WorldWideScience

Sample records for macroscopically homogeneous porous

  1. MACROSCOPIC STRAIN POTENTIALS IN NONLINEAR POROUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    刘熠; 黄筑平

    2003-01-01

    By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper.According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed,and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castafneda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.

  2. Symmetry properties of macroscopic transport coefficients in porous media

    Science.gov (United States)

    Lasseux, D.; Valdés-Parada, F. J.

    2017-04-01

    We report on symmetry properties of tensorial effective transport coefficients characteristic of many transport phenomena in porous systems at the macroscopic scale. The effective coefficients in the macroscopic models (derived by upscaling (volume averaging) the governing equations at the underlying scale) are obtained from the solution of closure problems that allow passing the information from the lower to the upper scale. The symmetry properties of the macroscopic coefficients are identified from a formal analysis of the closure problems and this is illustrated for several different physical mechanisms, namely, one-phase flow in homogeneous porous media involving inertial effects, slip flow in the creeping regime, momentum transport in a fracture relying on the Reynolds model including slip effects, single-phase flow in heterogeneous porous media embedding a porous matrix and a clear fluid region, two-phase momentum transport in homogeneous porous media, as well as dispersive heat and mass transport. The results from the analysis of these study cases are summarized as follows. For inertial single-phase flow, the apparent permeability tensor is irreducibly decomposed into its symmetric (viscous) and skew-symmetric (inertial) parts; for creeping slip-flow, the apparent permeability tensor is not symmetric; for one-phase slightly compressible gas flow in the slip regime within a fracture, the effective transmissivity tensor is symmetric, a result that remains valid in the absence of slip; for creeping one-phase flow in heterogeneous media, the permeability tensor is symmetric; for two-phase flow, we found the dominant permeability tensors to be symmetric, whereas the coupling tensors do not exhibit any special symmetry property; finally for dispersive heat transfer, the thermal conductivity tensors include a symmetric and a skew-symmetric part, the latter being a consequence of convective transport only. A similar result is achieved for mass dispersion. Beyond the

  3. Computational investigation of porous media phase field formulations: Microscopic, effective macroscopic, and Langevin equations

    Science.gov (United States)

    Ververis, Antonios; Schmuck, Markus

    2017-09-01

    We consider upscaled/homogenized Cahn-Hilliard/Ginzburg-Landau phase field equations as mesoscopic formulations for interfacial dynamics in strongly heterogeneous domains such as porous media. A recently derived effective macroscopic formulation, which takes systematically the pore geometry into account, is computationally validated. To this end, we compare numerical solutions obtained by fully resolving the microscopic pore-scale with solutions of the upscaled/homogenized porous media formulation. The theoretically derived convergence rate O (ɛ 1 / 4) is confirmed for circular pore-walls. An even better convergence of O (ɛ1) holds for square shaped pore-walls. We also compute the homogenization error over time for different pore geometries. We find that the quality of the time evolution shows a complex interplay between pore geometry and heterogeneity. Finally, we study the coarsening of interfaces in porous media with computations of the homogenized equation and the microscopic formulation fully resolving the pore space. We recover the experimentally validated and theoretically rigorously derived coarsening rate of O (t 1 / 3) in the periodic porous media setting. In the case of critical quenching and after adding thermal noise to the microscopic porous media formulation, we observe that the influence of thermal fluctuations on the coarsening rate shows after a short, expected phase of universal coarsening, a sharp transition towards a different regime.

  4. Convective mixing in homogeneous porous media flow

    Science.gov (United States)

    Ching, Jia-Hau; Chen, Peilong; Tsai, Peichun Amy

    2017-01-01

    Inspired by the flow processes in the technology of carbon dioxide (CO2) storage in saline formations, we modeled a homogeneous porous media flow in a Hele-Shaw cell to investigate density-driven convection due to dissolution. We used an analogy of the fluid system to mimic the diffusion and subsequent convection when CO2 dissolves in brine, which generates a heavier solution. By varying the permeability, we examined the onset of convection, the falling dynamics, the wavelengths of fingers, and the rate of dissolution, for the Rayleigh number Ra (a dimensionless forcing term which is the ratio of buoyancy to diffusivity) in the range of 2.0 ×104≤Ra≤8.26 ×105 . Our results reveal that the effect of permeability influences significantly the initial convective speed, as well as the later coarsening dynamics of the heavier fingering plumes. However, the total dissolved mass, characterized by a nondimensional Nusselt number Nu, has an insignificant dependence on Ra. This implies that the total dissolution rate of CO2 is nearly constant in high Ra geological porous structures.

  5. Permeability analysis of fractured vuggy porous media based on homogenization theory

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the characteristics of fractured vuggy porous media,a novel mathematical model was proposed to model fluid flow in such media on fine scale,i.e.,the discrete fracture-vug network model.The new model consists of three systems:porous rock system,fracture system,and vug system.The fractures and vugs are embedded in porous rock,and the isolated vugs could be connected via the discrete fracture network.The flow in porous rock and fractures follows Darcy’s law,and the vugs system is free fluid region.Using a two-scale homogenization limit theory,we obtained a macroscopic Darcy’s law governing the media on coarse scale.The theoretical formula of the equivalent permeability of the fractured vuggy porous media was derived.The model and method of this paper were verified by some numerical examples.At the end the permeability of some fractured vuggy porous media with typical fracture-vug structures was analyzed.

  6. Homogenization of the Poisson-Nernst-Planck Equations for Ion Transport in Charged Porous Media

    CERN Document Server

    Schmuck, Markus

    2012-01-01

    Effective Poisson-Nernst-Planck (PNP) equations are derived for macroscopic ion transport in charged porous media. Homogenization analysis is performed for a two-component pe- riodic composite consisting of a dilute electrolyte continuum (described by standard PNP equations) and a continuous dielectric matrix, which is impermeable to the ions and carries a given surface charge. Three new features arise in the upscaled equations: (i) the effective ionic diffusivities and mobilities become tensors, related to the microstructure; (ii) the effective permittivity is also a tensor, depending on the electrolyte/matrix permittivity ratio and the ratio of the Debye screening length to mean pore size; and (iii) the surface charge per volume appears as a continuous "background charge density". The coeffcient tensors in the macroscopic PNP equations can be calculated from periodic reference cell problem, and several examples are considered. For an insulating solid matrix, all gradients are corrected by a single tortuosit...

  7. Wave propagation in a strongly heterogeneous elastic porous medium: Homogenization of Biot medium with double porosities

    Science.gov (United States)

    Rohan, Eduard; Naili, Salah; Nguyen, Vu-Hieu

    2016-08-01

    We study wave propagation in an elastic porous medium saturated with a compressible Newtonian fluid. The porous network is interconnected whereby the pores are characterized by two very different characteristic sizes. At the mesoscopic scale, the medium is described using the Biot model, characterized by a high contrast in the hydraulic permeability and anisotropic elasticity, whereas the contrast in the Biot coupling coefficient is only moderate. Fluid motion is governed by the Darcy flow model extended by inertia terms and by the mass conservation equation. The homogenization method based on the asymptotic analysis is used to obtain a macroscopic model. To respect the high contrast in the material properties, they are scaled by the small parameter, which is involved in the asymptotic analysis and characterized by the size of the heterogeneities. Using the estimates of wavelengths in the double-porosity networks, it is shown that the macroscopic descriptions depend on the contrast in the static permeability associated with pores and micropores and on the frequency. Moreover, the microflow in the double porosity is responsible for fading memory effects via the macroscopic poroviscoelastic constitutive law. xml:lang="fr"

  8. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    Science.gov (United States)

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  9. Accelerating multi-scale sheet forming simulations by exploiting local macroscopic quasi-homogeneities

    Science.gov (United States)

    Gawad, J.; Khairullah, Md; Roose, D.; Van Bael, A.

    2016-08-01

    Multi-scale simulations are computationally expensive if a two-way coupling is employed. In the context of sheet metal forming simulations, a fine-scale representative volume element (RVE) crystal plasticity (CP) model would supply the Finite Element analysis with plastic properties, taking into account the evolution of crystallographic texture and other microstructural features. The main bottleneck is that the fine-scale model must be evaluated at virtually every integration point in the macroscopic FE mesh. We propose to address this issue by exploiting a verifiable assumption that fine-scale state variables of similar RVEs, as well as the derived properties, subjected to similar macroscopic boundary conditions evolve along nearly identical trajectories. Furthermore, the macroscopic field variables primarily responsible for the evolution of fine-scale state variables often feature local quasi-homogeneities. Adjacent integration points in the FE mesh can be then clustered together in the regions where the field responsible for the evolution shows low variance. This way the fine-scale evolution is tracked only at a limited number of material points and the derived plastic properties are propagated to the surrounding integration points subjected to similar deformation. Optimal configurations of the clusters vary in time as the local deformation conditions may change during the forming process, so the clusters must be periodically adapted. We consider two operations on the clusters of integration points: splitting (refinement) and merging (unrefinement). The concept is tested in the Hierarchical Multi-Scale (HMS) framework [1] that computes macroscopic deformations by means of the FEM, whereas the micro-structural evolution at the individual FE integration points is predicted by a CP model. The HMS locally and adaptively approximates homogenized stress responses of the CP model by means of analytical plastic potential or yield criterion function. Our earlier work

  10. Macroscopic momentum and mechanical energy equations for incompressible single-phase flow in porous media

    Science.gov (United States)

    Paéz-García, Catherine Teresa; Valdés-Parada, Francisco J.; Lasseux, Didier

    2017-02-01

    Modeling flow in porous media is usually focused on the governing equations for mass and momentum transport, which yield the velocity and pressure at the pore or Darcy scales. However, in many applications, it is important to determine the work (or power) needed to induce flow in porous media, and this can be achieved when the mechanical energy equation is taken into account. At the macroscopic scale, this equation may be postulated to be the result of the inner product of Darcy's law and the seepage velocity. However, near the porous medium boundaries, this postulate seems questionable due to the spatial variations of the effective properties (velocity, permeability, porosity, etc.). In this work we derive the macroscopic mechanical energy equation using the method of volume averaging for the simple case of incompressible single-phase flow in porous media. Our analysis shows that the result of averaging the pore-scale version of the mechanical energy equation at the Darcy scale is not, in general, the expected product of Darcy's law and the seepage velocity. As a matter of fact, this result is only applicable in the bulk region of the porous medium and, in the derivation of this result, the properties of the permeability tensor are determinant. Furthermore, near the porous medium boundaries, a more novel version of the mechanical energy equation is obtained, which incorporates additional terms that take into account the rapid variations of structural properties taking place in this particular portion of the system. This analysis can be applied to multiphase and compressible flows in porous media and in many other multiscale systems.

  11. Fourier-based strength homogenization of porous media

    Science.gov (United States)

    Bignonnet, François; Hassen, Ghazi; Dormieux, Luc

    2016-11-01

    An efficient numerical method is proposed to upscale the strength properties of heterogeneous media with periodic boundary conditions. The method relies on a formal analogy between strength homogenization and non-linear elasticity homogenization. The non-linear problems are solved on a regular discretization grid using the Augmented Lagrangian version of Fast Fourier Transform based schemes initially introduced for elasticity upscaling. The method is implemented for microstructures with local strength properties governed either by a Green criterion or a Von Mises criterion, including pores or rigid inclusions. A thorough comparison with available analytical results or finite element elasto-plastic simulations is proposed to validate the method on simple microstructures. As an application, the strength of complex microstructures such as the random Boolean model of spheres is then studied, including a comparison to closed-form Gurson and Eshelby based strength estimates. The effects of the microstructure morphology and the third invariant of the macroscopic stress tensor on the homogenized strength are quantitatively discussed.

  12. Fourier-based strength homogenization of porous media

    Science.gov (United States)

    Bignonnet, François; Hassen, Ghazi; Dormieux, Luc

    2016-07-01

    An efficient numerical method is proposed to upscale the strength properties of heterogeneous media with periodic boundary conditions. The method relies on a formal analogy between strength homogenization and non-linear elasticity homogenization. The non-linear problems are solved on a regular discretization grid using the Augmented Lagrangian version of Fast Fourier Transform based schemes initially introduced for elasticity upscaling. The method is implemented for microstructures with local strength properties governed either by a Green criterion or a Von Mises criterion, including pores or rigid inclusions. A thorough comparison with available analytical results or finite element elasto-plastic simulations is proposed to validate the method on simple microstructures. As an application, the strength of complex microstructures such as the random Boolean model of spheres is then studied, including a comparison to closed-form Gurson and Eshelby based strength estimates. The effects of the microstructure morphology and the third invariant of the macroscopic stress tensor on the homogenized strength are quantitatively discussed.

  13. A bipotential-based limit analysis and homogenization of ductile porous materials with non-associated Drucker-Prager matrix

    Science.gov (United States)

    Cheng, Long; Jia, Yun; Oueslati, Abdelbacet; de Saxcé, Géry; Kondo, Djimedo

    2015-04-01

    In Gurson's footsteps, different authors have proposed macroscopic plastic models for porous solid with pressure-sensitive dilatant matrix obeying the normality law (associated materials). The main objective of the present paper is to extend this class of models to porous materials in the context of non-associated plasticity. This is the case of Drucker-Prager matrix for which the dilatancy angle is different from the friction one, and classical limit analysis theory cannot be applied. For such materials, the second last author has proposed a relevant modeling approach based on the concept of bipotential, a function of both dual variables, the plastic strain rate and stress tensors. On this ground, after recalling the basic elements of the Drucker-Prager model, we present the corresponding variational principles and the extended limit analysis theorems. Then, we formulate a new variational approach for the homogenization of porous materials with a non-associated matrix. This is implemented by considering the hollow sphere model with a non-associated Drucker-Prager matrix. The proposed procedure delivers a closed-form expression of the macroscopic bifunctional from which the criterion and a non-associated flow rule are readily obtained for the porous material. It is shown that these general results recover several available models as particular cases. Finally, the established results are assessed and validated by comparing their predictions to those obtained from finite element computations carried out on a cell representing the considered class of materials.

  14. Macroscopic third-body wear caused by porous metal surface fragments in total hip arthroplasty.

    Science.gov (United States)

    Kleinhans, Jennifer A; Jakubowitz, Eike; Seeger, Joern B; Heisel, Christian; Kretzer, J Philippe

    2009-05-01

    Implants with surfaces of various porosities and pore sizes are in clinical use. This article demonstrates how macroscopic porous metal fragments can detach from the implant surface in total hip arthroplasty (THA) and cause significant third-body damage such as deep scratches and indentations in implants' bearing surfaces. Radiographs prior to revision surgery due to aseptic loosening of the acetabular component revealed the presence of numerous small metal fragments approximately 1 to 2 mm in size in the periarticular area. The size, shape, and material of the metal fragments (cobalt-chromium-molybdenum [CoCrMo]) indicated that they originated from the porous metal surface. In this case, the acetabular liner composite material consisted of two-thirds polyurethane and one-third aluminium oxide ceramic. The femoral head was made of aluminium oxide ceramic. The aluminium oxide femoral head, which had been in situ for 21 years, showed no signs of macroscopic indentations or scratches, suggesting that an aluminium oxide bearing surface, which is significantly harder than the CoCrMo debris, is not significantly affected by metal debris embedment in the counterface material. The polyurethane-aluminium oxide composite material used for the acetabular liner is not comparable to a traditional ceramic bearing surface material. Debris damaged the surface of and became embedded in the liner, causing accelerated wear of the femoral head. In porous metal surface THA, ceramic-on-ceramic bearing couples should, due to their superior hardness, be considered to prevent excessive wear, including debris embedment and scratching of the bearing surfaces, especially in revision cases.

  15. Computation of the longitudinal and transverse dispersion coefficient in an adsorbing porous medium using homogenization

    NARCIS (Netherlands)

    Bruining, H.; Darwish, M.; Rijnks, A.

    2011-01-01

    This article compares for the first time, local longitudinal and transverse dispersion coefficients obtained by homogenization with experimental data of dispersion coefficients in porous media, using the correct porosity dependence. It is shown that the longitudinal dispersion coefficient can be

  16. Computation of the Longitudinal and Transverse Dispersion Coefficient in an Adsorbing Porous Medium Using Homogenization

    NARCIS (Netherlands)

    Bruining, J.; Darwish, M.; Rijnks, A.

    2011-01-01

    This article compares for the first time, local longitudinal and transverse dispersion coefficients obtained by homogenization with experimental data of dispersion coefficients in porous media, using the correct porosity dependence. It is shown that the longitudinal dispersion coefficient can be

  17. Limit analysis and homogenization of porous materials with Mohr-Coulomb matrix. Part I: Theoretical formulation

    Science.gov (United States)

    Anoukou, K.; Pastor, F.; Dufrenoy, P.; Kondo, D.

    2016-06-01

    The present two-part study aims at investigating the specific effects of Mohr-Coulomb matrix on the strength of ductile porous materials by using a kinematic limit analysis approach. While in the Part II, static and kinematic bounds are numerically derived and used for validation purpose, the present Part I focuses on the theoretical formulation of a macroscopic strength criterion for porous Mohr-Coulomb materials. To this end, we consider a hollow sphere model with a rigid perfectly plastic Mohr-Coulomb matrix, subjected to axisymmetric uniform strain rate boundary conditions. Taking advantage of an appropriate family of three-parameter trial velocity fields accounting for the specific plastic deformation mechanisms of the Mohr-Coulomb matrix, we then provide a solution of the constrained minimization problem required for the determination of the macroscopic dissipation function. The macroscopic strength criterion is then obtained by means of the Lagrangian method combined with Karush-Kuhn-Tucker conditions. After a careful analysis and discussion of the plastic admissibility condition associated to the Mohr-Coulomb criterion, the above procedure leads to a parametric closed-form expression of the macroscopic strength criterion. The latter explicitly shows a dependence on the three stress invariants. In the special case of a friction angle equal to zero, the established criterion reduced to recently available results for porous Tresca materials. Finally, both effects of matrix friction angle and porosity are briefly illustrated and, for completeness, the macroscopic plastic flow rule and the voids evolution law are fully furnished.

  18. Homogenization of steady-state creep of porous metals using three-dimensional microstructural reconstructions

    DEFF Research Database (Denmark)

    Kwok, Kawai; Boccaccini, Dino; Persson, Åsa Helen;

    2016-01-01

    The effective steady-state creep response of porous metals is studied by numerical homogenization and analytical modeling in this paper. The numerical homogenization is based on finite element models of three-dimensional microstructures directly reconstructed from tomographic images. The effects ...... model, and closely matched by the Gibson-Ashby compression and the Ramakrishnan-Arunchalam creep models. [All rights reserved Elsevier]....

  19. Homogeneous porous perovskite supports for thin dense oxygen separation membranes

    NARCIS (Netherlands)

    Haar, van der L.M.; Verweij, H.

    2000-01-01

    Porous La1−xSrxCoO3−δ substrates (x=0.7, 0.5 and 0.2) were prepared as supports for thin mixed ionic-electronic conducting perovskite membranes. The preparation method is based on pyrolythic powder preparation, followed by high temperature calcination to reduce the sinter activity of the powder. Sub

  20. Reconstruction of material properties profiles in one-dimensional macroscopically inhomogeneous rigid frame porous media in the frequency domain.

    Science.gov (United States)

    De Ryck, L; Lauriks, W; Leclaire, P; Groby, J P; Wirgin, A; Depollier, C

    2008-09-01

    The present paper deals with the inverse scattering problem involving macroscopically inhomogeneous rigid frame porous media. It consists of the recovery, from acoustic measurements, of the profiles of spatially varying material parameters by means of an optimization approach. The resolution is based on the modeling of acoustic wave propagation in macroscopically inhomogeneous rigid frame porous materials, which was recently derived from the generalized Biot's theory. In practice, the inverse problem is solved by minimizing an objective function defined in the least-square sense by the comparison of the calculated reflection (and transmission) coefficient(s) with the measured or synthetic one(s), affected or not by additive Gaussian noise. From an initial guess, the profiles of the x-dependent material parameters are reconstructed iteratively with the help of a standard conjugate gradient method. The convergence rate of the latter and the accuracy of the reconstructions are improved by the availability of an analytical gradient.

  1. Homogenized models for a short-time filtration in elastic porous media

    Directory of Open Access Journals (Sweden)

    Anvarbek M. Meirmanov

    2008-01-01

    Full Text Available We consider a linear system of differential equations describing a joint motion of elastic porous body and fluid occupying porous space. The rigorous justification, under various conditions imposed on physical parameters, is fulfilled for homogenization procedures as the dimensionless size of the pores tends to zero, while the porous body is geometrically periodic and a characteristic time of processes is small enough. Such kind of models may describe, for example, hydraulic fracturing or acoustic or seismic waves propagation. As the results, we derive homogenized equations involving non-isotropic Stokes system for fluid velocity coupled with two different types of acoustic equations for the solid component, depending on ratios between physical parameters, or non-isotropic Stokes system for one-velocity continuum. The proofs are based on Nguetseng's two-scale convergence method of homogenization in periodic structures.

  2. Homogeneous luminescent stain etched porous silicon elaborated by a new multi-step stain etching method

    Energy Technology Data Exchange (ETDEWEB)

    Hajji, M., E-mail: mhajji2001@yahoo.fr [Laboratoire de Photovoltaïque, Centre de Recherche et des Technologies de l’Energie, Technopôle de Borj-Cédria BP 95, Hammam-Lif 2050 (Tunisia); Institut Supérieur d’Electronique et de Communication de Sfax, route Menzel Chaker Km 0.5, BP 868, Sfax 3018 (Tunisia); Khalifa, M.; Slama, S. Ben; Ezzaouia, H. [Laboratoire de Photovoltaïque, Centre de Recherche et des Technologies de l’Energie, Technopôle de Borj-Cédria BP 95, Hammam-Lif 2050 (Tunisia)

    2013-11-01

    This paper presents a new method to produce porous silicon which derived from the conventional stain etching (SE) method. But instead of one etching step that leads to formation of porous layer, the substrate is subjected to an initial etching step with a duration Δt{sub 0} followed by a number of supplementary short steps that differs from a layer to another. The duration of the initial step is just the necessary time to have a homogenous porous layer on the whole surface of the substrate. It was found that this duration is largely dependent of the doping type and level of the silicon substrate. The duration of supplementary steps was kept as short as possible to prevent the formation of bubbles on the silicon surface during silicon dissolution which leads generally to inhomogeneous porous layers. It is found from surface investigation by atomic force microscopy (AFM) that multistep stain etching (MS-SE) method allows to produce homogeneous porous silicon nanostructures compared to the conventional SE method. The chemical composition of the obtained porous layers has been evaluated using Fourier transform infrared spectroscopy (FTIR). Photoluminescence (PL) measurement shows that porous layers produced by SE and MS-SE methods have comparable spectra indicating that those layers are composed of nanocrystallites with comparable sizes. But the intensity of photoluminescence of layer elaborated by MS-SE method is higher than that elaborated by the SE method. Total reflectance characteristics show that the presented method allows the production of porous silicon layers with controllable thicknesses and optical properties. Results for porous silicon layers elaborated on heavily doped n-type silicon show that the reflectance can be reduced to values less than 3% in the major part of the spectrum.

  3. HOMOGENIZATION OF A STATIONARY NAVIER-STOKES FLOW IN POROUS MEDIUM WITH THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Yao Zhengan; Zhao Hongxing

    2008-01-01

    The article studies the homogenization of a stationary Navier-Stokes fluid in porous medium with thin film under Dirichlet boundary condition. At the end of the article, "Darcy's law" is rigorously derived from this model as the parameter e tends to zero, which is independent of the coordinates towards the thickness.

  4. A homogenization-based constitutive model for two-dimensional viscoplastic porous media

    Science.gov (United States)

    Danas, Kostas; Idiart, Martin I.; Ponte Castañeda, Pedro

    2008-01-01

    An approximate model based on the so-called 'second-order' nonlinear homogenization method is proposed to estimate the effective behavior of viscoplastic porous materials exhibiting transversely isotropic symmetry. The model is constructed in such a way that it reproduces exactly the behavior of a 'composite-cylinder assemblage' in the limit of in-plane hydrostatic loading, and therefore coincides with the hydrostatic limit of Gurson's criterion for plastic porous materials. As a consequence, the new model improves on earlier 'second-order' homogenization estimates, which have been found to be overly stiff at sufficiently high triaxialities and nonlinearities. The proposed model is compared with exact results obtained for a special class of porous materials with sequentially laminated microstructures. The agreement is found to be excellent for the entire range of stress triaxialities, and all values of the porosity and nonlinearity considered. To cite this article: K. Danas et al., C. R. Mecanique 336 (2008).

  5. Macroscopically Oriented Porous Materials with Periodic Ordered Structures: From Zeolites and Metal-Organic Frameworks to Liquid-Crystal-Templated Mesoporous Materials.

    Science.gov (United States)

    Cho, Joonil; Ishida, Yasuhiro

    2017-07-01

    Porous materials with molecular-sized periodic structures, as exemplified by zeolites, metal-organic frameworks, or mesoporous silica, have attracted increasing attention due to their range of applications in storage, sensing, separation, and transformation of small molecules. Although the components of such porous materials have a tendency to pack in unidirectionally oriented periodic structures, such ideal types of packing cannot continue indefinitely, generally ceasing when they reach a micrometer scale. Consequently, most porous materials are composed of multiple randomly oriented domains, and overall behave as isotropic materials from a macroscopic viewpoint. However, if their channels could be unidirectionally oriented over a macroscopic scale, the resultant porous materials might serve as powerful tools for manipulating molecules. Guest molecules captured in macroscopically oriented channels would have their positions and directions well-defined, so that molecular events in the channels would proceed in a highly controlled manner. To realize such an ideal situation, numerous efforts have been made to develop various porous materials with macroscopically oriented channels. An overview of recent studies on the synthesis, properties, and applications of macroscopically oriented porous materials is presented. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Predicting the influence of long-range molecular interactions on macroscopic-scale diffusion by homogenization of the Smoluchowski equation

    Energy Technology Data Exchange (ETDEWEB)

    Kekenes-Huskey, P. M., E-mail: pkekeneshuskey@ucsd.edu [Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States); Gillette, A. K. [Department of Mathematics, University of Arizona, Tucson, Arizona 85721-0089 (United States); McCammon, J. A. [Department of Pharmacology, University of California San Diego, La Jolla, California 92093-0636 (United States); Department of Chemistry, Howard Hughes Medical Institute, University of California San Diego, La Jolla, California 92093-0636 (United States)

    2014-05-07

    The macroscopic diffusion constant for a charged diffuser is in part dependent on (1) the volume excluded by solute “obstacles” and (2) long-range interactions between those obstacles and the diffuser. Increasing excluded volume reduces transport of the diffuser, while long-range interactions can either increase or decrease diffusivity, depending on the nature of the potential. We previously demonstrated [P. M. Kekenes-Huskey et al., Biophys. J. 105, 2130 (2013)] using homogenization theory that the configuration of molecular-scale obstacles can both hinder diffusion and induce diffusional anisotropy for small ions. As the density of molecular obstacles increases, van der Waals (vdW) and electrostatic interactions between obstacle and a diffuser become significant and can strongly influence the latter's diffusivity, which was neglected in our original model. Here, we extend this methodology to include a fixed (time-independent) potential of mean force, through homogenization of the Smoluchowski equation. We consider the diffusion of ions in crowded, hydrophilic environments at physiological ionic strengths and find that electrostatic and vdW interactions can enhance or depress effective diffusion rates for attractive or repulsive forces, respectively. Additionally, we show that the observed diffusion rate may be reduced independent of non-specific electrostatic and vdW interactions by treating obstacles that exhibit specific binding interactions as “buffers” that absorb free diffusers. Finally, we demonstrate that effective diffusion rates are sensitive to distribution of surface charge on a globular protein, Troponin C, suggesting that the use of molecular structures with atomistic-scale resolution can account for electrostatic influences on substrate transport. This approach offers new insight into the influence of molecular-scale, long-range interactions on transport of charged species, particularly for diffusion-influenced signaling events

  7. Dynamics of a Highly Viscous Circular Blob in Homogeneous Porous Media

    Directory of Open Access Journals (Sweden)

    Vandita Sharma

    2017-06-01

    Full Text Available Viscous fingering is ubiquitous in miscible displacements in porous media, in particular, oil recovery, contaminant transport in aquifers, chromatography separation, and geological CO2 sequestration. The viscosity contrasts between heavy oil and water is several orders of magnitude larger than typical viscosity contrasts considered in the majority of the literature. We use the finite element method (FEM-based COMSOL Multiphysics simulator to simulate miscible displacements in homogeneous porous media with very large viscosity contrasts. Our numerical model is suitable for a wide range of viscosity contrasts covering chromatographic separation as well as heavy oil recovery. We have successfully captured some interesting and previously unexplored dynamics of miscible blobs with very large viscosity contrasts in homogeneous porous media. We study the effect of viscosity contrast on the spreading and the degree of mixing of the blob. Spreading (variance of transversely averaged concentration follows the power law t 3 . 34 for the blobs with viscosity ∼ O ( 10 2 and higher, while degree of mixing is found to vary non-monotonically with log-mobility ratio. Moreover, in the limit of very large viscosity contrast, the circular blob behaves like an erodible solid body and the degree of mixing approaches the viscosity-matched case.

  8. Study of displacement efficiency and flow behavior of foamed gel in non-homogeneous porous media.

    Directory of Open Access Journals (Sweden)

    Yanling Wang

    Full Text Available Field trials have demonstrated that foamed gel is a very cost-effective technology for profile modification and water shut-off. However, the mechanisms of profile modification and flow behavior of foamed gel in non-homogeneous porous media are not yet well understood. In order to investigate these mechanisms and the interactions between foamed gel and oil in porous media, coreflooding and pore-scale visualization waterflooding experiments were performed in the laboratory. The results of the coreflooding experiment in non-homogeneous porous media showed that the displacement efficiency improved by approximately 30% after injecting a 0.3 pore volume of foamed gel, and was proportional to the pore volumes of the injected foamed gel. Additionally, the mid-high permeability zone can be selectively plugged by foamed gel, and then oil located in the low permeability zone will be displaced. The visualization images demonstrated that the amoeba effect and Jamin effect are the main mechanisms for enhancing oil recovery by foamed gel. Compared with conventional gel, a unique benefit of foamed gel is that it can pass through micropores by transforming into arbitrary shapes without rupturing, this phenomenon has been named the amoeba effect. Additionally, the stability of foam in the presence of crude oil also was investigated. Image and statistical analysis showed that these foams boast excellent oil resistance and elasticity, which allows them to work deep within formations.

  9. Scaling of Macroscopic Properties of Porous Sediments Experiencing Compaction: Implications for Geothermal Gradient and Methane Inventory

    CERN Document Server

    Goldobin, Denis S

    2011-01-01

    Porous sediments in geological systems experience stress by the above-laying mass and consequent compaction, which may be significantly nonuniform across the massif. We derive scaling laws for the compaction of sediments of similar geological origin. With these laws, we evaluate the dependence of the transport properties of a fluid-saturated porous medium (permeability, effective molecular diffusivity, hydrodynamic dispersion, and thermal conductivity) on its porosity. In particular, we demonstrate irrelevance of the assumption of a uniform geothermal gradient for systems with nonuniform compaction and importance of the derived scaling laws for mathematical modelling of methane hydrate deposits, which are believed to have potential for impact on global climate change and Glacial-Interglacial cycles.

  10. Source-like solution for radial imbibition into a homogeneous semi-infinite porous medium

    CERN Document Server

    Xiao, Junfeng; Attinger, Daniel

    2012-01-01

    We describe the imbibition process from a point source into a homogeneous semi-infinite porous material. When body forces are negligible, the advance of the wetting front is driven by capillary pressure and resisted by viscous forces. With the assumption that the wetting front assumes a hemispherical shape, our analytical results show that the absorbed volume flow rate is approximately constant with respect to time, and that the radius of the wetting evolves in time as r \\approx t^(1/3). This cube-root law for the long-time dynamics is confirmed by experiments using a packed cell of glass microspheres with average diameter of 42 {\\mu}m. This result complements the classical one-dimensional imbibition result where the imbibition length l \\approx t^(1/2), and studies in axisymmetric porous cones with small opening angles where l \\approx t^(1/4) at long times.

  11. A new set of equations describing immiscible two-phase flow in homogeneous porous media

    CERN Document Server

    Hansen, Alex; Bedeaux, Dick; Kjelstrup, Signe; Savani, Isha; Vassvik, Morten

    2016-01-01

    Based on a simple scaling assumption concerning the total flow rate of immiscible two-phase flow in a homogeneous porous medium under steady-state conditions and a constant pressure drop, we derive two new equations that relate the total flow rate to the flow rates of each immiscible fluid. By integrating these equations, we present two integrals giving the flow rate of each fluid in terms of the the total flow rate. If we in addition assume that the flow obeys the relative permeability (generalized Darcy) equations, we find direct expressions for the two relative permeabilities and the capillary pressure in terms of the total flow rate. Hence, only the total flow rate as a function of saturation at constant pressure drop across the porous medium needs to be measured in order to obtain all three quantities. We test the equations on numerical and experimental systems.

  12. Role of non-ideality for the ion transport in porous media: derivation of the macroscopic equations using upscaling

    CERN Document Server

    Allaire, Gregoire; Dufreche, Jean-Francois; Mikelic, Andro; Piatnitski, Andrey

    2013-01-01

    This paper is devoted to the homogenization (or upscaling) of a system of partial differential equations describing the non-ideal transport of a N-component electrolyte in a dilute Newtonian solvent through a rigid porous medium. Realistic non-ideal effects are taken into account by an approach based on the mean spherical approximation (MSA) model which takes into account finite size ions and screening effects. We first consider equilibrium solutions in the absence of external forces. In such a case, the velocity and diffusive fluxes vanish and the equilibrium electrostatic potential is the solution of a variant of Poisson-Boltzmann equation coupled with algebraic equations. Contrary to the ideal case, this nonlinear equation has no monotone structure. However, based on invariant region estimates for Poisson-Boltzmann equation and for small characteristic value of the solute packing fraction, we prove existence of at least one solution. To our knowledge this existence result is new at this level of generality...

  13. A new methodology for determination of macroscopic transport parameters in drying porous media

    Science.gov (United States)

    Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.

    2015-12-01

    Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.

  14. A mathematical modelling of imbibition phenomenon in inclined homogenous porous media during oil recovery process

    Directory of Open Access Journals (Sweden)

    Shreekant Pathak

    2016-09-01

    Full Text Available The approximate solution of imbibition phenomenon governed by non-linear partial differential equation is discussed in the present paper. Primary oil recovery process due to natural soil pressure, but in the secondary oil recovery process water flooding plays an important role. When water is injected in the injection well for recovering the reaming oil after primary oil recovery process, it comes to contact with the native oil and at that time the imbibition phenomenon occurs due to different viscosity. For the mathematical modelling, we consider the homogeneous porous medium and optimal homotopy analysis method has been used to solve the partial differential equation governed by it. The graphical representation of the solution is given by MATHEMATICA and physically interpreted.

  15. The analysis of MHD blood flows through porous arteries using a locally modified homogenous nanofluids model.

    Science.gov (United States)

    Akbarzadeh, Pooria

    2016-05-12

    In this paper, magneto-hydrodynamic blood flows through porous arteries are numerically simulated using a locally modified homogenous nanofluids model. Blood is taken into account as the third-grade non-Newtonian fluid containing nanoparticles. In the modified nanofluids model, the viscosity, density, and thermal conductivity of the solid-liquid mixture (nanofluids) which are commonly utilized as an effective value, are locally combined with the prevalent single-phase model. The modified governing equations are solved numerically using Newton's method and a block tridiagonal matrix solver. The results are compared to the prevalent nanofluids single-phase model. In addition, the efficacies of important physical parameters such as pressure gradient, Brownian motion parameter, thermophoresis parameter, magnetic-field parameter, porosity parameter, and etc. on temperature, velocity and nanoparticles concentration profiles are examined.

  16. Effect of irregularity on torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half-space

    Indian Academy of Sciences (India)

    Anup Saha; Santimoy Kundu; Shishir Gupta; Pramod Kumar Vaishnav

    2016-06-01

    The present paper is concerned with the propagation of torsional surface waves in an initially stressedanisotropic porous layer sandwiched between homogeneous and non-homogeneous half-space. We assumethe quadratic inhomogeneity in rigidity and density in the lower half-space and irregularity is taken inthe form of rectangle at the interface separating the layer from the lower half-space. The dispersionequation for torsional waves has been obtained in a closed form. Velocity equation is also obtained inthe absence of irregularity. The study reveals that the presence of irregularity, initial stress, porosity,inhomogeneity and anisotropy factor in the dispersion equation approves the significant effect of theseparameters in the propagation of torsional waves in porous medium. It has also been observed that fora uniform media, the velocity equation reduces to the classical result of Love wave.

  17. Effect of irregularity on torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half-space

    Science.gov (United States)

    Saha, Anup; Kundu, Santimoy; Gupta, Shishir; Vaishnav, Pramod Kumar

    2016-06-01

    The present paper is concerned with the propagation of torsional surface waves in an initially stressed anisotropic porous layer sandwiched between homogeneous and non-homogeneous half-space. We assume the quadratic inhomogeneity in rigidity and density in the lower half-space and irregularity is taken in the form of rectangle at the interface separating the layer from the lower half-space. The dispersion equation for torsional waves has been obtained in a closed form. Velocity equation is also obtained in the absence of irregularity. The study reveals that the presence of irregularity, initial stress, porosity, inhomogeneity and anisotropy factor in the dispersion equation approves the significant effect of these parameters in the propagation of torsional waves in porous medium. It has also been observed that for a uniform media, the velocity equation reduces to the classical result of Love wave.

  18. Numerical solution of instability phenomenon arising in double phase flow through inclined homogeneous porous media

    Directory of Open Access Journals (Sweden)

    Ravi Borana

    2016-09-01

    Full Text Available In the petroleum reservoir at an early stage the oil is recovered due to existing natural pressure and such type of oil recovery is referred as primary oil recovery. It ends when pressure equilibrium occurs and still large amount of oil remains in the reservoir. Consequently, secondary oil recovery process is employed by injection water into some injection wells to push oil towards the production well. The instability phenomenon arises during secondary oil recovery process. When water is injected into the oil filled region, due to the force of injecting water and difference in viscosities of water and native oil, protuberances occur at the common interface. It gives rise to the shape of fingers (protuberances at common interface. The injected water shoots through inter connected capillaries at very high speed. It appears in the form of irregular trembling fingers, filled with injected water in the native oil field; this is due to the immiscibility of water and oil. The homogeneous porous medium is considered with a small inclination with the horizontal, the basic parameters porosity and permeability remain uniform throughout the porous medium. Based on the mass conservation principle and important Darcy's law under the specific standard relationships and basic assumptions considered, the governing equation yields a non-linear partial differential equation. The Crank–Nicolson finite difference scheme is developed and on implementing the boundary conditions the resulting finite difference scheme is implemented to obtain the numerical results. The numerical results are obtained by generating a MATLAB code for the saturation of water which decreases with the space variable and increases with time. The obtained numerical solution is efficient, accurate, and reliable, matches well with the physical phenomenon.

  19. Three-dimensional miscible displacement simulations in homogeneous porous media with gravity override

    Science.gov (United States)

    Riaz, A.; Meiburg, E.

    2003-11-01

    High-accuracy three-dimensional numerical simulations of miscible displacements with gravity override in homogeneous porous media are carried out for the quarter five-spot configuration. Special emphasis is placed on describing the influence of viscous and gravitational effects on the overall displacement dynamics in terms of the vorticity variable. Even for neutrally buoyant displacements, three-dimensional effects are seen to change the character of the flow significantly, in contrast to earlier findings for rectilinear displacements. At least in part this can be attributed to the time dependence of the most dangerous vertical instability mode. Density differences influence the flow primarily by establishing a narrow gravity layer, in which the effective Péclet number is enhanced owing to the higher flow rate. However, buoyancy forces of a certain magnitude can lead to a pinch-off of the gravity layer, thereby slowing it down. Overall, an increase of the gravitational parameter is found to enhance mostly the vertical perturbations, while larger Pe values act towards amplifying horizontal disturbances. The asymptotic rate of growth of the mixing length varies only with Péclet number. For large Péclet numbers, an asymptotic value of 0.7 is observed. A scaling law for the thickness of the gravity layer is obtained as well. In contrast to immiscible flow displacements, it is found to increase with the gravity parameter.

  20. A 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion.

    Science.gov (United States)

    Debbaut, Charlotte; Vierendeels, Jan; Siggers, Jennifer H; Repetto, Rodolfo; Monbaliu, Diethard; Segers, Patrick

    2014-01-01

    The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was treated as a porous medium (isotropic or anisotropic permeability). Models were solved using computational fluid dynamics. VS inclusion resulted in more spatially homogeneous perfusion. Anisotropic permeability resulted in a larger axial velocity component than isotropic permeability. A parameter study revealed that results are most sensitive to the lobule size and radial pressure drop. Our model provides insight into hepatic microhaemodynamics, and suggests that inclusion of VS in the model leads to perfusion patterns that are likely to reflect physiological reality. The model has potential for applications to unphysiological and pathological conditions.

  1. Effective pressure interface law for transport phenomena between an unconfined fluid and a porous medium using homogenization

    CERN Document Server

    Marciniak-Czochra, Anna

    2012-01-01

    We present modeling of the incompressible viscous flows in the domain containing an unconfined fluid and a porous medium. For such setting a rigorous derivation of the Beavers-Joseph-Saffman interface condition was undertaken by J\\"ager and Mikeli\\'c [SIAM J. Appl. Math. \\rm 60 (2000), p. 1111-1127] using the homogenization method. So far the interface law for the pressure was conceived and confirmed only numerically. In this article we justify rigorously the pressure jump condition using the corresponding boundary layer.

  2. Macroscopic numerical simulation model of multi-constituent fluid flows in porous medium; Modele macroscopique de simulation numerique d'ecoulements de fluides multiconstituants en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Wilbois, B.

    2003-07-01

    In this work, a new model is built which allows to take into consideration the overall mass transfer phenomena (in particular convection) taking place inside a mixture of n{sub c} constituents in a porous medium. This model should allow to foresee the quantitative composition of fluids in oil fields and also to improve the knowledge of the flow of different species inside mixtures. The overall physical phenomena taking place at oil fields is explained in the first chapter. Chapter 2 recalls some thermodynamical notions at the equilibrium and outside equilibrium. These notions, necessary to understand the forecasting methods used by petroleum geologists, are described in chapter 3. This chapter includes also a bibliographic study about the methods of simulation of mass and heat transfers in porous media. In chapter 4, using the thermodynamical relations of irreversible processes described in chapter 2, a new type of macroscopic model allowing to describe the overall phenomena analyzed is developed. The numerical method used to solve this new system of equations is precised. Finally, chapter 5 proposes a set of cases for the validation of the uncoupled phenomena and some qualitative examples of modeling of coupled phenomena. (J.S.)

  3. Magnetic resonance imaging measurements evidence weak dispersion in homogeneous porous media

    Science.gov (United States)

    Lehoux, A. P.; Rodts, S.; Faure, P.; Michel, E.; Courtier-Murias, D.; Coussot, P.

    2016-11-01

    We measure the dispersion coefficient through homogeneous bead or sand packings at different flow rates from direct magnetic resonance imaging (MRI) visualizations of the transport characteristics of a pulse of paramagnetic nanoparticles. Through two-dimensional imaging we observe homogeneous dispersion inside the sample, but we show that entrance effects may induce significant radial heterogeneities, which would affect the interpretation of the breakthrough curve. Another MRI approach then provides quantitative measurements of the evolution in time of the longitudinal particle distribution in the sample. These data can be analyzed to deduce the coefficient of dispersion independently of entrance effects. The values obtained for this "effective" dispersion coefficient are almost ten times lower than the commonly accepted values.

  4. Simplified numerical model for clarifying scaling behavior in the intermediate dispersion regime in homogeneous porous media

    CERN Document Server

    van Milligen, B Ph

    2014-01-01

    The dispersion of solute in porous media shows a non-linear increase in the transition from diffusion to advection dominated dispersion as the flow velocity is raised. In the past, the behavior in this intermediate regime has been explained with a variety of models. {We present and use a simplified numerical model which does not contain any turbulence, Taylor dispersion, or fractality. With it, we show that the non-linearity in the intermediate regime nevertheless occurs. Furthermore,} we show that that the intermediate regime can be regarded as a phase transition between random, diffusive transport at low flow velocity and ordered transport controlled by the geometry of the pore space at high flow velocities. This phase transition explains the first-order behavior in the intermediate regime. A new quantifier, the ratio of the amount of solute in dominantly advective versus dominantly diffusive pore channels, plays the role of `order parameter' of this phase transition. Taylor dispersion, often invoked to exp...

  5. Constitutive Laws for Visco-plastic Porous Medium Shaped by Regularly Distributed Circular Particles

    Institute of Scientific and Technical Information of China (English)

    Yunzhu Cai; Huaicui Li

    2016-01-01

    A numerical study is presented, using a homogenization technique to consider the plain strain problem of visco⁃plastic porous medium shaped by regularly distributed circular particles. Based on a rigid plastic material, the paper derives the macroscopic constitutive laws for homogenous equivalent medium. By changing the shape parameter of circular particles, the effect of pore shape on macroscopic constitutive laws is explored. Yield surfaces with different pore shapes are obtained. About voids, a two⁃scale conception is introduced, which regards main void as macroscopic scale and secondary cavities as microscopic scale. The macroscopic potential involving main and secondary voids is achieved. The proposed macroscopic constitutive law taking microscopic features as influence factors is helpful for exploring the macroscopic mechanical properties of porous medium when numerical simulation is required.

  6. Modeling contaminant transport in homogeneous porous media with fractional advection-dispersion equation

    Institute of Scientific and Technical Information of China (English)

    HUANG; Guanhua; HUANG; Quanzhong; ZHAN; Hongbin

    2005-01-01

    The newly developed Fractional Advection-Dispersion Equation (FADE), which is FADE was extended and used in this paper for modelling adsorbing contaminant transport by adding an adsorbing term. A parameter estimation method and its corresponding FORTRAN based program named FADEMain were developed on the basis of Nonlinear Least Square Algorithm and the analytical solution for one-dimensional FADE under the conditions of step input and steady state flow. Data sets of adsorbing contaminants Cd and NH4+-N transport in short homogeneous soil columns and conservative solute NaCI transport in a long homogeneous soil column, respectively were used to estimate the transport parameters both by FADEMain and the advection-dispersion equation (ADE) based program CXTFIT2.1. Results indicated that the concentration simulated by FADE agreed well with the measured data. Compared to the ADE model, FADE can provide better simulation for the concentration in the initial lower concentration part and the late higher concentration part of the breakthrough curves for both adsorbing contaminants. The dispersion coefficients for ADE were from 0.13 to 7.06 cm2/min, while the dispersion coefficients for FADE ranged from 0.119 to 3.05 cm1.856/min for NaCI transport in the long homogeneous soil column. We found that the dispersion coefficient of FADE increased with the transport distance, and the relationship between them can be quantified with an exponential function. Less scale-dependent was also found for the dispersion coefficient of FADE with respect to ADE.

  7. A pore scale investigation of crude oil distribution and removal from homogeneous porous media during surfactant-induced remediation.

    Science.gov (United States)

    Ghosh, Jaydeep; Tick, Geoffrey R

    2013-12-01

    A pore-scale study was conducted to understand interfacial processes contributing to the removal of crude oils from a homogeneous porous medium during surfactant-induced remediation. Synchrotron X-ray microtomography (SXM) was used to obtain high-resolution three-dimensional images of the two-fluid-phase oil/water system, and quantify temporal changes in oil blob distribution, blob morphology, and blob surface area before and after sequential surfactant flooding events. The reduction of interfacial tension in conjunction with the sufficient increase in viscous forces as a result of surfactant flushing was most likely responsible for mobilization and recovery of the two lighter oil fractions. However, corresponding increases in viscous forces as a result of a reduction of interfacial tension were insufficient to initiate and maintain the displacement (recovery) of the heavy crude oil fraction during surfactant flushing. In contrast to the heavy oil system, changes in trapping number for the lighter fraction crude oils were sufficient to initiate mobilization as a result of surfactant flushing. Both light and medium oil fractions showed an increase in the number of blobs and total blob surface area, and a reduction in the total volume after 2 pore volumes (PVs) of surfactant flooding. This increase in surface area was attributed to the change in blob morphology from spherical to more complex non-spherical ganglia shape characteristics. Moreover, the increase in the number of oil blobs from larger to smaller particles after surfactant flushing may have contributed to the greater cumulative oil surface area. Complete recovery of light and medium oil fractions resulted after 5 PVs of surfactant flooding, whereas the displacement efficiency of heavy-oil fraction was severely limited, even after extended periods of flushing. The results of these experiments demonstrate the utility of SXM for quantifying pore-scale interfacial characteristics for specific crude-oil-fraction/porous

  8. Lattice Boltzmann simulation of immiscible fluid displacement in porous media: Homogeneous versus heterogeneous pore network

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haihu, E-mail: haihu.liu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049 (China); James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States); Zhang, Yonghao [James Weir Fluids Laboratory, Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow G1 1XJ (United Kingdom); Valocchi, Albert J. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    2015-05-15

    Injection of anthropogenic carbon dioxide (CO{sub 2}) into geological formations is a promising approach to reduce greenhouse gas emissions into the atmosphere. Predicting the amount of CO{sub 2} that can be captured and its long-term storage stability in subsurface requires a fundamental understanding of multiphase displacement phenomena at the pore scale. In this paper, the lattice Boltzmann method is employed to simulate the immiscible displacement of a wetting fluid by a non-wetting one in two microfluidic flow cells, one with a homogeneous pore network and the other with a randomly heterogeneous pore network. We have identified three different displacement patterns, namely, stable displacement, capillary fingering, and viscous fingering, all of which are strongly dependent upon the capillary number (Ca), viscosity ratio (M), and the media heterogeneity. The non-wetting fluid saturation (S{sub nw}) is found to increase nearly linearly with logCa for each constant M. Increasing M (viscosity ratio of non-wetting fluid to wetting fluid) or decreasing the media heterogeneity can enhance the stability of the displacement process, resulting in an increase in S{sub nw}. In either pore networks, the specific interfacial length is linearly proportional to S{sub nw} during drainage with equal proportionality constant for all cases excluding those revealing considerable viscous fingering. Our numerical results confirm the previous experimental finding that the steady state specific interfacial length exhibits a linear dependence on S{sub nw} for either favorable (M ≥ 1) or unfavorable (M < 1) displacement, and the slope is slightly higher for the unfavorable displacement.

  9. MACROSCOPIC RIVERS

    NARCIS (Netherlands)

    VANDENBERG, IP

    1991-01-01

    We present a mathematical model for the ''river-phenomenon'': striking concentrations of trajectories of ordinary differential equations. This model of ''macroscopic rivers'' is formulated within nonstandard analysis, and stated in terms of macroscopes and singular perturbations. For a subclass, the

  10. Immobilization of salvianolic acid B-loaded chitosan microspheres distributed three-dimensionally and homogeneously on the porous surface of hydroxyapatite scaffolds.

    Science.gov (United States)

    Li, Jinyu; Wang, Qin; Zhi, Wei; Wang, Jianxin; Feng, Bo; Qu, Shuxin; Mu, Yandong; Weng, Jie

    2016-10-07

    Porous hydroxyapatite (HA) scaffolds combined with a drug delivery system have attracted much attention for bone tissue engineering. In this study, an easy and highly efficient method was developed to immobilize salvianolic acid B (Sal B)-loaded chitosan (CS) microspheres three dimensionally and homogeneously on the surface of HA scaffolds pre-coated with alginate. Porous HA scaffolds were prepared via a template-leaching process and CS microspheres (used as drug carriers) were fabricated by an emulsion method. To improve adhesion between the microspheres and HA scaffolds, alginate was used to pre-coat the porous surface of the HA scaffolds. Various concentrations of alginate were used to optimize the adhesion of Sal B-loaded CS microspheres to the scaffold surface. During the adherence process, coated HA scaffolds were immersed in an aqueous solution containing Sal B-loaded CS microspheres, followed by standing or shaking at 37 °C for a certain time. The results showed that the microspheres were solidly and homogeneously distributed on the porous surface of the alginate pre-coated HA scaffolds via electrostatic interactions. Few microspheres detached from the porous surface, even after the HA scaffolds with microspheres were treated by shaking in distilled water for as long as 7 d. Compared with the static condition, the distribution of Sal B-loaded CS microspheres on the porous surface of pre-coated HA scaffolds in the shaken condition was more homogeneous and almost unaggregated. Additionally, the compressive strength of the scaffolds coated with alginate was obviously improved. The optimal alginate coating concentration was 1% (i.e. the microstructure of the porous surfaces of the HA scaffolds was almost unchanged). The release profile of Sal B over a 30 d immersion found an initial burst release followed by a sustained release. The result of cell culture in vitro was that 1% alginate-coated scaffolds with Sal B-loaded CS microspheres obviously promoted cell

  11. From a Microscopic to a Macroscopic Model for Alzheimer Disease: Two-Scale Homogenization of the Smoluchowski Equation in Perforated Domains

    Science.gov (United States)

    Franchi, Bruno; Lorenzani, Silvia

    2016-06-01

    In this paper, we study the homogenization of a set of Smoluchowski's discrete diffusion-coagulation equations modeling the aggregation and diffusion of β -amyloid peptide (Aβ ), a process associated with the development of Alzheimer's disease. In particular, we define a periodically perforated domain Ω _{ɛ }, obtained by removing from the fixed domain Ω (the cerebral tissue) infinitely many small holes of size ɛ (the neurons), which support a non-homogeneous Neumann boundary condition describing the production of Aβ by the neuron membranes. Then, we prove that, when ɛ → 0, the solution of this micromodel two-scale converges to the solution of a macromodel asymptotically consistent with the original one. Indeed, the information given on the microscale by the non-homogeneous Neumann boundary condition is transferred into a source term appearing in the limiting (homogenized) equations. Furthermore, on the macroscale, the geometric structure of the perforated domain induces a correction in that the scalar diffusion coefficients defined at the microscale are replaced by tensorial quantities.

  12. Contribution de l'homogénéisation à l'étude de la filtration d'un fluide en milieu poreux fracturé Contribution of the Homogenization Process to the Seepage Through Fractured Porous Media

    Directory of Open Access Journals (Sweden)

    Boutin C.

    2006-11-01

    Full Text Available Cet article est consacré à la modélisation de l'écoulement d'un fluide dans un massif poreux fracturé. Contrairement aux approches phénoménologiques, nous traitons le problème au moyen de la méthode d'homogénéisation par développements asymptotiques en milieux périodiques. Les comportements macroscopiques sont ainsi déduits de la physique à l'échelle microscopique, sans autre prérequis. Deux cas ont été examinés : l'écoulement d'un gaz dans un massif rigide et l'écoulement d'un fluide incompressible dans une matrice déformable. Dans ces deux situations, on met en évidence le rôle fondamental du rapport entre les deux séparations d'échelles (échelle macroscopique-échelle des fissures et échelle des fissures-échelle des pores. Les descriptions macroscopiques sont conditionnées par la relation entre les séparations d'échelles, le couplage interéchelle étant maximum lorsque les rapports d'échelles sont identiques. This paper deals with the seepage of a fluid through a fissured porous medium. Conversely to the phenomenological approaches we treat this problem by using the homogenization method of asymptotic developments for periodic structures. Thus the macroscopic behaviours are directly deduced from the physics at the microscopic scale, without any prerequisite. Two cases have been investigated : the flow of a gas through a rigid medium and the flow of an incompressible fluid through a deformable matrix. In both situations, it appears that the ratio between the two scale separations (macroscopic scale-fissure scale and fissure scale-pore scale plays an essential role. The macroscopic description depends on the scale separations, the interscale coupling being maximum when the scales are equally separated.

  13. Rate of Convergence of Phase Field Equations in Strongly Heterogeneous Media towards their Homogenized Limit

    CERN Document Server

    Schmuck, Markus; Kalliadasis, Serafim

    2013-01-01

    We study phase field equations based on the diffuse-interface approximation of general homogeneous free energy densities showing different local minima of possible equilibrium configurations in perforated/porous domains. The study of such free energies in homogeneous environments found a broad interest over the last decades and hence is now widely accepted and applied in both science and engineering. Here, we focus on strongly heterogeneous materials with perforations such as porous media. To the best of our knowledge, we present a general formal derivation of upscaled phase field equations for arbitrary free energy densities and give a rigorous justification by error estimates for a broad class of polynomial free energies. The error between the effective macroscopic solution of the new upscaled formulation and the solution of the microscopic phase field problem is of order $\\epsilon^1/2$ for a material given characteristic heterogeneity $\\epsilon$. Our new, effective, and reliable macroscopic porous media fo...

  14. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles

    OpenAIRE

    A. Kylling; Kahnert, M.; Lindqvist, H.; T. Nousiainen

    2014-01-01

    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent sp...

  15. Influence of permeability on nanoscale zero-valent iron particle transport in saturated homogeneous and heterogeneous porous media.

    Science.gov (United States)

    Strutz, Tessa J; Hornbruch, Götz; Dahmke, Andreas; Köber, Ralf

    2016-09-01

    Nanoscale zero-valent iron (NZVI) particles can be used for in situ groundwater remediation. The spatial particle distribution plays a very important role in successful and efficient remediation, especially in heterogeneous systems. Initial sand permeability (k 0) influences on spatial particle distributions were investigated and quantified in homogeneous and heterogeneous systems within the presented study. Four homogeneously filled column experiments and a heterogeneously filled tank experiment, using different median sand grain diameters (d 50), were performed to determine if NZVI particles were transported into finer sand where contaminants could be trapped. More NZVI particle retention, less particle transport, and faster decrease in k were observed in the column studies using finer sands than in those using coarser sands, reflecting a function of k 0. In heterogeneous media, NZVI particles were initially transported and deposited in coarse sand areas. Increasing the retained NZVI mass (decreasing k in particle deposition areas) caused NZVI particles to also be transported into finer sand areas, forming an area with a relatively homogeneous particle distribution and converged k values despite the different grain sizes present. The deposited-particle surface area contribution to the increasing of the matrix surface area (θ) was one to two orders of magnitude higher for finer than coarser sand. The dependency of θ on d 50 presumably affects simulated k changes and NZVI distributions in numerical simulations of NZVI injections into heterogeneous aquifers. The results implied that NZVI can in principle also penetrate finer layers.

  16. Ionic Diffusion and Kinetic Homogeneous Chemical Reactions in the Pore Solution of Porous Materials with Moisture Transport

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2009-01-01

    Results from a systematic continuum mixture theory will be used to establish the governing equations for ionic diffusion and chemical reactions in the pore solution of a porous material subjected to moisture transport. The theory in use is the hybrid mixture theory (HMT), which in its general form...... general description of chemical reactions among constituents is described. The Petrov – Galerkin approach are used in favour of the standard Galerkin weighting in order to improve the solution when the convective part of the problem is dominant. A modified type of Newton – Raphson scheme is derived...... for the non-linear global matrix formulation. The developed model and its numerical solution procedure are checked by running test examples which results demonstrates robustness of the proposed approach....

  17. Volcanic ash infrared signature: porous non-spherical ash particle shapes compared to homogeneous spherical ash particles

    Science.gov (United States)

    Kylling, A.; Kahnert, M.; Lindqvist, H.; Nousiainen, T.

    2014-04-01

    The reverse absorption technique is often used to detect volcanic ash clouds from thermal infrared satellite measurements. From these measurements effective particle radius and mass loading may be estimated using radiative transfer modelling. The radiative transfer modelling usually assumes that the ash particles are spherical. We calculated thermal infrared optical properties of highly irregular and porous ash particles and compared these with mass- and volume-equivalent spherical models. Furthermore, brightness temperatures pertinent to satellite observing geometry were calculated for the different ash particle shapes. Non-spherical shapes and volume-equivalent spheres were found to produce a detectable ash signal for larger particle sizes than mass-equivalent spheres. The assumption of mass-equivalent spheres for ash mass loading estimates was found to underestimate mass loading compared to morphologically complex inhomogeneous ash particles. The underestimate increases with the mass loading. For an ash cloud recorded during the Eyjafjallajökull 2010 eruption, the mass-equivalent spheres underestimate the total mass of the ash cloud by approximately 30% compared to the morphologically complex inhomogeneous particles.

  18. Horizontal flow and capillarity-driven redistribution in porous media.

    Science.gov (United States)

    Doster, F; Hönig, O; Hilfer, R

    2012-07-01

    A recent macroscopic mixture theory for two-phase immiscible displacement in porous media has introduced percolating and nonpercolating phases. Quasi-analytic solutions are computed and compared to the traditional theory. The solutions illustrate physical insights and effects due to spatiotemporal changes of nonpercolating phases, and they highlight the differences from traditional theory. Two initial and boundary value problems are solved in one spatial dimension. In the first problem a fluid is displaced by another fluid in a horizontal homogeneous porous medium. The displacing fluid is injected with a flow rate that keeps the saturation constant at the injection point. In the second problem a horizontal homogeneous porous medium is considered which is divided into two subdomains with different but constant initial saturations. Capillary forces lead to a redistribution of the fluids. Errors in the literature are reported and corrected.

  19. Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates

    Science.gov (United States)

    Idiart, Martín I.

    A new approach is proposed for estimating the macroscopic behavior of two-phase nonlinear composites with random, particulate microstructures. The central idea is to model composites by sequentially laminated constructions of infinite rank whose macroscopic behavior can be determined exactly. The resulting estimates incorporate microstructural information up to the two-point correlation functions, and require the solution to a Hamilton-Jacobi equation with the inclusion concentration and the macroscopic fields playing the role of 'time' and 'spatial' variables, respectively. Because they are realizable, by construction, these estimates are guaranteed to be convex, to satisfy all pertinent bounds, to exhibit no duality gap, and to be exact to second order in the heterogeneity contrast. Sample results are provided for two- and three-dimensional power-law composites, and are compared with other homogenization estimates, as well as with numerical simulations available from the literature. The estimates are found to give physically sensible predictions for all the cases considered, even for extreme values of the nonlinearity and heterogeneity contrast. Interestingly, in the case of isotropic porous materials under hydrostatic loadings, the estimates agree exactly with standard Gurson-type models for viscoplastic porous media.

  20. Tailored Porous Materials

    Energy Technology Data Exchange (ETDEWEB)

    BARTON,THOMAS J.; BULL,LUCY M.; KLEMPERER,WALTER G.; LOY,DOUGLAS A.; MCENANEY,BRIAN; MISONO,MAKOTO; MONSON,PETER A.; PEZ,GUIDO; SCHERER,GEORGE W.; VARTULI,JAMES C.; YAGHI,OMAR M.

    1999-11-09

    Tailoring of porous materials involves not only chemical synthetic techniques for tailoring microscopic properties such as pore size, pore shape, pore connectivity, and pore surface reactivity, but also materials processing techniques for tailoring the meso- and the macroscopic properties of bulk materials in the form of fibers, thin films and monoliths. These issues are addressed in the context of five specific classes of porous materials: oxide molecular sieves, porous coordination solids, porous carbons, sol-gel derived oxides, and porous heteropolyanion salts. Reviews of these specific areas are preceded by a presentation of background material and review of current theoretical approaches to adsorption phenomena. A concluding section outlines current research needs and opportunities.

  1. Interference of macroscopic superpositions

    CERN Document Server

    Vecchi, I

    2000-01-01

    We propose a simple experimental procedure based on the Elitzur-Vaidman scheme to implement a quantum nondemolition measurement testing the persistence of macroscopic superpositions. We conjecture that its implementation will reveal the persistence of superpositions of macroscopic objects in the absence of a direct act of observation.

  2. 非均质泡沫结构与导热性能的2D模拟%2D Simulation of Structure and Thermal Conductivity of Non-homogeneous Porous Foams

    Institute of Scientific and Technical Information of China (English)

    张新铭; 谷沁洋; 王济平; 凌娅

    2012-01-01

    As the representative of new functional materials, graphite foam exhibits low density, high porosity, high thermal conductivity and other excellent properties, has been widely concern and study. The effective thermal conductivity of porous materials is relevant to pore structure, which is usually described by porosity. Porous materials are non-homogeneous, the pore distribution is non-uniform and random, so porosity can not express the randomness of the pore structure well. The two-dimension random models are set up, base on the finite element method ( FEM) simulation with large sample, it is pointed that the effective thermal conductivity of non-homogeneous porous foam can be expressed as function of porosity and pore uniformity.%以石墨泡沫为代表的新型多孔功能材料具有低密度、高孔隙率、高导热性能等优良特性,因而受到广泛关注和研究.多孔材料的有效导热系数与孔隙结构有关,通常用孔隙率作为结构参数,但实际多孔材料的孔隙分布大多是非均匀的、随机的,因此单一的孔隙率不足以描述其孔隙结构.提出一种2D随机结构的多孔泡沫导热模型,根据大样本的有限元法数值模拟结果,指出非均质多孔泡沫的有效导热系数可表示为孔隙率和孔隙均匀度的函数.

  3. Macroscopic Equations Derived from Space Averaging for Immiscible Two-Phase Flow in Porous Media Équations macroscopiques d'un écoulement de deux phases immiscibles en milieu poreux déduites par prise de moyenne spatiale

    Directory of Open Access Journals (Sweden)

    Pavone D.

    2006-11-01

    Full Text Available Models of instabilities in porous media usually assume that the capillary pressure (the difference of pressure between the nonwetting and the wetting phase depends on the radii of the macroscopic curvature of the two-phase front. However, this definition is not taken into account for modeling stable immiscible displacements in porous media whenever the heterogeneity of the porous medium may lead to high macroscopic curvature of the front. Before trying to solve flow equations in porous media under unstable conditions, a more accurate and complete set of equations for immiscible two-phase flow in porous media is required. Space averaging of microscopic equations valid at the pore level is used to define variables and equations that link these variables at the macroscopic scale. The thermodynamics of irreversible processes completes the set of equations. If some coupling between the flow of both phases is introduced, the relative permeability equation is proved to be valid, even with moving interfaces. Capillary pressure appears to be twofold; i. e. a static capillary pressure taking into account 1 the amount of interface (Gibbs-Duhem like equation and 2 the area swept by the three-phase lines (Laplace like equation, as well as a dynamic capillary pressure related to fluid inertia. This is the first time that capillary pressure in porous media can be proved to be composed of three terms, each having an evident physical meaning. Under the assumptions of the present paper, the capillary pressure does not depend on macroscopic curvature, therefore. La modélisation des instabilités visqueuses en milieu poreux suppose généralement que la pression capillaire (différence de pression entre la phase mouillante et la phase non mouillante dépend de la courbure du front biphasique. Or, cette dépendance n'est pas envisagée pour des déplacements stables, même quand les hétérogénéités du milieu poreux sont susceptibles d'introduire de grandes

  4. Nanoplasmon-enabled macroscopic thermal management

    CERN Document Server

    Jonsson, Gustav Edman; Dmitriev, Alexandre

    2013-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive materials featuring nanoplasmons. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. However, direct experimental evidence of plasmon-enabled macroscopic temperature increase that would result from these efficient absorptive properties is scarce. Here we derive a general quantitative method of characterizing light-capturing properties of a given heat-generating absorptive layer by macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with plasmon nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to thermophotovoltaics and othe...

  5. Macroscopic quantum resonators (MAQRO)

    CERN Document Server

    Kaltenbaek, Rainer; Kiesel, Nikolai; Romero-Isart, Oriol; Johann, Ulrich; Aspelmeyer, Markus

    2012-01-01

    Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 10e8 atoms. Under these conditions, deviations due to various suggested alternative models to quantum th...

  6. About the fluid stabilized filtration in porous non-homogeneous strip by exponential law in ease of the given regime pressure

    Directory of Open Access Journals (Sweden)

    Avetisyan S.A.

    2015-06-01

    Full Text Available In the framework of plane theory of fluid established filtration the boundary problem on fluid filtration in porous ground strip, the coefficient of which along the depth of the strip changes by exponential law, is considered. In this case by the system of the segments of the upper bound of the strip under the given pressure the fluid inject into the ground strip, and the lower bound of the strip is water-impermeable. Filtration characteristics of the problem are determined.

  7. Numerical solutions of a generalized theory for macroscopic capillarity

    NARCIS (Netherlands)

    Doster, F.; Zegeling, P.A.; Hilfer, R.

    2010-01-01

    A recent macroscopic theory of biphasic flow in porous media [R. Hilfer, Phys. Rev. E 73, 016307 (2006)] has proposed to treat microscopically percolating fluid regions differently from microscopically nonpercolating regions. Even in one dimension the theory reduces to an analytically intractable se

  8. Prediction of Equivalent Elastic Modulus of Porous Concrete through 3D Homogenization Theory%三维均匀化理论预测多孔混凝土等效弹性模量

    Institute of Scientific and Technical Information of China (English)

    张新; 程华; 王仲刚; 叶敏

    2015-01-01

    The finite element method (FEM) of 3D homogenization theory is derived through the homogenization theory in multi⁃scale to predict the equivalent elastic modulus of composite material. It is supposed that porous concrete consists of mortar ma⁃trix and identical smooth balls. To generate the random unit⁃cell model of porous concrete, an improved numerical method of ran⁃dom pores is presented. The expanded polystyrene (EPS) concrete is taken as an example. Six groups of random unit⁃cell models of different volume fractions of EPS concrete are generated, and its equivalent elastic modulus is calculated by FEM of 3D homogeniza⁃tion theory. It is shown that random unit⁃cell model can express both the nonuniform in mesoscale and the equivalent elastic modu⁃lus calculated by FEM of 3D homogenization theory is consistent with Miled’s test.%应用多尺度渐进展开的均匀化理论,推导三维均匀化理论的有限元解法,求解复合材料等效弹性系数。假设多孔混凝土由光滑均匀一致的球孔与水泥石基质组成,提出改进的随机投放方法,生成三维均匀化理论求解的随机单胞模型。以聚苯乙烯泡沫(EPS)混凝土为数值算例,生成6组不同体积分数的EPS混凝土随机单胞模型,通过三维均匀化理论的有限元法计算得到其等效弹性模量。计算结果表明:随机单胞模型能反映细观的非均质性,三维均匀化理论的有限元法计算得到的等效弹性模量变化趋势比较符合Miled的试验结果。

  9. Limit analysis and homogenization of porous materials with Mohr-Coulomb matrix. Part II: Numerical bounds and assessment of the theoretical model

    Science.gov (United States)

    Pastor, F.; Anoukou, K.; Pastor, J.; Kondo, D.

    2016-06-01

    This second part of the two-part study is devoted to the numerical Limit Analysis of a hollow sphere model with a Mohr-Coulomb matrix and its use for the assessment of theoretical results. Brief background and fundamental of the static and kinematic approaches in the context of numerical limit analysis are first recalled. We then present the hollow sphere model, together with its axisymmetric FEM discretization and its mechanical position. A conic programming adaptation of a previous iterative static approach, based on a piecewise linearization (PWL) of the plasticity criterion, was first realized. Unfortunately, the resulting code, no more than the PWL one, did not allow sufficiently refined meshes for loss of convergence of the conic optimizer. This problem was solved by using the projection algorithm of Ben Tal and Nemriovski (BTN) and the (interior point) linear programming code XA. For the kinematic approach, a first conic adaptation appeared also inefficient. Then, an original mixed (but fully kinematic) approach dedicated to the general Mohr-Coulomb axisymmetric problem was elaborated. The final conic mixed code appears much more robust than the classic one when using the conic code MOSEK, allowing us to take into account refined numerical meshes. After a fine validation in the case of spherical cavities and isotropic loadings (for which the exact solution is known) and comparison to previous (partial) results, numerical lower and upper bounds (a posteriori verified) of the macroscopic strength are provided. These bounds are used to assess and validate the theoretical results of the companion (part I) paper. Effects of the friction angle as well as that of the porosity are illustrated.

  10. Homogenization-based continuum plasticity-damage model for ductile failure of materials containing heterogeneities

    Science.gov (United States)

    Ghosh, Somnath; Bai, Jie; Paquet, Daniel

    2009-07-01

    This paper develops an accurate and computationally efficient homogenization-based continuum plasticity-damage (HCPD) model for macroscopic analysis of ductile failure in porous ductile materials containing brittle inclusions. Example of these materials are cast alloys such as aluminum and metal matrix composites. The overall framework of the HCPD model follows the structure of the anisotropic Gurson-Tvergaard-Needleman (GTN) type elasto-plasticity model for porous ductile materials. The HCPD model is assumed to be orthotropic in an evolving material principal coordinate system throughout the deformation history. The GTN model parameters are calibrated from homogenization of evolving variables in representative volume elements (RVE) of the microstructure containing inclusions and voids. Micromechanical analyses for this purpose are conducted by the locally enriched Voronoi cell finite element model (LE-VCFEM) [Hu, C., Ghosh, S., 2008. Locally enhanced Voronoi cell finite element model (LE-VCFEM) for simulating evolving fracture in ductile microstructures containing inclusions. Int. J. Numer. Methods Eng. 76(12), 1955-1992]. The model also introduces a novel void nucleation criterion from micromechanical damage evolution due to combined inclusion and matrix cracking. The paper discusses methods for estimating RVE length scales in microstructures with non-uniform dispersions, as well as macroscopic characteristic length scales for non-local constitutive models. Comparison of results from the anisotropic HCPD model with homogenized micromechanics shows excellent agreement. The HCPD model has a huge efficiency advantage over micromechanics models. Hence, it is a very effective tool in predicting macroscopic damage in structures with direct reference to microstructural composition.

  11. Effects of mechanical dispersion on the morphological evolution of the reaction front during transport in a homogeneous porous medium with initial small non-uniformities

    Science.gov (United States)

    Chen, J.-S.; Lai, G.-X.

    2009-04-01

    The morphological evolution of a chemical dissolution front is an important topic in geological processes and engineering practices. Although previous studies have extensively presented a number of numerical models which couples a system of nonlinear governing equations of porosity change due to mineral dissolution, the conservations of groundwater flow and transport of chemical species to investigate the morphological pattern of a chemical dissolution front within a fluid-saturated porous medium, whereas the mechanical dispersion effect has generally been neglected in the model development. This study addresses the effects of mechanical dispersion on the morphological evolution of a chemical dissolution front for a variety of cases. Mechanical dispersion processes is incorporated with the coupled nonlinear governing equation system so as to rebuild a newly numerical model. The results of numerical simulations demonstrate that mechanical dispersion has pronounced impacts on the morphological pattern of the chemical dissolution front. For single local non-uniformity case, mechanical dispersion reduces the finger length of an unstable single-fingering front or retains the shape of a stable planar front while speeding up the front advancement. In the case of two local non-uniformities, adding mechanical dispersion with different flow conditions can yield one of the following results: (1) the shape of the stable planar front is maintained but its advancement is accelerated; (2) the shape of the unstable single-fingering front is maintained but its length is reduced; (3) the unstable double-fingering front is merged into an unstable single-fingering front; and (4) the shape of the unstable double-fingering front is preserved but its fingering length is reduced.. A comparison between the behavior diagrams of dissolution front morphology (with and without considering mechanical dispersion) shows that the double-fingering front occurs under condition where the upstream

  12. Experimental Evidence of Helical Flow in Porous Media

    DEFF Research Database (Denmark)

    Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.;

    2015-01-01

    Helical flow leads to deformation of solute plumes and enhances transverse mixing in porous media. We present experiments in which macroscopic helical flow is created by arranging different materials to obtain an anisotropic macroscopic permeability tensor with spatially variable orientation...... mixers, but in porous media....

  13. Covariant Macroscopic Quantum Geometry

    CERN Document Server

    Hogan, Craig J

    2012-01-01

    A covariant noncommutative algebra of position operators is presented, and interpreted as the macroscopic limit of a geometry that describes a collective quantum behavior of the positions of massive bodies in a flat emergent space-time. The commutator defines a quantum-geometrical relationship between world lines that depends on their separation and relative velocity, but on no other property of the bodies, and leads to a transverse uncertainty of the geometrical wave function that increases with separation. The number of geometrical degrees of freedom in a space-time volume scales holographically, as the surface area in Planck units. Ongoing branching of the wave function causes fluctuations in transverse position, shared coherently among bodies with similar trajectories. The theory can be tested using appropriately configured Michelson interferometers.

  14. The macroscopic pancake bounce

    Science.gov (United States)

    Andersen Bro, Jonas; Sternberg Brogaard Jensen, Kasper; Nygaard Larsen, Alex; Yeomans, Julia M.; Hecksher, Tina

    2017-01-01

    We demonstrate that the so-called pancake bounce of millimetric water droplets on surfaces patterned with hydrophobic posts (Liu et al 2014 Nat. Phys. 10 515) can be reproduced on larger scales. In our experiment, a bed of nails plays the role of the structured surface and a water balloon models the water droplet. The macroscopic version largely reproduces the features of the microscopic experiment, including the Weber number dependence and the reduced contact time for pancake bouncing. The scalability of the experiment confirms the mechanisms of pancake bouncing, and allows us to measure the force exerted on the surface during the bounce. The experiment is simple and inexpensive and is an example where front-line research is accessible to student projects.

  15. Homogeneous catalysts

    CERN Document Server

    Chadwick, John C; Freixa, Zoraida; van Leeuwen, Piet W N M

    2011-01-01

    This first book to illuminate this important aspect of chemical synthesis improves the lifetime of catalysts, thus reducing material and saving energy, costs and waste.The international panel of expert authors describes the studies that have been conducted concerning the way homogeneous catalysts decompose, and the differences between homogeneous and heterogeneous catalysts. The result is a ready reference for organic, catalytic, polymer and complex chemists, as well as those working in industry and with/on organometallics.

  16. Homogenized Model of Two-Phase Flow with Local Nonequilibrium in Double Porosity Media

    Directory of Open Access Journals (Sweden)

    Brahim Amaziane

    2016-01-01

    Full Text Available We consider two-phase flow in a heterogeneous porous medium with highly permeable fractures and low permeable periodic blocks. The flow in the blocks is assumed to be in local capillary disequilibrium and described by Barenblatt’s relaxation relationships for the relative permeability and capillary pressure. It is shown that the homogenization of such equations leads to a new macroscopic model that includes two kinds of long-memory effects: the mass transfer between the blocks and fractures and the memory caused by the microscopic Barenblatt disequilibrium. We have obtained a general relationship for the double nonequilibrium capillary pressure which represents great interest for applications. Due to the nonlinear coupling and the nonlocality in time, the macroscopic model remains incompletely homogenized in general case. The completely homogenized model was obtained for two different regimes. The first case corresponds to a linearized flow in the blocks. In the second case, we assume a low contrast in the block-fracture permeability. Numerical results for the two-dimensional problem are presented for two test cases to demonstrate the effectiveness of the methodology.

  17. Canonical quantization of macroscopic electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2010-12-15

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  18. Canonical quantization of macroscopic electromagnetism

    CERN Document Server

    Philbin, T G

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  19. Reflector homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, R.; Ragusa, J.; Santandrea, S. [Commissariat a l' Energie Atomique, Direction de l' Energie Nucleaire, Service d' Etudes de Reacteurs et de Modelisation Avancee, CEA de Saclay, DM2S/SERMA 91 191 Gif-sur-Yvette cedex (France)]. e-mail: richard.sanchez@cea.fr

    2004-07-01

    The problem of the determination of a homogeneous reflector that preserves a set of prescribed albedo is considered. Duality is used for a direct estimation of the derivatives needed in the iterative calculation of the optimal homogeneous cross sections. The calculation is based on the preservation of collapsed multigroup albedo obtained from detailed reference calculations and depends on the low-order operator used for core calculations. In this work we analyze diffusion and transport as low-order operators and argue that the P{sub 0} transfers are the best choice for the unknown cross sections to be adjusted. Numerical results illustrate the new approach for SP{sub N} core calculations. (Author)

  20. Quantum equilibria for macroscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)

    2006-06-30

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  1. Graded/Gradient Porous Biomaterials

    Directory of Open Access Journals (Sweden)

    Xigeng Miao

    2009-12-01

    Full Text Available Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young’s moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.

  2. Macroscopic-microscopic mass models

    CERN Document Server

    Nix, J R; Nix, J Rayford; Moller, Peter

    1995-01-01

    We discuss recent developments in macroscopic-microscopic mass models, including the 1992 finite-range droplet model, the 1992 extended-Thomas-Fermi Strutinsky-integral model, and the 1994 Thomas-Fermi model, with particular emphasis on how well they extrapolate to new regions of nuclei. We also address what recent developments in macroscopic-microscopic mass models are teaching us about such physically relevant issues as the nuclear curvature energy, a new congruence energy arising from a greater-than-average overlap of neutron and proton wave functions, the nuclear incompressibility coefficient, and the Coulomb redistribution energy arising from a central density depression. We conclude with a brief discussion of the recently discovered rock of metastable superheavy nuclei near 272:110 that had been correctly predicted by macroscopic-microscopic models, along with a possible new tack for reaching an island near 290:110 beyond our present horizon.

  3. Homogenizing the Darcy/Stokes coupling

    OpenAIRE

    Gruais, Isabelle; Polisevski, Dan

    2011-01-01

    We study a fluid flow traversing a porous medium and obeying the Darcy's law in the case when this medium is fractured by a periodical distribution of fissures filled with a Stokes fluid. These two flows are coupled by a Beavers-Joseph type interface condition. As the small period of the distribution shrinks to zero, the resulting asymptotic behaviour is implicitely described by two underlying macroscopic quantities: the limit of the Stokes velocity and the limit of the Darcy pressure, soluti...

  4. Multiphase, Multicomponent Fluid Flow in Homogeneous and Heterogeneous Porous Media Écoulement de fluides multiconstituants polyphasiques dans des milieux poreux homogènes et hétérogènes

    Directory of Open Access Journals (Sweden)

    Chella R.

    2006-12-01

    Full Text Available The flow of several components and several phases through a porous medium is generally described by introducing macroscopic mass-balance equations under the form of generalized dispersion equations. This model raises several questions that are discussed in this paper on the basis of results obtained from the volume averaging method, coupled with pore-scale simulations of the multiphase flow. The study is limited to a binary, two-phase system, and we assume that the momentum equations can be solved independently from the diffusion/advection equations. The assumption of local-equilibrium is discussed and several length-scale and time-scale constraints are provided. A key issue concerns the impact on the dispersion tensors of the pore-scale equilibrium condition at the interface between the different phases. Our results show that this phenomenon may lead to significant variations of the dispersion coefficients with respect to passive dispersion, i. e. , dispersion without interfacial mass fluxes. Macroscopic equations are then obtained in the general case, and several local closure problems are provided that allow one to calculate the dispersion tensors and others properties, from the pore-scale geometry, velocities, and fluid characteristics. Examples of solutions of these closure problems are given in the case of two-dimensional representative unit cells. The two-phase flow equations are solved in two different ways : a boundary element technique, or a modified lattice Boltzmann approach. Solutions of the closure problems associated with the dispersion equations are then given using a finite volume element formulation of the partial differential equations. The results show the influence of velocity and saturation on the effective parameters. They emphasize the importance of geometry on the behavior of the dispersion tensor. Extension of these results to a larger-scale including the effect of heterogeneities is proposed in a limited case

  5. Three-scale model of single bone osteon modelled as double-porous fluid saturated body: Study of influence of micro/meso-structure

    Directory of Open Access Journals (Sweden)

    Turjanicová J.

    2014-12-01

    Full Text Available This paper deals with the multiscale description of a single osteon of cortical bones. The cortical bone tissue is modeled as a double-porous medium decomposed into the solid matrix and the fluid saturated canals. The resulting homogenized model describes deformation of such medium in response to a static loading by external forces and to an injection of slightly compressible fluid. Three numerical examples are presented, showing the influence of selected lower-scales geometrical features on the macroscopic body behavior.

  6. Chaotic advection at the pore scale: Mechanisms, upscaling and implications for macroscopic transport

    Science.gov (United States)

    Lester, D. R.; Trefry, M. G.; Metcalfe, G.

    2016-11-01

    The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the pore scale generate chaotic advection-involving exponential stretching and folding of fluid elements-the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit time distributions can be incorporated into a continuous-time random walk (CTRW) framework to predict macroscopic solute mixing and spreading. We show how these results may be generalised to real porous architectures via a CTRW model of fluid deformation, leading to stochastic models of macroscopic dispersion and mixing which both honour the pore-scale kinematics and are directly conditioned on the pore-scale architecture.

  7. Chaotic Advection at the Pore Scale: Mechanisms, Upscaling and Implications for Macroscopic Transport

    CERN Document Server

    Lester, D R; Metcalfe, Guy

    2016-01-01

    The macroscopic spreading and mixing of solute plumes in saturated porous media is ultimately controlled by processes operating at the pore scale. Whilst the conventional picture of pore-scale mechanical dispersion and molecular diffusion leading to persistent hydrodynamic dispersion is well accepted, this paradigm is inherently two-dimensional (2D) in nature and neglects important three-dimensional (3D) phenomena. We discuss how the kinematics of steady 3D flow at the porescale generate chaotic advection, involving exponential stretching and folding of fluid elements,the mechanisms by which it arises and implications of microscopic chaos for macroscopic dispersion and mixing. Prohibited in steady 2D flow due to topological constraints, these phenomena are ubiquitous due to the topological complexity inherent to all 3D porous media. Consequently 3D porous media flows generate profoundly different fluid deformation and mixing processes to those of 2D flow. The interplay of chaotic advection and broad transit t...

  8. Homogenization in micro-magneto-mechanics

    Science.gov (United States)

    Sridhar, A.; Keip, M.-A.; Miehe, C.

    2016-07-01

    Ferromagnetic materials are characterized by a heterogeneous micro-structure that can be altered by external magnetic and mechanical stimuli. The understanding and the description of the micro-structure evolution is of particular importance for the design and the analysis of smart materials with magneto-mechanical coupling. The macroscopic response of the material results from complex magneto-mechanical interactions occurring on smaller length scales, which are driven by magnetization reorientation and associated magnetic domain wall motions. The aim of this work is to directly base the description of the macroscopic magneto-mechanical material behavior on the micro-magnetic domain evolution. This will be realized by the incorporation of a ferromagnetic phase-field formulation into a macroscopic Boltzmann continuum by the use of computational homogenization. The transition conditions between the two scales are obtained via rigorous exploitation of rate-type and incremental variational principles, which incorporate an extended version of the classical Hill-Mandel macro-homogeneity condition covering the phase field on the micro-scale. An efficient two-scale computational scenario is developed based on an operator splitting scheme that includes a predictor for the magnetization on the micro-scale. Two- and three-dimensional numerical simulations demonstrate the performance of the method. They investigate micro-magnetic domain evolution driven by macroscopic fields as well as the associated overall hysteretic response of ferromagnetic solids.

  9. Diffuse-Interface Modelling of Flow in Porous Media

    Science.gov (United States)

    Addy, Doug; Pradas, Marc; Schmuck, Marcus; Kalliadasis, Serafim

    2016-11-01

    Multiphase flows are ubiquitous in a wide spectrum of scientific and engineering applications, and their computational modelling often poses many challenges associated with the presence of free boundaries and interfaces. Interfacial flows in porous media encounter additional challenges and complexities due to their inherently multiscale behaviour. Here we investigate the dynamics of interfaces in porous media using an effective convective Cahn-Hilliard (CH) equation recently developed in from a Stokes-CH equation for microscopic heterogeneous domains by means of a homogenization methodology, where the microscopic details are taken into account as effective tensor coefficients which are given by a Poisson equation. The equations are decoupled under appropriate assumptions and solved in series using a classic finite-element formulation with the open-source software FEniCS. We investigate the effects of different microscopic geometries, including periodic and non-periodic, at the bulk fluid flow, and find that our model is able to describe the effective macroscopic behaviour without the need to resolve the microscopic details.

  10. Macroscopic Theory of Dark Sector

    Directory of Open Access Journals (Sweden)

    Boris E. Meierovich

    2014-01-01

    Full Text Available A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out to be an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating nonsingular scenarios of evolution of the Universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the lower boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows displaying the main properties of the dark sector analytically. Although the physical nature of dark sector is still unknown, the macroscopic theory can help analyze the role of dark matter in astrophysical phenomena without resorting to artificial model assumptions.

  11. Acoustical properties of dry and saturated porous media

    Science.gov (United States)

    Adler, P. M.; Malinouskaya, I.; Mourzenko, V. V.; Thovert, J. F.

    2009-04-01

    Our objective is to determine the macroscopic acoustical properties of porous media (either dry or saturated by an interstitial fluid) and to relate them to the mechanical and hydromechanical characteristics of the medium and its components. Wave propagation in a dry elastic material is governed by the elastodynamic equation. For a dry medium, the stress is zero on the pore surface. The medium is supposed to be spatially periodic and composed of identical cells. When the wave length lambda is very large when compared to the scale l of the heterogeneities, the medium behaves in a first approximation as an equivalent homogeneous material. All the fields can expanded as series of the small parameter eta= l/2 pi lambda, in terms of two space variables associated to the scales lambda et l, respectively. This expansion is introduced into the elastodynamic equation with appropriate boundary conditions. A series of non homogeneous partial differential equations are found for the successive orders in eta. The predominant order corresponds to the equivalent homogeneous material. The first order equation provides the polarization correction, the second one the celerity dispersion and the third one the attenuation. These equations are discretized by a finite volume formulation in a tetrahedral mesh which is either structured or not. The resulting linear system is solved by a conjugate gradient method. Each elementary volume may have specific properties. Wave propagation in a saturated medium is more complex since it is influenced by the solid and liquid phases. When a periodic oscillation is imposed, the solid displacements are governed by the elastodynamic and the Stokes equations coupled by boundary conditions at the interface. The solutions to these equations yield the macroscopic characteristics of the medium. The first equation yields two independent problems in the solid, one identical to dry media and one corresponding to a medium submitted to an interstitial

  12. On strength of porous material

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1999-01-01

    quality without damaging or destroying the material or the building component considered. The efficiency of MOE-MOR relations for this purpose depends very much on the homogeneity of porous material considered. For building materials like wood and concrete of normal or lower quality with a number......The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus OF Rupture) of materials have been established in order to control...... of irregularities only scattered MOE-MOR relations (clouds) can be established from which no really results can be read.For homogeneously produced porous materials, however, like modern ceramics and high performance concretes MOE-MOR relations can be presented which are reliable. The present paper contributes...

  13. Macroscopically-Discrete Quantum Cosmology

    CERN Document Server

    Chew, Geoffrey F

    2008-01-01

    To Milne's Lorentz-group-based spacetime and Gelfand-Naimark unitary representations of this group we associate a Fock space of 'cosmological preons'-quantum-theoretic universe constituents. Milne's 'cosmological principle' relies on Lorentz invariance of 'age'--global time. We divide Milne's spacetime into 'slices' of fixed macroscopic width in age, with 'cosmological rays' defined on (hyperbolic) slice boundaries-Fock space attaching only to these exceptional universe ages. Each (fixed-age) preon locates within a 6-dimensional manifold, one of whose 3 'extra' dimensions associates in Dirac sense to a self-adjoint operator that represents preon (continuous) local time, the operator canonically-conjugate thereto representing preon (total) energy. Self-adjoint-operator expectations at any spacetime-slice boundary prescribe throughout the following slice a non-fluctuating 'mundane reality'- electromagnetic and gravitational potentials 'tethered' to current densities of locally-conserved electric charge and ener...

  14. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  15. Macroscopic theory of dark sector

    CERN Document Server

    Meierovich, Boris E

    2013-01-01

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating soluti...

  16. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Pei Xiaoyan; Hu Jiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system. The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  17. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    PeiXiaoyan; HuJiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system.The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  18. Biogenic Cracks in Porous Rock

    Science.gov (United States)

    Hemmerle, A.; Hartung, J.; Hallatschek, O.; Goehring, L.; Herminghaus, S.

    2014-12-01

    Microorganisms growing on and inside porous rock may fracture it by various processes. Some of the mechanisms of biofouling and bioweathering are today identified and partially understood but most emphasis is on chemical weathering, while mechanical contributions have been neglected. However, as demonstrated by the perseverance of a seed germinating and cracking up a concrete block, the turgor pressure of living organisms can be very significant. Here, we present results of a systematic study of the effects of the mechanical forces of growing microbial populations on the weathering of porous media. We designed a model porous medium made of glass beads held together by polydimethylsiloxane (PDMS), a curable polymer. The rheological properties of the porous medium, whose shape and size are tunable, can be controlled by the ratio of crosslinker to base used in the PDMS (see Fig. 1). Glass and PDMS being inert to most chemicals, we are able to focus on the mechanical processes of biodeterioration, excluding any chemical weathering. Inspired by recent measurements of the high pressure (~0.5 Mpa) exerted by a growing population of yeasts trapped in a microfluidic device, we show that yeast cells can be cultured homogeneously within porous medium until saturation of the porous space. We investigate then the effects of such an inner pressure on the mechanical properties of the sample. Using the same model system, we study also the complex interplay between biofilms and porous media. We focus in particular on the effects of pore size on the penetration of the biofilm within the porous sample, and on the resulting deformations of the matrix, opening new perspectives into the understanding of life in complex geometry. Figure 1. Left : cell culture growing in a model porous medium. The white spheres represent the grains, bonds are displayed in grey, and microbes in green. Right: microscopy picture of glass beads linked by PDMS bridges, scale bar: 100 μm.

  19. Multi-scale approach for the study of the behaviour of multiphase systems. Application to non saturated porous media; Approche multi-echelle pour l'etude du comportement des systemes polyphasiques. Application aux milieux poreux non satures

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.

    2004-03-01

    In this thesis, the modeling of the behaviour of the unsaturated porous media, whose solid phase is composed of elastic linear material, is studied in the framework of micro-mechanics. Firstly, we recall some classical results on the homogenization of the homogeneous materials in the case where the macroscopic behaviour of the materials is elastic linear (chapter 1). This part concerning essentially the bibliography, we present also the applications of the micro-mechanical approach to the drying porous media and the saturated ones. In order to study the unsaturated case, it is necessary to know the distribution of the fluids in the porous space. The methods permitting to determine the equilibrium positions of a capillary interface inside of a porous medium and to study their stability are presented in the second chapter of this thesis, particularly in the case where there is no material exchange between the fluid phases. Then we use the 'classical' linear homogenization approach to study the mechanic behaviour for a porous medium saturated by two fluid phases (chapter 3). The results obtained are applied to estimate the drying strains, in the case where the subjected stress and the temperature remain constant, with taking into account the influence of the morphology characters of the porous space and the domains occupied by the fluid phases. In the fourth chapter, the modeling of the behaviour of a medium containing unsaturated meso-cracks is studied by considering the coupling between the capillary forces and the geometric changes of the cracks. By an example of drying, we show that, in the case where the cracks are very flat, the macroscopic behaviour accounting for the non-linearity differs significantly from the results of the linear approach. The thesis is finished by an examination of a granular material behaviour. To this end, we use a numerical approach based on the periodic hypothesis of the materials studied. All results obtained in this thesis

  20. Dynamics of electrochemical flows 2 Electrochemical flows-through porous electrode

    CERN Document Server

    Xu, Chengjun

    2013-01-01

    The electrolyte (comprising of solute ions and solvents) flow-through the porous media is frequently encountered in nature or in many engineering applications, such as the electrochemical systems, manufacturing of composites, geothermal engineering, soil pollution. In this study, we provide a new general theory for the electrochemical flows-through porous media. We use static method and set up two representative elementary volumes (REVs). One is the macroscopic REV of the mixture of the porous media and the electrolyte, while the other is the microscopic REV in the electrolyte fluid. The establishment of two REVs enables us to investigate the details of transports of mass, heat, electric flied, or momentum in the process of the electrochemical flows-through porous electrode. In this work, the macroscopic governing equations are derived from the conservation laws in the macroscopic REV to describe the electrochemical flows-through porous media. At first, we define the porosity by the volume and surface and div...

  1. Stochastic homogenization of rate-independent systems and applications

    Science.gov (United States)

    Heida, Martin

    2017-05-01

    We study the stochastic and periodic homogenization 1-homogeneous convex functionals. We prove some convergence results with respect to stochastic two-scale convergence, which are related to classical Γ -convergence results. The main result is a general \\liminf -estimate for a sequence of 1-homogeneous functionals and a two-scale stability result for sequences of convex sets. We apply our results to the homogenization of rate-independent systems with 1-homogeneous dissipation potentials and quadratic energies. In these applications, both the energy and the dissipation potential have an underlying stochastic microscopic structure. We study the particular homogenization problems of Prandtl-Reuss plasticity, Tresca friction on a macroscopic surface and Tresca friction on microscopic fissures.

  2. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao

    2010-07-01

    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  3. Rank distributions: A panoramic macroscopic outlook

    Science.gov (United States)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  4. Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.

    Science.gov (United States)

    Groby, J-P; Dazel, O; Depollier, C; Ogam, E; Kelders, L

    2012-07-01

    Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. For planar configurations, the wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently: first in the case of rigid frame inhomogeneous porous materials and then in the case of inhomogeneous poroelastic materials in the framework of Biot's theory. This paper focuses on the solution of the full wave equation in cylindrical coordinates for poroelastic tubes in which the acoustic and elastic properties of the poroelastic tube vary in the radial direction. The reflection coefficient is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method in the case of a two-layer poroelastic tube. As an example, a long bone excited in the sagittal plane is considered. Finally, a discussion is given of ultrasonic time domain scattered field for various inhomogeneity profiles, which could lead to the prospect of long bone characterization.

  5. Macroscopic transport by synthetic molecular machines

    NARCIS (Netherlands)

    Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F

    2005-01-01

    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle

  6. Fluid flow and heat transfer in rotating porous media

    CERN Document Server

    Vadasz, Peter

    2016-01-01

    This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-­‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.

  7. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  8. Quantum Bell Inequalities from Macroscopic Locality

    CERN Document Server

    Yang, Tzyh Haur; Sheridan, Lana; Scarani, Valerio

    2010-01-01

    We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.

  9. Discrete particle simulation of the homogeneous fluidization of Geldart A particles

    NARCIS (Netherlands)

    Ye, M.; Hoef, van der M.A.; Kuipers, J.A.M.

    2004-01-01

    The homogeneous fluidization of Geldart A particles has been studied with a 2D soft-sphere discrete particle model. We find that the homogeneous fluidization regime represents a quasi-equilibrium state where the force balance exists at the macroscopic-level, but not at the level of individual partic

  10. Multiscale framework for predicting the coupling between deformation and fluid diffusion in porous rocks

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, José E; Rudnicki, John W

    2012-12-14

    In this project, a predictive multiscale framework will be developed to simulate the strong coupling between solid deformations and fluid diffusion in porous rocks. We intend to improve macroscale modeling by incorporating fundamental physical modeling at the microscale in a computationally efficient way. This is an essential step toward further developments in multiphysics modeling, linking hydraulic, thermal, chemical, and geomechanical processes. This research will focus on areas where severe deformations are observed, such as deformation bands, where classical phenomenology breaks down. Multiscale geometric complexities and key geomechanical and hydraulic attributes of deformation bands (e.g., grain sliding and crushing, and pore collapse, causing interstitial fluid expulsion under saturated conditions), can significantly affect the constitutive response of the skeleton and the intrinsic permeability. Discrete mechanics (DEM) and the lattice Boltzmann method (LBM) will be used to probe the microstructure---under the current state---to extract the evolution of macroscopic constitutive parameters and the permeability tensor. These evolving macroscopic constitutive parameters are then directly used in continuum scale predictions using the finite element method (FEM) accounting for the coupled solid deformation and fluid diffusion. A particularly valuable aspect of this research is the thorough quantitative verification and validation program at different scales. The multiscale homogenization framework will be validated using X-ray computed tomography and 3D digital image correlation in situ at the Advanced Photon Source in Argonne National Laboratories. Also, the hierarchical computations at the specimen level will be validated using the aforementioned techniques in samples of sandstone undergoing deformation bands.

  11. Lifting locally homogeneous geometric structures

    CERN Document Server

    McKay, Benjamin

    2011-01-01

    We prove that under some purely algebraic conditions every locally homogeneous structure modelled on some homogeneous space is induced by a locally homogeneous structure modelled on a different homogeneous space.

  12. Functionality and homogeneity.

    NARCIS (Netherlands)

    2011-01-01

    Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass, spe

  13. Functionality and homogeneity.

    NARCIS (Netherlands)

    2011-01-01

    Functionality and homogeneity are two of the five Sustainable Safety principles. The functionality principle aims for roads to have but one exclusive function and distinguishes between traffic function (flow) and access function (residence). The homogeneity principle aims at differences in mass, spe

  14. Discrete particle simulation of the homogeneous fluidization of Geldart A particles

    OpenAIRE

    Ye, M.; Hoef, van der, M.A.; J.A.M. Kuipers

    2004-01-01

    The homogeneous fluidization of Geldart A particles has been studied with a 2D soft-sphere discrete particle model. We find that the homogeneous fluidization regime represents a quasi-equilibrium state where the force balance exists at the macroscopic-level, but not at the level of individual particles. The velocity fluctuation of particles is an exponential function of the squared superficial gas velocity in the homogeneous fluidization regime, not a linear function as found by Cody et al.

  15. Macroscopic optical response and photonic bands

    CERN Document Server

    Perez-Huerta, J S; Mendoza, Bernardo S; Mochan, W Luis

    2012-01-01

    We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the longwavelenght approximation as it fully incorporates retardation effects. We test our formalism through the study the propagation of electromagnetic waves in 2D photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upo...

  16. A macroscopic challenge for quantum spacetime

    CERN Document Server

    Amelino-Camelia, Giovanni

    2013-01-01

    Over the last decade a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However I here observe that the arguments that originally lead to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles then for the composite macroscopic body the quantization of spa...

  17. On Macroscopic Complexity and Perceptual Coding

    CERN Document Server

    Scoville, John

    2010-01-01

    While Shannon information establishes limits to the universal data compression of binary data, no existing theory provides an equivalent characterization of the lossy data compression algorithms prevalent in audiovisual media. The current paper proposes a mathematical framework for perceptual coding and inference which quantifies the complexity of objects indistinguishable to a particular observer. A definition of the complexity is presented and related to a generalization of Boltzmann entropy for these equivalence classes. When the classes are partitions of phase space, corresponding to classical observations, this is the proper Boltzmann entropy and the macroscopic complexity agrees with the Algorithmic Entropy. For general classes, the macroscopic complexity measure determines the optimal lossy compression of the data. Conversely, perceptual coding algorithms may be used to construct upper bounds on certain macroscopic complexities. Knowledge of these complexities, in turn, allows perceptual inference whic...

  18. Modeling of Flow, Transport and Controlled Sedimentation Phenomena during Mixing of Salt Solutions in Complex Porous Formations

    Science.gov (United States)

    Skouras, Eugene D.; Jaho, Sofia; Pavlakou, Efstathia I.; Sygouni, Varvara; Petsi, Anastasia; Paraskeva, Christakis A.

    2015-04-01

    The deposition of salts in porous media is a major engineering phenomenon encountered in a plethora of industrial and environmental applications where in some cases is desirable and in other not (oil production, geothermal systems, soil stabilization etc). Systematic approach of these problems requires knowledge of the key mechanisms of precipitating salts within the porous structures, in order to develop new methods to control the process. In this work, the development and the solution of spatiotemporally variable mass balances during salt solution mixing along specific pores were performed. Both analytical models and finite differences CFD models were applied for the study of flow and transport with simultaneous homogeneous and heterogeneous nucleation (by crystal growth on the surface of the pores) in simple geometries, while unstructured finite elements and meshless methods were developed and implemented for spatial discretization, reconstruction, and solution of transport equations and homogeneous / heterogeneous reactions in more complex geometries. At initial stages of this work, critical problem parameters were identified, such as the characteristics of the porosity, the number of dissolved components, etc. The parameters were then used for solving problems which correspond to available experimental data. For each combination of ions and materials, specific data and process characteristics were included: (a) crystal kinetics (nucleation, growth rates or reaction surface rates of crystals, critical suspension concentrations), (b) physico-chemical properties (bulk density, dimensions of generated crystals, ion diffusion coefficients in the solution), (c) operating parameters (macroscopic velocity, flow, or pressure gradient of the solution, ion concentration) (d) microfluidic data (geometry, flow area), (e) porosity data in Darcy description (initial porosity, specific surface area, tortuosity). During the modeling of flow and transport in three

  19. Porous carbons

    Indian Academy of Sciences (India)

    Satish M Manocha

    2003-02-01

    Carbon in dense as well as porous solid form is used in a variety of applications. Activated porous carbons are made through pyrolysis and activation of carbonaceous natural as well as synthetic precursors. Pyrolysed woods replicate the structure of original wood but as such possess very low surface areas and poor adsorption capacities. On activation, these exhibit increased adsorption volumes of 0.5–0.8 cm3 /gm and surface areas of 700–1800 m2 /gm depending on activation conditions, whether physical or chemical. Former carbons possess mixed pore size distribution while chemically activated carbons predominantly possess micropores. Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with controlled microporous structure and surface area in the range of 2500 m2 /gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.

  20. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf;

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  1. Homogeneity of Inorganic Glasses

    DEFF Research Database (Denmark)

    Jensen, Martin; Zhang, L.; Keding, Ralf

    2011-01-01

    Homogeneity of glasses is a key factor determining their physical and chemical properties and overall quality. However, quantification of the homogeneity of a variety of glasses is still a challenge for glass scientists and technologists. Here, we show a simple approach by which the homogeneity...... of different glass products can be quantified and ranked. This approach is based on determination of both the optical intensity and dimension of the striations in glasses. These two characteristic values areobtained using the image processing method established recently. The logarithmic ratio between...... the dimension and the intensity is used to quantify and rank the homogeneity of glass products. Compared with the refractive index method, the image processing method has a wider detection range and a lower statistical uncertainty....

  2. Localization of deformation and loss of macroscopic ellipticity in microstructured solids

    Science.gov (United States)

    Santisi d'Avila, M. P.; Triantafyllidis, N.; Wen, G.

    2016-12-01

    Localization of deformation, a precursor to failure in solids, is a crucial and hence widely studied problem in solid mechanics. The continuum modeling approach of this phenomenon studies conditions on the constitutive laws leading to the loss of ellipticity in the governing equations, a property that allows for discontinuous equilibrium solutions. Micro-mechanics models and nonlinear homogenization theories help us understand the origins of this behavior and it is thought that a loss of macroscopic (homogenized) ellipticity results in localized deformation patterns. Although this is the case in many engineering applications, it raises an interesting question: is there always a localized deformation pattern appearing in solids losing macroscopic ellipticity when loaded past their critical state? In the interest of relative simplicity and analytical tractability, the present work answers this question in the restrictive framework of a layered, nonlinear (hyperelastic) solid in plane strain and more specifically under axial compression along the lamination direction. The key to the answer is found in the homogenized post-bifurcated solution of the problem, which for certain materials is supercritical (increasing force and displacement), leading to post-bifurcated equilibrium paths in these composites that show no localization of deformation for macroscopic strain well above the one corresponding to loss of ellipticity.

  3. Optimized manufacturable porous materials

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe; Jensen, Jakob Søndergaard

    Topology optimization has been used to design two-dimensional material structures with specific elastic properties, but optimized designs of three-dimensional material structures are more scarsely seen. Partly because it requires more computational power, and partly because it is a major challenge...... to include manufacturing constraints in the optimization. This work focuses on incorporating the manufacturability into the optimization procedure, allowing the resulting material structure to be manufactured directly using rapid manufacturing techniques, such as selective laser melting/sintering (SLM....../S). The available manufacturing methods are best suited for porous materials (one constituent and void), but the optimization procedure can easily include more constituents. The elasticity tensor is found from one unit cell using the homogenization method together with a standard finite element (FE) discretization...

  4. Benchmarking monthly homogenization algorithms

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2011-08-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: Advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random break-type inhomogeneities were added to the simulated datasets modeled as a Poisson process with normally distributed breakpoint sizes. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study as well as 22 additional solutions submitted after the details of the imposed inhomogeneities were revealed. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  5. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barrall, Geoffrey Alden [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

  6. Separation of the Microscopic and Macroscopic Domains

    Science.gov (United States)

    Van Zandt, L. L.

    1977-01-01

    Examines the possibility of observing interference in quantum magnification experiments such as the celebrated "Schroedinger cat". Uses the possibility of observing interference for separating the realm of microscopic from macroscopic dynamics; estimates the dividing line to fall at system sizes of about 100 Daltons. (MLH)

  7. Entropy, Macroscopic Information, and Phase Transitions

    OpenAIRE

    Parrondo, Juan M. R.

    1999-01-01

    The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.

  8. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  9. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

    Science.gov (United States)

    Laslier, Benoît; Toninelli, Fabio Lucio

    2015-09-01

    We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".

  10. Macroscopic invisibility cloaking of visible light

    DEFF Research Database (Denmark)

    Chen, Xianzhong; Luo, Y.; Zhang, Jingjing

    2011-01-01

    to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale...

  11. Visco-poroelastic damage model for brittle-ductile failure of porous rocks

    Science.gov (United States)

    Lyakhovsky, Vladimir; Zhu, Wenlu; Shalev, Eyal

    2015-04-01

    The coupling between damage accumulation, dilation, and compaction during loading of sandstones is responsible for different structural features such as localized deformation bands and homogeneous inelastic deformation. We distinguish and quantify the role of each deformation mechanism using new mathematical model and its numerical implementation. Formulation includes three different deformation regimes: (I) quasi-elastic deformation characterized by material strengthening and compaction; (II) cataclastic flow characterized by damage increase and compaction; and (III) brittle failure characterized by damage increase, dilation, and shear localization. Using a three-dimensional numerical model, we simulate the deformation behavior of cylindrical porous Berea sandstone samples under different confining pressures. The obtained stress, strain, porosity changes and macroscopic deformation features well reproduce the laboratory results. The model predicts different rock behavior as a function of confining pressures. The quasi-elastic and brittle regimes associated with formation of shear and/or dilatant bands occur at low effective pressures. The model also successfully reproduces cataclastic flow and homogeneous compaction under high pressures. Complex behavior with overlap of common features of all regimes is simulated under intermediate pressures, resulting with localized compaction or shear enhanced compaction bands. Numerical results elucidate three steps in the formation of compaction bands: (1) dilation and subsequent shear localization, (2) formation of shear enhanced compaction band, and (3) formation of pure compaction band.

  12. Modeling population patterns of chemotactic bacteria in homogeneous porous media

    NARCIS (Netherlands)

    Centler, F.; Fetzer, I.; Thullner, M.

    2011-01-01

    The spatio-temporal distribution of subsurface microorganisms determines their efficiency in providing essential ecosystem services such as the degradation of organic matter, the remineralization of carbon and nitrogen, or the remediation of anthropogenic contaminants. Populations of motile, chemota

  13. Natural thermal convection in fractured porous media

    Science.gov (United States)

    Adler, P. M.; Mezon, C.; Mourzenko, V.; Thovert, J. F.; Antoine, R.; Finizola, A.

    2015-12-01

    In the crust, fractures/faults can provide preferential pathways for fluid flow or act as barriers preventing the flow across these structures. In hydrothermal systems (usually found in fractured rock masses), these discontinuities may play a critical role at various scales, controlling fluid flows and heat transfer. The thermal convection is numerically computed in 3D fluid satured fractured porous media. Fractures are inserted as discrete objects, randomly distributed over a damaged volume, which is a fraction of the total volume. The fluid is assumed to satisfy Darcy's law in the fractures and in the porous medium with exchanges between them. All simulations were made for Rayleigh numbers (Ra) equilibrium with the medium), cubic boxes and closed-top conditions. Checks were performed on an unfractured porous medium and the convection cells do start for the theoretical value of Ra, namely 4p². 2D convection was verified up to Ra=800. The influence of parameters such as fracture aperture (or fracture transmissivity), fracture density and fracture length is studied. Moreover, these models are compared to porous media with the same macroscopic permeability. Preliminary results show that the non-uniqueness associated with initial conditions which makes possible either 2D or 3D convection in porous media (Schubert & Straus 1979) is no longer true for fractured porous media (at least for 50porous medium is in good agreement with an unfractured porous medium of the same bulk permeability.

  14. Porous Ascend

    DEFF Research Database (Denmark)

    Riiber, Jacob; Tamke, Martin; Ramsgaard Thomsen, Mette

    2012-01-01

    The Porous Ascend project investigates how algorithmic and generative approaches allows for the utilization of complex, and by other means inaccessible, ways of devising the schema by which we arrange the parts of an architectural object. It does so by pursuing to physically realize a structure...... of folded elements, based on the concept of applying recursion to the geometry of the non-periodic Penrose tiling. Within this process the project explores questions regarding the making of bespoke digital design tools, digital production, material behaviour and assemblage strategies. The project points...... with an outside and an efficient distribution of specific material behaviour....

  15. Connecting Pore Scale Dynamics to Macroscopic Models for Two-Fluid Phase Flow

    Science.gov (United States)

    McClure, J. E.; Dye, A. L.; Miller, C. T.; Gray, W. G.

    2015-12-01

    Imaging technologies such as computed micro-tomography (CMT) provide high resolution three-dimensional images of real porous medium systems that reveal the true geometric structure of fluid and solid phases. Simulation and analysis tools are essential to extract knowledge from this raw data, and can be applied in tandem to provide information that is otherwise inaccessible. Guidance from multi-scale averaging theory is used to develop a multi-scale analysis framework to determine phase connectivity and extract interfacial areas, curvatures, common line length, contact angle and the velocities of the interface and common curve. The approach is applied to analyze pore-scale dynamics based on a multiphase lattice Boltzmann method. Dense sets of simulations are performed to evaluate the equilibrium relationship between capillary pressure, saturation and interfacial area for several experimentally imaged porous media. The approach is also used study the evolution of macroscopic quantities under dynamic conditions, which is compared to the equilibrium data.

  16. Macroscopic quantum mechanics in a classical spacetime.

    Science.gov (United States)

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.

  17. Macroscopic Invisibility Cloaking of Visible Light

    CERN Document Server

    Chen, Xianzhong; Zhang, Jingjing; Jiang, Kyle; Pendry, John B; Zhang, Shuang

    2010-01-01

    Invisibility cloaks of light, which used to be confined to the imagination, have now been turned into a scientific reality, thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realisation of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here we report realisation of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices.

  18. Macroscopic spin and charge transport theory

    Institute of Scientific and Technical Information of China (English)

    Li Da-Fang; Shi Jun-Ren

    2009-01-01

    According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized 'current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.

  19. Macroscopic entrainment of periodically forced oscillatory ensembles.

    Science.gov (United States)

    Popovych, Oleksandr V; Tass, Peter A

    2011-03-01

    Large-amplitude oscillations of macroscopic neuronal signals, such as local field potentials and electroencephalography or magnetoencephalography signals, are commonly considered as being generated by a population of mutually synchronized neurons. In a computational study in generic networks of phase oscillators and bursting neurons, however, we show that this common belief may be wrong if the neuronal population receives an external rhythmic input. The latter may stem from another neuronal population or an external, e.g., sensory or electrical, source. In that case the population field potential may be entrained by the rhythmic input, whereas the individual neurons are phase desynchronized both mutually and with their field potential. Intriguingly, the corresponding large-amplitude oscillations of the population mean field are generated by pairwise desynchronized neurons oscillating at frequencies shifted far away from the frequency of the macroscopic field potential.

  20. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  1. Macroscopic Invisible Cloak for Visible Light

    CERN Document Server

    Zhang, Baile; Liu, Xiaogang; Barbastathis, George

    2011-01-01

    Invisibility cloaks, a subject that usually occurs in science fiction and myths, have attracted wide interest recently because of their possible realization. The biggest challenge to true invisibility is known to be the cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye. Here we experimentally solve this problem by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques. A transparent cloak made of two pieces of calcite is created. This cloak is able to conceal a macroscopic object with a maximum height of 2 mm, larger than 3500 free-space-wavelength, inside a transparent liquid environment. Its working bandwidth encompassing red, green and blue light is also demonstrated.

  2. Macroscopic Quantum Resonators (MAQRO): 2015 update

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbaek, Rainer [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Aspelmeyer, Markus; Kiesel, Nikolai [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Barker, Peter F.; Bose, Sougato [University College London, Department of Physics and Astronomy, London (United Kingdom); Bassi, Angelo [University of Trieste, Department of Physics, Trieste (Italy); INFN - Trieste Section, Trieste (Italy); Bateman, James [University of Swansea, Department of Physics, College of Science, Swansea (United Kingdom); Bongs, Kai; Cruise, Adrian Michael [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Braxmaier, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Brukner, Caslav [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Christophe, Bruno; Rodrigues, Manuel [The French Aerospace Lab, ONERA, Chatillon (France); Chwalla, Michael; Johann, Ulrich [Airbus Defence and Space GmbH, Immenstaad (Germany); Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge [ENS-PSL Research University, Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, College de France, Paris (France); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dholakia, Kishan; Mazilu, Michael [University of St. Andrews, School of Physics and Astronomy, St. Andrews (United Kingdom); Diosi, Lajos [Wigner Research Center for Physics, P.O. Box 49, Budapest (Hungary); Doeringshoff, Klaus; Peters, Achim [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Ertmer, Wolfgang; Rasel, Ernst M. [Leibniz Universitaet Hannover, Institut fuer Quantenoptik, Hannover (Germany); Gieseler, Jan; Novotny, Lukas; Rondin, Loic [ETH Zuerich, Photonics Laboratory, Zuerich (Switzerland); Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Hechenblaikner, Gerald [Airbus Defence and Space GmbH, Immenstaad (Germany); European Southern Observatory (ESO), Garching bei Muenchen (Germany); Hossenfelder, Sabine [KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Kim, Myungshik [Imperial College London, QOLS, Blackett Laboratory, London (United Kingdom); Milburn, Gerard J. [University of Queensland, ARC Centre for Engineered Quantum Systems, Brisbane (Australia); Mueller, Holger [University of California, Department of Physics, Berkeley, CA (United States); Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Pikovski, Igor [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Pilan Zanoni, Andre [Airbus Defence and Space GmbH, Immenstaad (Germany); CERN - European Organization for Nuclear Research, EN-STI-TCD, Geneva (Switzerland); Riedel, Charles Jess [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Roura, Albert [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Schleich, Wolfgang P. [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Texas A and M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, College Station, TX (United States); Schmiedmayer, Joerg [Vienna University of Technology, Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, Vienna (Austria); Schuldt, Thilo [Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Schwab, Keith C. [California Institute of Technology, Applied Physics, Pasadena, CA (United States)

    2016-12-15

    Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)

  3. A macroscopic approach to creating exotic matter

    OpenAIRE

    Ridgely, C. T.

    2000-01-01

    Herein the Casimir effect is used to present a simple macroscopic view on creating exotic matter. The energy arising between two nearly perfectly conducting parallel plates is shown to become increasingly negative as the plate separation is reduced. It is proposed that the Casimir energy appears increasingly negative simply because the vacuum electromagnetic zero-point field performs positive work in pushing the plates together, transforming field energy into kinetic energy of the plates. Nex...

  4. Shot noise in linear macroscopic resistors

    OpenAIRE

    Gomila Lluch, Gabriel; Pennetta, C.; Reggiani, L.; Ferrari, G; Sampietro, M.; G. Bertuccio(Politecnico di Milano, Italy)

    2004-01-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devi...

  5. Shot Noise in Linear Macroscopic Resistors

    Science.gov (United States)

    Gomila, G.; Pennetta, C.; Reggiani, L.; Sampietro, M.; Ferrari, G.; Bertuccio, G.

    2004-06-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.

  6. Macroscopic Objects, Intrinsic Spin, and Lorentz Violation

    CERN Document Server

    Atkinson, David W; Tasson, Jay D

    2013-01-01

    The framework of the Standard-Model Extension (SME) provides a relativistic quantum field theory for the study of Lorentz violation. The classical, nonrelativistic equations of motion can be extracted as a limit that is useful in various scenarios. In this work, we consider the effects of certain SME coefficients for Lorentz violation on the motion of macroscopic objects having net intrinsic spin in the classical, nonrelativistic limit.

  7. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...

  8. Homogeneity and Entropy

    Science.gov (United States)

    Tignanelli, H. L.; Vazquez, R. A.; Mostaccio, C.; Gordillo, S.; Plastino, A.

    1990-11-01

    RESUMEN. Presentamos una metodologia de analisis de la homogeneidad a partir de la Teoria de la Informaci6n, aplicable a muestras de datos observacionales. ABSTRACT:Standard concepts that underlie Information Theory are employed in order design a methodology that enables one to analyze the homogeneity of a given data sample. Key : DATA ANALYSIS

  9. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  10. Autophoretic self-propulsion of homogeneous particles

    Science.gov (United States)

    Michelin, Sebastien; Lauga, Eric; de Canio, Gabriele

    2014-11-01

    Phoretic mechanisms such as diffusiophoresis exploit short-ranged interactions between solute molecules in the fluid and a rigid wall to generate local slip velocities in the presence of solute gradients along the solid boundary. This boundary flow can result in macroscopic fluid motion or phoretic migration of inert particles. These mechanisms have recently received a renewed interest to design self-propelled ``autophoretic'' systems able to generate the required solute gradients through chemical reaction at their surface. Most existing designs rely on the asymmetric chemical treatment of the particle's surface to guarantee symmetry-breaking and the generation of a net flow. We show here, however, that chemical asymmetry is not necessary for flow generation and that homogeneous particles with asymmetric geometry may lead to self-propulsion in Stokes flow. Similarly, this principle can be used to manufacture micro-pumps using channel walls with uniform chemical properties.

  11. Homogenization of High-Contrast Brinkman Flows

    KAUST Repository

    Brown, Donald L.

    2015-04-16

    Modeling porous flow in complex media is a challenging problem. Not only is the problem inherently multiscale but, due to high contrast in permeability values, flow velocities may differ greatly throughout the medium. To avoid complicated interface conditions, the Brinkman model is often used for such flows [O. Iliev, R. Lazarov, and J. Willems, Multiscale Model. Simul., 9 (2011), pp. 1350--1372]. Instead of permeability variations and contrast being contained in the geometric media structure, this information is contained in a highly varying and high-contrast coefficient. In this work, we present two main contributions. First, we develop a novel homogenization procedure for the high-contrast Brinkman equations by constructing correctors and carefully estimating the residuals. Understanding the relationship between scales and contrast values is critical to obtaining useful estimates. Therefore, standard convergence-based homogenization techniques [G. A. Chechkin, A. L. Piatniski, and A. S. Shamev, Homogenization: Methods and Applications, Transl. Math. Monogr. 234, American Mathematical Society, Providence, RI, 2007, G. Allaire, SIAM J. Math. Anal., 23 (1992), pp. 1482--1518], although a powerful tool, are not applicable here. Our second point is that the Brinkman equations, in certain scaling regimes, are invariant under homogenization. Unlike in the case of Stokes-to-Darcy homogenization [D. Brown, P. Popov, and Y. Efendiev, GEM Int. J. Geomath., 2 (2011), pp. 281--305, E. Marusic-Paloka and A. Mikelic, Boll. Un. Mat. Ital. A (7), 10 (1996), pp. 661--671], the results presented here under certain velocity regimes yield a Brinkman-to-Brinkman upscaling that allows using a single software platform to compute on both microscales and macroscales. In this paper, we discuss the homogenized Brinkman equations. We derive auxiliary cell problems to build correctors and calculate effective coefficients for certain velocity regimes. Due to the boundary effects, we construct

  12. Macroscopic quasilinear theory of parallel electron firehose instability associated with solar wind electrons

    Science.gov (United States)

    Sarfraz, M.; Yoon, P. H.; Saeed, Sundas; Abbas, G.; Shah, H. A.

    2017-01-01

    A number of different microinstabilities are known to be responsible for regulating the upper bound of temperature anisotropies in solar wind protons, alpha particles, and electrons. In the present paper, quasilinear kinetic theory is employed to investigate the time variation in electron temperature anisotropies in response to the excitation of parallel electron firehose instability in homogeneous and non-collisional solar wind plasma under the condition of T∥e>T⊥e . By assuming the bi-Maxwellian form of velocity distribution functions, various velocity moments of the particle kinetic equation are taken in order to reduce the theory to macroscopic model in which the wave-particle interaction is incorporated, hence, the macroscopic quasilinear theory. The threshold condition for the parallel electron firehose instability, empirically constructed as a curve in (β∥e,T⊥e/T∥e) phase space, is implicit in the present macroscopic quasilinear calculation. Even though the present calculation excludes the oblique firehose instability, which is known to possess a higher growth rate, the basic methodology may be further extended to include such a mode. Among the findings is that the parallel electron firehose instability dynamically couples the electrons and protons, which implies that this instability may be important for overall solar wind dynamics. The present analysis shows that the macroscopic quasilinear approach may eventually be incorporated in global-kinetic models of the solar wind electrons and ions.

  13. Dynamics of homogeneous nucleation

    DEFF Research Database (Denmark)

    Toxværd, Søren

    2015-01-01

    The classical nucleation theory for homogeneous nucleation is formulated as a theory for a density fluctuation in a supersaturated gas at a given temperature. But molecular dynamics simulations reveal that it is small cold clusters which initiates the nucleation. The temperature in the nucleating...... clusters fluctuates, but the mean temperature remains below the temperature in the supersaturated gas until they reach the critical nucleation size. The critical nuclei have, however, a temperature equal to the supersaturated gas. The kinetics of homogeneous nucleation is not only caused by a grow...... or shrink by accretion or evaporation of monomers only but also by an exponentially declining change in cluster size per time step equal to the cluster distribution in the supersaturated gas....

  14. Homogeneous group, research, institution

    Directory of Open Access Journals (Sweden)

    Francesca Natascia Vasta

    2014-09-01

    Full Text Available The work outlines the complex connection among empiric research, therapeutic programs and host institution. It is considered the current research state in Italy. Italian research field is analyzed and critic data are outlined: lack of results regarding both the therapeutic processes and the effectiveness of eating disorders group analytic treatment. The work investigates on an eating disorders homogeneous group, led into an eating disorder outpatient service. First we present the methodological steps the research is based on including the strong connection among theory and clinical tools. Secondly clinical tools are described and the results commented. Finally, our results suggest the necessity of validating some more specifical hypothesis: verifying the relationship between clinical improvement (sense of exclusion and painful emotions reduction and specific group therapeutic processes; verifying the relationship between depressive feelings, relapses and transition trough a more differentiated groupal field.Keywords: Homogeneous group; Eating disorders; Institutional field; Therapeutic outcome

  15. Homogenous finitary symmetric groups

    Directory of Open Access Journals (Sweden)

    Otto‎. ‎H‎. Kegel

    2015-03-01

    Full Text Available We characterize strictly diagonal type of embeddings of finitary symmetric groups in terms of cardinality and the characteristic. Namely, we prove the following. Let kappa be an infinite cardinal. If G=underseti=1stackrelinftybigcupG i , where G i =FSym(kappan i , (H=underseti=1stackrelinftybigcupH i , where H i =Alt(kappan i , is a group of strictly diagonal type and xi=(p 1 ,p 2 ,ldots is an infinite sequence of primes, then G is isomorphic to the homogenous finitary symmetric group FSym(kappa(xi (H is isomorphic to the homogenous alternating group Alt(kappa(xi , where n 0 =1,n i =p 1 p 2 ldotsp i .

  16. A micromorphic computational homogenization framework for heterogeneous materials

    Science.gov (United States)

    Biswas, R.; Poh, L. H.

    2017-05-01

    The conventional first-order computational homogenization framework is restricted to problems where the macro characteristic length scale is much larger than the underlying Representative Volume Element (RVE). In the absence of a clear separation of length scales, higher-order enrichment is required to capture the influence of the underlying rapid fluctuations, otherwise neglected in the first-order framework. In this contribution, focusing on matrix-inclusion composites, a novel computational homogenization framework is proposed such that standard continuum models at the micro-scale translate onto the macro-scale to recover a micromorphic continuum. Departing from the conventional FE2 framework where a macroscopic strain tensor characterizes the average deformation within the RVE, our formulation introduces an additional macro kinematic field to characterize the average strain in the inclusions. The two macro kinematic fields, each characterizing a particular aspect of deformation within the RVE, thus provide critical information on the underlying rapid fluctuations. The net effect of these fluctuations, as well as the interactions between RVEs, are next incorporated naturally into the macroscopic virtual power statement through the Hill-Mandel condition. The excellent predictive capability of the proposed homogenization framework is illustrated through three benchmark examples. It is shown that the homogenized micromorphic model adequately captures the material responses, even in the absence of a clear separation of length scales between macro and micro.

  17. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  18. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  19. Homogeneous Clifford structures

    OpenAIRE

    Moroianu, Andrei; Pilca, Mihaela

    2012-01-01

    We give an upper bound for the rank r of homogeneous (even) Clifford structures on compact manifolds of non-vanishing Euler characteristic. More precisely, we show that if r = 2a � b with b odd, then r � 9 for a = 0, r � 10 for a = 1, r � 12 for a = 2 and r � 16 for a � 3. Moreover, we describe the four limiting cases and show that there is exactly one solution in each case.

  20. Homogeneous M2 duals

    CERN Document Server

    Figueroa-O'Farrill, José

    2015-01-01

    Motivated by the search for new gravity duals to M2 branes with $N>4$ supersymmetry --- equivalently, M-theory backgrounds with Killing superalgebra $\\mathfrak{osp}(N|4)$ for $N>4$ --- we classify (except for a small gap) homogeneous M-theory backgrounds with symmetry Lie algebra $\\mathfrak{so}(n) \\oplus \\mathfrak{so}(3,2)$ for $n=5,6,7$. We find that there are no new backgrounds with $n=6,7$ but we do find a number of new (to us) backgrounds with $n=5$. All backgrounds are metrically products of the form $\\operatorname{AdS}_4 \\times P^7$, with $P$ riemannian and homogeneous under the action of $\\operatorname{SO}(5)$, or $S^4 \\times Q^7$ with $Q$ lorentzian and homogeneous under the action of $\\operatorname{SO}(3,2)$. At least one of the new backgrounds is supersymmetric (albeit with only $N=2$) and we show that it can be constructed from a supersymmetric Freund--Rubin background via a Wick rotation. Two of the new backgrounds have only been approximated numerically.

  1. Rainbow correlation imaging with macroscopic twin beam

    Science.gov (United States)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  2. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiong; He Gui-ming; Zhang Yun

    2003-01-01

    In the Automatic Fingerprint Identification System (AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characteristic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  3. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang; Xiong; He; Gui-Ming; 等

    2003-01-01

    In the Automatic Fingerprint Identification System(AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characterstic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  4. Macroscopic Quantum Criticality in a Circuit QED

    CERN Document Server

    Wang, Y D; Nori, F; Quan, H T; Sun, C P; Liu, Yu-xi; Nori, Franco

    2006-01-01

    Cavity quantum electrodynamic (QED) is studied for two strongly-coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator. We analyze the dressed state structure of this superconducting circuit QED system and the selection rules of electromagnetic-induced transitions between any two of these dressed states. Its macroscopic quantum criticality, in the form of ground state level crossing, is also analyzed, resulting from competition between the Ising-type inter-qubit coupling and the controllable on-site potentials.

  5. Macroscopic fluctuations theory of aerogel dynamics

    CERN Document Server

    Lefevere, Raphael; Zambotti, Lorenzo

    2010-01-01

    We consider extensive deterministic dynamics made of $N$ particles modeling aerogels under a macroscopic fluctuation theory description. By using a stochastic model describing those dynamics after a diffusive rescaling, we show that the functional giving the exponential decay in $N$ of the probability of observing a given energy and current profile is not strictly convex as a function of the current. This behaviour is caused by the fact that the energy current is carried by particles which may have arbitrary low speed with sufficiently large probability.

  6. Computational Homogenization of Fresh Concrete Flow Around Reinforcing Bars

    CERN Document Server

    Kolařík, Filip; Zeman, Jan

    2016-01-01

    Motivated by casting of fresh concrete in reinforced concrete structures, we introduce a numerical model of a steady-state non-Newtonian fluid flow through a porous domain. Our approach combines homogenization techniques to represent the reinforced domain by the Darcy law with an interface coupling of the Stokes and Darcy flows through the Beavers-Joseph-Saffman conditions. The ensuing two-scale problem is solved by the Finite Element Method with consistent linearization and the results obtained from the homogenization approach are verified against fully resolved direct numerical simulations.

  7. Spin models as microfoundation of macroscopic market models

    Science.gov (United States)

    Krause, Sebastian M.; Bornholdt, Stefan

    2013-09-01

    Macroscopic price evolution models are commonly used for investment strategies. There are first promising achievements in defining microscopic agent based models for the same purpose. Microscopic models allow a deeper understanding of mechanisms in the market than the purely phenomenological macroscopic models, and thus bear the chance for better models for market regulation. However microscopic models and macroscopic models are commonly studied separately. Here, we exemplify a unified view of a microscopic and a macroscopic market model in a case study, deducing a macroscopic Langevin equation from a microscopic spin market model closely related to the Ising model. The interplay of the microscopic and the macroscopic view allows for a better understanding and adjustment of the microscopic model, as well, and may guide the construction of agent based market models as basis of macroscopic models.

  8. Critical behavior in porous media flow

    CERN Document Server

    Moura, Marcel; Toussaint, Renaud

    2016-01-01

    The intermittent burst dynamics during the slow drainage of a porous medium is studied experimentally. We have verified a theoretically predicted scaling for the burst size distribution which was previously accessible only via numerical simulations. We show that this system satisfies a set of conditions known to be true for critical systems, such as intermittent activity with bursts extending over several time and length scales, self-similar macroscopic fractal structure and $1/f^\\alpha$ power spectrum. The observation of $1/f^\\alpha$ power spectra is new for porous media flows and, for specific boundary conditions, we notice the occurrence of a transition from $1/f$ to $1/f^2$ scaling. An analytically integrable mathematical framework was employed to explain this behavior.

  9. Macroscopic theory for capillary-pressure hysteresis.

    Science.gov (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-03

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.

  10. Homogeneous Finsler Spaces

    CERN Document Server

    Deng, Shaoqiang

    2012-01-01

    "Homogeneous Finsler Spaces" is the first book to emphasize the relationship between Lie groups and Finsler geometry, and the first to show the validity in using Lie theory for the study of Finsler geometry problems. This book contains a series of new results obtained by the author and collaborators during the last decade. The topic of Finsler geometry has developed rapidly in recent years. One of the main reasons for its surge in development is its use in many scientific fields, such as general relativity, mathematical biology, and phycology (study of algae). This monograph introduc

  11. Homogeneous turbulence theory

    Energy Technology Data Exchange (ETDEWEB)

    Bershadskii, A.G.

    1985-06-01

    An exact solution for the nonlinear problem of the spectral energy function of a homogeneous turbulence is derived under the assumption that energy transfer under the effect of inertial forces is determined mainly by the interactions among vortices whose wavenumbers are only slightly different from each other. The results are experimentally verified for turbulence behind grids. Similar problems are solved for MHD turbulence and for a nonstationary spectral energy function. It is shown that at the initial stage of degeneration, the spectral energy function is little influenced by the Stewart number; this agrees with experimental data for the damping of longitudinal velocity pulsations behind a grid in a longitudinal magnetic field. 15 references.

  12. Quantum correlations of lights in macroscopic environments

    Science.gov (United States)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear

  13. Cylindrical Three-Dimensional Porous Anodic Alumina Networks

    Directory of Open Access Journals (Sweden)

    Pedro M. Resende

    2016-11-01

    Full Text Available The synthesis of a conformal three-dimensional nanostructure based on porous anodic alumina with transversal nanopores on wires is herein presented. The resulting three-dimensional network exhibits the same nanostructure as that obtained on planar geometries, but with a macroscopic cylindrical geometry. The morphological analysis of the nanostructure revealed the effects of the initial defects on the aluminum surface and the mechanical strains on the integrity of the three-dimensional network. The results evidence the feasibility of obtaining 3D porous anodic alumina on non-planar aluminum substrates.

  14. Power exponential velocity distributions in disordered porous media

    CERN Document Server

    Matyka, Maciej; Koza, Zbigniew

    2016-01-01

    Velocity distribution functions link the micro- and macro-level theories of fluid flow through porous media. Here we study them for the fluid absolute velocity and its longitudinal and lateral components relative to the macroscopic flow direction in a model of a random porous medium. We claim that all distributions follow the power exponential law controlled by an exponent $\\gamma$ and a shift parameter $u_0$ and examine how these parameters depend on the porosity. We find that $\\gamma$ has a universal value $1/2$ at the percolation threshold and grows with the porosity, but never exceeds 2.

  15. USE OF POROUS BIODEGRADABLE POLYMER IMPLANTS IN MENISCUS RECONSTRUCTION .1. PREPARATION OF POROUS BIODEGRADABLE POLYURETHANES FOR THE RECONSTRUCTION OF MENISCUS LESIONS

    NARCIS (Netherlands)

    DEGROOT, JH; NIJENHUIS, AJ; BRUIN, P; PENNINGS, AJ; VETH, RPH; JANSEN, HWB

    1990-01-01

    Porous biodegradable poly(urethanes) for reconstructing menisci have been prepared using two different combinations of techniques: freeze-drying/salt-leaching and in-situ polymerization/salt-leaching. Using these methods, homogenous porous materials with a controllable and reproducible morphology ca

  16. Symmetries of homogeneous cosmologies

    CERN Document Server

    Cotsakis, S; Pantazi, H; Cotsakis, Spiros; Leach, Peter; Pantazi, Hara

    1998-01-01

    We reformulate the dynamics of homogeneous cosmologies with a scalar field matter source with an arbitrary self-interaction potential in the language of jet bundles and extensions of vector fields. In this framework, the Bianchi-scalar field equations become subsets of the second Bianchi jet bundle, $J^2$, and every Bianchi cosmology is naturally extended to live on a variety of $J^2$. We are interested in the existence and behaviour of extensions of arbitrary Bianchi-Lie and variational vector fields acting on the Bianchi variety and accordingly we classify all such vector fields corresponding to both Bianchi classes $A$ and $B$. We give examples of functions defined on Bianchi jet bundles which are constant along some Bianchi models (first integrals) and use these to find particular solutions in the Bianchi total space. We discuss how our approach could be used to shed new light to questions like isotropization and the nature of singularities of homogeneous cosmologies by examining the behaviour of the vari...

  17. Origins of Willis coupling and acoustic bianisotropy in acoustic metamaterials through source-driven homogenization

    Science.gov (United States)

    Sieck, Caleb F.; Alù, Andrea; Haberman, Michael R.

    2017-09-01

    Willis fluids, or more generally Willis materials, are homogenized composites that exhibit coupling between momentum and strain. This coupling is intrinsic to inhomogeneous media and can play a significant role in the overall response in acoustic metamaterials. In this paper, we draw connections between bianisotropy in electromagnetism and Willis coupling in elastodynamics to provide a qualitative understanding. Building upon these analogies, we introduce a homogenization technique for acoustic metamaterials based on a source-driven, multiple scattering approach that highlights the physical origins of Willis coupling. Moreover, through numerical examples, we compare several macroscopic material descriptions of acoustic metamaterials with non-negligible Willis coupling. The descriptions neglecting Willis coupling may not satisfy restrictions stemming from reciprocity, passivity, and causality, which suggests that including Willis coupling in macroscopic descriptions is necessary to realize physically meaningful macroscopic parameters.

  18. Impregnation of porous silicon with conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Harraz, Farid A. [Advanced Materials Technology Department, Central Metallurgical Research and Development Institute (CMRDI), PO Box: 87, Hewan, 11421 Cairo (Egypt)

    2011-06-15

    Fabrication of porous silicon layers using the electrochemical technique followed by filling the nanopores with a group of conducting polymers is investigated. Our findings revealed that the deposition of polymer proceeds homogeneously inside the nanopores strating from the pore bottom and propagates into the outer surface. The polymerization process was conducted and controlled by the potentiostatic and galvanostatic modes with characteristic, defined polymerization stages. As-formed hybrid nanocomposites were characterized using different analytical techniques. Polypyrrole, polyaniline and polythiophene were tested in this study. By selective dissolution of porous silicon template, polymeric nanowires were obtained. The fabrication process, the electrochemical measurements and the porous silicon filling mechanism with polymer are thoroughly addressed and discussed (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Amine Functionalized Porous Network

    KAUST Repository

    Eddaoudi, Mohamed

    2015-05-28

    Amine groups can be introduced in porous materials by a direct (one pot) or post-synthetic modification (PSM) process on aldehyde groups, and the resulting porous materials have increased gas affinity.

  20. Macro-scale turbulence modelling for flows in porous media; Modelisation a l'echelle macroscopique d'un ecoulement turbulent au sein d'un milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Pinson, F

    2006-03-15

    - This work deals with the macroscopic modeling of turbulence in porous media. It concerns heat exchangers, nuclear reactors as well as urban flows, etc. The objective of this study is to describe in an homogenized way, by the mean of a spatial average operator, turbulent flows in a solid matrix. In addition to this first operator, the use of a statistical average operator permits to handle the pseudo-aleatory character of turbulence. The successive application of both operators allows us to derive the balance equations of the kind of flows under study. Two major issues are then highlighted, the modeling of dispersion induced by the solid matrix and the turbulence modeling at a macroscopic scale (Reynolds tensor and turbulent dispersion). To this aim, we lean on the local modeling of turbulence and more precisely on the k - {epsilon} RANS models. The methodology of dispersion study, derived thanks to the volume averaging theory, is extended to turbulent flows. Its application includes the simulation, at a microscopic scale, of turbulent flows within a representative elementary volume of the porous media. Applied to channel flows, this analysis shows that even within the turbulent regime, dispersion remains one of the dominating phenomena within the macro-scale modeling framework. A two-scale analysis of the flow allows us to understand the dominating role of the drag force in the kinetic energy transfers between scales. Transfers between the mean part and the turbulent part of the flow are formally derived. This description significantly improves our understanding of the issue of macroscopic modeling of turbulence and leads us to define the sub-filter production and the wake dissipation. A f - <{epsilon}>f - <{epsilon}{sub w}>f model is derived. It is based on three balance equations for the turbulent kinetic energy, the viscous dissipation and the wake dissipation. Furthermore, a dynamical predictor for the friction coefficient is proposed. This model is then

  1. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HU Hui; LO Rong; ZHU Jia-Lin; XIONG Jia-Jiong

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80 (1998) 169), but also have great influence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.

  2. Micro- and macroscopic simulation of periodic metamaterials

    Directory of Open Access Journals (Sweden)

    R. Schuhmann

    2008-05-01

    Full Text Available In order to characterize three-dimensional, left-handed metamaterials (LHM we use electromagnetic field simulations of unit cells. For waves traveling in one of the main directions of the periodic LHM-arrays, the analysis is concentrated on the calculation of global quantities of the unit cells, such as scattering parameters or dispersion diagrams, and a careful interpretation of the results. We show that the concept of equivalent material values – which may be negative in a narrow frequency range – can be validated by large "global" simulations of a wedge structure. We also discuss the limitations of this concept, since in some cases the macroscopic behavior of an LHM cannot be accurately described by equivalent material values.

  3. Microscopic versus macroscopic calculation of dielectric nanospheres

    Science.gov (United States)

    Kühn, M.; Kliem, H.

    2008-12-01

    The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.

  4. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  5. Casimir effect from macroscopic quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2011-06-15

    The canonical quantization of macroscopic electromagnetism was recently presented in (Philbin 2010 New J. Phys. 12 123008). This theory is used here to derive the Casimir effect, by considering the special case of thermal and zero-point fields. The stress-energy-momentum tensor of the canonical theory follows from Noether's theorem, and its electromagnetic part in thermal equilibrium gives the Casimir energy density and stress tensor. The results hold for arbitrary inhomogeneous magnetodielectrics and are obtained from a rigorous quantization of electromagnetism in dispersive, dissipative media. Continuing doubts about the status of the standard Lifshitz theory as a proper quantum treatment of Casimir forces do not apply to the derivation given here. Moreover, the correct expressions for the Casimir energy density and stress tensor inside media follow automatically from the simple restriction to thermal equilibrium, without the need for complicated thermodynamical or mechanical arguments.

  6. Taming macroscopic jamming in transportation networks

    CERN Document Server

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    In transportation networks, a spontaneous jamming transition is often observed, e.g in urban road networks and airport networks. Because of this instability, flow distribution is significantly imbalanced on a macroscopic level. To mitigate the congestion, we consider a simple control method, in which congested nodes are closed temporarily, and investigate how it influences the overall system. Depending on the timing of the node closure and opening, and congestion level of a network, the system displays three different phases: free-flow phase, controlled phase, and deadlock phase. We show that when the system is in the controlled phase, the average flow is significantly improved, whereas when in the deadlock phase, the flow drops to zero. We study how the control method increases the network flow and obtain their transition boundary analytically.

  7. Black Holes and Quantumness on Macroscopic Scales

    CERN Document Server

    Flassig, D; Wintergerst, N

    2012-01-01

    It has recently been suggested that black holes may be described as condensates of weakly interacting gravitons at a critical point, exhibiting strong quantum effects. In this paper, we study a model system of attractive bosons in one spatial dimension which is known to undergo a quantum phase transition. We demonstrate explicitly that indeed quantum effects are important at the critical point, even if the number of particles is macroscopic. Most prominently, we evaluate the entropy of entanglement between different momentum modes and observe it to become maximal at the critical point. Furthermore, we explicitly see that the leading entanglement is between long wavelength modes and is hence a feature independent of ultraviolet physics. If applicable to black holes, our findings substantiate the conjectured breakdown of semiclassical physics even for large black holes. This can resolve long standing mysteries, such as the information paradox and the no-hair theorem.

  8. Variability of macroscopic dimensions of Moso bamboo.

    Science.gov (United States)

    Cui, Le; Peng, Wanxi; Sun, Zhengjun; Sun, Zhengjun; Sun, Zhengjun; Lu, Huangfei; Chen, Guoning

    2015-03-01

    In order to the macroscopic geometry distributions of vascular bundles in Moso bamboo tubes. The circumference of bamboo tubes was measured, used a simple quadratic diameter formula to analyze the differences between the tubes in bamboo culm, and the arrangement of vascular bundles was investigated by cross sectional images of bamboo tubes. The results shown that the vascular bundles were differently distributed in a bamboo tube. In the outer layer, the vascular bundles had a variety of shapes, and were aligned parallel to each other. In the inner layers, the vascular bundles weren't aligned but uniform in shape. It was concluded that the vascular bundle sections arranged in parallel should be separated from the non-parallel sections for the maximum bamboo utilization.

  9. Robust macroscopic entanglement without complex encodings

    CERN Document Server

    Chaves, Rafael; Acín, Antonio

    2011-01-01

    One of the main challenges for the experimental manipulation and storage of macroscopic entanglement is its fragility under noise. We present a simple recipe for the systematic enhancement of the resistance of multipartite entanglement against any local noise with a privileged direction in the Bloch sphere. For the case of exact local dephasing along any given basis, and for all noise strengths, our prescription grants full robustness: even states whose entanglement decays exponentially with the number of parts are mapped to states whose entanglement is constant. In contrast to previous techniques resorting to complex logical-qubit encodings, such enhancement is attained simply by performing local unitary rotations before the noise acts. The scheme is therefore highly experimentally-friendly, as it brings no overhead of extra physical qubits to encode logical ones. In addition, we show that, apart from entanglement, the resilience of the states as resources for useful practical tasks such as metrology and non...

  10. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HUHui; LURong; 等

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model.On the basis of instanton technique in the spin-coherent-state path-integral representation,both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained.We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys.Rev.Lett.80(1998)169),but also have great influence on the intensity of the ground-state tunnel splitting.Those features clearly have no analogue in the ferromagnetic molecular magnets.We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets.The analytical results are complemented by exact diagonalization calculation.

  11. Determining the Macroscopic Properties of Relativistic Jets

    Science.gov (United States)

    Hardee, P. E.

    2004-08-01

    The resolved relativistic jets contain structures whose observed proper motions are typically assumed to indicate the jet flow speed. In addition to structures moving with the flow, various normal mode structures such as pinching or helical and elliptical twisting can be produced by ejection events or twisting perturbations to the jet flow. The normal mode structures associated with relativistic jets, as revealed by numerical simulation, theoretical calculation, and suggested by observation, move more slowly than the jet speed. The pattern speed is related to the jet speed by the sound speed in the jet and in the surrounding medium. In the event that normal mode structures are observed, and where proper motions of pattern and flow speed are available or can be estimated, it is possible to determine the sound speed in the jet and surrounding medium. Where spatial development of normal mode structures is observed, it is possible to make inferences as to the heating rate/macroscopic viscosity of the jet fluid. Ultimately it may prove possible to separate the microscopic energization of the synchrotron radiating particles from the macroscopic heating of the jet fluid. Here I present the relevant properties of useful normal mode structures and illustrate the use of this technique. Various aspects of the work presented here have involved collaboration with I. Agudo (Max-Planck, Bonn), M.A. Aloy (Max-Planck, Garching), J. Eilek (NM Tech), J.L. Gómez (U. Valencia), P. Hughes (U. Michigan), A. Lobanov (Max-Planck, Bonn), J.M. Martí (U. Valencia), & C. Walker (NRAO).

  12. How to determine composite material properties using numerical homogenization

    DEFF Research Database (Denmark)

    Andreassen, Erik; Andreasen, Casper Schousboe

    2014-01-01

    Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how t...... cell of the periodic material can take the shape of a square, rectangle, or parallelogram, allowing for all kinds of 2D periodicities. © 2013 Elsevier B.V. All rights reserved.......Numerical homogenization is an efficient way to determine effective macroscopic properties, such as the elasticity tensor, of a periodic composite material. In this paper an educational description of the method is provided based on a short, self-contained Matlab implementation. It is shown how...... the basic code, which computes the effective elasticity tensor of a two material composite, where one material could be void, is easily extended to include more materials. Furthermore, extensions to homogenization of conductivity, thermal expansion, and fluid permeability are described in detail. The unit...

  13. Dispersion of a solute in peristaltic motion of a couple stress fluid through a porous medium

    National Research Council Canada - National Science Library

    G. Radhakrishnamacharya; Habtu Alemayehu

    2012-01-01

    The paper presents an analytical solution for dispersion of a solute in the peristaltic motion of a couple stress fluid through a porous medium in the presence of both homogeneous and heterogeneous chemical reactions...

  14. Iterative Learning Control Approach for Signaling Split in Urban Traffic Networks with Macroscopic Fundamental Diagrams

    Directory of Open Access Journals (Sweden)

    Fei Yan

    2015-01-01

    Full Text Available Recent analysis of field experiments in cities revealed that a macroscopic fundamental diagram (MFD relating network outflow and network vehicle accumulation exists in the urban traffic networks. It has been further confirmed that an MFD is well defined if the network has regular network topology and homogeneous spatial distribution of vehicle accumulation. However, many real urban networks have different levels of heterogeneity in the spatial distribution of vehicle accumulation. In order to improve the mobility in heterogeneously congested networks, we propose an iterative learning control approach for signaling split, which aims at distributing the accumulation in the networks as homogeneously as possible and ensuring the networks have a larger outflow. The asymptotic convergence of the proposed approach is proved by rigorous analysis and the effectiveness is further demonstrated by extensive simulations.

  15. Observability of relative phases of macroscopic quantum states

    CERN Document Server

    Pati, A K

    1998-01-01

    After a measurement, to observe the relative phases of macroscopically distinguishable states we have to ``undo'' a quantum measurement. We generalise an earlier model of Peres from two state to N-state quantum system undergoing measurement process and discuss the issue of observing relative phases of different branches. We derive an inequality which is satisfied by the relative phases of macroscopically distinguishable states and consequently any desired relative phases can not be observed in interference setups. The principle of macroscopic complementarity is invoked that might be at ease with the macroscopic world. We illustrate the idea of limit on phase observability in Stern-Gerlach measurements and the implications are discussed.

  16. Velocity and stress jump conditions between a porous medium and a fluid

    Science.gov (United States)

    Valdés-Parada, Francisco J.; Aguilar-Madera, Carlos G.; Ochoa-Tapia, J. Alberto; Goyeau, Benoît

    2013-12-01

    Modeling transport phenomena in hierarchical systems can be carried out by either a one domain approach or a two domain approach. The first one involves assuming the system as a pseudo-continuum and is expressed in terms of position-dependent effective medium coefficients. In the two domain approach, the differential equations have position-independent coefficients but require accounting for the corresponding boundary conditions that couple the equations between each homogeneous region. For momentum transport between a porous medium and a fluid, stress boundary conditions have been derived in terms of a jump coefficient that needs to be predicted within a two-domain approach formulation. However, continuity of the velocity is postulated at the dividing surface. In this work, we propose a methodology for the derivation of boundary conditions for both the velocity and the stress. These conditions are expressed in terms of jump coefficients that are computed from the solution of an ancillary macroscopic closure problem. This problem accounts for the deviations from the one and two domain approaches. From the closure problem solution we were also able to determine the position at which the jump conditions should be applied, i.e., the dividing surface position. In addition, we used this methodology adopting the assumptions proposed by Ochoa-Tapia and Whitaker as well as those by Beavers and Joseph. We found that any version of the two domain approach was in agreement with the one domain approach in the bulk of the porous medium and the fluid. However, the same is not true for the process of capturing the essential information of the inter-region.

  17. The General Theory of Homogenization A Personalized Introduction

    CERN Document Server

    Tartar, Luc

    2010-01-01

    Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of Francois Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science,

  18. Numerical homogenization of elastic and thermal material properties for metal matrix composites (MMC)

    Science.gov (United States)

    Schindler, Stefan; Mergheim, Julia; Zimmermann, Marco; Aurich, Jan C.; Steinmann, Paul

    2017-01-01

    A two-scale material modeling approach is adopted in order to determine macroscopic thermal and elastic constitutive laws and the respective parameters for metal matrix composite (MMC). Since the common homogenization framework violates the thermodynamical consistency for non-constant temperature fields, i.e., the dissipation is not conserved through the scale transition, the respective error is calculated numerically in order to prove the applicability of the homogenization method. The thermomechanical homogenization is applied to compute the macroscopic mass density, thermal expansion, elasticity, heat capacity and thermal conductivity for two specific MMCs, i.e., aluminum alloy Al2024 reinforced with 17 or 30 % silicon carbide particles. The temperature dependency of the material properties has been considered in the range from 0 to 500°C, the melting temperature of the alloy. The numerically determined material properties are validated with experimental data from the literature as far as possible.

  19. Studies into the averaging problem: Macroscopic gravity and precision cosmology

    Science.gov (United States)

    Wijenayake, Tharake S.

    2016-08-01

    With the tremendous improvement in the precision of available astrophysical data in the recent past, it becomes increasingly important to examine some of the underlying assumptions behind the standard model of cosmology and take into consideration nonlinear and relativistic corrections which may affect it at percent precision level. Due to its mathematical rigor and fully covariant and exact nature, Zalaletdinov's macroscopic gravity (MG) is arguably one of the most promising frameworks to explore nonlinearities due to inhomogeneities in the real Universe. We study the application of MG to precision cosmology, focusing on developing a self-consistent cosmology model built on the averaging framework that adequately describes the large-scale Universe and can be used to study real data sets. We first implement an algorithmic procedure using computer algebra systems to explore new exact solutions to the MG field equations. After validating the process with an existing isotropic solution, we derive a new homogeneous, anisotropic and exact solution. Next, we use the simplest (and currently only) solvable homogeneous and isotropic model of MG and obtain an observable function for cosmological expansion using some reasonable assumptions on light propagation. We find that the principal modification to the angular diameter distance is through the change in the expansion history. We then linearize the MG field equations and derive a framework that contains large-scale structure, but the small scale inhomogeneities have been smoothed out and encapsulated into an additional cosmological parameter representing the averaging effect. We derive an expression for the evolution of the density contrast and peculiar velocities and integrate them to study the growth rate of large-scale structure. We find that increasing the magnitude of the averaging term leads to enhanced growth at late times. Thus, for the same matter content, the growth rate of large scale structure in the MG model

  20. Complex-Shaped Porous Cu Bodies Fabricated by Freeze-Casting and Vacuum Sintering

    Directory of Open Access Journals (Sweden)

    Huashen Ran

    2015-10-01

    Full Text Available Porous Cu bodies with complex shapes were fabricated by freeze-casting and vacuum sintering water-based CuO slurry. The sintered bodies showed no noticeable macroscopic defects and good shape tolerance. The interconnected pore tunnels were observed by electronic microscopy. The pore size became smaller and the porosity and volume shrinkage of sintered porous bodies decreased with the increase of solid content in the slurry. XRD results showed the CuO was fully decomposed by vacuum sintering into Cu without any second phases. This new fabrication method may be especially economical when small quantities of porous parts are required.

  1. Macroscopic inhomogeneous deformation behavior arising in single crystal Ni-Mn-Ga foils under tensile loading

    Science.gov (United States)

    Murasawa, Go; Yeduru, Srinivasa R.; Kohl, Manfred

    2016-12-01

    This study investigated macroscopic inhomogeneous deformation occurring in single-crystal Ni-Mn-Ga foils under uniaxial tensile loading. Two types of single-crystal Ni-Mn-Ga foil samples were examined as-received and after thermo-mechanical training. Local strain and the strain field were measured under tensile loading using laser speckle and digital image correlation. The as-received sample showed a strongly inhomogeneous strain field with intermittence under progressive deformation, but the trained sample result showed strain field homogeneity throughout the specimen surface. The as-received sample is a mainly polycrystalline-like state composed of the domain structure. The sample contains many domain boundaries and large domain structures in the body. Its structure would cause large local strain band nucleation with intermittence. However, the trained one is an ideal single-crystalline state with a transformation preferential orientation of variants after almost all domain boundary and large domain structures vanish during thermo-mechanical training. As a result, macroscopic homogeneous deformation occurs on the trained sample surface during deformation.

  2. Investigation of dissipative forces near macroscopic media

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.S.

    1982-12-01

    The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed.

  3. Searching for the nanoscopic–macroscopic boundary

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, E.A. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, A.A. 5222, Medellín (Colombia); Altbir, D. [Departamento de Física, Universidad de Santiago de Chile (USACH), CEDENNA, Santiago (Chile); Mazo-Zuluaga, J. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Duque, L.F. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Física Teórica, Aplicada y Didáctica, Facultad de Ciencias Exactas y Aplicadas Instituto Tecnológico Metropolitano, Medellín (Colombia); Mejía-López, J., E-mail: jmejia@puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, CEDENNA, Santiago (Chile)

    2013-12-15

    Several studies have focused on the size-dependent properties of elements, looking for a unique definition of the nanoscopic–macroscopic boundary. By using a novel approach consisting of an energy variational method combined with a quantum Heisenberg model, here we address the size at which the ordering temperature of a magnetic nanoparticle reaches its bulk value. We consider samples with sizes in the range 1–500 nm, as well as several geometries and crystalline lattices and observe that, contrarily to what is commonly argued, the nanoscopic-microscopic boundary depends on both factors: shape and crystalline structure. This suggests that the surface-to-volume ratio is not the unique parameter that defines the behavior of a nanometric sample whenever its size increases reaching the bulk dimension. Comparisons reveal very good agreement with experimental evidence with differences less than 2%. Our results have broad implications for practical issues in measurements on systems at the nanometric scale. - Highlights: • A novel quantum-Heisenberg variational energy method is implemented. • The asymptotic behavior toward the thermodynamic limit is explored. • An important dependence of the nano-bulk boundary on the geometry is found. • And also an important dependence on the crystalline lattice. • We obtain a very good agreement with experimental evidence with differences <2%.

  4. The Proell Effect: A Macroscopic Maxwell's Demon

    Science.gov (United States)

    Rauen, Kenneth M.

    2011-12-01

    Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.

  5. Macroscopic superpositions and gravimetry with quantum magnetomechanics

    Science.gov (United States)

    Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason

    2016-11-01

    Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10-10 Hz-1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.

  6. Cloud Macroscopic Organization: Order Emerging from Randomness

    Science.gov (United States)

    Yuan, Tianle

    2011-01-01

    Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  7. Distributivity breaking and macroscopic quantum games

    CERN Document Server

    Grib, A A; Parfionov, G N; Starkov, K A

    2005-01-01

    Examples of games between two partners with mixed strategies, calculated by the use of the probability amplitude as some vector in Hilbert space are given. The games are macroscopic, no microscopic quantum agent is supposed. The reason for the use of the quantum formalism is in breaking of the distributivity property for the lattice of yes-no questions arising due to the special rules of games. The rules of the games suppose two parts: the preparation and measurement. In the first part due to use of the quantum logical orthocomplemented non-distributive lattice the partners freely choose the wave functions as descriptions of their strategies. The second part consists of classical games described by Boolean sublattices of the initial non-Boolean lattice with same strategies which were chosen in the first part. Examples of games for spin one half are given. New Nash equilibria are found for some cases. Heisenberg uncertainty relations without the Planck constant are written for the "spin one half game".

  8. Cloud macroscopic organization: order emerging from randomness

    Directory of Open Access Journals (Sweden)

    T. Yuan

    2011-01-01

    Full Text Available Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds and it follows a power-law distribution with exponent γ close to 2. γ is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also show clear-cloudy sky symmetry in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random simple interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. This approach is fully complementary to deterministic models and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  9. Studies of Tracer Dispersion and Fluid Flow in Porous Media

    Energy Technology Data Exchange (ETDEWEB)

    Rage, T.

    1996-12-31

    This doctoral thesis explores the connection between the topology of a porous medium and its macroscopic transport properties and is based on computerized simulation. In porous media, both diffusion and convection contribute to the dispersion of a tracer and their combined effect is emphasized. The governing equations are solved numerically, using finite differences and Monte Carlo technique. The influence of finite Reynolds number on the outcome of echo-experiments is discussed. Comparing experiments and simulations it is found that nonlinear inertial forces lead to a visible deformation of a returned tracer at surprisingly small Reynolds numbers. In a study of tracer dispersion and fluid flow in periodic arrays of discs it is demonstrated that the mechanisms of mechanical dispersion in periodic media and in natural (non-periodic) porous media are essentially different. Measurements of the percolation probability distribution of a sandstone sample is presented. Local porosity theory predicts that this simple geometric function of a porous medium is of dominant importance for its macroscopic transport properties. It is demonstrated that many aspects of transport through fractures can be studied by using simple but realistic models and readily available computer resources. An example may be the transport of hydrocarbon fluids from the source rock to a reservoir. 165 refs., 44 figs., 1 table

  10. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    Science.gov (United States)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  11. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeterminism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  12. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeter- minism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  13. Macroscopic and microscopic observations of needle insertion into gels

    NARCIS (Netherlands)

    Veen, van Youri R.J.; Jahya, Alex; Misra, Sarthak

    2012-01-01

    Needle insertion into soft tissue is one of the most common medical interventions. This study provides macroscopic and microscopic observations of needle–gel interactions. A gelatin mixture is used as a soft-tissue simulant. For the macroscopic studies, system parameters, such as insertion velocity,

  14. Universum Inference and Corpus Homogeneity

    Science.gov (United States)

    Vogel, Carl; Lynch, Gerard; Janssen, Jerom

    Universum Inference is re-interpreted for assessment of corpus homogeneity in computational stylometry. Recent stylometric research quantifies strength of characterization within dramatic works by assessing the homogeneity of corpora associated with dramatic personas. A methodological advance is suggested to mitigate the potential for the assessment of homogeneity to be achieved by chance. Baseline comparison analysis is constructed for contributions to debates by nonfictional participants: the corpus analyzed consists of transcripts of US Presidential and Vice-Presidential debates from the 2000 election cycle. The corpus is also analyzed in translation to Italian, Spanish and Portuguese. Adding randomized categories makes assessments of homogeneity more conservative.

  15. Photoluminescence structure, and composition of laterally anodized porous Si

    Science.gov (United States)

    Jung, K. H.; Shih, S.; Kwong, D. L.; George, T.; Lin, T. L.; Liu, H. Y.; Zavada, J.

    1992-01-01

    We have studied the photoluminescence (PL), structure, and composition of laterally anodized porous Si. Broad PL peaks were observed centered between about 620-720 nm with strong intensities measured from 500 to 860 nm. Macroscopic variations in PL intensities and peak positions are explained in terms of the structure and anodization process. Structural studies suggest that the PL appears to originate from a multilayered porous Si structure in which the top two layers are amorphous. X-ray diffraction spectra also suggest the presence of a significant amorphous phase. In addition to high concentrations of B and N, we have measured extremely high concentrations much greater than 10 exp 20 cu cm of H, C, O, and F. Our results indicate that laterally anodized porous Si does not fit the crystalline Si quantum wire model prevalent in the literature suggesting that some other structure is responsible for the observed luminescence.

  16. Some variance reduction methods for numerical stochastic homogenization.

    Science.gov (United States)

    Blanc, X; Le Bris, C; Legoll, F

    2016-04-28

    We give an overview of a series of recent studies devoted to variance reduction techniques for numerical stochastic homogenization. Numerical homogenization requires that a set of problems is solved at the microscale, the so-called corrector problems. In a random environment, these problems are stochastic and therefore need to be repeatedly solved, for several configurations of the medium considered. An empirical average over all configurations is then performed using the Monte Carlo approach, so as to approximate the effective coefficients necessary to determine the macroscopic behaviour. Variance severely affects the accuracy and the cost of such computations. Variance reduction approaches, borrowed from other contexts in the engineering sciences, can be useful. Some of these variance reduction techniques are presented, studied and tested here.

  17. Homogenization of two-phase flow: high contrast of phase permeability; Homogeneisation d'ecoulement diphasique: grand contraste de permeabilite d'une phase

    Energy Technology Data Exchange (ETDEWEB)

    Panasenko, G.P. [Saint-Etienne Universite, Equipe d' Analyse Numerique, UPRES EA 3058, 42 (France); Universite Pierre et Marie Curie, Lab. de Modelisation en Numerique, CNRS UMR 7607, 75 - Paris (France); Virnovsky, G. [R.F. - Rogaland Research, Stavanger (Norway)

    2003-01-01

    The steady-state two-phase flow non-linear equation is considered in the case when one of phases has low effective permeability in some periodic set, while on the complementary set it is high; the second phase has no contrast of permeabilities in different zones. A homogenization procedure gives the homogenized model with macroscopic effective permeability of the second phase depending on the gradient and on the second order derivatives of the macroscopic pressure of the first phase. This effect cannot be obtained by classical (one small parameter) homogenization. (author)

  18. Iterative and variational homogenization methods for filled elastomers

    Science.gov (United States)

    Goudarzi, Taha

    Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly

  19. Homogeneous crystal nucleation in polymers.

    Science.gov (United States)

    Schick, Christoph; Androsch, R; Schmelzer, Juern W P

    2017-07-14

    The pathway of crystal nucleation significantly influences the structure and properties of semi-crystalline polymers. Crystal nucleation is normally heterogeneous at low supercooling, and homogeneous at high supercooling, of the polymer melt. Homogeneous nucleation in bulk polymers has been, so far, hardly accessible experimentally, and was even doubted to occur at all. This topical review summarizes experimental findings on homogeneous crystal nucleation in polymers. Recently developed fast scanning calorimetry, with cooling and heating rates up to 106 K s-1, allows for detailed investigations of nucleation near and even below the glass transition temperature, including analysis of nuclei stability. As for other materials, the maximum homogeneous nucleation rate for polymers is located close to the glass transition temperature. In the experiments discussed here, it is shown that polymer nucleation is homogeneous at such temperatures. Homogeneous nucleation in polymers is discussed in the framework of classical nucleation theory. The majority of our observations are consistent with the theory. The discrepancies may guide further research, particularly experiments to progress theoretical development. Progress in the understanding of homogeneous nucleation is much needed, since most of the modelling approaches dealing with polymer crystallization exclusively consider homogeneous nucleation. This is also the basis for advancing theoretical approaches to the much more complex phenomena governing heterogeneous nucleation. © 2017 IOP Publishing Ltd.

  20. Mathematical models of a diffusion-convection in porous media

    Directory of Open Access Journals (Sweden)

    Anvarbek M. Meirmanov

    2012-06-01

    Full Text Available Mathematical models of a diffusion-convection in porous media are derived from the homogenization theory. We start with the mathematical model on the microscopic level, which consist of the Stokes system for a weakly compressible viscous liquid occupying a pore space, coupled with a diffusion-convection equation for the admixture. We suppose that the viscosity of the liquid depends on a concentration of the admixture and for this nonlinear system we prove the global in time existence of a weak solution. Next we rigorously fulfil the homogenization procedure as the dimensionless size of pores tends to zero, while the porous body is geometrically periodic. As a result, we derive new mathematical models of a diffusion-convection in absolutely rigid porous media.

  1. On strength of porous material - simple systems and densified systems

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus Of Rupture) of materials have been established in order to control...... quality without damaging or destroying the material or the building component considered. The efficiency of MOE-MOR relations for this purpose depends very much on the homogeneity of porous material considered. For building materials like wood and concrete of normal or lower quality with a number...... of irregularities only scattered MOE-MOR relations (clouds) can be established from which no really reliable results can be read.For homogeneously produced porous materials, however, like modern ceramics and high performance concretes MOE-MOR relations can be presented which are reliable. The present paper...

  2. On strength of porous material - simple systems and densified systems

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    1997-01-01

    quality without damaging or destroying the material or the building component considered. The efficiency of MOE-MOR relations for this purpose depends very much on the homogeneity of porous material considered. For building materials like wood and concrete of normal or lower quality with a number......The question of non-destructive testing of porous materials has always been of interest for the engineering profession. A number of empirically based MOE-MOR relations between stiffness (Modulus Of Elasticity) and strength (Modulus Of Rupture) of materials have been established in order to control...... of irregularities only scattered MOE-MOR relations (clouds) can be established from which no really reliable results can be read.For homogeneously produced porous materials, however, like modern ceramics and high performance concretes MOE-MOR relations can be presented which are reliable. The present paper...

  3. Micromechanics and homogenization of inelastic composite materials with growing cracks

    Science.gov (United States)

    Costanzo, Francesco; Boyd, James G.; Allen, David H.

    1996-03-01

    A homogenization scheme is employed to derive the effective constitutive equations of an elastoplastic composite system with growing damage. The homogenization procedure followed herein is based on the thermodynamics of dissipative media. It is shown that when damage consists of sharps microcracks the macroscopic constitutive behavior is that of a so-called generalized standard material. The latter is a general dissipative medium whose constitutive equations are completely characterized by a single scalar convex potential function of the chosen state variables and whose evolution is completely characterized by a single convex dissipation potential function of the thermodynamic forces conjugate to the chosen internal state variables. The analysis presented is valid under the assumption that the evolution of the representative volume element at hand is unique and stable. The results of the theoretical analysis are then employed for formulating an approximate method for practically deriving the macroscopic constitutive equations. Computer software development for the application of said method is currently ongoing. A simple example of the numerical results obtained so far is presented.

  4. Resurgence flows in porous media

    Science.gov (United States)

    Adler, Pierre; Mityushev, Vladimir

    2010-05-01

    which relate distant points of the continuous medium. These two structures have already been studied separately in previous works (see (1) and the literature therein). Networks were addressed by graph theory and an extensive literature has been devoted to studies of porous media on the Darcy scale. For sake of simplicity, a simple physical presentation and elementary solutions are first given for one dimensional structures which display unexpected features such as an apparent back flow which goes against the main pressure gradient. Then, a general formulation is proposed which involves some non local aspects. When the sizes of the connection zones between the network and the continuous medium are assumed to be small with respect to any linear size in the continuous medium, analytical solutions are obtained in two or three dimensions for spatially periodic structures which are adequate to model spatially homogenous media. The equivalent permeability of the medium is determined. Some elementary examples are worked out in two and three dimensions. Paradoxical flow patterns are obtained with back flow even with local resurgences (3). Unsteady problems are presently studied. (1) P.M. Adler, Fractures and fracture networks, Kluwer, 1999. (2) P.M. Adler, Porous media. Geometry and transport. Butterworth-Heinemann, Stoneham, Ma, 1992. (3) P. M. Adler, V. Mityushev, Resurgence flows in porous media, Phys. Rev. E 79, 026310, 2009.

  5. Homogenization of intergranular fracture towards a transient gradient damage model

    Science.gov (United States)

    Sun, G.; Poh, L. H.

    2016-10-01

    This paper focuses on the intergranular fracture of polycrystalline materials, where a detailed model at the meso-scale is translated onto the macro-level through a proposed homogenization theory. The bottom-up strategy involves the introduction of an additional macro-kinematic field to characterize the average displacement jump within the unit cell. Together with the standard macro-strain field, the underlying processes are propagated onto the macro-scale by imposing the equivalence of power and energy at the two scales. The set of macro-governing equations and constitutive relations are next extracted naturally as per standard thermodynamics procedure. The resulting homogenized microforce balance recovers the so-called 'implicit' gradient expression with a transient nonlocal interaction. The homogenized gradient damage model is shown to fully regularize the softening behavior, i.e. the structural response is made mesh-independent, with the damage strain correctly localizing into a macroscopic crack, hence resolving the spurious damage growth observed in many conventional gradient damage models. Furthermore, the predictive capability of the homogenized model is demonstrated by benchmarking its solutions against reference meso-solutions, where a good match is obtained with minimal calibrations, for two different grain sizes.

  6. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...... space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 +/- 0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any...

  7. A novel fabrication of meso-porous silica film by sol-gol of TEOS

    Institute of Scientific and Technical Information of China (English)

    殷明志; 姚熹; 张良莹

    2004-01-01

    A homogeneous crack-free nano- or meso-porous silica films on silicon was fabricated by colloidal silica sol derived by hydrolyzing tetraethyl orthosilicate (TEOS) catalyzing with (C4H9)4N+OH- in water medium. The solution with ratio of H2O/TEOS≥15, R4N+ and glycerol as templates, combining with the hydrolyzed intermediate, controlled the silica aggregating; the templated silica film with heterostructure was developed into homogeneous nano-porous then meso-porous silica films after being annealed from 750 ℃ to 850 ℃; the formation mechanism of the porous silica films was discussed; morphologies of the silica films were characterized. The refractive indexes of the porous silica films were 1.256-1.458, the thermal conductivity < 0.7 W/m/K. The fabricating procedure and the sequence had not been reported before.

  8. Homogeneous Spaces and Equivariant Embeddings

    CERN Document Server

    Timashev, DA

    2011-01-01

    Homogeneous spaces of linear algebraic groups lie at the crossroads of algebraic geometry, theory of algebraic groups, classical projective and enumerative geometry, harmonic analysis, and representation theory. By standard reasons of algebraic geometry, in order to solve various problems on a homogeneous space it is natural and helpful to compactify it keeping track of the group action, i.e. to consider equivariant completions or, more generally, open embeddings of a given homogeneous space. Such equivariant embeddings are the subject of this book. We focus on classification of equivariant em

  9. Hierarchical Porous Structures

    Energy Technology Data Exchange (ETDEWEB)

    Grote, Christopher John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-06-07

    Materials Design is often at the forefront of technological innovation. While there has always been a push to generate increasingly low density materials, such as aero or hydrogels, more recently the idea of bicontinuous structures has gone more into play. This review will cover some of the methods and applications for generating both porous, and hierarchically porous structures.

  10. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Al-Jassim, M. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1995-08-01

    We have studied a novel extrinsic gettering method that utilizes the very large surface areas, produced by porous silicon etch on both front and back surfaces of the silicon wafer, as gettering sites. In this method, a simple and low-cost chemical etching is used to generate the porous silicon layers. Then, a high-flux solar furnace (HFSF) is used to provide high-temperature annealing and the required injection of silicon interstitials. The gettering sites, along with the gettered impurities, can be easily removed at the end the process. The porous silicon removal process consists of oxidizing the porous silicon near the end the gettering process followed by sample immersion in HF acid. Each porous silicon gettering process removes up to about 10 {mu}m of wafer thickness. This gettering process can be repeated so that the desired purity level is obtained.

  11. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    Science.gov (United States)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  12. Accumulation of small protein molecules in a macroscopic complex coacervate

    NARCIS (Netherlands)

    Lindhoud, S.; Claessens, M.M.A.E.

    2016-01-01

    To obtain insight into the accumulation of proteins into macroscopic complex coacervate phases, the lysozyme concentration in complex coacervates containing the cationic polyelectrolyte poly-(N,N dimethylaminoethyl methacrylate) and the anionic polyelectrolyte polyacrylic acid was investigated as a

  13. Macroscopic cumulative fatigue damage of material under nonsymmetrical cycle

    Institute of Scientific and Technical Information of China (English)

    盖秉政

    2002-01-01

    Hashin's macroscopic theory of fatigue damage is further discussed and a new method has been proposed for prediction of cumulative fatigue damage of material and its lifetime under nonsymmetrical cyclic loading.

  14. Large Deviations for the Macroscopic Motion of an Interface

    Science.gov (United States)

    Birmpa, P.; Dirr, N.; Tsagkarogiannis, D.

    2017-03-01

    We study the most probable way an interface moves on a macroscopic scale from an initial to a final position within a fixed time in the context of large deviations for a stochastic microscopic lattice system of Ising spins with Kac interaction evolving in time according to Glauber (non-conservative) dynamics. Such interfaces separate two stable phases of a ferromagnetic system and in the macroscopic scale are represented by sharp transitions. We derive quantitative estimates for the upper and the lower bound of the cost functional that penalizes all possible deviations and obtain explicit error terms which are valid also in the macroscopic scale. Furthermore, using the result of a companion paper about the minimizers of this cost functional for the macroscopic motion of the interface in a fixed time, we prove that the probability of such events can concentrate on nucleations should the transition happen fast enough.

  15. Quantum fluctuations, gauge freedom and mesoscopic/macroscopic stability

    Energy Technology Data Exchange (ETDEWEB)

    Del Giudice, E [Istituto Nazionale di Fisica Nucleare, Via Celoria 16, I-20133 Milan (Italy); Vitiello, G [Dipartimento di Matematica e Informatica, Universita di Salerno and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Salerno, 84100 Salerno (Italy)

    2007-11-15

    We study how the mesoscopic/macroscopic stability of coherent extended domains is generated out of the phase locking between gauge field and matter field. The role of the radiative gauge field in sustaining the coherent regime is discussed.

  16. New Tests of Macroscopic Local Realism using Continuous Variable Measurements

    CERN Document Server

    Reid, M D

    2001-01-01

    We show that quantum mechanics predicts an Einstein-Podolsky-Rosen paradox (EPR), and also a contradiction with local hidden variable theories, for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new, very strong premise, called macroscopic local realism. We link this premise to the Schrodinger-cat paradox. Our proposed experiments ensure all fields incident on each measurement apparatus are macroscopic. We show that an alternative measurement scheme corresponds to balanced homodyne detection of quadrature phase amplitudes. The implication is that where either EPR correlations or failure of local realism is predicted for continuous variable (quadrature phase amplitude) measurements, one can perform a modified experiment which would lead to conclusions about the much stronger premise of macroscopic local realism.

  17. Homogenization of Partial Differential Equations

    CERN Document Server

    Kaiser, Gerald

    2005-01-01

    A comprehensive study of homogenized problems, focusing on the construction of nonstandard models: non-local models, multicomponent models, and models with memory. This work is intended for graduate students, applied mathematicians, physicists, and engineers.

  18. Towards a rigorous mesoscale modeling of reactive flow and transport in an evolving porous medium and its applications to soil science

    Science.gov (United States)

    Ray, Nadja; Rupp, Andreas; Knabner, Peter

    2016-04-01

    Soil is arguably the most prominent example of a natural porous medium that is composed of a porous matrix and a pore space. Within this framework and in terms of soil's heterogeneity, we first consider transport and fluid flow at the pore scale. From there, we develop a mechanistic model and upscale it mathematically to transfer our model from the small scale to that of the mesoscale (laboratory scale). The mathematical framework of (periodic) homogenization (in principal) rigorously facilitates such processes by exactly computing the effective coefficients/parameters by means of the pore geometry and processes. In our model, various small-scale soil processes may be taken into account: molecular diffusion, convection, drift emerging from electric forces, and homogeneous reactions of chemical species in a solvent. Additionally, our model may consider heterogeneous reactions at the porous matrix, thus altering both the porosity and the matrix. Moreover, our model may additionally address biophysical processes, such as the growth of biofilms and how this affects the shape of the pore space. Both of the latter processes result in an intrinsically variable soil structure in space and time. Upscaling such models under the assumption of a locally periodic setting must be performed meticulously to preserve information regarding the complex coupling of processes in the evolving heterogeneous medium. Generally, a micro-macro model emerges that is then comprised of several levels of couplings: Macroscopic equations that describe the transport and fluid flow at the scale of the porous medium (mesoscale) include averaged time- and space-dependent coefficient functions. These functions may be explicitly computed by means of auxiliary cell problems (microscale). Finally, the pore space in which the cell problems are defined is time- and space dependent and its geometry inherits information from the transport equation's solutions. Numerical computations using mixed finite

  19. Operator estimates in homogenization theory

    Science.gov (United States)

    Zhikov, V. V.; Pastukhova, S. E.

    2016-06-01

    This paper gives a systematic treatment of two methods for obtaining operator estimates: the shift method and the spectral method. Though substantially different in mathematical technique and physical motivation, these methods produce basically the same results. Besides the classical formulation of the homogenization problem, other formulations of the problem are also considered: homogenization in perforated domains, the case of an unbounded diffusion matrix, non-self-adjoint evolution equations, and higher-order elliptic operators. Bibliography: 62 titles.

  20. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... that exhibits anisotropic yield properties with a pressure dependence. At the microscale free energy includes both elastic strains and plastic strain gradients, and the theory demands higher order boundary conditions in terms of plastic strain or work conjugate higher order tractions. The mechanical response...... of the composite is inclined compared to a standard pressure independent yield surfaces. The evolution of the macroscopic yield surface is investigated by quantifying both anisotropic hardening (expansion) and kinematic hardening (translation), where the coefficients of anisotropy and the Bauschinger stress...

  1. Modeling of thermomechanical response of porous shape memory alloys

    Science.gov (United States)

    Lagoudas, Dimitris C.; Entchev, Pavlin B.; Vandygriff, Eric L.; Qidwai, Muhammad A.; DeGiorgi, Virginia G.

    2000-06-01

    Shape memory alloys (SMAs) have emerged as a class of materials with unique thermal and mechanical properties that have found numerous applications in various engineering areas. While the shape memory and pseudoelasticity effects have been extensively studied, only a few studies have been done on the high capacity of energy dissipation of SMAs. Because of this property, SMAs hold the promise of making high-efficiency damping devices that are superior to those made of conventional materials. In addition to the energy absorption capability of the dense SMA material, porous SMAs offer the possibility of higher specific damping capacity under dynamic loading conditions, du to scattering of waves. Porous SMAs also offer the possibility of impedance matching by grading the porosity at connecting joints with other structural materials. As a first step, the focus of this work, is on establishing the static properties of porous SMA material. To accomplish this, a micromechanics-based analysis of the overall behavior of porous SMA is carried out. The porous SMA is modeled as a composite with SMA matrix, which is modeled using an incremental formulation, and pores as inhomogeneities of zero stiffness. The macroscopic constitutive behavior of the effective medium is established using the incremental More-Tanaka averaging method for a random distribution of pores, and a FEM analysis of a unit cell for a periodic arrangement of pores. Results form both analyses are compared under various loading conditions.

  2. Homogenization procedure for a metamaterial and local violation of the second principle of thermodynamics

    CERN Document Server

    Mattiucci, Nadia; Akozbek, Neset; Scalora, Michael; Bloemer, Mark J

    2008-01-01

    Classical theory of crystals states that a medium to be considered homogeneous must satisfy the following requirements: a) the dimension of the elementary cell must be much smaller than the incident wavelength; b) the sample must contain a large number of elementary cells, i.e. it must be macroscopic with respect to wavelength. Under these conditions, macroscopic quantities can be introduced in order to describe the optical response of the medium. We analytically demonstrate that for a symmetric elementary cell those requirements can be relaxed, and it is possible to assign a permittivity and a permeability to a composite structure, even if the metamaterial cannot be considered homogeneous under the requirements stated above. However, the effective permittivity and permeability in some cases may give rise to unphysical, effective behaviors inside the medium, notwithstanding the fact that they satisfy requirements like being Kramers-Kronig pairs, for example, and are consistent with all the linear properties o...

  3. On the macroscopic response, microstructure evolution, and macroscopic stability of short-fibre-reinforced elastomers at finite strains: I - Analytical results

    Science.gov (United States)

    Avazmohammadi, Reza; Ponte Castañeda, Pedro

    2014-04-01

    This paper presents a homogenization-based constitutive model for the mechanical behaviour of particle-reinforced elastomers with random microstructures subjected to finite deformations. The model is based on a recently improved version of the tangent second-order (TSO) method (Avazmohammadi and Ponte Castañeda, J. Elasticity 112 (2013) p.139-183) for two-phase, hyperelastic composites and is able to directly account for the shape, orientation, and concentration of the particles. After a brief summary of the TSO homogenization method, we describe its application to composites consisting of an incompressible rubber reinforced by aligned, spheroidal, rigid particles, undergoing generally non-aligned, three-dimensional loadings. While the results are valid for finite particle concentrations, in the dilute limit they can be viewed as providing a generalization of Eshelby's results in linear elasticity. In particular, we provide analytical estimates for the overall response and microstructure evolution of the particle-reinforced composites with generalized neo-Hookean matrix phases under non-aligned loadings. For the special case of aligned pure shear and axisymmetric shear loadings, we give closed-form expressions for the effective stored-energy function of the composites with neo-Hookean matrix behaviour. Moreover, we investigate the possible development of "macroscopic" (shear band-type) instabilities in the homogenized behaviour of the composite at sufficiently large deformations. These instabilities whose wavelengths are much larger than the typical size of the microstructure are detected by making use of the loss of strong ellipticity condition for the effective stored-energy function of the composites. The analytical results presented in this paper will be complemented in Part II (Avazmohammadi and Ponte Castaneda, Phil. Mag. (2014)) of this work by specific applications for several representative microstructures and loading configurations.

  4. Macroscopic manipulation of high-order-harmonic generation through bound-state coherent control.

    Science.gov (United States)

    Hadas, Itai; Bahabad, Alon

    2014-12-19

    We propose a paradigm for macroscopic control of high-order harmonic generation by modulating the bound-state population of the medium atoms. A unique result of this scheme is that apart from regular spatial quasi-phase-matching (QPM), also purely temporal QPM of the emitted radiation can be established. Our simulations demonstrate temporal QPM by inducing homogenous Rabi oscillations in the medium and also spatial QPM by creating a grating of population inversion using the process of rapid adiabatic passage. In the simulations a scaled version of high-order harmonic generation is used: a far off-resonance 2.6  μm source generates UV-visible high-order harmonics from alkali-metal-atom vapor, while a resonant near IR source is used to coherently control the medium.

  5. Characterization of macroscopic tensile strength of polycrystalline metals with two-scale finite element analysis

    Science.gov (United States)

    Watanabe, Ikumu; Terada, Kenjiro; Neto, Eduardo Alberto de Souza; Perić, Djordje

    The objective of this contribution is to develop an elastic-plastic-damage constitutive model for crystal grain and to incorporate it with two-scale finite element analyses based on mathematical homogenization method, in order to characterize the macroscopic tensile strength of polycrystalline metals. More specifically, the constitutive model for single crystal is obtained by combining hyperelasticity, a rate-independent single crystal plasticity and a continuum damage model. The evolution equations, stress update algorithm and consistent tangent are derived within the framework of standard elastoplasticity at finite strain. By employing two-scale finite element analysis, the ductile behaviour of polycrystalline metals and corresponding tensile strength are evaluated. The importance of finite element formulation is examined by comparing performance of several finite elements and their convergence behaviour is assessed with mesh refinement. Finally, the grain size effect on yield and tensile strength is analysed in order to illustrate the versatility of the proposed two-scale model.

  6. On the sensitivity of generic porous optical sensors

    CERN Document Server

    Mackay, Tom G

    2012-01-01

    A porous material was considered as a platform for optical sensing. It was envisaged that the porous material was infiltrated by a fluid which contains an agent to be sensed. Changes in the optical properties of the infiltrated porous material provide the basis for detection of the agent to be sensed. Using a homogenization approach based on the Bruggeman formalism, wherein the infiltrated porous material was regarded as a homogenized composite material, the sensitivity of such a sensor was investigated. For the case of an isotropic dielectric porous material of relative permittivity $\\epsilon^a$ and an isotropic dielectric fluid of relative permittivity $\\epsilon^b$, it was found that the sensitivity was maximized when there was a large contrast between $\\epsilon^a$ and $\\epsilon^b$; the maximum sensitivity was achieved at mid-range values of porosity. Especially high sensitivities may be achieved for $\\epsilon^b$ close to unity when $\\epsilon^a >> 1$, for example. Furthermore, higher sensitivities may be ac...

  7. Modeling of the thermal transfer inside a porous environment: application to nuclear reactors in accident situation; Modelisation du transfert thermique dans un milieu poreux: application aux reacteurs nucleaires en situation accidentelle

    Energy Technology Data Exchange (ETDEWEB)

    Rubiolo, P.R

    2000-03-01

    The purpose of this report is to simulate heat exchanges occurring by conduction, by convection and by radiating in a porous medium made up of opaque particles in a semi-transparent fluid. Usually the determination of the macroscopic equations is based on homogenization techniques, but in the case of a major accident, the complexity of the problem is so overwhelming that semi-empirical methods are used to determine macroscopic coefficients. The author develops a new method to determine these coefficients, this method is based on the calculation of different tensors: the equivalent conductivity tensor, the radiative conductivity tensor, the thermal conductivity tensor and the heat exchange coefficient (h{sub sf}) between the solid phase and the fluid one. The first chapter briefly describes energy, impulse and mass balances. In the case of the energy balance the solid phase is not supposed to be in thermal equilibrium with the liquid phase. The second chapter presents an application of the porous media method to a one-dimensional and stationary problem, this application to a simple problem gives an idea of the performance of the method. The model allowing the calculation of h{sub sf} is developed, it is a wide range model. The second chapter ends with the presentation of the model allowing the computing of the effective conductivity of fuel rods. A comparison between results given by this new method and other numeric calculations or experimental data coming from benchmarks is presented in the third chapter. This chapter ends with the simulation of a reactor core in accidental situation, 2 cases are presented: with and without the presence of water steam. (A.C.)

  8. Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Miroslaw Weclas

    2010-01-01

    Full Text Available The paper summarizes the knowledge concerning porous media combustion techniques as applied in engines. One of most important reasons of this review is to introduce this still not well known technology to researchers doing with internal combustion engine processes, thermal engines, reactor thermodynamics, combustion, and material science. The paper gives an overview of possible applications of a highly porous open cell structures to in-cylinder processes. This application means utilization of unique features of porous media for supporting engine processes, especially fuel distribution in space, vaporization, mixing with air, heat recuperation, ignition and combustion. There are three ways for applying porous medium technology to engines: support of individual processes, support of homogeneous combustion process (catalytic and non-catalytic with temperature control, and utilization of the porous structure as a heat capacitor only. In the first type of application, the porous structure may be utilized for fuel vaporization and improved fuel distribution in space making the mixture more homogeneous in the combustion chamber. Extension of these processes to mixture formation and ignition inside a combustion reactor allows the realization of a homogeneous and a nearly zero emissions level combustion characterized by a homogeneous temperature field at reduced temperature level.

  9. A micromechanical approach for homogenization of elastic metamaterials with dynamic microstructure

    Science.gov (United States)

    Muhlestein, Michael B.; Haberman, Michael R.

    2016-08-01

    An approximate homogenization technique is presented for generally anisotropic elastic metamaterials consisting of an elastic host material containing randomly distributed heterogeneities displaying frequency-dependent material properties. The dynamic response may arise from relaxation processes such as viscoelasticity or from dynamic microstructure. A Green's function approach is used to model elastic inhomogeneities embedded within a uniform elastic matrix as force sources that are excited by a time-varying, spatially uniform displacement field. Assuming dynamic subwavelength inhomogeneities only interact through their volume-averaged fields implies the macroscopic stress and momentum density fields are functions of both the microscopic strain and velocity fields, and may be related to the macroscopic strain and velocity fields through localization tensors. The macroscopic and microscopic fields are combined to yield a homogenization scheme that predicts the local effective stiffness, density and coupling tensors for an effective Willis-type constitutive equation. It is shown that when internal degrees of freedom of the inhomogeneities are present, Willis-type coupling becomes necessary on the macroscale. To demonstrate the utility of the homogenization technique, the effective properties of an isotropic elastic matrix material containing isotropic and anisotropic spherical inhomogeneities, isotropic spheroidal inhomogeneities and isotropic dynamic spherical inhomogeneities are presented and discussed.

  10. Miscible, porous media displacements with density stratification.

    Science.gov (United States)

    Riaz, Amir; Meiburg, Eckart

    2004-11-01

    High accuracy, three-dimensional numerical simulations of miscible displacements with gravity override, in both homogeneous and heterogeneous porous media, are discussed for the quarter five-spot configuration. The influence of viscous and gravitational effects on the overall displacement dynamics is described in terms of the vorticity variable. Density differences influence the flow primarily by establishing a narrow gravity layer, in which the effective Peclet number is enhanced due to the higher flow rate. Although this effect plays a dominant role in homogeneous flows, it is suppressed to some extent in heterogeneous displacements. This is a result of coupling between the viscous and permeability vorticity fields. When the viscous wavelength is much larger than the permeability wavelength, gravity override becomes more effective because coupling between the viscous and permeability vorticity fields is less pronounced. Buoyancy forces of a certain magnitude can lead to a pinch-off of the gravity layer, thereby slowing it down.

  11. Genetic Homogenization of Composite Materials

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper is focused on numerical studies of electromagnetic properties of composite materials used for the construction of small airplanes. Discussions concentrate on the genetic homogenization of composite layers and composite layers with a slot. The homogenization is aimed to reduce CPU-time demands of EMC computational models of electrically large airplanes. First, a methodology of creating a 3-dimensional numerical model of a composite material in CST Microwave Studio is proposed focusing on a sufficient accuracy of the model. Second, a proper implementation of a genetic optimization in Matlab is discussed. Third, an association of the optimization script and a simplified 2-dimensional model of the homogeneous equivalent model in Comsol Multiphysics is proposed considering EMC issues. Results of computations are experimentally verified.

  12. Multiscale modelling of dual-porosity porous media : a computational pore-scale study for flow and solute transport

    NARCIS (Netherlands)

    de Vries, Enno T.; Raoof, Amir; van Genuchten, Marinus Th.

    2017-01-01

    Many environmental and agricultural applications involve the transport of water and dissolved constituents through aggregated soil profiles, or porous media that are structured, fractured or macroporous in other ways. During the past several decades, various process-based macroscopic models have bee

  13. Stochastic porous media equations

    CERN Document Server

    Barbu, Viorel; Röckner, Michael

    2016-01-01

    Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.

  14. Hydrodynamic dispersion within porous biofilms

    KAUST Repository

    Davit, Y.

    2013-01-23

    Many microorganisms live within surface-associated consortia, termed biofilms, that can form intricate porous structures interspersed with a network of fluid channels. In such systems, transport phenomena, including flow and advection, regulate various aspects of cell behavior by controlling nutrient supply, evacuation of waste products, and permeation of antimicrobial agents. This study presents multiscale analysis of solute transport in these porous biofilms. We start our analysis with a channel-scale description of mass transport and use the method of volume averaging to derive a set of homogenized equations at the biofilm-scale in the case where the width of the channels is significantly smaller than the thickness of the biofilm. We show that solute transport may be described via two coupled partial differential equations or telegrapher\\'s equations for the averaged concentrations. These models are particularly relevant for chemicals, such as some antimicrobial agents, that penetrate cell clusters very slowly. In most cases, especially for nutrients, solute penetration is faster, and transport can be described via an advection-dispersion equation. In this simpler case, the effective diffusion is characterized by a second-order tensor whose components depend on (1) the topology of the channels\\' network; (2) the solute\\'s diffusion coefficients in the fluid and the cell clusters; (3) hydrodynamic dispersion effects; and (4) an additional dispersion term intrinsic to the two-phase configuration. Although solute transport in biofilms is commonly thought to be diffusion dominated, this analysis shows that hydrodynamic dispersion effects may significantly contribute to transport. © 2013 American Physical Society.

  15. Porous NiTi alloy prepared from combustion synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Li Yonghua; Rong Lijian; Li Yiyi [Chinese Academy of Sciences, Shenyang (China). Inst. of Metal Research

    2002-07-01

    Porous NiTi shape memory alloy (SMA) is a promising biomaterial which can be used as replacement of hard tissue implant. It was prepared from elemental titanium and nickel powders by method of combustion synthesis. The phase composition, pore and fracture morphology were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. Meanwhile the compressive mechanical property was also studied. The preliminary data indicated that porous NiTi SMA prepared from combustion synthesis had homogeneous pore distribution and proper mean pore size. The mechanical property of pure product depended strongly on preheating temperature during synthesis process. It has also good superelasticity. (orig.)

  16. An analysis of seismic attenuation in random porous media

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The attenuation of seismic wave in rocks has been one of the interesting research topics, but till now no poroelasticity models can thoroughly explain the strong attenuation of wave in rocks. In this paper, a random porous medium model is designed to study the law of wave propagation in complex rocks based on the theory of Biot poroelasticity and the general theory of stochastic process. This model sets the density of grain, porosity, permeability and modulus of frame as random parameters in space, and only one fluid infiltrates in rocks for the sake of better simulation effect in line with real rocks in earth strata. Numerical simulations are implemented. Two different inverse quality factors of fast P-wave are obtained by different methods to assess attenuation through records of virtual detectors in wave field (One is amplitude decay method in time domain and the other is spectral ratio method in frequency domain). Comparing the attenuation results of random porous medium with those of homogeneous porous medium, we conclude that the attenuation of seismic wave of homogeneous porous medium is far weaker than that of random porous medium. In random porous media, the higher heterogeneous level is, the stronger the attenuation becomes, and when heterogeneity σ = 0.15 in simulation, the attenuation result is consistent with that by actual observation. Since the central frequency (50 Hz) of source in numerical simulation is in earthquake band, the numerical results prove that heterogeneous porous structure is one of the important factors causing strong attenuation in real stratum at intermediate and low frequency.

  17. Numerical study of thermally stratified flows of a fluid overlying a highly porous material

    Science.gov (United States)

    Antoniadis, Panagiotis D.; Papalexandris, Miltiadis V.

    2014-11-01

    In this talk we are concerned with thermally stratified flows in domains that contain a macroscopic interface between a highly porous material and a pure-fluid domain. Our study is based on the single-domain approach according to which the same set of governing equations is employed both inside the porous medium and in the pure-fluid domain. Also, the mathematical model that we employ treats the porous skeleton as a rigid solid that is in thermal non-equilibrium with the fluid. First, we present briefly the basic steps of the derivation of the mathematical model. Then, we present and discuss numerical results for both thermally stratified shear flows and natural convection. Our discussion focuses on the role of thermal stratification on the flows of interest and on the effect of thermal non-equilibrium between the solid matrix and the fluid inside the porous medium. This work is supported by the National Fund for Scientific Research (FNRS), Belgium.

  18. Impact of the irregular microgeometry of polyurethane foam on the macroscopic acoustic behavior predicted by a unit-cell model.

    Science.gov (United States)

    Doutres, O; Ouisse, M; Atalla, N; Ichchou, M

    2014-10-01

    This paper deals with the prediction of the macroscopic sound absorption behavior of highly porous polyurethane foams using two unit-cell microstructure-based models recently developed by Doutres, Atalla, and Dong [J. Appl. Phys. 110, 064901 (2011); J. Appl. Phys. 113, 054901 (2013)]. In these models, the porous material is idealized as a packing of a tetrakaidecahedra unit-cell representative of the disordered network that constitutes the porous frame. The non-acoustic parameters involved in the classical Johnson-Champoux-Allard model (i.e., porosity, airflow resistivity, tortuosity, etc.) are derived from characteristic properties of the unit-cell and semi-empirical relationships. A global sensitivity analysis is performed on these two models in order to investigate how the variability associated with the measured unit-cell characteristics affects the models outputs. This allows identification of the possible limitations of a unit-cell micro-macro approach due to microstructure irregularity. The sensitivity analysis mainly shows that for moderately and highly reticulated polyurethane foams, the strut length parameter is the key parameter since it greatly impacts three important non-acoustic parameters and causes large uncertainty on the sound absorption coefficient even if its measurement variability is moderate. For foams with a slight inhomogeneity and anisotropy, a micro-macro model associated to cell size measurements should be preferred.

  19. Extended Macroscopic Study of Dilute Gas Flow within a Microcavity

    Directory of Open Access Journals (Sweden)

    Mohamed Hssikou

    2016-01-01

    Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.

  20. The quantum interaction of macroscopic objects and gravitons

    Science.gov (United States)

    Piran, Tsvi

    2016-09-01

    Copious production of gravitational radiation requires a compact source that moves relativistically. Such sources are rare and are found only in extreme cases such as the formation of a black hole in either via a gravitational collapse or via a merger. Noncompact, nonrelativistic objects emit gravitational radiation, however, this emission is extremely weak due to very large value of the Planck energy. The quantum nature of gravitons, namely the fact that a single graviton carries energy of order ℏω implies that macroscopic objects whose kinetic energy is less than the Planck energy emit gravitons quantum mechanically, emitting a single graviton at a time. This is a unique situation in which a macroscopic object behaves quantum mechanically. While it is impossible to check experimentally this quantum gravitational effect, it might be possible to carry out analogous electromagnetic experiments that will shed light on this macroscopic quantum mechanical behavior.

  1. Geometric aspects of Schnakenberg's network theory of macroscopic nonequilibrium observables

    Science.gov (United States)

    Polettini, M.

    2011-03-01

    Schnakenberg's network theory deals with macroscopic thermodynamical observables (forces, currents and entropy production) associated to the steady states of diffusions on generic graphs. Using results from graph theory and from the theory of discrete differential forms we recast Schnakenberg's treatment in the form of a simple discrete gauge theory, which allows to interpret macroscopic forces as the Wilson loops of a real connection. We discuss the geometric properties of transient states, showing that heat fluxes allow for a notion of duality of macroscopic observables which interchanges the role of the environment and that of the system. We discuss possible generalizations to less trivial gauge groups and the relevance for nonequilibrium fluctuation theorems. Based on work in collaboration with professor A. Maritan, University of Padua, to be published.

  2. Broadband Macroscopic Cortical Oscillations Emerge from Intrinsic Neuronal Response Failures

    Directory of Open Access Journals (Sweden)

    Amir eGoldental

    2015-10-01

    Full Text Available Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which was extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism - the intrinsic stochastic neuronal response failures. These neuronal response failures, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives.

  3. Reconciling power laws in microscopic and macroscopic neural recordings

    CERN Document Server

    Pettersen, Klas H; Tetzlaff, Tom; Einevoll, Gaute T

    2013-01-01

    Power laws, characterized by quantities following 1/x^\\alpha{} distributions, are commonly reported when observing nature or society, and the question of their origin has for a long time intrigued physicists. Power laws have also been observed in neural recordings, both at the macroscopic and microscopic levels: at the macroscopic level, the power spectral density (PSD) of the electroencephalogram (EEG) has been seen to follow 1/f^\\alpha{} distributions; at the microscopic level similar power laws have been observed in single-neuron recordings of the neuronal soma potential and soma current, yet with different values of the power-law exponent \\alpha. In this theoretical study we find that these observed macroscopic and microscopic power laws may, despite the widely different spatial scales and different exponents, have the same source. By a combination of simulation on a biophysical detailed, pyramidal neuron model and analytical investigations of a simplified ball and stick neuron, we find that the transfer ...

  4. A multilevel approach to modeling of porous bioceramics

    Science.gov (United States)

    Mikushina, Valentina A.; Sidorenko, Yury N.

    2015-10-01

    The paper is devoted to discussion of multiscale models of heterogeneous materials using principles. The specificity of approach considered is the using of geometrical model of composites representative volume, which must be generated with taking the materials reinforcement structure into account. In framework of such model may be considered different physical processes which have influence on the effective mechanical properties of composite, in particular, the process of damage accumulation. It is shown that such approach can be used to prediction the value of composite macroscopic ultimate strength. As an example discussed the particular problem of the study the mechanical properties of biocomposite representing porous ceramics matrix filled with cortical bones tissue.

  5. Microscopic and macroscopic infarct complicating pediatric epilepsy surgery.

    Science.gov (United States)

    Rubinger, Luc; Hazrati, Lili-Naz; Ahmed, Raheel; Rutka, James; Snead, Carter; Widjaja, Elysa

    2017-03-01

    There is some suggestion that microscopic infarct could be associated with invasive monitoring, but it is unclear if the microscopic infarct is also visible on imaging and associated with neurologic deficits. The aims of this study were to assess the rates of microscopic and macroscopic infarct and other major complications of pediatric epilepsy surgery, and to determine if these complications were higher following invasive monitoring. We reviewed the epilepsy surgery data from a tertiary pediatric center, and collected data on microscopic infarct on histology and macroscopic infarct on postoperative computed tomography (CT) or magnetic resonance imaging (MRI) done one day after surgery and major complications. Three hundred fifty-two patients underwent surgical resection and there was one death. Forty-two percent had invasive monitoring. Thirty patients (9%) had microscopic infarct. Univariable analyses showed that microscopic infarct was higher among patients with invasive monitoring relative to no invasive monitoring (20% vs. 0.5%, respectively, p microscopic infarct had transient right hemiparesis, and two with both macroscopic and microscopic infarct had unexpected persistent neurologic deficits. Thirty-two major complications (9.1%) were reported, with no difference in major complications between invasive monitoring and no invasive monitoring (10% vs. 7%, p = 0.446). In the multivariable analysis, invasive monitoring increased the odds of microscopic infarct (odds ratio [OR] 15.87, p = 0.009), but not macroscopic infarct (OR 2.6, p = 0.173) or major complications (OR 1.4, p = 0.500), after adjusting for age at surgery, sex, age at seizure onset, operative type, and operative location. Microscopic infarct was associated with invasive monitoring, and none of the patients had permanent neurologic deficits. Macroscopic infarct was not associated with invasive monitoring, and two patients with macroscopic infarct had persistent neurologic deficits. Wiley

  6. Approximating macroscopic observables in quantum spin systems with commuting matrices

    CERN Document Server

    Ogata, Yoshiko

    2011-01-01

    Macroscopic observables in a quantum spin system are given by sequences of spatial means of local elements $\\frac{1}{2n+1}\\sum_{j=-n}^n\\gamma_j(A_{i}), \\; n\\in{\\mathbb N},\\; i=1,...,m$ in a UHF algebra. One of their properties is that they commute asymptotically, as $n$ goes to infinity. It is not true that any given set of asymptotically commuting matrices can be approximated by commuting ones in the norm topology. In this paper, we show that for macroscopic observables, this is true.

  7. On the notion of a macroscopic quantum system

    CERN Document Server

    Khrenikov, A Yu

    2004-01-01

    We analyse the notion of macroscopic quantum system from the point of view of the statistical structure of quantum theory. We come to conclusion that the presence of interference of probabilities should be used the main characteristic of quantumness (in the opposition to N. Bohr who permanently emphasized the crucial role of quantum action). In the light of recent experiments with statistical ensembles of people who produced interference of probabilities for special pairs of questions (which can be considered as measurements on people) human being should be considered as a macroscopic quantum system. There is also discussed relation with experiments of A. Zeilinger on interference of probabilities for macromoleculas.

  8. Stimuli-deformable graphene materials: from nanosheet to macroscopic assembly

    Directory of Open Access Journals (Sweden)

    Fei Zhao

    2016-04-01

    Full Text Available Stimulus-induced deformation (SID of graphene-based materials has triggered rapidly increasing research interest due to the spontaneous response to external stimulations, which enables precise configurational regulation of single graphene nanosheets (GNSs through control over the environmental conditions. While the micro-strain of GNS is barely visible, the deformation of graphene-based macroscopic assemblies (GMAs is remarkable, thereby presenting significant potential for future application in smart devices. This review presents the current progress of SID of graphene in the manner of nanosheets and macroscopic assemblies in both the experimental and theoretical fronts, and summarizes recent advancements of SID of graphene for applications in smart systems.

  9. Statistical thermodynamics understanding the properties of macroscopic systems

    CERN Document Server

    Fai, Lukong Cornelius

    2012-01-01

    Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th

  10. Biphasic flow in a chemically active porous medium

    CERN Document Server

    Darmon, Alexandre; Salez, Thomas; Dauchot, Olivier

    2014-01-01

    We study the problem of the transformation of a given reactant species into an immiscible product species, as they flow through a chemically active porous medium. We derive the equation governing the evolution of the volume fraction of the species -- in a one-dimensional macroscopic description --, identify the relevant dimensionless numbers, and provide simple models for capillary pressure and relative permeabilities, which are quantities of crucial importance when tackling multiphase flows in porous media. We set the domain of validity of our models and discuss the importance of viscous coupling terms in the extended Darcy's law. We investigate numerically the steady regime and demonstrate that the spatial transformation rate of the species along the reactor is non-monotonous, as testified by the existence of an inflection point in the volume fraction profiles. We obtain the scaling of the location of this inflection point with the dimensionless lengths of the problem. Eventually, we provide key elements fo...

  11. Homogenization of a Cauchy continuum towards a micromorphic continuum

    Science.gov (United States)

    Hütter, Geralf

    2017-02-01

    The micromorphic theory of Eringen and Mindlin, including special cases like strain gradient theory or Cosserat theory, is widely used to model size effects and localization phenomena. The heuristic construction of such theories based on thermodynamic considerations is well-established. However, the identification of corresponding constitutive laws and of the large number of respective constitutive parameters limits the practical application of such theories. In the present contribution, a closed procedure for the homogenization of a Cauchy continuum at the microscale towards a fully micromorphic continuum is derived including explicit definitions of all involved generalized macroscopic stress and deformation measures. The boundary value problem to be solved on the microscale is formulated either for using static or kinematic boundary conditions. The procedure is demonstrated with an example.

  12. Structure of ferrofluid nanofilms in homogeneous magnetic fields

    Science.gov (United States)

    Jordanovic, Jelena; Klapp, Sabine H. L.

    2009-02-01

    We report molecular dynamics simulations results for model ferrofluid films subject to an external, homogeneous magnetic field directed parallel or perpendicular to the film surfaces. The interactions between the magnetic nanoparticles are modeled via the Stockmayer potential. In a previous study [J. Jordanovic and S. H. L. Klapp, Phys. Rev. Lett. 101, 038302 (2008)] we have shown that an external field can control the number and internal structure of the layers characterizing the fluid films, in qualitative agreement with experiments. Here we explore the dependence of the layering effects on thermodynamic conditions, and we analyze the results from an energetic (microscopic and macroscopic) perspective. As a special case we investigate a monolayer to bilayer transition induced via a perpendicular field.

  13. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    Science.gov (United States)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  14. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    Science.gov (United States)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  15. Method of porous diamond deposition on porous silicon

    Science.gov (United States)

    Baranauskas, Vitor; Peterlevitz, Alfredo C.; Chang, Dahge C.; Durrant, Steven F.

    2001-12-01

    In this paper, we discuss the experimental results of the fabrication of porous diamond/porous silicon and porous diamond structures by chemical vapor deposition of diamond over a skeleton of porous silicon, replicating the porous surface geometry around the Si pores and also creating new porous diamond structures. Scanning electron microscopy (SEM) revealed that the diamond nuclei are deposited on the top of the porous silicon skeleton, forming isolated grains in the first nucleation stages, and then growing like the usual structure of most ceramic materials, making a self-sustained porous diamond structure. Raman spectroscopy revealed that the diamond films are of good quality, close to that of diamond films grown on crystalline silicon.

  16. Homogeneity and plane-wave limits

    CERN Document Server

    Figueroa-O'Farrill, J M; Philip, S; Farrill, Jos\\'e Figueroa-O'; Meessen, Patrick; Philip, Simon

    2005-01-01

    We explore the plane-wave limit of homogeneous spacetimes. For plane-wave limits along homogeneous geodesics the limit is known to be homogeneous and we exhibit the limiting metric in terms of Lie algebraic data. This simplifies many calculations and we illustrate this with several examples. We also investigate the behaviour of (reductive) homogeneous structures under the plane-wave limit.

  17. A Thermoelectric Generator Using Porous Si Thermal Isolation

    Directory of Open Access Journals (Sweden)

    Emmanouel Hourdakis

    2013-10-01

    Full Text Available In this paper we report on a thermoelectric generator (TEG using thermal isolation provided by a thick porous Si layer locally formed on the Si wafer and thermocouples composed of p-doped polycrystalline Si/Al. The “hot” contacts of the thermocouples lie on the porous Si layer, while the “cold” contacts lie on bulk crystalline Si. A housing was also designed and fabricated in order to transfer any external temperature change on the “hot” contacts of the thermocouples, the “cold” contacts being isolated from the “hot” contacts by a thick resist layer. The fabrication of the sensing element (Si die is fully compatible with batch Si processing. The output power of the thermoelectric generator depends on the porous Si isolation layer thickness, porosity, structure and morphology. For a mesoporous Si layer of 60% porosity and a macroscopic temperature differential of 10 K, an output power of 0.39 μW/cm2 was measured for a 50 μm thick porous Si layer.

  18. The kinetics of ice-lens growth in porous media

    KAUST Repository

    Style, Robert W.

    2012-01-09

    Abstract We analyse the growth rate of segregated ice (ice lenses) in freezing porous media. For typical colloidal materials such as soils we show that the commonly employed Clapeyron equation is not valid macroscopically at the interface between the ice lens and the surrounding porous medium owing to the viscous dynamics of flow in premelted films. The flow in these films gives rise to an \\'interfacial resistance\\' to flow towards the growing ice which causes a significant drop in predicted ice-growth (heave) rates. This explains why many previous models predict ice-growth rates that are much larger than those seen in experiments. We derive an explicit formula for the ice-growth rate in a given porous medium, and show that this only depends on temperature and on the external pressures imposed on the freezing system. This growth-rate formula contains a material-specific function which can be calculated (with knowledge of the geometry and material of the porous medium), but which is also readily experimentally measurable. We apply the formula to plate-like particles, and show that the results can be matched with previous experimental data. Finally we show how the interfacial resistance explains the observation that the maximum heave rate in soils occurs in medium-grained particles such as silts, while heave rates are smaller for fine-and coarse-grained particles. © 2012 Cambridge University Press.

  19. Quantum statistical derivation of the macroscopic Maxwell equations

    NARCIS (Netherlands)

    Schram, K.

    1960-01-01

    The macroscopic Maxwell equations in matter are derived on a quantum statistical basis from the microscopic equations for the field operators. Both the density operator formalism and the Wigner distribution function method are discussed. By both methods it can be proved that the quantum statistical

  20. Macroscopic and Microscopic Gradient Structures of Bamboo Culms

    Directory of Open Access Journals (Sweden)

    Suwat SUTNAUN

    2005-01-01

    Full Text Available This work studied the structure of bamboo culms which is naturally designed to retard the bending stress caused by a wind load. A macroscopic gradient structure (diameter, thickness and internodal length and a microscopic one (distribution of fiber of three sympodial bamboo species i.e. Tong bamboo (Dendrocalamus asper Backer., Pah bamboo (Gigantochloa bambos and Pak bamboo (Gigantochloa hasskarliana were examined. From the macroscopic point of view, the wind-load generated bending stress for the tapered hollow tube of bamboo was found to vary uniformly with height, especially at the middle of the culms. Furthermore, the macroscopic shape of bamboo culm is about 2-6 times stiffer in bending mode than one with a solid circular section for the same amount of wood material. Microscopically, the distribution of fiber in the radial direction linearly decreases from the outer surface to the inner surface in the same manner as that of the distribution of the bending stress in the radial direction. Distribution of fiber along the vertical length of bamboos at each height is proportional to the level of bending stress generated by the wind load. Both macroscopic and microscopic gradient structures of sympodial type bamboos were found to be less effective to retard the bending stress than those of monopodial type bamboo.

  1. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, Vitaliy Anatolyevich

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  2. Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters

    DEFF Research Database (Denmark)

    Nedelchev, L.; Nikolova, L.; Matharu, A.

    2002-01-01

    A study of the propagation of elliptically polarized light and the resulting formation of macroscopic chiral structures in a series of azobenzene side-chain copolyesters, in which the morphology is varied from liquid crystalline to amorphous, is reported. Real-time measurements are presented...

  3. [Macroscopic observations on corneal epithelial wound healing in the rabbit].

    Science.gov (United States)

    Hayashi, K

    1991-02-01

    A newly-developed macroscope was applied to observe the healing process of corneal epithelial wound in vivo. After removing epithelium of the central cornea, the changes of the corneal surface were observed with the macroscope and the findings were compared with histological examinations. At 12 hours after abrasion, areas unstained with Richardson's staining (R staining) appeared. In the histological section, a single layer of regenerating epithelial cells covered the same area. At 24 and 36 hours after abrasion, the epithelial defects became smaller but surrounding epithelium was rough and showed dot-like staining with R solution. By 2 days, the epithelial defects disappeared. On macroscopic observation, the central corneal surface showed a pavement-like appearance. Histology revealed that the regenerating epithelium still consisted of one or two layers. At 3 days, dot-like stainings were present only in the center and the corneal surface appeared considerably smooth. Histology also showed that regenerating epithelium became columnar and multilayered, thereby suggesting stratification. By 7 days, the abraded corneal surface had recovered its smooth appearance. Histologic sections also demonstrated that the epithelium had regained its normal structure. Thus, using this macroscope, findings suggesting the process of epithelial migration and proliferation could be observed.

  4. The black hole information paradox and macroscopic superpositions

    CERN Document Server

    Hsu, Stephen D H

    2010-01-01

    We investigate the experimental capabilities required to test whether black holes destroy information. We show that an experiment capable of illuminating the information puzzle must necessarily be able to detect or manipulate macroscopic superpositions (i.e., Everett branches). Hence, it could also address the fundamental question of decoherence versus wavefunction collapse.

  5. Macroscopic domain formation in the platelet plasma membrane

    DEFF Research Database (Denmark)

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.;

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...

  6. A Macroscopic Analogue of the Nuclear Pairing Potential

    Science.gov (United States)

    Dunlap, Richard A.

    2013-01-01

    A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…

  7. Data requirements for traffic control on a macroscopic level

    NARCIS (Netherlands)

    Knoop, V.L.; Van Lint, J.W.C.; Hoogendoorn, S.P.

    2011-01-01

    With current techniques, traffic monitoring and control is a data intensive process. Network control on a higher level, using high level variables, can make this process less data demanding. The macroscopic fundamental diagram relates accumulation, i.e. the number of vehicles in an area, to the netw

  8. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  9. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2016-11-01

    Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation dF^{(meso)}/dt=E_{in}-e_{p} in which the free energy input rate E_{in} and dissipation rate e_{p} are both non-negative, and E_{in}≤e_{p}. We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F^{(meso)} converges to φ^{ss}, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φ^{ss} now satisfies a balance equation dφ^{ss}(x)/dt=cmf(x)-σ(x), in which x represents chemical concentration. The chemical motive force cmf(x) and entropy production rate σ(x) are both non-negative, and cmf(x)≤σ(x). The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.

  10. Diagnosis of bladder tumours in patients with macroscopic haematuria

    DEFF Research Database (Denmark)

    Gandrup, Karen L; Løgager, Vibeke B; Bretlau, Thomas

    2015-01-01

    OBJECTIVE: The aim of this study was to compare split-bolus computed tomography urography (CTU), magnetic resonance urography (MRU) and flexible cystoscopy in patients with macroscopic haematuria regarding the diagnosis of bladder tumours. MATERIALS AND METHODS: In this prospective study, 150...

  11. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, V.

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  12. Integrating a macro emission model with a macroscopic traffic model

    NARCIS (Netherlands)

    Klunder, G.A.; Stelwagen, U.; Taale, H.

    2013-01-01

    This paper presents a macro emission module for macroscopic traffic models to be used for assessment of ITS and traffic management. It especially focuses on emission estimates for different intersection types. It provides emission values for CO, CO2, HC, NOx, and PM10. It is applied and validated fo

  13. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.

  14. The fundamental diagram : a macroscopic traffic flow model.

    NARCIS (Netherlands)

    Botma, H.

    1976-01-01

    In models of traffic flow, the interactions between vehicles are of prime interest, and are based on characteristics of the drivers, road and vehicles. The fundamental diagram is a representation of a relationship on a macroscopic level in the steady state between the quantity of traffic and a chara

  15. Charge accumulation in DC cables: a macroscopic approach

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C; Pedersen, Aage

    1994-01-01

    The accumulation of space charge in solid dielectrics is examined from the macroscopic point of view using electromagnetic field theory. For practical dielectrics, it is shown that the occurrence of such charges is an inherent consequence of a non-uniform conductivity. The influence of both tempe...

  16. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2016-11-01

    Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation d F(meso)/d t =Ein-ep in which the free energy input rate Ein and dissipation rate ep are both non-negative, and Ein≤ep . We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F(meso) converges to φss, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φss now satisfies a balance equation d φss(x ) /d t =cmf(x ) -σ (x ) , in which x represents chemical concentration. The chemical motive force cmf(x ) and entropy production rate σ (x ) are both non-negative, and cmf(x )≤σ (x ) . The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.

  17. Homogenization method for elastic materials

    Directory of Open Access Journals (Sweden)

    Seifrt F.

    2007-11-01

    Full Text Available In the paper we study the homogenization method and its potential for research of some phenomenons connected with periodic elastic materials. This method will be applied on partial differential equations that describe the deformation of a periodic composite material. The next part of the paper will deal with applications of the homogenization method. The importance of the method will be discussed more detailed for the exploration of the so called bandgaps. Bandgap is a phenomenon which may appear during vibrations of some periodically heterogeneous materials. This phenomenon is not only observable during vibrations for the aforementioned materials, but we may also observe similar effects by propagation of electromagnetic waves of heterogeneous dielectric medias.

  18. Giant dielectric anisotropy via homogenization

    CERN Document Server

    Mackay, Tom G

    2014-01-01

    A random mixture of two isotropic dielectric materials, one composed of oriented spheroidal particles of relative permittivity $\\epsilon_a$ and the other composed of oriented spheroidal particles of relative permittivity $\\epsilon_b$, was considered in the long wavelength regime. The permittivity dyadic of the resulting homogenized composite material (HCM) was estimated using the Bruggeman homogenization formalism. The HCM was an orthorhombic biaxial material if the symmetry axes of the two populations of spheroids were mutually perpendicular and a uniaxial material if these two axes were mutually aligned. The degree of anisotropy of the HCM, as gauged by the ratio of the eigenvalues of the HCM's permittivity dyadic, increased as the shape of the constituent particles became more eccentric. The greatest degrees of HCM anisotropy were achieved for the limiting cases wherein the constituent particles were shaped as needles or discs. In these instances explicit formulas for the HCM anisotropy were derived from t...

  19. Dynamic contact angle of a liquid spreading on an unsaturated wettable porous substrate

    OpenAIRE

    Shikhmurzaev, Y. D.; Sprittles, J. E.

    2012-01-01

    The spreading of an incompressible viscous liquid over an isotropic homogeneous unsaturated porous substrate is considered. It is shown that, unlike the dynamic wetting of an impermeable solid substrate, where the dynamic contact angle has to be specified as a boundary condition in terms of the wetting velocity and other flow characteristics, the `effective' dynamic contact angle on an unsaturated porous substrate is completely determined by the requirement of existence of a solution, i.e. th...

  20. Multiscale modeling of turbulent channel flow over porous walls

    Science.gov (United States)

    Yogaraj, Sudhakar; Lacis, Ugis; Bagheri, Shervin

    2016-11-01

    We perform direct numerical simulations of fully developed turbulent flow through a channel coated with a porous material. The Navier-stokes equations governing the fluid domain and the Darcy equations of the porous medium are coupled using an iterative partitioned scheme. At the interface between the two media, boundary conditions derived using a multiscale homogenization approach are enforced. The main feature of this approach is that the anisotropic micro-structural pore features are directly taken into consideration to derive the constitutive coefficients of the porous media as well as of the interface. The focus of the present work is to study the influence of micro-structure pore geometry on the dynamics of turbulent flows. Detailed turbulence statistics and instantaneous flow field are presented. For comparison, flow through impermeable channel flows are included. Supported by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant agreement No 708281.

  1. Macroscopic quantum phenomena from the large N perspective

    Science.gov (United States)

    Chou, C. H.; Hu, B. L.; Subaşi, Y.

    2011-07-01

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that there is no a priori

  2. The origins of macroscopic quantum coherence in high temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Philip, E-mail: ph.turner@napier.ac.uk [Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nottale, Laurent, E-mail: laurent.nottale@obspm.fr [CNRS, LUTH, Observatoire de Paris-Meudon, 5 Place Janssen, 92190 Meudon (France)

    2015-08-15

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  3. Macroscopic quantum phenomena from the large N perspective

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C H [department of Physics, National Cheng Kung University, Tainan, Taiwan 701 (China) and National Center for Theoretical Sciences (South), Tainan, Taiwan 701 (China); Hu, B L; Subasi, Y, E-mail: hubeilok@gmail.com [Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2011-07-08

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that

  4. Porous block nanofiber composite filters

    Energy Technology Data Exchange (ETDEWEB)

    Ginley, David S.; Curtis, Calvin J.; Miedaner, Alexander; Weiss, Alan J.; Paddock, Arnold

    2016-08-09

    Porous block nano-fiber composite (110), a filtration system (10) and methods of using the same are disclosed. An exemplary porous block nano-fiber composite (110) includes a porous block (100) having one or more pores (200). The porous block nano-fiber composite (110) also includes a plurality of inorganic nano-fibers (211) formed within at least one of the pores (200).

  5. Porous silicon gettering

    Energy Technology Data Exchange (ETDEWEB)

    Tsuo, Y.S.; Menna, P.; Pitts, J.R. [National Renewable Energy Lab., Golden, CO (United States)] [and others

    1996-05-01

    The authors have studied a novel extrinsic gettering method that uses the large surface areas produced by a porous-silicon etch as gettering sites. The annealing step of the gettering used a high-flux solar furnace. They found that a high density of photons during annealing enhanced the impurity diffusion to the gettering sites. The authors used metallurgical-grade Si (MG-Si) prepared by directional solidification casing as the starting material. They propose to use porous-silicon-gettered MG-Si as a low-cost epitaxial substrate for polycrystalline silicon thin-film growth.

  6. Modeling and simulation of liquid diffusion through a porous finitely elastic solid

    KAUST Repository

    Zhao, Qiangsheng

    2013-01-29

    A new theory is proposed for the continuum modeling of liquid flow through a porous elastic solid. The solid and the voids are assumed to jointly constitute the macroscopic solid phase, while the liquid volume fraction is included as a separate state variable. A finite element implementation is employed to assess the predictive capacity of the proposed theory, with particular emphasis on the mechanical response of Nafion® membranes to the flow of water. © 2013 Springer-Verlag Berlin Heidelberg.

  7. Numerical analysis of wave-induced fluid flow effects related to mesoscopic heterogeneities for realistic models of porous media

    Science.gov (United States)

    Rubino, J. G.; Holliger, K.

    2010-12-01

    The classical version of the theory of poro-elasticity assumes that wave-induced fluid movements at the macroscopic scale, as defined by the prevailing wavelengths, are the only causes of seismic velocity dispersion and attenuation in porous media. Correspondingly, the probed material is implicitly supposed to be homogeneous at the microscopic and mesoscopic scales and all poro-elastic moduli are real-valued and independent of frequency. By now, there is, however, consistent evidence to demonstrate that, on their own, the physical mechanisms of classical poro-elasticity are unable to account for the attenuation behavior inferred from seismic observations. There is also increasing evidence indicating that structural and/or compositional heterogeneity at the mesoscopic scale is likely to be capable of explaining much of the excess attenuation observed in real data. Numerical modeling of poro-elastic seismic wave propagation in general and in the presence of mesoscopic heterogeneities in particular is inherently difficult. For this reason, most available work on this topic considers simplified geometries, such as periodically layered, binary distribution of the physical properties of the rock frame and/or the saturating pore fluids or mixtures of two porous phases characterized by a single dominant length scale. While such models have greatly contributed to a better conceptual understanding and quantification of the observed attenuation of seismic waves in porous media, they are often inadequate to account for specific geological and/or petrophysical details of a given situation. A primary reason for this is that to a first approximation many, if not most, typical porous rocks are characterized by continuous, scale-invariant distributions of the hydraulic and elastic material parameters as well as by continuously varying saturation levels. Mesoscopic heterogeneity of this type is not amenable to direct numerical modeling and we therefore address this problem through a

  8. Ag nanoparticles loaded on porous graphitic carbon nitride with enhanced photocatalytic activity for degradation of phenol

    Science.gov (United States)

    Han, Zhenwei; Wang, Nan; Fan, Hai; Ai, Shiyun

    2017-03-01

    Highly efficient photocatalyst of visible-light-driven Ag nanoparticles loaded on porous graphitic carbon nitride (g-C3N4) was prepared by the reduction of Ag ions on porous g-C3N4. The obtained Ag/porous g-C3N4 composite products were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflection spectra (DRS), thermal gravimetric analysis (TGA). The results demonstrated that a homogeneous distribution of Ag NPs of 10 nm was attached onto the surface of the porous g-C3N4. The prepared Ag/porous g-C3N4 samples were applied for catalyzing the degradation of phenol in water under visible light irradiation. Porous g-C3N4 demonstrated an excellent support for the formation and dispersion of small uniform Ag NPs. When the weight percentage of Ag reaches 5%, the nanohybrid exhibits superior photocatalytic activities compared to bulk g-C3N4, porous g-C3N4, and 2% Ag/porous g-C3N4 hybrids. The enhanced photocatalytic performance is due to the synergic effect between Ag and porous g-C3N4, which suppressed the recombination of photogenerated electron-hole pairs.

  9. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    Energy Technology Data Exchange (ETDEWEB)

    Angerer, Andreas, E-mail: andreas.angerer@tuwien.ac.at; Astner, Thomas; Wirtitsch, Daniel; Majer, Johannes, E-mail: johannes.majer@tuwien.ac.at [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna (Austria); Sumiya, Hitoshi [Sumitomo Electric Industries Ltd., Itami 664-001 (Japan); Onoda, Shinobu [Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292 (Japan); Isoya, Junichi [Research Centre for Knowledge Communities, University of Tsukuba, 1-2 Kasuga, Tsukuba, Ibaraki 305-8550 (Japan); Putz, Stefan [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, Stadionallee 2, 1020 Vienna (Austria); Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-07-18

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10{sup 17} nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  10. Structuring of metal-organic frameworks at the mesoscopic/macroscopic scale.

    Science.gov (United States)

    Furukawa, Shuhei; Reboul, Julien; Diring, Stéphane; Sumida, Kenji; Kitagawa, Susumu

    2014-08-21

    The assembly of metal ions with organic ligands through the formation of coordination bonds gives crystalline framework materials, known as metal-organic frameworks (MOFs), which recently emerged as a new class of porous materials. Besides the structural designability of MOFs at the molecular length scale, the researchers in this field very recently made important advances in creating more complex architectures at the mesoscopic/macroscopic scale, in which MOF nanocrystals are used as building units to construct higher-order superstructures. The structuring of MOFs in such a hierarchical order certainly opens a new opportunity to improve the material performance via design of the physical form rather than altering the chemical component. This review highlights these superstructures and their applications by categorizing them into four dimensionalities, zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) superstructures. Because the key issue for structuring of MOFs is to spatially control the nucleation process in desired locations, this review conceptually categorizes the available synthetic methodologies from the viewpoint of the reaction system.

  11. Evaluation of macroscopic porosity-permeability relationships in heterogeneous mineral dissolution and precipitation scenarios

    Science.gov (United States)

    Beckingham, L. E.

    2016-12-01

    Mineral dissolution and precipitation reactions, such as those resulting from CO2 injection in saline aquifers, can impact flow and transport in porous media and alter porosity and permeability. While porosity, in general, increases with mineral dissolution and decreases with precipitation, permeability alterations are complex and predicative capabilities remain limited. The locations of geochemical reactions in individual pores and throats and in the greater pore network control permeability evolution. Experimental studies have observed geochemical reactions to occur uniformly or non-uniformly, controlled, for example, by pore size, PeDa, or mineral distribution. For a given change in porosity, this may result in a wide range of permeability alterations. Macroscopic relationships that predict permeability evolutions resulting from these pore-scale reactions are needed for reactive transport simulations at the core-to-field scale. Currently, empirical relationships such as the Kozney-Carman equation are widely used to predict permeability evolution. These relationships, however, are unable to predict permeability alterations resulting from non-uniform pore network structure modifications. This work will use pore network models to investigate variations in sandstone permeability resulting from a range of uniform and heterogeneous dissolution and precipitation patterns and extents and evaluate the validity of existing porosity-permeability relationships under these scenarios. This will include mineral dissolution and precipitation occurring uniformly in pores and throats in addition to pore and pore-throat size, mineral surface, and preferential flow path dependent reactions.

  12. Geometric Models for Isotropic Random Porous Media: A Review

    Directory of Open Access Journals (Sweden)

    Helmut Hermann

    2014-01-01

    Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.

  13. A Monte Carlo paradigm for capillarity in porous media

    Science.gov (United States)

    Lu, Ning; Zeidman, Benjamin D.; Lusk, Mark T.; Willson, Clinton S.; Wu, David T.

    2010-12-01

    Wet porous media are ubiquitous in nature as soils, rocks, plants, and bones, and in engineering settings such as oil production, ground stability, filtration and composites. Their physical and chemical behavior is governed by the distribution of liquid and interfaces between phases. Characterization of the interfacial distribution is mostly based on macroscopic experiments, aided by empirical formulae. We present an alternative computational paradigm utilizing a Monte Carlo algorithm to simulate interfaces in complex realistic pore geometries. The method agrees with analytical solutions available only for idealized pore geometries, and is in quantitative agreement with Micro X-ray Computed Tomography (microXCT), capillary pressure, and interfacial area measurements for natural soils. We demonstrate that this methodology predicts macroscopic properties such as the capillary pressure and air-liquid interface area versus liquid saturation based only on the pore size information from microXCT images and interfacial interaction energies. The generality of this method should allow simulation of capillarity in many porous materials.

  14. Expression en termes d'énergie pour la perméabilité absolue effective. Application au calcul numérique d'écoulements diphasiques en milieu poreux Expression in Energy Terms for Absolute Effective Permeability. Application to the Numerical Computing of Two-Phase Flows in Porous Media

    Directory of Open Access Journals (Sweden)

    Njifenjou A.

    2006-11-01

    different and varying diameters. The macroscopic scale corresponds to a scale in which the local petrophysical parameters are averagedfor volumes liable to contain several geologic structures, such as sand, limestone and clay. The average parameters considered are constants that can be used to make an overall (or macroscopic description of flow in the domain occupied by the porous medium. These are the average parameters that are called the effective petrophysical (or homogenized parameters. They are used to simulate petroleum reservoirs. After having chosen a flow model in a heterogeneous porous medium containing a periodic microstructure, we briefly review the major phases in the multiple-scale method for homogenizing this model. This leads us to a conventional formula giving the coefficients for absolute homogenized permeability (Eq. 26. Then we describe an original procedure for going from the conventional formula to a simpler formula (from the numerical standpoint expressed in terms of energy dissipated by local viscosity forces and characterizing the periodic medium being considered. In this part of the project, an essential phase is the formulating of so-called local equations in a form that better brings out their physical meaning by a judicious change in the unknown function. The integral transformation that results, in the equation for homogenized coefficients, opens up the way to obtaining the above-mentioned simple formula (Eq. 34. We then show, given various assumptions, the equality between the energies dissipated by viscosity forces associated respectively with local and macroscopic flows (Theorems 3 and 4. Theorem 3 is actually a specific case of Theorem 4, which in turn is used to interpret all the homogenized coefficients given by Eq. 34. This project ends with an application to the numerical analysis of an incompressible water/oil two-phase flow that is horizontal and twodimensional, in a heterogeneous porous medium with a periodic structure (Figs. 1a and

  15. Hydrophobic, Porous Battery Boxes

    Science.gov (United States)

    Bragg, Bobby J.; Casey, John E., Jr.

    1995-01-01

    Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.

  16. Heterotic strings on homogeneous spaces

    CERN Document Server

    Israel, D; Orlando, D; Petropoulos, P M; Israel, Dan; Kounnas, Costas; Orlando, Domenico

    2004-01-01

    We construct heterotic string backgrounds corresponding to families of homogeneous spaces as exact conformal field theories. They contain left cosets of compact groups by their maximal tori supported by NS-NS 2-forms and gauge field fluxes. We give the general formalism and modular-invariant partition functions, then we consider some examples such as SU(2)/U(1) ~ S^2 (already described in a previous paper) and the SU(3)/U(1)^2 flag space. As an application we construct new supersymmetric string vacua with magnetic fluxes and a linear dilaton.

  17. Homogeneous orbit closures and applications

    CERN Document Server

    Lindenstrauss, Elon

    2011-01-01

    We give new classes of examples of orbits of the diagonal group in the space of unit volume lattices in R^d for d > 2 with nice (homogeneous) orbit closures, as well as examples of orbits with explicitly computable but irregular orbit closures. We give Diophantine applications to the former, for instance we show that if x is the cubic root of 2 then for any y,z in R liminf |n|=0 (as |n| goes to infinity), where denotes the distance of a real number c to the integers.

  18. Multiscale modeling of high contrast brinkman equations with applications to deformable porous media

    KAUST Repository

    Brown, Donald

    2013-06-18

    Simulating porous media flows has a wide range of applications. Often, these applications involve many scales and multi-physical processes. A useful tool in the analysis of such problems in that of homogenization as an averaged description is derived circumventing the need for complicated simulation of the fine scale features. In this work, we recall recent developments of homogenization techniques in the application of flows in deformable porous media. In addition, homogenization of media with high-contrast. In particular, we recall the main ideas of the homogenization of slowly varying Stokes flow and summarize the results of [4]. We also present the ideas for extending these techniques to high-contrast deformable media [3]. These ideas are connected by the modeling of multiscale fluid-structure interaction problems. © 2013 American Society of Civil Engineers.

  19. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  20. From 1D to 3D - macroscopic nanowire aerogel monoliths

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  1. Microscopic versus macroscopic approaches to non-equilibrium systems

    Science.gov (United States)

    Derrida, Bernard

    2011-01-01

    The one-dimensional symmetric simple exclusion process (SSEP) is one of the very few exactly soluble models of non-equilibrium statistical physics. It describes a system of particles which diffuse with hard core repulsion on a one-dimensional lattice in contact with two reservoirs of particles at unequal densities. The goal of this paper is to review the two main approaches which lead to the exact expression of the large deviation functional of the density of the SSEP in its steady state: a microscopic approach (based on the matrix product ansatz and an additivity property) and a macroscopic approach (based on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim).

  2. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  3. Applying quantum mechanics to macroscopic and mesoscopic systems

    CERN Document Server

    T., N Poveda

    2012-01-01

    There exists a paradigm in which Quantum Mechanics is an exclusively developed theory to explain phenomena on a microscopic scale. As the Planck's constant is extremely small, $h\\sim10^{-34}{J.s}$, and as in the relation of de Broglie the wavelength is inversely proportional to the momentum; for a mesoscopic or macroscopic object the Broglie wavelength is very small, and consequently the undulatory behavior of this object is undetectable. In this paper we show that with a particle oscillating around its classical trajectory, the action is an integer multiple of a quantum of action, $S = nh_{o}$. The quantum of action, $h_{o}$, which plays a role equivalent to Planck's constant, is a free parameter that must be determined and depends on the physical system considered. For a mesoscopic and macroscopic system: $h_{o}\\gg h$, this allows us to describe these systems with the formalism of quantum mechanics.

  4. Analysis and Enhancements of a Prolific Macroscopic Model of Epilepsy

    Directory of Open Access Journals (Sweden)

    Christopher Fietkiewicz

    2016-01-01

    Full Text Available Macroscopic models of epilepsy can deliver surprisingly realistic EEG simulations. In the present study, a prolific series of models is evaluated with regard to theoretical and computational concerns, and enhancements are developed. Specifically, we analyze three aspects of the models: (1 Using dynamical systems analysis, we demonstrate and explain the presence of direct current potentials in the simulated EEG that were previously undocumented. (2 We explain how the system was not ideally formulated for numerical integration of stochastic differential equations. A reformulated system is developed to support proper methodology. (3 We explain an unreported contradiction in the published model specification regarding the use of a mathematical reduction method. We then use the method to reduce the number of equations and further improve the computational efficiency. The intent of our critique is to enhance the evolution of macroscopic modeling of epilepsy and assist others who wish to explore this exciting class of models further.

  5. Indirect measurement of interfacial melting from macroscopic ice observations.

    Science.gov (United States)

    Saruya, Tomotaka; Kurita, Kei; Rempel, Alan W

    2014-06-01

    Premelted water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state well below the bulk melting temperature and can supply the segregated growth of ice lenses. Using macroscopic measurements of ice-lens initiation position in step-freezing experiments, we infer how the nanometer-scale thicknesses of premelted films depend on temperature depression below bulk melting. The interfacial interactions between ice, liquid, and soda-lime glass particles exhibit a power-law behavior that suggests premelting in our system is dominated by short-range electrostatic forces. Using our inferred film thicknesses as inputs to a simple force-balance model with no adjustable parameters, we obtain good quantitative agreement between numerical predictions and observed ice-lens thickness. Macroscopic observations of lensing behavior have the potential as probes of premelting behavior in other systems.

  6. Macroscopic transport equations in many-body systems from microscopic exclusion processes in disordered media: a review

    Science.gov (United States)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-08-01

    Describing particle transport at the macroscopic or mesoscopic level in non-ideal environments poses fundamental theoretical challenges in domains ranging from inter and intra-cellular transport in biology to diffusion in porous media. Yet, often the nature of the constraints coming from many-body interactions or reflecting a complex and confining environment are better understood and modeled at the microscopic level. In this paper we review the subtle link between microscopic exclusion processes and the mean-field equations that ensue from them in the continuum limit. We show that in an inhomogeneous medium, i.e. when jumps are controlled by site-dependent hopping rates, one can obtain three different nonlinear advection-diffusion equations in the continuum limit, suitable for describing transport in the presence of quenched disorder and external fields, depending on the particular rule embodying site inequivalence at the microscopic level. In a situation that might be termed point-like scenario, when particles are treated as point-like objects, the effect of crowding as imposed at the microscopic level manifests in the mean-field equations only if some degree of inhomogeneity is enforced into the model. Conversely, when interacting agents are assigned a finite size, under the more realistic extended crowding framework, exclusion constraints persist in the unbiased macroscopic representation.

  7. Macroscopic transport equations in many-body systems from microscopic exclusion processes in disordered media: a review

    Directory of Open Access Journals (Sweden)

    Marta Galanti

    2016-08-01

    Full Text Available Describing particle transport at the macroscopic or mesoscopic level in non-ideal environments poses fundamental theoretical challenges in domains ranging from inter and intra-cellular transport in biology to diffusion in porous media. Yet, often the nature of the constraints coming from many-body interactions or reflecting a complex and confining environment are better understood and modeled at the microscopic level.In this paper we review the subtle link between microscopic exclusion processes and the mean-field equations that ensue from them in the continuum limit. We show that in an inhomogeneous medium, i.e. when jumps are controlled by site-dependent hopping rates, one can obtain three different nonlinear advection-diffusion equations in the continuum limit, suitable for describing transport in the presence of quenched disorder and external fields, depending on the particular rule embodying site inequivalence at the microscopic level. In a situation that might be termed point-like scenario, when particles are treated as point-like objects, the effect of crowding as imposed at the microscopic level manifests in the mean-field equations only if some degree of inhomogeneity is enforced into the model. Conversely, when interacting agents are assigned a finite size, under the more realistic extended crowding framework, exclusion constraints persist in the unbiased macroscopic representation.

  8. Homogenization scheme for acoustic metamaterials

    KAUST Repository

    Yang, Min

    2014-02-26

    We present a homogenization scheme for acoustic metamaterials that is based on reproducing the lowest orders of scattering amplitudes from a finite volume of metamaterials. This approach is noted to differ significantly from that of coherent potential approximation, which is based on adjusting the effective-medium parameters to minimize scatterings in the long-wavelength limit. With the aid of metamaterials’ eigenstates, the effective parameters, such as mass density and elastic modulus can be obtained by matching the surface responses of a metamaterial\\'s structural unit cell with a piece of homogenized material. From the Green\\'s theorem applied to the exterior domain problem, matching the surface responses is noted to be the same as reproducing the scattering amplitudes. We verify our scheme by applying it to three different examples: a layered lattice, a two-dimensional hexagonal lattice, and a decorated-membrane system. It is shown that the predicted characteristics and wave fields agree almost exactly with numerical simulations and experiments and the scheme\\'s validity is constrained by the number of dominant surface multipoles instead of the usual long-wavelength assumption. In particular, the validity extends to the full band in one dimension and to regimes near the boundaries of the Brillouin zone in two dimensions.

  9. ISOTOPE METHODS IN HOMOGENEOUS CATALYSIS.

    Energy Technology Data Exchange (ETDEWEB)

    BULLOCK,R.M.; BENDER,B.R.

    2000-12-01

    The use of isotope labels has had a fundamentally important role in the determination of mechanisms of homogeneously catalyzed reactions. Mechanistic data is valuable since it can assist in the design and rational improvement of homogeneous catalysts. There are several ways to use isotopes in mechanistic chemistry. Isotopes can be introduced into controlled experiments and followed where they go or don't go; in this way, Libby, Calvin, Taube and others used isotopes to elucidate mechanistic pathways for very different, yet important chemistries. Another important isotope method is the study of kinetic isotope effects (KIEs) and equilibrium isotope effect (EIEs). Here the mere observation of where a label winds up is no longer enough - what matters is how much slower (or faster) a labeled molecule reacts than the unlabeled material. The most careti studies essentially involve the measurement of isotope fractionation between a reference ground state and the transition state. Thus kinetic isotope effects provide unique data unavailable from other methods, since information about the transition state of a reaction is obtained. Because getting an experimental glimpse of transition states is really tantamount to understanding catalysis, kinetic isotope effects are very powerful.

  10. Impingement of hollow cone spray on hot porous medium

    Institute of Scientific and Technical Information of China (English)

    Zhiguo ZHAO; Maozhao XIE

    2008-01-01

    To have a good understanding of the formation of homogenous mixture in a porous medium engine, the interaction between hollow cone spray and hot porous med-ium was studied numerically by using an improved version of KIVA-3V code. The improved KIVA-3V code is incor-porated with an impingement model, heat transfer model and linearized instability sheet atomization (LISA) model to simulate the hollow cone spray. The reasonability of the impingement model and heat transfer model was validated. With a simple model to describe the structure of the porous medium, the interaction between hollow cone spray and hot porous medium was simulated under different ambient pressures and spray cone angles. Computational results show that the fuel spray could be divided into smaller ones, which provides conditions for the quick evaporation of fuel droplets and the mixing of fuel vapor with air. Differences in ambient pressure and spray cone angle affect the distri-bution of droplets in the porous medium.

  11. An analytical model for porous single crystals with ellipsoidal voids

    Science.gov (United States)

    Mbiakop, A.; Constantinescu, A.; Danas, K.

    2015-11-01

    A rate-(in)dependent constitutive model for porous single crystals with arbitrary crystal anisotropy (e.g., FCC, BCC, HCP, etc.) containing general ellipsoidal voids is developed. The proposed model, denoted as modified variational model (MVAR), is based on the nonlinear variational homogenization method, which makes use of a linear comparison porous material to estimate the response of the nonlinear porous single crystal. Periodic multi-void finite element simulations are used in order to validate the MVAR for a large number of parameters including cubic (FCC, BCC) and hexagonal (HCP) crystal anisotropy, various creep exponents (i.e., nonlinearity), several stress triaxiality ratios, general void shapes and orientations and various porosity levels. The MVAR model, which involves a priori no calibration parameters, is found to be in good agreement with the finite element results for all cases considered in the rate-dependent context. The model is then used in a predictive manner to investigate the complex response of porous single crystals in several cases with strong coupling between the anisotropy of the crystal and the (morphological) anisotropy induced by the shape and orientation of the voids. Finally, a simple way of calibrating the MVAR with just two adjustable parameters is depicted in the rate-independent context so that an excellent agreement with the FE simulation results is obtained. In this last case, this proposed model can be thought as a generalization of the Gurson model in the context of porous single crystals and general ellipsoidal void shapes and orientations.

  12. SPH numerical simulation of fluid flow through a porous media

    Science.gov (United States)

    Klapp-Escribano, Jaime; Mayoral-Villa, Estela; Rodriguez-Meza, Mario Alberto; de La Cruz-Sanchez, Eduardo; di G Sigalotti, Leonardo; Inin-Abacus Collaboration; Ivic Collaboration

    2013-11-01

    We have tested an improved a method for 3D SPH simulations of fluid flow through a porous media using an implementation of this method with the Dual-Physics code. This improvement makes it possible to simulate many particles (of the order of several million) in reasonable computer times because its execution on GPUs processors makes it possible to reduce considerably the simulation cost for large systems. Modifications in the initial configuration have been implemented in order to simulate different arrays and geometries for the porous media. The basic tests were reproduced and the performance was analyzed. Our 3D simulations of fluid flow through a saturated homogeneous porous media shows a discharge velocity proportional to the hydraulic gradient reproducing Darcy's law at small body forces. The results are comparable with values obtained in previous work and published in the literature for simulations of flow through periodic porous media. Our simulations for a non saturated porous media produce adequate qualitative results showing that a non steady state is generated. The relaxation time for these systems were obtained. Work partially supported by Cinvestav-ABACUS, CONACyT grant EDOMEX-2011-C01-165873.

  13. Optomechanical entanglement of a macroscopic oscillator by quantum feedback

    Science.gov (United States)

    Wu, E.; Li, Fengzhi; Zhang, Xuefeng; Ma, Yonghong

    2016-07-01

    We propose a scheme to generate the case of macroscopic entanglement in the optomechanical system, which consist of Fabry-Perot cavity and a mechanical oscillator by applying a homodyne-mediated quantum feedback. We explore the effect of feedback on the entanglement in vacuum and coherent state, respectively. The results show that the introduction of quantum feedback can increase the entanglement effectively between the cavity mode and the oscillator mode.

  14. Identification of Bodies Exposed to High Temperatures Based on Macroscopic...

    OpenAIRE

    Barraza Salcedo, María del Socorro; Universidad Metropolitana de Barranquilla. Barranquilla; Rebolledo Cobos, Martha Leonor; Universidad Metropolitana de Barranquilla

    2016-01-01

    ABSTRACT. Background: Forensic dentistry in cases of incineration provides scientific elements that allow the identification of bodies, by analyzing dental organs, through the isolation of DNA obtained from the pulp as an alternative to confirm the identity of the victim. When the degree of temperature is highly elevated, dental tissues are vulnerable and therefore the DNA pulp is not salvageable, wasting resources and time by lack of standards to identify macroscopic characteristics that ind...

  15. CONTRIBUTION OF MACROSCOPIC DIMENSION EFFECT TO PIEZOELFCTRICITY IN POLYVINYLIDENE FLUORIDE

    Institute of Scientific and Technical Information of China (English)

    WEN Jianxun; TAKEO FURUKAWA

    1987-01-01

    In this paper, we have studied the piezoelectricity in the poled uniaxially drawn polyvinylidene fluoride. The piezoelectric constants d31, d32, da33 and Young's moduli 1/s11 and 1/s22 have been determined as a function of the remanent polarization Pr. The piezoelectric constants of the samples show a strong in-plane anisotropy. Such an anisotropy is mostly attributable to different Poisson's ratio. It is found that the piezoelectric activity mainly arises from macroscopic dimensional change.

  16. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  17. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics

    Science.gov (United States)

    Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2016-09-01

    A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.

  18. Manifestation of macroscopic correlations in elementary reaction kinetics. II. Irreversible reaction A+B→C.

    Science.gov (United States)

    Kipriyanov, Alexander A; Kipriyanov, Alexey A; Doktorov, Alexander B

    2010-11-07

    The applicability of the Encounter Theory (ET) (the prototype of the Collision Theory) concepts for widely occurring diffusion assisted irreversible bulk reaction A+B→C (for example, radical reaction) in dilute solutions with arbitrary ratio of initial concentrations of reactants has been treated theoretically with modern many-particle method for the derivation of non-Markovian binary kinetic equations. The method shows that, just as in the reaction A+A→C considered earlier, the agreement with the Encounter Theory is observed when the familiar Integral Encounter Theory is used which is just a step in the derivation of kinetic equations in the framework of the method employed. It allows for two-particle correlations only, and fails to consider the correlation of reactant simultaneously with a partner and with a reactant in the bulk. However, the next step leading to the Modified Encounter Theory under reduction of equations to a regular form both extends the time applicability interval of ET homogeneous rate equation (as for reactions proceeding in excess of one of the reactants), and yields the inhomogeneous equation of the Generalized Encounter Theory (GET) that reveals macroscopic correlations induced by the encounters in a reservoir of free walks in full agreement with physical considerations. This means that the encounters of reactants in solution are correlated at rather large time interval of the reaction course. However, unlike the reaction A+A→C of identical reactants, the reaction A+B→C accumulation of the above macroscopic correlations (even with the initial concentrations of reactants being equal) proceeds much slower. Another distinction is that for the reaction A+A→C the long-term behavior of ET and GET kinetics is the same, while in the reaction A+B→C these kinetics behave differently. It is of interest that just taking account of the above macroscopic correlations in the reaction A+B→C (in GET) results in the universal character of the

  19. Statistical mechanics of homogeneous partly pinned fluid systems.

    Science.gov (United States)

    Krakoviack, Vincent

    2010-12-01

    The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.

  20. Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives

    Science.gov (United States)

    Chou, C. H.; Hu, B. L.; Subaşi, Y.

    2011-12-01

    In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper [1] we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large Script N (field components), 2PI and second order perturbative expansions, illustrating how N and Script N enter in these three aspects of quantum correlations, coherence and coupling strength. 3) the behavior of an interacting quantum system near its critical point, the effects of quantum and thermal fluctuations and the conditions under which the system manifests infrared dimensional reduction. We also discuss how the effective field theory concept bears on macroscopic quantum phenomena: the running of the coupling parameters with energy or scale imparts a dynamical-dependent and an interaction-sensitive definition of 'macroscopia'.

  1. Stochastic and Macroscopic Thermodynamics of Strongly Coupled Systems

    Science.gov (United States)

    Jarzynski, Christopher

    2017-01-01

    We develop a thermodynamic framework that describes a classical system of interest S that is strongly coupled to its thermal environment E . Within this framework, seven key thermodynamic quantities—internal energy, entropy, volume, enthalpy, Gibbs free energy, heat, and work—are defined microscopically. These quantities obey thermodynamic relations including both the first and second law, and they satisfy nonequilibrium fluctuation theorems. We additionally impose a macroscopic consistency condition: When S is large, the quantities defined within our framework scale up to their macroscopic counterparts. By satisfying this condition, we demonstrate that a unifying framework can be developed, which encompasses both stochastic thermodynamics at one end, and macroscopic thermodynamics at the other. A central element in our approach is a thermodynamic definition of the volume of the system of interest, which converges to the usual geometric definition when S is large. We also sketch an alternative framework that satisfies the same consistency conditions. The dynamics of the system and environment are modeled using Hamilton's equations in the full phase space.

  2. Macroscopic quantum oscillator based on a flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mandip, E-mail: mandip@iisermohali.ac.in

    2015-09-25

    In this paper a macroscopic quantum oscillator is proposed, which consists of a flux-qubit in the form of a cantilever. The net magnetic flux threading through the flux-qubit and the mechanical degrees of freedom of the cantilever are naturally coupled. The coupling between the cantilever and the magnetic flux is controlled through an external magnetic field. The ground state of the flux-qubit-cantilever turns out to be an entangled quantum state, where the cantilever deflection and the magnetic flux are the entangled degrees of freedom. A variant, which is a special case of the flux-qubit-cantilever without a Josephson junction, is also discussed. - Highlights: • In this paper a flux-qubit-cantilever is proposed. • Coupling can be varied by an external magnetic field. • Ground state is a macroscopic entangled quantum state. • Ground state of the superconducting-loop-oscillator is a macroscopic quantum superposition. • Proposed scheme is based on a generalized quantum approach.

  3. Macroscopic description of the limb muscles of Tupinambis merianae

    Directory of Open Access Journals (Sweden)

    Juliana Barbosa Casals

    2012-03-01

    Full Text Available Tegu lizard (Tupinambis merianae belongs to the Teiidae family. It is distributed throughout the Americas, with many species, including Brazilian ones. They are from the Tupinambis genus, the largest representatives of the Teiidae family. For this study three animals (run over coming from donation were used. The dissected lizards were fixed in 10%, formaldehyde, and the macroscopic analysis was carried out in a detailed and photo documented way, keeping the selected structures “in situ”. This paper had as its main aim contributing to the macroscopic description of the chest myology, as well as the thoracic and pelvic limbs of the lizard T. merianae. The results obtained from this research were compared to authors who have studied animals from the same Reptilia class. Thus, we conclude that our macroscopic results are similar to those already described by the researchers Hildebrand (1995, Moro and Abdala (2004 and Abdala and Diogo (2010. We should highlight that the knowledge on anatomy has importance and applications to various areas within Biology, contributing in a substantial way to the areas of human health and technology.

  4. Mesoscopic Kinetic Basis of Macroscopic Chemical Thermodynamics: A Mathematical Theory

    CERN Document Server

    Ge, Hao

    2016-01-01

    From a mathematical model that describes a complex chemical kinetic system of $N$ species and $M$ elementrary reactions in a rapidly stirred vessel of size $V$ as a Markov process, we show that a macroscopic chemical thermodynamics emerges as $V\\rightarrow\\infty$. The theory is applicable to linear and nonlinear reactions, closed systems reaching chemical equilibrium, or open, driven systems approaching to nonequilibrium steady states. A generalized mesoscopic free energy gives rise to a macroscopic chemical energy function $\\varphi^{ss}(\\vx)$ where $\\vx=(x_1,\\cdots,x_N)$ are the concentrations of the $N$ chemical species. The macroscopic chemical dynamics $\\vx(t)$ satisfies two emergent laws: (1) $(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]\\le 0$, and (2)$(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]=\\text{cmf}(\\vx)-\\sigma(\\vx)$ where entropy production rate $\\sigma\\ge 0$ represents the sink for the chemical energy, and chemical motive force $\\text{cmf}\\ge 0$ is non-zero if the system is driven under a sustained nonequilibrium chemos...

  5. Noise-driven interfaces and their macroscopic representation

    Science.gov (United States)

    Dentz, Marco; Neuweiler, Insa; Méheust, Yves; Tartakovsky, Daniel M.

    2016-11-01

    We study the macroscopic representation of noise-driven interfaces in stochastic interface growth models in (1 +1 ) dimensions. The interface is characterized macroscopically by saturation, which represents the fluctuating sharp interface by a smoothly varying phase field with values between 0 and 1. We determine the one-point interface height statistics for the Edwards-Wilkinson (EW) and Kadar-Paris-Zhang (KPZ) models in order to determine explicit deterministic equations for the phase saturation for each of them. While we obtain exact results for the EW model, we develop a Gaussian closure approximation for the KPZ model. We identify an interface compression term, which is related to mass transfer perpendicular to the growth direction, and a diffusion term that tends to increase the interface width. The interface compression rate depends on the mesoscopic mass transfer process along the interface and in this sense provides a relation between meso- and macroscopic interface dynamics. These results shed light on the relation between mesoscale and macroscale interface models, and provide a systematic framework for the upscaling of stochastic interface dynamics.

  6. Homogenization of a nonlinear degenerate parabolic equation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The homogenization of one kind of nonlinear parabolic equation is studied. The weak convergence and corrector results are obtained by combining carefully the compactness method and two-scale convergence method in the homogenization theory.

  7. The Calkin algebra is not countably homogeneous

    OpenAIRE

    Farah, Ilijas; Hirshberg, Ilan

    2015-01-01

    We show that the Calkin algebra is not countably homogeneous, in the sense of continuous model theory. We furthermore show that the connected component of the unitary group of the Calkin algebra is not countably homogeneous.

  8. Effect of non-homogenous thermal stress during sub-lethal photodynamic antimicrobial chemotherapy

    Science.gov (United States)

    Gadura, N.; Kokkinos, D.; Dehipawala, S.; Cheung, E.; Sullivan, R.; Subramaniam, R.; Schneider, P.; Tremberger, G., Jr.; Holden, T.; Lieberman, D.; Cheung, T.

    2012-03-01

    Pathogens could be inactivated via a light source coupled with a photosensitizing agent in photodynamic antimicrobial chemotherapy (PACT). This project studied the effect of non-homogenous substrate on cell colony. The non-homogeneity could be controlled by iron oxide nano-particles doping in porous glassy substrates such that each cell would experience tens of hot spots when illuminated with additional light source. The substrate non-homogeneity was characterized by Atomic Force Microscopy, Transmission Electron Microscopy and Extended X-Ray Absorption Fine Structure at Brookhaven Synchrotron Light Source. Microscopy images of cell motion were used to study the motility. Laboratory cell colonies on non-homogenous substrates exhibit reduced motility similar to those observed with sub-lethal PCAT treatment. Such motility reduction on non-homogenous substrate is interpreted as the presence of thermal stress. The studied pathogens included E. coli and Pseudomonas aeruginosa. Non-pathogenic microbes Bacillus subtilis was also studied for comparison. The results show that sub-lethal PACT could be effective with additional non-homogenous thermal stress. The use of non-uniform illumination on a homogeneous substrate to create thermal stress in sub-micron length scale is discussed via light correlation in propagation through random medium. Extension to sub-lethal PACT application complemented with thermal stress would be an appropriate application.

  9. Coherence delay augmented laser beam homogenizer

    Science.gov (United States)

    Rasmussen, P.; Bernhardt, A.

    1993-06-29

    The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

  10. Enhancing nZVI mobility in porous media using humate

    Science.gov (United States)

    Schmid, Doris; Micic Batka, Vesna; Gondikas, Andreas; Velimirovic, Milica; von der Kammer, Frank; Hofmann, Thilo

    2016-04-01

    The limited transport of nanoscale zero-valent iron (nZVI) particles in porous media is a major drawback for its use in groundwater remediation. Among other factors, transport of nZVI particles might be negatively affected by mineralogical and physical heterogeneities of the aquifer matrix. Carbonate minerals and iron oxides, for instance, provide positively charged patches which would further increase particle attachment to the sand grains. This study does assess the potential of sodium humate, a salt of humic acids, to enhance the mobility of nZVI particles. Humate is a non-toxic, inexpensive material extracted from natural oxidized lignite and obtained in commercial grade, which makes it advantageous for field applications. Humate is expected to shield the positively charged patches of the sand grains and consequently enhance nZVI mobility in porous media. In this study the humate was injected into an aquifer prior to injection of the nZVI particles. The potential of humate for enhancing the mobility of nZVI particles was tested in an array of columns packed with heterogeneous natural porous media of different mineralogical composition and sediment texture. The results demonstrated that without pre-injection of humates only limited mobility of nZVI particles can be obtained in all tested porous media. After the pre-injection of low concentration of humate (10 mg/L) the mobility of nZVI particles (1 g/L) was enhanced in all tested porous media. The magnitude of this enhancement was depended on the properties of the porous media. The largest improvement of nZVI mobility was observed for homogeneous quartz. This material had also the highest porosity (~ 40%), good sorting, and therefore a higher permeability compared to the other porous media tested. It is assumed that the higher permeability of this porous medium allowed an optimal distribution of humate, resulting in an approximately 6-fold enhancement of nZVI mobility. In carbonate-rich porous medium with a

  11. Unified Homogenization Theory for Magnetoinductive and Electromagnetic Waves in Split Ring Metamaterials

    CERN Document Server

    Baena, J D; Marques, R; Silveirinha, M

    2007-01-01

    A unified homogenization procedure for split ring metamaterials taking into account time and spatial dispersion is introduced. The procedure is based on two coupled systems of equations. The first one comes from an approximation of the metamaterial as a cubic arrangement of coupled LC circuits, giving the relation between currents and local magnetic field. The second equation comes from macroscopic Maxwell equations, and gives the relation between the macroscopic magnetic field and the average magnetization of the metamaterial. It is shown that electromagnetic and magnetoinductive waves propagating in the metamaterial are obtained from this analysis. Therefore, the proposed time and spatially dispersive permeability accounts for the characterization of the complete spectrum of waves of the metamaterial. Finally, it is shown that the proposed theory is in good quantitative and qualitative agreement with full wave simulations.

  12. Porous bioactive materials

    Science.gov (United States)

    Zhang, Kai

    Bioactive materials chemically bond to tissues through the development of biologically active apatite. Porous structures in biomaterials are designed to enhance bioactivity, grow artificial tissues and achieve better integration with host tissues in the body. The goal of this research is to design, fabricate and characterize novel porous bioactive materials. 3D ordered macroporous bioactive glasses (3DOM-BGs, pore size: 200--1000 nm) were prepared using a sol-gel process and colloidal crystal templates. 3DOM-BGs are more bioactive and degradable than mesoporous (pore size simulated body fluid (SBF). Apatite formation and 3DOM-BG degradation rates increased with the decrease of soaking ratio. Apatite induction time in SBF increased with 3DOM-BG calcination temperature (600--800°C). Apatite formation and 3DOMBG degradation were slightly enhanced for a phosphate containing composition. Large 3DOM-BG particles formed less apatite and degraded less completely as compared with small particles. An increase in macropore size slowed down 3DOM-BG degradation and apatite formation processes. After heating the converted apatite at a temperature higher than 700°C, highly crystalline hydroxyapatite and a minor tri-calcium phosphate phase formed. 3DOM-BGs have potential applications as bone/periodontal fillers, and drugs and biological factors delivery agents. Anchoring artificial soft tissues (e.g., cartilage) to native bone presents a challenge. Porous polymer/bioactive glass composites are candidate materials for engineering artificial soft tissue/bone interfaces. Porous composites consisting of polymer matrices (e.g., polysulfone, polylactide, and polyurethane) and bioactive glass particles were prepared by polymer phase separation techniques adapted to include ceramic particles. Composites (thickness: 200--500 mum) have asymmetric structures with dense top layers and porous structures beneath. Porous structures consist of large pores (>100 mum) in a network of smaller (<10

  13. Orthogonality Measurement for Homogenous Projects-Bases

    Science.gov (United States)

    Ivan, Ion; Sandu, Andrei; Popa, Marius

    2009-01-01

    The homogenous projects-base concept is defined. Next, the necessary steps to create a homogenous projects-base are presented. A metric system is built, which then will be used for analyzing projects. The indicators which are meaningful for analyzing a homogenous projects-base are selected. The given hypothesis is experimentally verified. The…

  14. Improving homogeneity by dynamic speed limit systems.

    NARCIS (Netherlands)

    Nes, N. van Brandenberg, S. & Twisk, D.A.M.

    2010-01-01

    Homogeneity of driving speeds is an important variable in determining road safety; more homogeneous driving speeds increase road safety. This study investigates the effect of introducing dynamic speed limit systems on homogeneity of driving speeds. A total of 46 subjects twice drove a route along 12

  15. Micromechanical study of macroscopic friction and dissipation in idealised granular materials: the effect of interparticle friction

    NARCIS (Netherlands)

    Kruyt, N.P.; Rothenburg, L.; Gutkowski, Witold; Kowalewski, Tomasz A.

    2004-01-01

    Using Discrete Element Method (DEM) simulations with varying interparticle friction coefficient, the relation between interparticle friction coefficient and macroscopic continuum friction and dissipation is investigated. As expected, macroscopic friction and dilatancy increase with interparticle fri

  16. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    Science.gov (United States)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  17. Homogeneous models for bianisotropic crystals

    CERN Document Server

    Ponti, S; Oldano, C

    2002-01-01

    We extend to bianisotropic structures a formalism already developed, based on the Bloch method for defining the effective dielectric tensor of anisotropic crystals in the long-wavelength approximation. More precisely, we provide a homogenization scheme which yields a wavevector-dependent effective medium for any 3D, 2D, or 1D bianisotropic crystal. We illustrate our procedure by applying this to a 1D magneto-electric smectic C*-type structure. The resulting equations confirm that the presence of dielectric and magnetic susceptibilities in the periodic structures generates magneto-electric pseudo-tensors for the effective medium. Their contribution to the optical activity of structurally chiral media can be of the same order of magnitude as the one present in dielectric helix-shaped crystals. Simple analytical expressions are found for the most important optical properties of smectic C*-type structures which are simultaneously dielectric and magnetic.

  18. Effective Gravity and Homogenous Solutions

    CERN Document Server

    Müller, Daniel

    2013-01-01

    Near the singularity, gravity should be modified to an effective theory, in the same sense as with the Euler-Heisenberg electrodynamics. This effective gravity surmounts to higher derivative theory, and as is well known, a much more reacher theory concerning the solution space. On the other hand, as a highly non linear theory, the understanding of this solution space must go beyond the linearized approach. In this talk we will present some results previously published by collaborators and myself, concerning solutions for vacuum spatially homogenous cases of Bianchi types $I$ and $VII_A$. These are the anisotropic generalizations of the cosmological spatially "flat", and "open" models respectively. The solutions present isotropisation in a weak sense depending on the initial condition. Also, depending on the initial condition, singular solutions are obtained.

  19. Effective Gravity and Homogenous Solutions

    Science.gov (United States)

    Müller, Daniel

    2015-01-01

    Near the singularity, gravity should be modified to an effective theory, in the same sense as with the Euler-Heisenberg electrodynamics. This effective gravity surmounts to higher derivative theory, and as is well known, a much more reacher theory concerning the solution space. On the other hand, as a highly non linear theory, the understanding of this solution space must go beyond the linearized approach. In this talk we will present some results previously published by collaborators and myself, concerning solutions for vacuum spatially homogenous cases of Bianchi types I and VIIA. These are the anisotropic generalizations of the cosmological spatially "flat", and "open" models respectively. The solutions present isotropisation in a weak sense depending on the initial condition. Also, depending on the initial condition, singular solutions are obtained.

  20. Projective duality and homogeneous spaces

    CERN Document Server

    Tevelev, E A

    2006-01-01

    Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.

  1. An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields

    Science.gov (United States)

    Monchiet, Vincent; Charkaluk, Eric; Kondo, Djimedo

    2007-01-01

    New expressions of the macroscopic criteria of perfectly plastic rigid matrix containing prolate and oblate cavities are presented. The proposed approach, derived in the framework of limit analysis, consists in the consideration of Eshelby-like trial velocity fields for the determination of the macroscopic dissipation. It is shown that the obtained results significantly improve existing criteria for ductile porous media. Moreover, for low stress triaxialities, these new results also agree perfectly with the (nonlinear) Hashin-Shtrikhman bound established by Ponte-Castañeda and Suquet. To cite this article: V. Monchiet et al., C. R. Mecanique 335 (2007).

  2. Modelling the growth of porous alumina matrix for creating hyperbolic media

    Science.gov (United States)

    Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.

    2016-08-01

    Porous aluminum oxide is a regular self-assembled structure. During anodization it is possible to control nano-parameters of the structure using macroscopic parameters of anodization. Porous alumina films can be used as a template for the creation of hyperbolic media. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. As a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process. We also present the results obtained by numerical modelling of hyperbolic media based on porous alumina film.

  3. Convection in Porous Media

    CERN Document Server

    Nield, Donald A

    2013-01-01

    Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...

  4. Porous Electrode Studies.

    Science.gov (United States)

    1980-07-01

    representation and analysis for their observed current distributions. Simonsson won the young author’s award of the Electrochemical Society for his paper...and T. Katan, Proc. Symp. Energy Storage and Conversion, the Electrochemical Society 77-6, 770 (1977) The optimum thickness of porous electrodes is...Chloride Electrodes; Surface Morphology on Charging and Dis- charging," T. Katan, S. Szpak, and D. N. Bennion, The Electrochemical Society , 143rd National

  5. Modeling of shape memory alloys and application to porous materials

    Science.gov (United States)

    Panico, Michele

    In the last two decades the number of innovative applications for advanced materials has been rapidly increasing. Shape memory alloys (SMAs) are an exciting class of these materials which exhibit large reversible stresses and strains due to a thermoelastic phase transformation. SMAs have been employed in the biomedical field for producing cardiovascular stents, shape memory foams have been successfully tested as bone implant material, and SMAs are being used as deployable switches in aerospace applications. The behavior of shape memory alloys is intrinsically complex due to the coupling of phase transformation with thermomechanical loading, so it is critical for constitutive models to correctly simulate their response over a wide range of stress and temperature. In the first part of this dissertation, we propose a macroscopic phenomenological model for SMAs that is based on the classical framework of thermodynamics of irreversible processes and accounts for the effect of multiaxial stress states and non-proportional loading histories. The model is able to account for the evolution of both self-accommodated and oriented martensite. Moreover, reorientation of the product phase according to loading direction is specifically accounted for. Computational tests demonstrate the ability of the model to simulate the main aspects of the shape memory response in a one-dimensional setting and some of the features that have been experimentally found in the case of multi-axial non-proportional loading histories. In the second part of this dissertation, this constitutive model has been used to study the mesoscopic behavior of porous shape memory alloys with particular attention to the mechanical response under cyclic loading conditions. In order to perform numerical simulations, the model was implemented into the commercial finite element code ABAQUS. Due to stress concentrations in a porous microstructure, the constitutive law was enhanced to account for the development of

  6. Interface effects on multiphase flows in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Duan Z [Los Alamos National Laboratory

    2008-01-01

    Most models for multiphase flows in a porous medium are based on the straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multi phase flows is applied to derive averaged equations and to examine the validity of the commonly used models. The closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in the length ratio. The approximation reveals the information of the length scale separation obscured during the ensemble averaging process, and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.

  7. Wicking of liquid nitrogen into superheated porous structures

    Science.gov (United States)

    Grebenyuk, Yulia; Dreyer, Michael E.

    2016-09-01

    Evaporation in porous elements of liquid-vapor separation devices can affect the vapor-free cryogenic propellant delivery to spacecraft engines. On that account, the capillary transport of a cryogenic liquid subjected to evaporation needs to be understood and assessed. We investigate wicking of liquid nitrogen at saturation temperature into superheated porous media. A novel test facility was built to perform wicking experiments in a one-species system under non-isothermal conditions. A setup configuration enabled to define the sample superheat by its initial position in a stratified nitrogen vapor environment inside the cryostat. Simultaneous sample weight and temperature measurements indicated the wicking front velocity. The mass of the imbibed liquid nitrogen was determined varying the sample superheat, geometry and porous structure. To the author's extent of knowledge, these are the first wicking experiments performed with cryogenic fluids subjected to evaporation using the weight-time measurement technique. A one-dimensional macroscopic model describes the process theoretically. Results revealed that the liquid loss due to evaporation at high sample superheats leads to only a slight imbibition rate decrease. However, the imbibition rate can be greatly affected by the vapor flow created due to evaporation that counteracts the wicking front propagation.

  8. Understanding the Pulsar High Energy Emission: Macroscopic and Kinetic Models

    Science.gov (United States)

    Kalapotharakos, Constantinos; Brambilla, Gabriele; Timokhin, Andrey; Kust Harding, Alice; Kazanas, Demos

    2017-08-01

    Pulsars are extraordinary objects powered by the rotation of magnetic fields of order 10^8, 10^12G anchored onto neutron stars and rotating with periods 10^(-3)-10s. These fields mediate the conversion of their rotational energy into MHD winds and at the same time accelerate particles to energies sufficiently high to produce GeV photons. Fermi, since its launch in 2008, has established several trends among the observed gamma-ray pulsar properties playing a catalytic role in the current modeling of the high energy emission in pulsar magnetospheres. We judiciously use the guidance provided by the Fermi data to yield meaningful constraints on the macroscopic parameters of our global dissipative pulsar magnetosphere models. Our FIDO (Force-Free Inside, Dissipative Outside) models indicate that the dissipative regions lie outside the light cylinder near the equatorial current sheet. Our models reproduce the light-curve phenomenology while a detailed comparison of the model spectral properties with those observed by Fermi reveals the dependence of the macroscopic conductivity parameter on the spin-down rate providing a unique insight into the understanding of the physical mechanisms behind the high-energy emission in pulsar magnetospheres. Finally, we further exploit these important results by building self-consistent 3D global kinetic particle-in-cell (PIC) models which, eventually, provide the dependence of the macroscopic parameter behavior (e.g. conductivity) on the microphysical properties (e.g. particle multiplicities, particle injection rates). Our PIC models provide field structures and particle distributions that are not only consistent with each other but also able to reproduce a broad range of the observed gamma-ray phenomenology (light curves and spectral properties) of both young and millisecond pulsars.

  9. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats

    NARCIS (Netherlands)

    Barrère, F.; van der Valk, C.M.; Meijer, G.; Dalmeijer, R.A.J.; de Groot, K.; Layrolle, P.

    2003-01-01

    Biomimetic calcium phosphate (Ca-P) coatings were applied onto dense titanium alloy (Ti6Al4V) and porous tantalum (Ta) cylinders by immersion into simulated body fluid at 37 °C and then at 50 °C for 24 h. As a result, a homogeneous bone-like carbonated apatitic (BCA) coating, 30 m thick was deposite

  10. Impedance Simulation of a Li-Ion Battery with Porous Electrodes and Spherical Li+ Intercalation Particles

    NARCIS (Netherlands)

    Huang, R.W.J.M.; Chung, F.; Kelder, E.M.

    2006-01-01

    We present a semimathematical model for the simulation of the impedance spectra of a rechargeable lithium batteries consisting of porous electrodes with spherical Li+ intercalation particles. The particles are considered to have two distinct homogeneous phases as a result of the intercalation and

  11. Effective behavior of a free fluid in contact with a flow in a curved porous medium

    DEFF Research Database (Denmark)

    Dobberschütz, Sören

    2015-01-01

    The appropriate boundary condition between an unconfined incompressible viscous fluid and a porous medium is given by the law of Beavers and Joseph. The latter has been justified both experimentally and mathematically, using the method of periodic homogenization. However, all results so far deal ...

  12. Impedance Simulation of a Li-Ion Battery with Porous Electrodes and Spherical Li+ Intercalation Particles

    NARCIS (Netherlands)

    Huang, R.W.J.M.; Chung, F.; Kelder, E.M.

    2006-01-01

    We present a semimathematical model for the simulation of the impedance spectra of a rechargeable lithium batteries consisting of porous electrodes with spherical Li+ intercalation particles. The particles are considered to have two distinct homogeneous phases as a result of the intercalation and de

  13. Self-Feeding Turbulent Magnetic Reconnection on Macroscopic Scales

    CERN Document Server

    Lapenta, Giovanni

    2008-01-01

    Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The first is well-known: the laminar Sweet-Parker process. But a second, completely different and chaotic reconnection process is possible. This regime has properties of immediate practical relevance: i) it is much faster, developing on scales of the order of the Alfv\\'en time, and ii) the areas of reconnection become distributed chaotically over a macroscopic region. The onset of the faster process is the formation of closed circulation patterns where the jets going out of the reconnection regions turn around and forces their way back in, carrying along copious amounts of magnetic flux.

  14. Single-atom quantum control of macroscopic mechanical oscillators

    Science.gov (United States)

    Bariani, F.; Otterbach, J.; Tan, Huatang; Meystre, P.

    2014-01-01

    We investigate a hybrid electromechanical system consisting of a pair of charged macroscopic mechanical oscillators coupled to a small ensemble of Rydberg atoms. The resonant dipole-dipole coupling between an internal atomic Rydberg transition and the mechanics allows cooling to its motional ground state with a single atom despite the considerable mass imbalance between the two subsystems. We show that the rich electronic spectrum of Rydberg atoms, combined with their high degree of optical control, paves the way towards implementing various quantum-control protocols for the mechanical oscillators.

  15. The Two-Time Interpretation and Macroscopic Time-Reversibility

    Directory of Open Access Journals (Sweden)

    Yakir Aharonov

    2017-03-01

    Full Text Available The two-state vector formalism motivates a time-symmetric interpretation of quantum mechanics that entails a resolution of the measurement problem. We revisit a post-selection-assisted collapse model previously suggested by us, claiming that unlike the thermodynamic arrow of time, it can lead to reversible dynamics at the macroscopic level. In addition, the proposed scheme enables us to characterize the classical-quantum boundary. We discuss the limitations of this approach and its broad implications for other areas of physics.

  16. Emergence of an urban traffic macroscopic fundamental diagram

    DEFF Research Database (Denmark)

    Ranjan, Abhishek; Fosgerau, Mogens; Jenelius, Erik

    2016-01-01

    This paper examines mild conditions under which a macroscopic fundamental diagram (MFD) emerges, relating space-averaged speed to occupancy in some area. These conditions are validated against empirical data. We allow local speedoccupancy relationships and, in particular, require no equilibrating...... process to be in operation. This means that merely observing the stable relationship between the space-averages of speed, flow and occupancy are not sufficient to infer a robust relationship and the emerging MFD cannot be guaranteed to be stable if traffic interventions are implemented....

  17. Violation of smooth observable macroscopic realism in a harmonic oscillator.

    Science.gov (United States)

    Leshem, Amir; Gat, Omri

    2009-08-14

    We study the emergence of macrorealism in a harmonic oscillator subject to consecutive measurements of a squeezed action. We demonstrate a breakdown of dynamical realism in a wide parameter range that is maximized in a scaling limit of extreme squeezing, where it is based on measurements of smooth observables, implying that macroscopic realism is not valid in the harmonic oscillator. We propose an indirect experimental test of these predictions with entangled photons by demonstrating that local realism in a composite system implies dynamical realism in a subsystem.

  18. Seismic scanning tunneling macroscope - Elastic simulations and Arizona mine test

    KAUST Repository

    Hanafy, Sherif M.

    2012-01-01

    Elastic seismic simulations and field data tests are used to validate the theory of a seismic scanning tunneling macroscope (SSTM). For nearfield elastic simulation, the SSTM results show superresolution to be better than λ/8 if the only scattered data are used as input data. If the direct P and S waves are muted then the resolution of the scatterer locations are within about λ/5. Seismic data collected in an Arizona tunnel showed a superresolution limit of at least λ/19. These test results are consistent with the theory of the SSTM and suggest that the SSTM can be a tool used by geophysicists as a probe for near-field scatterers.

  19. Macroscopic description of teeth of Azara's agouti (Dasyprocta azarae

    Directory of Open Access Journals (Sweden)

    Fabrício S. Oliveira

    2012-01-01

    Full Text Available The teeth of Azara's agouti (Dasyprocta azarae were described macroscopically in order to provide biological data on one of the largest wild rodents of the Americas. Radiography was taken on six heads and the teeth were described. Enamel surrounds the coronal dentin, projects to the roots and is present as parallel inner laminae in buccolingual direction. The dentin is located among the enamel laminae and surrounds the pulp horns. The cementum is located internally to the enamel laminae. On the lingual surface, the cementum and dentin are the outer elements.

  20. Macroscopic and microscopic self-organization by nonlocal anisotropic interactions

    CERN Document Server

    Cristiani, Emiliano; Tosin, Andrea

    2009-01-01

    This paper is concerned with mathematical modeling of intelligent systems, such as human crowds and animal groups. In particular, the focus is on the emergence of different self-organized patterns from non-locality and anisotropy of the interactions among individuals. A mathematical technique by time-evolving measures is introduced to deal with both macroscopic and microscopic scales within a unified modeling framework. Then self-organization issues are investigated and numerically reproduced at the proper scale, according to the kind of agents under consideration.

  1. An investigation into why macroscopic systems behave classically

    OpenAIRE

    Hallwood, David W.; Burnett, Keith; Dunningham, Jacob

    2006-01-01

    We study why it is quite so hard to make a superposition of superfluid flows in a Bose-Einstein condensate. To do this we initially investigate the quantum states of $N$ atoms trapped in a 1D ring with a barrier at one position and a phase applied around it. We show how macroscopic superpositions can in principle be produced and investigate factors which affect the superposition. We then use the Bose-Hubbard model to study an array of Bose-Einstein condensates trapped in optical potentials an...

  2. Measurement-induced macroscopic superposition states in cavity optomechanics

    CERN Document Server

    Hoff, Ulrich B; Neergaard-Nielsen, Jonas S; Andersen, Ulrik L

    2016-01-01

    We present a novel proposal for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator, compatible with existing optomechanical devices operating in the readily achievable bad-cavity limit. The scheme is based on a pulsed cavity optomechanical quantum non-demolition (QND) interaction, driven by displaced non-Gaussian states, and measurement-induced feedback, avoiding the need for strong single-photon optomechanical coupling. Furthermore, we show that single-quadrature cooling of the mechanical oscillator is sufficient for efficient state preparation, and we outline a three-pulse protocol comprising a sequence of QND interactions for squeezing-enhanced cooling, state preparation, and tomography.

  3. Flagella bending affects macroscopic properties of bacterial suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Potomkin, M.; Tournus, M.; Berlyand, L. V.; Aranson, I. S.

    2017-05-01

    To survive in harsh conditions, motile bacteria swim in complex environments and respond to the surrounding flow. Here, we develop a mathematical model describing how flagella bending affects macroscopic properties of bacterial suspensions. First, we show how the flagella bending contributes to the decrease in the effective viscosity observed in dilute suspension. Our results do not impose tumbling (random reorientation) as was previously done to explain the viscosity reduction. Second, we demonstrate how a bacterium escapes from wall entrapment due to the self-induced buckling of flagella. Our results shed light on the role of flexible bacterial flagella in interactions of bacteria with shear flow and walls or obstacles.

  4. Modelling and simulations of macroscopic multi-group pedestrian flow

    CERN Document Server

    Mahato, Naveen K; Tiwari, Sudarshan

    2016-01-01

    We consider a multi-group microscopic model for pedestrian flow describing the behaviour of large groups. It is based on an interacting particle system coupled to an eikonal equation. Hydrodynamic multi-group models are derived from the underlying particle system as well as scalar multi-group models. The eikonal equation is used to compute optimal paths for the pedestrians. Particle methods are used to solve the macroscopic equations. Numerical test cases are investigated and the models and, in particular, the resulting evacuation times are compared for a wide range of different parameters.

  5. Macroscopic modeling for traffic flow on three-lane highways

    Science.gov (United States)

    Chen, Jianzhong; Fang, Yuan

    2015-04-01

    In this paper, a macroscopic traffic flow model for three-lane highways is proposed. The model is an extension of the speed gradient model by taking into account the lane changing. The new source and sink terms of lane change rate are added into the continuity equations and the speed dynamic equations to describe the lane-changing behavior. The result of the steady state analysis shows that our model can describe the lane usage inversion phenomenon. The numerical results demonstrate that the present model effectively reproduces several traffic phenomena observed in real traffic such as shock and rarefaction waves, stop-and-go waves and local clusters.

  6. An Introduction to a Porous Shape Memory Alloy Dynamic Data Driven Application System

    KAUST Repository

    Douglas, Craig C.

    2012-06-02

    Shape Memory Alloys are capable of changing their crystallographic structure due to changes of temperature and/or stress. Our research focuses on three points: (1) Iterative Homogenization of Porous SMAs: Development of a Multiscale Model of porous SMAs utilizing iterative homogenization and based on existing knowledge of constitutive modeling of polycrystalline SMAs. (2) DDDAS: Develop tools to turn on and off the sensors and heating unit(s), to monitor on-line data streams, to change scales based on incoming data, and to control what type of data is generated. The application must have the capability to be run and steered remotely. (3) Modeling and applications of porous SMA: Vibration isolation devices with SMA and porous SMA components for aerospace applications will be analyzed and tested. Numerical tools for modeling porous SMAs with a second viscous phase will be developed.The outcome will be a robust, three-dimensional, multiscale model of porous SMA that can be used in complicated, real-life structural analysis of SMA components using a DDDAS framework.

  7. Mathematical Homogenization in the Modelling of Digestion in the Small Intestine

    CERN Document Server

    Taghipoor, Masoomeh; Georgelin, Christine; Licois, Jean-René; Lescoat, Philippe

    2011-01-01

    Digestion in the small intestine is the result of complex mechanical and biological phenomena which can be modelled at different scales. In a previous article, we introduced a system of ordinary differential equations for describing the transport and degradation-absorption processes during the digestion. The present article sustains this simplified model by showing that it can be seen as a macroscopic version of more realistic models including biological phenomena at lower scales. In other words, our simplified model can be considered as a limit of more realistic ones by averaging-homogenization methods on biological processes representation.

  8. Osteogenic poly(ε-caprolactone)/poloxamine homogeneous blends prepared by supercritical foaming.

    Science.gov (United States)

    de Matos, Maria B C; Puga, Ana M; Alvarez-Lorenzo, Carmen; Concheiro, Angel; Braga, Mara E M; de Sousa, Hermínio C

    2015-02-01

    Homogeneous poly(ε-caprolactone) (PCL) and poloxamines (PLXs) porous blends were prepared using a supercritical carbon dioxide-assisted foaming/mixing (SFM) approach aiming to obtain cytocompatible implantable materials presenting tunable morphologies, bioerosion rates, bioactive molecules release and osteogenic features. Pure PCL, pure PLXs (T908 and T1107 varieties) and three distinct PCL:PLX 75:25, 50:50, 25:75% w/w blends, with and without the osteogenic and angiogenic bioactive molecule simvastatin were processed at constant pressure of 20 MPa and temperature of 40 °C or 43 °C, for T1107 and T908, respectively. Obtained porous blends were characterized applying a wide range of techniques and in vitro methods. Calorimetric analysis showed that hydrophilic T908 and T1107 PLXs are miscible with PCL for all tested compositions. Prepared PCL:PLX porous blends rapidly lost mass when immersed into phosphate buffer pH 7.4 due to PLXs dissolution and then went through slow and almost constant erosion rates for the subsequent weeks due to PCL slow hydrolytic degradation, which explains the rapid initial release of simvastatin and its subsequent sustained release for longer periods of time. PCL and PCL:PLX 75:25% w/w porous blends, containing or not simvastatin, showed a high cytocompatibility with SAOS-2 cells. In addition, prepared biomaterials promoted mesenchymal stem cells proliferation and their differentiation into osteoblasts. Overall, obtained results showed novel possibilities of addressing local treatment of small bone defects/fractures using highly porous PCL:PLX homogeneous blends.

  9. Reciprocity theory of homogeneous reactions

    Science.gov (United States)

    Agbormbai, Adolf A.

    1990-03-01

    The reciprocity formalism is applied to the homogeneous gaseous reactions in which the structure of the participating molecules changes upon collision with one another, resulting in a change in the composition of the gas. The approach is applied to various classes of dissociation, recombination, rearrangement, ionizing, and photochemical reactions. It is shown that for the principle of reciprocity to be satisfied it is necessary that all chemical reactions exist in complementary pairs which consist of the forward and backward reactions. The backward reaction may be described by either the reverse or inverse process. The forward and backward processes must satisfy the same reciprocity equation. Because the number of dynamical variables is usually unbalanced on both sides of a chemical equation, it is necessary that this balance be established by including as many of the dynamical variables as needed before the reciprocity equation can be formulated. Statistical transformation models of the reactions are formulated. The models are classified under the titles free exchange, restricted exchange and simplified restricted exchange. The special equations for the forward and backward processes are obtained. The models are consistent with the H theorem and Le Chatelier's principle. The models are also formulated in the context of the direct simulation Monte Carlo method.

  10. Pharmaceutical Industry Oriented Homogeneous Catalysis

    Institute of Scientific and Technical Information of China (English)

    Zhang Xumu

    2004-01-01

    Chiral therapeutics already makes up over one-third of pharmaceutical drugs currently sold worldwide. This is a growing industry with global chiral drug sales for 2002 increasing by 12%to $160 billion (Technology Catalysts International) of a total drug market of $410bn. The increasing demand to produce enantiomerically pure pharmaceuticals, agrochemicals, flavors, and other fine chemicals has advanced the field of asymmetric catalytic technologies.We aim to become a high value technology provider and partner in the chiral therapeutics industry by offering proprietary catalysts, novel building blocks, and collaborative synthetic solutions. In decade, we have developed a set of novel chiral homogeneous phosphorus ligands such as Binaphane, Me-KetalPhos, TangPhos, f-Binaphane, Me-f-KetalPhos, C4TunePhos and Binapine,which we called Chiral Ligand ToolKit. Complementing the ToolKit, (R, S, S, R)-DIOP*, T-Phos,o-BIPHEP, o-BINAPO and FAP were added recently[1].These ligands can be applied to a broad variety of drug structural features by asymmetric hydrogenation of dehydroamino acid derivatives, enamides, unsatisfied acids and esters, ketones,beta ketoesters, imines and cyclic imines. And ligand FAP had been apllied succefully in allylic alkylation and [3+2] cycloaddition.

  11. Micromechanical and macroscopic models of ductile fracture in particle reinforced metallic materials

    Science.gov (United States)

    Hu, Chao; Bai, Jie; Ghosh, Somnath

    2007-06-01

    This paper is aimed at developing two modules contributing to the overall framework of multi-scale modelling of ductile fracture of particle reinforced metallic materials. The first module is for detailed micromechanical analysis of particle fragmentation and matrix cracking of heterogeneous microstructures. The Voronoi cell FEM for particle fragmentation is extended in this paper to incorporate ductile failure through matrix cracking in the form of void growth and coalescence using a non-local Gurson-Tvergaard-Needleman (GTN) model. In the resulting enriched Voronoi cell finite element model (VCFEM) or E-VCFEM, the assumed stress-based hybrid VCFEM formulation is overlaid with narrow bands of displacement based elements to accommodate strain softening in the constitutive behaviour. The second module develops an anisotropic plasticity-damage model in the form of the GTN model for macroscopic analysis in the multi-scale material model. Parameters in this model are calibrated from results of homogenization of microstructural variables obtained by E-VCFEM analysis of microstructural representative volume element. Numerical examples conducted yield satisfactory results.

  12. Effects of iterative learning based signal control strategies on macroscopic fundamental diagrams of urban road networks

    Science.gov (United States)

    Yan, Fei; Tian, Fuli; Shi, Zhongke

    2016-10-01

    Urban traffic flows are inherently repeated on a daily or weekly basis. This repeatability can help improve the traffic conditions if it is used properly by the control system. In this paper, we propose a novel iterative learning control (ILC) strategy for traffic signals of urban road networks using the repeatability feature of traffic flow. To improve the control robustness, the ILC strategy is further integrated with an error feedback control law in a complementary manner. Theoretical analysis indicates that the ILC-based traffic signal control methods can guarantee the asymptotic learning convergence, despite the presence of modeling uncertainties and exogenous disturbances. Finally, the impacts of the ILC-based signal control strategies on the network macroscopic fundamental diagram (MFD) are examined. The results show that the proposed ILC-based control strategies can homogenously distribute the network accumulation by controlling the vehicle numbers in each link to the desired levels under different traffic demands, which can result in the network with high capacity and mobility.

  13. Electrokinetic coupling in unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    Revil, A.; Linde, N.; Cerepi, A.; Jougnot, D.; Matthai, S.; Finsterle, S.

    2007-02-27

    We consider a charged porous material that is saturated bytwo fluid phases that are immiscible and continuous on the scale of arepresentative elementary volume. The wetting phase for the grains iswater and the nonwetting phase is assumed to be an electricallyinsulating viscous fluid. We use a volume-averaging approach to derivethe linear constitutive equations for the electrical current density aswell as the seepage velocities of the wetting and nonwetting phases onthe scale of a representative elementary volume. These macroscopicconstitutive equations are obtained by volume-averaging Ampere's lawtogether with the Nernst Planck equation and the Stokes equations. Thematerial properties entering the macroscopic constitutive equations areexplicitly described as functions of the saturation of the water phase,the electrical formation factor, and parameters that describe thecapillary pressure function, the relative permeability function, and thevariation of electrical conductivity with saturation. New equations arederived for the streaming potential and electro-osmosis couplingcoefficients. A primary drainage and imbibition experiment is simulatednumerically to demonstrate that the relative streaming potential couplingcoefficient depends not only on the water saturation, but also on thematerial properties of the sample, as well as the saturation history. Wealso compare the predicted streaming potential coupling coefficients withexperimental data from four dolomite core samples. Measurements on thesesamples include electrical conductivity, capillary pressure, thestreaming potential coupling coefficient at various level of saturation,and the permeability at saturation of the rock samples. We found verygood agreement between these experimental data and the modelpredictions.

  14. A brief introduction to homogenization and miscellaneous applications*

    Directory of Open Access Journals (Sweden)

    Allaire Grégoire

    2012-09-01

    Full Text Available This paper is a set of lecture notes for a short introductory course on homogenization. It covers the basic tools of periodic homogenization (two-scale asymptotic expansions, the oscillating test function method and two-scale convergence and briefly describes the main results of the more general theory of G−  or H−convergence. Several applications of the method are given: derivation of Darcy’s law for flows in porous media, derivation of the porosity model and long time behavior of a diffusion equation. Numerical agorithms for homogenization are also discussed, including multiscale finite element methods. Cet article reprend des notes de cours, d’un niveau introductif, sur l’homogénéisation. Ces notes couvrent la théorie de l’homogénéisation périodique (développements asymptotiques à deux échelles, méthode de la fonction test oscillante, convergence à deux échelles et décrivent brièvement les principaux résultats de la théorie plus générale de la G− ou H− convergence. Plusieurs applications de la méthode sont données : dérivation de la loi de Darcy pour des écoulements en milieux poreux, dérivation du modèle de double porosité et comportement en temps grand d’une équation de diffusion. Des algorithmes numériques pour l’homogénéisation sont aussi présentés, dont, en particulier, les méthodes d’éléments finis multi-échelles.

  15. Preparation and characteristics of porous ceramics

    Institute of Scientific and Technical Information of China (English)

    Dongmei SHAO; Peiping ZHANG; Liyan MA; Juanjuan LIU

    2007-01-01

    Pyrophyllite is always used for making porous ceramics. In order to design the preparation technics of porous ceramics with pyrophyllite reasonably we must know the classifications, characteristics, properties and applications of porous ceramics. The classification and characteristics of porous ceramics are reviewed in this article; and several common preparations with their advantages and disadvantages are also introduced. The authors discussed the problems existing in researching and developing process for porous ceramics, and forecasted the development prospect of porous ceramics.

  16. A Class of Homogeneous Einstein Manifolds

    Institute of Scientific and Technical Information of China (English)

    Yifang KANG; Ke LIANG

    2006-01-01

    A Riemannian manifold (M,g) is called Einstein manifold if its Ricci tensor satisfies r=c·g for some constant c. General existence results are hard to obtain,e.g., it is as yet unknown whether every compact manifold admits an Einstein metric. A natural approach is to impose additional homogeneous assumptions. M. Y. Wang and W. Ziller have got some results on compact homogeneous space G/H. They investigate standard homogeneous metrics, the metric induced by Killing form on G/H, and get some classification results. In this paper some more general homogeneous metrics on some homogeneous space G/H are studies, and a necessary and sufficient condition for this metric to be Einstein is given. The authors also give some examples of Einstein manifolds with non-standard homogeneous metrics.

  17. Macroscopic Quantum Phenomena from the Correlation, Coupling and Criticality Perspectives

    CERN Document Server

    Chou, C H; Subasi, Y

    2011-01-01

    In this sequel paper we explore how macroscopic quantum phenomena can be measured or understood from the behavior of quantum correlations which exist in a quantum system of many particles or components and how the interaction strengths change with energy or scale, under ordinary situations and when the system is near its critical point. We use the nPI (master) effective action related to the Boltzmann-BBGKY / Schwinger-Dyson hierarchy of equations as a tool for systemizing the contributions of higher order correlation functions to the dynamics of lower order correlation functions. Together with the large N expansion discussed in our first paper(MQP1) we explore 1) the conditions whereby an H-theorem is obtained, which can be viewed as a signifier of the emergence of macroscopic behavior in the system. We give two more examples from past work: 2) the nonequilibrium dynamics of N atoms in an optical lattice under the large $\\cal N$ (field components), 2PI and second order perturbative expansions, illustrating h...

  18. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  19. Tribological behaviour of graphite powders at nano- and macroscopic scales

    Science.gov (United States)

    Schmitt, M.; Bistac, S.; Jradi, K.

    2007-04-01

    With its high resistance, good hardness and electrical conductibility in the basal plans, graphite is used for many years in various tribological fields such as seals, bearings or electrical motor brushes, and also for applications needing excellent lubrication and wearreducing properties. But thanks to its low density, graphite is at the moment destined for technologies which need a reducing of the weight combined with an enhancement of the efficiency, as it is the case in aeronautical industry. In this contexte, the friction and wear of natural (named graphite A) and synthetic (called graphites B and C) powders were evaluated, first at the macroscopic scale when sliding against steel counterfaces, under various applied normal loads. Scanning Electron Microscopy and AFM in tapping mode were used to observe the morphological modifications of the graphites. It is noticed that an enlargement of the applied normal load leads to an increase of the friction coefficient for graphites A and C; but for the graphite B, it seems that a ''limit'' load can induce a complete change of the tribological behaviour. At the same time, the nano-friction properties of these powders were evaluated by AFM measurements in contact mode, at different contact loads. As it was the case at the macroscopic scale, an increase of the nano-contact load induces higher friction coefficients. The determining of the friction and wear mechanisms of the graphite powders, as a function of both their intrinsic characteristics and the applied normal load, is then possible.

  20. How does Planck’s constant influence the macroscopic world?

    Science.gov (United States)

    Yang, Pao-Keng

    2016-09-01

    In physics, Planck’s constant is a fundamental physical constant accounting for the energy-quantization phenomenon in the microscopic world. The value of Planck’s constant also determines in which length scale the quantum phenomenon will become conspicuous. Some students think that if Planck’s constant were to have a larger value than it has now, the quantum effect would only become observable in a world with a larger size, whereas the macroscopic world might remain almost unchanged. After reasoning from some basic physical principles and theories, we found that doubling Planck’s constant might result in a radical change on the geometric sizes and apparent colors of macroscopic objects, the solar spectrum and luminosity, the climate and gravity on Earth, as well as energy conversion between light and materials such as the efficiency of solar cells and light-emitting diodes. From the discussions in this paper, students can appreciate how Planck’s constant affects various aspects of the world in which we are living now.

  1. Macroscopic Biological Characteristics of Individualized Therapy in Chinese Mongolian Osteopathy

    Science.gov (United States)

    Namula, Zhao; Mei, Wang; Li, Xue-en

    Objective: Chinese Mongolian osteopathy has been passed down from ancient times and includes unique practices and favorable efficacy. In this study, we investigate the macroscopic biological characteristics of individualized Chinese Mongolian osteopathy, in order to provide new principle and methods for the treatment of bone fracture. Method: With a view to provide a vital link between nature and humans, the four stages of Chinese Mongolian osteopathy focus on the unity of the mind and body, the limbs and body organs, the body and its functions, and humans and nature. Results: We discuss the merits of individualized osteopathy in terms of the underlying concepts, and evaluate the approaches and principles of traditional medicine, as well as biomechanics. Conclusions: Individualized Mongolian osteopathy targets macroscopic biological components including dynamic reduction, natural fixation, and functional healing. Chinese Mongolian osteopathy is a natural, ecological and non-invasive osteopathy that values the link between nature and humans, including the unity of mind and body. The biological components not only serve as a foundation for Chinese Mongolian osteopathy but are also important for the future development of modern osteopathy, focusing on individualization, actualization and integration.

  2. Motion of macroscopic bodies in the electromagnetic field

    CERN Document Server

    Horsley, S A R

    2013-01-01

    A theory is presented for calculating the effect of the electromagnetic field on the centre of mass of a macroscopic dielectric body that is valid in both quantum and classical regimes. We apply the theory to find the classical equation of motion for the centre of mass of a macroscopic object in a classical field, and the spreading of an initially localized wave-packet representing the centre of mass of a small object, in a quantum field. The classical force is found to be consistent with the identification of the Abraham momentum with the mechanical momentum of light, and the motion of the wave-packet is found to be subject to an acceleration due to the Casimir force, and a time dependent fluctuating motion due the creation of pairs of excitations within the object. The theory is valid for any dielectric that has susceptibilities satisfying the Kramers-Kronig relations, and is not subject to arguments regarding the form of the electromagnetic energy-momentum tensor within a medium.

  3. Parametric equations for calculation of macroscopic cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Botelho, Mario Hugo; Carvalho, Fernando, E-mail: mariobotelho@poli.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2015-07-01

    Neutronic calculations of the core of a nuclear reactor is one thing necessary and important for the design and management of a nuclear reactor in order to prevent accidents and control the reactor efficiently as possible. To perform these calculations a library of nuclear data, including cross sections is required. Currently, to obtain a cross section computer codes are used, which require a large amount of processing time and computer memory. This paper proposes the calculation of macroscopic cross section through the development of parametric equations. The paper illustrates the proposal for the case of macroscopic cross sections of absorption (Σa), which was chosen due to its greater complexity among other cross sections. Parametric equations created enable, quick and dynamic way, the determination of absorption cross sections, enabling the use of them in calculations of reactors. The results show efficient when compared with the absorption cross sections obtained by the ALPHA 8.8.1 code. The differences between the cross sections are less than 2% for group 2 and less than 0.60% for group 1. (author)

  4. An exploration for the macroscopic physical meaning of entropy

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The macroscopic physical meaning of entropy is analyzed based on the exergy (availability) of a combined system (a closed system and its environment), which is the maximum amount of useful work obtainable from the system and the environment as the system is brought into equilibrium with the environment. The process the system experiences can be divided in two sequent sub-processes, the process at constant volume, which represents the heat interaction of the system with the environment, and the adiabatic process, which represents the work interaction of the system with the environment. It is shown that the macroscopic physical meaning of entropy is a measure of the unavailable energy of a closed system for doing useful work through heat interaction. This statement is more precise than those reported in prior literature. The unavailability function of a closed system can be defined as T0S and p0V in volume constant process and adiabatic process, respectively. Their changes, that is, AiTgS) and A (p0V) represent the unusable parts of the internal energy of a closed system for doing useful work in corresponding processes. Finally, the relation between Clausius entropy and Boltzmann entropy is discussed based on the comparison of their expressions for absolute entropy.

  5. Macroscopic model and truncation error of discrete Boltzmann method

    Science.gov (United States)

    Hwang, Yao-Hsin

    2016-10-01

    A derivation procedure to secure the macroscopically equivalent equation and its truncation error for discrete Boltzmann method is proffered in this paper. Essential presumptions of two time scales and a small parameter in the Chapman-Enskog expansion are disposed of in the present formulation. Equilibrium particle distribution function instead of its original non-equilibrium form is chosen as key variable in the derivation route. Taylor series expansion encompassing fundamental algebraic manipulations is adequate to realize the macroscopically differential counterpart. A self-contained and comprehensive practice for the linear one-dimensional convection-diffusion equation is illustrated in details. Numerical validations on the incurred truncation error in one- and two-dimensional cases with various distribution functions are conducted to verify present formulation. As shown in the computational results, excellent agreement between numerical result and theoretical prediction are found in the test problems. Straightforward extensions to more complicated systems including convection-diffusion-reaction, multi-relaxation times in collision operator as well as multi-dimensional Navier-Stokes equations are also exposed in the Appendix to point out its expediency in solving complicated flow problems.

  6. Inverted rank distributions: Macroscopic statistics, universality classes, and critical exponents

    Science.gov (United States)

    Eliazar, Iddo; Cohen, Morrel H.

    2014-01-01

    An inverted rank distribution is an infinite sequence of positive sizes ordered in a monotone increasing fashion. Interlacing together Lorenzian and oligarchic asymptotic analyses, we establish a macroscopic classification of inverted rank distributions into five “socioeconomic” universality classes: communism, socialism, criticality, feudalism, and absolute monarchy. We further establish that: (i) communism and socialism are analogous to a “disordered phase”, feudalism and absolute monarchy are analogous to an “ordered phase”, and criticality is the “phase transition” between order and disorder; (ii) the universality classes are characterized by two critical exponents, one governing the ordered phase, and the other governing the disordered phase; (iii) communism, criticality, and absolute monarchy are characterized by sharp exponent values, and are inherently deterministic; (iv) socialism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by continuous power-law statistics; (v) feudalism is characterized by a continuous exponent range, is inherently stochastic, and is universally governed by discrete exponential statistics. The results presented in this paper yield a universal macroscopic socioeconophysical perspective of inverted rank distributions.

  7. Macroscopic Behavior of Nematics with D2d Symmetry

    Science.gov (United States)

    Pleiner, Harald; Brand, Helmut R.

    2010-03-01

    We discuss the symmetry properties and the macroscopic behavior of a nematic liquid crystal phase with D2d symmetry. Such a phase is a prime candidate for nematic phases made from banana-shaped molecules where the usual quadrupolar order coexists with octupolar (tetrahedratic) order. The resulting nematic phase is non-polar. While this phase could resemble the classic D∞h nematic in the polarizing microscope, it has many static as well as reversible and irreversible properties unknown to non-polar nematics without octupolar order. In particular, there is a linear gradient term in the free energy that selects parity leading to ambidextrously helical ground states when the molecules are achiral. In addition, there are static and irreversible coupling terms of a type only met otherwise in macroscopically chiral liquid crystals, e.g. the ambidextrous analogues of Lehmann-type effects known from cholesteric liquid crystals. Finally, we discuss certain nonlinear aspects of the dynamics related to the non-commutativity of three-dimensional finite rotations as well as other structural nonlinear hydrodynamic effects.

  8. AQUEOUS HOMOGENEOUS REACTORTECHNICAL PANEL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, D.J.; Bajorek, S.; Bakel, A.; Flanagan, G.; Mubayi, V.; Skarda, R.; Staudenmeier, J.; Taiwo, T.; Tonoike, K.; Tripp, C.; Wei, T.; Yarsky, P.

    2010-12-03

    Considerable interest has been expressed for developing a stable U.S. production capacity for medical isotopes and particularly for molybdenum- 99 (99Mo). This is motivated by recent re-ductions in production and supply worldwide. Consistent with U.S. nonproliferation objectives, any new production capability should not use highly enriched uranium fuel or targets. Conse-quently, Aqueous Homogeneous Reactors (AHRs) are under consideration for potential 99Mo production using low-enriched uranium. Although the Nuclear Regulatory Commission (NRC) has guidance to facilitate the licensing process for non-power reactors, that guidance is focused on reactors with fixed, solid fuel and hence, not applicable to an AHR. A panel was convened to study the technical issues associated with normal operation and potential transients and accidents of an AHR that might be designed for isotope production. The panel has produced the requisite AHR licensing guidance for three chapters that exist now for non-power reactor licensing: Reac-tor Description, Reactor Coolant Systems, and Accident Analysis. The guidance is in two parts for each chapter: 1) standard format and content a licensee would use and 2) the standard review plan the NRC staff would use. This guidance takes into account the unique features of an AHR such as the fuel being in solution; the fission product barriers being the vessel and attached systems; the production and release of radiolytic and fission product gases and their impact on operations and their control by a gas management system; and the movement of fuel into and out of the reactor vessel.

  9. Light Emitting Porous Silicon

    Science.gov (United States)

    1993-05-01

    ml - mm m lm m ~ m m ThO report Page 14 preparation method which has been originally described by Wohler [23] leads to a bright yellow substance with...Solid State Commun. 81, 307 (1992). [221 H. Kautsky, and H. Zocher, Z. Phys. 9,267 (1992). L TNO report Page 28 [231 F. Wohler , Lieb. Ann. 127, 275 (1863...Netherlands Fax + 31 70 328 09 61 Phone + 31 70 326 42 21 TNO- report copy no. e FEL-93eo047r Lh Emitting Porous Silicon sitho(s): DTICHMi.P.Th

  10. Porous Thermoelectric Materials

    Directory of Open Access Journals (Sweden)

    Hiroshi Julian Goldsmid

    2009-08-01

    Full Text Available Thermoelectric materials are sometimes prepared using a sintering process in which the achievement of a high density is often one of the objectives. However, it has recently been shown that the introduction of a highly porous material is desirable in synthetic transverse thermoelements. Porosity may also be an advantage in conventional longitudinal thermoelectric modules in which a high thermal flux density creates problems, but heat transfer within the pores can degrade the thermoelectric figure of merit. The amount of this degradation is calculated and it is shown that it can be small enough to be acceptable in practical devices.

  11. Tortuosity of porous particles.

    Science.gov (United States)

    Barrande, M; Bouchet, R; Denoyel, R

    2007-12-01

    Tortuosity is often used as an adjustable parameter in models of transfer properties through porous media. This parameter, not reducible to classical measured microstructural parameters like specific surface area, porosity, or pore size distribution, reflects the efficiency of percolation paths, which is linked to the topology of the material. The measurement of the effective conductivity of a bed of particles saturated with an electrolyte is a simple way to evaluate tortuosity. Nevertheless, it received only little attention because of the real difficulties in both getting reliable results and interpreting data. Notably, the discrimination between the contribution of interparticle and intraparticle porosities to the tortuosity is not resolved. To our knowledge, there is no model able to fit the experimental data of the tortuosity of a suspension, and a fortiori of a particle bed, in the whole porosity range. Only empirical expressions have been proposed, but they do not allow deriving intratortuosity of a porous particle. For a dilute system, Maxwell's equation predicts the effective conductivity of suspensions of spherical particles as a function of the bulk electrolyte conductivity and of particle conductivity. The intraparticle tortuosity can be derived from the particle conductivity obtained from the Maxwell equation applied to data at infinite dilution of particles. Then, by assuming that the Maxwell equation is a first-order approximation of the conductivity as a function of porosity, we propose an explicit relation of the tortuosity tau of a suspension of porous particles, obtained by conductivity measurement, as tau = tau(epsilon, epsilon(p), tau(p)), where epsilon is the total porosity of the suspension, tau(p) is the intraparticle tortuosity, and epsilon(p) is the particle porosity. This relationship fits the experimental data in the whole porosity range and can be used to determine tau(p) from an experiment at only one porosity. Finally, the obtained

  12. Small, porous polyacrylate beads

    Science.gov (United States)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping Siao (Inventor); Dreyer, William J. (Inventor)

    1976-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree.C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  13. Crosslinked, porous, polyacrylate beads

    Science.gov (United States)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Dreyer, William J. (Inventor)

    1977-01-01

    Uniformly-shaped, porous, round beads are prepared by the co-polymerization of an acrylic monomer and a cross-linking agent in the presence of 0.05 to 5% by weight of an aqueous soluble polymer such as polyethylene oxide. Cross-linking proceeds at high temperature above about 50.degree. C or at a lower temperature with irradiation. Beads of even shape and even size distribution of less than 2 micron diameter are formed. The beads will find use as adsorbents in chromatography and as markers for studies of cell surface receptors.

  14. Homogeneity and thermodynamic identities in geometrothermodynamics

    Science.gov (United States)

    Quevedo, Hernando; Quevedo, María N.; Sánchez, Alberto

    2017-03-01

    We propose a classification of thermodynamic systems in terms of the homogeneity properties of their fundamental equations. Ordinary systems correspond to homogeneous functions and non-ordinary systems are given by generalized homogeneous functions. This affects the explicit form of the Gibbs-Duhem relation and Euler's identity. We show that these generalized relations can be implemented in the formalism of black hole geometrothermodynamics in order to completely fix the arbitrariness present in Legendre invariant metrics.

  15. Homogeneity and thermodynamic identities in geometrothermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo, Hernando [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares (Mexico); Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); ICRANet, Rome (Italy); Quevedo, Maria N. [Universidad Militar Nueva Granada, Departamento de Matematicas, Facultad de Ciencias Basicas, Bogota (Colombia); Sanchez, Alberto [CIIDET, Departamento de Posgrado, Queretaro (Mexico)

    2017-03-15

    We propose a classification of thermodynamic systems in terms of the homogeneity properties of their fundamental equations. Ordinary systems correspond to homogeneous functions and non-ordinary systems are given by generalized homogeneous functions. This affects the explicit form of the Gibbs-Duhem relation and Euler's identity. We show that these generalized relations can be implemented in the formalism of black hole geometrothermodynamics in order to completely fix the arbitrariness present in Legendre invariant metrics. (orig.)

  16. Heat and mass transfer in multi-scale porous structures: application to Diesel particulate filters modelling; Transferts de chaleur et de masse dans des structures poreuses multi-echelles: application a l'etude des filtres a particules Diesel

    Energy Technology Data Exchange (ETDEWEB)

    Oxarango, L.

    2004-09-15

    particle collection process is modelled as a simple cake layer formation with respect to the gas flow properties. A parametric study carried out on periodic representative cells evidence the heterogeneous distribution of soot along the filter channel. Then, the non-periodic multi-channel case is considered. The particle loading appears to be weakly sensitive to local heterogeneities imposed in a single channel. Finally, the mass and momentum equations are expressed under a macroscopic form. The filtration process could then be simulated in the whole apparatus. During this study, a particular care has been taken to validate each model against experiment. In a second part, the thermal problem is considered. The phenomena occurring at the micrometric scale are taken into account. However, the study focuses more particularly on the scale change allowing describing the honeycomb as an equivalent homogeneous media. The analysis is base on the volume averaging theory. A thermal-equilibrium assumption is considered to express a macroscopic one-equation model including all the thermal exchanges. The local contributions to the macroscopic balance equation are taken into account defining closure problems. These closure problems are computed numerically on a periodic representative cell of the filter to obtain an effective thermal conductivity tensor. The particles oxidation reaction is taken into account as a source term in the macroscopic equation. It includes a global reaction kinetic model. The oxygen transport through the soot layer appears to play a limiting role for the chemical reaction. The complete macroscopic energy balance model is solved numerically with a finite volume method. The measurements obtained from two different experimental apparatus are used to validate the approach. Finally, the influence of some geometrical parameters on the thermal behaviour during regeneration is discussed. (author)

  17. The Homogeneity Scale of the universe

    CERN Document Server

    Ntelis, Pierros

    2016-01-01

    In this study, we probe the cosmic homogeneity with the BOSS CMASS galaxy sample in the redshift region of $0.43 < z < 0.7$. We use the normalised counts-in-spheres estimator $\\mathcal{N}(homogeneity scale of the universe. We verify that the universe becomes homogenous on scales greater than $\\mathcal{R}_{H} \\simeq 64.3\\pm1.6\\ h^{-1}Mpc$, consolidating the Cosmological Principle with a consistency test of $\\Lambda$CDM model at the percentage level. Finally, we explore the evolution of the homogeneity scale in redshift.

  18. Targeted Delivery by Smart Capsules for Controlling Two-phase Flow in Porous Media

    Science.gov (United States)

    Fan, J.; Weitz, D.

    2015-12-01

    Understanding and controlling two-phase flow in porous media are of particular importance to the relevant industry applications, such as enhanced oil recovery, CO2 sequestration, and groundwater remediation. We develop a variety of smart microcapsules that can deliver and release specific substances to the target location in the porous medium, and therefore change the fluid property or medium geometry at certain locations. In this talk, I will present two types of smart capsules for (a) delivering surfactant to the vicinity of oil-water interface and (b) delivering microgels to the high permeability region and therefore blocking the pore space there, respectively. We also show that flooding these two capsules into porous media effectively reduces the trapped oil and improves the homogeneity of the medium, respectively. Besides of its industrial applications, this technique also opens a new window to study the mechanism of two-phase flow in porous media.

  19. Fullerene-doped porous glasses

    Science.gov (United States)

    Joshi, M. P.; Kukreja, L. M.; Rustagi, K. C.

    We report the doping of C60 in porous glass by diffusion in solution phase at room temperature. The presence of C60 in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials.

  20. Fullerene-doped porous glasses

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, M.P. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group; Kukreja, L.M. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group; Rustagi, K.C. [Center for Adv. Technol., Indore (India). Nonlinear Optics Group

    1997-07-01

    We report the doping of C{sub 60} in porous glass by diffusion in solution phase at room temperature. The presence of C{sub 60} in the doped porous glass was confirmed spectroscopically. We also report the changes in optical absorption spectrum and intensity-dependent transmission of 30 ns laser pulses at 527 nm in these materials. (orig.)

  1. Moisture Sorption in Porous Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2007-01-01

    Abstract: Information on pore geometry is very important in any study of the mechanical and physical behavior of porous materials. Unfortunately pores are not very accessible for direct measurements. Indirect methods have to be used which involve impregnation (sorption) experiments from which...... in the subject considered this software is available on request to the author. Keywords: Porous materials, moisture, adsorption, desorption, BET-parameters....

  2. Aerosol dynamics in porous media

    NARCIS (Netherlands)

    Ghazaryan, Lilya

    2014-01-01

    In this thesis, a computational model was developed for the simulation of aerosol formation through nucleation, followed by condensation and evaporation and filtration by porous material. Understanding aerosol dynamics in porous media can help improving engineering models that are used in various in

  3. Magnetodielectric and Metalomagnetic 1D Photonic Crystals Homogenization: ε-μ Local Behavior

    Directory of Open Access Journals (Sweden)

    J. I. Rodríguez Mora

    2016-01-01

    Full Text Available A theory for calculating the effective optic response of photonic crystals with metallic and magnetic inclusions is reported, for the case when the wavelength of the electromagnetic fields is much larger than the lattice constant. The theory is valid for any type of Bravais lattice and arbitrary form of inclusions in the unitary cell. An equations system is obtained for macroscopic magnetic field and magnetic induction components expanding microscopic electromagnetic fields in Bloch waves. Permittivity and permeability effective tensors are obtained comparing the equations system with an anisotropic nonlocal homogenous medium. In comparison with other homogenization theories, this work uses only two tensors: nonlocal permeability and permittivity. The proposal showed here is based on the use of permeability equations, which are exact and very simple. We present the explicit form of these tensors in the case of binary 1D photonic crystals.

  4. Computation of streaming potential in porous media: Modified permeability tensor

    Science.gov (United States)

    Bandopadhyay, Aditya; DasGupta, Debabrata; Mitra, Sushanta K.; Chakraborty, Suman

    2015-11-01

    We quantify the pressure-driven electrokinetic transport of electrolytes in porous media through a matched asymptotic expansion based method to obtain a homogenized description of the upscaled transport. The pressure driven flow of aqueous electrolytes over charged surfaces leads to the generation of an induced electric potential, commonly termed as the streaming potential. We derive an expression for the modified permeability tensor, K↔eff, which is analogous to the Darcy permeability tensor with due accounting for the induced streaming potential. The porous media herein are modeled as spatially periodic. The modified permeability tensor is obtained for both topographically simple and complex domains by enforcing a zero net global current. Towards resolving the complicated details of the porous medium in a computationally efficient framework, the domain identification and reconstruction of the geometries are performed using adaptive quadtree (in 2D) and octree (in 3D) algorithms, which allows one to resolve the solid-liquid interface as per the desired level of resolution. We discuss the influence of the induced streaming potential on the modification of the Darcy law in connection to transport processes through porous plugs, clays and soils by considering a case-study on Berea sandstone.

  5. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model.

    Science.gov (United States)

    Huang, Jian-Wen; Lv, Xiang-Guo; Li, Zhe; Song, Lu-Jie; Feng, Chao; Xie, Min-Kai; Li, Chao; Li, Hong-Bin; Wang, Ji-Hong; Zhu, Wei-Dong; Chen, Shi-Yan; Wang, Hua-Ping; Xu, Yue-Min

    2015-09-11

    The goal of this study was to evaluate the effects of urethral reconstruction with a three-dimensional (3D) porous bacterial cellulose (BC) scaffold seeded with lingual keratinocytes in a rabbit model. A novel 3D porous BC scaffold was prepared by gelatin sponge interfering in the BC fermentation process. Rabbit lingual keratinocytes were isolated, expanded, and seeded onto 3D porous BC. BC alone (group 1, N  =  10), 3D porous BC alone (group 2, N  =  10), and 3D porous BC seeded with lingual keratinocytes (group 3, N  =  10) were used to repair rabbit ventral urethral defects (2.0   ×   0.8 cm). Scanning electron microscopy revealed that BC consisted of a compact laminate while 3D porous BC was composed of a porous sheet buttressed by a dense outer layer. The average pore diameter and porosity of the 3D porous BC were 4.23   ±   1.14 μm and 67.00   ±   6.80%, respectively. At 3 months postoperatively, macroscopic examinations and retrograde urethrograms of urethras revealed that all urethras maintained wide calibers in group 3. Strictures were found in all rabbits in groups 1 and 2. Histologically, at 1 month postoperatively, intact epithelium occurred in group 3, and discontinued epithelium was found in groups 1 and 2. However, groups 2 and 3 exhibited similar epithelial regeneration, which was superior to that of group 1 at 3 months (p  3D porous BC seeded with lingual keratinocytes enhanced urethral tissue regeneration. 3D porous BC could potentially be used as an optimized scaffold for urethral reconstruction.

  6. Self-consolidating concrete homogeneity

    Directory of Open Access Journals (Sweden)

    Jarque, J. C.

    2007-08-01

    Full Text Available Concrete instability may lead to the non-uniform distribution of its properties. The homogeneity of self-consolidating concrete in vertically cast members was therefore explored in this study, analyzing both resistance to segregation and pore structure uniformity. To this end, two series of concretes were prepared, self-consolidating and traditional vibrated materials, with different w/c ratios and types of cement. The results showed that selfconsolidating concretes exhibit high resistance to segregation, albeit slightly lower than found in the traditional mixtures. The pore structure in the former, however, tended to be slightly more uniform, probably as a result of less intense bleeding. Such concretes are also characterized by greater bulk density, lower porosity and smaller mean pore size, which translates into a higher resistance to pressurized water. For pore diameters of over about 0.5 μm, however, the pore size distribution was found to be similar to the distribution in traditional concretes, with similar absorption rates.En este trabajo se estudia la homogeneidad de los hormigones autocompactantes en piezas hormigonadas verticalmente, determinando su resistencia a la segregación y la uniformidad de su estructura porosa, dado que la pérdida de estabilidad de una mezcla puede conducir a una distribución no uniforme de sus propiedades. Para ello se han fabricado dos tipos de hormigones, uno autocompactante y otro tradicional vibrado, con diferentes relaciones a/c y distintos tipos de cemento. Los resultados ponen de manifiesto que los hormigones autocompactantes presentan una buena resistencia a la segregación, aunque algo menor que la registrada en los hormigones tradicionales. A pesar de ello, su estructura porosa tiende a ser ligeramente más uniforme, debido probablemente a un menor sangrado. Asimismo, presentan una mayor densidad aparente, una menor porosidad y un menor tamaño medio de poro, lo que les confiere mejores

  7. Distinct molecular features of different macroscopic subtypes of colorectal neoplasms.

    Directory of Open Access Journals (Sweden)

    Kenichi Konda

    Full Text Available BACKGROUND: Colorectal adenoma develops into cancer with the accumulation of genetic and epigenetic changes. We studied the underlying molecular and clinicopathological features to better understand the heterogeneity of colorectal neoplasms (CRNs. METHODS: We evaluated both genetic (mutations of KRAS, BRAF, TP53, and PIK3CA, and microsatellite instability [MSI] and epigenetic (methylation status of nine genes or sequences, including the CpG island methylator phenotype [CIMP] markers alterations in 158 CRNs including 56 polypoid neoplasms (PNs, 25 granular type laterally spreading tumors (LST-Gs, 48 non-granular type LSTs (LST-NGs, 19 depressed neoplasms (DNs and 10 small flat-elevated neoplasms (S-FNs on the basis of macroscopic appearance. RESULTS: S-FNs showed few molecular changes except SFRP1 methylation. Significant differences in the frequency of KRAS mutations were observed among subtypes (68% for LST-Gs, 36% for PNs, 16% for DNs and 6% for LST-NGs (P<0.001. By contrast, the frequency of TP53 mutation was higher in DNs than PNs or LST-Gs (32% vs. 5% or 0%, respectively (P<0.007. We also observed significant differences in the frequency of CIMP between LST-Gs and LST-NGs or PNs (32% vs. 6% or 5%, respectively (P<0.005. Moreover, the methylation level of LINE-1 was significantly lower in DNs or LST-Gs than in PNs (58.3% or 60.5% vs. 63.2%, P<0.05. PIK3CA mutations were detected only in LSTs. Finally, multivariate analyses showed that macroscopic morphologies were significantly associated with an increased risk of molecular changes (PN or LST-G for KRAS mutation, odds ratio [OR] 9.11; LST-NG or DN for TP53 mutation, OR 5.30; LST-G for PIK3CA mutation, OR 26.53; LST-G or DN for LINE-1 hypomethylation, OR 3.41. CONCLUSION: We demonstrated that CRNs could be classified into five macroscopic subtypes according to clinicopathological and molecular differences, suggesting that different mechanisms are involved in the pathogenesis of colorectal

  8. A framework for computing effective boundary conditions at the interface between free fluid and a porous medium

    CERN Document Server

    Lācis, Uǧis

    2016-01-01

    Interfacial boundary conditions determined from empirical or ad-hoc models remain the standard approach to model fluid flows over porous media, even in situations where the topology of the porous medium is known. We propose a non-empirical and accurate method to compute the effective boundary conditions at the interface between a porous surface and an overlying flow. Using multiscale expansion (homogenization) approach, we derive a tensorial generalized version of the empirical condition suggested by Beavers & Joseph (1967). The components of the tensors determining the effective slip velocity at the interface are obtained by solving a set of Stokes equations in a small computational domain near the interface containing both free flow and porous medium. Using the lid-driven cavity flow with a porous bed, we demonstrate that the derived boundary condition is accurate and robust by comparing an effective model to direct numerical simulations. Finally, we provide an open source code that solves the microscal...

  9. Hamiltonian of a homogeneous two-component plasma.

    Science.gov (United States)

    Essén, Hanno; Nordmark, A

    2004-03-01

    The Hamiltonian of one- and two-component plasmas is calculated in the negligible radiation Darwin approximation. Since the Hamiltonian is the phase space energy of the system its form indicates, according to statistical mechanics, the nature of the thermal equilibrium that plasmas strive to attain. The main issue is the length scale of the magnetic interaction energy. In the past a screening length lambda=1/square root of r(e)n], with n number density and r(e) classical electron radius, has been derived. We address the question whether the corresponding longer screening range obtained from the classical proton radius is physically relevant and the answer is affirmative. Starting from the Darwin Lagrangian it is nontrivial to find the Darwin Hamiltonian of a macroscopic system. For a homogeneous system we resolve the difficulty by temporarily approximating the particle number density by a smooth constant density. This leads to Yukawa-type screened vector potential. The nontrivial problem of finding the corresponding, divergence free, Coulomb gauge version is solved.

  10. Application of lattice Boltzmann method to a micro-scale flow simulation in the porous electrode of a PEM fuel cell

    Science.gov (United States)

    Park, J.; Matsubara, M.; Li, X.

    The electrode of a PEM fuel cell is a porous medium generally made of carbon cloth or paper. Such a porous electrode has been widely modeled as a homogeneous porous medium with a constant permeability in the literature of PEM fuel cell. In fact, most of gas diffusion media are not homogeneous having non-isotropic permeability. In case of carbon cloth, the porous structure consists of carbon fiber tows, the bundles of carbon fiber, and void spaces among tows. The combinational effect of the void space and tow permeability results in the effective permeability of the porous electrode. In this work, the lattice Boltzmann method is applied to the simulation of the flow in the electrode of a PEM fuel cell. The electrode is modeled as void space and porous region which has certain permeability and the Stokes and Brinkman equations are solved in the flow field using the lattice Boltzmann model. The effective permeability of the porous medium is calculated and compared to an analytical calculation showing a good agreement. It has been shown that the permeability of porous medium is strongly dependant on the fiber tow orientation in three-dimensional simulations. The lattice Boltzmann method is an efficient and effective numerical scheme to analyze the flow in a complicated geometry such as the porous medium.

  11. CLASSIFICATION OF CUBIC PARAMETERIZED HOMOGENEOUS VECTOR FIELDS

    Institute of Scientific and Technical Information of China (English)

    Karnal H.Yasir; TANG Yun

    2002-01-01

    In this paper the cubic homogeneous parameterized vector fields are studied.The classification of the phase portrait near the critical point is presented. This classification is an extension of the result given by Takens to the cubic homogeneous parameterized vector fields with six parameters.

  12. CLASSIFICATION OF CUBIC PARAMETERIZED HOMOGENEOUS VECTOR FIELDS

    Institute of Scientific and Technical Information of China (English)

    KamalH.Yasir; TNAGYun

    2002-01-01

    In this paper the cubic homogeneous parameterized vector fields are studied.The classification of the phase portrait near the critical point is presented.This classification is an extension of the result given by takens to the cubic homogeneous parameterized vector fields with six parameters.

  13. Investigations into homogenization of electromagnetic metamaterials

    DEFF Research Database (Denmark)

    Clausen, Niels Christian Jerichau

    This dissertation encompasses homogenization methods, with a special interest into their applications to metamaterial homogenization. The first method studied is the Floquet-Bloch method, that is based on the assumption of a material being infinite periodic. Its field can then be expanded in term...

  14. The Case Against Homogeneous Sets in Mathematics

    Science.gov (United States)

    Jackman, M. K.

    1973-01-01

    A point-by-point criticism is made of F. H. Flynn's article, The Case for Homogeneous Sets in Mathematics'' (Mathematics in School, Volume 1 Number 2, 1972) in an attempt to show that the arguments used in trying to justify homogeneous grouping in mathematics are invalid. (Editor/DT)

  15. The homogeneous geometries of real hyperbolic space

    DEFF Research Database (Denmark)

    Castrillón López, Marco; Gadea, Pedro Martínez; Swann, Andrew Francis

    We describe the holonomy algebras of all canonical connections of homogeneous structures on real hyperbolic spaces in all dimensions. The structural results obtained then lead to a determination of the types, in the sense of Tricerri and Vanhecke, of the corresponding homogeneous tensors. We use ...

  16. DETERMINISTIC HOMOGENIZATION OF QUASILINEAR DAMPED HYPERBOLIC EQUATIONS

    Institute of Scientific and Technical Information of China (English)

    Gabriel Nguetseng; Hubert Nnang; Nils Svanstedt

    2011-01-01

    Deterministic homogenization is studied for quasilinear monotone hyperbolic problems with a linear damping term.It is shown by the sigma-convergence method that the sequence of solutions to a class of multi-scale highly oscillatory hyperbolic problems converges to the solution to a homogenized quasilinear hyperbolic problem.

  17. Finalization report: homogeneous PVM/PARIX

    NARCIS (Netherlands)

    B.J. Overeinder; P.M.A. Sloot; J. Petersen

    1994-01-01

    This document reports on the design and implementation considerations of PVM/PARIX, homogeneous version 1.0. This version is for use with PARIX 1.2 only. Further, it contains information how to use Homogeneous PVM/PARIX and the appendix contains the installation notes.

  18. Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells

    DEFF Research Database (Denmark)

    Olesen, Anders Christian

    An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...... the present fundamental understanding of direct methanol fuel cell operation by developing a three-dimensional, two-phase, multi-component, non-isotherm mathematical model including detailed non-ideal thermodynamics, non-equilibrium phase change and non-equilibrium sorption-desorption of methanol and water...

  19. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  20. Self-feeding turbulent magnetic reconnection on macroscopic scales.

    Science.gov (United States)

    Lapenta, Giovanni

    2008-06-13

    Within a MHD approach we find magnetic reconnection to progress in two entirely different ways. The first is well known: the laminar Sweet-Parker process. But a second, completely different and chaotic reconnection process is possible. This regime has properties of immediate practical relevance: (i) it is much faster, developing on scales of the order of the Alfvén time, and (ii) the areas of reconnection become distributed chaotically over a macroscopic region. The onset of the faster process is the formation of closed-circulation patterns where the jets going out of the reconnection regions turn around and force their way back in, carrying along copious amounts of magnetic flux.

  1. Room Temperature Experiments with a Macroscopic Sapphire Mechanical Oscillator

    Science.gov (United States)

    Bourhill, Jeremy; Ivanov, Eugene; Tobar, Micahel

    2015-03-01

    We present initial results from a number of experiments conducted on a 0.53 kg sapphire ``dumbbell'' crystal. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects frequency modulate resonant microwave whispering gallery modes, simultaneously excited within the crystal. A novel microwave readout system is described allowing extremely low noise measurements of this frequency modulation with a phase noise floor of -160 dBc/Hz at 100 kHz, near our modes of interest. Fine-tuning of the crystal's suspension have allowed for the optimisation of mechanical Q-factors in preparation for cryogenic experiments, with a value of 8 x 107 achieved so far. Finally, results are presented that demonstrate the excitation of mechanical modes via radiation pressure force. These are all important steps towards the overall goal of the experiment; to cool a macroscopic device to the quantum ground state.

  2. Macroscopic electromagnetic response of metamaterials with toroidal resonances

    CERN Document Server

    Savinov, V; Zheludev, N I

    2013-01-01

    Toroidal dipole, first described by Ia. B. Zeldovich [Sov. Phys. JETP 33, 1184 (1957)], is a distinct electromagnetic excitation that differs both from the electric and the magnetic dipoles. It has a number of intriguing properties: static toroidal nuclear dipole is responsible for parity violation in atomic spectra; interactions between static toroidal dipole and oscillating magnetic dipole are claimed to violate Newton's Third Law while non-stationary charge-current configurations involving toroidal multipoles have been predicted to produce vector potential in the absence of electromagnetic fields. Existence of the toroidal response in metamaterials was recently demonstrated and is now a growing field of research. However, no direct analytical link has yet been established between the transmission and reflection of macroscopic electromagnetic media and toroidal dipole excitations. To address this essential gap in electromagnetic theory we have developed an analytical approach linking microscopic and macrosc...

  3. Experiments testing macroscopic quantum superpositions must be slow

    CERN Document Server

    Mari, Andrea; Giovannetti, Vittorio

    2015-01-01

    We consider a thought experiment where the preparation of a macroscopically massive or charged particle in a quantum superposition and the associated dynamics of a distant test particle apparently allow for superluminal communication. We give a solution to the paradox which is based on the following fundamental principle: any local experiment, discriminating a coherent superposition from an incoherent statistical mixture, necessarily requires a minimum time proportional to the mass (or charge) of the system. For a charged particle, we consider two examples of such experiments, and show that they are both consistent with the previous limitation. In the first, the measurement requires to accelerate the charge, that can entangle with the emitted photons. In the second, the limitation can be ascribed to the quantum vacuum fluctuations of the electromagnetic field. On the other hand, when applied to massive particles our result provides an indirect evidence for the existence of gravitational vacuum fluctuations an...

  4. Macroscopic heat transport equations and heat waves in nonequilibrium states

    Science.gov (United States)

    Guo, Yangyu; Jou, David; Wang, Moran

    2017-03-01

    Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

  5. A macroscopic model of traffic jams in axons.

    Science.gov (United States)

    Kuznetsov, A V; Avramenko, A A

    2009-04-01

    The purpose of this paper is to develop a minimal macroscopic model capable of explaining the formation of traffic jams in fast axonal transport. The model accounts for the decrease of the number density of positively (and negatively) oriented microtubules near the location of the traffic jam due to formation of microtubule swirls; the model also accounts for the reduction of the effective velocity of organelle transport in the traffic jam region due to organelles falling off microtubule tracks more often in the swirl region. The model is based on molecular-motor-assisted transport equations and the hydrodynamic model of traffic jams in highway traffic. Parametric analyses of the model's predictions for various values of viscosity of the traffic flow, variance of the velocity distribution, diffusivity of microtubule-bound and free organelles, rate constants for binding to and detachment from microtubules, relaxation time, and average motor velocities of the retrograde and anterograde transport, are carried out.

  6. Effect of inhibitors on macroscopical oxidation kinetics of calcium sulfite

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi; WANG Li-dong; WANG Xiao-ming; LI Qiang-wei; XU Pei-yao

    2005-01-01

    In the presence of inhibitors, the macroscopical oxidation kinetics of calcium sulfite, the main byproduct in wet limestone scrubbing, was studied for the first time by adding different inhibitors and varying pH, concentration of calcium sulfite, oxygen partial pressure, concentration of inhibitors and temperature. The mathematical model about the general oxidation reaction was established,which was controlled by three steps involving dissolution of calcium sulfite, mass transfer of oxygen and chemical reaction in the solution.It was concluded that the general reaction was controlled by mass transfer of oxygen under uncatalyzed conditions, while it was controlled by dissolution of calcium sulfite after adding three kinds of inhibitors. Thus, the theory was provided for investigating the mechanism and oxidation kinetics of sulfite. The beneficial references were also supplied for design of oxidation technics in the wet limestone scrubbing.

  7. Elastic Enhancement Factor: from Mesoscopic Systems to Macroscopic Analogous Devices

    CERN Document Server

    Sokolov, Valentin V

    2014-01-01

    Excess of probabilities of the elastic processes over the inelastic ones is a common feature of the resonance phenomena, described in the framework of the random matrix theory. This phenomenon is quantitatively characterized by the elastic enhancement factor $F^{(\\beta)}$ that is a typical ratio of elastic and inelastic cross sections. Being measured experimentally, this quantity can supply us with information on the character of dynamics of the intermediate complicated open system. We discuss properties of the enhancement factor in a wide scope from mesoscopoic systems to macroscopic analogous devices and demonstrate essential qualitative distinction between the elastic enhancement factor's peculiarities in these two cases. Complete analytical solution is found for the case of systems without time-reversal symmetry and only a few open equivalent scattering channels.

  8. Macroscopic and direct light propulsion of bulk graphene material

    CERN Document Server

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  9. Macroscopic self-reorientation of interacting two-dimensional crystals.

    Science.gov (United States)

    Woods, C R; Withers, F; Zhu, M J; Cao, Y; Yu, G; Kozikov, A; Ben Shalom, M; Morozov, S V; van Wijk, M M; Fasolino, A; Katsnelson, M I; Watanabe, K; Taniguchi, T; Geim, A K; Mishchenko, A; Novoselov, K S

    2016-03-10

    Microelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters. Here we demonstrate that, for the system of graphene on hexagonal boron nitride, the interplay between the van der Waals and elastic energies results in graphene mechanically self-rotating towards the hexagonal boron nitride crystallographic directions. Such rotation is macroscopic (for graphene flakes of tens of micrometres the tangential movement can be on hundreds of nanometres) and can be used for reproducible manufacturing of aligned van der Waals heterostructures.

  10. Macroscopic acousto-mechanical analogy of a microbubble

    CERN Document Server

    Chaline, Jennifer; Mehrem, Ahmed; Bouakaz, Ayache; Santos, Serge Dos; Sánchez-Morcillo, Víctor J

    2015-01-01

    Microbubbles, either in the form of free gas bubbles surrounded by a fluid or encapsulated bubbles used currently as contrast agents for medical echography, exhibit complex dynamics under specific acoustic excitations. Nonetheless, considering their micron size and the complexity of their interaction phenomenon with ultrasound waves, expensive and complex experiments and/or simulations are required for their analysis. The behavior of a microbubble along its equator can be linked to a system of coupled oscillators. In this study, the oscillatory behavior of a microbubble has been investigated through an acousto-mechanical analogy based on a ring-shaped chain of coupled pendula. Observation of parametric vibration modes of the pendula ring excited at frequencies between $1$ and $5$ Hz is presented. Simulations have been carried out and show mode mixing phenomena. The relevance of the analogy between a microbubble and the macroscopic acousto-mechanical setup is discussed and suggested as an alternative way to in...

  11. Combined macroscopic and microscopic detection of viral genes in tissues

    Energy Technology Data Exchange (ETDEWEB)

    Haase, A.T.; Gantz, D.; Blum, H.; Stowring, L.; Ventura, P.; Geballe, A.; Moyer, B.; Brahic, M.

    1985-01-15

    A hybridization technique has been devised for detecting and quantitating viral genes in tissues that combines macroscopic and microscopic analyses in the same section. The method is based on dual labeling virus-specific probes with /sup 125/I and /sup 35/S to generate signals that can be detected both with X-ray films and nuclear track emulsions. The regions of increased hybridization evident in the X-ray film serve as a guide to the portion of the section that warrants microscopic examination. Detection of viral RNA in tissues with Visna virus and viral DNA with hepatitis B virus are illustrated, and potential applications of this technique in virology and other disciplines are discussed.

  12. Innovating e-waste management: From macroscopic to microscopic scales.

    Science.gov (United States)

    Zeng, Xianlai; Yang, Congren; Chiang, Joseph F; Li, Jinhui

    2017-01-01

    Waste electrical and electronic equipment (WEEE or e-waste) has become a global problem, due to its potential environmental pollution and human health risk, and its containing valuable resources (e.g., metals, plastics). Recycling for e-waste will be a necessity, not only to address the shortage of mineral resources for electronics industry, but also to decline environmental pollution and human health risk. To systematically solve the e-waste problem, more attention of e-waste management should transfer from macroscopic to microscopic scales. E-waste processing technology should be significantly improved to diminish and even avoid toxic substance entering into downstream of material. The regulation or policy related to new production of hazardous substances in recycled materials should also be carried out on the agenda. All the findings can hopefully improve WEEE legislation for regulated countries and non-regulated countries.

  13. Witnessing Macroscopic Entanglement in a Staggered Magnetic Field

    CERN Document Server

    Hide, J; Son, W; Vedral, V; Hide, Jenny; Lawrie, Ian; Son, Wonmin; Vedral, Vlatko

    2007-01-01

    We investigate macroscopic entanglement in an infinite XX spin-1/2 chain with staggered magnetic field, $B_l=B+e^{-i\\pi l}b$. Using single-site entropy and by constructing an entanglement witness, we search for the existence of entanglement when the system is at absolute zero, as well as in thermal equilibrium. Although the role of the alternating magnetic field $b$ is, in general, to suppress entanglement as do $B$ and $T$, we find that when T=0, introducing $b$ allows the existence of entanglement even when the uniform magnetic field $B$ is arbitrarily large. We find that the region and the amount of entanglement in the spin chain can be enhanced by a staggered magnetic field.

  14. Microscopic and Macroscopic Simulation of Competition between Languages

    CERN Document Server

    Stauffer, D; Stauffer, Dietrich; Schulze, Christian

    2005-01-01

    The similarity of the evolution of human languages (or alphabets, bird songs, >...) to biological evolution of species is utilized to study with up to $10^9$ people the rise and fall of languages either by macroscopic differential equations similar to biological Lotka-Volterra equation, or by microscopic Monte Carlo simulations of bit-strings incorporating the birth, maturity, and death of every individual. For our bit-string model, depending on parameters either one language comprises the majority of speakers (dominance), or the population splits into many languages having in order of magnitude the same number of speakers (fragmentation); in the latter case the size distribution is log-normal, with upward deviations for small sizes, just as in reality for human languages. On a lattice two different dominating languages can coexist in neighbouring regions, without being favoured or disfavoured by different status. We deal with modifications and competition for existing languages, not with the evolution or lea...

  15. Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States

    Science.gov (United States)

    Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.

    2016-06-01

    The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.

  16. Anisotropic magnetothermopower in ferromagnetic thin films grown on macroscopic substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jayathilaka, P.B. [Department of Physical Sciences, Faculty of Applied Sciences, Rajarata University of Sri Lanka, Mihintale (Sri Lanka); Belyea, D.D. [Department of Physics, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Fawcett, T.J. [College of Engineering, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620 (United States); Miller, Casey W. [School of Chemistry and Materials Science, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623 (United States)

    2015-05-15

    We report observing the anisotropic magnetothermopower in a variety of ferromagnetic thin films grown on macroscopic substrates. These measurements were enabled by eliminating spurious signals related to the Anomalous Nernst Effect by butt-mounting the sample to the heat source and sink, and appropriate positioning of electrical contacts to avoid unwanted thermal gradients. This protocol enabled detailed measurements of the magnetothermopower in the transverse and longitudinal configurations. This may enable Spin Seebeck Effect studies in the in-plane geometry. - Highlights: • Unintentional thermal gradients along surface normal mitigated via butt-mounting. • Longitudinal/transverse magnetothermopower measured on many systems. • Anomalous Nernst Effect reduced. • Importance of magnetic anisotropy identified with angle-dependent measurements.

  17. Macroscopic quantum electrodynamics of high-Q cavities

    Energy Technology Data Exchange (ETDEWEB)

    Khanbekyan, Mikayel

    2009-10-27

    In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the

  18. Fault detection by surface seismic scanning tunneling macroscope: Field test

    KAUST Repository

    Hanafy, Sherif M.

    2014-08-05

    The seismic scanning tunneling macroscope (SSTM) is proposed for detecting the presence of near-surface impedance anomalies and faults. Results with synthetic data are consistent with theory in that scatterers closer to the surface provide brighter SSTM profiles than those that are deeper. The SSTM profiles show superresolution detection if the scatterers are in the near-field region of the recording line. The field data tests near Gulf of Aqaba, Haql, KSA clearly show the presence of the observable fault scarp, and identify the subsurface presence of the hidden faults indicated in the tomograms. Superresolution detection of the fault is achieved, even when the 35 Hz data are lowpass filtered to the 5-10 Hz band.

  19. Effects of varying interfacial surface tension on macroscopic polymer lenses

    Science.gov (United States)

    Zimmerman, Charlotte; White, Mason; Baylor, Martha-Elizabeth

    2015-09-01

    We investigate macroscopic polymer lenses (0.5- to 2.5-cm diameter) fabricated by dropping hydrophobic photocurable resin onto the surface of various hydrophilic liquid surfaces. Due to the intermolecular forces along the interface between the two liquids, a lens shape is formed. We find that we can vary the lens geometry by changing the region over which the resin is allowed to spread and the surface tension of the substrate to produce lenses with theoretically determined focal lengths ranging from 5 to 25 mm. These effects are varied by changing the container width, substrate composition, and substrate temperature. We present data for five different variants, demonstrating that we can control the lens dimensions for polymer lens applications that require high surface quality.

  20. A new approach to model the spatiotemporal development of biofilm phase in porous media.

    Science.gov (United States)

    Bozorg, Ali; Sen, Arindom; Gates, Ian D

    2011-11-01

    Bacteria can exist within biofilms that are attached to the solid matrix of a porous medium. Under certain conditions, the biomass can fully occupy the pore space leading to reduced hydraulic conductivity and mass transport. Here, by treating biofilm as a growing, high-viscosity phase, a novel macroscopic approach to model biofilm spatial expansion and its corresponding effects on porous medium hydraulic properties is presented. The separate yet coupled flow of the water and biofilm phases is handled by using relative permeability curves that allow for biofilm movement within the porous medium and bioclogging effects. Fluid flow is governed by Darcy's law and component transport is set by the convection-diffusion equation reaction terms for each component. Here, the system of governing equations is solved by using a commercial multiphase flow reservoir simulator, which is used to validate the model against published laboratory experiments. A comparison of the model and experimental observations reveal that the model provides a reasonable means to predict biomass development in the porous medium. The results reveal that coupled flow of water and movement of biofilm, as described by relative permeability curves, is complex and has a large impact on the development of biomass and consequent bioclogging in the porous medium.

  1. Homogeneity of Prototypical Attributes in Soccer Teams

    Directory of Open Access Journals (Sweden)

    Christian Zepp

    2015-09-01

    Full Text Available Research indicates that the homogeneous perception of prototypical attributes influences several intragroup processes. The aim of the present study was to describe the homogeneous perception of the prototype and to identify specific prototypical subcategories, which are perceived as homogeneous within sport teams. The sample consists of N = 20 soccer teams with a total of N = 278 athletes (age M = 23.5 years, SD = 5.0 years. The results reveal that subcategories describing the cohesiveness of the team and motivational attributes are mentioned homogeneously within sport teams. In addition, gender, identification, team size, and the championship ranking significantly correlate with the homogeneous perception of prototypical attributes. The results are discussed on the basis of theoretical and practical implications.

  2. Multilevel Monte Carlo Approaches for Numerical Homogenization

    KAUST Repository

    Efendiev, Yalchin R.

    2015-10-01

    In this article, we study the application of multilevel Monte Carlo (MLMC) approaches to numerical random homogenization. Our objective is to compute the expectation of some functionals of the homogenized coefficients, or of the homogenized solutions. This is accomplished within MLMC by considering different sizes of representative volumes (RVEs). Many inexpensive computations with the smallest RVE size are combined with fewer expensive computations performed on larger RVEs. Likewise, when it comes to homogenized solutions, different levels of coarse-grid meshes are used to solve the homogenized equation. We show that, by carefully selecting the number of realizations at each level, we can achieve a speed-up in the computations in comparison to a standard Monte Carlo method. Numerical results are presented for both one-dimensional and two-dimensional test-cases that illustrate the efficiency of the approach.

  3. Upscaling flow and transport properties in synthetic porous media

    Science.gov (United States)

    Jasinski, Lukasz; Dabrowski, Marcin

    2015-04-01

    Flow and transport through the porous media has instances in nature and industry: contaminant migration in geological formations, gas/oil extraction from proppant filled hydraulic fractures and surrounding porous matrix, underground carbon dioxide sequestration and many others. We would like to understand the behavior of propagating solute front in such medium, mainly flow preferential pathways and the solute dispersion due to the porous medium geometry. The motivation of our investigation is to find connection between the effective flow and transport properties and porous media geometry in 2D and 3D for large system sizes. The challenge is to discover a good way of upscaling flow and transport processes to obtain results comparable to these calculated on pore-scale in much faster way. We study synthetic porous media made of densely packed poly-disperse disk-or spherical-shaped grains in 2D and 3D, respectively. We use various protocols such as the random sequential addition (RSA) algorithm to generate densely packed grains. Imposed macroscopic pressure gradient invokes fluid flow through the pore space of generated porous medium samples. As the flow is considered in the low Reynolds number regime, a stationary velocity field is obtained by solving the Stokes equations by means of finite element method. Void space between the grains is accurately discretized by using body-fitting triangular or tetrahedral mesh. Finally, pure advection of a front carried by the velocity field is studied. Periodicity in all directions is applied to microstructure, flow and transport processes. Effective permeability of the media can be calculated by integrating the velocity field on cross sections, whereas effective dispersion coefficient is deduced by application of centered moment methods on the concentration field of transported solute in time. The effective parameters are investigated as a function of geometrical parameters of the media, such as porosity, specific surface area

  4. Spatially Resolved Monitoring of Drying of Hierarchical Porous Organic Networks.

    Science.gov (United States)

    Velasco, Manuel Isaac; Silletta, Emilia V; Gomez, Cesar G; Strumia, Miriam C; Stapf, Siegfried; Monti, Gustavo Alberto; Mattea, Carlos; Acosta, Rodolfo H

    2016-03-01

    Evaporation kinetics of water confined in hierarchal polymeric porous media is studied by low field nuclear magnetic resonance (NMR). Systems synthesized with various degrees of cross-linker density render networks with similar pore sizes but different response when soaked with water. Polymeric networks with low percentage of cross-linker can undergo swelling, which affects the porosity as well as the drying kinetics. The drying process is monitored macroscopically by single-sided NMR, with spatial resolution of 100 μm, while microscopic information is obtained by measurements of spin-spin relaxation times (T2). Transition from a funicular to a pendular regime, where hydraulic connectivity is lost and the capillary flow cannot compensate for the surface evaporation, can be observed from inspection of the water content in different sample layers. Relaxation measurements indicate that even when the larger pore structures are depleted of water, capillary flow occurs through smaller voids.

  5. Biphasic flow: structure and upscaling, consequences on macroscopic transport properties

    CERN Document Server

    Toussaint, Renaud; Méheust, Yves; Løvoll, Grunde; Jankov, Mihailo; Schäfer, Gerhard; Schmittbuhl, Jean

    2012-01-01

    In disordered porous media, two-phase flow of immiscible fluids (biphasic flow) is organized in patterns that sometimes exhibit fractal geometries over a range of length scales, depending on the capillary, gravitational and viscous forces at play. These forces, as well as the boundary conditions, also determine whether the flow leads to the appearance of fingering pathways, i.e., unstable flow, or not. We present here a short review of these aspects, focusing on drainage and summarizing when these flows are expected to be stable or not, what fractal dimensions can be expected, and in which range of scales. We base our review on experimental studies performed in two-dimensional Hele-Shaw cells, or addressing three dimensional porous media by use of several imaging techniques. We first present configurations in which solely capillary forces and gravity play a role. Next, we review configurations in which capillarity and viscosity are the main forces at play. Eventually, we examine how the microscopic geometry o...

  6. Multiphase flow in porous media using CFD

    DEFF Research Database (Denmark)

    Hemmingsen, Casper Schytte; Walther, Jens Honore

    We present results from a new Navier-Stokes model for multiphase flow in porous media implemented in Ansys Fluent 16.2 [1]. The model includes the Darcy-Forchheimer source terms in the momentum equations and proper account for relative permeability and capillary pressure in the porous media...... to model both the non-porous and porous media using the same formulation....

  7. A 1-min method for homogenous cell seeding in porous scaffolds

    NARCIS (Netherlands)

    Tan, Lijun; Ren, Yijin; Kuijer, Roel

    2012-01-01

    The aim of this study was to develop and evaluate a simple and rapid cell seeding procedure for both calcium phosphate ceramic scaffolds and polymer scaffolds. Poly(D,L-lactic acid) and beta-tri-calcium phosphate scaffolds were seeded with MC3T3-E1 cells in a syringe. Scaffolds were put in the syrin

  8. Superhydrophobic Porous Silicon Surfaces

    Directory of Open Access Journals (Sweden)

    Paolo NENZI

    2011-12-01

    Full Text Available In this paper, we present an inexpensive technique to produce superhydrophobic surfaces from porous silicon. Superhydrophobic surfaces are a key technology for their ability to reduce friction losses in microchannels and their self cleaning properties. The morphology of a p-type silicon wafer is modified by a electrochemical wet etch to produce pores with controlled size and distribution and coated with a silane hydrophobic layer. Surface morphology is characterized by means of scanning electron microscope images. Large contact angles are observed on such surfaces and the results are compared with classical wetting models (Cassie and Wenzel suggesting a mixed Wenzel-Cassie behavior. The presented technique represents a cost-effective means for friction reduction in microfluidic applications, such as lab-on-a-chip.

  9. Filtration in Porous Media

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied...... to understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.The elliptic equation with distributed filtration coefficients may be applied to model non-Fickian transport...... and hyperexponential deposition. The filtration model accounting for the migration of surface associated particles may be applied for non-monotonic deposition....

  10. Convection in porous media

    CERN Document Server

    Nield, Donald A

    1992-01-01

    This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches

  11. Long-term creep properties of cementitious materials: Comparing microindentation testing with macroscopic uniaxial compressive testing

    OpenAIRE

    Zhang, Qing; Le Roy, Robert; VANDAMME, Mathieu; ZUBER, Bruno

    2014-01-01

    This study is dedicated to comparing minutes-long microindentation creep experiments on cement paste with years-long macroscopic creep experiments on concrete and months-long macroscopic creep experiments on cement paste. For all experiments, after a transient period the creep function was well captured by a logarithmic function of time, the amplitude of which is governed by a so-called creep modulus. The non-logarithmic transient periods lasted for days at the macroscopic scale, but only for...

  12. Porous media geometry and transports

    CERN Document Server

    Adler, Pierre

    1992-01-01

    The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr

  13. Regeneratively Cooled Porous Media Jacket

    Science.gov (United States)

    Mungas, Greg (Inventor); Fisher, David J. (Inventor); London, Adam Pollok (Inventor); Fryer, Jack Merrill (Inventor)

    2013-01-01

    The fluid and heat transfer theory for regenerative cooling of a rocket combustion chamber with a porous media coolant jacket is presented. This model is used to design a regeneratively cooled rocket or other high temperature engine cooling jacket. Cooling jackets comprising impermeable inner and outer walls, and porous media channels are disclosed. Also disclosed are porous media coolant jackets with additional structures designed to transfer heat directly from the inner wall to the outer wall, and structures designed to direct movement of the coolant fluid from the inner wall to the outer wall. Methods of making such jackets are also disclosed.

  14. Homogenization for rigid suspensions with random velocity-dependent interfacial forces

    KAUST Repository

    Gorb, Yuliya

    2014-12-01

    We study suspensions of solid particles in a viscous incompressible fluid in the presence of random velocity-dependent interfacial forces. The flow at a small Reynolds number is modeled by the Stokes equations, coupled with the motion of rigid particles arranged in a periodic array. The objective is to perform homogenization for the given suspension and obtain an equivalent description of a homogeneous (effective) medium, the macroscopic effect of the interfacial forces and the effective viscosity are determined using the analysis on a periodicity cell. In particular, the solutions uωε to a family of problems corresponding to the size of microstructure ε and describing suspensions of rigid particles with random surface forces imposed on the interface, converge H1-weakly as ε→0 a.s. to a solution of a Stokes homogenized problem, with velocity dependent body forces. A corrector to a homogenized solution that yields a strong H1-convergence is also determined. The main technical construction is built upon the Γ-convergence theory. © 2014 Elsevier Inc.

  15. On porous-elastic system with localized damping

    Science.gov (United States)

    Santos, M. L.; Almeida Júnior, D. S.

    2016-06-01

    In this article, we are considering the one-dimensional equations of an homogeneous and isotropic porous elastic solid, where the localized damping involves the sum of displacement velocity of a solid elastic material and the volume fraction velocity. First we show, using a result due to Benchimol (SIAM J Control Optim 16:373-379, 1978), that the semigroup associated with the system is strongly stable if and only if the boundary of the support of feedback control intersects that of the interval under consideration. Then we use the frequency domain method combined with careful inequalities obtained using multiplicative techniques to prove that the semigroup under consideration is exponentially stable.

  16. Porous metal-organic frameworks for heterogeneous biomimetic catalysis.

    Science.gov (United States)

    Zhao, Min; Ou, Sha; Wu, Chuan-De

    2014-04-15

    Metalloporphyrins are the active sites in monooxygenases that oxidize a variety of substrates efficiently and under mild conditions. Researchers have developed artificial metalloporphyrins, but these structures have had limited catalytic applications. Homogeneous artificial metalloporphyrins can undergo catalytic deactivation via suicidal self-oxidation, which lowers their catalytic activity and sustainability relative to their counterparts in Nature. Heme molecules in protein scaffolds can maintain high efficiency over numerous catalytic cycles. Therefore, we wondered if immobilizing metalloporphyrin moieties within porous metal-organic frameworks (MOFs) could stabilize these structures and facilitate the molecular recognition of substrates and produce highly efficient biomimetic catalysis. In this Account, we describe our research to develop multifunctional porphyrinic frameworks as highly efficient heterogeneous biomimetic catalysts. Our studies indicate that porous porphyrinic frameworks provide an excellent platform for mimicking the activity of biocatalysts and developing new heterogeneous catalysts that effect new chemical transformations under mild conditions. The porous structures and framework topologies of the porphyrinic frameworks depend on the configurations, coordination donors, and porphyrin metal ions of the metalloporphyrin moieties. To improve the activity of porous porphyrinic frameworks, we have developed a two-step synthesis that introduces the functional polyoxometalates (POMs) into POM-porphyrin hybrid materials. To tune the pore structures and the catalytic properties of porphyrinic frameworks, we have designed metalloporphyrin M-H8OCPP ligands with four m-benzenedicarboxylate moieties, and introduced the secondary auxiliary ligands. The porphyrin metal ions and the secondary functional moieties that are incorporated into porous metal-organic frameworks greatly influence the catalytic properties and activities of porphyrinic frameworks in

  17. Deforestation homogenizes tropical parasitoid-host networks.

    Science.gov (United States)

    Laliberté, Etienne; Tylianakis, Jason M

    2010-06-01

    Human activities drive biotic homogenization (loss of regional diversity) of many taxa. However, whether species interaction networks (e.g., food webs) can also become homogenized remains largely unexplored. Using 48 quantitative parasitoid-host networks replicated through space and time across five tropical habitats, we show that deforestation greatly homogenized network structure at a regional level, such that interaction composition became more similar across rice and pasture sites compared with forested habitats. This was not simply caused by altered consumer and resource community composition, but was associated with altered consumer foraging success, such that parasitoids were more likely to locate their hosts in deforested habitats. Furthermore, deforestation indirectly homogenized networks in time through altered mean consumer and prey body size, which decreased in deforested habitats. Similar patterns were obtained with binary networks, suggesting that interaction (link) presence-absence data may be sufficient to detect network homogenization effects. Our results show that tropical agroforestry systems can support regionally diverse parasitoid-host networks, but that removal of canopy cover greatly homogenizes the structure of these networks in space, and to a lesser degree in time. Spatiotemporal homogenization of interaction networks may alter coevolutionary outcomes and reduce ecological resilience at regional scales, but may not necessarily be predictable from community changes observed within individual trophic levels.

  18. String pair production in non homogeneous backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Bolognesi, S. [Department of Physics “E. Fermi” University of Pisa, and INFN - Sezione di Pisa,Largo Pontecorvo, 3, Ed. C, 56127 Pisa (Italy); Rabinovici, E. [Racah Institute of Physics, The Hebrew University of Jerusalem,91904 Jerusalem (Israel); Tallarita, G. [Departamento de Ciencias, Facultad de Artes Liberales,Universidad Adolfo Ibáñez, Santiago 7941169 (Chile)

    2016-04-28

    We consider string pair production in non homogeneous electric backgrounds. We study several particular configurations which can be addressed with the Euclidean world-sheet instanton technique, the analogue of the world-line instanton for particles. In the first case the string is suspended between two D-branes in flat space-time, in the second case the string lives in AdS and terminates on one D-brane (this realizes the holographic Schwinger effect). In some regions of parameter space the result is well approximated by the known analytical formulas, either the particle pair production in non-homogeneous background or the string pair production in homogeneous background. In other cases we see effects which are intrinsically stringy and related to the non-homogeneity of the background. The pair production is enhanced already for particles in time dependent electric field backgrounds. The string nature enhances this even further. For spacial varying electrical background fields the string pair production is less suppressed than the rate of particle pair production. We discuss in some detail how the critical field is affected by the non-homogeneity, for both time and space dependent electric field backgrouds. We also comment on what could be an interesting new prediction for the small field limit. The third case we consider is pair production in holographic confining backgrounds with homogeneous and non-homogeneous fields.

  19. On the stress-free lattice expansion of porous cordierite

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Giovanni, E-mail: brunog@corning.com [Corning SAS, CS and S, CETC, F-77210 Avon (France); Efremov, Alexander M. [Corning Inc., Modeling and Simulation, CSC, St Petersburg, 194021 (Russian Federation); Clausen, Bjorn [Los Alamos National Laboratory, LANSCE, Los Alamos, NM 87545 (United States); Balagurov, Anatoly M.; Simkin, Valeriy N. [FLNP, JINR, Dubna, 141980 (Russian Federation); Wheaton, Bryan R.; Webb, James E. [Corning Inc., CS and S, SP, Corning, NY 14830 (United States); Brown, Donald W. [Los Alamos National Laboratory, LANSCE, Los Alamos, NM 87545 (United States)

    2010-04-15

    An extensive investigation of the lattice expansion (up to 1200 deg. C) of porous synthetic cordierite (obtained by firing a mixture of talc, clay, alumina and silica) was carried out using time-of-flight neutron diffraction at LANSCE, Los Alamos, NM, USA and FNLP, Dubna, Russia. An extruded rod and several powders, with different particle size (dispersity), were studied, with the aim of monitoring the variation of the (lattice) micro-strain as a function of temperature and its influence on the microscopic and macroscopic thermal expansion. Results show a different expansion of the a- and b-axes of the orthorhombic cell (in the rod above 800 deg. C). While the finest powder seems to contract more along the c-axis, thus hinting at the presence of smaller stress, the integral peak width increases as a function of temperature in the intermediate range (300-700 deg. C). This could be explained by the integrity factor modeling in terms of micro-cracking. In polycrystalline cordierite, the model implies tension along the a- and b-axes (positive thermal expansion) accompanied by compression along the c-axis (negative thermal expansion) and a stress release upon cooling, via a thermal micro-cracking mechanism. The calculations of the cordierite macroscopic thermal expansion having as input crystal axial expansions assumed to be stress-free allowed us to conclude that even a fine powder (5 {mu}m particle size) cannot be considered completely stress-free. This conclusion is supported by microstructural observations.

  20. Benchmarking homogenization algorithms for monthly data

    Directory of Open Access Journals (Sweden)

    V. K. C. Venema

    2012-01-01

    Full Text Available The COST (European Cooperation in Science and Technology Action ES0601: advances in homogenization methods of climate series: an integrated approach (HOME has executed a blind intercomparison and validation study for monthly homogenization algorithms. Time series of monthly temperature and precipitation were evaluated because of their importance for climate studies and because they represent two important types of statistics (additive and multiplicative. The algorithms were validated against a realistic benchmark dataset. The benchmark contains real inhomogeneous data as well as simulated data with inserted inhomogeneities. Random independent break-type inhomogeneities with normally distributed breakpoint sizes were added to the simulated datasets. To approximate real world conditions, breaks were introduced that occur simultaneously in multiple station series within a simulated network of station data. The simulated time series also contained outliers, missing data periods and local station trends. Further, a stochastic nonlinear global (network-wide trend was added.

    Participants provided 25 separate homogenized contributions as part of the blind study. After the deadline at which details of the imposed inhomogeneities were revealed, 22 additional solutions were submitted. These homogenized datasets were assessed by a number of performance metrics including (i the centered root mean square error relative to the true homogeneous value at various averaging scales, (ii the error in linear trend estimates and (iii traditional contingency skill scores. The metrics were computed both using the individual station series as well as the network average regional series. The performance of the contributions depends significantly on the error metric considered. Contingency scores by themselves are not very informative. Although relative homogenization algorithms typically improve the homogeneity of temperature data, only the best ones improve

  1. Gelatin functionalised porous titanium alloy implants for orthopaedic applications

    Energy Technology Data Exchange (ETDEWEB)

    Vanderleyden, E. [Polymer Chemistry and Biomaterials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, 9000 Ghent (Belgium); Van Bael, S. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Department of Mechanical Engineering, Division of Biomechanics and Engineering Design, Katholieke Universiteit Leuven, Celestijnenlaan 300c, Box 2419, 3001 Heverlee (Belgium); Chai, Y.C. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Tissue Engineering Laboratory, Skeletal Biology and Engineering Research Center, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Kruth, J.-P. [Department of Mechanical Engineering, Division of Production Engineering, Machine Design and Automation, Katholieke Universiteit Leuven, Celestijnenlaan 300b, 3001 Leuven (Belgium); Schrooten, J. [Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, O and N 1, Herestraat 49, Box 813, 3000 Leuven (Belgium); Department of Metallurgy and Materials Engineering, Katholieke Universiteit Leuven, Kasteelpark Arenberg 44, Bus 2450, 3001 Leuven (Belgium); Dubruel, P., E-mail: pbmugent@gmail.com [Polymer Chemistry and Biomaterials Research Group, Department of Organic Chemistry, University of Ghent, Krijgslaan 281 S4, 9000 Ghent (Belgium)

    2014-09-01

    In the present work, we studied the immobilisation of the biopolymer gelatin onto the surface of three dimensional (3D) regular Ti6Al4V porous implants to improve their surface bio-activity. The successful immobilisation of the gelatin coating was made possible by a polydopamine interlayer, a polymer coating inspired by the adhesive nature of mussels. The presence of both coatings was first optimised on two dimensional titanium (2D Ti) substrates and confirmed by different techniques including X-ray photelectron spectroscopy, contact angle measurements, atomic force microscopy and fluorescence microscopy. Results showed homogeneous coatings that are stable for at least 24 h in phosphate buffer at 37 °C. In a next step, the coating procedure was successfully transferred to 3D Ti6Al4V porous implants, which indicates the versatility of the applied coating procedure with regard to complex surface morphologies. Furthermore, the bio-activity of these stable gelatin coatings was enhanced by applying a third and final coating using the cell-attractive protein fibronectin. The reproducible immobilisation process allowed for a controlled biomolecule presentation to the surrounding tissue. This newly developed coating procedure outperformed the previously reported silanisation procedure for immobilising gelatin. In vitro cell adhesion and culture studies with human periosteum-derived cells showed that the investigated coatings did not compromise the biocompatible nature of Ti6Al4V porous implants, but no distinct biological differences between the coatings were found. - Highlights: • Ti6Al4V porous implants were produced by selective laser melting. • A procedure to obtain a stable gelatin coating was developed. • Successful transfer of the coating procedure from 2D to 3D Ti6Al4V porous implants. • In vitro cell studies showed that the developed coatings supported cell growth.

  2. Higher Order Macro Coefficients in Periodic Homogenization

    Energy Technology Data Exchange (ETDEWEB)

    Conca, Carlos; San Martin, Jorge [Departamento de IngenierIa Matematica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile and Centro de Modelamiento Matematico, UMR 2071 CNRS-UChile, Casilla 170/3 - Correo 3, Santiago (Chile); Smaranda, Loredana [Department of Mathematics, Faculty of Mathematics and Computer Science, University of Pitesti, 110040 Pitesti, Str. Targu din Vale Nr.1, Arges (Romania); Vanninathan, Muthusamy, E-mail: cconca@dim.uchile.cl, E-mail: jorge@dim.uchile.cl, E-mail: smaranda@dim.uchile.cl, E-mail: vanni@math.tifrbng.res.in [TIFR-CAM, Post Bag 6503, GKVK Post, Bangalore - 560065 (India)

    2011-09-15

    A first set of macro coefficients known as the homogenized coefficients appear in the homogenization of PDE on periodic structures. If energy is increased or scale is decreased, these coefficients do not provide adequate approximation. Using Bloch decomposition, it is first realized that the above coefficients correspond to the lowest energy and the largest scale. This naturally paves the way to introduce other sets of macro coefficients corresponding to higher energies and lower scales which yield better approximation. The next task is to compare their properties with those of the homogenized coefficients. This article reviews these developments along with some new results yet to be published.

  3. Transition of effective hydraulic properties from low to high Reynolds number flow in porous media

    Science.gov (United States)

    Sivanesapillai, R.; Steeb, H.; Hartmaier, A.

    2014-07-01

    We numerically analyze fluid flow through porous media up to a limiting Reynolds number of O(103). Due to inertial effects, such processes exhibit a gradual transition from laminar to turbulent flow for increasing magnitudes of Re. On the macroscopic scale, inertial transition implies nonlinearities in the relationship between the effective macroscopic pressure gradient and the filter velocity, typically accounted for in terms of the quadratic Forchheimer equation. However, various inertia-based extensions to the linear Darcy equation have been discussed in the literature; most prominently cubic polynomials in velocity. The numerical results presented in this contribution indicate that inertial transition, as observed in the apparent permeability, hydraulic tortuosity, and interfacial drag, is inherently of sigmoidal shape. Based on this observation, we derive a novel filtration law which is consistent with Darcy's law at small Re, reproduces Forchheimer's law at large Re, and exhibits higher-order leading terms in the weak inertia regime.

  4. Transport phenomena in porous media

    CERN Document Server

    Ingham, Derek B

    1998-01-01

    Research into thermal convection in porous media has substantially increased during recent years due to its numerous practical applications. These problems have attracted the attention of industrialists, engineers and scientists from many very diversified disciplines, such as applied mathematics, chemical, civil, environmental, mechanical and nuclear engineering, geothermal physics and food science. Thus, there is a wealth of information now available on convective processes in porous media and it is therefore appropriate and timely to undertake a new critical evaluation of this contemporary information. Transport Phenomena in Porous Media contains 17 chapters and represents the collective work of 27 of the world's leading experts, from 12 countries, in heat transfer in porous media. The recent intensive research in this area has substantially raised the expectations for numerous new practical applications and this makes the book a most timely addition to the existing literature. It includes recent major deve...

  5. Porous substrates filled with nanomaterials

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Stadermann, Michael

    2014-08-19

    A composition comprising: at least one porous carbon monolith, such as a carbon aerogel, comprising internal pores, and at least one nanomaterial, such as carbon nanotubes, disposed uniformly throughout the internal pores. The nanomaterial can be disposed in the middle of the monolith. In addition, a method for making a monolithic solid with both high surface area and good bulk electrical conductivity is provided. A porous substrate having a thickness of 100 microns or more and comprising macropores throughout its thickness is prepared. At least one catalyst is deposited inside the porous substrate. Subsequently, chemical vapor deposition is used to uniformly deposit a nanomaterial in the macropores throughout the thickness of the porous substrate. Applications include electrical energy storage, such as batteries and capacitors, and hydrogen storage.

  6. Diffusion in porous crystalline materials

    NARCIS (Netherlands)

    Krishna, R.

    2012-01-01

    The design and development of many separation and catalytic process technologies require a proper quantitative description of diffusion of mixtures of guest molecules within porous crystalline materials. This tutorial review presents a unified, phenomenological description of diffusion inside meso-

  7. Exploratory numerical experiments with a macroscopic theory of interfacial interactions

    Science.gov (United States)

    Giordano, D.; Solano-López, P.; Donoso, J. M.

    2017-09-01

    Phenomenological theories of interfacial interactions are founded on the core idea to model macroscopically the thin layer that forms between media in contact as a two-dimensional continuum (surface phase or interface) characterised by physical properties per unit area; the temporal evolution of the latter is governed by surface balance equations whose set acts as bridging channel in between the governing equations of the volume phases. These theories have targeted terrestrial applications since long time and their exploitation has inspired our research programme to build up, on the same core idea, a macroscopic theory of gas-surface interactions targeting the complex phenomenology of hypersonic reentry flows as alternative to standard methods in aerothermodynamics based on accommodation coefficients. The objective of this paper is the description of methods employed and results achieved in the exploratory study that kicked off our research programme, that is, the unsteady heat transfer between two solids in contact in planar and cylindrical configurations with and without interface. It is a simple numerical-demonstrator test case designed to facilitate quick numerical calculations but, at the same time, to bring forth already sufficiently meaningful aspects relevant to thermal protection due to the formation of the interface. The paper begins with a brief introduction on the subject matter and a review of relevant literature within an aerothermodynamics perspective. Then the case is considered in which the interface is absent. The importance of tension (force per unit area) continuity as boundary condition on the same footing of heat-flux continuity is recognised and the role of the former in governing the establishment of the temperature-difference distribution over the separation surface is explicitly shown. Evidence is given that the standard temperature-continuity boundary condition is just a particular case. Subsequently the case in which the interface is

  8. On homogenization of stokes flow in slowly varying media with applications to fluid–structure interaction

    KAUST Repository

    Brown, Donald L.

    2011-09-11

    In this paper we establish corrector estimates for Stokes flow in slowly varying perforated media via two scale asymptotic analysis. Current methods and techniques are often not able to deal with changing geometries prevalent in applied problems. For example, in a deformable porous medium environment, the geometry does not remain periodic under mechanical deformation and if slow variation in the geometry occurs. For such problems, one cannot use classical homogenization results directly and new homogenization results and estimates are needed. Our work uses asymptotic techniques of Marusic-Paloka and Mikelic (Bollettino U. M. I 7:661-671, 1996) where the authors constructed a downscaled velocity which converges to the fine-scale velocity at a rate of ε1/6 where ε is the characteristic length scale. We assume a slowly varying porous medium and study homogenization and corrector estimates for the Stokes equations. Slowly varying media arise, e. g., in fluid-structure interaction (FSI) problems (Popov et al. in Iterative upscaling of flows in deformable porous media, 2008), carbonation of porous concrete (Peter in C. R. Mecanique 335:357-362, 2007a; C. R. Mecanique 335:679-684, 2007b), and various other multiphysics processes. To homogenize Stokes flows in such media we restate the cell problems of Marusic-Paloka and Mikelic (Bollettino U. M. I 7:661-671, 1996) in a moving RVE framework. Further, to recover the same convergence properties it is necessary to solve an additional cell problem and add one more corrector term to the downscaled velocity. We further extend the framework of Marusic-Paloka and Mikelic (Bollettino U. M. I 7:661-671, 1996) to three spatial dimensions in both periodic and variable pore-space cases. Next, we also propose an efficient algorithm for computing the correctors by solving a limited number of cell problems at selected spatial locations. We present two computational examples: one for a constructed medium of elliptical perforations, and

  9. Porosity of porous Al alloys

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Two porosity models of porous Al alloys with different pore types (ball and polygon shape) were established. The experimental results coincide well with theoretical computations. The porosity of Al alloys (Prc) consists of three parts, porosity caused by preform particles (Prp), additional porosity (Pra), and porosity caused by solidification shrinkage (Prs). Prp is the main part of Prc while Pra is the key for fabricating porous Al alloys successfully in spite of its little contribution to Prc.

  10. A Rigourous Demonstration of the Validity of Boltzmann's Scenario for the Spatial Homogenization of a Freely Expanding Gas and the Equilibration of the Kac Ring

    Science.gov (United States)

    De Bièvre, S.; Parris, P. E.

    2017-08-01

    Boltzmann provided a scenario to explain why individual macroscopic systems composed of a large number N of microscopic constituents are inevitably (i.e., with overwhelming probability) observed to approach a unique macroscopic state of thermodynamic equilibrium, and why after having done so, they are then observed to remain in that state, apparently forever. We provide here rigourous new results that mathematically prove the basic features of Boltzmann's scenario for two classical models: a simple boundary-free model for the spatial homogenization of a non-interacting gas of point particles, and the well-known Kac ring model. Our results, based on concentration inequalities that go back to Hoeffding, and which focus on the typical behavior of individual macroscopic systems, improve upon previous results by providing estimates, exponential in N, of probabilities and time scales involved.

  11. On the Cancellation Rule in the Homogenization

    OpenAIRE

    2008-01-01

    We consider the possible ways of the homogenization of non-graded non-commutative algebra and show that it should be combined with the cancellation rule to get the mathematically adequate correspondence between graded and non-graded algebras.

  12. Non-homogeneous fractal hierarchical weighted networks.

    Science.gov (United States)

    Dong, Yujuan; Dai, Meifeng; Ye, Dandan

    2015-01-01

    A model of fractal hierarchical structures that share the property of non-homogeneous weighted networks is introduced. These networks can be completely and analytically characterized in terms of the involved parameters, i.e., the size of the original graph Nk and the non-homogeneous weight scaling factors r1, r2, · · · rM. We also study the average weighted shortest path (AWSP), the average degree and the average node strength, taking place on the non-homogeneous hierarchical weighted networks. Moreover the AWSP is scrupulously calculated. We show that the AWSP depends on the number of copies and the sum of all non-homogeneous weight scaling factors in the infinite network order limit.

  13. Magnifying absolute instruments for optically homogeneous regions

    CERN Document Server

    Tyc, Tomas

    2011-01-01

    We propose a class of magnifying absolute optical instruments with a positive isotropic refractive index. They create magnified stigmatic images, either virtual or real, of optically homogeneous three-dimensional spatial regions within geometrical optics.

  14. Concept of porous wire anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Afgan, N.H.; Pereira, J.C. [Inst. Superior Tecnico, Lisbon (Portugal); Leontiev, A.I.; Puzach, S.V. [Moscow Technical Univ. (Russian Federation)

    1997-05-01

    The paper presents a new scheme of the anemometer sensing element for the gas mean and fluctuation velocity measurement. The sensing element is a porous tube with gas suction through porous tube wall. The outside surface of the porous tube is at the gas temperature. The analysis, based on the heat balance at steady and unsteady state is performed in order to define the sensitivity and time constant of the porous sensing element. Two cases are considered, namely, the constant current and constant temperature anemometer. Comparison is made with the solid wire anemometer and shown that the proposed porous sensing element can have sensitivity four times higher than the standard hot wire anemometer with the same geometrical dimensions. With the respective selection of the physical properties of the sensing element, it could be possible to obtain higher frequency range of the measurement. Particular attention is devoted to the low gas velocity measurement. It is recognized that the minimum gas velocity to be measured with the solid hot wire anemometer is determined by the local heat transfer coefficient. For the low gas velocity, it was proved that the minimum is around .20 cm/sec. The proposed concept of the sensing element can be used for the very low velocity measurement due to the higher sensitivity obtained by the porous sensing element.

  15. Surfactant controlled switching of water-in-oil wetting behaviour of porous silica films grown at oil-water interfaces

    Indian Academy of Sciences (India)

    Manish M Kulkarni; Rajdip Bandyopadhyaya; Ashutosh Sharma

    2008-11-01

    Selective permeation of oil and water across a porous medium, as in oil recovery operations, depends on the preferential wetting properties of the porous medium. We show a profound influence of surfactants in wetting of porous media and thus demonstrate a new route for the control of water-in-oil wetting of porous substrates by changing the concentration of surfactants in an aqueous sub-phase below the substrate. This strategy is employed to engineer partial reversible wetting transitions on a porous silica film. The film itself is grown and stabilized on a flat, macroscopic interface between an oil phase and an aqueous sub-phase. On increasing the surfactant (CTAB) concentration in the sub-phase, contact angle of a water drop (placed on the oil side of the film) changes from 140° to 16° in 25 min by diffusion of the surfactant across the porous film. On further replacement of the sub-phase with pure water, diffusion of the surfactant from the water drop back to the sub-phase was slower, increasing the contact angle in the process from 16° to 90° in 2 h. Wettability control by a cationic surfactant (CTAB) was found to be much faster (6 deg/min) than that offered by an anionic surfactant, SDS (0.05 deg/min). Switching of the surface wettability due to the surfactant diffusion may have implications in oil-water separation, chemical bed reactors and microfluidic devices.

  16. Homogeneous Dielectric Equivalents of Composite Material Shields

    Directory of Open Access Journals (Sweden)

    P. Tobola

    2009-04-01

    Full Text Available The paper deals with the methodology of replacing complicated parts of an airplane skin by simple homogeneous equivalents, which can exhibit similar shielding efficiency. On one hand, the airplane built from the virtual homogeneous equivalents can be analyzed with significantly reduced CPU-time demands and memory requirements. On the other hand, the equivalent model can estimate the internal fields satisfactory enough to evaluate the electromagnetic immunity of the airplane.

  17. Commensurability effects in holographic homogeneous lattices

    OpenAIRE

    Andrade, Tomas; Krikun, Alexander

    2016-01-01

    An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as "homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to...

  18. Homogeneous cosmological models and new inflation

    Science.gov (United States)

    Turner, Michael S.; Widrow, Lawrence M.

    1986-01-01

    The promise of the inflationary-universe scenario is to free the present state of the universe from extreme dependence upon initial data. Paradoxically, inflation is usually analyzed in the context of the homogeneous and isotropic Robertson-Walker cosmological models. It is shown that all but a small subset of the homogeneous models undergo inflation. Any initial anisotropy is so strongly damped that if sufficient inflation occurs to solve the flatness and horizon problems, the universe today would still be very isotropic.

  19. Significance tests and sample homogeneity loophole

    CERN Document Server

    Kupczynski, Marian

    2015-01-01

    In their recent comment, published in Nature, Jeffrey T.Leek and Roger D.Peng discuss how P-values are widely abused in null hypothesis significance testing . We agree completely with them and in this short comment we discuss the importance of sample homogeneity tests. No matter with how much scrutiny data are gathered if homogeneity tests are not performed the significance tests suffer from sample homogeneity loophole and the results may not be trusted. For example sample homogeneity loophole was not closed in the experiment testing local realism in which a significant violation of Eberhard inequality was found. We are not surprised that Bell type inequalities are violated since if the contextual character of quantum observables is properly taken into account these inequalities cannot be proven. However in order to trust the significance of the violation sample homogeneity loophole must be closed. Therefore we repeat after Jeffrey T.Leek and Roger D.Peng that sample homogeneity loophole is probably just the ...

  20. The Unique Macroscopic Appearance of Gouty Arthritis of the Knee.

    Science.gov (United States)

    Mittl, Gregory S; Zuckerman, Joseph D

    2015-07-01

    Patients with significant gouty arthritis can develop disabling joint pain secondary to monosodium urate (MSU) articular deposition. We report a case of white, chalky MSU crystal deposition covering the articular surfaces of the knee as discovered by total knee arthroplasty. A 65-year-old male with a history of gout presented with bilateral knee pain. His radiographic imaging was negative for gouty tophi, and he elected to undergo left total knee arthroplasty. Intraoperatively a distinct chalky, white paste consistent with MSU deposition was observed covering the articular surfaces of the knee consistent with the diagnosis of gouty arthritis. Gout is the most common inflammatory arthritis affecting more than 3 million people in the USA. The inflammation results from the phagocytosis of monosodium urate crystals (MSU) and the release of inflammatory cytokines within the joint. Gout progresses from acute to chronic over many years and frequently causes chronic arthropathy. When significant knee pain and disability is associated with gouty arthropathy, total knee arthroplasty is certainly an option. The pathological appearance of gouty joints is characteristic. Macroscopic examination of joints affected by gout reveals a nodular, white, chalky appearance. Polarized microscopy of gout demonstrates negative birefringent needle-shaped MSU crystals. In this case report, we describe the characteristic chalky, white MSU deposit that covers the articular surfaces of a knee joint in a patient with a history of gout undergoing total knee arthroplasty. The investigators have obtained the patient's informed written consent for print and electronic publication of the case report.