion

    2010-03-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co registration of MR images with histological sections. This work proposes a methodology to establish a detailed 3D relation between histology sections and in vivo MRI tumor data. The key features of the methodology are a very dense histological sampling (up to 100 histology slices per tumor), mutual information based non-rigid B-spline registration, the utilization of the whole 3D data sets, and the exploitation of an intermediate ex vivo MRI. In this proof of concept paper, the methodology was applied to one tumor. We found that, after registration, the visual alignment of tumor borders and internal structures was fairly accurate. Utilizing the intermediate ex vivo MRI, it was possible to account for changes caused by the excision of the tumor: we observed a tumor expansion of 20%. Also the effects of fixation, dehydration and histological sectioning could be determined: 26% shrinkage of the tumor was found. The annotation of viable tissue, performed in histology and transformed to the in vivo MRI, matched clearly with high intensity regions in MRI. With this methodology, histological annotation can be directly related to the corresponding in vivo MRI. This is a vital step for the evaluation of the feasibility of multi-spectral MRI to depict histological groundtruth.

  19. Automatic UAV Image Geo-Registration by Matching UAV Images to Georeferenced Image Data

    Directory of Open Access Journals (Sweden)

    Xiangyu Zhuo

    2017-04-01

    Full Text Available Recent years have witnessed the fast development of UAVs (unmanned aerial vehicles. As an alternative to traditional image acquisition methods, UAVs bridge the gap between terrestrial and airborne photogrammetry and enable flexible acquisition of high resolution images. However, the georeferencing accuracy of UAVs is still limited by the low-performance on-board GNSS and INS. This paper investigates automatic geo-registration of an individual UAV image or UAV image blocks by matching the UAV image(s with a previously taken georeferenced image, such as an individual aerial or satellite image with a height map attached or an aerial orthophoto with a DSM (digital surface model attached. As the biggest challenge for matching UAV and aerial images is in the large differences in scale and rotation, we propose a novel feature matching method for nadir or slightly tilted images. The method is comprised of a dense feature detection scheme, a one-to-many matching strategy and a global geometric verification scheme. The proposed method is able to find thousands of valid matches in cases where SIFT and ASIFT fail. Those matches can be used to geo-register the whole UAV image block towards the reference image data. When the reference images offer high georeferencing accuracy, the UAV images can also be geolocalized in a global coordinate system. A series of experiments involving different scenarios was conducted to validate the proposed method. The results demonstrate that our approach achieves not only decimeter-level registration accuracy, but also comparable global accuracy as the reference images.

  20. Deformable Image Registration with Inclusion of Autodetected Homologous Tissue Features

    Directory of Open Access Journals (Sweden)

    Qingsong Zhu

    2012-01-01

    Full Text Available A novel deformable registration algorithm is proposed in the application of radiation therapy. The algorithm starts with autodetection of a number of points with distinct tissue features. The feature points are then matched by using the scale invariance features transform (SIFT method. The associated feature point pairs are served as landmarks for the subsequent thin plate spline (TPS interpolation. Several registration experiments using both digital phantom and clinical data demonstrate the accuracy and efficiency of the method. For the 3D phantom case, markers with error less than 2 mm are over 85% of total test markers, and it takes only 2-3 minutes for 3D feature points association. The proposed method provides a clinically practical solution and should be valuable for various image-guided radiation therapy (IGRT applications.

  1. Reducing Interpolation Artifacts for Mutual Information Based Image Registration

    Science.gov (United States)

    Soleimani, H.; Khosravifard, M.A.

    2011-01-01

    Medical image registration methods which use mutual information as similarity measure have been improved in recent decades. Mutual Information is a basic concept of Information theory which indicates the dependency of two random variables (or two images). In order to evaluate the mutual information of two images their joint probability distribution is required. Several interpolation methods, such as Partial Volume (PV) and bilinear, are used to estimate joint probability distribution. Both of these two methods yield some artifacts on mutual information function. Partial Volume-Hanning window (PVH) and Generalized Partial Volume (GPV) methods are introduced to remove such artifacts. In this paper we show that the acceptable performance of these methods is not due to their kernel function. It's because of the number of pixels which incorporate in interpolation. Since using more pixels requires more complex and time consuming interpolation process, we propose a new interpolation method which uses only four pixels (the same as PV and bilinear interpolations) and removes most of the artifacts. Experimental results of the registration of Computed Tomography (CT) images show superiority of the proposed scheme. PMID:22606673

  2. An Advanced Rotation Invariant Descriptor for SAR Image Registration

    Directory of Open Access Journals (Sweden)

    Yuming Xiang

    2017-07-01

    Full Text Available The Scale-Invariant Feature Transform (SIFT algorithm and its many variants have been widely used in Synthetic Aperture Radar (SAR image registration. The SIFT-like algorithms maintain rotation invariance by assigning a dominant orientation for each keypoint, while the calculation of dominant orientation is not robust due to the effect of speckle noise in SAR imagery. In this paper, we propose an advanced local descriptor for SAR image registration to achieve rotation invariance without assigning a dominant orientation. Based on the improved intensity orders, we first divide a circular neighborhood into several sub-regions. Second, rotation-invariant ratio orientation histograms of each sub-region are proposed by accumulating the ratio values of different directions in a rotation-invariant coordinate system. The proposed descriptor is composed of the concatenation of the histograms of each sub-region. In order to increase the distinctiveness of the proposed descriptor, multiple image neighborhoods are aggregated. Experimental results on several satellite SAR images have shown an improvement in the matching performance over other state-of-the-art algorithms.

  3. LINE-BASED REGISTRATION OF DSM AND HYPERSPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    J. Avbelj

    2013-04-01

    Full Text Available Data fusion techniques require a good registration of all the used datasets. In remote sensing, images are usually geo-referenced using the GPS and IMU data. However, if more precise registration is required, image processing techniques can be employed. We propose a method for multi-modal image coregistration between hyperspectral images (HSI and digital surface models (DSM. The method is divided in three parts: object and line detection of the same object in HSI and DSM, line matching and determination of transformation parameters. Homogeneous coordinates are used to implement matching and adjustment of transformation parameters. The common object in HSI and DSM are building boundaries. They have apparent change in height and material, that can be detected in DSM and HSI, respectively. Thus, before the matching and transformation parameter computation, building outlines are detected and adjusted in HSI and DSM. We test the method on a HSI and two DSM, using extracted building outbounds and for comparison also extracted lines with a line detector. The results show that estimated building boundaries provide more line assignments, than using line detector.

  4. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier

    Science.gov (United States)

    Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra

    2018-03-01

    The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task.

  5. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.

    Science.gov (United States)

    Rasti, Reza; Mehridehnavi, Alireza; Rabbani, Hossein; Hajizadeh, Fedra

    2018-03-01

    The present research intends to propose a fully automatic algorithm for the classification of three-dimensional (3-D) optical coherence tomography (OCT) scans of patients suffering from abnormal macula from normal candidates. The method proposed does not require any denoising, segmentation, retinal alignment processes to assess the intraretinal layers, as well as abnormalities or lesion structures. To classify abnormal cases from the control group, a two-stage scheme was utilized, which consists of automatic subsystems for adaptive feature learning and diagnostic scoring. In the first stage, a wavelet-based convolutional neural network (CNN) model was introduced and exploited to generate B-scan representative CNN codes in the spatial-frequency domain, and the cumulative features of 3-D volumes were extracted. In the second stage, the presence of abnormalities in 3-D OCTs was scored over the extracted features. Two different retinal SD-OCT datasets are used for evaluation of the algorithm based on the unbiased fivefold cross-validation (CV) approach. The first set constitutes 3-D OCT images of 30 normal subjects and 30 diabetic macular edema (DME) patients captured from the Topcon device. The second publicly available set consists of 45 subjects with a distribution of 15 patients in age-related macular degeneration, DME, and normal classes from the Heidelberg device. With the application of the algorithm on overall OCT volumes and 10 repetitions of the fivefold CV, the proposed scheme obtained an average precision of 99.33% on dataset1 as a two-class classification problem and 98.67% on dataset2 as a three-class classification task. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  6. Image navigation and registration for the geostationary lightning mapper (GLM)

    Science.gov (United States)

    van Bezooijen, Roel W. H.; Demroff, Howard; Burton, Gregory; Chu, Donald; Yang, Shu S.

    2016-10-01

    The Geostationary Lightning Mappers (GLM) for the Geostationary Operational Environmental Satellite (GOES) GOES-R series will, for the first time, provide hemispherical lightning information 24 hours a day from longitudes of 75 and 137 degrees west. The first GLM of a series of four is planned for launch in November, 2016. Observation of lightning patterns by GLM holds promise to improve tornado warning lead times to greater than 20 minutes while halving the present false alarm rates. In addition, GLM will improve airline traffic flow management, and provide climatology data allowing us to understand the Earth's evolving climate. The paper describes the method used for translating the pixel position of a lightning event to its corresponding geodetic longitude and latitude, using the J2000 attitude of the GLM mount frame reported by the spacecraft, the position of the spacecraft, and the alignment of the GLM coordinate frame relative to its mount frame. Because the latter alignment will experience seasonal variation, this alignment is determined daily using GLM background images collected over the previous 7 days. The process involves identification of coastlines in the background images and determination of the alignment change necessary to match the detected coastline with the coastline predicted using the GSHHS database. Registration is achieved using a variation of the Lucas-Kanade algorithm where we added a dither and average technique to improve performance significantly. An innovative water mask technique was conceived to enable self-contained detection of clear coastline sections usable for registration. Extensive simulations using accurate visible images from GOES13 and GOES15 have been used to demonstrate the performance of the coastline registration method, the results of which are presented in the paper.

  7. Registration and monitoring of radiation exposure from radiological imaging

    International Nuclear Information System (INIS)

    Jungmann, F.; Pinto dos Santos, D.; Hempel, J.; Dueber, C.; Mildenberger, P.

    2013-01-01

    Strategies for reducing radiation exposure are an important part of optimizing medical imaging and therefore a relevant quality factor in radiology. Regarding the medical radiation exposure, computed tomography has a special relevance. The use of the integrating the healthcare enterprise (IHE) radiation exposure monitoring (REM) profile is the upcoming standard for organizing and collecting exposure data in radiology. Currently most installed base devices do not support this profile generating the required digital imaging and communication in medicine (DICOM) dose structured reporting (SR). For this reason different solutions had been developed to register dose exposure measurements without having the dose SR object. Registration and analysis of dose-related parameters is required for constantly optimizing examination protocols, especially computed tomography (CT) examinations based on the latest research results in order to minimize the individual radiation dose exposure from medical imaging according to the principle as low as reasonably achievable (ALARA). (orig.) [de

  8. Higher-order Spatial Accuracy in Diffeomorphic Image Registration

    DEFF Research Database (Denmark)

    Jacobs, Henry O.; Sommer, Stefan

    -jets. We show that the solutions convergence to optimal solutions of the original cost functional as the number of particles increases with a convergence rate of O(hd+k) where h is a resolution parameter. The effect of this approach over traditional particle methods is illustrated on synthetic examples......We discretize a cost functional for image registration problems by deriving Taylor expansions for the matching term. Minima of the discretized cost functionals can be computed with no spatial discretization error, and the optimal solutions are equivalent to minimal energy curves in the space of kk...

  9. Radial retinotomy in the macula.

    Science.gov (United States)

    Bovino, J A; Marcus, D F

    1984-01-01

    Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.

  10. Preparing diagnostic 3D images for image registration with planning CT images

    International Nuclear Information System (INIS)

    Tracton, Gregg S.; Miller, Elizabeth P.; Rosenman, Julian; Chang, Sha X.; Sailer, Scott; Boxwala, Azaz; Chaney, Edward L.

    1997-01-01

    Purpose: Pre-radiotherapy (pre-RT) tomographic images acquired for diagnostic purposes often contain important tumor and/or normal tissue information which is poorly defined or absent in planning CT images. Our two years of clinical experience has shown that computer-assisted 3D registration of pre-RT images with planning CT images often plays an indispensable role in accurate treatment volume definition. Often the only available format of the diagnostic images is film from which the original 3D digital data must be reconstructed. In addition, any digital data, whether reconstructed or not, must be put into a form suitable for incorporation into the treatment planning system. The purpose of this investigation was to identify all problems that must be overcome before this data is suitable for clinical use. Materials and Methods: In the past two years we have 3D-reconstructed 300 diagnostic images from film and digital sources. As a problem was discovered we built a software tool to correct it. In time we collected a large set of such tools and found that they must be applied in a specific order to achieve the correct reconstruction. Finally, a toolkit (ediScan) was built that made all these tools available in the proper manner via a pleasant yet efficient mouse-based user interface. Results: Problems we discovered included different magnifications, shifted display centers, non-parallel image planes, image planes not perpendicular to the long axis of the table-top (shearing), irregularly spaced scans, non contiguous scan volumes, multiple slices per film, different orientations for slice axes (e.g. left-right reversal), slices printed at window settings corresponding to tissues of interest for diagnostic purposes, and printing artifacts. We have learned that the specific steps to correct these problems, in order of application, are: Also, we found that fast feedback and large image capacity (at least 2000 x 2000 12-bit pixels) are essential for practical application

  11. Error estimation of deformable image registration of pulmonary CT scans using convolutional neural networks.

    Science.gov (United States)

    Eppenhof, Koen A J; Pluim, Josien P W

    2018-04-01

    Error estimation in nonlinear medical image registration is a nontrivial problem that is important for validation of registration methods. We propose a supervised method for estimation of registration errors in nonlinear registration of three-dimensional (3-D) images. The method is based on a 3-D convolutional neural network that learns to estimate registration errors from a pair of image patches. By applying the network to patches centered around every voxel, we construct registration error maps. The network is trained using a set of representative images that have been synthetically transformed to construct a set of image pairs with known deformations. The method is evaluated on deformable registrations of inhale-exhale pairs of thoracic CT scans. Using ground truth target registration errors on manually annotated landmarks, we evaluate the method's ability to estimate local registration errors. Estimation of full domain error maps is evaluated using a gold standard approach. The two evaluation approaches show that we can train the network to robustly estimate registration errors in a predetermined range, with subvoxel accuracy. We achieved a root-mean-square deviation of 0.51 mm from gold standard registration errors and of 0.66 mm from ground truth landmark registration errors.

  12. Multiresolution image registration for multimodal brain images and fusion for better neurosurgical planning

    Directory of Open Access Journals (Sweden)

    Siddeshappa Nandish

    2017-12-01

    Conclusion: The end resultant fused images are validated by the radiologists and mutual information measure is used to validate registration results. It is found that CT and MRI sequence with more number of slices gave promising results. Few cases with deformation during misregistrations recorded with low mutual information of about 0.3 and which is not acceptable and few recorded with 0.6 and above mutual information during registration gives promising results.

  13. Image Registration-Based Bolt Loosening Detection of Steel Joints

    Science.gov (United States)

    2018-01-01

    Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts. PMID:29597264

  14. Image Registration-Based Bolt Loosening Detection of Steel Joints.

    Science.gov (United States)

    Kong, Xiangxiong; Li, Jian

    2018-03-28

    Self-loosening of bolts caused by repetitive loads and vibrations is one of the common defects that can weaken the structural integrity of bolted steel joints in civil structures. Many existing approaches for detecting loosening bolts are based on physical sensors and, hence, require extensive sensor deployment, which limit their abilities to cost-effectively detect loosened bolts in a large number of steel joints. Recently, computer vision-based structural health monitoring (SHM) technologies have demonstrated great potential for damage detection due to the benefits of being low cost, easy to deploy, and contactless. In this study, we propose a vision-based non-contact bolt loosening detection method that uses a consumer-grade digital camera. Two images of the monitored steel joint are first collected during different inspection periods and then aligned through two image registration processes. If the bolt experiences rotation between inspections, it will introduce differential features in the registration errors, serving as a good indicator for bolt loosening detection. The performance and robustness of this approach have been validated through a series of experimental investigations using three laboratory setups including a gusset plate on a cross frame, a column flange, and a girder web. The bolt loosening detection results are presented for easy interpretation such that informed decisions can be made about the detected loosened bolts.

  15. A new robust markerless method for automatic image-to-patient registration in image-guided neurosurgery system.

    Science.gov (United States)

    Liu, Yinlong; Song, Zhijian; Wang, Manning

    2017-12-01

    Compared with the traditional point-based registration in the image-guided neurosurgery system, surface-based registration is preferable because it does not use fiducial markers before image scanning and does not require image acquisition dedicated for navigation purposes. However, most existing surface-based registration methods must include a manual step for coarse registration, which increases the registration time and elicits some inconvenience and uncertainty. A new automatic surface-based registration method is proposed, which applies 3D surface feature description and matching algorithm to obtain point correspondences for coarse registration and uses the iterative closest point (ICP) algorithm in the last step to obtain an image-to-patient registration. Both phantom and clinical data were used to execute automatic registrations and target registration error (TRE) calculated to verify the practicality and robustness of the proposed method. In phantom experiments, the registration accuracy was stable across different downsampling resolutions (18-26 mm) and different support radii (2-6 mm). In clinical experiments, the mean TREs of two patients by registering full head surfaces were 1.30 mm and 1.85 mm. This study introduced a new robust automatic surface-based registration method based on 3D feature matching. The method achieved sufficient registration accuracy with different real-world surface regions in phantom and clinical experiments.

  16. Patient-Specific Biomechanical Model as Whole-Body CT Image Registration Tool

    OpenAIRE

    Li, Mao; Miller, Karol; Joldes, Grand Roman; Doyle, Barry; Garlapati, Revanth Reddy; Kikinis, Ron; Wittek, Adam

    2015-01-01

    Whole-body computed tomography (CT) image registration is important for cancer diagnosis, therapy planning and treatment. Such registration requires accounting for large differences between source and target images caused by deformations of soft organs/tissues and articulated motion of skeletal structures. The registration algorithms relying solely on image processing methods exhibit deficiencies in accounting for such deformations and motion. We propose to predict the deformations and moveme...

  17. Robust surface registration using salient anatomical features for image-guided liver surgery: Algorithm and validation

    OpenAIRE

    Clements, Logan W.; Chapman, William C.; Dawant, Benoit M.; Galloway, Robert L.; Miga, Michael I.

    2008-01-01

    A successful surface-based image-to-physical space registration in image-guided liver surgery (IGLS) is critical to provide reliable guidance information to surgeons and pertinent surface displacement data for use in deformation correction algorithms. The current protocol used to perform the image-to-physical space registration involves an initial pose estimation provided by a point based registration of anatomical landmarks identifiable in both the preoperative tomograms and the intraoperati...

  18. Image Registration for PET/CT and CT Images with Particle Swarm Optimization

    International Nuclear Information System (INIS)

    Lee, Hak Jae; Kim, Yong Kwon; Lee, Ki Sung; Choi, Jong Hak; Kim, Chang Kyun; Moon, Guk Hyun; Joo, Sung Kwan; Kim, Kyeong Min; Cheon, Gi Jeong

    2009-01-01

    Image registration is a fundamental task in image processing used to match two or more images. It gives new information to the radiologists by matching images from different modalities. The objective of this study is to develop 2D image registration algorithm for PET/CT and CT images acquired by different systems at different times. We matched two CT images first (one from standalone CT and the other from PET/CT) that contain affluent anatomical information. Then, we geometrically transformed PET image according to the results of transformation parameters calculated by the previous step. We have used Affine transform to match the target and reference images. For the similarity measure, mutual information was explored. Use of particle swarm algorithm optimized the performance by finding the best matched parameter set within a reasonable amount of time. The results show good agreements of the images between PET/CT and CT. We expect the proposed algorithm can be used not only for PET/CT and CT image registration but also for different multi-modality imaging systems such as SPECT/CT, MRI/PET and so on.

  19. Image/patient registration from (partial) projection data by the Fourier phase matching method

    International Nuclear Information System (INIS)

    Weiguo Lu; You, J.

    1999-01-01

    A technique for 2D or 3D image/patient registration, PFPM (projection based Fourier phase matching method), is proposed. This technique provides image/patient registration directly from sequential tomographic projection data. The method can also deal with image files by generating 2D Radon transforms slice by slice. The registration in projection space is done by calculating a Fourier invariant (FI) descriptor for each one-dimensional projection datum, and then registering the FI descriptor by the Fourier phase matching (FPM) method. The algorithm has been tested on both synthetic and experimental data. When dealing with translated, rotated and uniformly scaled 2D image registration, the performance of the PFPM method is comparable to that of the IFPM (image based Fourier phase matching) method in robustness, efficiency, insensitivity to the offset between images, and registration time. The advantages of the former are that subpixel resolution is feasible, and it is more insensitive to image noise due to the averaging effect of the projection acquisition. Furthermore, the PFPM method offers the ability to generalize to 3D image/patient registration and to register partial projection data. By applying patient registration directly from tomographic projection data, image reconstruction is not needed in the therapy set-up verification, thus reducing computational time and artefacts. In addition, real time registration is feasible. Registration from partial projection data meets the geometry and dose requirements in many application cases and makes dynamic set-up verification possible in tomotherapy. (author)

  20. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    International Nuclear Information System (INIS)

    Werner, F.; Hofmann, M.; Them, K.; Knopp, T.; Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H.; Werner, R.; Säring, D.; Weber, O. M.

    2016-01-01

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.

  1. Geometry planning and image registration in magnetic particle imaging using bimodal fiducial markers

    Energy Technology Data Exchange (ETDEWEB)

    Werner, F., E-mail: f.werner@uke.de; Hofmann, M.; Them, K.; Knopp, T. [Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany and Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg 21073 (Germany); Jung, C.; Salamon, J.; Kaul, M. G.; Mummert, T.; Adam, G.; Ittrich, H. [Department of Diagnostic and Interventional Radiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Werner, R.; Säring, D. [Institute for Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246 (Germany); Weber, O. M. [Philips Medical Systems DMC GmbH, Hamburg 22335 (Germany)

    2016-06-15

    Purpose: Magnetic particle imaging (MPI) is a quantitative imaging modality that allows the distribution of superparamagnetic nanoparticles to be visualized. Compared to other imaging techniques like x-ray radiography, computed tomography (CT), and magnetic resonance imaging (MRI), MPI only provides a signal from the administered tracer, but no additional morphological information, which complicates geometry planning and the interpretation of MP images. The purpose of the authors’ study was to develop bimodal fiducial markers that can be visualized by MPI and MRI in order to create MP–MR fusion images. Methods: A certain arrangement of three bimodal fiducial markers was developed and used in a combined MRI/MPI phantom and also during in vivo experiments in order to investigate its suitability for geometry planning and image fusion. An algorithm for automated marker extraction in both MR and MP images and rigid registration was established. Results: The developed bimodal fiducial markers can be visualized by MRI and MPI and allow for geometry planning as well as automated registration and fusion of MR–MP images. Conclusions: To date, exact positioning of the object to be imaged within the field of view (FOV) and the assignment of reconstructed MPI signals to corresponding morphological regions has been difficult. The developed bimodal fiducial markers and the automated image registration algorithm help to overcome these difficulties.

  2. RESEARCH OF REGISTRATION APPROACHES OF THERMAL INFRARED IMAGES AND INTENSITY IMAGES OF POINT CLOUD

    Directory of Open Access Journals (Sweden)

    L. Liu

    2017-09-01

    Full Text Available In order to realize the analysis of thermal energy of the objects in 3D vision, the registration approach of thermal infrared images and TLS (Terrestrial Laser Scanner point cloud was studied. The original data was pre-processed. For the sake of making the scale and brightness contrast of the two kinds of data meet the needs of basic matching, the intensity image of point cloud was produced and projected to spherical coordinate system, histogram equalization processing was done for thermal infrared image.This paper focused on the research of registration approaches of thermal infrared images and intensity images of point cloud based on SIFT,EOH-SIFT and PIIFD operators. The latter of which is usually used for medical image matching with different spectral character. The comparison results of the experiments showed that PIIFD operator got much more accurate feature point correspondences compared to SIFT and EOH-SIFT operators. The thermal infrared image and intensity image also have ideal overlap results by quadratic polynomial transformation. Therefore, PIIFD can be used as the basic operator for the registration of thermal infrared images and intensity images, and the operator can also be further improved by incorporating the iteration method.

  3. Registration of angiographic image on real-time fluoroscopic image for image-guided percutaneous coronary intervention.

    Science.gov (United States)

    Kim, Dongkue; Park, Sangsoo; Jeong, Myung Ho; Ryu, Jeha

    2018-02-01

    In percutaneous coronary intervention (PCI), cardiologists must study two different X-ray image sources: a fluoroscopic image and an angiogram. Manipulating a guidewire while alternately monitoring the two separate images on separate screens requires a deep understanding of the anatomy of coronary vessels and substantial training. We propose 2D/2D spatiotemporal image registration of the two images in a single image in order to provide cardiologists with enhanced visual guidance in PCI. The proposed 2D/2D spatiotemporal registration method uses a cross-correlation of two ECG series in each image to temporally synchronize two separate images and register an angiographic image onto the fluoroscopic image. A guidewire centerline is then extracted from the fluoroscopic image in real time, and the alignment of the centerline with vessel outlines of the chosen angiographic image is optimized using the iterative closest point algorithm for spatial registration. A proof-of-concept evaluation with a phantom coronary vessel model with engineering students showed an error reduction rate greater than 74% on wrong insertion to nontarget branches compared to the non-registration method and more than 47% reduction in the task completion time in performing guidewire manipulation for very difficult tasks. Evaluation with a small number of experienced doctors shows a potentially significant reduction in both task completion time and error rate for difficult tasks. The total registration time with real procedure X-ray (angiographic and fluoroscopic) images takes [Formula: see text] 60 ms, which is within the fluoroscopic image acquisition rate of 15 Hz. By providing cardiologists with better visual guidance in PCI, the proposed spatiotemporal image registration method is shown to be useful in advancing the guidewire to the coronary vessel branches, especially those difficult to insert into.

  4. Improving alignment in Tract-based spatial statistics: evaluation and optimization of image registration.

    Science.gov (United States)

    de Groot, Marius; Vernooij, Meike W; Klein, Stefan; Ikram, M Arfan; Vos, Frans M; Smith, Stephen M; Niessen, Wiro J; Andersson, Jesper L R

    2013-08-01

    Anatomical alignment in neuroimaging studies is of such importance that considerable effort is put into improving the registration used to establish spatial correspondence. Tract-based spatial statistics (TBSS) is a popular method for comparing diffusion characteristics across subjects. TBSS establishes spatial correspondence using a combination of nonlinear registration and a "skeleton projection" that may break topological consistency of the transformed brain images. We therefore investigated feasibility of replacing the two-stage registration-projection procedure in TBSS with a single, regularized, high-dimensional registration. To optimize registration parameters and to evaluate registration performance in diffusion MRI, we designed an evaluation framework that uses native space probabilistic tractography for 23 white matter tracts, and quantifies tract similarity across subjects in standard space. We optimized parameters for two registration algorithms on two diffusion datasets of different quality. We investigated reproducibility of the evaluation framework, and of the optimized registration algorithms. Next, we compared registration performance of the regularized registration methods and TBSS. Finally, feasibility and effect of incorporating the improved registration in TBSS were evaluated in an example study. The evaluation framework was highly reproducible for both algorithms (R(2) 0.993; 0.931). The optimal registration parameters depended on the quality of the dataset in a graded and predictable manner. At optimal parameters, both algorithms outperformed the registration of TBSS, showing feasibility of adopting such approaches in TBSS. This was further confirmed in the example experiment. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Knee osteoarthritis image registration: data from the Osteoarthritis Initiative

    Science.gov (United States)

    Galván-Tejada, Jorge I.; Celaya-Padilla, José M.; Treviño, Victor; Tamez-Peña, José G.

    2015-03-01

    Knee osteoarthritis is a very common disease, in early stages, changes in joint structures are shown, some of the most common symptoms are; formation of osteophytes, cartilage degradation and joint space reduction, among others. Based on a joint space reduction measurement, Kellgren-Lawrence grading scale, is a very extensive used tool to asses radiological OA knee x-ray images, based on information obtained from these assessments, the objective of this work is to correlate the Kellgren-Lawrence score to the bilateral asymmetry between knees. Using public data from the Osteoarthritis initiative (OAI), a set of images with different Kellgren-Lawrencescores were used to determine a relationship of Kellgren-Lawrence score and the bilateral asymmetry, in order to measure the asymmetry between the knees, the right knee was registered to match the left knee, then a series of similarity metrics, mutual information, correlation, and mean squared error where computed to correlate the deformation (mismatch) of the knees to the Kellgren-Lawrence score. Radiological information was evaluated and scored by OAI radiologist groups. The results of the study suggest an association between Radiological Kellgren-Lawrence score and image registration metrics, mutual information and correlation is higher in the early stages, and mean squared error is higher in advanced stages. This association can be helpful to develop a computer aided grading tool.

  6. THE IMAGE REGISTRATION OF FOURIER-MELLIN BASED ON THE COMBINATION OF PROJECTION AND GRADIENT PREPROCESSING

    Directory of Open Access Journals (Sweden)

    D. Gao

    2017-09-01

    Full Text Available Image registration is one of the most important applications in the field of image processing. The method of Fourier Merlin transform, which has the advantages of high precision and good robustness to change in light and shade, partial blocking, noise influence and so on, is widely used. However, not only this method can’t obtain the unique mutual power pulse function for non-parallel image pairs, even part of image pairs also can’t get the mutual power function pulse. In this paper, an image registration method based on Fourier-Mellin transformation in the view of projection-gradient preprocessing is proposed. According to the projection conformational equation, the method calculates the matrix of image projection transformation to correct the tilt image; then, gradient preprocessing and Fourier-Mellin transformation are performed on the corrected image to obtain the registration parameters. Eventually, the experiment results show that the method makes the image registration of Fourier-Mellin transformation not only applicable to the registration of the parallel image pairs, but also to the registration of non-parallel image pairs. What’s more, the better registration effect can be obtained

  7. Complexity and accuracy of image registration methods in SPECT-guided radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yin, L S; Duzenli, C; Moiseenko, V [Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, BC, V6T 1Z1 (Canada); Tang, L; Hamarneh, G [Computing Science, Simon Fraser University, 9400 TASC1, Burnaby, BC, V5A 1S6 (Canada); Gill, B [Medical Physics, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Celler, A; Shcherbinin, S [Department of Radiology, University of British Columbia, 828 West 10th Ave, Vancouver, BC, V5Z 1L8 (Canada); Fua, T F; Thompson, A; Sheehan, F [Radiation Oncology, Vancouver Cancer Centre, BC Cancer Agency, 600 West 10th Ave, Vancouver, BC, V5Z 4E6 (Canada); Liu, M [Radiation Oncology, Fraser Valley Cancer Centre, BC Cancer Agency, 13750 9th Ave, Surrey, BC, V3V 1Z2 (Canada)], E-mail: lyin@bccancer.bc.ca

    2010-01-07

    The use of functional imaging in radiotherapy treatment (RT) planning requires accurate co-registration of functional imaging scans to CT scans. We evaluated six methods of image registration for use in SPECT-guided radiotherapy treatment planning. Methods varied in complexity from 3D affine transform based on control points to diffeomorphic demons and level set non-rigid registration. Ten lung cancer patients underwent perfusion SPECT-scans prior to their radiotherapy. CT images from a hybrid SPECT/CT scanner were registered to a planning CT, and then the same transformation was applied to the SPECT images. According to registration evaluation measures computed based on the intensity difference between the registered CT images or based on target registration error, non-rigid registrations provided a higher degree of accuracy than rigid methods. However, due to the irregularities in some of the obtained deformation fields, warping the SPECT using these fields may result in unacceptable changes to the SPECT intensity distribution that would preclude use in RT planning. Moreover, the differences between intensity histograms in the original and registered SPECT image sets were the largest for diffeomorphic demons and level set methods. In conclusion, the use of intensity-based validation measures alone is not sufficient for SPECT/CT registration for RTTP. It was also found that the proper evaluation of image registration requires the use of several accuracy metrics.

  8. Quality Assurance of Serial 3D Image Registration, Fusion, and Segmentation

    International Nuclear Information System (INIS)

    Sharpe, Michael; Brock, Kristy K.

    2008-01-01

    Radiotherapy relies on images to plan, guide, and assess treatment. Image registration, fusion, and segmentation are integral to these processes; specifically for aiding anatomic delineation, assessing organ motion, and aligning targets with treatment beams in image-guided radiation therapy (IGRT). Future developments in image registration will also improve estimations of the actual dose delivered and quantitative assessment in patient follow-up exams. This article summarizes common and emerging technologies and reviews the role of image registration, fusion, and segmentation in radiotherapy processes. The current quality assurance practices are summarized, and implications for clinical procedures are discussed

  9. Neural network-based feature point descriptors for registration of optical and SAR images

    Science.gov (United States)

    Abulkhanov, Dmitry; Konovalenko, Ivan; Nikolaev, Dmitry; Savchik, Alexey; Shvets, Evgeny; Sidorchuk, Dmitry

    2018-04-01

    Registration of images of different nature is an important technique used in image fusion, change detection, efficient information representation and other problems of computer vision. Solving this task using feature-based approaches is usually more complex than registration of several optical images because traditional feature descriptors (SIFT, SURF, etc.) perform poorly when images have different nature. In this paper we consider the problem of registration of SAR and optical images. We train neural network to build feature point descriptors and use RANSAC algorithm to align found matches. Experimental results are presented that confirm the method's effectiveness.

  10. PCANet-Based Structural Representation for Nonrigid Multimodal Medical Image Registration

    Directory of Open Access Journals (Sweden)

    Xingxing Zhu

    2018-05-01

    Full Text Available Nonrigid multimodal image registration remains a challenging task in medical image processing and analysis. The structural representation (SR-based registration methods have attracted much attention recently. However, the existing SR methods cannot provide satisfactory registration accuracy due to the utilization of hand-designed features for structural representation. To address this problem, the structural representation method based on the improved version of the simple deep learning network named PCANet is proposed for medical image registration. In the proposed method, PCANet is firstly trained on numerous medical images to learn convolution kernels for this network. Then, a pair of input medical images to be registered is processed by the learned PCANet. The features extracted by various layers in the PCANet are fused to produce multilevel features. The structural representation images are constructed for two input images based on nonlinear transformation of these multilevel features. The Euclidean distance between structural representation images is calculated and used as the similarity metrics. The objective function defined by the similarity metrics is optimized by L-BFGS method to obtain parameters of the free-form deformation (FFD model. Extensive experiments on simulated and real multimodal image datasets show that compared with the state-of-the-art registration methods, such as modality-independent neighborhood descriptor (MIND, normalized mutual information (NMI, Weber local descriptor (WLD, and the sum of squared differences on entropy images (ESSD, the proposed method provides better registration performance in terms of target registration error (TRE and subjective human vision.

  11. Efficient nonlinear registration of 3D images using high order co-ordinate transfer functions.

    Science.gov (United States)

    Barber, D C

    1999-01-01

    There is an increasing interest in image registration for a variety of medical imaging applications. Image registration is achieved through the use of a co-ordinate transfer function (CTF) which maps voxels in one image to voxels in the other image, including in the general case changes in mapped voxel intensity. If images of the same subject are to be registered the co-ordinate transfer function needs to implement a spatial transformation consisting of a displacement and a rigid rotation. In order to achieve registration a common approach is to choose a suitable quality-of-registration measure and devise a method for the efficient generation of the parameters of the CTF which minimize this measure. For registration of images from different subjects more complex transforms are required. In general function minimization is too slow to allow the use of CTFs with more than a small number of parameters. However, provided the images are from the same modality and the CTF can be expanded in terms of an appropriate set of basis functions this paper will show how relatively complex CTFs can be used for registration. The use of increasingly complex CTFs to minimize the within group standard deviation of a set of normal single photon emission tomography brain images is used to demonstrate the improved registration of images from different subjects using CTFs of increasing complexity.

  12. Subspace-Based Holistic Registration for Low-Resolution Facial Images

    Directory of Open Access Journals (Sweden)

    Boom BJ

    2010-01-01

    Full Text Available Subspace-based holistic registration is introduced as an alternative to landmark-based face registration, which has a poor performance on low-resolution images, as obtained in camera surveillance applications. The proposed registration method finds the alignment by maximizing the similarity score between a probe and a gallery image. We use a novel probabilistic framework for both user-independent as well as user-specific face registration. The similarity is calculated using the probability that the face image is correctly aligned in a face subspace, but additionally we take the probability into account that the face is misaligned based on the residual error in the dimensions perpendicular to the face subspace. We perform extensive experiments on the FRGCv2 database to evaluate the impact that the face registration methods have on face recognition. Subspace-based holistic registration on low-resolution images can improve face recognition in comparison with landmark-based registration on high-resolution images. The performance of the tested face recognition methods after subspace-based holistic registration on a low-resolution version of the FRGC database is similar to that after manual registration.

  13. CO-REGISTRATION AIRBORNE LIDAR POINT CLOUD DATA AND SYNCHRONOUS DIGITAL IMAGE REGISTRATION BASED ON COMBINED ADJUSTMENT

    Directory of Open Access Journals (Sweden)

    Z. H. Yang

    2016-06-01

    Full Text Available Aim at the problem of co-registration airborne laser point cloud data with the synchronous digital image, this paper proposed a registration method based on combined adjustment. By integrating tie point, point cloud data with elevation constraint pseudo observations, using the principle of least-squares adjustment to solve the corrections of exterior orientation elements of each image, high-precision registration results can be obtained. In order to ensure the reliability of the tie point, and the effectiveness of pseudo observations, this paper proposed a point cloud data constrain SIFT matching and optimizing method, can ensure that the tie points are located on flat terrain area. Experiments with the airborne laser point cloud data and its synchronous digital image, there are about 43 pixels error in image space using the original POS data. If only considering the bore-sight of POS system, there are still 1.3 pixels error in image space. The proposed method regards the corrections of the exterior orientation elements of each image as unknowns and the errors are reduced to 0.15 pixels.

  14. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Baofeng Li

    2009-01-01

    Full Text Available Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  15. FPGA Accelerator for Wavelet-Based Automated Global Image Registration

    Directory of Open Access Journals (Sweden)

    Li Baofeng

    2009-01-01

    Full Text Available Abstract Wavelet-based automated global image registration (WAGIR is fundamental for most remote sensing image processing algorithms and extremely computation-intensive. With more and more algorithms migrating from ground computing to onboard computing, an efficient dedicated architecture of WAGIR is desired. In this paper, a BWAGIR architecture is proposed based on a block resampling scheme. BWAGIR achieves a significant performance by pipelining computational logics, parallelizing the resampling process and the calculation of correlation coefficient and parallel memory access. A proof-of-concept implementation with 1 BWAGIR processing unit of the architecture performs at least 7.4X faster than the CL cluster system with 1 node, and at least 3.4X than the MPM massively parallel machine with 1 node. Further speedup can be achieved by parallelizing multiple BWAGIR units. The architecture with 5 units achieves a speedup of about 3X against the CL with 16 nodes and a comparative speed with the MPM with 30 nodes. More importantly, the BWAGIR architecture can be deployed onboard economically.

  16. [Medical image elastic registration smoothed by unconstrained optimized thin-plate spline].

    Science.gov (United States)

    Zhang, Yu; Li, Shuxiang; Chen, Wufan; Liu, Zhexing

    2003-12-01

    Elastic registration of medical image is an important subject in medical image processing. Previous work has concentrated on selecting the corresponding landmarks manually and then using thin-plate spline interpolating to gain the elastic transformation. However, the landmarks extraction is always prone to error, which will influence the registration results. Localizing the landmarks manually is also difficult and time-consuming. We the optimization theory to improve the thin-plate spline interpolation, and based on it, used an automatic method to extract the landmarks. Combining these two steps, we have proposed an automatic, exact and robust registration method and have gained satisfactory registration results.

  17. INVITED REVIEW--IMAGE REGISTRATION IN VETERINARY RADIATION ONCOLOGY: INDICATIONS, IMPLICATIONS, AND FUTURE ADVANCES.

    Science.gov (United States)

    Feng, Yang; Lawrence, Jessica; Cheng, Kun; Montgomery, Dean; Forrest, Lisa; Mclaren, Duncan B; McLaughlin, Stephen; Argyle, David J; Nailon, William H

    2016-01-01

    The field of veterinary radiation therapy (RT) has gained substantial momentum in recent decades with significant advances in conformal treatment planning, image-guided radiation therapy (IGRT), and intensity-modulated (IMRT) techniques. At the root of these advancements lie improvements in tumor imaging, image alignment (registration), target volume delineation, and identification of critical structures. Image registration has been widely used to combine information from multimodality images such as computerized tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET) to improve the accuracy of radiation delivery and reliably identify tumor-bearing areas. Many different techniques have been applied in image registration. This review provides an overview of medical image registration in RT and its applications in veterinary oncology. A summary of the most commonly used approaches in human and veterinary medicine is presented along with their current use in IGRT and adaptive radiation therapy (ART). It is important to realize that registration does not guarantee that target volumes, such as the gross tumor volume (GTV), are correctly identified on the image being registered, as limitations unique to registration algorithms exist. Research involving novel registration frameworks for automatic segmentation of tumor volumes is ongoing and comparative oncology programs offer a unique opportunity to test the efficacy of proposed algorithms. © 2016 American College of Veterinary Radiology.

  18. Registration of Vibro-acoustography Images and X-ray Mammography.

    Science.gov (United States)

    Gholam Hosseini, H; Fatemi, M; Alizad, A

    2005-01-01

    Image registration has been widely used for generating more diagnostic and clinical values in medical imaging. On the other hand, inaccurate image registration and incorrect localization of region of interest risks a potential impact on patients. Vibro-acoustography (VA) is a new imaging modality that has been applied to both medical and industrial imaging. Combining unique diagnostic information of VA with other medical imaging is one of our research interests. In this work, we studied the VA and x-ray image pairs and adopted a flexible control-point selection technique for image registration. A modified second-order polynomial, which leads to a scale/rotation/translation invariant registration, was used. The results of registration were used to spatially transform the breast VA images to map with the x-ray mammography with a registration error of less than 1.65 mm. These two completely different modalities were combined to generate an image including a ratio of each image pixel value. Therefore, the proposed technique allows clinicians to maximize their insight by combining the information from x-ray mammogram and VA modalities into a single image.

  19. S-HAMMER: hierarchical attribute-guided, symmetric diffeomorphic registration for MR brain images.

    Science.gov (United States)

    Wu, Guorong; Kim, Minjeong; Wang, Qian; Shen, Dinggang

    2014-03-01

    Deformable registration has been widely used in neuroscience studies for spatial normalization of brain images onto the standard space. Because of possible large anatomical differences across different individual brains, registration performance could be limited when trying to estimate a single directed deformation pathway, i.e., either from template to subject or from subject to template. Symmetric image registration, however, offers an effective way to simultaneously deform template and subject images toward each other until they meet at the middle point. Although some intensity-based registration algorithms have nicely incorporated this concept of symmetric deformation, the pointwise intensity matching between two images may not necessarily imply the matching of correct anatomical correspondences. Based on HAMMER registration algorithm (Shen and Davatzikos, [2002]: IEEE Trans Med Imaging 21:1421-1439), we integrate the strategies of hierarchical attribute matching and symmetric diffeomorphic deformation to build a new symmetric-diffeomorphic HAMMER registration algorithm, called as S-HAMMER. The performance of S-HAMMER has been extensively compared with 14 state-of-the-art nonrigid registration algorithms evaluated in (Klein et al., [2009]: NeuroImage 46:786-802) by using real brain images in LPBA40, IBSR18, CUMC12, and MGH10 datasets. In addition, the registration performance of S-HAMMER, by comparison with other methods, is also demonstrated on both elderly MR brain images (>70 years old) and the simulated brain images with ground-truth deformation fields. In all experiments, our proposed method achieves the best registration performance over all other registration methods, indicating the high applicability of our method in future neuroscience and clinical applications. Copyright © 2013 Wiley Periodicals, Inc.

  20. [Non-rigid medical image registration based on mutual information and thin-plate spline].

    Science.gov (United States)

    Cao, Guo-gang; Luo, Li-min

    2009-01-01

    To get precise and complete details, the contrast in different images is needed in medical diagnosis and computer assisted treatment. The image registration is the basis of contrast, but the regular rigid registration does not satisfy the clinic requirements. A non-rigid medical image registration method based on mutual information and thin-plate spline was present. Firstly, registering two images globally based on mutual information; secondly, dividing reference image and global-registered image into blocks and registering them; then getting the thin-plate spline transformation according to the shift of blocks' center; finally, applying the transformation to the global-registered image. The results show that the method is more precise than the global rigid registration based on mutual information and it reduces the complexity of getting control points and satisfy the clinic requirements better by getting control points of the thin-plate transformation automatically.

  1. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    Science.gov (United States)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  2. Technical Note: Deformable image registration on partially matched images for radiotherapy applications

    International Nuclear Information System (INIS)

    Yang Deshan; Goddu, S. Murty; Lu Wei; Pechenaya, Olga L.; Wu Yu; Deasy, Joseph O.; El Naqa, Issam; Low, Daniel A.

    2010-01-01

    In radiation therapy applications, deformable image registrations (DIRs) are often carried out between two images that only partially match. Image mismatching could present as superior-inferior coverage differences, field-of-view (FOV) cutoffs, or motion crossing the image boundaries. In this study, the authors propose a method to improve the existing DIR algorithms so that DIR can be carried out in such situations. The basic idea is to extend the image volumes and define the extension voxels (outside the FOV or outside the original image volume) as NaN (not-a-number) values that are transparent to all floating-point computations in the DIR algorithms. Registrations are then carried out with one additional rule that NaN voxels can match any voxels. In this way, the matched sections of the images are registered properly, and the mismatched sections of the images are registered to NaN voxels. This method makes it possible to perform DIR on partially matched images that otherwise are difficult to register. It may also improve DIR accuracy, especially near or in the mismatched image regions.

  3. Glaucomatous damage of the macula.

    Science.gov (United States)

    Hood, Donald C; Raza, Ali S; de Moraes, Carlos Gustavo V; Liebmann, Jeffrey M; Ritch, Robert

    2013-01-01

    There is a growing body of evidence that early glaucomatous damage involves the macula. The anatomical basis of this damage can be studied using frequency domain optical coherence tomography (fdOCT), by which the local thickness of the retinal nerve fiber layer (RNFL) and local retinal ganglion cell plus inner plexiform (RGC+) layer can be measured. Based upon averaged fdOCT results from healthy controls and patients, we show that: 1. For healthy controls, the average RGC+ layer thickness closely matches human histological data; 2. For glaucoma patients and suspects, the average RGC+ layer shows greater glaucomatous thinning in the inferior retina (superior visual field (VF)); and 3. The central test points of the 6° VF grid (24-2 test pattern) miss the region of greatest RGC+ thinning. Based upon fdOCT results from individual patients, we have learned that: 1. Local RGC+ loss is associated with local VF sensitivity loss as long as the displacement of RGCs from the foveal center is taken into consideration; and 2. Macular damage is typically arcuate in nature and often associated with local RNFL thinning in a narrow region of the disc, which we call the macular vulnerability zone (MVZ). According to our schematic model of macular damage, most of the inferior region of the macula projects to the MVZ, which is located largely in the inferior quadrant of the disc, a region that is particularly susceptible to glaucomatous damage. A small (cecocentral) region of the inferior macula, and all of the superior macula (inferior VF), project to the temporal quadrant, a region that is less susceptible to damage. The overall message is clear; clinicians need to be aware that glaucomatous damage to the macula is common, can occur early in the disease, and can be missed and/or underestimated with standard VF tests that use a 6° grid, such as the 24-2 VF test. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Registration of eye reflection and scene images using an aspherical eye model.

    Science.gov (United States)

    Nakazawa, Atsushi; Nitschke, Christian; Nishida, Toyoaki

    2016-11-01

    This paper introduces an image registration algorithm between an eye reflection and a scene image. Although there are currently a large number of image registration algorithms, this task remains difficult due to nonlinear distortions at the eye surface and large amounts of noise, such as iris texture, eyelids, eyelashes, and their shadows. To overcome this issue, we developed an image registration method combining an aspherical eye model that simulates nonlinear distortions considering eye geometry and a two-step iterative registration strategy that obtains dense correspondence of the feature points to achieve accurate image registrations for the entire image region. We obtained a database of eye reflection and scene images featuring four subjects in indoor and outdoor scenes and compared the registration performance with different asphericity conditions. Results showed that the proposed approach can perform accurate registration with an average accuracy of 1.05 deg by using the aspherical cornea model. This work is relevant for eye image analysis in general, enabling novel applications and scenarios.

  5. Feature and Intensity Based Medical Image Registration Using Particle Swarm Optimization.

    Science.gov (United States)

    Abdel-Basset, Mohamed; Fakhry, Ahmed E; El-Henawy, Ibrahim; Qiu, Tie; Sangaiah, Arun Kumar

    2017-11-03

    Image registration is an important aspect in medical image analysis, and kinds use in a variety of medical applications. Examples include diagnosis, pre/post surgery guidance, comparing/merging/integrating images from multi-modal like Magnetic Resonance Imaging (MRI), and Computed Tomography (CT). Whether registering images across modalities for a single patient or registering across patients for a single modality, registration is an effective way to combine information from different images into a normalized frame for reference. Registered datasets can be used for providing information relating to the structure, function, and pathology of the organ or individual being imaged. In this paper a hybrid approach for medical images registration has been developed. It employs a modified Mutual Information (MI) as a similarity metric and Particle Swarm Optimization (PSO) method. Computation of mutual information is modified using a weighted linear combination of image intensity and image gradient vector flow (GVF) intensity. In this manner, statistical as well as spatial image information is included into the image registration process. Maximization of the modified mutual information is effected using the versatile Particle Swarm Optimization which is developed easily with adjusted less parameter. The developed approach has been tested and verified successfully on a number of medical image data sets that include images with missing parts, noise contamination, and/or of different modalities (CT, MRI). The registration results indicate the proposed model as accurate and effective, and show the posture contribution in inclusion of both statistical and spatial image data to the developed approach.

  6. Frameless image registration of X-ray CT and SPECT by volume matching

    International Nuclear Information System (INIS)

    Tanaka, Yuko; Kihara, Tomohiko; Yui, Nobuharu; Kinoshita, Fujimi; Kamimura, Yoshitsugu; Yamada, Yoshifumi.

    1998-01-01

    Image registration of functional (SPECT) and morphological (X-ray CT/MRI) images is studied in order to improve the accuracy and the quantity of the image diagnosis. We have developed a new frameless registration method of X-ray CT and SPECT image using transmission CT image acquired for absorption correction of SPECT images. This is the automated registration method and calculates the transformation matrix between the two coordinate systems of image data by the optimization method. This registration method is based on the similar physical property of X-ray CT and transmission CT image. The three-dimensional overlap of the bone region is used for image matching. We verified by a phantom test that it can provide a good result of within two millimeters error. We also evaluated visually the accuracy of the registration method by the application study of SPECT, X-ray CT, and transmission CT head images. This method can be carried out accurately without any frames. We expect this registration method becomes an efficient tool to improve image diagnosis and medical treatment. (author)

  7. A coarse-to-fine scheme for groupwise registration of multisensor images

    Directory of Open Access Journals (Sweden)

    Yinghao Li

    2016-11-01

    Full Text Available Ensemble registration is concerned with a group of images that need to be registered simultaneously. It is challenging but important for many image analysis tasks such as vehicle detection and medical image fusion. To solve this problem effectively, a novel coarse-to-fine scheme for groupwise image registration is proposed. First, in the coarse registration step, unregistered images are divided into reference image set and float image set. The images of the two sets are registered based on segmented region matching. The coarse registration results are used as an initial solution for the next step. Then, in the fine registration step, a Gaussian mixture model with a local template is used to model the joint intensity of coarse-registered images. Meanwhile, a minimum message length criterion-based method is employed to determine the unknown number of mixing components. Based on this mixture model, a maximum likelihood framework is used to register a group of images. To evaluate the performance of the proposed approach, some representative groupwise registration approaches are compared on different image data sets. The experimental results show that the proposed approach has improved performance compared to conventional approaches.

  8. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers

    NARCIS (Netherlands)

    Wognum, S.; Heethuis, S. E.; Rosario, T.; Hoogeman, M. S.; Bel, A.

    2014-01-01

    The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations.

  9. Co-registration of the BNCT treatment planning images for clinical practice

    International Nuclear Information System (INIS)

    Salli, Eero; Seppaelae, Tiina; Kankaanranta, Leena; Asikainen, Sami; Savolainen, Sauli; Koivunoro, Hanna

    2006-01-01

    We have co-registered MRI, CT and FBPA-PET images for BNCT in clinical practice. Co-registration improves the spatial accuracy of the treatment planning by enabling use of information from all the co-registered modalities. The multimodal co-registration has been implemented as a service product provided by the Imaging Center of Helsinki University Central Hospital to other departments. To increase the accuracy of co-registration and patient positioning in the head area BNCT, a patient-specific fixation mask suitable for PET, MRI and CT was developed. The goal of the fixation mask is to normalize the orientation of the patient's head and neck. Co-registration is performed at the image processing unit by using a rigid body model, mutual-information based algorithms and partly in-house developed software tools. The accuracy of co-registration is verified by comparing the locations of the external skin markers and anatomical landmarks in different modalities. After co-registration, the images are transformed and covered into a format required by the BNCT dose-planning software and set to the dose-planning unit of the hospital. So far co-registration has been done for 22 patients. The co-registration protocol has proved to be reliable and efficient. Some registration errors are seen on some patients in the neck area because the rigid-body model used in co-registration is not fully valid for the brain-neck entity. The registration accuracy in this area could likely be improved by implementing a co-registration procedure utilizing a partly non-rigid body model. (author)

  10. Comparison of manual vs. automated multimodality (CT-MRI) image registration for brain tumors

    International Nuclear Information System (INIS)

    Sarkar, Abhirup; Santiago, Roberto J.; Smith, Ryan; Kassaee, Alireza

    2005-01-01

    Computed tomgoraphy-magnetic resonance imaging (CT-MRI) registrations are routinely used for target-volume delineation of brain tumors. We clinically use 2 software packages based on manual operation and 1 automated package with 2 different algorithms: chamfer matching using bony structures, and mutual information using intensity patterns. In all registration algorithms, a minimum of 3 pairs of identical anatomical and preferably noncoplanar landmarks is used on each of the 2 image sets. In manual registration, the program registers these points and links the image sets using a 3-dimensional (3D) transformation. In automated registration, the 3 landmarks are used as an initial starting point and further processing is done to complete the registration. Using our registration packages, registration of CT and MRI was performed on 10 patients. We scored the results of each registration set based on the amount of time spent, the accuracy reported by the software, and a final evaluation. We evaluated each software program by measuring the residual error between 'matched' points on the right and left globes and the posterior fossa for fused image slices. In general, manual registration showed higher misalignment between corresponding points compared to automated registration using intensity matching. This error had no directional dependence and was, most of the time, larger for a larger structure in both registration techniques. Automated algorithm based on intensity matching also gave the best results in terms of registration accuracy, irrespective of whether or not the initial landmarks were chosen carefully, when compared to that done using bone matching algorithm. Intensity-matching algorithm required the least amount of user-time and provided better accuracy

  11. AN AUTOMATIC OPTICAL AND SAR IMAGE REGISTRATION METHOD USING ITERATIVE MULTI-LEVEL AND REFINEMENT MODEL

    Directory of Open Access Journals (Sweden)

    C. Xu

    2016-06-01

    Full Text Available Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.

  12. A prospective comparison between auto-registration and manual registration of real-time ultrasound with MR images for percutaneous ablation or biopsy of hepatic lesions.

    Science.gov (United States)

    Cha, Dong Ik; Lee, Min Woo; Song, Kyoung Doo; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-06-01

    To compare the accuracy and required time for image fusion of real-time ultrasound (US) with pre-procedural magnetic resonance (MR) images between positioning auto-registration and manual registration for percutaneous radiofrequency ablation or biopsy of hepatic lesions. This prospective study was approved by the institutional review board, and all patients gave written informed consent. Twenty-two patients (male/female, n = 18/n = 4; age, 61.0 ± 7.7 years) who were referred for planning US to assess the feasibility of radiofrequency ablation (n = 21) or biopsy (n = 1) for focal hepatic lesions were included. One experienced radiologist performed the two types of image fusion methods in each patient. The performance of auto-registration and manual registration was evaluated. The accuracy of the two methods, based on measuring registration error, and the time required for image fusion for both methods were recorded using in-house software and respectively compared using the Wilcoxon signed rank test. Image fusion was successful in all patients. The registration error was not significantly different between the two methods (auto-registration: median, 3.75 mm; range, 1.0-15.8 mm vs. manual registration: median, 2.95 mm; range, 1.2-12.5 mm, p = 0.242). The time required for image fusion was significantly shorter with auto-registration than with manual registration (median, 28.5 s; range, 18-47 s, vs. median, 36.5 s; range, 14-105 s, p = 0.026). Positioning auto-registration showed promising results compared with manual registration, with similar accuracy and even shorter registration time.

  13. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    Energy Technology Data Exchange (ETDEWEB)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L. [National Society for Epilepsy, Chalfont St Peter (United Kingdom). The MRI Unit

    2006-12-15

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease.

  14. Increased Sensitivity to Pathological Brain Changes Using Co-registration of Magnetic Resonance Imaging Scans

    International Nuclear Information System (INIS)

    Burdett, J.; Stevens, J.; Flugel, D.; Williams, E.; Duncan, J.S.; Lemieux, L.

    2006-01-01

    Purpose: To compare automatic software-based co-registration of serial magnetic resonance imaging (MRI) scans with conventional visual comparison, by expert neuroradiologists.Material and Methods: Sixty-four patients who were referred to our epilepsy MRI unit for cerebral imaging were identified as having potentially, non- or slow-growing lesions or cerebral atrophy and followed with sequential scans over a period of up to 8 years, resulting in a total of 92 pairs of scans. Scans were categorized as showing either lesions or atrophy. Each pair of scans was reviewed twice for the presence of change, with and without co-registration, performed using automated software. Results: Co-registration and visual reporting without co-registration were discordant in the lesions group in nine out of 69 datasets (13%), and in 16 out of 23 pairs of scans in the atrophy group (69%). The most common cause of discordance was visual reporting not detecting changes apparent by co-registration. In three cases, changes detected visually were not detected following co-registration. Conclusion: In the group of patients studied, co-registration was more sensitive for detecting changes than visual comparison, particularly with respect to atrophic changes of the brain. With the increasing availability of sophisticated independent consoles attached to MRI scanners that may be used for image co-registration, we propose that serial T1-weighted volumetric MRI brain co-registration should be considered for integration into routine clinical practice to assess patients with suspected progressive disease

  15. Semi-automatic construction of reference standards for evaluation of image registration

    NARCIS (Netherlands)

    Murphy, K.; Ginneken, van B.; Klein, S.; Staring, M.; Hoop, de B.J.; Viergever, M.A.; Pluim, J.P.W.

    2011-01-01

    Quantitative evaluation of image registration algorithms is a difficult and under-addressed issue due to the lack of a reference standard in most registration problems. In this work a method is presented whereby detailed reference standard data may be constructed in an efficient semi-automatic

  16. Feasibility analysis of high resolution tissue image registration using 3-D synthetic data

    Directory of Open Access Journals (Sweden)

    Yachna Sharma

    2011-01-01

    Full Text Available Background: Registration of high-resolution tissue images is a critical step in the 3D analysis of protein expression. Because the distance between images (~4-5μm thickness of a tissue section is nearly the size of the objects of interest (~10-20μm cancer cell nucleus, a given object is often not present in both of two adjacent images. Without consistent correspondence of objects between images, registration becomes a difficult task. This work assesses the feasibility of current registration techniques for such images. Methods: We generated high resolution synthetic 3-D image data sets emulating the constraints in real data. We applied multiple registration methods to the synthetic image data sets and assessed the registration performance of three techniques (i.e., mutual information (MI, kernel density estimate (KDE method [1], and principal component analysis (PCA at various slice thicknesses (with increments of 1μm in order to quantify the limitations of each method. Results: Our analysis shows that PCA, when combined with the KDE method based on nuclei centers, aligns images corresponding to 5μm thick sections with acceptable accuracy. We also note that registration error increases rapidly with increasing distance between images, and that the choice of feature points which are conserved between slices improves performance. Conclusions: We used simulation to help select appropriate features and methods for image registration by estimating best-case-scenario errors for given data constraints in histological images. The results of this study suggest that much of the difficulty of stained tissue registration can be reduced to the problem of accurately identifying feature points, such as the center of nuclei.

  17. Feature-Based Retinal Image Registration Using D-Saddle Feature

    Directory of Open Access Journals (Sweden)

    Roziana Ramli

    2017-01-01

    Full Text Available Retinal image registration is important to assist diagnosis and monitor retinal diseases, such as diabetic retinopathy and glaucoma. However, registering retinal images for various registration applications requires the detection and distribution of feature points on the low-quality region that consists of vessels of varying contrast and sizes. A recent feature detector known as Saddle detects feature points on vessels that are poorly distributed and densely positioned on strong contrast vessels. Therefore, we propose a multiresolution difference of Gaussian pyramid with Saddle detector (D-Saddle to detect feature points on the low-quality region that consists of vessels with varying contrast and sizes. D-Saddle is tested on Fundus Image Registration (FIRE Dataset that consists of 134 retinal image pairs. Experimental results show that D-Saddle successfully registered 43% of retinal image pairs with average registration accuracy of 2.329 pixels while a lower success rate is observed in other four state-of-the-art retinal image registration methods GDB-ICP (28%, Harris-PIIFD (4%, H-M (16%, and Saddle (16%. Furthermore, the registration accuracy of D-Saddle has the weakest correlation (Spearman with the intensity uniformity metric among all methods. Finally, the paired t-test shows that D-Saddle significantly improved the overall registration accuracy of the original Saddle.

  18. Parallel Processing and Bio-inspired Computing for Biomedical Image Registration

    Directory of Open Access Journals (Sweden)

    Silviu Ioan Bejinariu

    2014-07-01

    Full Text Available Image Registration (IR is an optimization problem computing optimal parameters of a geometric transform used to overlay one or more source images to a given model by maximizing a similarity measure. In this paper the use of bio-inspired optimization algorithms in image registration is analyzed. Results obtained by means of three different algorithms are compared: Bacterial Foraging Optimization Algorithm (BFOA, Genetic Algorithm (GA and Clonal Selection Algorithm (CSA. Depending on the images type, the registration may be: area based, which is slow but more precise, and features based, which is faster. In this paper a feature based approach based on the Scale Invariant Feature Transform (SIFT is proposed. Finally, results obtained using sequential and parallel implementations on multi-core systems for area based and features based image registration are compared.

  19. Multi-institutional Validation Study of Commercially Available Deformable Image Registration Software for Thoracic Images

    International Nuclear Information System (INIS)

    Kadoya, Noriyuki; Nakajima, Yujiro; Saito, Masahide; Miyabe, Yuki; Kurooka, Masahiko; Kito, Satoshi; Fujita, Yukio; Sasaki, Motoharu; Arai, Kazuhiro; Tani, Kensuke; Yagi, Masashi; Wakita, Akihisa; Tohyama, Naoki; Jingu, Keiichi

    2016-01-01

    Purpose: To assess the accuracy of the commercially available deformable image registration (DIR) software for thoracic images at multiple institutions. Methods and Materials: Thoracic 4-dimensional (4D) CT images of 10 patients with esophageal or lung cancer were used. Datasets for these patients were provided by DIR-lab ( (dir-lab.com)) and included a coordinate list of anatomic landmarks (300 bronchial bifurcations) that had been manually identified. Deformable image registration was performed between the peak-inhale and -exhale images. Deformable image registration error was determined by calculating the difference at each landmark point between the displacement calculated by DIR software and that calculated by the landmark. Results: Eleven institutions participated in this study: 4 used RayStation (RaySearch Laboratories, Stockholm, Sweden), 5 used MIM Software (Cleveland, OH), and 3 used Velocity (Varian Medical Systems, Palo Alto, CA). The ranges of the average absolute registration errors over all cases were as follows: 0.48 to 1.51 mm (right-left), 0.53 to 2.86 mm (anterior-posterior), 0.85 to 4.46 mm (superior-inferior), and 1.26 to 6.20 mm (3-dimensional). For each DIR software package, the average 3-dimensional registration error (range) was as follows: RayStation, 3.28 mm (1.26-3.91 mm); MIM Software, 3.29 mm (2.17-3.61 mm); and Velocity, 5.01 mm (4.02-6.20 mm). These results demonstrate that there was moderate variation among institutions, although the DIR software was the same. Conclusions: We evaluated the commercially available DIR software using thoracic 4D-CT images from multiple centers. Our results demonstrated that DIR accuracy differed among institutions because it was dependent on both the DIR software and procedure. Our results could be helpful for establishing prospective clinical trials and for the widespread use of DIR software. In addition, for clinical care, we should try to find the optimal DIR procedure using thoracic 4D

  20. Overcoming Registration Uncertainty in Image Super-Resolution: Maximize or Marginalize?

    Directory of Open Access Journals (Sweden)

    Andrew Zisserman

    2007-01-01

    Full Text Available In multiple-image super-resolution, a high-resolution image is estimated from a number of lower-resolution images. This usually involves computing the parameters of a generative imaging model (such as geometric and photometric registration, and blur and obtaining a MAP estimate by minimizing a cost function including an appropriate prior. Two alternative approaches are examined. First, both registrations and the super-resolution image are found simultaneously using a joint MAP optimization. Second, we perform Bayesian integration over the unknown image registration parameters, deriving a cost function whose only variables of interest are the pixel values of the super-resolution image. We also introduce a scheme to learn the parameters of the image prior as part of the super-resolution algorithm. We show examples on a number of real sequences including multiple stills, digital video, and DVDs of movies.

  1. Historical Image Registration and Land-Use Land-Cover Change Analysis

    Directory of Open Access Journals (Sweden)

    Fang-Ju Jao

    2014-12-01

    Full Text Available Historical aerial images are important to retain past ground surface information. The land-use land-cover change in the past can be identified using historical aerial images. Automatic historical image registration and stitching is essential because the historical image pose information was usually lost. In this study, the Scale Invariant Feature Transform (SIFT algorithm was used for feature extraction. Subsequently, the present study used the automatic affine transformation algorithm for historical image registration, based on SIFT features and control points. This study automatically determined image affine parameters and simultaneously transformed from an image coordinate system to a ground coordinate system. After historical aerial image registration, the land-use land-cover change was analyzed between two different years (1947 and 1975 at the Tseng Wen River estuary. Results show that sandbars and water zones were transformed into a large number of fish ponds between 1947 and 1975.

  2. Nonrigid Image Registration for Head and Neck Cancer Radiotherapy Treatment Planning With PET/CT

    International Nuclear Information System (INIS)

    Ireland, Rob H.; Dyker, Karen E.; Barber, David C.; Wood, Steven M.; Hanney, Michael B.; Tindale, Wendy B.; Woodhouse, Neil; Hoggard, Nigel; Conway, John; Robinson, Martin H.

    2007-01-01

    Purpose: Head and neck radiotherapy planning with positron emission tomography/computed tomography (PET/CT) requires the images to be reliably registered with treatment planning CT. Acquiring PET/CT in treatment position is problematic, and in practice for some patients it may be beneficial to use diagnostic PET/CT for radiotherapy planning. Therefore, the aim of this study was first to quantify the image registration accuracy of PET/CT to radiotherapy CT and, second, to assess whether PET/CT acquired in diagnostic position can be registered to planning CT. Methods and Materials: Positron emission tomography/CT acquired in diagnostic and treatment position for five patients with head and neck cancer was registered to radiotherapy planning CT using both rigid and nonrigid image registration. The root mean squared error for each method was calculated from a set of anatomic landmarks marked by four independent observers. Results: Nonrigid and rigid registration errors for treatment position PET/CT to planning CT were 2.77 ± 0.80 mm and 4.96 ± 2.38 mm, respectively, p = 0.001. Applying the nonrigid registration to diagnostic position PET/CT produced a more accurate match to the planning CT than rigid registration of treatment position PET/CT (3.20 ± 1.22 mm and 4.96 ± 2.38 mm, respectively, p = 0.012). Conclusions: Nonrigid registration provides a more accurate registration of head and neck PET/CT to treatment planning CT than rigid registration. In addition, nonrigid registration of PET/CT acquired with patients in a standardized, diagnostic position can provide images registered to planning CT with greater accuracy than a rigid registration of PET/CT images acquired in treatment position. This may allow greater flexibility in the timing of PET/CT for head and neck cancer patients due to undergo radiotherapy

  3. SU-E-J-248: Comparative Study of Two Image Registration for Image-Guided Radiation Therapy in Esophageal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Shang, K; Wang, J; Liu, D; Li, R; Cao, Y; Chi, Z [The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, CN, Shijiazhuang, Hebei (China)

    2014-06-01

    Purpose: Image-guided radiation therapy (IGRT) is one of the major treatment of esophageal cancer. Gray value registration and bone registration are two kinds of image registration, the purpose of this work is to compare which one is more suitable for esophageal cancer patients. Methods: Twenty three esophageal patients were treated by Elekta Synergy, CBCT images were acquired and automatically registered to planning kilovoltage CT scans according to gray value or bone registration. The setup errors were measured in the X, Y and Z axis, respectively. Two kinds of setup errors were analysed by matching T test statistical method. Results: Four hundred and five groups of CBCT images were available and the systematic and random setup errors (cm) in X, Y, Z directions were 0.35, 0.63, 0.29 and 0.31, 0.53, 0.21 with gray value registration, while 0.37, 0.64, 0.26 and 0.32, 0.55, 0.20 with bone registration, respectively. Compared with bone registration and gray value registration, the setup errors in X and Z axis have significant differences. In Y axis, both measurement comparison results of T value is 0.256 (P value > 0.05); In X axis, the T value is 5.287(P value < 0.05); In Z axis, the T value is −5.138 (P value < 0.05). Conclusion: Gray value registration is recommended in image-guided radiotherapy for esophageal cancer and the other thoracic tumors. Manual registration could be applied when it is necessary. Bone registration is more suitable for the head tumor and pelvic tumor department where composed of redundant interconnected and immobile bone tissue.

  4. Automated robust registration of grossly misregistered whole-slide images with varying stains

    Science.gov (United States)

    Litjens, G.; Safferling, K.; Grabe, N.

    2016-03-01

    Cancer diagnosis and pharmaceutical research increasingly depend on the accurate quantification of cancer biomarkers. Identification of biomarkers is usually performed through immunohistochemical staining of cancer sections on glass slides. However, combination of multiple biomarkers from a wide variety of immunohistochemically stained slides is a tedious process in traditional histopathology due to the switching of glass slides and re-identification of regions of interest by pathologists. Digital pathology now allows us to apply image registration algorithms to digitized whole-slides to align the differing immunohistochemical stains automatically. However, registration algorithms need to be robust to changes in color due to differing stains and severe changes in tissue content between slides. In this work we developed a robust registration methodology to allow for fast coarse alignment of multiple immunohistochemical stains to the base hematyoxylin and eosin stained image. We applied HSD color model conversion to obtain a less stain color dependent representation of the whole-slide images. Subsequently, optical density thresholding and connected component analysis were used to identify the relevant regions for registration. Template matching using normalized mutual information was applied to provide initial translation and rotation parameters, after which a cost function-driven affine registration was performed. The algorithm was validated using 40 slides from 10 prostate cancer patients, with landmark registration error as a metric. Median landmark registration error was around 180 microns, which indicates performance is adequate for practical application. None of the registrations failed, indicating the robustness of the algorithm.

  5. Preliminary study of lateral cerebral angiography with reverse rotation in the digital image registration and subtraction

    International Nuclear Information System (INIS)

    Shen Zhenglin; Liu Dongyang; Shen Zhenghai; Li Shuping; Zhang Ziyan; Wu Yongjuan; Liu Peijun

    2012-01-01

    Objective: Investigate the value and feasibility of image registration with reverse rotation in lateral cerebral DSA. Methods: (1) Experimental study: the target images were subtracted directly, and subtracted again after reverse rotation. Software of registration and subtraction with reverse rotation edited by the author utilizing Visual Basic. The function of the automatic angle detection by the software were evaluated to see whether it detected the angle of line. The subtraction function of DSA by the software was evaluated. (2) Clinical retrospective study: the untreated mask and target images of 15 patients with motion along vertical axis during lateral cerebral DSA were uploaded to the software. The target images were processed with and without the software to get two sets of images. (3) Evaluation: four experienced radiologists read and compared the two sets of the images,and graded their findings. Results: (1) The automatic detection by the software suggested that the target images should be rotated counterclockwise 1.3°. The subtraction result of the software was satisfactory. (2) In the 15 sets of images, there were only three sets of images deemed optimal after traditional subtraction. After reverse rotation, artifacts were significantly reduced and the image sharper. There were ten cases with significant artifacts after traditional subtraction, and those images were sharper and showed more peripheral vessels after reverse rotation. The traditional subtraction images of two sets could not be interpreted,the reverse rotation registration images reached the diagnostic quality. (3) Subjective evaluation: there were more information and less noise and distortion in the registration images with reverse rotation than in the traditional subtraction. But the image resolution decreased slightly after reverse rotation registration. Conclusion: The registration of digital angiography with reverse rotation can improve the image quality in lateral cerebral DSA

  6. Fast parallel image registration on CPU and GPU for diagnostic classification of Alzheimer's disease.

    Science.gov (United States)

    Shamonin, Denis P; Bron, Esther E; Lelieveldt, Boudewijn P F; Smits, Marion; Klein, Stefan; Staring, Marius

    2013-01-01

    Nonrigid image registration is an important, but time-consuming task in medical image analysis. In typical neuroimaging studies, multiple image registrations are performed, i.e., for atlas-based segmentation or template construction. Faster image registration routines would therefore be beneficial. In this paper we explore acceleration of the image registration package elastix by a combination of several techniques: (i) parallelization on the CPU, to speed up the cost function derivative calculation; (ii) parallelization on the GPU building on and extending the OpenCL framework from ITKv4, to speed up the Gaussian pyramid computation and the image resampling step; (iii) exploitation of certain properties of the B-spline transformation model; (iv) further software optimizations. The accelerated registration tool is employed in a study on diagnostic classification of Alzheimer's disease and cognitively normal controls based on T1-weighted MRI. We selected 299 participants from the publicly available Alzheimer's Disease Neuroimaging Initiative database. Classification is performed with a support vector machine based on gray matter volumes as a marker for atrophy. We evaluated two types of strategies (voxel-wise and region-wise) that heavily rely on nonrigid image registration. Parallelization and optimization resulted in an acceleration factor of 4-5x on an 8-core machine. Using OpenCL a speedup factor of 2 was realized for computation of the Gaussian pyramids, and 15-60 for the resampling step, for larger images. The voxel-wise and the region-wise classification methods had an area under the receiver operator characteristic curve of 88 and 90%, respectively, both for standard and accelerated registration. We conclude that the image registration package elastix was substantially accelerated, with nearly identical results to the non-optimized version. The new functionality will become available in the next release of elastix as open source under the BSD license.

  7. Sensitivity study of voxel-based PET image comparison to image registration algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Yip, Stephen, E-mail: syip@lroc.harvard.edu; Chen, Aileen B.; Berbeco, Ross [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Aerts, Hugo J. W. L. [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 and Department of Radiology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2014-11-01

    Purpose: Accurate deformable registration is essential for voxel-based comparison of sequential positron emission tomography (PET) images for proper adaptation of treatment plan and treatment response assessment. The comparison may be sensitive to the method of deformable registration as the optimal algorithm is unknown. This study investigated the impact of registration algorithm choice on therapy response evaluation. Methods: Sixteen patients with 20 lung tumors underwent a pre- and post-treatment computed tomography (CT) and 4D FDG-PET scans before and after chemoradiotherapy. All CT images were coregistered using a rigid and ten deformable registration algorithms. The resulting transformations were then applied to the respective PET images. Moreover, the tumor region defined by a physician on the registered PET images was classified into progressor, stable-disease, and responder subvolumes. Particularly, voxels with standardized uptake value (SUV) decreases >30% were classified as responder, while voxels with SUV increases >30% were progressor. All other voxels were considered stable-disease. The agreement of the subvolumes resulting from difference registration algorithms was assessed by Dice similarity index (DSI). Coefficient of variation (CV) was computed to assess variability of DSI between individual tumors. Root mean square difference (RMS{sub rigid}) of the rigidly registered CT images was used to measure the degree of tumor deformation. RMS{sub rigid} and DSI were correlated by Spearman correlation coefficient (R) to investigate the effect of tumor deformation on DSI. Results: Median DSI{sub rigid} was found to be 72%, 66%, and 80%, for progressor, stable-disease, and responder, respectively. Median DSI{sub deformable} was 63%–84%, 65%–81%, and 82%–89%. Variability of DSI was substantial and similar for both rigid and deformable algorithms with CV > 10% for all subvolumes. Tumor deformation had moderate to significant impact on DSI for progressor

  8. A first step toward uncovering the truth about weight tuning in deformable image registration

    Science.gov (United States)

    Pirpinia, Kleopatra; Bosman, Peter A. N.; Sonke, Jan-Jakob; van Herk, Marcel; Alderliesten, Tanja

    2016-03-01

    Deformable image registration is currently predominantly solved by optimizing a weighted linear combination of objectives. Successfully tuning the weights associated with these objectives is not trivial, leading to trial-and-error approaches. Such an approach assumes an intuitive interplay between weights, optimization objectives, and target registration errors. However, it is not known whether this always holds for existing registration methods. To investigate the interplay between weights, optimization objectives, and registration errors, we employ multi-objective optimization. Here, objectives of interest are optimized simultaneously, causing a set of multiple optimal solutions to exist, called the optimal Pareto front. Our medical application is in breast cancer and includes the challenging prone-supine registration problem. In total, we studied the interplay in three different ways. First, we ran many random linear combinations of objectives using the well-known registration software elastix. Second, since the optimization algorithms used in registration are typically of a local-search nature, final solutions may not always form a Pareto front. We therefore employed a multi-objective evolutionary algorithm that finds weights that correspond to registration outcomes that do form a Pareto front. Third, we examined how the interplay differs if a true multi-objective (i.e., weight-free) image registration method is used. Results indicate that a trial-and-error weight-adaptation approach can be successful for the easy prone to prone breast image registration case, due to the absence of many local optima. With increasing problem difficulty the use of more advanced approaches can be of value in finding and selecting the optimal registration outcomes.

  9. Simultaneous 3D–2D image registration and C-arm calibration: Application to endovascular image-guided interventions

    Energy Technology Data Exchange (ETDEWEB)

    Mitrović, Uroš [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000, Slovenia and Cosylab, Control System Laboratory, Teslova ulica 30, Ljubljana 1000 (Slovenia); Pernuš, Franjo [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000 (Slovenia); Likar, Boštjan; Špiclin, Žiga, E-mail: ziga.spiclin@fe.uni-lj.si [Faculty of Electrical Engineering, University of Ljubljana, Tržaška 25, Ljubljana 1000, Slovenia and Sensum, Computer Vision Systems, Tehnološki Park 21, Ljubljana 1000 (Slovenia)

    2015-11-15

    Purpose: Three-dimensional to two-dimensional (3D–2D) image registration is a key to fusion and simultaneous visualization of valuable information contained in 3D pre-interventional and 2D intra-interventional images with the final goal of image guidance of a procedure. In this paper, the authors focus on 3D–2D image registration within the context of intracranial endovascular image-guided interventions (EIGIs), where the 3D and 2D images are generally acquired with the same C-arm system. The accuracy and robustness of any 3D–2D registration method, to be used in a clinical setting, is influenced by (1) the method itself, (2) uncertainty of initial pose of the 3D image from which registration starts, (3) uncertainty of C-arm’s geometry and pose, and (4) the number of 2D intra-interventional images used for registration, which is generally one and at most two. The study of these influences requires rigorous and objective validation of any 3D–2D registration method against a highly accurate reference or “gold standard” registration, performed on clinical image datasets acquired in the context of the intervention. Methods: The registration process is split into two sequential, i.e., initial and final, registration stages. The initial stage is either machine-based or template matching. The latter aims to reduce possibly large in-plane translation errors by matching a projection of the 3D vessel model and 2D image. In the final registration stage, four state-of-the-art intrinsic image-based 3D–2D registration methods, which involve simultaneous refinement of rigid-body and C-arm parameters, are evaluated. For objective validation, the authors acquired an image database of 15 patients undergoing cerebral EIGI, for which accurate gold standard registrations were established by fiducial marker coregistration. Results: Based on target registration error, the obtained success rates of 3D to a single 2D image registration after initial machine-based and

  10. Automatic 3D MR image registration and its evaluation for precise monitoring of knee joint disease

    International Nuclear Information System (INIS)

    Cheng Yuanzhi; Jin Quan; Guo Changyong; Ding Xiaohua; Tanaka, Hisashi; Tamura, Shinichi

    2011-01-01

    We describe a technique for the registration of three dimensional (3D) knee femur surface points from MR image data sets; it is a technique that can track local cartilage thickness changes over time. In the first coarse registration step, we use the direction vectors of the volume given by the cloud of points of the MR image to correct for different knee joint positions and orientations in the MR scanner. In the second fine registration step, we propose a global search algorithm that simultaneously determines the optimal transformation parameters and point correspondences through searching a six dimensional space of Euclidean motion vectors (translation and rotation). The present algorithm is grounded on a mathematical theory- Lipschitz optimization. Compared with the other three registration approaches (iterative closest point (ICP), EM-ICP, and genetic algorithms), the proposed method achieved the highest registration accuracy on both animal and clinical data. (author)

  11. Fast and accurate registration of cranial CT images with A-mode ultrasound.

    Science.gov (United States)

    Fieten, Lorenz; Schmieder, Kirsten; Engelhardt, Martin; Pasalic, Lamija; Radermacher, Klaus; Heger, Stefan

    2009-05-01

    Within the CRANIO project, a navigation module based on preoperative computed tomography (CT) data was developed for Computer and Robot Assisted Neurosurgery. The approach followed for non-invasive user-interactive registration of cranial CT images with the physical operating space consists of surface-based registration following pre-registration based on anatomical landmarks. Surface-based registration relies on bone surface points digitized transcutaneously by means of an optically tracked A-mode ultrasound (US) probe. As probe alignment and thus bone surface point digitization may be time-consuming, we investigated how to obtain high registration accuracy despite inaccurate pre-registration and a limited number of digitized bone surface points. Furthermore, we aimed at efficient man-machine-interaction during the probe alignment process. Finally, we addressed the problem of registration plausibility estimation in our approach. We modified the Iterative Closest Point (ICP) algorithm, presented by Besl and McKay and frequently used for surface-based registration, such that it can escape from local minima of the cost function to be iteratively minimized. The random-based ICP (R-ICP) we developed is less influenced by the quality of the pre-registration as it can escape from local minima close to the starting point for iterative optimization in the 6D domain of rigid transformations. The R-ICP is also better suited to approximate the global minimum as it can escape from local minima in the vicinity of the global minimum, too. Furthermore, we developed both CT-less and CT-based probe alignment tools along with appropriate man-machine strategies for a more time-efficient palpation process. To improve registration reliability, we developed a simple plausibility test based on data readily available after registration. In a cadaver study, where we evaluated the R-ICP algorithm, the probe alignment tools, and the plausibility test, the R-ICP algorithm consistently

  12. Comparison of time-series registration methods in breast dynamic infrared imaging

    Science.gov (United States)

    Riyahi-Alam, S.; Agostini, V.; Molinari, F.; Knaflitz, M.

    2015-03-01

    Automated motion reduction in dynamic infrared imaging is on demand in clinical applications, since movement disarranges time-temperature series of each pixel, thus originating thermal artifacts that might bias the clinical decision. All previously proposed registration methods are feature based algorithms requiring manual intervention. The aim of this work is to optimize the registration strategy specifically for Breast Dynamic Infrared Imaging and to make it user-independent. We implemented and evaluated 3 different 3D time-series registration methods: 1. Linear affine, 2. Non-linear Bspline, 3. Demons applied to 12 datasets of healthy breast thermal images. The results are evaluated through normalized mutual information with average values of 0.70 ±0.03, 0.74 ±0.03 and 0.81 ±0.09 (out of 1) for Affine, Bspline and Demons registration, respectively, as well as breast boundary overlap and Jacobian determinant of the deformation field. The statistical analysis of the results showed that symmetric diffeomorphic Demons' registration method outperforms also with the best breast alignment and non-negative Jacobian values which guarantee image similarity and anatomical consistency of the transformation, due to homologous forces enforcing the pixel geometric disparities to be shortened on all the frames. We propose Demons' registration as an effective technique for time-series dynamic infrared registration, to stabilize the local temperature oscillation.

  13. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    Science.gov (United States)

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications.

  14. A Joint Land Cover Mapping and Image Registration Algorithm Based on a Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Apisit Eiumnoh

    2013-10-01

    Full Text Available Traditionally, image registration of multi-modal and multi-temporal images is performed satisfactorily before land cover mapping. However, since multi-modal and multi-temporal images are likely to be obtained from different satellite platforms and/or acquired at different times, perfect alignment is very difficult to achieve. As a result, a proper land cover mapping algorithm must be able to correct registration errors as well as perform an accurate classification. In this paper, we propose a joint classification and registration technique based on a Markov random field (MRF model to simultaneously align two or more images and obtain a land cover map (LCM of the scene. The expectation maximization (EM algorithm is employed to solve the joint image classification and registration problem by iteratively estimating the map parameters and approximate posterior probabilities. Then, the maximum a posteriori (MAP criterion is used to produce an optimum land cover map. We conducted experiments on a set of four simulated images and one pair of remotely sensed images to investigate the effectiveness and robustness of the proposed algorithm. Our results show that, with proper selection of a critical MRF parameter, the resulting LCMs derived from an unregistered image pair can achieve an accuracy that is as high as when images are perfectly aligned. Furthermore, the registration error can be greatly reduced.

  15. Transmission imaging for registration of ictal and interictal single-photon emission tomography, magnetic resonance imaging and electroencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Sipilae, O. [Epilepsy Unit, Neurology, Hospital for Children and Adolescents, Helsinki University Central Hospital (Finland); Laboratory of Biomedical Engineering, Helsinki University of Technology, P.O. Box 2200, FIN-02015 HUT (Finland); Nikkinen, P.; Liewendahl, K. [Division of Nuclear Medicine, Laboratory Department, Helsinki University Central Hospital (Finland); Savolainen, S. [Division of Nuclear Medicine, Laboratory Department, Helsinki University Central Hospital (Finland); Department of Radiology, Helsinki University Central Hospital (Finland); Granstroem, M.-L.; Gaily, E. [Epilepsy Unit, Neurology, Hospital for Children and Adolescents, Helsinki University Central Hospital (Finland); Poutanen, V.-P. [Department of Radiology, Helsinki University Central Hospital (Finland); Pohjonen, H. [Technology Development Centre, P.O. Box 69, 00101 Helsinki (Finland)

    2000-02-01

    A method developed for registration of ictal and interictal single-photon emission tomography (SPET), magnetic resonance imaging (MRI) and electroencephalography (EEG) is described. For SPET studies, technetium-99m ethyl cysteinate dimer (ECD) was injected intravenously while the patient was monitored on video-EEG to document the ictal or interictal state. Imaging was performed using a triple-head gamma camera equipped with a transmission imaging device using a gadolinium-153 source. The images (128 x 128 pixels, voxel size 3.7 x 3.7 x 3.6 mm{sup 3}) were reconstructed using an iterative algorithm and postfiltered with a Wiener filter. The gold-plated silver electrodes on the patient's scalp were utilized as markers for registration of the ictal and interictal SPET images, as these metallic markers were clearly seen on the transmission images. Fitting of the marker sets was based on a non-iterative least squares method. The interictal SPET image was subtracted from the ictal image after scaling. The T1-weighted MPRAGE MR images with voxel size of 1.0 x 1.0 x 1.0 mm{sup 3} were obtained with a 1.5-T scanner. For registration of MR and subtraction SPET images, the external marker set of the ictal SPET study was fitted to the surface of the head segmented from MR images. The SPET registration was tested with a phantom experiment. Registration of ictal and interictal SPET in five patient studies resulted in a 2-mm RMS residual of the marker sets. The estimated RMS error of registration in the final result combining locations of the electrodes, subtraction SPET and MR images was 3-5 mm. In conclusion, transmission imaging can be utilized for an accurate and easily implemented registration procedure for ictal and interictal SPET, MRI and EEG. (orig.)

  16. The plant virus microscope image registration method based on mismatches removing.

    Science.gov (United States)

    Wei, Lifang; Zhou, Shucheng; Dong, Heng; Mao, Qianzhuo; Lin, Jiaxiang; Chen, Riqing

    2016-01-01

    The electron microscopy is one of the major means to observe the virus. The view of virus microscope images is limited by making specimen and the size of the camera's view field. To solve this problem, the virus sample is produced into multi-slice for information fusion and image registration techniques are applied to obtain large field and whole sections. Image registration techniques have been developed in the past decades for increasing the camera's field of view. Nevertheless, these approaches typically work in batch mode and rely on motorized microscopes. Alternatively, the methods are conceived just to provide visually pleasant registration for high overlap ratio image sequence. This work presents a method for virus microscope image registration acquired with detailed visual information and subpixel accuracy, even when overlap ratio of image sequence is 10% or less. The method proposed focus on the correspondence set and interimage transformation. A mismatch removal strategy is proposed by the spatial consistency and the components of keypoint to enrich the correspondence set. And the translation model parameter as well as tonal inhomogeneities is corrected by the hierarchical estimation and model select. In the experiments performed, we tested different registration approaches and virus images, confirming that the translation model is not always stationary, despite the fact that the images of the sample come from the same sequence. The mismatch removal strategy makes building registration of virus microscope images at subpixel accuracy easier and optional parameters for building registration according to the hierarchical estimation and model select strategies make the proposed method high precision and reliable for low overlap ratio image sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Inverse consistent non-rigid image registration based on robust point set matching

    Science.gov (United States)

    2014-01-01

    Background Robust point matching (RPM) has been extensively used in non-rigid registration of images to robustly register two sets of image points. However, except for the location at control points, RPM cannot estimate the consistent correspondence between two images because RPM is a unidirectional image matching approach. Therefore, it is an important issue to make an improvement in image registration based on RPM. Methods In our work, a consistent image registration approach based on the point sets matching is proposed to incorporate the property of inverse consistency and improve registration accuracy. Instead of only estimating the forward transformation between the source point sets and the target point sets in state-of-the-art RPM algorithms, the forward and backward transformations between two point sets are estimated concurrently in our algorithm. The inverse consistency constraints are introduced to the cost function of RPM and the fuzzy correspondences between two point sets are estimated based on both the forward and backward transformations simultaneously. A modified consistent landmark thin-plate spline registration is discussed in detail to find the forward and backward transformations during the optimization of RPM. The similarity of image content is also incorporated into point matching in order to improve image matching. Results Synthetic data sets, medical images are employed to demonstrate and validate the performance of our approach. The inverse consistent errors of our algorithm are smaller than RPM. Especially, the topology of transformations is preserved well for our algorithm for the large deformation between point sets. Moreover, the distance errors of our algorithm are similar to that of RPM, and they maintain a downward trend as whole, which demonstrates the convergence of our algorithm. The registration errors for image registrations are evaluated also. Again, our algorithm achieves the lower registration errors in same iteration number

  18. Carrier for registration of optical images and holographic information

    International Nuclear Information System (INIS)

    Andries, A.; Bivol, V.; Iovu, M.

    2000-01-01

    The invention relates to the field of registration of optical information including the holographic one and may be used in the holography, cinematography, micro- and optical electronics, computer engineering. Summary of the invention consists in, that in the carrier containing a dielectric substrate on which there are placed in sequence the first electrode, photoinjection substrate, registration substrate of the chalcogenide vitreous semiconductor and the second electrode, the photoinjection substrate is fabricated of the monocrystalline germanium of the n-type conductivity and the relation of the registration substrate conductivity, during illumination to the photoinjection substrate conductivity in darkness is 0,001. The technical result consists in increasing the carrier photosensibility and in diffraction effectiveness of the information registered on the carrier

  19. Registration of vehicle based panoramic image and LiDAR point cloud

    Science.gov (United States)

    Chen, Changjun; Cao, Liang; Xie, Hong; Zhuo, Xiangyu

    2013-10-01

    Higher quality surface information would be got when data from optical images and LiDAR were integrated, owing to the fact that optical images and LiDAR point cloud have unique characteristics that make them preferable in many applications. While most previous works focus on registration of pinhole perspective cameras to 2D or 3D LiDAR data. In this paper, a method for the registration of vehicle based panoramic image and LiDAR point cloud is proposed. Using the translation among panoramic image, single CCD image, laser scanner and Position and Orientation System (POS) along with the GPS/IMU data, precise co-registration between the panoramic image and the LiDAR point cloud in the world system is achieved. Results are presented under a real world data set collected by a new developed Mobile Mapping System (MMS) integrated with a high resolution panoramic camera, two laser scanners and a POS.

  20. Registration methods for pulmonary image analysis integration of morphological and physiological knowledge

    CERN Document Server

    Schmidt-Richberg, Alexander

    2014-01-01

    Various applications in the field of pulmonary image analysis require a registration of CT images of the lung. For example, a registration-based estimation of the breathing motion is employed to increase the accuracy of dose distribution in radiotherapy. Alexander Schmidt-Richberg develops methods to explicitly model morphological and physiological knowledge about respiration in algorithms for the registration of thoracic CT images. The author focusses on two lung-specific issues: on the one hand, the alignment of the interlobular fissures and on the other hand, the estimation of sliding motion at the lung boundaries. He shows that by explicitly considering these aspects based on a segmentation of the respective structure, registration accuracy can be significantly improved.

  1. MREG V1.1 : a multi-scale image registration algorithm for SAR applications.

    Energy Technology Data Exchange (ETDEWEB)

    Eichel, Paul H.

    2013-08-01

    MREG V1.1 is the sixth generation SAR image registration algorithm developed by the Signal Processing&Technology Department for Synthetic Aperture Radar applications. Like its predecessor algorithm REGI, it employs a powerful iterative multi-scale paradigm to achieve the competing goals of sub-pixel registration accuracy and the ability to handle large initial offsets. Since it is not model based, it allows for high fidelity tracking of spatially varying terrain-induced misregistration. Since it does not rely on image domain phase, it is equally adept at coherent and noncoherent image registration. This document provides a brief history of the registration processors developed by Dept. 5962 leading up to MREG V1.1, a full description of the signal processing steps involved in the algorithm, and a user's manual with application specific recommendations for CCD, TwoColor MultiView, and SAR stereoscopy.

  2. Landmark Optimization Using Local Curvature for Point-Based Nonlinear Rodent Brain Image Registration

    Directory of Open Access Journals (Sweden)

    Yutong Liu

    2012-01-01

    Full Text Available Purpose. To develop a technique to automate landmark selection for point-based interpolating transformations for nonlinear medical image registration. Materials and Methods. Interpolating transformations were calculated from homologous point landmarks on the source (image to be transformed and target (reference image. Point landmarks are placed at regular intervals on contours of anatomical features, and their positions are optimized along the contour surface by a function composed of curvature similarity and displacements of the homologous landmarks. The method was evaluated in two cases (=5 each. In one, MRI was registered to histological sections; in the second, geometric distortions in EPI MRI were corrected. Normalized mutual information and target registration error were calculated to compare the registration accuracy of the automatically and manually generated landmarks. Results. Statistical analyses demonstrated significant improvement (<0.05 in registration accuracy by landmark optimization in most data sets and trends towards improvement (<0.1 in others as compared to manual landmark selection.

  3. Medical image registration by combining global and local information: a chain-type diffeomorphic demons algorithm

    International Nuclear Information System (INIS)

    Liu, Xiaozheng; Yuan, Zhenming; Zhu, Junming; Xu, Dongrong

    2013-01-01

    The demons algorithm is a popular algorithm for non-rigid image registration because of its computational efficiency and simple implementation. The deformation forces of the classic demons algorithm were derived from image gradients by considering the deformation to decrease the intensity dissimilarity between images. However, the methods using the difference of image intensity for medical image registration are easily affected by image artifacts, such as image noise, non-uniform imaging and partial volume effects. The gradient magnitude image is constructed from the local information of an image, so the difference in a gradient magnitude image can be regarded as more reliable and robust for these artifacts. Then, registering medical images by considering the differences in both image intensity and gradient magnitude is a straightforward selection. In this paper, based on a diffeomorphic demons algorithm, we propose a chain-type diffeomorphic demons algorithm by combining the differences in both image intensity and gradient magnitude for medical image registration. Previous work had shown that the classic demons algorithm can be considered as an approximation of a second order gradient descent on the sum of the squared intensity differences. By optimizing the new dissimilarity criteria, we also present a set of new demons forces which were derived from the gradients of the image and gradient magnitude image. We show that, in controlled experiments, this advantage is confirmed, and yields a fast convergence. (paper)

  4. Automatic localization of landmark sets in head CT images with regression forests for image registration initialization

    Science.gov (United States)

    Zhang, Dongqing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2016-03-01

    Cochlear Implants (CIs) are electrode arrays that are surgically inserted into the cochlea. Individual contacts stimulate frequency-mapped nerve endings thus replacing the natural electro-mechanical transduction mechanism. CIs are programmed post-operatively by audiologists but this is currently done using behavioral tests without imaging information that permits relating electrode position to inner ear anatomy. We have recently developed a series of image processing steps that permit the segmentation of the inner ear anatomy and the localization of individual contacts. We have proposed a new programming strategy that uses this information and we have shown in a study with 68 participants that 78% of long term recipients preferred the programming parameters determined with this new strategy. A limiting factor to the large scale evaluation and deployment of our technique is the amount of user interaction still required in some of the steps used in our sequence of image processing algorithms. One such step is the rough registration of an atlas to target volumes prior to the use of automated intensity-based algorithms when the target volumes have very different fields of view and orientations. In this paper we propose a solution to this problem. It relies on a random forest-based approach to automatically localize a series of landmarks. Our results obtained from 83 images with 132 registration tasks show that automatic initialization of an intensity-based algorithm proves to be a reliable technique to replace the manual step.

  5. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2015-01-01

    Full Text Available This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs and then identifies scale and translation parameters separately. For three-dimensional (3D images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed.

  6. SU-E-J-91: Biomechanical Deformable Image Registration of Longitudinal Lung CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Cazoulat, G; Owen, D; Matuszak, M; Balter, J; Brock, K [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: Spatial correlation of lung tissue across longitudinal images, as the patient responds to treatment, is a critical step in adaptive radiotherapy. The goal of this work is to expand a biomechanical model-based deformable registration algorithm (Morfeus) to achieve accurate registration in the presence of significant anatomical changes. Methods: Four lung cancer patients previously treated with conventionally fractionated radiotherapy that exhibited notable tumor shrinkage during treatment were retrospectively evaluated. Exhale breathhold CT scans were obtained at treatment planning (PCT) and following three weeks (W3CT) of treatment. For each patient, the PCT was registered to the W3CT using Morfeus, a biomechanical model-based deformable registration algorithm, consisting of boundary conditions on the lungs and incorporating a sliding interface between the lung and chest wall. To model the complex response of the lung, an extension to Morfeus has been developed: (i) The vessel tree was segmented by thresholding a vesselness image based on the Hessian matrix’s eigenvalues and the centerline was extracted; (ii) A 3D shape context method was used to find correspondences between the trees of the two images; (ii) Correspondences were used as additional boundary conditions (Morfeus+vBC). An expert independently identified corresponding landmarks well distributed in the lung to compute Target Registration Errors (TRE). Results: The TRE within 15mm of the tumor boundaries (on average 11 landmarks) is: 6.1±1.8, 4.6±1.1 and 3.8±2.3 mm after rigid registration, Morfeus and Morfeus+vBC, respectively. The TRE in the rest of the lung (on average 13 landmarks) is: 6.4±3.9, 4.7±2.2 and 3.6±1.9 mm, which is on the order of the 2mm isotropic dose grid vector (3.5mm). Conclusion: The addition of boundary conditions on the vessels improved the accuracy in modeling the response of the lung and tumor over the course of radiotherapy. Minimizing and modeling these

  7. Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy

    International Nuclear Information System (INIS)

    Lu Weiguo; Olivera, Gustavo H; Chen, Quan; Ruchala, Kenneth J; Haimerl, Jason; Meeks, Sanford L; Langen, Katja M; Kupelian, Patrick A

    2006-01-01

    The incorporation of daily images into the radiotherapy process leads to adaptive radiation therapy (ART), in which the treatment is evaluated periodically and the plan is adaptively modified for the remaining course of radiotherapy. Deformable registration between the planning image and the daily images is a key component of ART. In this paper, we report our researches on deformable registration between the planning kVCT and the daily MVCT image sets. The method is based on a fast intensity-based free-form deformable registration technique. Considering the noise and contrast resolution differences between the kVCT and the MVCT, an 'edge-preserving smoothing' is applied to the MVCT image prior to the deformable registration process. We retrospectively studied daily MVCT images from commercial TomoTherapy machines from different clinical centers. The data set includes five head-neck cases, one pelvis case, two lung cases and one prostate case. Each case has one kVCT image and 20-40 MVCT images. We registered the MVCT images with their corresponding kVCT image. The similarity measures and visual inspections of contour matches by physicians validated this technique. The applications of deformable registration in ART, including 'deformable dose accumulation', 'automatic re-contouring' and 'tumour growth/regression evaluation' throughout the course of radiotherapy are also studied

  8. Dome-shaped macula: a compensatory mechanism in myopic anisometropia?

    Science.gov (United States)

    Keane, Pearse A; Mitra, Arijit; Khan, Imran J; Quhill, Fahd; Elsherbiny, Samer M

    2012-05-31

    The purpose of this article was to describe a patient with dome-shaped macula in the setting of mild myopic anisometropia and to speculate regarding the role of this feature as a compensatory mechanism in ocular development. The clinical records of a 49-year-old woman with this condition were reviewed. Spectral-domain optical coherence tomographic images revealed evidence of a dome-shaped macula. B-scan ultrasonography measured axial lengths of 23.8 mm in the right eye and 22.8 mm in the left eye. Spherical equivalents were -1.375 and +0.375 in the right and left eyes, respectively. Examination of the left eye was unremarkable. Dome-shaped macula has previously only been described in patients with high myopia. These findings support the hypothesis that myopic anisometropia, rather than absolute refractive status, is central to the development of dome-shaped macula and that this feature represents a protective mechanism aimed at reducing the effects of anisometropia. Copyright 2012, SLACK Incorporated.

  9. Do Tumors in the Lung Deform During Normal Respiration? An Image Registration Investigation

    International Nuclear Information System (INIS)

    Wu Jianzhou; Lei Peng; Shekhar, Raj; Li Huiling; Suntharalingam, Mohan; D'Souza, Warren D.

    2009-01-01

    Purpose: The purpose of this study was to investigate whether lung tumors may be described adequately using a rigid body assumption or whether they deform during normal respiration. Methods and Materials: Thirty patients with early stage non-small-cell lung cancer underwent four-dimensional (4D) computed tomography (CT) simulation. The gross tumor volume (GTV) was delineated on the 4D CT images. Image registration was performed in the vicinity of the GTV. The volume of interest for registration was the GTV and minimal volume of surrounding non-GTV tissue. Three types of registration were performed: translation only, translation + rotation, and deformable. The GTV contour from end-inhale was mapped to end-exhale using the registration-derived transformation field. The results were evaluated using three metrics: overlap index (OI), root-mean-squared distance (RMS), and Hausdorff distance (HD). Results: After translation only image registration, on average OI increased by 21.3%, RMS and HD reduced by 1.2 mm and 2.0 mm, respectively. The succeeding increases in OI after translation + rotation and deformable registration were 1.1% and 1.4% respectively. The succeeding reductions in RMS were 0.1 mm and 0.2 mm respectively. No reduction in HD was observed after translation + rotation and deformable image registration compared with translation only registration. The difference in the results from the three registration scenarios was independent of GTV size and motion amplitude. Conclusions: The primary effect of normal respiration on lung tumors was the translation of tumors. Rotation and deformation of lung tumors was determined to be minimal.

  10. Image registration for a UV-Visible dual-band imaging system

    Science.gov (United States)

    Chen, Tao; Yuan, Shuang; Li, Jianping; Xing, Sheng; Zhang, Honglong; Dong, Yuming; Chen, Liangpei; Liu, Peng; Jiao, Guohua

    2018-06-01

    The detection of corona discharge is an effective way for early fault diagnosis of power equipment. UV-Visible dual-band imaging can detect and locate corona discharge spot at all-weather condition. In this study, we introduce an image registration protocol for this dual-band imaging system. The protocol consists of UV image denoising and affine transformation model establishment. We report the algorithm details of UV image preprocessing, affine transformation model establishment and relevant experiments for verification of their feasibility. The denoising algorithm was based on a correlation operation between raw UV images, a continuous mask and the transformation model was established by using corner feature and a statistical method. Finally, an image fusion test was carried out to verify the accuracy of affine transformation model. It has proved the average position displacement error between corona discharge and equipment fault at different distances in a 2.5m-20 m range are 1.34 mm and 1.92 mm in the horizontal and vertical directions, respectively, which are precise enough for most industrial applications. The resultant protocol is not only expected to improve the efficiency and accuracy of such imaging system for locating corona discharge spot, but also supposed to provide a more generalized reference for the calibration of various dual-band imaging systems in practice.

  11. Microscopic validation of whole mouse micro-metastatic tumor imaging agents using cryo-imaging and sliding organ image registration

    Science.gov (United States)

    Liu, Yiqiao; Zhou, Bo; Qutaish, Mohammed; Wilson, David L.

    2016-03-01

    We created a metastasis imaging, analysis platform consisting of software and multi-spectral cryo-imaging system suitable for evaluating emerging imaging agents targeting micro-metastatic tumor. We analyzed CREKA-Gd in MRI, followed by cryo-imaging which repeatedly sectioned and tiled microscope images of the tissue block face, providing anatomical bright field and molecular fluorescence, enabling 3D microscopic imaging of the entire mouse with single metastatic cell sensitivity. To register MRI volumes to the cryo bright field reference, we used our standard mutual information, non-rigid registration which proceeded: preprocess --> affine --> B-spline non-rigid 3D registration. In this report, we created two modified approaches: mask where we registered locally over a smaller rectangular solid, and sliding organ. Briefly, in sliding organ, we segmented the organ, registered the organ and body volumes separately and combined results. Though sliding organ required manual annotation, it provided the best result as a standard to measure other registration methods. Regularization parameters for standard and mask methods were optimized in a grid search. Evaluations consisted of DICE, and visual scoring of a checkerboard display. Standard had accuracy of 2 voxels in all regions except near the kidney, where there were 5 voxels sliding. After mask and sliding organ correction, kidneys sliding were within 2 voxels, and Dice overlap increased 4%-10% in mask compared to standard. Mask generated comparable results with sliding organ and allowed a semi-automatic process.

  12. An embedded system for image segmentation and multimodal registration in noninvasive skin cancer screening.

    Science.gov (United States)

    Diaz, Silvana; Soto, Javier E; Inostroza, Fabian; Godoy, Sebastian E; Figueroa, Miguel

    2017-07-01

    We present a heterogeneous architecture for image registration and multimodal segmentation on an embedded system for noninvasive skin cancer screening. The architecture combines Otsu thresholding and the random walker algorithm to perform image segmentation, and features a hardware implementation of the Harris corner detection algorithm to perform region-of-interest detection and image registration. Running on a Xilinx XC7Z020 reconfigurable system-on-a-chip, our prototype computes the initial segmentation of a 400×400-pixel region of interest in the visible spectrum in 12.1 seconds, and registers infrared images against this region at 540 frames per second, while consuming 1.9W.

  13. An object-oriented framework for medical image registration, fusion, and visualization.

    Science.gov (United States)

    Zhu, Yang-Ming; Cochoff, Steven M

    2006-06-01

    An object-oriented framework for image registration, fusion, and visualization was developed based on the classic model-view-controller paradigm. The framework employs many design patterns to facilitate legacy code reuse, manage software complexity, and enhance the maintainability and portability of the framework. Three sample applications built a-top of this framework are illustrated to show the effectiveness of this framework: the first one is for volume image grouping and re-sampling, the second one is for 2D registration and fusion, and the last one is for visualization of single images as well as registered volume images.

  14. A combined alignment and registration scheme of psoriasis lesion |images

    DEFF Research Database (Denmark)

    Maletti, Gabriela Mariel; Ersbøll, Bjarne Kjær

    2003-01-01

    A two-stage registration scheme of psoriasis lesion patterns is proposed. In the first stage, global rotation and translation effects of assumed equally scaled psoriasis lesion patterns are removed. In the second stage, only local translation effects are removed. In both stages a novel algorithm...

  15. Adaptive mesh generation for image registration and segmentation

    DEFF Research Database (Denmark)

    Fogtmann, Mads; Larsen, Rasmus

    2013-01-01

    measure. The method was tested on a T1 weighted MR volume of an adult brain and showed a 66% reduction in the number of mesh vertices compared to a red-subdivision strategy. The deformation capability of the mesh was tested by registration to five additional T1-weighted MR volumes....

  16. Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Denis P Shamonin

    2014-01-01

    Full Text Available Nonrigid image registration is an important, but time-consuming taskin medical image analysis. In typical neuroimaging studies, multipleimage registrations are performed, i.e. for atlas-based segmentationor template construction. Faster image registration routines wouldtherefore be beneficial.In this paper we explore acceleration of the image registrationpackage elastix by a combination of several techniques: iparallelization on the CPU, to speed up the cost function derivativecalculation; ii parallelization on the GPU building on andextending the OpenCL framework from ITKv4, to speed up the Gaussianpyramid computation and the image resampling step; iii exploitationof certain properties of the B-spline transformation model; ivfurther software optimizations.The accelerated registration tool is employed in a study ondiagnostic classification of Alzheimer's disease and cognitivelynormal controls based on T1-weighted MRI. We selected 299participants from the publicly available Alzheimer's DiseaseNeuroimaging Initiative database. Classification is performed with asupport vector machine based on gray matter volumes as a marker foratrophy. We evaluated two types of strategies (voxel-wise andregion-wise that heavily rely on nonrigid image registration.Parallelization and optimization resulted in an acceleration factorof 4-5x on an 8-core machine. Using OpenCL a speedup factor of ~2was realized for computation of the Gaussian pyramids, and 15-60 forthe resampling step, for larger images. The voxel-wise and theregion-wise classification methods had an area under thereceiver operator characteristic curve of 88% and 90%,respectively, both for standard and accelerated registration.We conclude that the image registration package elastix wassubstantially accelerated, with nearly identical results to thenon-optimized version. The new functionality will become availablein the next release of elastix as open source under the BSD license.

  17. Hierarchical and successive approximate registration of the non-rigid medical image based on thin-plate splines

    Science.gov (United States)

    Hu, Jinyan; Li, Li; Yang, Yunfeng

    2017-06-01

    The hierarchical and successive approximate registration method of non-rigid medical image based on the thin-plate splines is proposed in the paper. There are two major novelties in the proposed method. First, the hierarchical registration based on Wavelet transform is used. The approximate image of Wavelet transform is selected as the registered object. Second, the successive approximation registration method is used to accomplish the non-rigid medical images registration, i.e. the local regions of the couple images are registered roughly based on the thin-plate splines, then, the current rough registration result is selected as the object to be registered in the following registration procedure. Experiments show that the proposed method is effective in the registration process of the non-rigid medical images.

  18. REGISTRATION OF LASER SCANNING POINT CLOUDS AND AERIAL IMAGES USING EITHER ARTIFICIAL OR NATURAL TIE FEATURES

    Directory of Open Access Journals (Sweden)

    P. Rönnholm

    2012-07-01

    Full Text Available Integration of laser scanning data and photographs is an excellent combination regarding both redundancy and complementary. Applications of integration vary from sensor and data calibration to advanced classification and scene understanding. In this research, only airborne laser scanning and aerial images are considered. Currently, the initial registration is solved using direct orientation sensors GPS and inertial measurements. However, the accuracy is not usually sufficient for reliable integration of data sets, and thus the initial registration needs to be improved. A registration of data from different sources requires searching and measuring of accurate tie features. Usually, points, lines or planes are preferred as tie features. Therefore, the majority of resent methods rely highly on artificial objects, such as buildings, targets or road paintings. However, in many areas no such objects are available. For example in forestry areas, it would be advantageous to be able to improve registration between laser data and images without making additional ground measurements. Therefore, there is a need to solve registration using only natural features, such as vegetation and ground surfaces. Using vegetation as tie features is challenging, because the shape and even location of vegetation can change because of wind, for example. The aim of this article was to compare registration accuracies derived by using either artificial or natural tie features. The test area included urban objects as well as trees and other vegetation. In this area, two registrations were performed, firstly, using mainly built objects and, secondly, using only vegetation and ground surface. The registrations were solved applying the interactive orientation method. As a result, using artificial tie features leaded to a successful registration in all directions of the coordinate system axes. In the case of using natural tie features, however, the detection of correct heights was

  19. Toward efficient biomechanical-based deformable image registration of lungs for image-guided radiotherapy

    Science.gov (United States)

    Al-Mayah, Adil; Moseley, Joanne; Velec, Mike; Brock, Kristy

    2011-08-01

    Both accuracy and efficiency are critical for the implementation of biomechanical model-based deformable registration in clinical practice. The focus of this investigation is to evaluate the potential of improving the efficiency of the deformable image registration of the human lungs without loss of accuracy. Three-dimensional finite element models have been developed using image data of 14 lung cancer patients. Each model consists of two lungs, tumor and external body. Sliding of the lungs inside the chest cavity is modeled using a frictionless surface-based contact model. The effect of the type of element, finite deformation and elasticity on the accuracy and computing time is investigated. Linear and quadrilateral tetrahedral elements are used with linear and nonlinear geometric analysis. Two types of material properties are applied namely: elastic and hyperelastic. The accuracy of each of the four models is examined using a number of anatomical landmarks representing the vessels bifurcation points distributed across the lungs. The registration error is not significantly affected by the element type or linearity of analysis, with an average vector error of around 2.8 mm. The displacement differences between linear and nonlinear analysis methods are calculated for all lungs nodes and a maximum value of 3.6 mm is found in one of the nodes near the entrance of the bronchial tree into the lungs. The 95 percentile of displacement difference ranges between 0.4 and 0.8 mm. However, the time required for the analysis is reduced from 95 min in the quadratic elements nonlinear geometry model to 3.4 min in the linear element linear geometry model. Therefore using linear tetrahedral elements with linear elastic materials and linear geometry is preferable for modeling the breathing motion of lungs for image-guided radiotherapy applications.

  20. Quality assurance of CT-PET alignment and image registration for radiation treatment planning

    International Nuclear Information System (INIS)

    Gong, S.J.; O'Keefe, G.J.; Gunawardana, D.H.

    2005-01-01

    A multi-layer point source phantom was first used to calibrate and verify the CT-PET system alignment. A partial whole-body Aldcrson RANDO Man Phantom (head through mid-femur) was externally and internally marked with small metal cannulas filled with 18F-FDG and then scanned with both modalities. Six series of phantom studies with different acquisition settings and scan positions were performed to reveal possible system bias and evaluate the accuracy and reliabilities of Philips Syntegra program in image alignment, coregistration and fusion. The registration error was assessed quantitatively by measuring the root-mean-square distance between the iso-centers of corresponding fiducial marker geometries in reference CT volumes and transformed CT or PET volumes. Results: Experimental data confirms the accuracy of manual, parameter, point and image-based registration using Syntegra is better than 2 mm. Comparisons between blind and cross definition of iso-centers of fiducial marks indicate that the fused CT and PET is superior to visual correlation of CT and PET side-by-side. Conclusion: In this work we demonstrate the QA procedures of Gemini image alignment and registration. Syntegra produces intrinsic and robust multi-modality image registration and fusion with careful user interaction. The registration accuracy is generally better than the spatial resolution of the PET scanner used and this appears to be sufficient for most RTP CT-PET registration procedures

  1. Development of a hardware-based registration system for the multimodal medical images by USB cameras

    International Nuclear Information System (INIS)

    Iwata, Michiaki; Minato, Kotaro; Watabe, Hiroshi; Koshino, Kazuhiro; Yamamoto, Akihide; Iida, Hidehiro

    2009-01-01

    There are several medical imaging scanners and each modality has different aspect for visualizing inside of human body. By combining these images, diagnostic accuracy could be improved, and therefore, several attempts for multimodal image registration have been implemented. One popular approach is to use hybrid image scanners such as positron emission tomography (PET)/CT and single photon emission computed tomography (SPECT)/CT. However, these hybrid scanners are expensive and not fully available. We developed multimodal image registration system with universal serial bus (USB) cameras, which is inexpensive and applicable to any combinations of existed conventional imaging scanners. The multiple USB cameras will determine the three dimensional positions of a patient while scanning. Using information of these positions and rigid body transformation, the acquired image is registered to the common coordinate which is shared with another scanner. For each scanner, reference marker is attached on gantry of the scanner. For observing the reference marker's position by the USB cameras, the location of the USB cameras can be arbitrary. In order to validate the system, we scanned a cardiac phantom with different positions by PET and MRI scanners. Using this system, images from PET and MRI were visually aligned, and good correlations between PET and MRI images were obtained after the registration. The results suggest this system can be inexpensively used for multimodal image registrations. (author)

  2. Thera and Thrace Macula on Europa

    Science.gov (United States)

    1997-01-01

    This image of Europa's southern hemisphere was obtained by the solid state imaging (CCD) system on board NASA's Galileo spacecraft during its sixth orbit of Jupiter. The upper left portion of the image shows the southern extent of the 'wedges' region, an area that has undergone extensive disruption. South of the wedges, the eastern extent of Agenor Linea (nearly 1000 kilometers in length) is also visible. Thera and Thrace Macula are the dark irregular features southeast of Agenor Linea. This image can be used by scientists to build a global map of Europa by tying such Galileo images together with images from 1979 during NASA's Voyager mission. Such lower resolution images also provide the context needed to interpret the higher resolution images taken by the Galileo during both its nominal mission and the upcoming Europa mission. North is to the top of the picture and the sun illuminates the surface from the right. The image, centered at -40 latitude and 180 longitude, covers an area approximately 675 by 675 kilometers. The finest details that can be discerned in this picture are about 3.3 kilometers across. The images were taken on Feb 20, 1997 at 12 hours, 55 minutes, 34 seconds Universal Time when the spacecraft was at a range of 81,707 kilometers.The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  3. Registration of SPECT, PET and/or X-ray CT images in patients with lung cancer

    International Nuclear Information System (INIS)

    Uemura, K.; Toyama, H.; Miyamoto, T.; Yoshikawa, K.; Mori, Y.

    2002-01-01

    Aim: In order to evaluate the therapeutic gain of heavy ion therapy performed on patients with lung cancer, the regional pulmonary functions and the amount of radio tracer accumulation to the tumor, we are investigated by using the region of interest based on anatomical information obtained from X-ray CT. There are many registration techniques for brain images, but not so much for the other organ images that we have studied registration of chest SPECT, PET and/or X-ray CT images. Materials and Methods: Perfusion, ventilation and blood pool images with Tc 99m labeled radiopharmaceuticals and SPECT, tumor images with 11 C-methionine and PET and X-ray CT scans were performed on several patients with lung cancer before and after heavy ion therapy. The registrations of SPECT-CT, PET-CT and CT-CT were performed by using AMIR (Automatic Multimodality Image Registration), which was developed by Babak et al. for registration of brain images. In a case of SPECT-CT registration, each of the three functional images was registered to the X-ray CT image, and the accuracy of each registration was compared. In the studies of PET-CT registration, the transmission images and X-ray CT images were registered at first, because the 11 C-methionine PET images bear little resemblance to the underlying anatomical images. Next, the emission images were realigned by using the same registration parameters. The X-ray CT images obtained from a single subject at the different time were registered to the first X-ray CT images, respectively. Results: In the SPECT-CT registration, the blood pool-CT registration is the best among three SPECT images in visual inspection by radiologists. In the PET-CT registration, the Transmission-CT registrations got good results. Therefore, Emission-CT registrations also got good results. In the CT-CT registration, the X-ray CT images obtained from a single subject at the different time were superimposed well each other except for lower lobe. As the results, it was

  4. Prostate multimodality image registration based on B-splines and quadrature local energy.

    Science.gov (United States)

    Mitra, Jhimli; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Ghose, Soumya; Vilanova, Joan C; Meriaudeau, Fabrice

    2012-05-01

    Needle biopsy of the prostate is guided by Transrectal Ultrasound (TRUS) imaging. The TRUS images do not provide proper spatial localization of malignant tissues due to the poor sensitivity of TRUS to visualize early malignancy. Magnetic Resonance Imaging (MRI) has been shown to be sensitive for the detection of early stage malignancy, and therefore, a novel 2D deformable registration method that overlays pre-biopsy MRI onto TRUS images has been proposed. The registration method involves B-spline deformations with Normalized Mutual Information (NMI) as the similarity measure computed from the texture images obtained from the amplitude responses of the directional quadrature filter pairs. Registration accuracy of the proposed method is evaluated by computing the Dice Similarity coefficient (DSC) and 95% Hausdorff Distance (HD) values for 20 patients prostate mid-gland slices and Target Registration Error (TRE) for 18 patients only where homologous structures are visible in both the TRUS and transformed MR images. The proposed method and B-splines using NMI computed from intensities provide average TRE values of 2.64 ± 1.37 and 4.43 ± 2.77 mm respectively. Our method shows statistically significant improvement in TRE when compared with B-spline using NMI computed from intensities with Student's t test p = 0.02. The proposed method shows 1.18 times improvement over thin-plate splines registration with average TRE of 3.11 ± 2.18 mm. The mean DSC and the mean 95% HD values obtained with the proposed method of B-spline with NMI computed from texture are 0.943 ± 0.039 and 4.75 ± 2.40 mm respectively. The texture energy computed from the quadrature filter pairs provides better registration accuracy for multimodal images than raw intensities. Low TRE values of the proposed registration method add to the feasibility of it being used during TRUS-guided biopsy.

  5. Image to physical space registration of supine breast MRI for image guided breast surgery

    Science.gov (United States)

    Conley, Rebekah H.; Meszoely, Ingrid M.; Pheiffer, Thomas S.; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    Breast conservation therapy (BCT) is a desirable option for many women diagnosed with early stage breast cancer and involves a lumpectomy followed by radiotherapy. However, approximately 50% of eligible women will elect for mastectomy over BCT despite equal survival benefit (provided margins of excised tissue are cancer free) due to uncertainty in outcome with regards to complete excision of cancerous cells, risk of local recurrence, and cosmesis. Determining surgical margins intraoperatively is difficult and achieving negative margins is not as robust as it needs to be, resulting in high re-operation rates and often mastectomy. Magnetic resonance images (MRI) can provide detailed information about tumor margin extents, however diagnostic images are acquired in a fundamentally different patient presentation than that used in surgery. Therefore, the high quality diagnostic MRIs taken in the prone position with pendant breast are not optimal for use in surgical planning/guidance due to the drastic shape change between preoperative images and the common supine surgical position. This work proposes to investigate the value of supine MRI in an effort to localize tumors intraoperatively using image-guidance. Mock intraoperative setups (realistic patient positioning in non-sterile environment) and preoperative imaging data were collected from a patient scheduled for a lumpectomy. The mock intraoperative data included a tracked laser range scan of the patient's breast surface, tracked center points of MR visible fiducials on the patient's breast, and tracked B-mode ultrasound and strain images. The preoperative data included a supine MRI with visible fiducial markers. Fiducial markers localized in the MRI were rigidly registered to their mock intraoperative counterparts using an optically tracked stylus. The root mean square (RMS) fiducial registration error using the tracked markers was 3.4mm. Following registration, the average closest point distance between the MR

  6. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.

    Science.gov (United States)

    Lee, Sangyeol; Reinhardt, Joseph M; Cattin, Philippe C; Abràmoff, Michael D

    2010-08-01

    Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image registration technique to form a montage with a larger field of view. A variety of methods for retinal image registration have been proposed, but evaluating such methods objectively is difficult due to the lack of a reference standard for the true alignment of the individual images that make up the montage. A method of generating simulated retinal images by modeling the geometric distortions due to the eye geometry and the image acquisition process is described in this paper. We also present a validation process that can be used for any retinal image registration method by tracing through the distortion path and assessing the geometric misalignment in the coordinate system of the reference standard. The proposed method can be used to perform an accuracy evaluation over the whole image, so that distortion in the non-overlapping regions of the montage components can be easily assessed. We demonstrate the technique by generating test image sets with a variety of overlap conditions and compare the accuracy of several retinal image registration models. Copyright 2010 Elsevier B.V. All rights reserved.

  7. AUTOMATIC GLOBAL REGISTRATION BETWEEN AIRBORNE LIDAR DATA AND REMOTE SENSING IMAGE BASED ON STRAIGHT LINE FEATURES

    Directory of Open Access Journals (Sweden)

    Z. Q. Liu

    2018-04-01

    Full Text Available An automatic global registration approach for point clouds and remote sensing image based on straight line features is proposed which is insensitive to rotational and scale transformation. First, the building ridge lines and contour lines in point clouds are automatically detected as registration primitives by integrating region growth and topology identification. Second, the collinear condition equation is selected as registration transformation function which is based on rotation matrix described by unit quaternion. The similarity measure is established according to the distance between the corresponding straight line features from point clouds and the image in the same reference coordinate system. Finally, an iterative Hough transform is adopted to simultaneously estimate the parameters and obtain correspondence between registration primitives. Experimental results prove the proposed method is valid and the spectral information is useful for the following classification processing.

  8. MRI and CBCT image registration of temporomandibular joint: a systematic review.

    Science.gov (United States)

    Al-Saleh, Mohammed A Q; Alsufyani, Noura A; Saltaji, Humam; Jaremko, Jacob L; Major, Paul W

    2016-05-10

    The purpose of the present review is to systematically and critically analyze the available literature regarding the importance, applicability, and practicality of (MRI), computerized tomography (CT) or cone-beam CT (CBCT) image registration for TMJ anatomy and assessment. A systematic search of 4 databases; MEDLINE, EMBASE, EBM reviews and Scopus, was conducted by 2 reviewers. An additional manual search of the bibliography was performed. All articles discussing the magnetic resonance imaging MRI and CT or CBCT image registration for temporomandibular joint (TMJ) visualization or assessment were included. Only 3 articles satisfied the inclusion criteria. All included articles were published within the last 7 years. Two articles described MRI to CT multimodality image registration as a complementary tool to visualize TMJ. Both articles used images of one patient only to introduce the complementary concept of MRI-CT fused image. One article assessed the reliability of using MRI-CBCT registration to evaluate the TMJ disc position and osseous pathology for 10 temporomandibular disorder (TMD) patients. There are very limited studies of MRI-CT/CBCT registration to reach a conclusion regarding its accuracy or clinical use in the temporomandibular joints.

  9. 3D nonrigid medical image registration using a new information theoretic measure

    Science.gov (United States)

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-11-01

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy.

  10. 3D nonrigid medical image registration using a new information theoretic measure

    International Nuclear Information System (INIS)

    Li, Bicao; Yang, Guanyu; Coatrieux, Jean Louis; Li, Baosheng; Shu, Huazhong

    2015-01-01

    This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen–Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estimation was applied to compute the probability distributions. A penalty term is incorporated into the objective function to smooth the nonrigid transformation. The goal of registration is to optimize an objective function consisting of a dissimilarity term and a penalty term, which would be minimal when two deformed images are perfectly aligned using the limited memory BFGS optimization method, and thus to get the optimal geometric transformation. To validate the performance of the proposed method, experiments on both simulated 3D brain MR images and real 3D thoracic CT data sets were designed and performed on the open source elastix package. For the simulated experiments, the registration errors of 3D brain MR images with various magnitudes of known deformations and different levels of noise were measured. For the real data tests, four data sets of 4D thoracic CT from four patients were selected to assess the registration performance of the method, including ten 3D CT images for each 4D CT data covering an entire respiration cycle. These results were compared with the normalized cross correlation and the mutual information methods and show a slight but true improvement in registration accuracy. (paper)

  11. 3D/2D model-to-image registration by imitation learning for cardiac procedures.

    Science.gov (United States)

    Toth, Daniel; Miao, Shun; Kurzendorfer, Tanja; Rinaldi, Christopher A; Liao, Rui; Mansi, Tommaso; Rhode, Kawal; Mountney, Peter

    2018-05-12

    In cardiac interventions, such as cardiac resynchronization therapy (CRT), image guidance can be enhanced by involving preoperative models. Multimodality 3D/2D registration for image guidance, however, remains a significant research challenge for fundamentally different image data, i.e., MR to X-ray. Registration methods must account for differences in intensity, contrast levels, resolution, dimensionality, field of view. Furthermore, same anatomical structures may not be visible in both modalities. Current approaches have focused on developing modality-specific solutions for individual clinical use cases, by introducing constraints, or identifying cross-modality information manually. Machine learning approaches have the potential to create more general registration platforms. However, training image to image methods would require large multimodal datasets and ground truth for each target application. This paper proposes a model-to-image registration approach instead, because it is common in image-guided interventions to create anatomical models for diagnosis, planning or guidance prior to procedures. An imitation learning-based method, trained on 702 datasets, is used to register preoperative models to intraoperative X-ray images. Accuracy is demonstrated on cardiac models and artificial X-rays generated from CTs. The registration error was [Formula: see text] on 1000 test cases, superior to that of manual ([Formula: see text]) and gradient-based ([Formula: see text]) registration. High robustness is shown in 19 clinical CRT cases. Besides the proposed methods feasibility in a clinical environment, evaluation has shown good accuracy and high robustness indicating that it could be applied in image-guided interventions.

  12. Improving oncoplastic breast tumor bed localization for radiotherapy planning using image registration algorithms

    Science.gov (United States)

    Wodzinski, Marek; Skalski, Andrzej; Ciepiela, Izabela; Kuszewski, Tomasz; Kedzierawski, Piotr; Gajda, Janusz

    2018-02-01

    Knowledge about tumor bed localization and its shape analysis is a crucial factor for preventing irradiation of healthy tissues during supportive radiotherapy and as a result, cancer recurrence. The localization process is especially hard for tumors placed nearby soft tissues, which undergo complex, nonrigid deformations. Among them, breast cancer can be considered as the most representative example. A natural approach to improving tumor bed localization is the use of image registration algorithms. However, this involves two unusual aspects which are not common in typical medical image registration: the real deformation field is discontinuous, and there is no direct correspondence between the cancer and its bed in the source and the target 3D images respectively. The tumor no longer exists during radiotherapy planning. Therefore, a traditional evaluation approach based on known, smooth deformations and target registration error are not directly applicable. In this work, we propose alternative artificial deformations which model the tumor bed creation process. We perform a comprehensive evaluation of the most commonly used deformable registration algorithms: B-Splines free form deformations (B-Splines FFD), different variants of the Demons and TV-L1 optical flow. The evaluation procedure includes quantitative assessment of the dedicated artificial deformations, target registration error calculation, 3D contour propagation and medical experts visual judgment. The results demonstrate that the currently, practically applied image registration (rigid registration and B-Splines FFD) are not able to correctly reconstruct discontinuous deformation fields. We show that the symmetric Demons provide the most accurate soft tissues alignment in terms of the ability to reconstruct the deformation field, target registration error and relative tumor volume change, while B-Splines FFD and TV-L1 optical flow are not an appropriate choice for the breast tumor bed localization problem

  13. Wavelet Compressed PCA Models for Real-Time Image Registration in Augmented Reality Applications

    OpenAIRE

    Christopher Cooper; Kent Wise; John Cooper; Makarand Deo

    2015-01-01

    The use of augmented reality (AR) has shown great promise in enhancing medical training and diagnostics via interactive simulations. This paper presents a novel method to perform accurate and inexpensive image registration (IR) utilizing a pre-constructed database of reference objects in conjunction with a principal component analysis (PCA) model. In addition, a wavelet compression algorithm is utilized to enhance the speed of the registration process. The proposed method is used to perform r...

  14. WE-H-202-04: Advanced Medical Image Registration Techniques

    International Nuclear Information System (INIS)

    Christensen, G.

    2016-01-01

    Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed to tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.

  15. WE-H-202-04: Advanced Medical Image Registration Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, G. [University of Iowa (United States)

    2016-06-15

    Deformable image registration has now been commercially available for several years, with solid performance in a number of sites and for several applications including contour and dose mapping. However, more complex applications have arisen, such as assessing response to radiation therapy over time, registering images pre- and post-surgery, and auto-segmentation from atlases. These applications require innovative registration algorithms to achieve accurate alignment. The goal of this session is to highlight emerging registration technology and these new applications. The state of the art in image registration will be presented from an engineering perspective. Translational clinical applications will also be discussed to tie these new registration approaches together with imaging and radiation therapy applications in specific diseases such as cervical and lung cancers. Learning Objectives: To understand developing techniques and algorithms in deformable image registration that are likely to translate into clinical tools in the near future. To understand emerging imaging and radiation therapy clinical applications that require such new registration algorithms. Research supported in part by the National Institutes of Health under award numbers P01CA059827, R01CA166119, and R01CA166703. Disclosures: Phillips Medical systems (Hugo), Roger Koch (Christensen) support, Varian Medical Systems (Brock), licensing agreements from Raysearch (Brock) and Varian (Hugo).; K. Brock, Licensing Agreement - RaySearch Laboratories. Research Funding - Varian Medical Systems; G. Hugo, Research grant from National Institutes of Health, award number R01CA166119.; G. Christensen, Research support from NIH grants CA166119 and CA166703 and a gift from Roger Koch. There are no conflicts of interest.

  16. Image fusion between whole body FDG PET images and whole body MRI images using a full-automatic mutual information-based multimodality image registration software

    International Nuclear Information System (INIS)

    Uchida, Yoshitaka; Nakano, Yoshitada; Fujibuchi, Toshiou; Isobe, Tomoko; Kazama, Toshiki; Ito, Hisao

    2006-01-01

    We attempted image fusion between whole body PET and whole body MRI of thirty patients using a full-automatic mutual information (MI) -based multimodality image registration software and evaluated accuracy of this method and impact of the coregistrated imaging on diagnostic accuracy. For 25 of 30 fused images in body area, translating gaps were within 6 mm in all axes and rotating gaps were within 2 degrees around all axes. In head and neck area, considerably much gaps caused by difference of head inclination at imaging occurred in 16 patients, however these gaps were able to decrease by fused separately. In 6 patients, diagnostic accuracy using PET/MRI fused images was superior compared by PET image alone. This work shows that whole body FDG PET images and whole body MRI images can be automatically fused using MI-based multimodality image registration software accurately and this technique can add useful information when evaluating FDG PET images. (author)

  17. Weight preserving image registration for monitoring disease progression in lung CT

    DEFF Research Database (Denmark)

    Gorbunova, Vladlena; Lo, Pechin Chien Pau; Haseem, Ashraf

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan...... the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans...

  18. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    International Nuclear Information System (INIS)

    Morrow, Natalya V.; Lawton, Colleen A.; Qi, X. Sharon; Li, X. Allen

    2012-01-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  19. Impact of Computed Tomography Image Quality on Image-Guided Radiation Therapy Based on Soft Tissue Registration

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Natalya V.; Lawton, Colleen A. [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States); Qi, X. Sharon [Department of Radiation Oncology, University of Colorado Denver, Denver, Colorado (United States); Li, X. Allen, E-mail: ali@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin (United States)

    2012-04-01

    Purpose: In image-guided radiation therapy (IGRT), different computed tomography (CT) modalities with varying image quality are being used to correct for interfractional variations in patient set-up and anatomy changes, thereby reducing clinical target volume to the planning target volume (CTV-to-PTV) margins. We explore how CT image quality affects patient repositioning and CTV-to-PTV margins in soft tissue registration-based IGRT for prostate cancer patients. Methods and Materials: Four CT-based IGRT modalities used for prostate RT were considered in this study: MV fan beam CT (MVFBCT) (Tomotherapy), MV cone beam CT (MVCBCT) (MVision; Siemens), kV fan beam CT (kVFBCT) (CTVision, Siemens), and kV cone beam CT (kVCBCT) (Synergy; Elekta). Daily shifts were determined by manual registration to achieve the best soft tissue agreement. Effect of image quality on patient repositioning was determined by statistical analysis of daily shifts for 136 patients (34 per modality). Inter- and intraobserver variability of soft tissue registration was evaluated based on the registration of a representative scan for each CT modality with its corresponding planning scan. Results: Superior image quality with the kVFBCT resulted in reduced uncertainty in soft tissue registration during IGRT compared with other image modalities for IGRT. The largest interobserver variations of soft tissue registration were 1.1 mm, 2.5 mm, 2.6 mm, and 3.2 mm for kVFBCT, kVCBCT, MVFBCT, and MVCBCT, respectively. Conclusions: Image quality adversely affects the reproducibility of soft tissue-based registration for IGRT and necessitates a careful consideration of residual uncertainties in determining different CTV-to-PTV margins for IGRT using different image modalities.

  20. Progressive attenuation fields: Fast 2D-3D image registration without precomputation

    International Nuclear Information System (INIS)

    Rohlfing, Torsten; Russakoff, Daniel B.; Denzler, Joachim; Mori, Kensaku; Maurer, Calvin R. Jr.

    2005-01-01

    Computation of digitally reconstructed radiograph (DRR) images is the rate-limiting step in most current intensity-based algorithms for the registration of three-dimensional (3D) images to two-dimensional (2D) projection images. This paper introduces and evaluates the progressive attenuation field (PAF), which is a new method to speed up DRR computation. A PAF is closely related to an attenuation field (AF). A major difference is that a PAF is constructed on the fly as the registration proceeds; it does not require any precomputation time, nor does it make any prior assumptions of the patient pose or limit the permissible range of patient motion. A PAF effectively acts as a cache memory for projection values once they are computed, rather than as a lookup table for precomputed projections like standard AFs. We use a cylindrical attenuation field parametrization, which is better suited for many medical applications of 2D-3D registration than the usual two-plane parametrization. The computed attenuation values are stored in a hash table for time-efficient storage and access. Using clinical gold-standard spine image data sets from five patients, we demonstrate consistent speedups of intensity-based 2D-3D image registration using PAF DRRs by a factor of 10 over conventional ray casting DRRs with no decrease of registration accuracy or robustness

  1. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Nasreddine Taleb

    2010-09-01

    Full Text Available Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT. An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  2. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    Science.gov (United States)

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  3. Biomechanical modeling constrained surface-based image registration for prostate MR guided TRUS biopsy

    NARCIS (Netherlands)

    Ven, W.J.M. van de; Hu, Y.; Barentsz, J.O.; Karssemeijer, N.; Barratt, D.; Huisman, H.J.

    2015-01-01

    Adding magnetic resonance (MR)-derived information to standard transrectal ultrasound (TRUS) images for guiding prostate biopsy is of substantial clinical interest. A tumor visible on MR images can be projected on ultrasound (US) by using MR-US registration. A common approach is to use surface-based

  4. End-to-end unsupervised deformable image registration with a convolutional neural network

    NARCIS (Netherlands)

    de Vos, Bob D.; Berendsen, Floris; Viergever, Max A.; Staring, Marius; Išgum, Ivana

    2017-01-01

    In this work we propose a deep learning network for deformable image registration (DIRNet). The DIRNet consists of a convolutional neural network (ConvNet) regressor, a spatial transformer, and a resampler. The ConvNet analyzes a pair of fixed and moving images and outputs parameters for the spatial

  5. Evaluation of optimization methods for nonrigid medical image registration using mutual information and B-splines

    NARCIS (Netherlands)

    Klein, S.; Staring, M.; Pluim, J.P.W.

    2007-01-01

    A popular technique for nonrigid registration of medical images is based on the maximization of their mutual information, in combination with a deformation field parameterized by cubic B-splines. The coordinate mapping that relates the two images is found using an iterative optimization procedure.

  6. Testing non-rigid registration of nuclear medicine data using synthetic derived SPECT images

    International Nuclear Information System (INIS)

    Todd-Pokropek, A.

    2002-01-01

    Aim: Non-rigid registration is needed to build atlas data to make statistical tests of significance of uptake in nuclear medicine (NM). Non-rigid registration is much more difficult than rigid registration to validate since some kind of matching function must be defined throughout the volume being registered, and no suitable gold standards exist. The aim here has been to assess non-rigid methods of registration and deformation for NM to NM and NM to MRI data. An additional aim has been to derive good synthetic SPECT images from other NM and MRI data to be used after as reference standards. Material and Methods: Phantom and patient test images have been acquired for both NM and MRI, which are then used to generate projections, where the characteristics of the images are modified to change both signal and noise properties. These derived images are different in character but perfectly registered with the original data, and can then be deformed in a known manner. The registration algorithm is then run backwards to re-register the modified deformed data with the original images. A technique has been developed to assess the vector fields of the original deformation to the reverse non-rigid registration field. Results: The main purpose of this paper is to describe a methodology for optimising algorithms, not to develop the algorithms themselves. Two different algorithms based on optic flow and thin plate spline interpolation have been intercompared and in particular the constraints imposed tested. Considerable differences in matching can be observed in different regions for example edge and centre of brain. Conclusions: Quadratic distance between known makers is a bad estimate to use to assess non-rigid registration. A robust statistic has been developed which can be used to optimise non-rigid algorithms based on the use of synthetic SPECT reference datasets. While the task being tested is simpler than the real clinical task, it is the first essential step in the

  7. Robust methods for automatic image-to-world registration in cone-beam CT interventional guidance

    International Nuclear Information System (INIS)

    Dang, H.; Otake, Y.; Schafer, S.; Stayman, J. W.; Kleinszig, G.; Siewerdsen, J. H.

    2012-01-01

    Purpose: Real-time surgical navigation relies on accurate image-to-world registration to align the coordinate systems of the image and patient. Conventional manual registration can present a workflow bottleneck and is prone to manual error and intraoperator variability. This work reports alternative means of automatic image-to-world registration, each method involving an automatic registration marker (ARM) used in conjunction with C-arm cone-beam CT (CBCT). The first involves a Known-Model registration method in which the ARM is a predefined tool, and the second is a Free-Form method in which the ARM is freely configurable. Methods: Studies were performed using a prototype C-arm for CBCT and a surgical tracking system. A simple ARM was designed with markers comprising a tungsten sphere within infrared reflectors to permit detection of markers in both x-ray projections and by an infrared tracker. The Known-Model method exercised a predefined specification of the ARM in combination with 3D-2D registration to estimate the transformation that yields the optimal match between forward projection of the ARM and the measured projection images. The Free-Form method localizes markers individually in projection data by a robust Hough transform approach extended from previous work, backprojected to 3D image coordinates based on C-arm geometric calibration. Image-domain point sets were transformed to world coordinates by rigid-body point-based registration. The robustness and registration accuracy of each method was tested in comparison to manual registration across a range of body sites (head, thorax, and abdomen) of interest in CBCT-guided surgery, including cases with interventional tools in the radiographic scene. Results: The automatic methods exhibited similar target registration error (TRE) and were comparable or superior to manual registration for placement of the ARM within ∼200 mm of C-arm isocenter. Marker localization in projection data was robust across all

  8. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    Science.gov (United States)

    Li, Dengwang; Li, Hongsheng; Wan, Honglin; Chen, Jinhu; Gong, Guanzhong; Wang, Hongjun; Wang, Liming; Yin, Yong

    2012-08-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5-8% for mono-modality and 10-14% for multi-modality registration under the same condition. Furthermore, clinical application by adaptive

  9. Multiscale registration of medical images based on edge preserving scale space with application in image-guided radiation therapy

    International Nuclear Information System (INIS)

    Li Dengwang; Wan Honglin; Li Hongsheng; Chen Jinhu; Gong Guanzhong; Yin Yong; Wang Hongjun; Wang Liming

    2012-01-01

    Mutual information (MI) is a well-accepted similarity measure for image registration in medical systems. However, MI-based registration faces the challenges of high computational complexity and a high likelihood of being trapped into local optima due to an absence of spatial information. In order to solve these problems, multi-scale frameworks can be used to accelerate registration and improve robustness. Traditional Gaussian pyramid representation is one such technique but it suffers from contour diffusion at coarse levels which may lead to unsatisfactory registration results. In this work, a new multi-scale registration framework called edge preserving multiscale registration (EPMR) was proposed based upon an edge preserving total variation L1 norm (TV-L1) scale space representation. TV-L1 scale space is constructed by selecting edges and contours of images according to their size rather than the intensity values of the image features. This ensures more meaningful spatial information with an EPMR framework for MI-based registration. Furthermore, we design an optimal estimation of the TV-L1 parameter in the EPMR framework by training and minimizing the transformation offset between the registered pairs for automated registration in medical systems. We validated our EPMR method on both simulated mono- and multi-modal medical datasets with ground truth and clinical studies from a combined positron emission tomography/computed tomography (PET/CT) scanner. We compared our registration framework with other traditional registration approaches. Our experimental results demonstrated that our method outperformed other methods in terms of the accuracy and robustness for medical images. EPMR can always achieve a small offset value, which is closer to the ground truth both for mono-modality and multi-modality, and the speed can be increased 5–8% for mono-modality and 10–14% for multi-modality registration under the same condition. Furthermore, clinical application by

  10. [The vitreous and the macula].

    Science.gov (United States)

    Kishi, Shoji

    2015-03-01

    The macula is a site where various vitreoretinal disorders occur. In 1983 we started to observe the retinal surface of postmortem eyes with a scanning electron microscope (SEM). We investigated the anatomy of the vitreous in postmortem eyes by slit lamp biomicroscopy. The novel anatomy of the premacular vitreous led us to conduct a clinical study of vitreomacular interface diseases. In 1997, time domain optical coherence tomography(OCT) became available which facilitated visualization of the vitreoretinal interface. Swept source OCT which was introduced in 2012 can depict liquefied lacunae in the vitreous. It enabled us to elucidate the mechanism of vitreoretinal diseases. I. SEM revealed the remnants of vitreous cortex at fovea with high incidence (44%), which suggests strong vitreoretinal attachment at the fovea and vitreous cortex origin of the epiretinal membrane. II. We studied the anatomy of the vitreous in postmortem eyes. The vitreous of bisected eye balls was stained by fluorescein and immersed in water and observed by slit-lamp biomicroscopy. We discovered a "posterior precortical vitreous pocket (PPVP)" in adult eyes without posterior vitreous detachment (PVD). III. We performed clinical study in various vitreoretinal diseases based on the novel vitreous anatomy and explained their mechanism. 1. In diabetic retinopathy, ring shaped fibrovascular tissue surrounding the macula is formed along the outer margin of the PPVP. Although PVD progresses outside the PPVP, its posterior wall remains attached to the retina, which causes macular traction or cystoid macular edema. 2. In eyes with idiopathic epimacular membrane (IEM), detached vitreous cortex had an oval defect corresponding to the IEM. Posterior wall of the PPVP that is premacular vitreous cortex appeared to be the framework of IEM. 3. During vitrectomy for macular hole, premacular round defect appears when PVD is created. The residual cortex on the macula is fibrous membrane with elasticity. The

  11. Balancing dose and image registration accuracy for cone beam tomosynthesis (CBTS) for breast patient setup

    International Nuclear Information System (INIS)

    Winey, B. A.; Zygmanski, P.; Cormack, R. A.; Lyatskaya, Y.

    2010-01-01

    Purpose: To balance dose reduction and image registration accuracy in breast setup imaging. In particular, the authors demonstrate the relationship between scan angle and dose delivery for cone beam tomosynthesis (CBTS) when employed for setup verification of breast cancer patients with surgical clips. Methods: The dose measurements were performed in a female torso phantom for varying scan angles of CBTS. Setup accuracy was measured using three registration methods: Clip centroid localization accuracy and the accuracy of two semiautomatic registration algorithms. The dose to the organs outside of the ipsilateral breast and registration accuracy information were compared to determine the optimal scan angle for CBTS for breast patient setup verification. Isocenter positions at the center of the patient and at the breast-chest wall interface were considered. Results: Image registration accuracy was within 1 mm for the CBTS scan angles θ above 20 deg. for some scenarios and as large as 80 deg. for the worst case, depending on the imaged breast and registration algorithm. Registration accuracy was highest based on clip centroid localization. For left and right breast imaging with the isocenter at the chest wall, the dose to the contralateral side of the patient was very low (<0.5 cGy) for all scan angles considered. For central isocenter location, the optimal scan angles were 30 deg. - 50 deg. for the left breast imaging and 40 deg. - 50 deg. for the right breast imaging, with the difference due to the geometric asymmetry of the current clinical imaging system. Conclusions: The optimal scan angles for CBTS imaging were found to be between 10 deg. and 50 deg., depending on the isocenter location and ipsilateral breast. Use of the isocenter at the breast-chest wall locations always resulted in greater accuracy of image registration (<1 mm) at smaller angles (10 deg. - 20 deg.) and at lower doses (<0.1 cGy) to the contralateral organs. For chest wall isocenters, doses

  12. Free-Form Deformation Approach for Registration of Visible and Infrared Facial Images in Fever Screening

    Directory of Open Access Journals (Sweden)

    Yedukondala Narendra Dwith Chenna

    2018-01-01

    Full Text Available Fever screening based on infrared (IR thermographs (IRTs is an approach that has been implemented during infectious disease pandemics, such as Ebola and Severe Acute Respiratory Syndrome. A recently published international standard indicates that regions medially adjacent to the inner canthi provide accurate estimates of core body temperature and are preferred sites for fever screening. Therefore, rapid, automated identification of the canthi regions within facial IR images may greatly facilitate rapid fever screening of asymptomatic travelers. However, it is more difficult to accurately identify the canthi regions from IR images than from visible images that are rich with exploitable features. In this study, we developed and evaluated techniques for multi-modality image registration (MMIR of simultaneously captured visible and IR facial images for fever screening. We used free form deformation (FFD models based on edge maps to improve registration accuracy after an affine transformation. Two widely used FFD models in medical image registration based on the Demons and cubic B-spline algorithms were qualitatively compared. The results showed that the Demons algorithm outperformed the cubic B-spline algorithm, likely due to overfitting of outliers by the latter method. The quantitative measure of registration accuracy, obtained through selected control point correspondence, was within 2.8 ± 1.2 mm, which enables accurate and automatic localization of canthi regions in the IR images for temperature measurement.

  13. Pre-processing, registration and selection of adaptive optics corrected retinal images.

    Science.gov (United States)

    Ramaswamy, Gomathy; Devaney, Nicholas

    2013-07-01

    In this paper, the aim is to demonstrate enhanced processing of sequences of fundus images obtained using a commercial AO flood illumination system. The purpose of the work is to (1) correct for uneven illumination at the retina (2) automatically select the best quality images and (3) precisely register the best images. Adaptive optics corrected retinal images are pre-processed to correct uneven illumination using different methods; subtracting or dividing by the average filtered image, homomorphic filtering and a wavelet based approach. These images are evaluated to measure the image quality using various parameters, including sharpness, variance, power spectrum kurtosis and contrast. We have carried out the registration in two stages; a coarse stage using cross-correlation followed by fine registration using two approaches; parabolic interpolation on the peak of the cross-correlation and maximum-likelihood estimation. The angle of rotation of the images is measured using a combination of peak tracking and Procrustes transformation. We have found that a wavelet approach (Daubechies 4 wavelet at 6th level decomposition) provides good illumination correction with clear improvement in image sharpness and contrast. The assessment of image quality using a 'Designer metric' works well when compared to visual evaluation, although it is highly correlated with other metrics. In image registration, sub-pixel translation measured using parabolic interpolation on the peak of the cross-correlation function and maximum-likelihood estimation are found to give very similar results (RMS difference 0.047 pixels). We have confirmed that correcting rotation of the images provides a significant improvement, especially at the edges of the image. We observed that selecting the better quality frames (e.g. best 75% images) for image registration gives improved resolution, at the expense of poorer signal-to-noise. The sharpness map of the registered and de-rotated images shows increased

  14. Discontinuity Preserving Image Registration through Motion Segmentation: A Primal-Dual Approach

    Directory of Open Access Journals (Sweden)

    Silja Kiriyanthan

    2016-01-01

    Full Text Available Image registration is a powerful tool in medical image analysis and facilitates the clinical routine in several aspects. There are many well established elastic registration methods, but none of them can so far preserve discontinuities in the displacement field. These discontinuities appear in particular at organ boundaries during the breathing induced organ motion. In this paper, we exploit the fact that motion segmentation could play a guiding role during discontinuity preserving registration. The motion segmentation is embedded in a continuous cut framework guaranteeing convexity for motion segmentation. Furthermore we show that a primal-dual method can be used to estimate a solution to this challenging variational problem. Experimental results are presented for MR images with apparent breathing induced sliding motion of the liver along the abdominal wall.

  15. Medical image registration algorithms assesment Bronze Standard application enactment on grids using the MOTEUR workflow engine

    CERN Document Server

    Glatard, T; Pennec, X

    2006-01-01

    Medical image registration is pre-processing needed for many medical image analysis procedures. A very large number of registration algorithms are available today, but their performance is often not known and very difficult to assess due to the lack of gold standard. The Bronze Standard algorithm is a very data and compute intensive statistical approach for quantifying registration algorithms accuracy. In this paper, we describe the Bronze Standard application and we discuss the need for grids to tackle such computations on medical image databases. We demonstrate MOTEUR, a service-based workflow engine optimized for dealing with data intensive applications. MOTEUR eases the enactment of the Bronze Standard and similar applications on the EGEE production grid infrastructure. It is a generic workflow engine, based on current standards and freely available, that can be used to instrument legacy application code at low cost.

  16. SU-E-J-237: Image Feature Based DRR and Portal Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X; Chang, J [NY Weill Cornell Medical Ctr, NY (United States)

    2014-06-01

    Purpose: Two-dimensional (2D) matching of the kV X-ray and digitally reconstructed radiography (DRR) images is an important setup technique for image-guided radiotherapy (IGRT). In our clinics, mutual information based methods are used for this purpose on commercial linear accelerators, but with often needs for manual corrections. This work proved the feasibility that feature based image transform can be used to register kV and DRR images. Methods: The scale invariant feature transform (SIFT) method was implemented to detect the matching image details (or key points) between the kV and DRR images. These key points represent high image intensity gradients, and thus the scale invariant features. Due to the poor image contrast from our kV image, direct application of the SIFT method yielded many detection errors. To assist the finding of key points, the center coordinates of the kV and DRR images were read from the DICOM header, and the two groups of key points with similar relative positions to their corresponding centers were paired up. Using these points, a rigid transform (with scaling, horizontal and vertical shifts) was estimated. We also artificially introduced vertical and horizontal shifts to test the accuracy of our registration method on anterior-posterior (AP) and lateral pelvic images. Results: The results provided a satisfactory overlay of the transformed kV onto the DRR image. The introduced vs. detected shifts were fit into a linear regression. In the AP image experiments, linear regression analysis showed a slope of 1.15 and 0.98 with an R2 of 0.89 and 0.99 for the horizontal and vertical shifts, respectively. The results are 1.2 and 1.3 with R2 of 0.72 and 0.82 for the lateral image shifts. Conclusion: This work provided an alternative technique for kV to DRR alignment. Further improvements in the estimation accuracy and image contrast tolerance are underway.

  17. 3D registration of surfaces for change detection in medical images

    Science.gov (United States)

    Fisher, Elizabeth; van der Stelt, Paul F.; Dunn, Stanley M.

    1997-04-01

    Spatial registration of data sets is essential for quantifying changes that take place over time in cases where the position of a patient with respect to the sensor has been altered. Changes within the region of interest can be problematic for automatic methods of registration. This research addresses the problem of automatic 3D registration of surfaces derived from serial, single-modality images for the purpose of quantifying changes over time. The registration algorithm utilizes motion-invariant, curvature- based geometric properties to derive an approximation to an initial rigid transformation to align two image sets. Following the initial registration, changed portions of the surface are detected and excluded before refining the transformation parameters. The performance of the algorithm was tested using simulation experiments. To quantitatively assess the registration, random noise at various levels, known rigid motion transformations, and analytically-defined volume changes were applied to the initial surface data acquired from models of teeth. These simulation experiments demonstrated that the calculated transformation parameters were accurate to within 1.2 percent of the total applied rotation and 2.9 percent of the total applied translation, even at the highest applied noise levels and simulated wear values.

  18. Analysis of Point Based Image Registration Errors With Applications in Single Molecule Microscopy.

    Science.gov (United States)

    Cohen, E A K; Ober, R J

    2013-12-15

    We present an asymptotic treatment of errors involved in point-based image registration where control point (CP) localization is subject to heteroscedastic noise; a suitable model for image registration in fluorescence microscopy. Assuming an affine transform, CPs are used to solve a multivariate regression problem. With measurement errors existing for both sets of CPs this is an errors-in-variable problem and linear least squares is inappropriate; the correct method being generalized least squares. To allow for point dependent errors the equivalence of a generalized maximum likelihood and heteroscedastic generalized least squares model is achieved allowing previously published asymptotic results to be extended to image registration. For a particularly useful model of heteroscedastic noise where covariance matrices are scalar multiples of a known matrix (including the case where covariance matrices are multiples of the identity) we provide closed form solutions to estimators and derive their distribution. We consider the target registration error (TRE) and define a new measure called the localization registration error (LRE) believed to be useful, especially in microscopy registration experiments. Assuming Gaussianity of the CP localization errors, it is shown that the asymptotic distribution for the TRE and LRE are themselves Gaussian and the parameterized distributions are derived. Results are successfully applied to registration in single molecule microscopy to derive the key dependence of the TRE and LRE variance on the number of CPs and their associated photon counts. Simulations show asymptotic results are robust for low CP numbers and non-Gaussianity. The method presented here is shown to outperform GLS on real imaging data.

  19. A study on applying image dictionary to inner organ registration

    International Nuclear Information System (INIS)

    Matsuno, Takamichi; Asai, Takeshi; Iwata, Takuya; Hontani, Hidekata

    2010-01-01

    In this article, we report on selecting image features that are useful for registering organ surface in medical image based on image dictionary constructed for the organ. Here, the image dictionary denotes a basis set, which is non-orthogonal and over-complete one and is designed to represent images of the target organ. We propose a method that refers to a combination of the basis obtained for reconstructing a given image in order to estimate the location of the target organ. (author)

  20. Design of an Image Motion Compenstaion (IMC Algorithm for Image Registration of the Communication, Ocean, Meteorolotical Satellite (COMS-1

    Directory of Open Access Journals (Sweden)

    Taek Seo Jung

    2006-03-01

    Full Text Available This paper presents an Image Motion Compensation (IMC algorithm for the Korea's Communication, Ocean, and Meteorological Satellite (COMS-1. An IMC algorithm is a priority component of image registration in Image Navigation and Registration (INR system to locate and register radiometric image data. Due to various perturbations, a satellite has orbit and attitude errors with respect to a reference motion. These errors cause depointing of the imager aiming direction, and in consequence cause image distortions. To correct the depointing of the imager aiming direction, a compensation algorithm is designed by adapting different equations from those used for the GOES satellites. The capability of the algorithm is compared with that of existing algorithm applied to the GOES's INR system. The algorithm developed in this paper improves pointing accuracy by 40%, and efficiently compensates the depointings of the imager aiming direction.

  1. Multimodal image registration of the scoliotic torso for surgical planning

    International Nuclear Information System (INIS)

    Harmouche, Rola; Cheriet, Farida; Labelle, Hubert; Dansereau, Jean

    2013-01-01

    This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso

  2. Multimodal image registration of the scoliotic torso for surgical planning

    Science.gov (United States)

    2013-01-01

    Background This paper presents a method that registers MRIs acquired in prone position, with surface topography (TP) and X-ray reconstructions acquired in standing position, in order to obtain a 3D representation of a human torso incorporating the external surface, bone structures, and soft tissues. Methods TP and X-ray data are registered using landmarks. Bone structures are used to register each MRI slice using an articulated model, and the soft tissue is confined to the volume delimited by the trunk and bone surfaces using a constrained thin-plate spline. Results The method is tested on 3 pre-surgical patients with scoliosis and shows a significant improvement, qualitatively and using the Dice similarity coefficient, in fitting the MRI into the standing patient model when compared to rigid and articulated model registration. The determinant of the Jacobian of the registration deformation shows higher variations in the deformation in areas closer to the surface of the torso. Conclusions The novel, resulting 3D full torso model can provide a more complete representation of patient geometry to be incorporated in surgical simulators under development that aim at predicting the effect of scoliosis surgery on the external appearance of the patient’s torso. PMID:23289431

  3. Contrast-enhanced magnetic resonance angiography in carotid artery disease: does automated image registration improve image quality?

    International Nuclear Information System (INIS)

    Menke, Jan; Larsen, Joerg

    2009-01-01

    Contrast-enhanced magnetic resonance angiography (MRA) is a noninvasive imaging alternative to digital subtraction angiography (DSA) for patients with carotid artery disease. In DSA, image quality can be improved by shifting the mask image if the patient has moved during angiography. This study investigated whether such image registration may also help to improve the image quality of carotid MRA. Data from 370 carotid MRA examinations of patients likely to have carotid artery disease were prospectively collected. The standard nonregistered MRAs were compared to automatically linear, affine and warp registered MRA by using three image quality parameters: the vessel detection probability (VDP) in maximum intensity projection (MIP) images, contrast-to-noise ratio (CNR) in MIP images, and contrast-to-noise ratio in three-dimensional image volumes. A body shift of less than 1 mm occurred in 96.2% of cases. Analysis of variance revealed no significant influence of image registration and body shift on image quality (p > 0.05). In conclusion, standard contrast-enhanced carotid MRA usually requires no image registration to improve image quality and is generally robust against any naturally occurring body shift. (orig.)

  4. FZUImageReg: A toolbox for medical image registration and dose fusion in cervical cancer radiotherapy.

    Directory of Open Access Journals (Sweden)

    Qinquan Gao

    Full Text Available The combination external-beam radiotherapy and high-dose-rate brachytherapy is a standard form of treatment for patients with locally advanced uterine cervical cancer. Personalized radiotherapy in cervical cancer requires efficient and accurate dose planning and assessment across these types of treatment. To achieve radiation dose assessment, accurate mapping of the dose distribution from HDR-BT onto EBRT is extremely important. However, few systems can achieve robust dose fusion and determine the accumulated dose distribution during the entire course of treatment. We have therefore developed a toolbox (FZUImageReg, which is a user-friendly dose fusion system based on hybrid image registration for radiation dose assessment in cervical cancer radiotherapy. The main part of the software consists of a collection of medical image registration algorithms and a modular design with a user-friendly interface, which allows users to quickly configure, test, monitor, and compare different registration methods for a specific application. Owing to the large deformation, the direct application of conventional state-of-the-art image registration methods is not sufficient for the accurate alignment of EBRT and HDR-BT images. To solve this problem, a multi-phase non-rigid registration method using local landmark-based free-form deformation is proposed for locally large deformation between EBRT and HDR-BT images, followed by intensity-based free-form deformation. With the transformation, the software also provides a dose mapping function according to the deformation field. The total dose distribution during the entire course of treatment can then be presented. Experimental results clearly show that the proposed system can achieve accurate registration between EBRT and HDR-BT images and provide radiation dose warping and fusion results for dose assessment in cervical cancer radiotherapy in terms of high accuracy and efficiency.

  5. The One to Multiple Automatic High Accuracy Registration of Terrestrial LIDAR and Optical Images

    Science.gov (United States)

    Wang, Y.; Hu, C.; Xia, G.; Xue, H.

    2018-04-01

    The registration of ground laser point cloud and close-range image is the key content of high-precision 3D reconstruction of cultural relic object. In view of the requirement of high texture resolution in the field of cultural relic at present, The registration of point cloud and image data in object reconstruction will result in the problem of point cloud to multiple images. In the current commercial software, the two pairs of registration of the two kinds of data are realized by manually dividing point cloud data, manual matching point cloud and image data, manually selecting a two - dimensional point of the same name of the image and the point cloud, and the process not only greatly reduces the working efficiency, but also affects the precision of the registration of the two, and causes the problem of the color point cloud texture joint. In order to solve the above problems, this paper takes the whole object image as the intermediate data, and uses the matching technology to realize the automatic one-to-one correspondence between the point cloud and multiple images. The matching of point cloud center projection reflection intensity image and optical image is applied to realize the automatic matching of the same name feature points, and the Rodrigo matrix spatial similarity transformation model and weight selection iteration are used to realize the automatic registration of the two kinds of data with high accuracy. This method is expected to serve for the high precision and high efficiency automatic 3D reconstruction of cultural relic objects, which has certain scientific research value and practical significance.

  6. Automated Registration of Multimodal Optic Disc Images: Clinical Assessment of Alignment Accuracy.

    Science.gov (United States)

    Ng, Wai Siene; Legg, Phil; Avadhanam, Venkat; Aye, Kyaw; Evans, Steffan H P; North, Rachel V; Marshall, Andrew D; Rosin, Paul; Morgan, James E

    2016-04-01

    To determine the accuracy of automated alignment algorithms for the registration of optic disc images obtained by 2 different modalities: fundus photography and scanning laser tomography. Images obtained with the Heidelberg Retina Tomograph II and paired photographic optic disc images of 135 eyes were analyzed. Three state-of-the-art automated registration techniques Regional Mutual Information, rigid Feature Neighbourhood Mutual Information (FNMI), and nonrigid FNMI (NRFNMI) were used to align these image pairs. Alignment of each composite picture was assessed on a 5-point grading scale: "Fail" (no alignment of vessels with no vessel contact), "Weak" (vessels have slight contact), "Good" (vessels with 50% contact), and "Excellent" (complete alignment). Custom software generated an image mosaic in which the modalities were interleaved as a series of alternate 5×5-pixel blocks. These were graded independently by 3 clinically experienced observers. A total of 810 image pairs were assessed. All 3 registration techniques achieved a score of "Good" or better in >95% of the image sets. NRFNMI had the highest percentage of "Excellent" (mean: 99.6%; range, 95.2% to 99.6%), followed by Regional Mutual Information (mean: 81.6%; range, 86.3% to 78.5%) and FNMI (mean: 73.1%; range, 85.2% to 54.4%). Automated registration of optic disc images by different modalities is a feasible option for clinical application. All 3 methods provided useful levels of alignment, but the NRFNMI technique consistently outperformed the others and is recommended as a practical approach to the automated registration of multimodal disc images.

  7. Improving supervised classification accuracy using non-rigid multimodal image registration: detecting prostate cancer

    Science.gov (United States)

    Chappelow, Jonathan; Viswanath, Satish; Monaco, James; Rosen, Mark; Tomaszewski, John; Feldman, Michael; Madabhushi, Anant

    2008-03-01

    Computer-aided diagnosis (CAD) systems for the detection of cancer in medical images require precise labeling of training data. For magnetic resonance (MR) imaging (MRI) of the prostate, training labels define the spatial extent of prostate cancer (CaP); the most common source for these labels is expert segmentations. When ancillary data such as whole mount histology (WMH) sections, which provide the gold standard for cancer ground truth, are available, the manual labeling of CaP can be improved by referencing WMH. However, manual segmentation is error prone, time consuming and not reproducible. Therefore, we present the use of multimodal image registration to automatically and accurately transcribe CaP from histology onto MRI following alignment of the two modalities, in order to improve the quality of training data and hence classifier performance. We quantitatively demonstrate the superiority of this registration-based methodology by comparing its results to the manual CaP annotation of expert radiologists. Five supervised CAD classifiers were trained using the labels for CaP extent on MRI obtained by the expert and 4 different registration techniques. Two of the registration methods were affi;ne schemes; one based on maximization of mutual information (MI) and the other method that we previously developed, Combined Feature Ensemble Mutual Information (COFEMI), which incorporates high-order statistical features for robust multimodal registration. Two non-rigid schemes were obtained by succeeding the two affine registration methods with an elastic deformation step using thin-plate splines (TPS). In the absence of definitive ground truth for CaP extent on MRI, classifier accuracy was evaluated against 7 ground truth surrogates obtained by different combinations of the expert and registration segmentations. For 26 multimodal MRI-WMH image pairs, all four registration methods produced a higher area under the receiver operating characteristic curve compared to that

  8. Deformable image registration for cone-beam CT guided transoral robotic base-of-tongue surgery

    International Nuclear Information System (INIS)

    Reaungamornrat, S; Liu, W P; Otake, Y; Uneri, A; Siewerdsen, J H; Taylor, R H; Wang, A S; Nithiananthan, S; Schafer, S; Tryggestad, E; Richmon, J; Sorger, J M

    2013-01-01

    Transoral robotic surgery (TORS) offers a minimally invasive approach to resection of base-of-tongue tumors. However, precise localization of the surgical target and adjacent critical structures can be challenged by the highly deformed intraoperative setup. We propose a deformable registration method using intraoperative cone-beam computed tomography (CBCT) to accurately align preoperative CT or MR images with the intraoperative scene. The registration method combines a Gaussian mixture (GM) model followed by a variation of the Demons algorithm. First, following segmentation of the volume of interest (i.e. volume of the tongue extending to the hyoid), a GM model is applied to surface point clouds for rigid initialization (GM rigid) followed by nonrigid deformation (GM nonrigid). Second, the registration is refined using the Demons algorithm applied to distance map transforms of the (GM-registered) preoperative image and intraoperative CBCT. Performance was evaluated in repeat cadaver studies (25 image pairs) in terms of target registration error (TRE), entropy correlation coefficient (ECC) and normalized pointwise mutual information (NPMI). Retraction of the tongue in the TORS operative setup induced gross deformation >30 mm. The mean TRE following the GM rigid, GM nonrigid and Demons steps was 4.6, 2.1 and 1.7 mm, respectively. The respective ECC was 0.57, 0.70 and 0.73, and NPMI was 0.46, 0.57 and 0.60. Registration accuracy was best across the superior aspect of the tongue and in proximity to the hyoid (by virtue of GM registration of surface points on these structures). The Demons step refined registration primarily in deeper portions of the tongue further from the surface and hyoid bone. Since the method does not use image intensities directly, it is suitable to multi-modality registration of preoperative CT or MR with intraoperative CBCT. Extending the 3D image registration to the fusion of image and planning data in stereo-endoscopic video is anticipated to

  9. A strategy for multimodal deformable image registration to integrate PET/MR into radiotherapy treatment planning

    International Nuclear Information System (INIS)

    Leibfarth, Sara; Moennich, David; Thorwarth, Daniela; Welz, Stefan; Siegel, Christine; Zips, Daniel; Schwenzer, Nina; Holger Schmidt, Holger

    2013-01-01

    Background: Combined positron emission tomography (PET)/magnetic resonance imaging (MRI) is highly promising for biologically individualized radiotherapy (RT). Hence, the purpose of this work was to develop an accurate and robust registration strategy to integrate combined PET/MR data into RT treatment planning. Material and methods: Eight patient datasets consisting of an FDG PET/computed tomography (CT) and a subsequently acquired PET/MR of the head and neck (HN) region were available. Registration strategies were developed based on CT and MR data only, whereas the PET components were fused with the resulting deformation field. Following a rigid registration, deformable registration was performed with a transform parametrized by B-splines. Three different optimization metrics were investigated: global mutual information (GMI), GMI combined with a bending energy penalty (BEP) for regularization (GMI + BEP) and localized mutual information with BEP (LMI + BEP). Different quantitative registration quality measures were developed, including volumetric overlap and mean distance measures for structures segmented on CT and MR as well as anatomical landmark distances. Moreover, the local registration quality in the tumor region was assessed by the normalized cross correlation (NCC) of the two PET datasets. Results: LMI + BEP yielded the most robust and accurate registration results. For GMI, GMI + BEP and LMI + BEP, mean landmark distances (standard deviations) were 23.9 mm (15.5 mm), 4.8 mm (4.0 mm) and 3.0 mm (1.0 mm), and mean NCC values (standard deviations) were 0.29 (0.29), 0.84 (0.14) and 0.88 (0.06), respectively. Conclusion: Accurate and robust multimodal deformable image registration of CT and MR in the HN region can be performed using a B-spline parametrized transform and LMI + BEP as optimization metric. With this strategy, biologically individualized RT based on combined PET/MRI in terms of dose painting is possible

  10. Anisotropic multi-scale fluid registration: evaluation in magnetic resonance breast imaging

    International Nuclear Information System (INIS)

    Crum, W R; Tanner, C; Hawkes, D J

    2005-01-01

    Registration using models of compressible viscous fluids has not found the general application of some other techniques (e.g., free-form-deformation (FFD)) despite its ability to model large diffeomorphic deformations. We report on a multi-resolution fluid registration algorithm which improves on previous work by (a) directly solving the Navier-Stokes equation at the resolution of the images (b) accommodating image sampling anisotropy using semi-coarsening and implicit smoothing in a full multi-grid (FMG) solver and (c) exploiting the inherent multi-resolution nature of FMG to implement a multi-scale approach. Evaluation is on five magnetic resonance (MR) breast images subject to six biomechanical deformation fields over 11 multi-resolution schemes. Quantitative assessment is by tissue overlaps and target registration errors and by registering using the known correspondences rather than image features to validate the fluid model. Context is given by comparison with a validated FFD algorithm and by application to images of volunteers subjected to large applied deformation. The results show that fluid registration of 3D breast MR images to sub-voxel accuracy is possible in minutes on a 1.6 GHz Linux-based Athlon processor with coarse solutions obtainable in a few tens of seconds. Accuracy and computation time are comparable to FFD techniques validated for this application

  11. Intrasubject registration for change analysis in medical imaging

    NARCIS (Netherlands)

    Staring, M.

    2008-01-01

    Image matching is important for the comparison of medical images. Comparison is of clinical relevance for the analysis of differences due to changes in the health of a patient. For example, when a disease is imaged at two time points, then one wants to know if it is stable, has regressed, or

  12. An automated, quantitative, and case-specific evaluation of deformable image registration in computed tomography images

    Science.gov (United States)

    Kierkels, R. G. J.; den Otter, L. A.; Korevaar, E. W.; Langendijk, J. A.; van der Schaaf, A.; Knopf, A. C.; Sijtsema, N. M.

    2018-02-01

    A prerequisite for adaptive dose-tracking in radiotherapy is the assessment of the deformable image registration (DIR) quality. In this work, various metrics that quantify DIR uncertainties are investigated using realistic deformation fields of 26 head and neck and 12 lung cancer patients. Metrics related to the physiologically feasibility (the Jacobian determinant, harmonic energy (HE), and octahedral shear strain (OSS)) and numerically robustness of the deformation (the inverse consistency error (ICE), transitivity error (TE), and distance discordance metric (DDM)) were investigated. The deformable registrations were performed using a B-spline transformation model. The DIR error metrics were log-transformed and correlated (Pearson) against the log-transformed ground-truth error on a voxel level. Correlations of r  ⩾  0.5 were found for the DDM and HE. Given a DIR tolerance threshold of 2.0 mm and a negative predictive value of 0.90, the DDM and HE thresholds were 0.49 mm and 0.014, respectively. In conclusion, the log-transformed DDM and HE can be used to identify voxels at risk for large DIR errors with a large negative predictive value. The HE and/or DDM can therefore be used to perform automated quality assurance of each CT-based DIR for head and neck and lung cancer patients.

  13. A SAR IMAGE REGISTRATION METHOD BASED ON SIFT ALGORITHM

    Directory of Open Access Journals (Sweden)

    W. Lu

    2017-09-01

    Full Text Available In order to improve the stability and rapidity of synthetic aperture radar (SAR images matching, an effective method was presented. Firstly, the adaptive smoothing filtering was employed for image denoising in image processing based on Wallis filtering to avoid the follow-up noise is amplified. Secondly, feature points were extracted by a simplified SIFT algorithm. Finally, the exact matching of the images was achieved with these points. Compared with the existing methods, it not only maintains the richness of features, but a-lso reduces the noise of the image. The simulation results show that the proposed algorithm can achieve better matching effect.

  14. Type 1 neovascularization with polypoidal lesions complicating dome shaped macula

    OpenAIRE

    Naysan, Jonathan; Dansingani, Kunal K; Balaratnasingam, Chandrakumar; Freund, K Bailey

    2015-01-01

    Dome-shaped macula is described as an inward bulge of the macula within a posterior staphyloma in highly myopic eyes. Choroidal neovascularization is a known complication that can cause visual loss in dome-shaped macula. Herein, we describe a patient who presented with features of polypoidal choroidal neovascularization that developed on a background of high myopia with dome-shaped macula.

  15. MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration

    Science.gov (United States)

    Ansar, Adnan I.

    2011-01-01

    MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically

  16. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    Science.gov (United States)

    Osechinskiy, Sergey; Kruggel, Frithjof

    2011-01-01

    Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS), Gaussian elastic body splines (GEBS), or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D) warp, a new unconstrained optimization algorithm (NEWUOA), and a correlation-coefficient-based cost function. PMID:22567290

  17. FEM-based evaluation of deformable image registration for radiation therapy

    International Nuclear Information System (INIS)

    Zhong Hualiang; Peters, Terry; Siebers, Jeffrey V

    2007-01-01

    This paper presents a new concept to automatically detect the neighborhood in an image where deformable registration is mis-performing. Specifically, the displacement vector field (DVF) from a deformable image registration is substituted into a finite-element-based elastic framework to calculate unbalanced energy in each element. The value of the derived energy indicates the quality of the DVF in its neighborhood. The new voxel-based evaluation approach is compared with three other validation criteria: landmark measurement, a finite element approach and visual comparison, for deformable registrations performed with the optical-flow-based 'demons' algorithm as well as thin-plate spline interpolation. This analysis was performed on three pairs of prostate CT images. The results of the analysis show that the four criteria give mutually comparable quantitative assessments on the six registration instances. As an objective concept, the unbalanced energy presents no requirement on boundary constraints in its calculation, different from traditional mechanical modeling. This method is automatic, and at voxel level suitable to evaluate deformable registration in a clinical setting

  18. Slice-to-Volume Nonrigid Registration of Histological Sections to MR Images of the Human Brain

    Directory of Open Access Journals (Sweden)

    Sergey Osechinskiy

    2011-01-01

    Full Text Available Registration of histological images to three-dimensional imaging modalities is an important step in quantitative analysis of brain structure, in architectonic mapping of the brain, and in investigation of the pathology of a brain disease. Reconstruction of histology volume from serial sections is a well-established procedure, but it does not address registration of individual slices from sparse sections, which is the aim of the slice-to-volume approach. This study presents a flexible framework for intensity-based slice-to-volume nonrigid registration algorithms with a geometric transformation deformation field parametrized by various classes of spline functions: thin-plate splines (TPS, Gaussian elastic body splines (GEBS, or cubic B-splines. Algorithms are applied to cross-modality registration of histological and magnetic resonance images of the human brain. Registration performance is evaluated across a range of optimization algorithms and intensity-based cost functions. For a particular case of histological data, best results are obtained with a TPS three-dimensional (3D warp, a new unconstrained optimization algorithm (NEWUOA, and a correlation-coefficient-based cost function.

  19. Automated registration of multispectral MR vessel wall images of the carotid artery

    Energy Technology Data Exchange (ETDEWEB)

    Klooster, R. van ' t; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der, E-mail: rvdgeest@lumc.nl [Department of Radiology, Division of Image Processing, Leiden University Medical Center, 2300 RC Leiden (Netherlands); Klein, S. [Department of Radiology and Department of Medical Informatics, Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam 3015 GE (Netherlands); Kwee, R. M.; Kooi, M. E. [Department of Radiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht 6202 AZ (Netherlands)

    2013-12-15

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and

  20. Automated registration of multispectral MR vessel wall images of the carotid artery

    International Nuclear Information System (INIS)

    Klooster, R. van 't; Staring, M.; Reiber, J. H. C.; Lelieveldt, B. P. F.; Geest, R. J. van der; Klein, S.; Kwee, R. M.; Kooi, M. E.

    2013-01-01

    Purpose: Atherosclerosis is the primary cause of heart disease and stroke. The detailed assessment of atherosclerosis of the carotid artery requires high resolution imaging of the vessel wall using multiple MR sequences with different contrast weightings. These images allow manual or automated classification of plaque components inside the vessel wall. Automated classification requires all sequences to be in alignment, which is hampered by patient motion. In clinical practice, correction of this motion is performed manually. Previous studies applied automated image registration to correct for motion using only nondeformable transformation models and did not perform a detailed quantitative validation. The purpose of this study is to develop an automated accurate 3D registration method, and to extensively validate this method on a large set of patient data. In addition, the authors quantified patient motion during scanning to investigate the need for correction. Methods: MR imaging studies (1.5T, dedicated carotid surface coil, Philips) from 55 TIA/stroke patients with ipsilateral <70% carotid artery stenosis were randomly selected from a larger cohort. Five MR pulse sequences were acquired around the carotid bifurcation, each containing nine transverse slices: T1-weighted turbo field echo, time of flight, T2-weighted turbo spin-echo, and pre- and postcontrast T1-weighted turbo spin-echo images (T1W TSE). The images were manually segmented by delineating the lumen contour in each vessel wall sequence and were manually aligned by applying throughplane and inplane translations to the images. To find the optimal automatic image registration method, different masks, choice of the fixed image, different types of the mutual information image similarity metric, and transformation models including 3D deformable transformation models, were evaluated. Evaluation of the automatic registration results was performed by comparing the lumen segmentations of the fixed image and

  1. Image Navigation and Registration Performance Assessment Tool Set for the GOES-R Advanced Baseline Imager and Geostationary Lightning Mapper

    Science.gov (United States)

    De Luccia, Frank J.; Houchin, Scott; Porter, Brian C.; Graybill, Justin; Haas, Evan; Johnson, Patrick D.; Isaacson, Peter J.; Reth, Alan D.

    2016-01-01

    The GOES-R Flight Project has developed an Image Navigation and Registration (INR) Performance Assessment Tool Set (IPATS) for measuring Advanced Baseline Imager (ABI) and Geostationary Lightning Mapper (GLM) INR performance metrics in the post-launch period for performance evaluation and long term monitoring. For ABI, these metrics are the 3-sigma errors in navigation (NAV), channel-to-channel registration (CCR), frame-to-frame registration (FFR), swath-to-swath registration (SSR), and within frame registration (WIFR) for the Level 1B image products. For GLM, the single metric of interest is the 3-sigma error in the navigation of background images (GLM NAV) used by the system to navigate lightning strikes. 3-sigma errors are estimates of the 99.73rd percentile of the errors accumulated over a 24-hour data collection period. IPATS utilizes a modular algorithmic design to allow user selection of data processing sequences optimized for generation of each INR metric. This novel modular approach minimizes duplication of common processing elements, thereby maximizing code efficiency and speed. Fast processing is essential given the large number of sub-image registrations required to generate INR metrics for the many images produced over a 24-hour evaluation period. Another aspect of the IPATS design that vastly reduces execution time is the off-line propagation of Landsat based truth images to the fixed grid coordinates system for each of the three GOES-R satellite locations, operational East and West and initial checkout locations. This paper describes the algorithmic design and implementation of IPATS and provides preliminary test results.

  2. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    Science.gov (United States)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  3. Automatic registration of panoramic image sequence and mobile laser scanning data using semantic features

    Science.gov (United States)

    Li, Jianping; Yang, Bisheng; Chen, Chi; Huang, Ronggang; Dong, Zhen; Xiao, Wen

    2018-02-01

    Inaccurate exterior orientation parameters (EoPs) between sensors obtained by pre-calibration leads to failure of registration between panoramic image sequence and mobile laser scanning data. To address this challenge, this paper proposes an automatic registration method based on semantic features extracted from panoramic images and point clouds. Firstly, accurate rotation parameters between the panoramic camera and the laser scanner are estimated using GPS and IMU aided structure from motion (SfM). The initial EoPs of panoramic images are obtained at the same time. Secondly, vehicles in panoramic images are extracted by the Faster-RCNN as candidate primitives to be matched with potential corresponding primitives in point clouds according to the initial EoPs. Finally, translation between the panoramic camera and the laser scanner is refined by maximizing the overlapping area of corresponding primitive pairs based on the Particle Swarm Optimization (PSO), resulting in a finer registration between panoramic image sequences and point clouds. Two challenging urban scenes were experimented to assess the proposed method, and the final registration errors of these two scenes were both less than three pixels, which demonstrates a high level of automation, robustness and accuracy.

  4. Segmentation and registration duality from echographic images by use of physiological and morphological knowledge

    International Nuclear Information System (INIS)

    Ionescu, G.

    1998-01-01

    Echographic imaging could potentially play a major role in the field of Computer Assisted Surgery (CAS). For doctors and surgeons to make full use of tool in planning and executing surgical operations, they also need user-friendly automatic software based on fast, precise and reliable algorithms. The main goal of this thesis is to take advantage of the segmentation/registration duality to extract the relevant information from echo graphical images. This information will allow the precise and automatic registration both of anatomical structures contained in the pre-operative model and of per-operative data contained in echographic images. The result of registration will be further to guide a computer-assisted tool. In the first part we propose different methods for filtering, segmentation and calibration of echographic images. The development of fast, precise and reliable algorithms is emphasized. The second part concerns the segmentation-registration duality and the corrections of elastic deformations of soft tissues. High-level segmentation algorithms for echographic images were developed. They are based on results of low -level segmentation, a priori anatomical knowledge as well as on information provided by the pre-operative model. The third part deals with detailed descriptions of applications and interpretation of results. The cases studied include: screwing inside the vertebral pedicles, ilio-sacral screwing, prostatic radiotherapy and puncture of pericardial effusion. Future developments for this approach are discussed. (author)

  5. Non-rigid ultrasound image registration using generalized relaxation labeling process

    Science.gov (United States)

    Lee, Jong-Ha; Seong, Yeong Kyeong; Park, MoonHo; Woo, Kyoung-Gu; Ku, Jeonghun; Park, Hee-Jun

    2013-03-01

    This research proposes a novel non-rigid registration method for ultrasound images. The most predominant anatomical features in medical images are tissue boundaries, which appear as edges. In ultrasound images, however, other features can be identified as well due to the specular reflections that appear as bright lines superimposed on the ideal edge location. In this work, an image's local phase information (via the frequency domain) is used to find the ideal edge location. The generalized relaxation labeling process is then formulated to align the feature points extracted from the ideal edge location. In this work, the original relaxation labeling method was generalized by taking n compatibility coefficient values to improve non-rigid registration performance. This contextual information combined with a relaxation labeling process is used to search for a correspondence. Then the transformation is calculated by the thin plate spline (TPS) model. These two processes are iterated until the optimal correspondence and transformation are found. We have tested our proposed method and the state-of-the-art algorithms with synthetic data and bladder ultrasound images of in vivo human subjects. Experiments show that the proposed method improves registration performance significantly, as compared to other state-of-the-art non-rigid registration algorithms.

  6. Mesh-to-raster region-of-interest-based nonrigid registration of multimodal images.

    Science.gov (United States)

    Tatano, Rosalia; Berkels, Benjamin; Deserno, Thomas M

    2017-10-01

    Region of interest (RoI) alignment in medical images plays a crucial role in diagnostics, procedure planning, treatment, and follow-up. Frequently, a model is represented as triangulated mesh while the patient data is provided from computed axial tomography scanners as pixel or voxel data. Previously, we presented a 2-D method for curve-to-pixel registration. This paper contributes (i) a general mesh-to-raster framework to register RoIs in multimodal images; (ii) a 3-D surface-to-voxel application, and (iii) a comprehensive quantitative evaluation in 2-D using ground truth (GT) provided by the simultaneous truth and performance level estimation (STAPLE) method. The registration is formulated as a minimization problem, where the objective consists of a data term, which involves the signed distance function of the RoI from the reference image and a higher order elastic regularizer for the deformation. The evaluation is based on quantitative light-induced fluoroscopy (QLF) and digital photography (DP) of decalcified teeth. STAPLE is computed on 150 image pairs from 32 subjects, each showing one corresponding tooth in both modalities. The RoI in each image is manually marked by three experts (900 curves in total). In the QLF-DP setting, our approach significantly outperforms the mutual information-based registration algorithm implemented with the Insight Segmentation and Registration Toolkit and Elastix.

  7. A general technique for interstudy registration of multifunction and multimodality images

    International Nuclear Information System (INIS)

    Lin, K.P.; Huang, S.C.; Bacter, L.R.; Phelps, M.E.

    1994-01-01

    A technique that can register anatomic/structural brain images (e.g., MRI) with various functional images (e.g., PET-FDG and PET-FDOPA) of the same subject has been developed. The procedure of this technique includes the following steps: (1) segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and, muscle (MS) components, (2) assignment of appropriate radio-tracer concentrations to various components depending on the kind of functional image that is being registered, (3) generation of simulated functional images to have a spatial resolution that is comparable to that of the measured ones, (4) alignment of the measured functional images to the simulated ones that are based on MRI images. A self-organization clustering method is used to segment the MRI images. The image alignment is based on the criterion of least squares of the pixel-by-pixel differences between the two sets of images that are being matched and on the Powell's algorithm for minimization. The technique was applied successfully for registering the MRI, PET-FDG, and PET-FDOPA images. This technique offers a general solution to the registration of structural images to functional images and to the registration of different functional images of markedly different distributions

  8. Registration of clinical volumes to beams-eye-view images for real-time tracking

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.; Mishra, Pankaj; Berbeco, Ross I., E-mail: rberbeco@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115 (United States); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney, New South Wales 2006 (Australia)

    2014-12-15

    Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield units into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.

  9. Feasibility of a novel deformable image registration technique to facilitate classification, targeting, and monitoring of tumor and normal tissue

    International Nuclear Information System (INIS)

    Brock, Kristy K.; Dawson, Laura A.; Sharpe, Michael B.; Moseley, Douglas J.; Jaffray, David A.

    2006-01-01

    Purpose: To investigate the feasibility of a biomechanical-based deformable image registration technique for the integration of multimodality imaging, image guided treatment, and response monitoring. Methods and Materials: A multiorgan deformable image registration technique based on finite element modeling (FEM) and surface projection alignment of selected regions of interest with biomechanical material and interface models has been developed. FEM also provides an inherent method for direct tracking specified regions through treatment and follow-up. Results: The technique was demonstrated on 5 liver cancer patients. Differences of up to 1 cm of motion were seen between the diaphragm and the tumor center of mass after deformable image registration of exhale and inhale CT scans. Spatial differences of 5 mm or more were observed for up to 86% of the surface of the defined tumor after deformable image registration of the computed tomography (CT) and magnetic resonance images. Up to 6.8 mm of motion was observed for the tumor after deformable image registration of the CT and cone-beam CT scan after rigid registration of the liver. Deformable registration of the CT to the follow-up CT allowed a more accurate assessment of tumor response. Conclusions: This biomechanical-based deformable image registration technique incorporates classification, targeting, and monitoring of tumor and normal tissue using one methodology

  10. A high-accuracy image registration algorithm using phase-only correlation for dental radiographs

    International Nuclear Information System (INIS)

    Ito, Koichi; Nikaido, Akira; Aoki, Takafumi; Kosuge, Eiko; Kawamata, Ryota; Kashima, Isamu

    2008-01-01

    Dental radiographs have been used for the accurate assessment and treatment of dental diseases. The nonlinear deformation between two dental radiographs may be observed, even if they are taken from the same oral regions of the subject. For an accurate diagnosis, the complete geometric registration between radiographs is required. This paper presents an efficient dental radiograph registration algorithm using Phase-Only Correlation (POC) function. The use of phase components in 2D (two-dimensional) discrete Fourier transforms of dental radiograph images makes possible to achieve highly robust image registration and recognition. Experimental evaluation using a dental radiograph database indicates that the proposed algorithm exhibits efficient recognition performance even for distorted radiographs. (author)

  11. A robust and hierarchical approach for the automatic co-registration of intensity and visible images

    Science.gov (United States)

    González-Aguilera, Diego; Rodríguez-Gonzálvez, Pablo; Hernández-López, David; Luis Lerma, José

    2012-09-01

    This paper presents a new robust approach to integrate intensity and visible images which have been acquired with a terrestrial laser scanner and a calibrated digital camera, respectively. In particular, an automatic and hierarchical method for the co-registration of both sensors is developed. The approach integrates several existing solutions to improve the performance of the co-registration between range-based and visible images: the Affine Scale-Invariant Feature Transform (A-SIFT), the epipolar geometry, the collinearity equations, the Groebner basis solution and the RANdom SAmple Consensus (RANSAC), integrating a voting scheme. The approach presented herein improves the existing co-registration approaches in automation, robustness, reliability and accuracy.

  12. Cortical region of interest definition on SPECT brain images using X-ray CT registration

    Energy Technology Data Exchange (ETDEWEB)

    Tzourio, N.; Sutton, D. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot); Joliot, M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot INSERM, Orsay (France)); Mazoyer, B.M. (Commissariat a l' Energie Atomique, Orsay (France). Service Hospitalier Frederic Joliot Antenne d' Information Medicale, C.H.U. Bichat, Paris (France)); Charlot, V. (Hopital Louis Mourier, Colombes (France). Service de Psychiatrie); Salamon, G. (CHU La Timone, Marseille (France). Service de Neuroradiologie)

    1992-11-01

    We present a method for brain single photon emission computed tomography (SPECT) analysis based on individual registration of anatomical (CT) and functional ([sup 133]Xe regional cerebral blood flow) images and on the definition of three-dimensional functional regions of interest. Registration of CT and SPECT is performed through adjustment of CT-defined cortex limits to the SPECT image. Regions are defined by sectioning a cortical ribbon on the CT images, copied over the SPECT images and pooled through slices to give 3D cortical regions of interest. The proposed method shows good intra- and interobserver reproducibility (regional intraclass correlation coefficient [approx equal]0.98), and good accuracy in terms of repositioning ([approx equal]3.5 mm) as compared to the SPECT image resolution (14 mm). The method should be particularly useful for analysing SPECT studies when variations in brain anatomy (normal or abnormal) must be accounted for. (orig.).

  13. PCA-based groupwise image registration for quantitative MRI

    NARCIS (Netherlands)

    Huizinga, W.; Poot, D. H. J.; Guyader, J.-M.; Klaassen, R.; Coolen, B. F.; van Kranenburg, M.; van Geuns, R. J. M.; Uitterdijk, A.; Polfliet, M.; Vandemeulebroucke, J.; Leemans, A.; Niessen, W. J.; Klein, S.

    2016-01-01

    Quantitative magnetic resonance imaging (qMRI) is a technique for estimating quantitative tissue properties, such as the T5 and T2 relaxation times, apparent diffusion coefficient (ADC), and various perfusion measures. This estimation is achieved by acquiring multiple images with different

  14. Localization and registration accuracy in image guided neurosurgery: a clinical study

    International Nuclear Information System (INIS)

    Shamir, Reuben R.; Joskowicz, Leo; Spektor, Sergey; Shoshan, Yigal

    2009-01-01

    To measure and compare the clinical localization and registration errors in image-guided neurosurgery, with the purpose of revising current assumptions. Twelve patients who underwent brain surgeries with a navigation system were randomly selected. A neurosurgeon localized and correlated the landmarks on preoperative MRI images and on the intraoperative physical anatomy with a tracked pointer. In the laboratory, we generated 612 scenarios in which one landmark pair was defined as the target and the remaining ones were used to compute the registration transformation. Four errors were measured: (1) fiducial localization error (FLE); (2) target registration error (TRE); (3) fiducial registration error (FRE); (4) Fitzpatrick's target registration error estimation (F-TRE). We compared the different errors and computed their correlation. The image and physical FLE ranges were 0.5-2.0 and 1.6-3.0 mm, respectively. The measured TRE, FRE and F-TRE were 4.1±1.6, 3.9±1.2, and 3.7±2.2 mm, respectively. Low correlations of 0.19 and 0.37 were observed between the FRE and TRE and between the F-TRE and the TRE, respectively. The differences of the FRE and F-TRE from the TRE were 1.3±1.0 mm (max=5.5 mm) and 1.3±1.2 mm (max=7.3 mm), respectively. Contrary to common belief, the FLE presents significant variations. Moreover, both the FRE and the F-TRE are poor indicators of the TRE in image-to-patient registration. (orig.)

  15. Localization and registration accuracy in image guided neurosurgery: a clinical study

    Energy Technology Data Exchange (ETDEWEB)

    Shamir, Reuben R.; Joskowicz, Leo [Hebrew University of Jerusalem, School of Engineering and Computer Science, Jerusalem (Israel); Spektor, Sergey; Shoshan, Yigal [Hadassah University Hospital, Department of Neurosurgery, School of Medicine, Jerusalem (Israel)

    2009-01-15

    To measure and compare the clinical localization and registration errors in image-guided neurosurgery, with the purpose of revising current assumptions. Twelve patients who underwent brain surgeries with a navigation system were randomly selected. A neurosurgeon localized and correlated the landmarks on preoperative MRI images and on the intraoperative physical anatomy with a tracked pointer. In the laboratory, we generated 612 scenarios in which one landmark pair was defined as the target and the remaining ones were used to compute the registration transformation. Four errors were measured: (1) fiducial localization error (FLE); (2) target registration error (TRE); (3) fiducial registration error (FRE); (4) Fitzpatrick's target registration error estimation (F-TRE). We compared the different errors and computed their correlation. The image and physical FLE ranges were 0.5-2.0 and 1.6-3.0 mm, respectively. The measured TRE, FRE and F-TRE were 4.1{+-}1.6, 3.9{+-}1.2, and 3.7{+-}2.2 mm, respectively. Low correlations of 0.19 and 0.37 were observed between the FRE and TRE and between the F-TRE and the TRE, respectively. The differences of the FRE and F-TRE from the TRE were 1.3{+-}1.0 mm (max=5.5 mm) and 1.3{+-}1.2 mm (max=7.3 mm), respectively. Contrary to common belief, the FLE presents significant variations. Moreover, both the FRE and the F-TRE are poor indicators of the TRE in image-to-patient registration. (orig.)

  16. Computed tomography lung iodine contrast mapping by image registration and subtraction

    Science.gov (United States)

    Goatman, Keith; Plakas, Costas; Schuijf, Joanne; Beveridge, Erin; Prokop, Mathias

    2014-03-01

    Pulmonary embolism (PE) is a relatively common and potentially life threatening disease, affecting around 600,000 people annually in the United States alone. Prompt treatment using anticoagulants is effective and saves lives, but unnecessary treatment risks life threatening haemorrhage. The specificity of any diagnostic test for PE is therefore as important as its sensitivity. Computed tomography (CT) angiography is routinely used to diagnose PE. However, there are concerns it may over-report the condition. Additional information about the severity of an occlusion can be obtained from an iodine contrast map that represents tissue perfusion. Such maps tend to be derived from dual-energy CT acquisitions. However, they may also be calculated by subtracting pre- and post-contrast CT scans. Indeed, there are technical advantages to such a subtraction approach, including better contrast-to-noise ratio for the same radiation dose, and bone suppression. However, subtraction relies on accurate image registration. This paper presents a framework for the automatic alignment of pre- and post-contrast lung volumes prior to subtraction. The registration accuracy is evaluated for seven subjects for whom pre- and post-contrast helical CT scans were acquired using a Toshiba Aquilion ONE scanner. One hundred corresponding points were annotated on the pre- and post-contrast scans, distributed throughout the lung volume. Surface-to-surface error distances were also calculated from lung segmentations. Prior to registration the mean Euclidean landmark alignment error was 2.57mm (range 1.43-4.34 mm), and following registration the mean error was 0.54mm (range 0.44-0.64 mm). The mean surface error distance was 1.89mm before registration and 0.47mm after registration. There was a commensurate reduction in visual artefacts following registration. In conclusion, a framework for pre- and post-contrast lung registration has been developed that is sufficiently accurate for lung subtraction

  17. Markerless laser registration in image-guided oral and maxillofacial surgery.

    Science.gov (United States)

    Marmulla, Rüdiger; Lüth, Tim; Mühling, Joachim; Hassfeld, Stefan

    2004-07-01

    The use of registration markers in computer-assisted surgery is combined with high logistic costs and efforts. Markerless patient registration using laser scan surface registration techniques is a new challenging method. The present study was performed to evaluate the clinical accuracy in finding defined target points within the surgical site after markerless patient registration in image-guided oral and maxillofacial surgery. Twenty consecutive patients with different cranial diseases were scheduled for computer-assisted surgery. Data set alignment between the surgical site and the computed tomography (CT) data set was performed by markerless laser scan surface registration of the patient's face. Intraoral rigidly attached registration markers were used as target points, which had to be detected by an infrared pointer. The Surgical Segment Navigator SSN++ has been used for all procedures. SSN++ is an investigative product based on the SSN system that had previously been developed by the presenting authors with the support of Carl Zeiss (Oberkochen, Germany). SSN++ is connected to a Polaris infrared camera (Northern Digital, Waterloo, Ontario, Canada) and to a Minolta VI 900 3D digitizer (Tokyo, Japan) for high-resolution laser scanning. Minimal differences in shape between the laser scan surface and the surface generated from the CT data set could be detected. Nevertheless, high-resolution laser scan of the skin surface allows for a precise patient registration (mean deviation 1.1 mm, maximum deviation 1.8 mm). Radiation load, logistic costs, and efforts arising from the planning of computer-assisted surgery of the head can be reduced because native (markerless) CT data sets can be used for laser scan-based surface registration.

  18. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas

    Directory of Open Access Journals (Sweden)

    Zhenwei Chen

    2016-09-01

    Full Text Available Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  19. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas.

    Science.gov (United States)

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-09-17

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  20. Use of volume-rendered images in registration of nuclear medicine studies

    International Nuclear Information System (INIS)

    Wallis, J.W.; Miller, T.R.; Hsu, S.S.

    1995-01-01

    A simple operator-guided alignment technique based on volume-rendered images was developed to register tomographic nuclear medicine studies. For each of 2 three-dimensional data sets to be registered, volume-rendered images were generated in 3 orthogonal projections (x,y,z) using the method of maximum-activity projection. Registration was achieved as follows: (a) One of the rendering orientations (e.g. x) was chosen for manipulation; (b) The two dimensional rendering was translated and rotated under operator control to achieve the best alignment as determined by visual assessment; (c) This rotation and translation was then applied to the underlying three-dimensional data set, with updating of the rendered images in each of the orthogonal projections; (d) Another orientation was chosen, and the process repeated. Since manipulation was performed on the small two-dimensional rendered image, feedback was instantaneous. To aid in the visual alignment, difference images and flicker images (toggling between the two data sets) were displayed. Accuracy was assessed by analysis of separate clinical data sets acquired without patient movement. After arbitrary rotation and translation of one of the two data sets, the 2 data sets were registered. Mean registration error was 0.36 pixels, corresponding to a 2.44 mm registration error. Thus, accurate registration can be achieved in under 10 minutes using this simple technique. The accuracy of registration was assessed with use of duplicate SPECT studies originating from separate reconstructions of the data from each of the detectors of a triple-head gamma camera

  1. Multimodal Registration and Fusion for 3D Thermal Imaging

    Directory of Open Access Journals (Sweden)

    Moulay A. Akhloufi

    2015-01-01

    Full Text Available 3D vision is an area of computer vision that has attracted a lot of research interest and has been widely studied. In recent years we witness an increasing interest from the industrial community. This interest is driven by the recent advances in 3D technologies, which enable high precision measurements at an affordable cost. With 3D vision techniques we can conduct advanced manufactured parts inspections and metrology analysis. However, we are not able to detect subsurface defects. This kind of detection is achieved by other techniques, like infrared thermography. In this work, we present a new registration framework for 3D and thermal infrared multimodal fusion. The resulting fused data can be used for advanced 3D inspection in Nondestructive Testing and Evaluation (NDT&E applications. The fusion permits the simultaneous visible surface and subsurface inspections to be conducted in the same process. Experimental tests were conducted with different materials. The obtained results are promising and show how these new techniques can be used efficiently in a combined NDT&E-Metrology analysis of manufactured parts, in areas such as aerospace and automotive.

  2. Registration accuracy and image quality of time averaged mid-position CT scans for liver SBRT

    NARCIS (Netherlands)

    Kruis, Matthijs F.; van de Kamer, Jeroen B.; Sonke, Jan-Jakob; Jansen, Edwin P. M.; van Herk, Marcel

    2013-01-01

    The purpose was to validate the accuracy of motion models derived from deformable registration from four-dimensional computed tomography (4DCT) and breath-hold contrast enhanced computed tomography (BHCCT) scans for liver SBRT. Additionally, the image quality of the time averaged mid-position (MidP)

  3. Registration of Urban Aerial Image and LiDAR Based on Line Vectors

    Directory of Open Access Journals (Sweden)

    Qinghong Sheng

    2017-09-01

    Full Text Available In a traditional registration of a single aerial image with airborne light detection and ranging (LiDAR data using linear features that regard line direction as a control or linear features as constraints in the solution, lacking the constraint of linear position leads to the error propagation of the adjustment model. To solve this problem, this paper presents a line vector-based registration mode (LVR in which image rays and LiDAR lines are expressed by a line vector that integrates the line direction and the line position. A registration equation of line vector is set up by coplanar imaging rays and corresponding control lines. Three types of datasets consisting of synthetic, theInternational Society for Photogrammetry and Remote Sensing (ISPRS test project, and real aerial data are used. A group of progressive experiments is undertaken to evaluate the robustness of the LVR. Experimental results demonstrate that the integrated line direction and the line position contributes a great deal to the theoretical and real accuracies of the unknowns, as well as the stability of the adjustment model. This paper provides a new suggestion that, for a single image and LiDAR data, registration in urban areas can be accomplished by accommodating rich line features.

  4. A first step toward uncovering the truth about weight tuning in deformable image registration

    NARCIS (Netherlands)

    K. Pirpinia (Kleopatra); P.A.N. Bosman (Peter); J.-J. Sonke (Jan-Jakob); M. van Herk (Marcel); T. Alderliesten (Tanja)

    2016-01-01

    textabstractDeformable image registration is currently predominantly solved by optimizing a weighted linear combination of objectives. Successfully tuning the weights associated with these objectives is not trivial, leading to trial-and-error approaches. Such an approach assumes an intuitive

  5. Rigid registration of CT, MR and cryosection images using a GLCM framework

    DEFF Research Database (Denmark)

    Bro-Nielsen, Morten; Grimson, E.; Mosges, R.

    1997-01-01

    The majority of the available rigid registration measures are based on a 2-dimensional histogram of corresponding grey-values in the registered images. This paper shows that these features are similar to a family of texture measures based on grey level co-occurrence matrices (GLCM). Features from...

  6. TU-CD-BRA-01: A Novel 3D Registration Method for Multiparametric Radiological Images

    International Nuclear Information System (INIS)

    Akhbardeh, A; Parekth, VS; Jacobs, MA

    2015-01-01

    Purpose: Multiparametric and multimodality radiological imaging methods, such as, magnetic resonance imaging(MRI), computed tomography(CT), and positron emission tomography(PET), provide multiple types of tissue contrast and anatomical information for clinical diagnosis. However, these radiological modalities are acquired using very different technical parameters, e.g.,field of view(FOV), matrix size, and scan planes, which, can lead to challenges in registering the different data sets. Therefore, we developed a hybrid registration method based on 3D wavelet transformation and 3D interpolations that performs 3D resampling and rotation of the target radiological images without loss of information Methods: T1-weighted, T2-weighted, diffusion-weighted-imaging(DWI), dynamic-contrast-enhanced(DCE) MRI and PET/CT were used in the registration algorithm from breast and prostate data at 3T MRI and multimodality(PET/CT) cases. The hybrid registration scheme consists of several steps to reslice and match each modality using a combination of 3D wavelets, interpolations, and affine registration steps. First, orthogonal reslicing is performed to equalize FOV, matrix sizes and the number of slices using wavelet transformation. Second, angular resampling of the target data is performed to match the reference data. Finally, using optimized angles from resampling, 3D registration is performed using similarity transformation(scaling and translation) between the reference and resliced target volume is performed. After registration, the mean-square-error(MSE) and Dice Similarity(DS) between the reference and registered target volumes were calculated. Results: The 3D registration method registered synthetic and clinical data with significant improvement(p<0.05) of overlap between anatomical structures. After transforming and deforming the synthetic data, the MSE and Dice similarity were 0.12 and 0.99. The average improvement of the MSE in breast was 62%(0.27 to 0.10) and prostate was

  7. Automatic Registration Method for Fusion of ZY-1-02C Satellite Images

    Directory of Open Access Journals (Sweden)

    Qi Chen

    2013-12-01

    Full Text Available Automatic image registration (AIR has been widely studied in the fields of medical imaging, computer vision, and remote sensing. In various cases, such as image fusion, high registration accuracy should be achieved to meet application requirements. For satellite images, the large image size and unstable positioning accuracy resulting from the limited manufacturing technology of charge-coupled device, focal plane distortion, and unrecorded spacecraft jitter lead to difficulty in obtaining agreeable corresponding points for registration using only area-based matching or feature-based matching. In this situation, a coarse-to-fine matching strategy integrating two types of algorithms is proven feasible and effective. In this paper, an AIR method for application to the fusion of ZY-1-02C satellite imagery is proposed. First, the images are geometrically corrected. Coarse matching, based on scale invariant feature transform, is performed for the subsampled corrected images, and a rough global estimation is made with the matching results. Harris feature points are then extracted, and the coordinates of the corresponding points are calculated according to the global estimation results. Precise matching is conducted, based on normalized cross correlation and least squares matching. As complex image distortion cannot be precisely estimated, a local estimation using the structure of triangulated irregular network is applied to eliminate the false matches. Finally, image resampling is conducted, based on local affine transformation, to achieve high-precision registration. Experiments with ZY-1-02C datasets demonstrate that the accuracy of the proposed method meets the requirements of fusion application, and its efficiency is also suitable for the commercial operation of the automatic satellite data process system.

  8. Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study.

    Science.gov (United States)

    Shoji, Takuhei; Zangwill, Linda M; Akagi, Tadamichi; Saunders, Luke J; Yarmohammadi, Adeleh; Manalastas, Patricia Isabel C; Penteado, Rafaella C; Weinreb, Robert N

    2017-10-01

    To characterize the rate of macula vessel density loss in primary open-angle glaucoma (POAG), glaucoma-suspect, and healthy eyes. Longitudinal, observational cohort from the Diagnostic Innovations in Glaucoma Study. One hundred eyes (32 POAG, 30 glaucoma-suspect, and 38 healthy) followed for at least 1 year with optical coherence tomography angiography (OCT-A) imaging on at least 2 visits were included. Vessel density was calculated in the macula superficial layer. The rate of change was compared across diagnostic groups using a multivariate linear mixed-effects model. Baseline macula vessel density was highest in healthy eyes, followed by glaucoma-suspect and POAG eyes (P macula whole en face vessel density was significantly faster in glaucoma eyes (-2.23%/y) than in glaucoma-suspect (0.87%/y, P = .001) or healthy eyes (0.29%/y, P = .004). Conversely, the rate of change in ganglion cell complex (GCC) thickness was not significantly different from zero in any diagnostic group, and no significant differences in the rate of GCC change among diagnostic groups were found. With a mean follow-up of less than 14 months, eyes with POAG had significantly faster loss of macula vessel density than either glaucoma-suspect or healthy eyes. Serial OCT-A measurements also detected glaucomatous change in macula vessel density in eyes without evidence of change in GCC thickness. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Choroidal findings in dome-shaped macula in highly myopic eyes: a longitudinal study.

    Science.gov (United States)

    Viola, Francesco; Dell'Arti, Laura; Benatti, Eleonora; Invernizzi, Alessandro; Mapelli, Chiara; Ferrari, Fabio; Ratiglia, Roberto; Staurenghi, Giovanni; Barteselli, Giulio

    2015-01-01

    To describe choroidal findings in dome-shaped macula associated with high myopia using fluorescein angiography (FA), indocyanine green angiography (ICGA), and spectral-domain optical coherence tomography (SD OCT), and to elucidate the mechanism and natural course of serous retinal detachment (RD) associated with dome-shaped macula. Retrospective, observational case series. We reviewed longitudinal imaging results of 52 highly myopic eyes with dome-shaped macula. Changes on FA and ICGA were assessed. Retinal, choroidal, and scleral thicknesses and bulge height were measured on SD OCT. Serous RD was the most common abnormality associated with dome-shaped macula, detected by SD OCT in 44% of the cases with no associated choroidal neovascularization. Significant differences in the proportion of eyes with pinpoint leakage on FA (P macula was likely caused by choroidal vascular changes, similar to central serous chorioretinopathy, but specifically confined in the inward bulge of the staphyloma and secondary to excessive scleral thickening. Serous retinal detachment showed fluctuating changes over time, with alternating active and inactive stages. Angiographic findings in dome-shaped macula suggest the choroid as a target for possible treatment strategies. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Study on Low Illumination Simultaneous Polarization Image Registration Based on Improved SURF Algorithm

    Science.gov (United States)

    Zhang, Wanjun; Yang, Xu

    2017-12-01

    Registration of simultaneous polarization images is the premise of subsequent image fusion operations. However, in the process of shooting all-weather, the polarized camera exposure time need to be kept unchanged, sometimes polarization images under low illumination conditions due to too dark result in SURF algorithm can not extract feature points, thus unable to complete the registration, therefore this paper proposes an improved SURF algorithm. Firstly, the luminance operator is used to improve overall brightness of low illumination image, and then create integral image, using Hession matrix to extract the points of interest to get the main direction of characteristic points, calculate Haar wavelet response in X and Y directions to get the SURF descriptor information, then use the RANSAC function to make precise matching, the function can eliminate wrong matching points and improve accuracy rate. And finally resume the brightness of the polarized image after registration, the effect of the polarized image is not affected. Results show that the improved SURF algorithm can be applied well under low illumination conditions.

  11. Robust feature estimation by non-rigid hierarchical image registration and its application in disparity measurement

    Science.gov (United States)

    Badshah, Amir; Choudhry, Aadil Jaleel; Ullah, Shan

    2017-03-01

    Industries are moving towards automation in order to increase productivity and ensure quality. Variety of electronic and electromagnetic systems are being employed to assist human operator in fast and accurate quality inspection of products. Majority of these systems are equipped with cameras and rely on diverse image processing algorithms. Information is lost in 2D image, therefore acquiring accurate 3D data from 2D images is an open issue. FAST, SURF and SIFT are well-known spatial domain techniques for features extraction and henceforth image registration to find correspondence between images. The efficiency of these methods is measured in terms of the number of perfect matches found. A novel fast and robust technique for stereo-image processing is proposed. It is based on non-rigid registration using modified normalized phase correlation. The proposed method registers two images in hierarchical fashion using quad-tree structure. The registration process works through global to local level resulting in robust matches even in presence of blur and noise. The computed matches can further be utilized to determine disparity and depth for industrial product inspection. The same can be used in driver assistance systems. The preliminary tests on Middlebury dataset produced satisfactory results. The execution time for a 413 x 370 stereo-pair is 500ms approximately on a low cost DSP.

  12. A three-dimensional correlation method for registration of medical images in radiology

    International Nuclear Information System (INIS)

    Georgiou, Michalakis; Sfakianakis, George N.; Nagel, Joachim H.

    1998-01-01

    The availability of methods to register multi-modality images in order to 'fuse' them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as p olar Shells . The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors)

  13. An Image Registration Based Technique for Noninvasive Vascular Elastography

    OpenAIRE

    Valizadeh, Sina; Makkiabadi, Bahador; Mirbagheri, Alireza; Soozande, Mehdi; Manwar, Rayyan; Mozaffarzadeh, Moein; Nasiriavanaki, Mohammadreza

    2018-01-01

    Non-invasive vascular elastography is an emerging technique in vascular tissue imaging. During the past decades, several techniques have been suggested to estimate the tissue elasticity by measuring the displacement of the Carotid vessel wall. Cross correlation-based methods are the most prevalent approaches to measure the strain exerted in the wall vessel by the blood pressure. In the case of a low pressure, the displacement is too small to be apparent in ultrasound imaging, especially in th...

  14. A fast inverse consistent deformable image registration method based on symmetric optical flow computation

    International Nuclear Information System (INIS)

    Yang Deshan; Li Hua; Low, Daniel A; Deasy, Joseph O; Naqa, Issam El

    2008-01-01

    Deformable image registration is widely used in various radiation therapy applications including daily treatment planning adaptation to map planned tissue or dose to changing anatomy. In this work, a simple and efficient inverse consistency deformable registration method is proposed with aims of higher registration accuracy and faster convergence speed. Instead of registering image I to a second image J, the two images are symmetrically deformed toward one another in multiple passes, until both deformed images are matched and correct registration is therefore achieved. In each pass, a delta motion field is computed by minimizing a symmetric optical flow system cost function using modified optical flow algorithms. The images are then further deformed with the delta motion field in the positive and negative directions respectively, and then used for the next pass. The magnitude of the delta motion field is forced to be less than 0.4 voxel for every pass in order to guarantee smoothness and invertibility for the two overall motion fields that are accumulating the delta motion fields in both positive and negative directions, respectively. The final motion fields to register the original images I and J, in either direction, are calculated by inverting one overall motion field and combining the inversion result with the other overall motion field. The final motion fields are inversely consistent and this is ensured by the symmetric way that registration is carried out. The proposed method is demonstrated with phantom images, artificially deformed patient images and 4D-CT images. Our results suggest that the proposed method is able to improve the overall accuracy (reducing registration error by 30% or more, compared to the original and inversely inconsistent optical flow algorithms), reduce the inverse consistency error (by 95% or more) and increase the convergence rate (by 100% or more). The overall computation speed may slightly decrease, or increase in most cases

  15. Multiscale deformable registration for dual-energy x-ray imaging

    International Nuclear Information System (INIS)

    Gang, G. J.; Varon, C. A.; Kashani, H.; Richard, S.; Paul, N. S.; Van Metter, R.; Yorkston, J.; Siewerdsen, J. H.

    2009-01-01

    Dual-energy (DE) imaging of the chest improves the conspicuity of subtle lung nodules through the removal of overlying anatomical noise. Recent work has shown double-shot DE imaging (i.e., successive acquisition of low- and high-energy projections) to provide detective quantum efficiency, spectral separation (and therefore contrast), and radiation dose superior to single-shot DE imaging configurations (e.g., with a CR cassette). However, the temporal separation between high-energy (HE) and low-energy (LE) image acquisition can result in motion artifacts in the DE images, reducing image quality and diminishing diagnostic performance. This has motivated the development of a deformable registration technique that aligns the HE image onto the LE image before DE decomposition. The algorithm reported here operates in multiple passes at progressively smaller scales and increasing resolution. The first pass addresses large-scale motion by means of mutual information optimization, while successive passes (2-4) correct misregistration at finer scales by means of normalized cross correlation. Evaluation of registration performance in 129 patients imaged using an experimental DE imaging prototype demonstrated a statistically significant improvement in image alignment. Specific to the cardiac region, the registration algorithm was found to outperform a simple cardiac-gating system designed to trigger both HE and LE exposures during diastole. Modulation transfer function (MTF) analysis reveals additional advantages in DE image quality in terms of noise reduction and edge enhancement. This algorithm could offer an important tool in enhancing DE image quality and potentially improving diagnostic performance.

  16. Weight preserving image registration for monitoring disease progression in lung CT.

    Science.gov (United States)

    Gorbunova, Vladlena; Lol, Pechin; Ashraf, Haseem; Dirksen, Asger; Nielsen, Mads; de Bruijne, Marleen

    2008-01-01

    We present a new image registration based method for monitoring regional disease progression in longitudinal image studies of lung disease. A free-form image registration technique is used to match a baseline 3D CT lung scan onto a following scan. Areas with lower intensity in the following scan compared with intensities in the deformed baseline image indicate local loss of lung tissue that is associated with progression of emphysema. To account for differences in lung intensity owing to differences in the inspiration level in the two scans rather than disease progression, we propose to adjust the density of lung tissue with respect to local expansion or compression such that the total weight of the lungs is preserved during deformation. Our method provides a good estimation of regional destruction of lung tissue for subjects with a significant difference in inspiration level between CT scans and may result in a more sensitive measure of disease progression than standard quantitative CT measures.

  17. Evaluation of whole‐body MR to CT deformable image registration

    Science.gov (United States)

    Akbarzadeh, A.; Gutierrez, D.; Baskin, A.; Ay, M.R.; Ahmadian, A.; Alam, N. Riahi; Lövblad, KO

    2013-01-01

    Multimodality image registration plays a crucial role in various clinical and research applications. The aim of this study is to present an optimized MR to CT whole‐body deformable image registration algorithm and its validation using clinical studies. A 3D intermodality registration technique based on B‐spline transformation was performed using optimized parameters of the elastix package based on the Insight Toolkit (ITK) framework. Twenty‐eight (17 male and 11 female) clinical studies were used in this work. The registration was evaluated using anatomical landmarks and segmented organs. In addition to 16 anatomical landmarks, three key organs (brain, lungs, and kidneys) and the entire body volume were segmented for evaluation. Several parameters — such as the Euclidean distance between anatomical landmarks, target overlap, Dice and Jaccard coefficients, false positives and false negatives, volume similarity, distance error, and Hausdorff distance — were calculated to quantify the quality of the registration algorithm. Dice coefficients for the majority of patients (>75%) were in the 0.8–1 range for the whole body, brain, and lungs, which satisfies the criteria to achieve excellent alignment. On the other hand, for kidneys, Dice coefficients for volumes of 25% of the patients meet excellent volume agreement requirement, while the majority of patients satisfy good agreement criteria (>0.6). For all patients, the distance error was in 0–10 mm range for all segmented organs. In summary, we optimized and evaluated the accuracy of an MR to CT deformable registration algorithm. The registered images constitute a useful 3D whole‐body MR‐CT atlas suitable for the development and evaluation of novel MR‐guided attenuation correction procedures on hybrid PET‐MR systems. PACS number: 07.05.Pj PMID:23835382

  18. Evaluation of whole-body MR to CT deformable image registration.

    Science.gov (United States)

    Akbarzadeh, A; Gutierrez, D; Baskin, A; Ay, M R; Ahmadian, A; Riahi Alam, N; Lövblad, K O; Zaidi, H

    2013-07-08

    Multimodality image registration plays a crucial role in various clinical and research applications. The aim of this study is to present an optimized MR to CT whole-body deformable image registration algorithm and its validation using clinical studies. A 3D intermodality registration technique based on B-spline transformation was performed using optimized parameters of the elastix package based on the Insight Toolkit (ITK) framework. Twenty-eight (17 male and 11 female) clinical studies were used in this work. The registration was evaluated using anatomical landmarks and segmented organs. In addition to 16 anatomical landmarks, three key organs (brain, lungs, and kidneys) and the entire body volume were segmented for evaluation. Several parameters--such as the Euclidean distance between anatomical landmarks, target overlap, Dice and Jaccard coefficients, false positives and false negatives, volume similarity, distance error, and Hausdorff distance--were calculated to quantify the quality of the registration algorithm. Dice coefficients for the majority of patients (> 75%) were in the 0.8-1 range for the whole body, brain, and lungs, which satisfies the criteria to achieve excellent alignment. On the other hand, for kidneys, Dice coefficients for volumes of 25% of the patients meet excellent volume agreement requirement, while the majority of patients satisfy good agreement criteria (> 0.6). For all patients, the distance error was in 0-10 mm range for all segmented organs. In summary, we optimized and evaluated the accuracy of an MR to CT deformable registration algorithm. The registered images constitute a useful 3D whole-body MR-CT atlas suitable for the development and evaluation of novel MR-guided attenuation correction procedures on hybrid PET-MR systems.

  19. Automatic block-matching registration to improve lung tumor localization during image-guided radiotherapy

    Science.gov (United States)

    Robertson, Scott Patrick

    To improve relatively poor outcomes for locally-advanced lung cancer patients, many current efforts are dedicated to minimizing uncertainties in radiotherapy. This enables the isotoxic delivery of escalated tumor doses, leading to better local tumor control. The current dissertation specifically addresses inter-fractional uncertainties resulting from patient setup variability. An automatic block-matching registration (BMR) algorithm is implemented and evaluated for the purpose of directly localizing advanced-stage lung tumors during image-guided radiation therapy. In this algorithm, small image sub-volumes, termed "blocks", are automatically identified on the tumor surface in an initial planning computed tomography (CT) image. Each block is independently and automatically registered to daily images acquired immediately prior to each treatment fraction. To improve the accuracy and robustness of BMR, this algorithm incorporates multi-resolution pyramid registration, regularization with a median filter, and a new multiple-candidate-registrations technique. The result of block-matching is a sparse displacement vector field that models local tissue deformations near the tumor surface. The distribution of displacement vectors is aggregated to obtain the final tumor registration, corresponding to the treatment couch shift for patient setup correction. Compared to existing rigid and deformable registration algorithms, the final BMR algorithm significantly improves the overlap between target volumes from the planning CT and registered daily images. Furthermore, BMR results in the smallest treatment margins for the given study population. However, despite these improvements, large residual target localization errors were noted, indicating that purely rigid couch shifts cannot correct for all sources of inter-fractional variability. Further reductions in treatment uncertainties may require the combination of high-quality target localization and adaptive radiotherapy.

  20. Development of a QA Phantom for online image registration and resultant couch shifts

    International Nuclear Information System (INIS)

    Arumugam, S.; Jameson, M.G.; Holloway, L.C.

    2010-01-01

    Full text: Purpose Recently our centre purchased an Elekta-Synergy accelerator with kV-CBCT and a hexapod couch attachment. This system allows six degrees of freedom for couch lOp shifts, based on registration of on line imaging. We designed and built a phantom in our centre to test the accuracy and precision of this system. The goal of this project was to investigate the accuracy and practical utilisation of this phantom. Method The phantom was constructed from perspex sheets and high density dental putty (Fig. I). Five high density regions (three small regions to simulate prostate seeds and two larger regions to simulate boney anatomy) were incorporated to test the manual and automatic registrations within the software. The phantom was utilised to test the accuracy and precision of repositioning with the hexapod couch and imaging system. To achieve this, the phantom was placed on the couch at known orientations and the shifts were quantified using the registration of verification and reference image data sets. True shifts and those predicted by the software were compared. Results The geometrical accuracy of the phantom was verified with measurements of the CT scan to be with I mm of the intended geometry. The image registration and resultant couch shifts were found to be accurate within I mm and 0.5 degrees. The phantom was found to be practical and easy to use. Conclusion The presented phantom provides a less expensive and effective alternative to commercially available systems for verifying imaging registration and corresponding six degrees of freedom couch shifts. (author)

  1. Wavelet based Image Registration Technique for Matching Dental x-rays

    OpenAIRE

    P. Ramprasad; H. C. Nagaraj; M. K. Parasuram

    2008-01-01

    Image registration plays an important role in the diagnosis of dental pathologies such as dental caries, alveolar bone loss and periapical lesions etc. This paper presents a new wavelet based algorithm for registering noisy and poor contrast dental x-rays. Proposed algorithm has two stages. First stage is a preprocessing stage, removes the noise from the x-ray images. Gaussian filter has been used. Second stage is a geometric transformation stage. Proposed work uses two l...

  2. Simulating Deformations of MR Brain Images for Validation of Atlas-based Segmentation and Registration Algorithms

    OpenAIRE

    Xue, Zhong; Shen, Dinggang; Karacali, Bilge; Stern, Joshua; Rottenberg, David; Davatzikos, Christos

    2006-01-01

    Simulated deformations and images can act as the gold standard for evaluating various template-based image segmentation and registration algorithms. Traditional deformable simulation methods, such as the use of analytic deformation fields or the displacement of landmarks followed by some form of interpolation, are often unable to construct rich (complex) and/or realistic deformations of anatomical organs. This paper presents new methods aiming to automatically simulate realistic inter- and in...

  3. Kidney deformation and intraprocedural registration: a study of elements of image-guided kidney surgery.

    Science.gov (United States)

    Altamar, Hernan O; Ong, Rowena E; Glisson, Courtenay L; Viprakasit, Davis P; Miga, Michael I; Herrell, Stanley Duke; Galloway, Robert L

    2011-03-01

    Central to any image-guided surgical procedure is the alignment of image and physical coordinate spaces, or registration. We explored the task of registration in the kidney through in vivo and ex vivo porcine animal models and a human study of minimally invasive kidney surgery. A set of (n = 6) ex vivo porcine kidney models was utilized to study the effect of perfusion and loss of turgor caused by incision. Computed tomography (CT) and laser range scanner localizations of the porcine kidneys were performed before and after renal vessel clamping and after capsular incision. The da Vinci robotic surgery system was used for kidney surface acquisition and registration during robot-assisted laparoscopic partial nephrectomy. The surgeon acquired the physical surface data points with a tracked robotic instrument. These data points were aligned to preoperative CT for surface-based registrations. In addition, two biomechanical elastic computer models (isotropic and anisotropic) were constructed to simulate deformations in one of the kidneys to assess predictive capabilities. The mean displacement at the surface fiducials (glass beads) in six porcine kidneys was 4.4 ± 2.1 mm (range 3.4-6.7 mm), with a maximum displacement range of 6.1 to 11.2 mm. Surface-based registrations using the da Vinci robotic instrument in robot-assisted laparoscopic partial nephrectomy yielded mean and standard deviation closest point distances of 1.4 and 1.1 mm. With respect to computer model predictive capability, the target registration error was on average 6.7 mm without using the model and 3.2 mm with using the model. The maximum target error reduced from 11.4 to 6.2 mm. The anisotropic biomechanical model yielded better performance but was not statistically better. An initial point-based alignment followed by an iterative closest point registration is a feasible method of registering preoperative image (CT) space to intraoperative physical (robot) space. Although rigid registration provides

  4. Computer assisted determination of acetabular cup orientation using 2D-3D image registration

    International Nuclear Information System (INIS)

    Zheng, Guoyan; Zhang, Xuan

    2010-01-01

    2D-3D image-based registration methods have been developed to measure acetabular cup orientation after total hip arthroplasty (THA). These methods require registration of both the prosthesis and the CT images to 2D radiographs and compute implant position with respect to a reference. The application of these methods is limited in clinical practice due to two limitations: (1) the requirement of a computer-aided design (CAD) model of the prosthesis, which may be unavailable due to the proprietary concerns of the manufacturer, and (2) the requirement of either multiple radiographs or radiograph-specific calibration, usually unavailable for retrospective studies. In this paper, we propose a new method to address these limitations. A new formulation for determination of post-operative cup orientation, which couples a radiographic measurement with 2D-3D image matching, was developed. In our formulation, the radiographic measurement can be obtained with known methods so that the challenge lies in the 2D-3D image matching. To solve this problem, a hybrid 2D-3D registration scheme combining a landmark-to-ray 2D-3D alignment with a robust intensity-based 2D-3D registration was used. The hybrid 2D-3D registration scheme allows computing both the post-operative cup orientation with respect to an anatomical reference and the pelvic tilt and rotation with respect to the X-ray imaging table/plate. The method was validated using 2D adult cadaver hips. Using the hybrid 2D-3D registration scheme, our method showed a mean accuracy of 1.0 ± 0.7 (range from 0.1 to 2.0 ) for inclination and 1.7 ± 1.2 (range from 0.0 to 3.9 ) for anteversion, taking the measurements from post-operative CT images as ground truths. Our new solution formulation and the hybrid 2D-3D registration scheme facilitate estimation of post-operative cup orientation and measurement of pelvic tilt and rotation. (orig.)

  5. Registration and analysis for images couple : application to mammograms

    OpenAIRE

    Boucher, Arnaud

    2014-01-01

    Advisor: Nicole Vincent. Date and location of PhD thesis defense: 10 January 2013, University of Paris Descartes In this thesis, the problem addressed is the development of a computer-aided diagnosis system (CAD) based on conjoint analysis of several images, and therefore on the comparison of these medical images. The particularity of our approach is to look for evolutions or aberrant new tissues in a given set, rather than attempting to characterize, with a strong a priori, the type of ti...

  6. Detection of patient setup errors with a portal image - DRR registration software application.

    Science.gov (United States)

    Sutherland, Kenneth; Ishikawa, Masayori; Bengua, Gerard; Ito, Yoichi M; Miyamoto, Yoshiko; Shirato, Hiroki

    2011-02-18

    The purpose of this study was to evaluate a custom portal image - digitally reconstructed radiograph (DRR) registration software application. The software works by transforming the portal image into the coordinate space of the DRR image using three control points placed on each image by the user, and displaying the fused image. In order to test statistically that the software actually improves setup error estimation, an intra- and interobserver phantom study was performed. Portal images of anthropomorphic thoracic and pelvis phantoms with virtually placed irradiation fields at known setup errors were prepared. A group of five doctors was first asked to estimate the setup errors by examining the portal and DRR image side-by-side, not using the software. A second group of four technicians then estimated the same set of images using the registration software. These two groups of human subjects were then compared with an auto-registration feature of the software, which is based on the mutual information between the portal and DRR images. For the thoracic case, the average distance between the actual setup error and the estimated error was 4.3 ± 3.0 mm for doctors using the side-by-side method, 2.1 ± 2.4 mm for technicians using the registration method, and 0.8 ± 0.4mm for the automatic algorithm. For the pelvis case, the average distance between the actual setup error and estimated error was 2.0 ± 0.5 mm for the doctors using the side-by-side method, 2.5 ± 0.4 mm for technicians using the registration method, and 2.0 ± 1.0 mm for the automatic algorithm. The ability of humans to estimate offset values improved statistically using our software for the chest phantom that we tested. Setup error estimation was further improved using our automatic error estimation algorithm. Estimations were not statistically different for the pelvis case. Consistency improved using the software for both the chest and pelvis phantoms. We also tested the automatic algorithm with a

  7. Clinical assessment of SPECT/CT co-registration image fusion

    International Nuclear Information System (INIS)

    Zhou Wen; Luan Zhaosheng; Peng Yong

    2004-01-01

    Objective: Study the methodology of the SPECT/CT co-registration image fusion, and Assessment the Clinical application value. Method: 172 patients who underwent SPECT/CT image fusion during 2001-2003 were studied, 119 men, 53 women. 51 patients underwent 18FDG image +CT, 26 patients underwent 99m Tc-RBC Liver pool image +CT, 43 patients underwent 99mTc-MDP Bone image +CT, 18 patients underwent 99m Tc-MAA Lung perfusion image +CT. The machine is Millium VG SPECT of GE Company. All patients have been taken three steps image: X-ray survey, X-ray transmission and nuclear emission image (Including planer imaging, SPECT or 18 F-FDG of dual head camera) without changing the position of the patients. We reconstruct the emission image with X-ray map and do reconstruction, 18FDG with COSEM and 99mTc with OSEM. Then combine the transmission image and the reconstructed emission image. We use different process parameters in deferent image methods. The accurate rate of SPECT/CT image fusion were statistics, and compare their accurate with that of single nuclear emission image. Results: The nuclear image which have been reconstructed by X-ray attenuation and OSEM are apparent better than pre-reconstructed. The post-reconstructed emission images have no scatter lines around the organs. The outline between different issues is more clear than before. The validity of All post-reconstructed images is better than pre-reconstructed. SPECT/CT image fusion make localization have worthy bases. 138 patients, the accuracy of SPECT/CT image fusion is 91.3% (126/138), whereas 60(88.2%) were found through SPECT/CT image fusion, There are significant difference between them(P 99m Tc- RBC-SPECT +CT image fusion, but 21 of them were inspected by emission image. In BONE 99m Tc -MDP-SPECT +CT image fusion, 4 patients' removed bone(1-6 months after surgery) and their relay with normal bone had activity, their morphologic and density in CT were different from normal bones. 11 of 20 patients who could

  8. Automatic registration of imaging mass spectrometry data to the Allen Brain Atlas transcriptome

    Science.gov (United States)

    Abdelmoula, Walid M.; Carreira, Ricardo J.; Shyti, Reinald; Balluff, Benjamin; Tolner, Else; van den Maagdenberg, Arn M. J. M.; Lelieveldt, B. P. F.; McDonnell, Liam; Dijkstra, Jouke

    2014-03-01

    Imaging Mass Spectrometry (IMS) is an emerging molecular imaging technology that provides spatially resolved information on biomolecular structures; each image pixel effectively represents a molecular mass spectrum. By combining the histological images and IMS-images, neuroanatomical structures can be distinguished based on their biomolecular features as opposed to morphological features. The combination of IMS data with spatially resolved gene expression maps of the mouse brain, as provided by the Allen Mouse Brain atlas, would enable comparative studies of spatial metabolic and gene expression patterns in life-sciences research and biomarker discovery. As such, it would be highly desirable to spatially register IMS slices to the Allen Brain Atlas (ABA). In this paper, we propose a multi-step automatic registration pipeline to register ABA histology to IMS- images. Key novelty of the method is the selection of the best reference section from the ABA, based on pre-processed histology sections. First, we extracted a hippocampus-specific geometrical feature from the given experimental histological section to initially localize it among the ABA sections. Then, feature-based linear registration is applied to the initially localized section and its two neighbors in the ABA to select the most similar reference section. A non-rigid registration yields a one-to-one mapping of the experimental IMS slice to the ABA. The pipeline was applied on 6 coronal sections from two mouse brains, showing high anatomical correspondence, demonstrating the feasibility of complementing biomolecule distributions from individual mice with the genome-wide ABA transcriptome.

  9. Technical Note: DIRART- A software suite for deformable image registration and adaptive radiotherapy research

    International Nuclear Information System (INIS)

    Yang Deshan; Brame, Scott; El Naqa, Issam; Aditya, Apte; Wu Yu; Murty Goddu, S.; Mutic, Sasa; Deasy, Joseph O.; Low, Daniel A.

    2011-01-01

    Purpose: Recent years have witnessed tremendous progress in image guide radiotherapy technology and a growing interest in the possibilities for adapting treatment planning and delivery over the course of treatment. One obstacle faced by the research community has been the lack of a comprehensive open-source software toolkit dedicated for adaptive radiotherapy (ART). To address this need, the authors have developed a software suite called the Deformable Image Registration and Adaptive Radiotherapy Toolkit (DIRART). Methods: DIRART is an open-source toolkit developed in MATLAB. It is designed in an object-oriented style with focus on user-friendliness, features, and flexibility. It contains four classes of DIR algorithms, including the newer inverse consistency algorithms to provide consistent displacement vector field in both directions. It also contains common ART functions, an integrated graphical user interface, a variety of visualization and image-processing features, dose metric analysis functions, and interface routines. These interface routines make DIRART a powerful complement to the Computational Environment for Radiotherapy Research (CERR) and popular image-processing toolkits such as ITK. Results: DIRART provides a set of image processing/registration algorithms and postprocessing functions to facilitate the development and testing of DIR algorithms. It also offers a good amount of options for DIR results visualization, evaluation, and validation. Conclusions: By exchanging data with treatment planning systems via DICOM-RT files and CERR, and by bringing image registration algorithms closer to radiotherapy applications, DIRART is potentially a convenient and flexible platform that may facilitate ART and DIR research.

  10. Medical Image Registration by means of a Bio-Inspired Optimization Strategy

    Directory of Open Access Journals (Sweden)

    Hariton Costin

    2012-07-01

    Full Text Available Medical imaging mainly treats and processes missing, ambiguous, complementary, redundant and distorted data. Biomedical image registration is the process of geometric overlaying or alignment of two or more 2D/3D images of the same scene, taken at different time slots, from different angles, and/or by different acquisition systems. In medical practice, it is becoming increasingly important in diagnosis, treatment planning, functional studies, computer-guided therapies, and in biomedical research. Technically, image registration implies a complex optimization of different parameters, performed at local or/and global levels. Local optimization methods frequently fail because functions of the involved metrics with respect to transformation parameters are generally nonconvex and irregular. Therefore, global methods are often required, at least at the beginning of the procedure. In this paper, a new evolutionary and bio-inspired approach -- bacterial foraging optimization -- is adapted for single-slice to 3-D PET and CT multimodal image registration. Preliminary results of optimizing the normalized mutual information similarity metric validated the efficacy of the proposed method by using a freely available medical image database.

  11. Large deformation diffeomorphic metric mapping registration of reconstructed 3D histological section images and in vivo MR images

    Directory of Open Access Journals (Sweden)

    Can Ceritoglu

    2010-05-01

    Full Text Available Our current understanding of neuroanatomical abnormalities in neuropsychiatric diseases is based largely on magnetic resonance imaging (MRI and post mortem histological analyses of the brain. Further advances in elucidating altered brain structure in these human conditions might emerge from combining MRI and histological methods. We propose a multistage method for registering 3D volumes reconstructed from histological sections to corresponding in vivo MRI volumes from the same subjects: (1 manual segmentation of white matter (WM, gray matter (GM and cerebrospinal fluid (CSF compartments in histological sections, (2 alignment of consecutive histological sections using 2D rigid transformation to construct a 3D histological image volume from the aligned sections, (3 registration of reconstructed 3D histological volumes to the corresponding 3D MRI volumes using 3D affine transformation, (4 intensity normalization of images via histogram matching and (5 registration of the volumes via intensity based Large Deformation Diffeomorphic Metric (LDDMM image matching algorithm. Here we demonstrate the utility of our method in the transfer of cytoarchitectonic information from histological sections to identify regions of interest in MRI scans of nine adult macaque brains for morphometric analyses. LDDMM improved the accuracy of the registration via decreased distances between GM/CSF surfaces after LDDMM (0.39±0.13 mm compared to distances after affine registration (0.76±0.41 mm. Similarly, WM/GM distances decreased to 0.28±0.16 mm after LDDMM compared to 0.54±0.39 mm after affine registration. The multistage registration method may find broad application for mapping histologically based information, e.g., receptor distributions, gene expression, onto MRI volumes.

  12. Fast Geodesic Active Fields for Image Registration Based on Splitting and Augmented Lagrangian Approaches.

    Science.gov (United States)

    Zosso, Dominique; Bresson, Xavier; Thiran, Jean-Philippe

    2014-02-01

    In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.

  13. Multi-modal image registration: matching MRI with histology

    NARCIS (Netherlands)

    Alić, L.; Haeck, J.C.; Klein, S.; Bol, K.; Tiel, S.T. van; Wielopolski, P.A.; Bijster, M.; Niessen, W.J.; Bernsen, M.; Veenland, J.F.; Jong, M. de

    2010-01-01

    Spatial correspondence between histology and multi sequence MRI can provide information about the capabilities of non-invasive imaging to characterize cancerous tissue. However, shrinkage and deformation occurring during the excision of the tumor and the histological processing complicate the co

  14. MO-F-BRA-04: Voxel-Based Statistical Analysis of Deformable Image Registration Error via a Finite Element Method.

    Science.gov (United States)

    Li, S; Lu, M; Kim, J; Glide-Hurst, C; Chetty, I; Zhong, H

    2012-06-01

    Purpose Clinical implementation of adaptive treatment planning is limited by the lack of quantitative tools to assess deformable image registration errors (R-ERR). The purpose of this study was to develop a method, using finite element modeling (FEM), to estimate registration errors based on mechanical changes resulting from them. Methods An experimental platform to quantify the correlation between registration errors and their mechanical consequences was developed as follows: diaphragm deformation was simulated on the CT images in patients with lung cancer using a finite element method (FEM). The simulated displacement vector fields (F-DVF) were used to warp each CT image to generate a FEM image. B-Spline based (Elastix) registrations were performed from reference to FEM images to generate a registration DVF (R-DVF). The F- DVF was subtracted from R-DVF. The magnitude of the difference vector was defined as the registration error, which is a consequence of mechanically unbalanced energy (UE), computed using 'in-house-developed' FEM software. A nonlinear regression model was used based on imaging voxel data and the analysis considered clustered voxel data within images. Results A regression model analysis showed that UE was significantly correlated with registration error, DVF and the product of registration error and DVF respectively with R̂2=0.73 (R=0.854). The association was verified independently using 40 tracked landmarks. A linear function between the means of UE values and R- DVF*R-ERR has been established. The mean registration error (N=8) was 0.9 mm. 85.4% of voxels fit this model within one standard deviation. Conclusions An encouraging relationship between UE and registration error has been found. These experimental results suggest the feasibility of UE as a valuable tool for evaluating registration errors, thus supporting 4D and adaptive radiotherapy. The research was supported by NIH/NCI R01CA140341. © 2012 American Association of Physicists in

  15. Validation of the deformable image registration system elastix in the head and neck region

    DEFF Research Database (Denmark)

    Zukauskaite, R.; Brink, C.; Hansen, C. R.

    2015-01-01

    evaluates the accuracy of the open source deformable registration tool elastix when used for registration of different organ structures on planning CT and relapse CT scans of head and neck patients. Materials and Methods: Twenty patients treated with definitive IMRT for oral cavity, oropharynx...... cord, mandible, right/left parotid and submandibular glands, thyroid gland and vertebrae C3-5) on planning CT (pCT), relapse CT (rCT) and re-delineated again on the planning CT (reCT). The contouring on the relapse CT was mapped to the planning CT using elastix (http://elastix.isi.uu.nl/). Spatial...... delineation. Significant correlations within single organs were not found. Conclusions: Deformable registration of head and neck CT images using elastix resulted in a combined delineation and deformation uncertainty of approximately twice the uncertainty related to the manual delineation performed on one CT...

  16. Automatic image fusion of real-time ultrasound with computed tomography images: a prospective comparison between two auto-registration methods.

    Science.gov (United States)

    Cha, Dong Ik; Lee, Min Woo; Kim, Ah Yeong; Kang, Tae Wook; Oh, Young-Taek; Jeong, Ja-Yeon; Chang, Jung-Woo; Ryu, Jiwon; Lee, Kyong Joon; Kim, Jaeil; Bang, Won-Chul; Shin, Dong Kuk; Choi, Sung Jin; Koh, Dalkwon; Seo, Bong Koo; Kim, Kyunga

    2017-11-01

    Background A major drawback of conventional manual image fusion is that the process may be complex, especially for less-experienced operators. Recently, two automatic image fusion techniques called Positioning and Sweeping auto-registration have been developed. Purpose To compare the accuracy and required time for image fusion of real-time ultrasonography (US) and computed tomography (CT) images between Positioning and Sweeping auto-registration. Material and Methods Eighteen consecutive patients referred for planning US for radiofrequency ablation or biopsy for focal hepatic lesions were enrolled. Image fusion using both auto-registration methods was performed for each patient. Registration error, time required for image fusion, and number of point locks used were compared using the Wilcoxon signed rank test. Results Image fusion was successful in all patients. Positioning auto-registration was significantly faster than Sweeping auto-registration for both initial (median, 11 s [range, 3-16 s] vs. 32 s [range, 21-38 s]; P auto-registration was significantly higher for initial image fusion (median, 38.8 mm [range, 16.0-84.6 mm] vs. 18.2 mm [6.7-73.4 mm]; P = 0.029), but not for complete image fusion (median, 4.75 mm [range, 1.7-9.9 mm] vs. 5.8 mm [range, 2.0-13.0 mm]; P = 0.338]. Number of point locks required to refine the initially fused images was significantly higher with Positioning auto-registration (median, 2 [range, 2-3] vs. 1 [range, 1-2]; P = 0.012]. Conclusion Positioning auto-registration offers faster image fusion between real-time US and pre-procedural CT images than Sweeping auto-registration. The final registration error is similar between the two methods.

  17. Interactive, multi-modality image registrations for combined MRI/MRSI-planned HDR prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Galen Reed

    2011-03-01

    Full Text Available Purpose: This study presents the steps and criteria involved in the series of image registrations used clinically during the planning and dose delivery of focal high dose-rate (HDR brachytherapy of the prostate. Material and methods: Three imaging modalities – Magnetic Resonance Imaging (MRI, Magnetic Resonance Spectroscopic Imaging (MRSI, and Computed Tomography (CT – were used at different steps during the process. MRSI is used for identification of dominant intraprosatic lesions (DIL. A series of rigid and nonrigid transformations were applied to the data to correct for endorectal-coil-induced deformations and for alignment with the planning CT. Mutual information was calculated as a morphing metric. An inverse planning optimization algorithm was applied to boost dose to the DIL while providing protection to the urethra, penile bulb, rectum, and bladder. Six prostate cancer patients were treated using this protocol. Results: The morphing algorithm successfully modeled the probe-induced prostatic distortion. Mutual information calculated between the morphed images and images acquired without the endorectal probe showed a significant (p = 0.0071 increase to that calculated between the unmorphed images and images acquired without the endorectal probe. Both mutual information and visual inspection serve as effective diagnostics of image morphing. The entire procedure adds less than thirty minutes to the treatment planning. Conclusion: This work demonstrates the utility of image transformations and registrations to HDR brachytherapy of prostate cancer.

  18. SLO-infrared imaging of the macula and its correlation with functional loss and structural changes in patients with Stargardt disease

    Science.gov (United States)

    Anastasakis, Anastasios; Fishman, Gerald A; Lindeman, Martin; Genead, Mohamed A; Zhou, Wensheng

    2010-01-01

    Purpose To correlate the degree of functional loss with structural changes in patients with Stargardt disease. Methods Eighteen eyes of 10 Stargardt patients were studied. Scanning laser ophthalmoscope (SLO) infrared images were compared to corresponding spectral domain optical coherence tomography (SD-OCT) scans. Additionally, SLO microperimetry was performed and results were superimposed on SLO infrared images and in selected cases on fundus autofluorescence (FAF) images. Results Seventeen of 18 eyes showed a distinct hypo-reflective foveal and/or perifoveal area with distinct borders on SLO-infrared images which was less evident on funduscopy and incompletely depicted in FAF images. This hypo-reflective zone corresponded to areas of significantly elevated psychophysical thresholds on microperimetry testing, in addition to thinning of the retinal pigment epithelium (RPE), disorganization or loss of the photoreceptor cell inner-outer segment (IS-OS) junction and external limiting membrane (ELM) on SD-OCT. Conclusion SLO-infrared fundus images are useful for depicting retinal structural changes in Stargardt patients. An SD-OCT/SLO microperimetry device allows for a direct correlation of structural abnormalities with functional defects that will likely be applicable for the determination of retinal areas for potential improvement of retinal function in these patients during future clinical trials and for the monitoring of the diseases' natural history. PMID:21293320

  19. Infrared scanning laser ophthalmoscope imaging of the macula and its correlation with functional loss and structural changes in patients with stargardt disease.

    Science.gov (United States)

    Anastasakis, Anastasios; Fishman, Gerald A; Lindeman, Martin; Genead, Mohamed A; Zhou, Wensheng

    2011-05-01

    To correlate the degree of functional loss with structural changes in patients with Stargardt disease. Eighteen eyes of 10 patients with Stargardt disease were studied. Scanning laser ophthalmoscope infrared images were compared with corresponding spectral-domain optical coherence tomography scans. Additionally, scanning laser ophthalmoscope microperimetry was performed, and results were superimposed on scanning laser ophthalmoscope infrared images and in selected cases on fundus autofluorescence images. Seventeen of 18 eyes showed a distinct hyporeflective foveal and/or perifoveal area with distinct borders on scanning laser ophthalmoscope infrared images, which was less evident on funduscopy and incompletely depicted in fundus autofluorescence images. This hyporeflective zone corresponded to areas of significantly elevated psychophysical thresholds on microperimetry testing, in addition to thinning of the retinal pigment epithelium and disorganization or loss of the photoreceptor cell inner segment-outer segment junction and external-limiting membrane on spectral-domain optical coherence tomography. Scanning laser ophthalmoscope infrared fundus images are useful for depicting retinal structural changes in patients with Stargardt disease. A spectral-domain optical coherence tomography/scanning laser ophthalmoscope microperimetry device allows for a direct correlation of structural abnormalities with functional defects that will likely be applicable for the determination of retinal areas for potential improvement of retinal function in these patients during future clinical trials and for the monitoring of the diseases' natural history.

  20. Robust bladder image registration by redefining data-term in total variational approach

    Science.gov (United States)

    Ali, Sharib; Daul, Christian; Galbrun, Ernest; Amouroux, Marine; Guillemin, François; Blondel, Walter

    2015-03-01

    Cystoscopy is the standard procedure for clinical diagnosis of bladder cancer diagnosis. Bladder carcinoma in situ are often multifocal and spread over large areas. In vivo, localization and follow-up of these tumors and their nearby sites is necessary. But, due to the small field of view (FOV) of the cystoscopic video images, urologists cannot easily interpret the scene. Bladder mosaicing using image registration facilitates this interpretation through the visualization of entire lesions with respect to anatomical landmarks. The reference white light (WL) modality is affected by a strong variability in terms of texture, illumination conditions and motion blur. Moreover, in the complementary fluorescence light (FL) modality, the texture is visually different from that of the WL. Existing algorithms were developed for a particular modality and scene conditions. This paper proposes a more general on fly image registration approach for dealing with these variability issues in cystoscopy. To do so, we present a novel, robust and accurate image registration scheme by redefining the data-term of the classical total variational (TV) approach. Quantitative results on realistic bladder phantom images are used for verifying accuracy and robustness of the proposed model. This method is also qualitatively assessed with patient data mosaicing for both WL and FL modalities.

  1. Quantitative evaluation of an image registration method for a NIPAM gel dosimeter

    International Nuclear Information System (INIS)

    Chang, Yuan-Jen; Yao, Chun-Hsu; Wu, Jay; Hsieh, Bor-Tsung; Tsang, Yuk-Wah; Chen, Chin-Hsing

    2015-01-01

    One of the problems in obtaining quality results is image registration when a gel dosimeter is used in conjunction with optical computed tomography (CT). This study proposes a passive alignment mechanism to obtain a precisely measured dose map. A holder plate with two pin–hole pairs is placed on the gel container cap. These two pin–hole pairs attach the gel container to the vertical shaft and can be precisely aligned with the rotation center of the vertical shaft at any time. Accordingly, a better reconstructed image quality is obtained. After obtaining a precisely measured dose map, the scale invariant feature transform (SIFT)-flow algorithm is utilized as an image registration method to align the treatment plan software (TPS) image with the measured dose map image. The results show that the gamma pass rate for the single-field irradiation increases from 83.39% to 94.03% when the algorithm is applied. And the gamma pass rate for the five-field irradiation treatment plan increases from 87.36% to 94.34%. The translation, scaling, and rotation occurring in the dose map image constructed using an optical CT scanner are also aligned with those in the TPS image using the SIFT-flow algorithm. Accordingly, improved gamma comparison results and a higher gamma pass rate are obtained. - Highlights: • A passive alignment method for obtaining a precisely measured dose map is developed. • The SIFT-flow algorithm is adopted as an image registration method for the gel dosimeter. • The SIFT-flow algorithm increases the gamma pass rate from 83.39% to 94.03% for the single-field irradiation. • The SIFT-flow algorithm increases the gamma pass rate from 87.36% to 94.34% for the five-field irradiation. • The translation, scaling, and rotation in the measured dose map image are aligned with those in the TPS image using the SIFT-flow algorithm

  2. Quantitative evaluation of an image registration method for a NIPAM gel dosimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan-Jen [Department of Management Information Systems, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City, Taiwan (R.O.C.) (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City, Taiwan (R.O.C.) (China); Yao, Chun-Hsu [School of Chinese Medicine, China Medical University, Taichung, Taiwan (R.O.C.) (China); Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan (R.O.C.) (China); Department of Biomedical Informatics, Asia University, Taichung, Taiwan (R.O.C.) (China); Wu, Jay [Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan (R.O.C.) (China); Hsieh, Bor-Tsung [Department of Biomedical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan (R.O.C.) (China); Tsang, Yuk-Wah [Department of Radiation Oncology, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, Taiwan (R.O.C.) (China); Chen, Chin-Hsing [Department of Management Information Systems, Central Taiwan University of Science and Technology, No. 666, Buzih Rd., Beitun District, Taichung City, Taiwan (R.O.C.) (China)

    2015-06-01

    One of the problems in obtaining quality results is image registration when a gel dosimeter is used in conjunction with optical computed tomography (CT). This study proposes a passive alignment mechanism to obtain a precisely measured dose map. A holder plate with two pin–hole pairs is placed on the gel container cap. These two pin–hole pairs attach the gel container to the vertical shaft and can be precisely aligned with the rotation center of the vertical shaft at any time. Accordingly, a better reconstructed image quality is obtained. After obtaining a precisely measured dose map, the scale invariant feature transform (SIFT)-flow algorithm is utilized as an image registration method to align the treatment plan software (TPS) image with the measured dose map image. The results show that the gamma pass rate for the single-field irradiation increases from 83.39% to 94.03% when the algorithm is applied. And the gamma pass rate for the five-field irradiation treatment plan increases from 87.36% to 94.34%. The translation, scaling, and rotation occurring in the dose map image constructed using an optical CT scanner are also aligned with those in the TPS image using the SIFT-flow algorithm. Accordingly, improved gamma comparison results and a higher gamma pass rate are obtained. - Highlights: • A passive alignment method for obtaining a precisely measured dose map is developed. • The SIFT-flow algorithm is adopted as an image registration method for the gel dosimeter. • The SIFT-flow algorithm increases the gamma pass rate from 83.39% to 94.03% for the single-field irradiation. • The SIFT-flow algorithm increases the gamma pass rate from 87.36% to 94.34% for the five-field irradiation. • The translation, scaling, and rotation in the measured dose map image are aligned with those in the TPS image using the SIFT-flow algorithm.

  3. Accurate and robust brain image alignment using boundary-based registration.

    Science.gov (United States)

    Greve, Douglas N; Fischl, Bruce

    2009-10-15

    The fine spatial scales of the structures in the human brain represent an enormous challenge to the successful integration of information from different images for both within- and between-subject analysis. While many algorithms to register image pairs from the same subject exist, visual inspection shows that their accuracy and robustness to be suspect, particularly when there are strong intensity gradients and/or only part of the brain is imaged. This paper introduces a new algorithm called Boundary-Based Registration, or BBR. The novelty of BBR is that it treats the two images very differently. The reference image must be of sufficient resolution and quality to extract surfaces that separate tissue types. The input image is then aligned to the reference by maximizing the intensity gradient across tissue boundaries. Several lower quality images can be aligned through their alignment with the reference. Visual inspection and fMRI results show that BBR is more accurate than correlation ratio or normalized mutual information and is considerably more robust to even strong intensity inhomogeneities. BBR also excels at aligning partial-brain images to whole-brain images, a domain in which existing registration algorithms frequently fail. Even in the limit of registering a single slice, we show the BBR results to be robust and accurate.

  4. Line-Based Registration of Panoramic Images and LiDAR Point Clouds for Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Tingting Cui

    2016-12-01

    Full Text Available For multi-sensor integrated systems, such as the mobile mapping system (MMS, data fusion at sensor-level, i.e., the 2D-3D registration between an optical camera and LiDAR, is a prerequisite for higher level fusion and further applications. This paper proposes a line-based registration method for panoramic images and a LiDAR point cloud collected by a MMS. We first introduce the system configuration and specification, including the coordinate systems of the MMS, the 3D LiDAR scanners, and the two panoramic camera models. We then establish the line-based transformation model for the panoramic camera. Finally, the proposed registration method is evaluated for two types of camera models by visual inspection and quantitative comparison. The results demonstrate that the line-based registration method can significantly improve the alignment of the panoramic image and the LiDAR datasets under either the ideal spherical or the rigorous panoramic camera model, with the latter being more reliable.

  5. A complete software application for automatic registration of x-ray mammography and magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Solves-Llorens, J. A.; Rupérez, M. J., E-mail: mjruperez@labhuman.i3bh.es; Monserrat, C. [LabHuman, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Feliu, E.; García, M. [Hospital Clínica Benidorm, Avda. Alfonso Puchades, 8, 03501 Benidorm (Alicante) (Spain); Lloret, M. [Hospital Universitari y Politècnic La Fe, Bulevar Sur, 46026 Valencia (Spain)

    2014-08-15

    Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the

  6. A complete software application for automatic registration of x-ray mammography and magnetic resonance images

    International Nuclear Information System (INIS)

    Solves-Llorens, J. A.; Rupérez, M. J.; Monserrat, C.; Feliu, E.; García, M.; Lloret, M.

    2014-01-01

    Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the

  7. Mosaicing of single plane illumination microscopy images using groupwise registration and fast content-based image fusion

    Science.gov (United States)

    Preibisch, Stephan; Rohlfing, Torsten; Hasak, Michael P.; Tomancak, Pavel

    2008-03-01

    Single Plane Illumination Microscopy (SPIM; Huisken et al., Nature 305(5686):1007-1009, 2004) is an emerging microscopic technique that enables live imaging of large biological specimens in their entirety. By imaging the living biological sample from multiple angles SPIM has the potential to achieve isotropic resolution throughout even relatively large biological specimens. For every angle, however, only a relatively shallow section of the specimen is imaged with high resolution, whereas deeper regions appear increasingly blurred. In order to produce a single, uniformly high resolution image, we propose here an image mosaicing algorithm that combines state of the art groupwise image registration for alignment with content-based image fusion to prevent degrading of the fused image due to regional blurring of the input images. For the registration stage, we introduce an application-specific groupwise transformation model that incorporates per-image as well as groupwise transformation parameters. We also propose a new fusion algorithm based on Gaussian filters, which is substantially faster than fusion based on local image entropy. We demonstrate the performance of our mosaicing method on data acquired from living embryos of the fruit fly, Drosophila, using four and eight angle acquisitions.

  8. SU-E-J-209: Verification of 3D Surface Registration Between Stereograms and CT Images

    Energy Technology Data Exchange (ETDEWEB)

    Han, T; Gifford, K [UT MD Anderson Cancer Center, Houston, TX (United States); Smith, B [MD Anderson Cancer Center, Houston, TX (United States); Salehpour, M [M.D. Anderson Cancer Center, Houston, TX (United States)

    2014-06-01

    Purpose: Stereography can provide a visualization of the skin surface for radiation therapy patients. The aim of this study was to verify the registration algorithm in a commercial image analysis software, 3dMDVultus, for the fusion of stereograms and CT images. Methods: CT and stereographic scans were acquired of a head phantom and a deformable phantom. CT images were imported in 3dMDVultus and the surface contours were generated by threshold segmentation. Stereograms were reconstructed in 3dMDVultus. The resulting surfaces were registered with Vultus algorithm and then exported to in-house registration software and compared with four algorithms: rigid, affine, non-rigid iterative closest point (ICP) and b-spline algorithm. RMS (root-mean-square residuals of the surface point distances) error between the registered CT and stereogram surfaces was calculated and analyzed. Results: For the head phantom, the maximum RMS error between registered CT surfaces to stereogram was 6.6 mm for Vultus algorithm, whereas the mean RMS error was 0.7 mm. For the deformable phantom, the maximum RMS error was 16.2 mm for Vultus algorithm, whereas the mean RMS error was 4.4 mm. Non-rigid ICP demonstrated the best registration accuracy, as the mean of RMS errors were both within 1 mm. Conclusion: The accuracy of registration algorithm in 3dMDVultus was verified and exceeded RMS of 2 mm for deformable cases. Non-rigid ICP and b-spline algorithms improve the registration accuracy for both phantoms, especially in deformable one. For those patients whose body habitus deforms during radiation therapy, more advanced nonrigid algorithms need to be used.

  9. A reference dataset for deformable image registration spatial accuracy evaluation using the COPDgene study archive

    International Nuclear Information System (INIS)

    Castillo, Richard; Castillo, Edward; Wood, Abbie M; Ludwig, Michelle S; Guerrero, Thomas; Fuentes, David; Ahmad, Moiz

    2013-01-01

    Landmark point-pairs provide a strategy to assess deformable image registration (DIR) accuracy in terms of the spatial registration of the underlying anatomy depicted in medical images. In this study, we propose to augment a publicly available database (www.dir-lab.com) of medical images with large sets of manually identified anatomic feature pairs between breath-hold computed tomography (BH-CT) images for DIR spatial accuracy evaluation. Ten BH-CT image pairs were randomly selected from the COPDgene study cases. Each patient had received CT imaging of the entire thorax in the supine position at one-fourth dose normal expiration and maximum effort full dose inspiration. Using dedicated in-house software, an imaging expert manually identified large sets of anatomic feature pairs between images. Estimates of inter- and intra-observer spatial variation in feature localization were determined by repeat measurements of multiple observers over subsets of randomly selected features. 7298 anatomic landmark features were manually paired between the 10 sets of images. Quantity of feature pairs per case ranged from 447 to 1172. Average 3D Euclidean landmark displacements varied substantially among cases, ranging from 12.29 (SD: 6.39) to 30.90 (SD: 14.05) mm. Repeat registration of uniformly sampled subsets of 150 landmarks for each case yielded estimates of observer localization error, which ranged in average from 0.58 (SD: 0.87) to 1.06 (SD: 2.38) mm for each case. The additions to the online web database (www.dir-lab.com) described in this work will broaden the applicability of the reference data, providing a freely available common dataset for targeted critical evaluation of DIR spatial accuracy performance in multiple clinical settings. Estimates of observer variance in feature localization suggest consistent spatial accuracy for all observers across both four-dimensional CT and COPDgene patient cohorts. (paper)

  10. Graphics Processing Unit-Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations.

    Science.gov (United States)

    Tokuda, Junichi; Plishker, William; Torabi, Meysam; Olubiyi, Olutayo I; Zaki, George; Tatli, Servet; Silverman, Stuart G; Shekher, Raj; Hata, Nobuhiko

    2015-06-01

    Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P processing time. The GPU-accelerated volume subdivision technique may enable the implementation of nonrigid registration into routine clinical practice. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  11. a Robust Registration Algorithm for Point Clouds from Uav Images for Change Detection

    Science.gov (United States)

    Al-Rawabdeh, A.; Al-Gurrani, H.; Al-Durgham, K.; Detchev, I.; He, F.; El-Sheimy, N.; Habib, A.

    2016-06-01

    Landslides are among the major threats to urban landscape and manmade infrastructure. They often cause economic losses, property damages, and loss of lives. Temporal monitoring data of landslides from different epochs empowers the evaluation of landslide progression. Alignment of overlapping surfaces from two or more epochs is crucial for the proper analysis of landslide dynamics. The traditional methods for point-cloud-based landslide monitoring rely on using a variation of the Iterative Closest Point (ICP) registration procedure to align any reconstructed surfaces from different epochs to a common reference frame. However, sometimes the ICP-based registration can fail or may not provide sufficient accuracy. For example, point clouds from different epochs might fit to local minima due to lack of geometrical variability within the data. Also, manual interaction is required to exclude any non-stable areas from the registration process. In this paper, a robust image-based registration method is introduced for the simultaneous evaluation of all registration parameters. This includes the Interior Orientation Parameters (IOPs) of the camera and the Exterior Orientation Parameters (EOPs) of the involved images from all available observation epochs via a bundle block adjustment with self-calibration. Next, a semi-global dense matching technique is implemented to generate dense 3D point clouds for each epoch using the images captured in a particular epoch separately. The normal distances between any two consecutive point clouds can then be readily computed, because the point clouds are already effectively co-registered. A low-cost DJI Phantom II Unmanned Aerial Vehicle (UAV) was customised and used in this research for temporal data collection over an active soil creep area in Lethbridge, Alberta, Canada. The customisation included adding a GPS logger and a Large-Field-Of-View (LFOV) action camera which facilitated capturing high-resolution geo-tagged images in two epochs

  12. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images.

    Science.gov (United States)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo; Onozato, Yusuke; Cho, Sang Yong; Kishi, Kazuma; Dobashi, Suguru; Umezawa, Rei; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2014-11-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images

    International Nuclear Information System (INIS)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo

    2014-01-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. (author)

  14. Registration of 3D FMT and CT Images of Mouse via Affine Transformation using Sequential Monte Carlo

    International Nuclear Information System (INIS)

    Xia Zheng; Zhou Xiaobo; Wong, Stephen T. C.; Sun Youxian

    2007-01-01

    It is difficult to directly co-register the 3D FMT (Fluorescence Molecular Tomography) image of a small tumor in a mouse whose maximal diameter is only a few mm with a larger CT image of the entire animal that spans about ten cm. This paper proposes a new method to register 2D flat and 3D CT image first to facilitate the registration between small 3D FMT images and large CT images. A novel algorithm based on SMC (Sequential Monte Carlo) incorporated with least square operation for the registration between the 2D flat and 3D CT images is introduced and validated with simulated images and real images of mice. The visualization of the preliminary alignment of the 3D FMT and CT image through 2D registration shows promising results

  15. Registration of dynamic dopamine D{sub 2}receptor images using principal component analysis

    Energy Technology Data Exchange (ETDEWEB)

    Acton, P.D.; Ell, P.J. [Institute of Nuclear Medicine, University College London Medical School, London (United Kingdom); Pilowsky, L.S.; Brammer, M.J. [Institute of Psychiatry, De Crespigny Park, London (United Kingdom); Suckling, J. [Clinical Age Research Unit, Kings College School of Medicine and Dentistry, London (United Kingdom)

    1997-11-01

    This paper describes a novel technique for registering a dynamic sequence of single-photon emission tomography (SPET) dopamine D{sub 2}receptor images, using principal component analysis (PCA). Conventional methods for registering images, such as count difference and correlation coefficient algorithms, fail to take into account the dynamic nature of the data, resulting in large systematic errors when registering time-varying images. However, by using principal component analysis to extract the temporal structure of the image sequence, misregistration can be quantified by examining the distribution of eigenvalues. The registration procedures were tested using a computer-generated dynamic phantom derived from a high-resolution magnetic resonance image of a realistic brain phantom. Each method was also applied to clinical SPET images of dopamine D {sub 2}receptors, using the ligands iodine-123 iodobenzamide and iodine-123 epidepride, to investigate the influence of misregistration on kinetic modelling parameters and the binding potential. The PCA technique gave highly significant (P <0.001) improvements in image registration, leading to alignment errors in x and y of about 25% of the alternative methods, with reductions in autocorrelations over time. It could also be applied to align image sequences which the other methods failed completely to register, particularly {sup 123}I-epidepride scans. The PCA method produced data of much greater quality for subsequent kinetic modelling, with an improvement of nearly 50% in the {chi}{sup 2}of the fit to the compartmental model, and provided superior quality registration of particularly difficult dynamic sequences. (orig.) With 4 figs., 2 tabs., 26 refs.

  16. Multiscale registration of remote sensing image using robust SIFT features in Steerable-Domain

    Directory of Open Access Journals (Sweden)

    Xiangzeng Liu

    2011-12-01

    Full Text Available This paper proposes a multiscale registration technique using robust Scale Invariant Feature Transform (SIFT features in Steerable-Domain, which can deal with the large variations of scale, rotation and illumination between images. First, a new robust SIFT descriptor is presented, which is invariant under affine transformation. Then, an adaptive similarity measure is developed according to the robust SIFT descriptor and the adaptive normalized cross correlation of feature point’s neighborhood. Finally, the corresponding feature points can be determined by the adaptive similarity measure in Steerable-Domain of the two input images, and the final refined transformation parameters determined by using gradual optimization are adopted to achieve the registration results. Quantitative comparisons of our algorithm with the related methods show a significant improvement in the presence of large scale, rotation changes, and illumination contrast. The effectiveness of the proposed method is demonstrated by the experimental results.

  17. Bayesian estimation of regularization and atlas building in diffeomorphic image registration.

    Science.gov (United States)

    Zhang, Miaomiao; Singh, Nikhil; Fletcher, P Thomas

    2013-01-01

    This paper presents a generative Bayesian model for diffeomorphic image registration and atlas building. We develop an atlas estimation procedure that simultaneously estimates the parameters controlling the smoothness of the diffeomorphic transformations. To achieve this, we introduce a Monte Carlo Expectation Maximization algorithm, where the expectation step is approximated via Hamiltonian Monte Carlo sampling on the manifold of diffeomorphisms. An added benefit of this stochastic approach is that it can successfully solve difficult registration problems involving large deformations, where direct geodesic optimization fails. Using synthetic data generated from the forward model with known parameters, we demonstrate the ability of our model to successfully recover the atlas and regularization parameters. We also demonstrate the effectiveness of the proposed method in the atlas estimation problem for 3D brain images.

  18. Evaluation of the mutual information cost function for registration of SPET and MRI images of the brain

    International Nuclear Information System (INIS)

    Taleb, M.; McKay, E.

    1999-01-01

    Full text: Any strategy for image registration requires some method (a cost function) by which two images may be compared The mutual information (MI) between images is one such cost function. MI measures the structural similarity between pairs of gray-scale images and performs cross-modality image registration with minimal image pre-processing. This project compares the performance of MI vs the sum of absolute differences (SAD) 'gold standard' in monomodality image registration problems. It also examines the precision of cross-modality registration based on MI, using a human observer to decide whether registration is accurate. Thirteen paired brain SPET scans were registered using SAD as a cost function. Registration was repeated using MI and differences from the SAD results were recorded. Ten paired MRI and SPET brain scans registered using the MI cost function. Registration was repeated three times for each pair, varying the SPET position or orientation each time. Comparing MI to SAD, the median values of translation error were 2.85, 4.63 and 2.56 mm in the x, y and z axis and 0.5 j , 1.1 j and 1.0 j around the x, y and z axis respectively. For the cross-modality problems, the mean standard deviation (MSD) observed in x, y and z positioning was 0.18, 0.28 and 0.16 mm respectively. The MSD of orientation was 5.35 j , 1.95 j and 2.48 j around the x, y and z axis respectively. MI performed as well as SAD for monomodality registration. Unlike SAD, MI is also useful for cross-modality image registration tasks, producing visually acceptable results with minimal preprocessing

  19. An automatic high precision registration method between large area aerial images and aerial light detection and ranging data

    Science.gov (United States)

    Du, Q.; Xie, D.; Sun, Y.

    2015-06-01

    The integration of digital aerial photogrammetry and Light Detetion And Ranging (LiDAR) is an inevitable trend in Surveying and Mapping field. We calculate the external orientation elements of images which identical with LiDAR coordinate to realize automatic high precision registration between aerial images and LiDAR data. There are two ways to calculate orientation elements. One is single image spatial resection using image matching 3D points that registered to LiDAR. The other one is Position and Orientation System (POS) data supported aerotriangulation. The high precision registration points are selected as Ground Control Points (GCPs) instead of measuring GCPs manually during aerotriangulation. The registration experiments indicate that the method which registering aerial images and LiDAR points has a great advantage in higher automation and precision compare with manual registration.

  20. Quantitative evaluation of an image registration method for a NIPAM gel dosimeter

    Science.gov (United States)

    Chang, Yuan-Jen; Yao, Chun-Hsu; Wu, Jay; Hsieh, Bor-Tsung; Tsang, Yuk-Wah; Chen, Chin-Hsing

    2015-06-01

    One of the problems in obtaining quality results is image registration when a gel dosimeter is used in conjunction with optical computed tomography (CT). This study proposes a passive alignment mechanism to obtain a precisely measured dose map. A holder plate with two pin-hole pairs is placed on the gel container cap. These two pin-hole pairs attach the gel container to the vertical shaft and can be precisely aligned with the rotation center of the vertical shaft at any time. Accordingly, a better reconstructed image quality is obtained. After obtaining a precisely measured dose map, the scale invariant feature transform (SIFT)-flow algorithm is utilized as an image registration method to align the treatment plan software (TPS) image with the measured dose map image. The results show that the gamma pass rate for the single-field irradiation increases from 83.39% to 94.03% when the algorithm is applied. And the gamma pass rate for the five-field irradiation treatment plan increases from 87.36% to 94.34%. The translation, scaling, and rotation occurring in the dose map image constructed using an optical CT scanner are also aligned with those in the TPS image using the SIFT-flow algorithm. Accordingly, improved gamma comparison results and a higher gamma pass rate are obtained.

  1. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Le, Lisa W. [Department of Biostatistics, Princess Margaret Hospital, Toronto, Ontario, M5G 2M9 (Canada); Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada); Bezjak, Andrea, E-mail: andrea.bezjak@rmp.uhn.on.ca [Department of Radiation Oncology, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, M5G 2M9 (Canada)

    2012-12-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors {>=}5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  2. Volumetric Image Guidance Using Carina vs Spine as Registration Landmarks for Conventionally Fractionated Lung Radiotherapy

    International Nuclear Information System (INIS)

    Lavoie, Caroline; Higgins, Jane; Bissonnette, Jean-Pierre; Le, Lisa W.; Sun, Alexander; Brade, Anthony; Hope, Andrew; Cho, John; Bezjak, Andrea

    2012-01-01

    Purpose: To compare the relative accuracy of 2 image guided radiation therapy methods using carina vs spine as landmarks and then to identify which landmark is superior relative to tumor coverage. Methods and Materials: For 98 lung patients, 2596 daily image-guidance cone-beam computed tomography scans were analyzed. Tattoos were used for initial patient alignment; then, spine and carina registrations were performed independently. A separate analysis assessed the adequacy of gross tumor volume, internal target volume, and planning target volume coverage on cone-beam computed tomography using the initial, middle, and final fractions of radiation therapy. Coverage was recorded for primary tumor (T), nodes (N), and combined target (T+N). Three scenarios were compared: tattoos alignment, spine registration, and carina registration. Results: Spine and carina registrations identified setup errors ≥5 mm in 35% and 46% of fractions, respectively. The mean vector difference between spine and carina matching had a magnitude of 3.3 mm. Spine and carina improved combined target coverage, compared with tattoos, in 50% and 34% (spine) to 54% and 46% (carina) of the first and final fractions, respectively. Carina matching showed greater combined target coverage in 17% and 23% of fractions for the first and final fractions, respectively; with spine matching, this was only observed in 4% (first) and 6% (final) of fractions. Carina matching provided superior nodes coverage at the end of radiation compared with spine matching (P=.0006), without compromising primary tumor coverage. Conclusion: Frequent patient setup errors occur in locally advanced lung cancer patients. Spine and carina registrations improved combined target coverage throughout the treatment course, but carina matching provided superior combined target coverage.

  3. Registration of whole immunohistochemical slide images: an efficient way to characterize biomarker colocalization.

    Science.gov (United States)

    Moles Lopez, Xavier; Barbot, Paul; Van Eycke, Yves-Rémi; Verset, Laurine; Trépant, Anne-Laure; Larbanoix, Lionel; Salmon, Isabelle; Decaestecker, Christine

    2015-01-01

    Extracting accurate information from complex biological processes involved in diseases, such as cancers, requires the simultaneous targeting of multiple proteins and locating their respective expression in tissue samples. This information can be collected by imaging and registering adjacent sections from the same tissue sample and stained by immunohistochemistry (IHC). Registration accuracy should be on the scale of a few cells to enable protein colocalization to be assessed. We propose a simple and efficient method based on the open-source elastix framework to register virtual slides of adjacent sections from the same tissue sample. We characterize registration accuracies for different types of tissue and IHC staining. Our results indicate that this technique is suitable for the evaluation of the colocalization of biomarkers on the scale of a few cells. We also show that using this technique in conjunction with a sequential IHC labeling and erasing technique offers improved registration accuracies. Brightfield IHC enables to address the problem of large series of tissue samples, which are usually required in clinical research. However, this approach, which is simple at the tissue processing level, requires challenging image analysis processes, such as accurate registration, to view and extract the protein colocalization information. The method proposed in this work enables accurate registration (on the scale of a few cells) of virtual slides of adjacent tissue sections on which the expression of different proteins is evidenced by standard IHC. Furthermore, combining our method with a sequential labeling and erasing technique enables cell-scale colocalization. © The Author 2014. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.comFor numbered affiliations see end of article.

  4. Development and Analysis of Image Registration Program for the Communication, Ocean, Meteorological Satellite (COMS

    Directory of Open Access Journals (Sweden)

    Un-Seob Lee

    2007-09-01

    Full Text Available We developed a software for simulations and analyses of the Image Navigation and Registration (INR system, and compares the characteristics of Image Motion Compensation (IMC algorithms for the INR system. According to the orbit errors and attitude errors, the capabilities of the image distortions are analyzed. The distortions of images can be compensated by GOES IMC algorithm and Modified IMC (MIMC algorithm. The capabilities of each IMC algorithm are confirmed based on compensated images. The MIMC yields better results than GOES IMC although both the algorithms well compensate distorted images. The results of this research can be used as valuable asset to design of INR system for the Communication, Ocean, Meteorological Satellite (COMS.

  5. Background suppression of infrared small target image based on inter-frame registration

    Science.gov (United States)

    Ye, Xiubo; Xue, Bindang

    2018-04-01

    We propose a multi-frame background suppression method for remote infrared small target detection. Inter-frame information is necessary when the heavy background clutters make it difficult to distinguish real targets and false alarms. A registration procedure based on points matching in image patches is used to compensate the local deformation of background. Then the target can be separated by background subtraction. Experiments show our method serves as an effective preliminary of target detection.

  6. Automated Registration of Images from Multiple Bands of Resourcesat-2 Liss-4 camera

    Science.gov (United States)

    Radhadevi, P. V.; Solanki, S. S.; Jyothi, M. V.; Varadan, G.

    2014-11-01

    Continuous and automated co-registration and geo-tagging of images from multiple bands of Liss-4 camera is one of the interesting challenges of Resourcesat-2 data processing. Three arrays of the Liss-4 camera are physically separated in the focal plane in alongtrack direction. Thus, same line on the ground will be imaged by extreme bands with a time interval of as much as 2.1 seconds. During this time, the satellite would have covered a distance of about 14 km on the ground and the earth would have rotated through an angle of 30". A yaw steering is done to compensate the earth rotation effects, thus ensuring a first level registration between the bands. But this will not do a perfect co-registration because of the attitude fluctuations, satellite movement, terrain topography, PSM steering and small variations in the angular placement of the CCD lines (from the pre-launch values) in the focal plane. This paper describes an algorithm based on the viewing geometry of the satellite to do an automatic band to band registration of Liss-4 MX image of Resourcesat-2 in Level 1A. The algorithm is using the principles of photogrammetric collinearity equations. The model employs an orbit trajectory and attitude fitting with polynomials. Then, a direct geo-referencing with a global DEM with which every pixel in the middle band is mapped to a particular position on the surface of the earth with the given attitude. Attitude is estimated by interpolating measurement data obtained from star sensors and gyros, which are sampled at low frequency. When the sampling rate of attitude information is low compared to the frequency of jitter or micro-vibration, images processed by geometric correction suffer from distortion. Therefore, a set of conjugate points are identified between the bands to perform a relative attitude error estimation and correction which will ensure the internal accuracy and co-registration of bands. Accurate calculation of the exterior orientation parameters with

  7. A three-dimensional correlation method for registration of medical images in radiology

    Energy Technology Data Exchange (ETDEWEB)

    Georgiou, Michalakis; Sfakianakis, George N [Department of Radiology, University of Miami, Jackson Memorial Hospital, Miami, FL 33136 (United States); Nagel, Joachim H [Institute of Biomedical Engineering, University of Stuttgart, Stuttgart 70174 (Germany)

    1999-12-31

    The availability of methods to register multi-modality images in order to `fuse` them to correlate their information is increasingly becoming an important requirement for various diagnostic and therapeutic procedures. A variety of image registration methods have been developed but they remain limited to specific clinical applications. Assuming rigid body transformation, two images can be registered if their differences are calculated in terms of translation, rotation and scaling. This paper describes the development and testing of a new correlation based approach for three-dimensional image registration. First, the scaling factors introduced by the imaging devices are calculated and compensated for. Then, the two images become translation invariant by computing their three-dimensional Fourier magnitude spectra. Subsequently, spherical coordinate transformation is performed and then the three-dimensional rotation is computed using a novice approach referred to as {sup p}olar Shells{sup .} The method of polar shells maps the three angles of rotation into one rotation and two translations of a two-dimensional function and then proceeds to calculate them using appropriate transformations based on the Fourier invariance properties. A basic assumption in the method is that the three-dimensional rotation is constrained to one large and two relatively small angles. This assumption is generally satisfied in normal clinical settings. The new three-dimensional image registration method was tested with simulations using computer generated phantom data as well as actual clinical data. Performance analysis and accuracy evaluation of the method using computer simulations yielded errors in the sub-pixel range. (authors) 6 refs., 3 figs.

  8. [Landmark-based automatic registration of serial cross-sectional images of Chinese digital human using Photoshop and Matlab software].

    Science.gov (United States)

    Su, Xiu-yun; Pei, Guo-xian; Yu, Bin; Hu, Yan-ling; Li, Jin; Huang, Qian; Li, Xu; Zhang, Yuan-zhi

    2007-12-01

    This paper describes automatic registration of the serial cross-sectional images of Chinese digital human by projective registration method based on the landmarks using the commercially available software Photoshop and Matlab. During cadaver embedment for acquisition of the Chinese digital human images, 4 rods were placed parallel to the vertical axis of the frozen cadaver to allow orientation. Projective distortion of the rod positions on the cross-sectional images was inevitable due to even slight changes of the relative position of the camera. The original cross-sectional images were first processed using Photoshop software firstly to obtain the images of the orientation rods, and the centroid coordinate of every rod image was acquired with Matlab software. With the average coordinate value of the rods as the fiducial point, two-dimensional projective transformation coefficient of each image was determined. Projective transformation was then carried out and projective distortion from each original serial image was eliminated. The rectified cross-sectional images were again processed using Photoshop to obtain the image of the first orientation rod, the coordinate value of first rod image was calculated using Matlab software, and the cross-sectional images were cut into images of the same size according to the first rod spatial coordinate, to achieve automatic registration of the serial cross-sectional images. sing Photoshop and Matlab softwares, projective transformation can accurately accomplish the image registration for the serial images with simpler calculation processes and easier computer processing.

  9. Integration of breathing in radiotherapy: contribution of the image deformable registration

    International Nuclear Information System (INIS)

    Boldea, Vlad

    2006-01-01

    As taking organ movements and deformations into account in radiotherapy for the treatment of lung cancer is a challenge as it allows the delivered dose to be increased while better sparing surrounding sane tissues, this research thesis addresses non-rigid (or deformable) registration iconic methods applied to thorax X ray computed tomography (X-ray CT) 3D acquisitions. The objective is to extract the information regarding lung and tumour movement and deformation. The author thus reports the development of deformable registration framework with several methods of regularisation of vector fields. Three main studies have been performed and are reported. In the first one, deformable registration allowed the breathe blockage reproducibility to be controlled. Experiments performed on ten patients showed that this blockage is efficient (displacement less than 5 mm), except for three of them with functional anomalies. In a second study, 4D X-ray CT acquisitions (3D X-ray CT images acquired at different moments of the normal breathing cycle) have been analysed to extract and follow thorax movements and deformations in order to take them into account in free breathing and to perform 4D dynamic dosimetric studies. A first 4D X-ray CT image model has been developed from 3D X-ray CT images acquired in breathe blockage at the end of expiration and at the end on inhalation [fr

  10. Multimodality image registration. A special development in medical imaging has been strongly influenced by a small but highly qualified software think-tank

    International Nuclear Information System (INIS)

    Diemling, M.

    2007-01-01

    The importance of image fusion and registration in the field of medical diagnostics will be shown. After some details and background of image registration, as well as the history of nuclear medicine imaging - given by the example of HERMES Medical Solutions of Stockholm, Sweden - the reader finds seven cases illustrating the clinical importance of this method. These cases were collected from various fields of applications of medical imaging, they are carefully documented and illustrated. (orig.)

  11. 3D non-rigid surface-based MR-TRUS registration for image-guided prostate biopsy

    Science.gov (United States)

    Sun, Yue; Qiu, Wu; Romagnoli, Cesare; Fenster, Aaron

    2014-03-01

    Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate biopsy is the standard approach for definitive diagnosis of prostate cancer (PCa). However, due to the lack of image contrast of prostate tumors needed to clearly visualize early-stage PCa, prostate biopsy often results in false negatives, requiring repeat biopsies. Magnetic Resonance Imaging (MRI) has been considered to be a promising imaging modality for noninvasive identification of PCa, since it can provide a high sensitivity and specificity for the detection of early stage PCa. Our main objective is to develop and validate a registration method of 3D MR-TRUS images, allowing generation of volumetric 3D maps of targets identified in 3D MR images to be biopsied using 3D TRUS images. Our registration method first makes use of an initial rigid registration of 3D MR images to 3D TRUS images using 6 manually placed approximately corresponding landmarks in each image. Following the manual initialization, two prostate surfaces are segmented from 3D MR and TRUS images and then non-rigidly registered using a thin-plate spline (TPS) algorithm. The registration accuracy was evaluated using 4 patient images by measuring target registration error (TRE) of manually identified corresponding intrinsic fiducials (calcifications and/or cysts) in the prostates. Experimental results show that the proposed method yielded an overall mean TRE of 2.05 mm, which is favorably comparable to a clinical requirement for an error of less than 2.5 mm.

  12. Improving the image quality of contrast-enhanced MR angiography by automated image registration: A prospective study in peripheral arterial disease of the lower extremities

    International Nuclear Information System (INIS)

    Menke, Jan

    2010-01-01

    Objective: If a patient has moved during digital subtraction angiography (DSA), manual pixel shift can improve the image quality. This study investigated whether such image registration can also improve the quality of contrast-enhanced magnetic resonance angiography (MRA) in patients with peripheral arterial disease of the lower extremities. Materials and methods: 404 leg MRAs of patients likely to have peripheral artery disease were included in this prospective study. The standard non-registered MRAs were compared to automatically linear, affine and warp registered MRAs by four image quality parameters, including the vessel detection probability (VDP) in maximum intensity projection (MIP) images and contrast-to-noise ratios (CNR). The different registration types were compared by analysis of variance. Results: All studied image quality parameters showed similar trends. Generally, registration improved the leg MRA quality significantly (P < 0.05). The 12% of lower legs with a body shift of 1 mm or more showed the highest gain in image quality when using linear registration instead of no registration, with an average VDP gain of 20-49%. Warp registration improved the image quality slightly further. Conclusion: Automated image registration can improve the MRA image quality especially in the lower legs, which is comparable to the effect of pixel shift in DSA.

  13. Topology preserving non-rigid image registration using time-varying elasticity model for MRI brain volumes.

    Science.gov (United States)

    Ahmad, Sahar; Khan, Muhammad Faisal

    2015-12-01

    In this paper, we present a new non-rigid image registration method that imposes a topology preservation constraint on the deformation. We propose to incorporate the time varying elasticity model into the deformable image matching procedure and constrain the Jacobian determinant of the transformation over the entire image domain. The motion of elastic bodies is governed by a hyperbolic partial differential equation, generally termed as elastodynamics wave equation, which we propose to use as a deformation model. We carried out clinical image registration experiments on 3D magnetic resonance brain scans from IBSR database. The results of the proposed registration approach in terms of Kappa index and relative overlap computed over the subcortical structures were compared against the existing topology preserving non-rigid image registration methods and non topology preserving variant of our proposed registration scheme. The Jacobian determinant maps obtained with our proposed registration method were qualitatively and quantitatively analyzed. The results demonstrated that the proposed scheme provides good registration accuracy with smooth transformations, thereby guaranteeing the preservation of topology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Real-time registration of 3D to 2D ultrasound images for image-guided prostate biopsy.

    Science.gov (United States)

    Gillies, Derek J; Gardi, Lori; De Silva, Tharindu; Zhao, Shuang-Ren; Fenster, Aaron

    2017-09-01

    During image-guided prostate biopsy, needles are targeted at tissues that are suspicious of cancer to obtain specimen for histological examination. Unfortunately, patient motion causes targeting errors when using an MR-transrectal ultrasound (TRUS) fusion approach to augment the conventional biopsy procedure. This study aims to develop an automatic motion correction algorithm approaching the frame rate of an ultrasound system to be used in fusion-based prostate biopsy systems. Two modes of operation have been investigated for the clinical implementation of the algorithm: motion compensation using a single user initiated correction performed prior to biopsy, and real-time continuous motion compensation performed automatically as a background process. Retrospective 2D and 3D TRUS patient images acquired prior to biopsy gun firing were registered using an intensity-based algorithm utilizing normalized cross-correlation and Powell's method for optimization. 2D and 3D images were downsampled and cropped to estimate the optimal amount of image information that would perform registrations quickly and accurately. The optimal search order during optimization was also analyzed to avoid local optima in the search space. Error in the algorithm was computed using target registration errors (TREs) from manually identified homologous fiducials in a clinical patient dataset. The algorithm was evaluated for real-time performance using the two different modes of clinical implementations by way of user initiated and continuous motion compensation methods on a tissue mimicking prostate phantom. After implementation in a TRUS-guided system with an image downsampling factor of 4, the proposed approach resulted in a mean ± std TRE and computation time of 1.6 ± 0.6 mm and 57 ± 20 ms respectively. The user initiated mode performed registrations with in-plane, out-of-plane, and roll motions computation times of 108 ± 38 ms, 60 ± 23 ms, and 89 ± 27 ms, respectively, and corresponding

  15. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications

    Directory of Open Access Journals (Sweden)

    Byeong Hak Kim

    2017-12-01

    Full Text Available Unmanned aerial vehicles (UAVs are equipped with optical systems including an infrared (IR camera such as electro-optical IR (EO/IR, target acquisition and designation sights (TADS, or forward looking IR (FLIR. However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC and scene-based NUC (SBNUC. However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA. In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR and long wave infrared (LWIR images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.

  16. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications

    Science.gov (United States)

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-01-01

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC. PMID:29280970

  17. 3D/3D registration of coronary CTA and biplane XA reconstructions for improved image guidance

    Energy Technology Data Exchange (ETDEWEB)

    Dibildox, Gerardo, E-mail: g.dibildox@erasmusmc.nl; Baka, Nora; Walsum, Theo van [Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Punt, Mark; Aben, Jean-Paul [Pie Medical Imaging, 6227 AJ Maastricht (Netherlands); Schultz, Carl [Department of Cardiology, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands); Niessen, Wiro [Quantitative Imaging Group, Faculty of Applied Sciences, Delft University of Technology, 2628 CJ Delft, The Netherlands and Biomedical Imaging Group Rotterdam, Departments of Radiology and Medical Informatics, Erasmus Medical Center, 3015 GE Rotterdam (Netherlands)

    2014-09-15

    Purpose: The authors aim to improve image guidance during percutaneous coronary interventions of chronic total occlusions (CTO) by providing information obtained from computed tomography angiography (CTA) to the cardiac interventionist. To this end, the authors investigate a method to register a 3D CTA model to biplane reconstructions. Methods: The authors developed a method for registering preoperative coronary CTA with intraoperative biplane x-ray angiography (XA) images via 3D models of the coronary arteries. The models are extracted from the CTA and biplane XA images, and are temporally aligned based on CTA reconstruction phase and XA ECG signals. Rigid spatial alignment is achieved with a robust probabilistic point set registration approach using Gaussian mixture models (GMMs). This approach is extended by including orientation in the Gaussian mixtures and by weighting bifurcation points. The method is evaluated on retrospectively acquired coronary CTA datasets of 23 CTO patients for which biplane XA images are available. Results: The Gaussian mixture model approach achieved a median registration accuracy of 1.7 mm. The extended GMM approach including orientation was not significantly different (P > 0.1) but did improve robustness with regards to the initialization of the 3D models. Conclusions: The authors demonstrated that the GMM approach can effectively be applied to register CTA to biplane XA images for the purpose of improving image guidance in percutaneous coronary interventions.

  18. Background Registration-Based Adaptive Noise Filtering of LWIR/MWIR Imaging Sensors for UAV Applications.

    Science.gov (United States)

    Kim, Byeong Hak; Kim, Min Young; Chae, You Seong

    2017-12-27

    Unmanned aerial vehicles (UAVs) are equipped with optical systems including an infrared (IR) camera such as electro-optical IR (EO/IR), target acquisition and designation sights (TADS), or forward looking IR (FLIR). However, images obtained from IR cameras are subject to noise such as dead pixels, lines, and fixed pattern noise. Nonuniformity correction (NUC) is a widely employed method to reduce noise in IR images, but it has limitations in removing noise that occurs during operation. Methods have been proposed to overcome the limitations of the NUC method, such as two-point correction (TPC) and scene-based NUC (SBNUC). However, these methods still suffer from unfixed pattern noise. In this paper, a background registration-based adaptive noise filtering (BRANF) method is proposed to overcome the limitations of conventional methods. The proposed BRANF method utilizes background registration processing and robust principle component analysis (RPCA). In addition, image quality verification methods are proposed that can measure the noise filtering performance quantitatively without ground truth images. Experiments were performed for performance verification with middle wave infrared (MWIR) and long wave infrared (LWIR) images obtained from practical military optical systems. As a result, it is found that the image quality improvement rate of BRANF is 30% higher than that of conventional NUC.

  19. Registration of dynamic dopamine D2receptor images using principal component analysis

    International Nuclear Information System (INIS)

    Acton, P.D.; Ell, P.J.; Pilowsky, L.S.; Brammer, M.J.; Suckling, J.

    1997-01-01

    This paper describes a novel technique for registering a dynamic sequence of single-photon emission tomography (SPET) dopamine D 2 receptor images, using principal component analysis (PCA). Conventional methods for registering images, such as count difference and correlation coefficient algorithms, fail to take into account the dynamic nature of the data, resulting in large systematic errors when registering time-varying images. However, by using principal component analysis to extract the temporal structure of the image sequence, misregistration can be quantified by examining the distribution of eigenvalues. The registration procedures were tested using a computer-generated dynamic phantom derived from a high-resolution magnetic resonance image of a realistic brain phantom. Each method was also applied to clinical SPET images of dopamine D 2 receptors, using the ligands iodine-123 iodobenzamide and iodine-123 epidepride, to investigate the influence of misregistration on kinetic modelling parameters and the binding potential. The PCA technique gave highly significant (P 123 I-epidepride scans. The PCA method produced data of much greater quality for subsequent kinetic modelling, with an improvement of nearly 50% in the χ 2 of the fit to the compartmental model, and provided superior quality registration of particularly difficult dynamic sequences. (orig.)

  20. An Orthogonal Learning Differential Evolution Algorithm for Remote Sensing Image Registration

    Directory of Open Access Journals (Sweden)

    Wenping Ma

    2014-01-01

    Full Text Available We introduce an area-based method for remote sensing image registration. We use orthogonal learning differential evolution algorithm to optimize the similarity metric between the reference image and the target image. Many local and global methods have been used to achieve the optimal similarity metric in the last few years. Because remote sensing images are usually influenced by large distortions and high noise, local methods will fail in some cases. For this reason, global methods are often required. The orthogonal learning (OL strategy is efficient when searching in complex problem spaces. In addition, it can discover more useful information via orthogonal experimental design (OED. Differential evolution (DE is a heuristic algorithm. It has shown to be efficient in solving the remote sensing image registration problem. So orthogonal learning differential evolution algorithm (OLDE is efficient for many optimization problems. The OLDE method uses the OL strategy to guide the DE algorithm to discover more useful information. Experiments show that the OLDE method is more robust and efficient for registering remote sensing images.

  1. Automatic registration of Iphone images to LASER point clouds of the urban structures using shape features

    Directory of Open Access Journals (Sweden)

    B. Sirmacek

    2013-10-01

    Full Text Available Fusion of 3D airborne laser (LIDAR data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images which are taken in front of the interested urban structure by the application user and the high resolution LIDAR point clouds of the acquired by an airborne laser sensor. After finding the photo capturing position and orientation from the iPhone photograph metafile, we automatically select the area of interest in the point cloud and transform it into a range image which has only grayscale intensity levels according to the distance from the image acquisition position. We benefit from local features for registering the iPhone image to the generated range image. In this article, we have applied the registration process based on local feature extraction and graph matching. Finally, the registration result is used for facade texture mapping on the 3D building surface mesh which is generated from the LIDAR point cloud. Our experimental results indicate possible usage of the proposed algorithm framework for 3D urban map updating and enhancing purposes.

  2. Value of a probabilistic atlas in medical image segmentation regarding non-rigid registration of abdominal CT scans

    Science.gov (United States)

    Park, Hyunjin; Meyer, Charles R.

    2012-10-01

    A probabilistic atlas provides important information to help segmentation and registration applications in medical image analysis. We construct a probabilistic atlas by picking a target geometry and mapping other training scans onto that target and then summing the results into one probabilistic atlas. By choosing an atlas space close to the desired target, we construct an atlas that represents the population well. Image registration used to map one image geometry onto another is a primary task in atlas building. One of the main parameters of registration is the choice of degrees of freedom (DOFs) of the geometric transform. Herein, we measure the effect of the registration's DOFs on the segmentation performance of the resulting probabilistic atlas. Twenty-three normal abdominal CT scans were used, and four organs (liver, spinal cord, left and right kidneys) were segmented for each scan. A well-known manifold learning method, ISOMAP, was used to find the best target space to build an atlas. In summary, segmentation performance was high for high DOF registrations regardless of the chosen target space, while segmentation performance was lowered for low DOF registrations if a target space was far from the best target space. At the 0.05 level of statistical significance, there were no significant differences at high DOF registrations while there were significant differences at low DOF registrations when choosing different targets.

  3. Automated, non-linear registration between 3-dimensional brain map and medical head image

    International Nuclear Information System (INIS)

    Mizuta, Shinobu; Urayama, Shin-ichi; Zoroofi, R.A.; Uyama, Chikao

    1998-01-01

    In this paper, we propose an automated, non-linear registration method between 3-dimensional medical head image and brain map in order to efficiently extract the regions of interest. In our method, input 3-dimensional image is registered into a reference image extracted from a brain map. The problems to be solved are automated, non-linear image matching procedure, and cost function which represents the similarity between two images. Non-linear matching is carried out by dividing the input image into connected partial regions, transforming the partial regions preserving connectivity among the adjacent images, evaluating the image similarity between the transformed regions of the input image and the correspondent regions of the reference image, and iteratively searching the optimal transformation of the partial regions. In order to measure the voxelwise similarity of multi-modal images, a cost function is introduced, which is based on the mutual information. Some experiments using MR images presented the effectiveness of the proposed method. (author)

  4. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    Science.gov (United States)

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  5. Facilitating tumor functional assessment by spatially relating 3D tumor histology and In Vivo MRI: Image registration approach

    NARCIS (Netherlands)

    L. Alic (Lejla); J.C. Haeck (Joost); K. Bol (Karin); S. Klein (Stefan); S.T. van Tiel (Sandra); P.A. Wielepolski (Piotr); M. de Jong (Marion); W.J. Niessen (Wiro); M.R. Bernsen (Monique); J.F. Veenland (Jifke)

    2011-01-01

    textabstractBackground: Magnetic resonance imaging (MRI), together with histology, is widely used to diagnose and to monitor treatment in oncology. Spatial correspondence between these modalities provides information about the ability of MRI to characterize cancerous tissue. However, registration is

  6. Facilitating tumor functional assessment by spatially relating 3D tumor histology and in vivo MRI : Image registration approach

    NARCIS (Netherlands)

    Alic, L.; Haeck, J.C.; Bol, K.; Klein, S.; Van Tiel, S.T.; Wielepolski, P.A.; De Jong, M.; Niessen, W.J.; Bernsen, M.; Veenland, J.F.

    2011-01-01

    Background Magnetic resonance imaging (MRI), together with histology, is widely used to diagnose and to monitor treatment in oncology. Spatial correspondence between these modalities provides information about the ability of MRI to characterize cancerous tissue. However, registration is complicated

  7. Facilitating tumor functional assessment by spatially relating 3D tumor histology and in vivo MRI: Image registration approach

    NARCIS (Netherlands)

    Alić, L.; Haeck, J.C.; Bol, K.; Klein, S.; Tiel, S.T. van; Wielopolski, P.A.; Bijster, M.; Bernsen, M.; Jong, M. de; Niessen, W.J.; Veenland, J.F.

    2011-01-01

    Background: Magnetic resonance imaging (MRI), together with histology, is widely used to diagnose and to monitor treatment in oncology. Spatial correspondence between these modalities provides information about the ability of MRI to characterize cancerous tissue. However, registration is complicated

  8. A hybrid biomechanical intensity based deformable image registration of lung 4DCT

    International Nuclear Information System (INIS)

    Samavati, Navid; Velec, Michael; Brock, Kristy

    2015-01-01

    Deformable image registration (DIR) has been extensively studied over the past two decades due to its essential role in many image-guided interventions (IGI). IGI demands a highly accurate registration that maintains its accuracy across the entire region of interest. This work evaluates the improvement in accuracy and consistency by refining the results of Morfeus, a biomechanical model-based DIR algorithm.A hybrid DIR algorithm is proposed based on, a biomechanical model–based DIR algorithm and a refinement step based on a B-spline intensity-based algorithm. Inhale and exhale reconstructions of four-dimensional computed tomography (4DCT) lung images from 31 patients were initially registered using the biomechanical DIR by modeling contact surface between the lungs and the chest cavity. The resulting deformations were then refined using the intensity-based algorithm to reduce any residual uncertainties. Important parameters in the intensity-based algorithm, including grid spacing, number of pyramids, and regularization coefficient, were optimized on 10 randomly-chosen patients (out of 31). Target registration error (TRE) was calculated by measuring the Euclidean distance of common anatomical points on both images after registration. For each patient a minimum of 30 points/lung were used.Grid spacing of 8 mm, 5 levels of grid pyramids, and regularization coefficient of 3.0 were found to provide optimal results on 10 randomly chosen patients. Overall the entire patient population (n = 31), the hybrid method resulted in mean ± SD (90th%) TRE of 1.5 ± 1.4 (2.9) mm compared to 3.1 ± 1.9 (5.6) using biomechanical DIR and 2.6 ± 2.5 (6.1) using intensity-based DIR alone.The proposed hybrid biomechanical modeling intensity based algorithm is a promising DIR technique which could be used in various IGI procedures. The current investigation shows the efficacy of this approach for the registration of 4DCT images of the lungs with average accuracy of 1.5

  9. Reduction of Cone-Beam CT scan time without compromising the accuracy of the image registration in IGRT

    DEFF Research Database (Denmark)

    Westberg, Jonas; Jensen, Henrik R; Bertelsen, Anders

    2010-01-01

    In modern radiotherapy accelerators are equipped with 3D cone-beam CT (CBCT) which is used to verify patient position before treatment. The verification is based on an image registration between the CBCT acquired just before treatment and the CT scan made for the treatment planning. The purpose...... of this study is to minimise the scan time of the CBCT without compromising the accuracy of the image registration in IGRT....

  10. A new registration method with voxel-matching technique for temporal subtraction images

    Science.gov (United States)

    Itai, Yoshinori; Kim, Hyoungseop; Ishikawa, Seiji; Katsuragawa, Shigehiko; Doi, Kunio

    2008-03-01

    A temporal subtraction image, which is obtained by subtraction of a previous image from a current one, can be used for enhancing interval changes on medical images by removing most of normal structures. One of the important problems in temporal subtraction is that subtraction images commonly include artifacts created by slight differences in the size, shape, and/or location of anatomical structures. In this paper, we developed a new registration method with voxel-matching technique for substantially removing the subtraction artifacts on the temporal subtraction image obtained from multiple-detector computed tomography (MDCT). With this technique, the voxel value in a warped (or non-warped) previous image is replaced by a voxel value within a kernel, such as a small cube centered at a given location, which would be closest (identical or nearly equal) to the voxel value in the corresponding location in the current image. Our new method was examined on 16 clinical cases with MDCT images. Preliminary results indicated that interval changes on the subtraction images were enhanced considerably, with a substantial reduction of misregistration artifacts. The temporal subtraction images obtained by use of the voxel-matching technique would be very useful for radiologists in the detection of interval changes on MDCT images.

  11. Evaluation of registration strategies for multi-modality images of rat brain slices

    International Nuclear Information System (INIS)

    Palm, Christoph; Vieten, Andrea; Salber, Dagmar; Pietrzyk, Uwe

    2009-01-01

    In neuroscience, small-animal studies frequently involve dealing with series of images from multiple modalities such as histology and autoradiography. The consistent and bias-free restacking of multi-modality image series is obligatory as a starting point for subsequent non-rigid registration procedures and for quantitative comparisons with positron emission tomography (PET) and other in vivo data. Up to now, consistency between 2D slices without cross validation using an inherent 3D modality is frequently presumed to be close to the true morphology due to the smooth appearance of the contours of anatomical structures. However, in multi-modality stacks consistency is difficult to assess. In this work, consistency is defined in terms of smoothness of neighboring slices within a single modality and between different modalities. Registration bias denotes the distortion of the registered stack in comparison to the true 3D morphology and shape. Based on these metrics, different restacking strategies of multi-modality rat brain slices are experimentally evaluated. Experiments based on MRI-simulated and real dual-tracer autoradiograms reveal a clear bias of the restacked volume despite quantitatively high consistency and qualitatively smooth brain structures. However, different registration strategies yield different inter-consistency metrics. If no genuine 3D modality is available, the use of the so-called SOP (slice-order preferred) or MOSOP (modality-and-slice-order preferred) strategy is recommended.

  12. Modreg: A Modular Framework for RGB-D Image Acquisition and 3D Object Model Registration

    Directory of Open Access Journals (Sweden)

    Kornuta Tomasz

    2017-09-01

    Full Text Available RGB-D sensors became a standard in robotic applications requiring object recognition, such as object grasping and manipulation. A typical object recognition system relies on matching of features extracted from RGB-D images retrieved from the robot sensors with the features of the object models. In this paper we present ModReg: a system for registration of 3D models of objects. The system consists of a modular software associated with a multi-camera setup supplemented with an additional pattern projector, used for the registration of high-resolution RGB-D images. The objects are placed on a fiducial board with two dot patterns enabling extraction of masks of the placed objects and estimation of their initial poses. The acquired dense point clouds constituting subsequent object views undergo pairwise registration and at the end are optimized with a graph-based technique derived from SLAM. The combination of all those elements resulted in a system able to generate consistent 3D models of objects.

  13. Geo-registration of Unprofessional and Weakly-related Image and Precision Evaluation

    Directory of Open Access Journals (Sweden)

    LIU Yingzhen

    2015-09-01

    Full Text Available The 3D geo-spatial model built by unprofessional and weakly-related image is a significant source of geo-spatial information. The unprofessional and weakly-related image cannot be useful geo-spatial information until be geo-registered with accurate geo-spatial orientation and location. In this paper, we present an automatic geo-registration using the coordination acquired by real-time GPS module. We calculate 2D and 3D spatial transformation parameters based on the spatial similarity between the image location in the geo-spatial coordination system and in the 3D reconstruction coordination system. Because of the poor precision of GPS information and especially the unstability of elevation measurement, we use RANSAC algorithm to get rid of outliers. In the experiment, we compare the geo-registered image positions to their differential GPS coordinates. The errors of translation, rotation and scaling are evaluated quantitively and the causes of bad result are analyzed. The experiment demonstrates that this geo-registration method can get a precise result with enough images.

  14. Least median of squares filtering of locally optimal point matches for compressible flow image registration

    International Nuclear Information System (INIS)

    Castillo, Edward; Guerrero, Thomas; Castillo, Richard; White, Benjamin; Rojo, Javier

    2012-01-01

    Compressible flow based image registration operates under the assumption that the mass of the imaged material is conserved from one image to the next. Depending on how the mass conservation assumption is modeled, the performance of existing compressible flow methods is limited by factors such as image quality, noise, large magnitude voxel displacements, and computational requirements. The Least Median of Squares Filtered Compressible Flow (LFC) method introduced here is based on a localized, nonlinear least squares, compressible flow model that describes the displacement of a single voxel that lends itself to a simple grid search (block matching) optimization strategy. Spatially inaccurate grid search point matches, corresponding to erroneous local minimizers of the nonlinear compressible flow model, are removed by a novel filtering approach based on least median of squares fitting and the forward search outlier detection method. The spatial accuracy of the method is measured using ten thoracic CT image sets and large samples of expert determined landmarks (available at www.dir-lab.com). The LFC method produces an average error within the intra-observer error on eight of the ten cases, indicating that the method is capable of achieving a high spatial accuracy for thoracic CT registration. (paper)

  15. Registration for Optical Multimodal Remote Sensing Images Based on FAST Detection, Window Selection, and Histogram Specification

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhao

    2018-04-01

    Full Text Available In recent years, digital frame cameras have been increasingly used for remote sensing applications. However, it is always a challenge to align or register images captured with different cameras or different imaging sensor units. In this research, a novel registration method was proposed. Coarse registration was first applied to approximately align the sensed and reference images. Window selection was then used to reduce the search space and a histogram specification was applied to optimize the grayscale similarity between the images. After comparisons with other commonly-used detectors, the fast corner detector, FAST (Features from Accelerated Segment Test, was selected to extract the feature points. The matching point pairs were then detected between the images, the outliers were eliminated, and geometric transformation was performed. The appropriate window size was searched and set to one-tenth of the image width. The images that were acquired by a two-camera system, a camera with five imaging sensors, and a camera with replaceable filters mounted on a manned aircraft, an unmanned aerial vehicle, and a ground-based platform, respectively, were used to evaluate the performance of the proposed method. The image analysis results showed that, through the appropriate window selection and histogram specification, the number of correctly matched point pairs had increased by 11.30 times, and that the correct matching rate had increased by 36%, compared with the results based on FAST alone. The root mean square error (RMSE in the x and y directions was generally within 0.5 pixels. In comparison with the binary robust invariant scalable keypoints (BRISK, curvature scale space (CSS, Harris, speed up robust features (SURF, and commercial software ERDAS and ENVI, this method resulted in larger numbers of correct matching pairs and smaller, more consistent RMSE. Furthermore, it was not necessary to choose any tie control points manually before registration

  16. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Siewerdsen, J. [Johns Hopkins University (United States)

    2016-06-15

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  17. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

    International Nuclear Information System (INIS)

    Siewerdsen, J.

    2016-01-01

    At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504

  18. Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude

    Science.gov (United States)

    Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.

    2018-05-01

    One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.

  19. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    Science.gov (United States)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  20. Real-time image registration and fusion in a FPGA architecture (Ad-FIRE)

    Science.gov (United States)

    Waters, T.; Swan, L.; Rickman, R.

    2011-06-01

    Real-time Image Registration is a key processing requirement of Waterfall Solutions' image fusion system, Ad-FIRE, which combines the attributes of high resolution visible imagery with the spectral response of low resolution thermal sensors in a single composite image. Implementing image fusion at video frame rates typically requires a high bandwidth video processing capability which, within a standard CPU-type processing architecture, necessitates bulky, high power components. Field Programmable Gate Arrays (FPGAs) offer the prospect of low power/heat dissipation combined with highly efficient processing architectures for use in portable, battery-powered, passively cooled applications, such as Waterfall Solutions' hand-held or helmet-mounted Ad-FIRE system.

  1. A generalized framework unifying image registration and respiratory motion models and incorporating image reconstruction, for partial image data or full images

    Science.gov (United States)

    McClelland, Jamie R.; Modat, Marc; Arridge, Simon; Grimes, Helen; D'Souza, Derek; Thomas, David; O' Connell, Dylan; Low, Daniel A.; Kaza, Evangelia; Collins, David J.; Leach, Martin O.; Hawkes, David J.

    2017-06-01

    Surrogate-driven respiratory motion models relate the motion of the internal anatomy to easily acquired respiratory surrogate signals, such as the motion of the skin surface. They are usually built by first using image registration to determine the motion from a number of dynamic images, and then fitting a correspondence model relating the motion to the surrogate signals. In this paper we present a generalized framework that unifies the image registration and correspondence model fitting into a single optimization. This allows the use of ‘partial’ imaging data, such as individual slices, projections, or k-space data, where it would not be possible to determine the motion from an individual frame of data. Motion compensated image reconstruction can also be incorporated using an iterative approach, so that both the motion and a motion-free image can be estimated from the partial image data. The framework has been applied to real 4DCT, Cine CT, multi-slice CT, and multi-slice MR data, as well as simulated datasets from a computer phantom. This includes the use of a super-resolution reconstruction method for the multi-slice MR data. Good results were obtained for all datasets, including quantitative results for the 4DCT and phantom datasets where the ground truth motion was known or could be estimated.

  2. Alternative radiation-free registration technique for image-guided pedicle screw placement in deformed cervico-thoracic segments.

    Science.gov (United States)

    Kantelhardt, Sven R; Neulen, Axel; Keric, Naureen; Gutenberg, Angelika; Conrad, Jens; Giese, Alf

    2017-10-01

    Image-guided pedicle screw placement in the cervico-thoracic region is a commonly applied technique. In some patients with deformed cervico-thoracic segments, conventional or 3D fluoroscopy based registration of image-guidance might be difficult or impossible because of the anatomic/pathological conditions. Landmark based registration has been used as an alternative, mostly using separate registration of each vertebra. We here investigated a routine for landmark based registration of rigid spinal segments as single objects, using cranial image-guidance software. Landmark based registration of image-guidance was performed using cranial navigation software. After surgical exposure of the spinous processes, lamina and facet joints and fixation of a reference marker array, up to 26 predefined landmarks were acquired using a pointer. All pedicle screws were implanted using image guidance alone. Following image-guided screw placement all patients underwent postoperative CT scanning. Screw positions as well as intraoperative and clinical parameters were retrospectively analyzed. Thirteen patients received 73 pedicle screws at levels C6 to Th8. Registration of spinal segments, using the cranial image-guidance succeeded in all cases. Pedicle perforations were observed in 11.0%, severe perforations of >2 mm occurred in 5.4%. One patient developed a transient C8 syndrome and had to be revised for deviation of the C7 pedicle screw. No other pedicle screw-related complications were observed. In selected patients suffering from pathologies of the cervico-thoracic region, which impair intraoperative fluoroscopy or 3D C-arm imaging, landmark based registration of image-guidance using cranial software is a feasible, radiation-saving and a safe alternative.

  3. Infrared and visible images registration with adaptable local-global feature integration for rail inspection

    Science.gov (United States)

    Tang, Chaoqing; Tian, Gui Yun; Chen, Xiaotian; Wu, Jianbo; Li, Kongjing; Meng, Hongying

    2017-12-01

    Active thermography provides infrared images that contain sub-surface defect information, while visible images only reveal surface information. Mapping infrared information to visible images offers more comprehensive visualization for decision-making in rail inspection. However, the common information for registration is limited due to different modalities in both local and global level. For example, rail track which has low temperature contrast reveals rich details in visible images, but turns blurry in the infrared counterparts. This paper proposes a registration algorithm called Edge-Guided Speeded-Up-Robust-Features (EG-SURF) to address this issue. Rather than sequentially integrating local and global information in matching stage which suffered from buckets effect, this algorithm adaptively integrates local and global information into a descriptor to gather more common information before matching. This adaptability consists of two facets, an adaptable weighting factor between local and global information, and an adaptable main direction accuracy. The local information is extracted using SURF while the global information is represented by shape context from edges. Meanwhile, in shape context generation process, edges are weighted according to local scale and decomposed into bins using a vector decomposition manner to provide more accurate descriptor. The proposed algorithm is qualitatively and quantitatively validated using eddy current pulsed thermography scene in the experiments. In comparison with other algorithms, better performance has been achieved.

  4. STUDY OF AUTOMATIC IMAGE RECTIFICATION AND REGISTRATION OF SCANNED HISTORICAL AERIAL PHOTOGRAPHS

    Directory of Open Access Journals (Sweden)

    H. R. Chen

    2016-06-01

    Full Text Available Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  5. Investigation of six-degree-of-freedom image registration between planning and cone beam computed tomography in esophageal cancer

    International Nuclear Information System (INIS)

    Li Jiancheng; Pan Jianji; Hu Cairong; Wang Xiaoliang; Cheng Wenfang; Zhao Yunhui

    2010-01-01

    Objective: To explore six-degree-of-freedom (6-DF) registration methods between planning and cone beam computed tomography (CBCT) during image-guided radiation therapy (IGRT) in esophageal cancer. Methods: Thirty pairs of CBCT images acquired before radiation and the corresponding planning computed tomography (CT) images of esophageal cancer were selected for further investigation. Registration markers for 6-DF image registration were determined and contoured in those images. The results of registration as well as time cost were compared among different registration methods of bone match, gray value match, manual match, and bone plus manual match. Results: Contouring bone and spinal canal posterior to the target volume of esophageal carcinoma as registration marker could make 6-DF registration quick and precise. Compared with manual match, set-up errors of v rotation in bone plus manual match (-0.55 degree vs.-0.88 degree, t=2.55, P=0.020), of x-axis and v rotation in bone match (0.12 mm vs.-2.33 mm, t=5.75, P=0.000; -0.35 degree vs. -0.88 degree, t=3.00, P=0.007), and of x-axis and w rotation in gray value match (7.20 mm vs. -2.33 mm, t=3.10, P=0.006; -0.10 degree vs. -0.59 degree, t=2.81, P =0.011) were significantly different. Compared with manual match, the coincidence rate of bone plus manual match was the highest (85.55%), followed by bone match and gray value match (74.45% and 74.45%). The time cost of each registration method from longest to shortest was: 6.00 -10.00 minutes for manual match, 1.00 - 5.00 minutes for bone plus manual match, 0.75 - 1.50 minutes for gray value match, and 0.50 - 0.83 minutes for bone match. Conclusions: Registration marker is useful for image registration of CBCT and planning CT in patients with esophageal cancer. Bone plus manual match may be the best registration method considering both registration time and accuracy. (authors)

  6. SU-E-I-66: Radiomics and Image Registration Updates for the Computational Environment for Radiotherapy Research (CERR)

    Energy Technology Data Exchange (ETDEWEB)

    Apte, A; Wang, Y; Deasy, J [Memorial Sloan Kettering Cancer Center, NY, NY (United States)

    2014-06-01

    Purpose: To present new tools in CERR for Radiomics, image registration and other software updates and additions. Methods: Radiomics: CERR supports generating 3-D texture metrics based on gray scale co-occurance. Two new ways to calculate texture features were added: (1) Local Texture Averaging: Local texture is calculated around a voxel within the userdefined bounding box. The final texture metrics are the average of local textures for all the voxels. This is useful to detect any local texture patterns within an image. (2) Image Smoothing: A convolution ball of user-defined radius is rolled over an image to smooth out artifacts. The texture metrics are then computed on the smooth image. Image Registration: (1) Support was added to import deformation vector fields as well as non-deformable transformation matrices generated by vendor software and stored in standard DICOM format. (2) Support was added to use image within masks while computing image deformations. CT to MR registration is supported. This registration uses morphological edge information within the images to guide the deformation process. In addition to these features, other noteworthy additions to CERR include (1) Irregularly shaped ROI: This is done by taking intersection between infinitely extended irregular polygons drawn on any of the two views. Such an ROI is more conformal and useful in avoiding any unwanted parts of images that cannot be avoided with the conventional cubic box. The ROI is useful to generate Radiomics metrics. (2) Ability to insert RTDOSE in DICOM format to existing CERR plans. (3) Ability to import multi-frame PET-CT and SPECT-CT while maintaining spatial registration between the two modalities. (4) Ability to compile CERR on Unix-like systems. Results: The new features and updates are available via https://www.github.com/adityaapte/cerr . Conclusion: Features added to CERR increase its utility in Radiomics, Image-Registration and Outcomes modeling.

  7. SU-E-I-66: Radiomics and Image Registration Updates for the Computational Environment for Radiotherapy Research (CERR)

    International Nuclear Information System (INIS)

    Apte, A; Wang, Y; Deasy, J

    2014-01-01

    Purpose: To present new tools in CERR for Radiomics, image registration and other software updates and additions. Methods: Radiomics: CERR supports generating 3-D texture metrics based on gray scale co-occurance. Two new ways to calculate texture features were added: (1) Local Texture Averaging: Local texture is calculated around a voxel within the userdefined bounding box. The final texture metrics are the average of local textures for all the voxels. This is useful to detect any local texture patterns within an image. (2) Image Smoothing: A convolution ball of user-defined radius is rolled over an image to smooth out artifacts. The texture metrics are then computed on the smooth image. Image Registration: (1) Support was added to import deformation vector fields as well as non-deformable transformation matrices generated by vendor software and stored in standard DICOM format. (2) Support was added to use image within masks while computing image deformations. CT to MR registration is supported. This registration uses morphological edge information within the images to guide the deformation process. In addition to these features, other noteworthy additions to CERR include (1) Irregularly shaped ROI: This is done by taking intersection between infinitely extended irregular polygons drawn on any of the two views. Such an ROI is more conformal and useful in avoiding any unwanted parts of images that cannot be avoided with the conventional cubic box. The ROI is useful to generate Radiomics metrics. (2) Ability to insert RTDOSE in DICOM format to existing CERR plans. (3) Ability to import multi-frame PET-CT and SPECT-CT while maintaining spatial registration between the two modalities. (4) Ability to compile CERR on Unix-like systems. Results: The new features and updates are available via https://www.github.com/adityaapte/cerr . Conclusion: Features added to CERR increase its utility in Radiomics, Image-Registration and Outcomes modeling

  8. Image-based dose planning of intracavitary brachytherapy: registration of serial-imaging studies using deformable anatomic templates

    International Nuclear Information System (INIS)

    Christensen, Gary E.; Carlson, Blake; Chao, K.S. Clifford; Yin Pen; Grigsby, Perry W.; Nguyen, Kim; Dempsey, James F; Lerma, Fritz A.; Bae, Kyongtae T.; Vannier, Michael W.; Williamson, Jeffrey F.

    2001-01-01

    Purpose: To demonstrate that high-dimensional voxel-to-voxel transformations, derived from continuum mechanics models of the underlying pelvic tissues, can be used to register computed tomography (CT) serial examinations into a single anatomic frame of reference for cumulative dose calculations. Methods and Materials: Three patients with locally advanced cervix cancer were treated with CT-compatible intracavitary (ICT) applicators. Each patient underwent five volumetric CT examinations: before initiating treatment, and immediately before and after the first and second ICT insertions, respectively. Each serial examination was rigidly registered to the patient's first ICT examination by aligning the bony anatomy. Detailed nonrigid alignment for organs (or targets) of interest was subsequently achieved by deforming the CT exams as a viscous-fluid, described by the Navier-Stokes equation, until the coincidence with the corresponding targets on CT image was maximized. In cases where ICT insertion induced very large and topologically complex rearrangements of pelvic organs, e.g., extreme uterine canal reorientation following tandem insertion, a viscous-fluid-landmark transformation was used to produce an initial registration. Results: For all three patients, reasonable registrations for organs (or targets) of interest were achieved. Fluid-landmark initialization was required in 4 of the 11 registrations. Relative to the best rigid bony landmark alignment, the viscous-fluid registration resulted in average soft-tissue displacements from 2.8 to 28.1 mm, and improved organ coincidence from the range of 5.2% to 72.2% to the range of 90.6% to 100%. Compared to the viscous-fluid transformation, global registration of bony anatomy mismatched 5% or more of the contoured organ volumes by 15-25 mm. Conclusion: Pelvic soft-tissue structures undergo large deformations and displacements during the external-beam and multiple-ICT course of radiation therapy for locally advanced cervix

  9. A system for the registration of arthroscopic images to magnetic resonance images of the knee: for improved virtual knee arthroscopy

    Science.gov (United States)

    Hu, Chengliang; Amati, Giancarlo; Gullick, Nicola; Oakley, Stephen; Hurmusiadis, Vassilios; Schaeffter, Tobias; Penney, Graeme; Rhode, Kawal

    2009-02-01

    Knee arthroscopy is a minimally invasive procedure that is routinely carried out for the diagnosis and treatment of pathologies of the knee joint. A high level of expertise is required to carry out this procedure and therefore the clinical training is extensive. There are several reasons for this that include the small field of view seen by the arthroscope and the high degree of distortion in the video images. Several virtual arthroscopy simulators have been proposed to augment the learning process. One of the limitations of these simulators is the generic models that are used. We propose to develop a new virtual arthroscopy simulator that will allow the use of pathology-specific models with an increased level of photo-realism. In order to generate these models we propose to use registered magnetic resonance images (MRI) and arthroscopic video images collected from patients with a variety of knee pathologies. We present a method to perform this registration based on the use of a combined X-ray and MR imaging system (XMR). In order to validate our technique we carried out MR imaging and arthroscopy of a custom-made acrylic phantom in the XMR environment. The registration between the two modalities was computed using a combination of XMR and camera calibration, and optical tracking. Both two-dimensional (2D) and three-dimensional (3D) registration errors were computed and shown to be approximately 0.8 and 3 mm, respectively. Further to this, we qualitatively tested our approach using a more realistic plastic knee model that is used for the arthroscopy training.

  10. Determination of optimal ultrasound planes for the initialisation of image registration during endoscopic ultrasound-guided procedures.

    Science.gov (United States)

    Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C

    2018-06-01

    Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.

  11. Deformable Image Registration of Liver With Consideration of Lung Sliding Motion

    International Nuclear Information System (INIS)

    Xie, Yaoqin; Chao, Ming; Xiong, Guanglei

    2011-01-01

    Purpose: A feature based deformable registration model with sliding transformation was developed in the upper abdominal region for liver cancer. Methods: A two-step thin-plate spline (bi-TPS) algorithm was implemented to deformably register the liver organ. The first TPS registration was performed to exclusively quantify the sliding displacement component. A manual segmentation of the thoracic and abdominal cavity was performed as a priori knowledge. Tissue feature points were automatically identified inside the segmented contour on the images. The scale invariant feature transform method was utilized to match feature points that served as landmarks for the subsequent TPS registration to derive the sliding displacement vector field. To a good approximation, only motion along superior/inferior (SI) direction of voxels on each slice was averaged to obtain the sliding displacement for each slice. A second TPS transformation, as the last step, was carried out to obtain the local deformation field. Manual identification of bifurcation on liver, together with the manual segmentation of liver organ, was employed as a ''ground truth'' for assessing the algorithm's performance. Results: The proposed two-step TPS was assessed with six liver patients. The average error of liver bifurcation between manual identification and calculation for these patients was less than 1.8 mm. The residual errors between manual contour and propagated contour of liver organ using the algorithm fell in the range between 2.1 and 2.8 mm. An index of Dice similarity coefficient (DSC) between manual contour and calculated contour for liver tumor was 93.6% compared with 71.2% from the conventional TPS calculation. Conclusions: A high accuracy (∼2 mm) of the two-step feature based TPS registration algorithm was achievable for registering the liver organ. The discontinuous motion in the upper abdominal region was properly taken into consideration. Clinical implementation of the algorithm will find

  12. WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration

    International Nuclear Information System (INIS)

    Ingram, W; Rao, A; Wendt, R; Court, L; Yang, J; Beadle, B

    2015-01-01

    Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded as it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration

  13. WE-AB-BRA-12: Virtual Endoscope Tracking for Endoscopy-CT Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, W; Rao, A; Wendt, R; Court, L [The University of Texas MD Anderson Cancer Center, Houston, TX (United States); The University of Texas Graduate School of Biomedical Sciences, Houston, TX (United States); Yang, J; Beadle, B [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: The use of endoscopy in radiotherapy will remain limited until we can register endoscopic video to CT using standard clinical equipment. In this phantom study we tested a registration method using virtual endoscopy to measure CT-space positions from endoscopic video. Methods: Our phantom is a contorted clay cylinder with 2-mm-diameter markers in the luminal surface. These markers are visible on both CT and endoscopic video. Virtual endoscope images were rendered from a polygonal mesh created by segmenting the phantom’s luminal surface on CT. We tested registration accuracy by tracking the endoscope’s 6-degree-of-freedom coordinates frame-to-frame in a video recorded as it moved through the phantom, and using these coordinates to measure CT-space positions of markers visible in the final frame. To track the endoscope we used the Nelder-Mead method to search for coordinates that render the virtual frame most similar to the next recorded frame. We measured the endoscope’s initial-frame coordinates using a set of visible markers, and for image similarity we used a combination of mutual information and gradient alignment. CT-space marker positions were measured by projecting their final-frame pixel addresses through the virtual endoscope to intersect with the mesh. Registration error was quantified as the distance between this intersection and the marker’s manually-selected CT-space position. Results: Tracking succeeded for 6 of 8 videos, for which the mean registration error was 4.8±3.5mm (24 measurements total). The mean error in the axial direction (3.1±3.3mm) was larger than in the sagittal or coronal directions (2.0±2.3mm, 1.7±1.6mm). In the other 2 videos, the virtual endoscope got stuck in a false minimum. Conclusion: Our method can successfully track the position and orientation of an endoscope, and it provides accurate spatial mapping from endoscopic video to CT. This method will serve as a foundation for an endoscopy-CT registration

  14. Note: A simple image processing based fiducial auto-alignment method for sample registration.

    Science.gov (United States)

    Robertson, Wesley D; Porto, Lucas R; Ip, Candice J X; Nantel, Megan K T; Tellkamp, Friedjof; Lu, Yinfei; Miller, R J Dwayne

    2015-08-01

    A simple method for the location and auto-alignment of sample fiducials for sample registration using widely available MATLAB/LabVIEW software is demonstrated. The method is robust, easily implemented, and applicable to a wide variety of experiment types for improved reproducibility and increased setup speed. The software uses image processing to locate and measure the diameter and center point of circular fiducials for distance self-calibration and iterative alignment and can be used with most imaging systems. The method is demonstrated to be fast and reliable in locating and aligning sample fiducials, provided here by a nanofabricated array, with accuracy within the optical resolution of the imaging system. The software was further demonstrated to register, load, and sample the dynamically wetted array.

  15. Automatic registration of remote sensing images based on SIFT and fuzzy block matching