WorldWideScience

Sample records for macroscopic vapor pressure

  1. Gasoline Reid Vapor Pressure

    Science.gov (United States)

    EPA regulates the vapor pressure of gasoline sold at retail stations during the summer ozone season to reduce evaporative emissions from gasoline that contribute to ground-level ozone and diminish the effects of ozone-related health problems.

  2. Macroscopic theory for capillary-pressure hysteresis.

    Science.gov (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-03

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.

  3. Vapor pressure measured with inflatable plastic bag

    Science.gov (United States)

    1965-01-01

    Deflated plastic bag in a vacuum chamber measures initial low vapor pressures of materials. The bag captures the test sample vapors and visual observation of the vapor-inflated bag under increasing external pressures yields pertinent data.

  4. Vapor pressures and enthalpies of vaporization of azides

    Energy Technology Data Exchange (ETDEWEB)

    Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.de [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Algarra, Manuel [Centro de Geologia do Porto, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Manuel Lopez-Romero, J. [Department of Organic Chemistry, University of Malaga. Campus de Teatinos s/n, 29071 Malaga (Spain); Aguiar, Fabio; Enrique Rodriguez-Borges, J.; Esteves da Silva, Joaquim C.G. [Centro de Investigacao em Quimica (CIQ-UP), Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2011-11-15

    Highlights: > We prepared and measured vapor pressures and vaporization enthalpies of 7 azides. > We examined consistency of new and available in the literature data. > Data for geminal azides and azido-alkanes selected for thermochemical calculations. - Abstract: Vapor pressures of some azides have been determined by the transpiration method. The molar enthalpies of vaporization {Delta}{sub l}{sup g}H{sub m} of these compounds were derived from the temperature dependencies of vapor pressures. The measured data sets were successfully checked for internal consistency by comparison with vaporization enthalpies of similarly structured compounds.

  5. Estimated vapor pressure for WTP process streams

    Energy Technology Data Exchange (ETDEWEB)

    Pike, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Poirier, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-01-01

    Design assumptions during the vacuum refill phase of the Pulsed Jet Mixers (PJMs) in the Hanford Waste Treatment and Immobilization Plant (WTP) equate the vapor pressure of all process streams to that of water when calculating the temperature at which the vacuum refill is reduced or eliminated. WTP design authority asked the authors to assess this assumption by performing calculations on proposed feed slurries to calculate the vapor pressure as a function of temperature. The vapor pressure was estimated for each WTP waste group. The vapor pressure suppression caused by dissolved solids is much greater than the increase caused by organic components such that the vapor pressure for all of the waste group compositions is less than that of pure water. The vapor pressure for each group at 145°F ranges from 81% to 98% of the vapor pressure of water. If desired, the PJM could be operated at higher temperatures for waste groups with high dissolved solids that suppress vapor pressure. The SO4 group with the highest vapor pressure suppression could be operated up to 153°F before reaching the same vapor pressure of water at 145°F. However, most groups would reach equivalent vapor pressure at 147 to 148°F. If any of these waste streams are diluted, the vapor pressure can exceed the vapor pressure of water at mass dilution ratios greater than 10, but the overall effect is less than 0.5%.

  6. VAPOR PRESSURES AND HEATS OF VAPORIZATION OF PRIMARY COAL TARS

    Energy Technology Data Exchange (ETDEWEB)

    Eric M. Suuberg; Vahur Oja

    1997-07-01

    This project had as its main focus the determination of vapor pressures of coal pyrolysis tars. It involved performing measurements of these vapor pressures and from them, developing vapor pressure correlations suitable for use in advanced pyrolysis models (those models which explicitly account for mass transport limitations). This report is divided into five main chapters. Each chapter is a relatively stand-alone section. Chapter A reviews the general nature of coal tars and gives a summary of existing vapor pressure correlations for coal tars and model compounds. Chapter B summarizes the main experimental approaches for coal tar preparation and characterization which have been used throughout the project. Chapter C is concerned with the selection of the model compounds for coal pyrolysis tars and reviews the data available to us on the vapor pressures of high boiling point aromatic compounds. This chapter also deals with the question of identifying factors that govern the vapor pressures of coal tar model materials and their mixtures. Chapter D covers the vapor pressures and heats of vaporization of primary cellulose tars. Chapter E discusses the results of the main focus of this study. In summary, this work provides improved understanding of the volatility of coal and cellulose pyrolysis tars. It has resulted in new experimentally verified vapor pressure correlations for use in pyrolysis models. Further research on this topic should aim at developing general vapor pressure correlations for all coal tars, based on their molecular weight together with certain specific chemical characteristics i.e. hydroxyl group content.

  7. Vapor Pressure Data Analysis and Statistics

    Science.gov (United States)

    2016-12-01

    VAPOR PRESSURE DATA ANALYSIS AND STATISTICS ECBC-TR-1422 Ann Brozena RESEARCH AND TECHNOLOGY DIRECTORATE...DATE XX-12-2016 2. REPORT TYPE Final 3. DATES COVERED (From - To) Nov 2015 – Apr 2016 4. TITLE Vapor Pressure Data Analysis and Statistics 5a...1 VAPOR PRESSURE DATA ANALYSIS AND STATISTICS 1. INTRODUCTION Knowledge of the vapor pressure of materials as a function of temperature is

  8. Macroscopic modeling for heat and water vapor transfer in dry snow by homogenization.

    Science.gov (United States)

    Calonne, Neige; Geindreau, Christian; Flin, Frédéric

    2014-11-26

    Dry snow metamorphism, involved in several topics related to cryospheric sciences, is mainly linked to heat and water vapor transfers through snow including sublimation and deposition at the ice-pore interface. In this paper, the macroscopic equivalent modeling of heat and water vapor transfers through a snow layer was derived from the physics at the pore scale using the homogenization of multiple scale expansions. The microscopic phenomena under consideration are heat conduction, vapor diffusion, sublimation, and deposition. The obtained macroscopic equivalent model is described by two coupled transient diffusion equations including a source term arising from phase change at the pore scale. By dimensional analysis, it was shown that the influence of such source terms on the overall transfers can generally not be neglected, except typically under small temperature gradients. The precision and the robustness of the proposed macroscopic modeling were illustrated through 2D numerical simulations. Finally, the effective vapor diffusion tensor arising in the macroscopic modeling was computed on 3D images of snow. The self-consistent formula offers a good estimate of the effective diffusion coefficient with respect to the snow density, within an average relative error of 10%. Our results confirm recent work that the effective vapor diffusion is not enhanced in snow.

  9. Vapor Pressures of Several Commercially Used Alkanolamines

    NARCIS (Netherlands)

    Klepacova, Katarina; Huttenhuis, Patrick J. G.; Derks, Peter W. J.; Versteeg, Geert F.; Klepáčová, Katarína

    2011-01-01

    For the design of acid gas treating processes, vapor-liquid equilibrium (VLE) data must be available of the solvents to be applied. In this study the vapor pressures of seven frequently industrially used alkanolamines (diethanolamine, N-methylethanolamine, N,N-dimethylethanolamine, N,N-diethylethano

  10. Vapor Pressure of 2-Chlorovinyl Dichloroarsine (Lewisite)

    Science.gov (United States)

    2009-02-01

    Streams of Compounds for Determining Vapor Pressure 11 3. Vapor Pressure of Lewisite I from Multiple Sources: Conant, Sumner, Lewis, Keyes, Price ...number of publications in the open literature by Green and Price ,4 Lewis and Perkins,5 Mann and Pope, Mohler and Polya7 and Gibson and Johnson.8...point. (2) Banks et al.,14 reported that during the fractional distillation of the reaction products of phenyl dichloroarsine and acetylene , 2

  11. Pure component vapor pressures of organic isomers

    Science.gov (United States)

    Dang, Caroline; Bannan, Thomas; Topping, David

    2017-04-01

    Atmospheric aerosols affect the Earth's climate directly through light scattering and absorption as well as indirectly by affecting cloud formation. There are many unanswered questions about how material properties of organic aerosols affect the climate. Predicting the formation of secondary organic aerosol (SOA), arising from gas to particle partitioning of potentially millions of compounds, remains one of the most challenging aspects in this regards. Of particular importance on predicting SOA formation is the saturation vapor pressure of each component. This property is typically obtained from group contribution methods (GCMs). However, it is currently unclear as to what level of accuracy is required or attainable from such techniques. Researchers have recently been able to measure low vapor pressures (lower limit of 10-8 Pa) experimentally using various techniques, and the University of Manchester Knudsen Effusion Mass Spectrometer (KEMS) has previously been used to measure vapor pressure of low volatility organics. Our recent KEMS work shows that functional group positioning has an effect on vapor pressure that is not accurately captured with estimation methods, and that experimental vapor pressures are 1-4 orders of magnitudes lower than predictive techniques. This has atmospheric impact through the variable amount of organic aerosol that is predicted to condense. In this study we present new measurements from the KEMS that can then be used to refine different experimental vapor pressure techniques as well as to provide data sets for building regression models to improve current predictive techniques.

  12. Vapor Pressure of Pentafluoroethane and Trifluoroiodomethane

    Institute of Scientific and Technical Information of China (English)

    Zhang Chang; Duan Yuanyuan; Shi Lin; Zhu Mingshan; Han Lizhong

    2001-01-01

    Pentafluoroethane (HFC-125) and trifluoroiodomethane (CF3I) are considered as promising refrigerant alternatives, especially as components in mixtures, to replace CFCs or HCFCs. Effective uses of HFC-125 and CF3I require that the thermophysical properties be accurately measured. In the present work, vapor pressure data of HFC-125 and CF3I have been measured in the temperature range from 292 to 337 K and 288 to 336 K,respectively. Maximum total pressure uncertainty of HFC-125 data is estimated to be within ±1.2 kPa and ±780 Pa for CF3I. Based on the data set and literature values, the vapor pressure equations for HFC-125 and CF3I have been developed. The relative deviation of the equations correlate the measurements within 0.022% for HFC-125 and 0.068% for CF3I, respectively.

  13. Correlation between macroscopic porosity location and liquid metal pressure in centrifugal casting technique.

    Science.gov (United States)

    Vaidyanathan, T K; Schulman, A; Nielsen, J P; Shalita, S

    1981-01-01

    Radiographic analysis of uniform cylindrical castings fabricated by the centrifugal casting technique has revealed that the macroscopic porosity is dependent on the location of the sprue attachment to the casting. This is attributed to the significant pressure gradient associated with the centrifugal casting technique. The pressure gradient results in different heat transfer rates at portions of the castings near and away from the free surface of the button. Consequently, the macroscopic porosity is invariably at portions of the casting close to the free surface of the button. In addition, some optimized sprue-reservoir combinations could be predicted and proved, based on this pressure gradient concept.

  14. 46 CFR 154.451 - Design vapor pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.451 Section 154.451 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type C and Process Pressure Vessels § 154.451 Design vapor pressure. The Po (kPa) of an...

  15. Excessively High Vapor Pressure of Al-based Amorphous Alloys

    Directory of Open Access Journals (Sweden)

    Jae Im Jeong

    2015-10-01

    Full Text Available Aluminum-based amorphous alloys exhibited an abnormally high vapor pressure at their approximate glass transition temperatures. The vapor pressure was confirmed by the formation of Al nanocrystallites from condensation, which was attributed to weight loss of the amorphous alloys. The amount of weight loss varied with the amorphous alloy compositions and was inversely proportional to their glass-forming ability. The vapor pressure of the amorphous alloys around 573 K was close to the vapor pressure of crystalline Al near its melting temperature, 873 K. Our results strongly suggest the possibility of fabricating nanocrystallites or thin films by evaporation at low temperatures.

  16. Heat transfer by condensation of low pressure metal vapors.

    Science.gov (United States)

    Huang, Y. S.; Lyman, F. A.; Lick, W. J.

    1972-01-01

    The film condensation of low pressure metal vapors on isothermal vertical flat plates or tubes is considered. The liquid film is treated as a thin layer in which the acceleration and pressure forces are negligible and across which the temperature distribution is linear. The average behavior of the vapor is found from the linearized one-dimensional vapor flow equations. In order to calculate the rate of condensation, a consistent distribution function for the vapor particles at the liquid-vapor interface is necessary and is determined. The result of the analysis is a set of algebraic equations from which one can predict the condensation rate of low pressure metal vapors. A large but continuous temperature decrease in the vapor is predicted and calculated.

  17. Vapor Pressure of Methyl Salicylate and n-Hexadecane

    Science.gov (United States)

    2014-01-01

    and n-hexadecane are similar to those of sulfur mustard (HD) and VX , respectively. 15. SUBJECT TERMS Methyl salicylate Vapor pressure Volatility...2- chloroethyl) sulfide (HD) and O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothiolate ( VX ), respectively. Vapor pressure similarities make... gas chromatographic (GC) equipment and methodology, and as before, the GC was equipped with a flame-ionization detector. Saturator calibration and

  18. 46 CFR 154.438 - Design vapor pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.438 Section 154.438 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type A § 154.438 Design vapor pressure. (a) If the surface of an independent tank type A are...

  19. 46 CFR 154.436 - Design vapor pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.436 Section 154.436 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS...-Membrane Tanks § 154.436 Design vapor pressure. The Po of a semi-membrane tank must not exceed 24.5 kPa...

  20. 46 CFR 154.445 - Design vapor pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.445 Section 154.445 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Independent Tank Type B § 154.445 Design vapor pressure. If the surfaces of an independent tank type B are...

  1. 46 CFR 154.419 - Design vapor pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.419 Section 154.419 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.419 Design vapor pressure. The Po of an integral tank must not exceed 24.5 kPa gauge (3.55...

  2. 46 CFR 154.426 - Design vapor pressure.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Design vapor pressure. 154.426 Section 154.426 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Tanks § 154.426 Design vapor pressure. The Po of a membrane tank must not exceed 24.5 kPa gauge (3.55...

  3. Thermogravimetric study of vapor pressure of TATP synthesized without recrystallization.

    Science.gov (United States)

    Mbah, Jonathan; Knott, Debra; Steward, Scott

    2014-11-01

    This study aims at characterizing the vapor pressure signatures generated by triacetone triperoxide (TATP) that was synthesized without recrystallization by thermogravimmetric analysis (TGA) for exploitation by standoff detection technologies of explosive devices. The thermal behavior of the nonrecrystallized sample was compared with reported values. Any phase change, melting point and decomposition identification were studied by differential scanning calorimeter. Vapor pressures were estimated by the Langmuir method of evaporation from an open surface in a vacuum. Vapor pressures of TATP at different temperatures were calculated using the linear logarithmic relationship obtained from benzoic acid reference standard. Sublimation of TATP was found to follow apparent zero-order kinetics and sublimes at steady rates at 298 K and above. While the enthalpy of sublimation found, 71.7 kJ mol(-1), is in agreement with reported values the vapor pressures deviated significantly. The differences in the vapor pressures behavior are attributable to the synthesis pathway chosen in this study.

  4. Thermophoresis of dissolved molecules and polymers: Consideration of the temperature-induced macroscopic pressure gradient.

    Science.gov (United States)

    Semenov, Semen; Schimpf, Martin

    2004-01-01

    The movement of molecules and homopolymer chains dissolved in a nonelectrolyte solvent in response to a temperature gradient is considered a consequence of temperature-induced pressure gradients in the solvent layer surrounding the solute molecules. Local pressure gradients are produced by nonuniform London-van der Waals interactions, established by gradients in the concentration (density) of solvent molecules. The density gradient is produced by variations in solvent thermal expansion within the nonuniform temperature field. The resulting expression for the velocity of the solute contains the Hamaker constants for solute-solvent and solute-solute interactions, the radius of the solute molecule, and the viscosity and cubic coefficient of thermal expansion of the solvent. In this paper we consider an additional force that arises from directional asymmetry in the interaction between solvent molecules. In a closed cell, the resulting macroscopic pressure gradient gives rise to a volume force that affects the motion of dissolved solutes. An expression for this macroscopic pressure gradient is derived and the resulting force is incorporated into the expression for the solute velocity. The expression is used to calculate thermodiffusion coefficients for polystyrene in several organic solvents. When these values are compared to those measured in the laboratory, the consistency is better than that found in previous reports, which did not consider the macroscopic pressure gradient that arises in a closed thermodiffusion cell. The model also allows for the movement of solute in either direction, depending on the relative values of the solvent and solute Hamaker constants.

  5. Macroscopic modeling of heat and water vapor transfer with phase change in dry snow based on an upscaling method: Influence of air convection

    Science.gov (United States)

    Calonne, N.; Geindreau, C.; Flin, F.

    2015-12-01

    At the microscopic scale, i.e., pore scale, dry snow metamorphism is mainly driven by the heat and water vapor transfer and the sublimation-deposition process at the ice-air interface. Up to now, the description of these phenomena at the macroscopic scale, i.e., snow layer scale, in the snowpack models has been proposed in a phenomenological way. Here we used an upscaling method, namely, the homogenization of multiple-scale expansions, to derive theoretically the macroscopic equivalent modeling of heat and vapor transfer through a snow layer from the physics at the pore scale. The physical phenomena under consideration are steady state air flow, heat transfer by conduction and convection, water vapor transfer by diffusion and convection, and phase change (sublimation and deposition). We derived three different macroscopic models depending on the intensity of the air flow considered at the pore scale, i.e., on the order of magnitude of the pore Reynolds number and the Péclet numbers: (A) pure diffusion, (B) diffusion and moderate convection (Darcy's law), and (C) strong convection (nonlinear flow). The formulation of the models includes the exact expression of the macroscopic properties (effective thermal conductivity, effective vapor diffusion coefficient, and intrinsic permeability) and of the macroscopic source terms of heat and vapor arising from the phase change at the pore scale. Such definitions can be used to compute macroscopic snow properties from 3-D descriptions of snow microstructures. Finally, we illustrated the precision and the robustness of the proposed macroscopic models through 2-D numerical simulations.

  6. Controlling the vapor pressure of a mercury lamp

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1988-05-24

    The invention described herein discloses a method and apparatus for controlling the Hg vapor pressure within a lamp. This is done by establishing and controlling two temperature zones within the lamp. One zone is colder than the other zone. The first zone is called the cold spot. By controlling the temperature of the cold spot, the Hg vapor pressure within the lamp is controlled. Likewise, by controlling the Hg vapor pressure of the lamp, the intensity and linewidth of the radiation emitted from the lamp is controlled. 2 figs.

  7. The Vapor Pressure of Uranium Hexafluoride,

    Science.gov (United States)

    1943-04-12

    thermostat and a brass sylphon bellows for the measurement of pressure by a null method. The pressure above an atmosphere was read on a multiple mercury manometer using dibutylphthalate as a piston liquid. p2

  8. Vapor phase growth of functional pentacene films at atmospheric pressure

    NARCIS (Netherlands)

    Rolin, C.; Vasseur, K.; Niesen, B.; Willegems, M.; Müller, R.; Steudel, S.; Genoe, J.; Heremans, P.

    2012-01-01

    Compared to traditional vacuum evaporation techniques for small organic molecules, organic vapor phase deposition (OVPD) possesses a extra processing parameter: the pressure of process gas Pch. Here, the influence of large Pch variations (from 0.1 mbar to atmospheric pressure) on pentacene thin film

  9. Employment of vapor pressure data in the description of vapor-liquid equilibrium with direct method

    Energy Technology Data Exchange (ETDEWEB)

    Morbidelli, M.; Carra, S.

    1981-07-01

    A general procedure for inserting vapor-pressure data of pure components into equations of state provides a straightforward scheme for the extension of direct methods to the study of phase equilibria of polar mixtures and of solutions containing nonvolatile electrolytes. It makes the equation of state applicable to all compounds and to the shole temperature range and more accurate in the prediction of both multicomponent and pure vapor-liquid equilibria.

  10. RESEARCH METHODS OF SATURATED VAPOR PRESSURE AND EXPERIMENTAL INSTALLATIONS

    Directory of Open Access Journals (Sweden)

    Kharchenko P. M.

    2015-02-01

    Full Text Available The static method is the most common, because it is applicable for measuring SVP of substances in wide ranges of temperatures and pressures. The essence of the method consists in measuring of vapor pressure in equilibrium with its liquid at a given temperature. Dynamic method is based on measurement of the boiling point of the liquid at a certain pressure. Saturation method of moving gas used in the case when the SVP does not exceed a few mm Hg. The method consists the following: the liquid is passed through the inert gas and saturated with vapor of liquids and then it flows into a cooler where the absorbed vapors are condensed. Knowing the amount of absorbed liquid and gas, as well as their molecular weight, allow us calculate saturated vapor pressure of the liquid. Knudsen effusion method is applicable for the measurement of very low pressures (up to 100 Pa. This method consists in researching of depending between the pressure and volume of saturated steam at a constant temperature. At the point of saturation an isotherm should have a break and turn into a straight line. Chromatographic method is based on complete chromatographic analysis of liquid and calculating the sum of partial pressures of all mixture components. Also, the article has a description of existing experimental installation for these researches and their advantages and disadvantages compared with each other

  11. 40 CFR 796.1950 - Vapor pressure.

    Science.gov (United States)

    2010-07-01

    ... the pressures of the separate or component gases and that the ideal gas law is obeyed. The partial... combined with water solubility data permit the calculation of Henry's law constant, a parameter essential... pressure, p, of the sample is calculated by p=(w/M)(RT/v), where R is the gas constant (8.31 Pa m2 mol−1...

  12. Evaporation rate and vapor pressure of selected polymeric lubricating oils.

    Science.gov (United States)

    Gardos, M. N.

    1973-01-01

    A recently developed ultrahigh-vacuum quartz spring mass sorption microbalance has been utilized to measure the evaporation rates of several low-volatility polymeric lubricating oils at various temperatures. The evaporation rates are used to calculate the vapor pressures by the Langmuir equation. A method is presented to accurately estimate extended temperature range evaporation rate and vapor pressure data for polymeric oils, incorporating appropriate corrections for the increases in molecular weight and the change in volatility of the progressively evaporating polymer fractions. The logarithms of the calculated data appear to follow linear relationships within the test temperature ranges, when plotted versus 1000/T. These functions and the observed effusion characteristics of the fluids on progressive volatilization are useful in estimating evaporation rate and vapor pressure changes on evaporative depletion.

  13. Improved Magnus` form approximation of saturation vapor pressure

    Energy Technology Data Exchange (ETDEWEB)

    Alduchov, O.A.; Eskridge, R.E. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

    1997-11-01

    Relative humidity is usually measured in aerological observations and dew point depression is usually reported in upper-air reports. These variables must frequently be converted to other moisture variables in meteorological analysis. If relative humidity is converted to vapor pressure, most humidity variables can then be determined. Elliott and Gaffen reviewed the practices and procedures of the US radiosonde system. In their paper, a comparison of the relative errors was made between the saturation vapor pressure formulations of Tetens (1930), Goff-Gratch (1946), Wexler (1976), and Buck (1981). In this paper, the authors will expand the analysis of Elliott and Gaffen by deriving several new saturation vapor pressure formulas, and reviewing the various errors in these formulations. They will show that two of the new formulations of vapor pressure over water and ice are superior to existing formulas. Upper air temperature data are found to vary from about +50 C to {minus}80 C. This large variation requires a saturation vapor pressure equation to be accurate over a large temperature range. While the errors introduced by the use of relatively inaccurate conversion equations are smaller than the errors due to the instruments, dewpoint coding errors, and dewpoint conversion algorithms (Elliott and Gaffen, 1993); they introduce additional systematic errors in humidity data. The most precise formulation of vapor pressure over a plane surface of water was given by Wexler (1976). The relative errors of Tetens` (1930) formula and one due to Buck (1981) (Buck`s equation is recommended in the Federal Meteorological Handbook No. 3, 1991) are shown. The relative errors in this table are the predicted value minus the Wexler value divided by the Wexler value.

  14. 46 CFR 30.10-59 - Reid vapor pressure-TB/ALL.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Reid vapor pressure-TB/ALL. 30.10-59 Section 30.10-59 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY TANK VESSELS GENERAL PROVISIONS Definitions § 30.10-59 Reid vapor pressure—TB/ALL. The term Reid vapor pressure means the vapor pressure of a liquid at a...

  15. Vapour pressure and enthalpy of vaporization of aliphatic dialkyl carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Kozlova, Svetlana A.; Emel' yanenko, Vladimir N.; Georgieva, Miglena [Department of Physical Chemistry, University of Rostock, Hermannstrasse 14, D-18051 Rostock (Germany); Verevkin, Sergey P. [Department of Physical Chemistry, University of Rostock, Hermannstrasse 14, D-18051 Rostock (Germany)], E-mail: sergey.verevkin@uni-rostock.de; Chernyak, Yury [Huntsman Corporation, Advanced Technology Center, 8600 Gosling Road, The Woodlands, TX 77381 (United States); Schaeffner, Benjamin; Boerner, Armin [Leibniz Institut fuer Katalyse an der Universitaet Rostock e.V., Albert-Einstein Strasse 29a, 18059 Rostock (Germany)

    2008-07-15

    Molar enthalpies of vaporization of aliphatic alkyl carbonates: dimethyl carbonate [616-38-6], diethyl carbonate [105-58-8], di-n-propyl carbonate [623-96-1], di-n-butyl carbonate [542-52-9], and dibenzyl carbonate [3459-92-5] were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. A large number of the primary experimental results on temperature dependences of vapour pressures have been collected from the literature and have been treated uniformly in order to derive vaporization enthalpies of dialkyl carbonates at the reference temperature 298.15 K. An internal consistency check was performed on enthalpy of vaporization values for dialkyl carbonates studied in this work.

  16. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using...

  17. Distillation device supplies cesium vapor at constant pressure

    Science.gov (United States)

    Basiulis, A.; Shefsiek, P. K.

    1968-01-01

    Distillation apparatus in the form of a U tube supplies small amounts of pure cesium vapor at constant pressure to a thermionic converter. The upstream leg of the U tube is connected to a vacuum pump to withdraw noncondensable impurities, the bottom portion serves as a reservoir for the liquid cesium.

  18. Vapor pressure of perfluoroalkylalkanes: the role of the dipole.

    Science.gov (United States)

    Morgado, Pedro; Das, Gaurav; McCabe, Clare; Filipe, Eduardo J M

    2015-01-29

    The vapor pressure of four liquid perfluoroalkylalkanes (CF3(CF2)n(CH2)mCH3; n = 3, m = 4,5,7; n = 5, m = 5) was measured as a function of temperature between 278 and 328 K. Molar enthalpies of vaporization were calculated from the experimental data, and the results were compared with data from the literature for the corresponding alkanes and perfluoroalkanes. The heterosegmented statistical associating fluid theory was used to interpret the results at the molecular level both with and without the explicit inclusion of the dipolar nature of the molecules. Additionally, ab initio calculations were performed for all perfluoroalkylalkanes studied to determine the dipole moment to be used in the theoretical calculations. We demonstrate that the inclusion of a dipolar term is essential for describing the vapor-liquid equilibria of perfluoroalkylalkanes. It is also shown that vapor-liquid equilibria in these compounds result from a subtle balance between dipolar interactions, which decrease the vapor pressure, and the relatively weak dispersive interactions between the hydrogenated and fluorinated segments.

  19. Dynamic response of vaporizing droplet to pressure oscillation

    Science.gov (United States)

    Yuan, Lei; Shen, Chibing; Zhang, Xinqiao

    2017-02-01

    Combustion instability is a major challenge in the development of the liquid propellant engines, and droplet vaporization is viewed as a potential mechanism for driving instabilities. Based on the previous work, an unsteady droplet heating and vaporization model was developed. The model and numerical method are validated by experimental data available in literature, and then the oscillatory vaporization of n-Heptane droplet exposed to unsteady harmonic nitrogen atmosphere was numerically investigated over a wide range of amplitudes and frequencies. Also, temperature variations inside the droplet were demonstrated under oscillation environments. It was found that the thermal wave is attenuated with significantly reduced wave intensities as it penetrates deep into droplet from the ambient gas. Droplet surface temperature exhibits smaller fluctuation than that of the ambient gas, and it exhibits a time lag with regard to the pressure variation. Furthermore, the mechanism leading to phase lag of vaporization rate with respect to pressure oscillation was unraveled. Results show that this phase lag varies during the droplet lifetime and it is strongly influenced by oscillation frequency, indicating droplet vaporization is only capable of driving combustion instability in some certain frequency domains. Instead, the amplitude of the oscillation does not have very significant effects. It is noteworthy that thermal inertia of the droplet also plays a considerable role in determining the phase lag.

  20. Experimental Study on Vapor Pressure of HFC—134a

    Institute of Scientific and Technical Information of China (English)

    Ming-ShanZhu; Yi-DongFu; 等

    1992-01-01

    As part of the study on thermophysical properties of HFC-134a,this paper concerns itself with vapor pressure of HFC-134a in the temperature range of 279.15K to 365.15K,A total of 43 measurement data were measured during the experiment which was conducted on a high precision pVTx test apparatus designed by the authors with slight modifications,Uncertainties of temperature was ±10mK and of pressure was±500Pa,purity of sample was either 99.95wt%,or 99.98wt%,Data resulting from this experiment matched closely with the newest data published internationalyy,Compared to our porposed equation for calculating vapor pressure of HFC-134a,the RMS deviation cfexperimental data was only 0.0531%,showing relatively high precision.

  1. Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam-ethanol vapor mixture

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Junjie; Yang, Yusen; Hu, Shenhua; Zhen, Kejian; Liu, Jiping [Xi' an Jiaotong University, State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an (China)

    2007-11-15

    When a steam-ethanol vapor mixture condenses on a vertical flat plate, the form of the condensate film changes and many drops are created. This non-film condensation is called pseudo-dropwise or Marangoni condensation. This paper aims to study the main influencing factors on the Marangoni condensation of steam-ethanol vapor.The factors include the ethanol concentration, vapor pressure, vapor velocity and vapor-to-surface temperature difference. The experiments show that the heat transfer coefficient has a maximum value of approximately 42 kW/m{sup 2} K when the ethanol concentration is 1%. At the low concentrations of 0.5, 1, 5.1 and 9.8%, the condensation heat transfer is greater than for pure steam. In addition, the heat transfer for all vapor mixtures increases with both the rise of vapor pressure and vapor velocity. (orig.)

  2. Effects of vapor pressure/velocity and concentration on condensation heat transfer for steam-ethanol vapor mixture

    Science.gov (United States)

    Yan, Junjie; Yang, Yusen; Hu, Shenhua; Zhen, Kejian; Liu, Jiping

    2007-11-01

    When a steam-ethanol vapor mixture condenses on a vertical flat plate, the form of the condensate film changes and many drops are created. This non-film condensation is called pseudo-dropwise or Marangoni condensation. This paper aims to study the main influencing factors on the Marangoni condensation of steam-ethanol vapor.The factors include the ethanol concentration, vapor pressure, vapor velocity and vapor-to-surface temperature difference. The experiments show that the heat transfer coefficient has a maximum value of approximately 42 kW/m2 K when the ethanol concentration is 1%. At the low concentrations of 0.5, 1, 5.1 and 9.8%, the condensation heat transfer is greater than for pure steam. In addition, the heat transfer for all vapor mixtures increases with both the rise of vapor pressure and vapor velocity.

  3. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    Science.gov (United States)

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  4. Contributions to the Data on Theoretical Metallurgy. 3. The Free Energies of Vaporization and Vapor Pressures of Inorganic Substances

    Science.gov (United States)

    1935-01-01

    an approximate vapor-pressure equation is included. 0 Liquid- Gas ((Si0.).) log P (at.)=- 13+7.65. Monosilane .-Vapor pressures of the hydride, SiB4...91 0 0 0 AImonbrom- monosilane .--Stock and Sonieski (393) (179-275*) have determined the vapor pressure of monobrom- monosilane , SiHtBr. The results are...11. P. =275.5°; A!!2,&.j5,648; AS,.6=20.5, AH,..,=5,558; AFmj,=-460. The above authors find 179.30 for the melting point. Dibrom- monosilane .-The vapor

  5. Vapor Pressure Data and Analysis for Selected Organophosphorus Compounds: DIBMP, DCMP, IMMP, IMPA, EMPA, and MPFA

    Science.gov (United States)

    2017-04-01

    VAPOR PRESSURE DATA AND ANALYSIS FOR SELECTED ORGANOPHOSPHORUS COMPOUNDS: DIBMP, DCMP, IMMP, IMPA, EMPA, AND...SUBTITLE Vapor Pressure Data and Analysis for Selected Organophosphorus Compounds: DIBMP, DCMP, IMMP, IMPA, EMPA, and MPFA 5a. CONTRACT NUMBER 5b...18 viii Blank 1 VAPOR PRESSURE DATA AND ANALYSIS FOR SELECTED

  6. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    Science.gov (United States)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  7. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... that exhibits anisotropic yield properties with a pressure dependence. At the microscale free energy includes both elastic strains and plastic strain gradients, and the theory demands higher order boundary conditions in terms of plastic strain or work conjugate higher order tractions. The mechanical response...... of the composite is inclined compared to a standard pressure independent yield surfaces. The evolution of the macroscopic yield surface is investigated by quantifying both anisotropic hardening (expansion) and kinematic hardening (translation), where the coefficients of anisotropy and the Bauschinger stress...

  8. Very Long Single and Few-Walled Boron Nitride Nanotubes via the Pressurized Vapor/Condenser Method

    Science.gov (United States)

    Smith, Michael W.; Jordan, Kevin C.; Park, Cheol; Kim, Jae-Woo; Lillehei, Peter T.; Crooks, Roy; Harrison, Joycelyn S.

    2009-01-01

    A new method for producing long, small diameter, single and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  9. Very long single- and few-walled boron nitride nanotubes via the pressurized vapor/condenser method

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Michael W. [NASA Langley Research Center, Hampton, VA (United States); Jordan, Kevin C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Park, Cheol [NASA Langley Research Center, Hampton, VA (United States); Kim, Jae-Woo [NASA Langley Research Center, Hampton, VA (United States); Lillehei, Peter T. [NASA Langley Research Center, Hampton, VA (United States); Crooks, Roy [NASA Langley Research Center, Hampton, VA (United States); Harrison, Joycelyn S. [NASA Langley Research Center, Hampton, VA (United States)

    2009-11-01

    Boron nitride nanotubes (BNNTs) are desired for their exceptional mechanical, electronic, thermal, structural, textural, optical, and quantum properties. A new method for producing long, small-diameter, single- and few-walled, boron nitride nanotubes (BNNTs) in macroscopic quantities is reported. The pressurized vapor/condenser (PVC) method produces, without catalysts, highly crystalline, very long, small-diameter, BNNTs. Palm-sized, cotton-like masses of BNNT raw material were grown by this technique and spun directly into centimeters-long yarn. Nanotube lengths were observed to be 100 times that of those grown by the most closely related method. Self-assembly and growth models for these long BNNTs are discussed.

  10. Vapor Pressure of Aluminum Chloride Systems. 3. Vapor Pressure of Aluminum Chloride-Sodium Chloride Melts

    Science.gov (United States)

    1977-06-23

    were all as described previously (10). A .XCp/R log T(1, 2). mercury manometer was used as n additional external piessure The data were least-squares...the use of a mercury manometer and a NMLeod gauge, respectively, for pressure measurement; all other pressure measurements were made with a

  11. 40 CFR 63.165 - Standards: Pressure relief devices in gas/vapor service.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 63.165 Section 63.165 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Standards: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure...

  12. 40 CFR 265.1054 - Standards: Pressure relief devices in gas/vapor service.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 265.1054 Section 265.1054 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...: Pressure relief devices in gas/vapor service. (a) Except during pressure releases, each pressure relief...

  13. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    Science.gov (United States)

    Bilde, M.; Zardini, A. A.; Hong, J.; Tschiskale, M.; Emanuelsson, E.

    2014-12-01

    The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles are allowed to evaporate in a laminar flow reactor, and changes in particle size as function of evaporation time are determined using a scanning mobility particle sizer system. In this work saturation vapor pressures of sugar alcohols at several temperatures have been inferred from such measurements using thermodynamic modeling. Results are presented and discussed in context of atmospheric gas to particle partitioning.

  14. Investigation on high temperature vapor pressure of UO 2 containing simulated fission-product elements

    Science.gov (United States)

    Yano, T.; Ohtsubo, A.; Ishii, T.

    1984-06-01

    During the hypothetical core disruptive accident (HCDA) of a fast breeder reactor (FBR), the temperature of the fuel would rise above 3000 K. The experimental data concerning the saturated fuel vapor pressure are necessary for the analysis of the HCDA. In this study, the UO 2 containing Cs, Ba, Ag, or Sn was used to simulate the irradiated fuel in the FBR. The saturated vapor pressure of pure UO 2 and UO 2 containing Cs, Ba, Ag, or Sn at 3000 to 5000 K was measured dynamically with a pulse laser and a torsion pendulum. The surface of a specimen on the pendulum was heated to eject vapor by the injection of a giant pulse ruby laser beam. The pressure of the ejected vapor was measured by both the maximum rotation angle of the pendulum and the duration of vapor ejection. The saturated vapor pressure was theoretically calculated by using the ejected vapor pressure. The surface temperature of the specimen was estimated from the irradiated energy density measured with a laser energy meter. The saturated vapor pressure of UO 2 at 3640 to 5880 K measured in this study was near the extrapolated value of Ackermann's low temperature data. The vapor pressure of UO 2 containing Cs, Ba, Ag or Sn was higher than that of UO 2. The saturated vapor pressure of UO 2 and a solid fission products system was calculated by using these experimental data.

  15. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    Science.gov (United States)

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  16. Determination of Optimal Vapor Pressure Data by the Second and Third Law Methods

    OpenAIRE

    Nakajima, Kunihisa

    2016-01-01

    Though equilibrium vapor pressures are utilized to determine thermodynamic properties of not only gaseous species but also condensed phases, the obtained data often disagree by a factor of 100 and more. A new data analysis method is proposed using the so-called second and third law procedures to improve accuracy of vapor pressure measurements. It was found from examination of vapor pressures of cesium metaborate and silver that the analysis of the difference between the second and third law v...

  17. Bridgman-type apparatus for the study of growth-property relationships - Arsenic vapor pressure-GaAs property relationship

    Science.gov (United States)

    Parsey, J. M.; Nanishi, Y.; Lagowski, J.; Gatos, H. C.

    1982-01-01

    A precision Bridgman-type apparatus is described which was designed and constructed for the investigation of relationships between crystal growth parameters and the properties of GaAs crystals. Several key features of the system are highlighted, such as the use of a heat pipe for precise arsenic vapor pressure control and seeding without the presence of a viewing window. Pertinent growth parameters, such as arsenic source temperature, thermal gradients in the growing crystal and in the melt, and the macroscopic growth velocity can be independently controlled. During operation, thermal stability better than + or - 0.02 C is realized; thermal gradients can be varied up to 30 C/cm in the crystal region, and up to 20 C/cm in the melt region; the macroscopic growth velocity can be varied from 50 microns/hr to 6.0 cm/hr. It was found that the density of dislocations depends critically on As partial pressure; and essentially dislocation-free, undoped, crystals were grown under As pressure precisely controlled by an As source maintained at 617 C. The free carrier concentration varied with As pressure variations. This variation in free carrier concentration was found to be associated with variations in the compensation ratio rather than with standard segregation phenomena.

  18. Atmospheric sugar alcohols: evaporation rates and saturation vapor pressures

    DEFF Research Database (Denmark)

    Bilde, Merete; Zardini, Alessandro Alessio; Hong, Juan

    volatile organic molecules. Saturation vapor pressure and the associated temperature dependence (dH) are key parameters for improving predictive atmospheric models. In this work we combine experiments and thermodynamic modeling to investigate these parameters for a series of polyols, so-called sugar......The atmospheric partitioning between gas and condensed phase of organic molecules is poorly understood, and discrepancies exist between predicted and observed concentrations of secondary organic aerosols. A key problem is the lack of information about thermodynamic properties of semi- and low...... alcohols. These polyols are common in the water soluble fraction of atmospheric aerosols. In our experimental system sub-micron particles are generated by nebulization from aqueous solution, and a mono disperse fraction of the aerosol is selected using a differential mobility analyzer. The particles...

  19. 40 CFR 63.1011 - Pressure relief devices in gas and vapor service standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Pressure relief devices in gas and vapor service standards. 63.1011 Section 63.1011 Protection of Environment ENVIRONMENTAL PROTECTION... Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The owner or operator...

  20. 40 CFR 63.1030 - Pressure relief devices in gas and vapor service standards.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Pressure relief devices in gas and vapor service standards. 63.1030 Section 63.1030 Protection of Environment ENVIRONMENTAL PROTECTION... § 63.1030 Pressure relief devices in gas and vapor service standards. (a) Compliance schedule. The...

  1. Method and apparatus to measure vapor pressure in a flow system

    Science.gov (United States)

    Grossman, M.W.; Biblarz, O.

    1991-10-15

    The present invention is directed to a method for determining, by a condensation method, the vapor pressure of a material with a known vapor pressure versus temperature characteristic, in a flow system particularly in a mercury isotope enrichment process. 2 figures.

  2. Effects of Vapor Pressure and Super-Hydrophobic Nanocomposite Coating on Microelectronics Reliability

    Directory of Open Access Journals (Sweden)

    Xuejun Fan

    2015-09-01

    Full Text Available Modeling vapor pressure is crucial for studying the moisture reliability of microelectronics, as high vapor pressure can cause device failures in environments with high temperature and humidity. To minimize the impact of vapor pressure, a super-hydrophobic (SH coating can be applied on the exterior surface of devices in order to prevent moisture penetration. The underlying mechanism of SH coating for enhancing device reliability, however, is still not fully understood. In this paper, we present several existing theories for predicting vapor pressure within microelectronic materials. In addition, we discuss the mechanism and effectiveness of SH coating in preventing water vapor from entering a device, based on experimental results. Two theoretical models, a micro-mechanics-based whole-field vapor pressure model and a convection-diffusion model, are described for predicting vapor pressure. Both methods have been successfully used to explain experimental results on uncoated samples. However, when a device was coated with an SH nanocomposite, weight gain was still observed, likely due to vapor penetration through the SH surface. This phenomenon may cast doubt on the effectiveness of SH coatings in microelectronic devices. Based on current theories and the available experimental results, we conclude that it is necessary to develop a new theory to understand how water vapor penetrates through SH coatings and impacts the materials underneath. Such a theory could greatly improve microelectronics reliability.

  3. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides.

    Science.gov (United States)

    Goodarzi, Mohammad; Coelho, Leandro dos Santos; Honarparvar, Bahareh; Ortiz, Erlinda V; Duchowicz, Pablo R

    2016-06-01

    The application of molecular descriptors in describing Quantitative Structure Property Relationships (QSPR) for the estimation of vapor pressure (VP) of pesticides is of ongoing interest. In this study, QSPR models were developed using multiple linear regression (MLR) methods to predict the vapor pressure values of 162 pesticides. Several feature selection methods, namely the replacement method (RM), genetic algorithms (GA), stepwise regression (SR) and forward selection (FS), were used to select the most relevant molecular descriptors from a pool of variables. The optimum subset of molecular descriptors was used to build a QSPR model to estimate the vapor pressures of the selected pesticides. The Replacement Method improved the predictive ability of vapor pressures and was more reliable for the feature selection of these selected pesticides. The results provided satisfactory MLR models that had a satisfactory predictive ability, and will be important for predicting vapor pressure values for compounds with unknown values. This study may open new opportunities for designing and developing new pesticide.

  4. U.S. Strategic Petroleum Reserve Vapor Pressure Committee 2009 annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Ray (Allen Energy Services, Inc., Longview, TX); Eldredge, Lisa (DynMcDermott Petroleum Operations, Harahan, LA); DeLuca, Charles (DynMcDermott Petroleum Operations, Harahan, LA); Mihalik, Patrick (DynMcDermott Petroleum Operations, Harahan, LA); Maldonado, Julio (U.S. Department of Energy, Harahan, LA); Lord, David L.; Rudeen, David Keith (GRAM, Inc., Albuquerque, NM); Berndsen, Gerard (U.S. Department of Energy, Harahan, LA)

    2010-05-01

    This report comprises an annual summary of activities under the U.S. Strategic Petroleum Reserve (SPR) Vapor Pressure Committee in FY2009. The committee provides guidance to senior project management on the issues of crude oil vapor pressure monitoring nd mitigation. The principal objectives of the vapor pressure program are, in the event of an SPR drawdown, to minimize the impact on the environment and assure worker safety and public health from crude oil vapor emissions. The annual report reviews key program areas ncluding monitoring program status, mitigation program status, new developments in measurements and modeling, and path forward including specific recommendations on cavern sampling for the next year. The contents of this report were first presented to SPR senior anagement in December 2009, in a deliverable from the vapor pressure committee. The current SAND report is an adaptation for the Sandia technical audience.

  5. Macroscopic Expressions of Molecular Adiabatic Compressibility of Methyl and Ethyl Caprate under High Pressure and High Temperature

    Directory of Open Access Journals (Sweden)

    Fuxi Shi

    2014-01-01

    Full Text Available The molecular compressibility, which is a macroscopic quantity to reveal the microcompressibility by additivity of molecular constitutions, is considered as a fixed value for specific organic liquids. In this study, we introduced two calculated expressions of molecular adiabatic compressibility to demonstrate its pressure and temperature dependency. The first one was developed from Wada’s constant expression based on experimental data of density and sound velocity. Secondly, by introducing the 2D fitting expressions and their partial derivative of pressure and temperature, molecular compressibility dependency was analyzed further, and a 3D fitting expression was obtained from the calculated data of the first one. The third was derived with introducing the pressure and temperature correction factors based on analogy to Lennard-Jones potential function and energy equipartition theorem. In wide range of temperatures (293pressures (0.1

    pressure and temperature of molecular compressibility was certified.

  6. Vapor pressures of the fluorinated telomer alcohols--limitations of estimation methods.

    Science.gov (United States)

    Stock, Naomi L; Ellis, David A; Deleebeeck, Lisa; Muir, Derek C G; Mabury, Scott A

    2004-03-15

    The influence of the unique, physical properties of poly- and perfluorinated chemicals on vapor pressure was investigated. Vapor pressures of a suite of fluorinated telomer alcohols (FTOHs) (CF3(CF2)nCH2CH2OH, where n = 3, 5, 7, or 9) were measured using the boiling point method and ranged from 144 to 992 Pa. Comparison of experimental and literature values indicate that perfluorocarbons (CF3(CF2)nCF3, where n = 0-6) and fluorinated telomer alcohols have vapor pressures equal to or greater than that of their hydrogen analogues. These chemically counterintuitive results can be explained by the unique geometry of poly- and perfluorinated chemicals--in particular the stiff, helical perfluorinated chain and the significant intramolecular hydrogen bonding of the FTOHs. The majority of models investigated for the estimation of vapor pressure did not compensate for this unique geometry and consistently underpredicted the vapor pressures of the FTOHs. Calculation of partitioning constants using both experimental and estimated vapor pressures indicate that both the Antoine and Modified Grain models, and to a lesser degree the Mackay model, are insufficiently accurate for estimating the vapor pressures of the FTOHs, particularly the longer chain FTOHs. Future models should consider parameters such as geometry, strength, and location of intramolecular hydrogen bonds and otherfunction groups in the molecule in order to improve vapor pressure estimation accuracy. It appears likely that the unique molecular geometry of the FTOHs influences not only their vapor pressure but also other physical properties and hence environmental fate and dissemination.

  7. Cohesive zone laws for void growth — II. Numerical field projection of elasto-plastic fracture processes with vapor pressure

    Science.gov (United States)

    Chew, Huck Beng; Hong, Soonsung; Kim, Kyung-Suk

    2009-08-01

    Modeling ductile fracture processes using Gurson-type cell elements has achieved considerable success in recent years. However, incorporating the full mechanisms of void growth and coalescence in cohesive zone laws for ductile fracture still remains an open challenge. In this work, a planar field projection method, combined with equilibrium field regularization, is used to extract crack-tip cohesive zone laws of void growth in an elastic-plastic solid. To this end, a single row of void-containing cell elements is deployed directly ahead of a crack in an elastic-plastic medium subjected to a remote K-field loading; the macroscopic behavior of each cell element is governed by the Gurson porous material relation, extended to incorporate vapor pressure effects. A thin elastic strip surrounding this fracture process zone is introduced, from which the cohesive zone variables can be extracted via the planar field projection method. We show that the material's initial porosity induces a highly convex traction-separation relationship — the cohesive traction reaches the peak almost instantaneously and decreases gradually with void growth, before succumbing to rapid softening during coalescence. The profile of this numerically extracted cohesive zone law is consistent with experimentally determined cohesive zone law in Part I for multiple micro-crazing in HIPS. In the presence of vapor pressure, both the cohesive traction and energy are dramatically lowered; the shape of the cohesive zone law, however, remains highly convex, which suggests that diffusive damage is still the governing failure mechanism.

  8. Saturated vapor pressure above the amalgam of alkali metals in discharge lamps

    Science.gov (United States)

    Gavrish, S. V.

    2011-12-01

    A theoretical and numerical analysis of the evaporation process of two-component compounds in vapors of alkali metals in discharge lamps is presented. Based on the developed mathematical model of calculation of saturated vapor pressure of the metal above the amalgam, dependences of mass fractions of the components in the discharge volume on design parameters and thermophysical characteristics of the lamp are obtained.

  9. A simple table-top demonstration of radiation pressure on a macroscopic object

    CERN Document Server

    Jesensky, G; Khomenko, O; Kim, W J

    2016-01-01

    We report a simple demonstration of radiation pressure on a table-top experiment. Utilizing dynamic force microscopy in ambient environment, the resonant motion of a cm-sized cantilever driven by an amplitude-modulated diode laser is directly observed. Our versatile setup involves a host of exciting techniques that are relevant in precision force measurements and represents an ideal experiment in the undergraduate laboratory.

  10. Indoor/outdoor connections exemplified by processes that depend on an organic compound's saturation vapor pressure

    DEFF Research Database (Denmark)

    Weschler, Charles J.

    2003-01-01

    Outdoor and indoor environments are profitably viewed as parts of a whole connected through various physical and chemical interactions. This paper examines four phenomena that share a dependence on vapor pressure-the extent to which an organic compound in the gas phase sorbs on airborne particles......'s saturation vapor pressure correlates in a linear fashion with the logarithms of equilibrium coefficients characteristic of each of these four phenomena. Since, to a rough approximation, the log of an organic compound's vapor pressure scales with its molecular weight, molecular weight can be used to make...... first estimates of the above processes. For typical indoor conditions, only larger compounds with lower-saturation vapor pressures (e.g., tetracosane, pentacosane, or di-2-ethylhexyl phthalate) have airborne particle concentrations comparable to or larger than gas phase concentrations. Regardless...

  11. Determination of Optimal Vapor Pressure Data by the Second and Third Law Methods.

    Science.gov (United States)

    Nakajima, Kunihisa

    2016-01-01

    Though equilibrium vapor pressures are utilized to determine thermodynamic properties of not only gaseous species but also condensed phases, the obtained data often disagree by a factor of 100 and more. A new data analysis method is proposed using the so-called second and third law procedures to improve accuracy of vapor pressure measurements. It was found from examination of vapor pressures of cesium metaborate and silver that the analysis of the difference between the second and third law values can result in determination of an optimal data set. Since the new thermodynamic method does not require special techniques and or experiences in dealing with measured data, it is reliable and versatile to improve the accuracy of vapor pressure evaluation.

  12. Vapor pressure of R-410A/oil and R-407C/oil mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Yeau-Ren Jeng; Cheng-Shion Chang [National Chung Cheng University (Taiwan). Dept. of Mechanical Engineering; Chi-Chuan Wang [Industrial Technology Research Institute, Hsinchu (Taiwan). Energy and Resources Laboratories

    2001-06-01

    An experimental study was carried out to examine the vapor pressure of R-410A and R-407C in the presence of lubricant oil. The grades of the tested lubricants are ISO-32 and ISO-100. For R-410A refrigerant, the vapor pressure decreases with the increase of oil concentration. In addition, it is found that there are no significant changes of vapor pressures for the presence of lubricant oils for T{sub s} {<=} 25{sup o}C. For R- 407C refrigerant, the change of vapor pressure with oil concentration is comparatively small. It is likely that this phenomenon is related to the zeotropic nature of R-407C. (author)

  13. The Oxidation Rate of SiC in High Pressure Water Vapor Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Robinson, R. Craig

    1999-01-01

    CVD SiC and sintered alpha-SiC samples were exposed at 1316 C in a high pressure burner rig at total pressures of 5.7, 15, and 25 atm for times up to 100h. Variations in sample emittance for the first nine hours of exposure were used to determine the thickness of the silica scale as a function of time. After accounting for volatility of silica in water vapor, the parabolic rate constants for Sic in water vapor pressures of 0.7, 1.8 and 3.1 atm were determined. The dependence of the parabolic rate constant on the water vapor pressure yielded a power law exponent of one. Silica growth on Sic is therefore limited by transport of molecular water vapor through the silica scale.

  14. Determination of vapor pressures for nonpolar and semipolar organic compounds from gas chromatographic retention data

    Science.gov (United States)

    Hinckley, D.A.; Bidleman, T.F.; Foreman, W.T.; Tuschall, J.R.

    1990-01-01

    Vapor pressures for nonpolar and moderately polar organochlorine, pyrethroid, and organophosphate insecticides, phthalate esters, and organophosphate flame retardants were determined by capillary gas chromatography (GC). Organochlorines and polycyclic aromatic hydrocarbons with known liquid-phase vapor pressures (P??L) (standard compounds) were chromatographed along with two reference compounds n-C20 (elcosane) and p,p???-DDT on a 1.0-m-long poly(dimethylsiloxane) bonded-phase (BP-1) column to determine their vapor pressures by GC (P??GC). A plot of log P??L vs log P??GC for standard compounds was made to establish a correlation between measured and literature values, and this correlation was then used to compute P??L of test compounds from their measured P??GC. P??L of seven major components of technical chlordane, endosulfan and its metabolites, ??-hexachlorocyclohexane, mirex, and two components of technical toxaphene were determined by GC. This method provides vapor pressures within a factor of 2 of average literature values for nonpolar compounds, similar to reported interlaboratory precisions of vapor pressure determinations. GC tends to overestimate vapor pressures of moderately polar compounds. ?? 1990 American Chemical Society.

  15. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to understand the capacity of water vapor to transport copper and its mechanism,using the solubility method, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures from 310 ℃ to 350 ℃ and pressures from 42 × 105 to 100 × 105 Pa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gus. At a constant temperature, the solubility of copper increases with increasing water vapor pressure.Copper may exist as hydrated gaseous particles in the vapor phase, and the dissolution process can be denumber decreases with increasing temperature, varying from ~6 at 310 ℃, to ~5 at 330 ℃, and ~4at 350 ℃. The results show that interactions between gas-solvent H2O and copper will significantly enhance the dissolution and transport capacity of copper in the gas phase.

  16. Distribution of Vapor Pressure in the Vacuum Freeze-Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available In the big vacuum freeze-drying equipment, the drying rate of materials is uneven at different positions. This phenomenon can be explained by the uneven distribution of vapor pressure in chamber during the freeze-drying process. In this paper, a mathematical model is developed to describe the vapor flow in the passageways either between material plates and in the channel between plate groups. The distribution of vapor pressure along flow passageway is given. Two characteristic factors of passageways are defined to express the effects of structural and process parameters on vapor pressure distribution. The affecting factors and their actions are quantitatively discussed in detail. Two examples are calculated and analyzed. The analysis method and the conclusions are useful to estimate the difference of material drying rate at different parts in equipment and to direct the choice of structural and process parameters.

  17. Investigation of bubble-point vapor pressures for mixtures of an endothermic hydrocarbon fuel with ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Haiyun Sun; Wenjun Fang; Yongsheng Guo; Ruisen Lin [Zhejiang University, Hangzhou (China). Department of Chemistry, Molecular Thermodynamics

    2005-05-01

    Bubble-point vapor pressures and equilibrium temperatures for several mixtures with different mass fractions of a kerosene based endothermic hydrocarbon fuel (EHF) and ethanol were measured by comparative ebulliometry with inclined ebulliometers. Correlation between vapor pressures and equilibrium temperatures by the Antoine equation was given with satisfactory precision. The bubble-point lines of pressure versus composition at different temperatures and temperature versus composition at different pressures were obtained. The pseudo binary systems of EHF+ethanol appear with very large positive deviations from Raoult's law. It follows that the addition of ethanol had a critical effect on the vapor pressure of fuels. Ethanol may be an effective oxygenated hydrocarbon additive to adjust the volatility of EHF. 17 refs., 8 figs., 4 tabs.

  18. Integrated Rig for the Production of Boron Nitride Nanotubes via the Pressurized Vapor-Condenser Method

    Science.gov (United States)

    Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor)

    2014-01-01

    An integrated production apparatus for production of boron nitride nanotubes via the pressure vapor-condenser method. The apparatus comprises: a pressurized reaction chamber containing a continuously fed boron containing target having a boron target tip, a source of pressurized nitrogen and a moving belt condenser apparatus; a hutch chamber proximate the pressurized reaction chamber containing a target feed system and a laser beam and optics.

  19. MACROSCOPIC RIVERS

    NARCIS (Netherlands)

    VANDENBERG, IP

    1991-01-01

    We present a mathematical model for the ''river-phenomenon'': striking concentrations of trajectories of ordinary differential equations. This model of ''macroscopic rivers'' is formulated within nonstandard analysis, and stated in terms of macroscopes and singular perturbations. For a subclass, the

  20. Theoretical Calculation of the Real Vapor Pressure of Al during ISM Processing of Ni-xAl (at.pct)(x=25~50) Alloy

    Institute of Scientific and Technical Information of China (English)

    Jingjie GUO; Guizhong LIU; Yanqing SU; Jun JIA; Hengzhi FU

    2004-01-01

    A new model was established to calculate the real vapor pressure of Al in the molten Ni-xAI (at. Pct) (x=25~50)alloy. The effects of the holding time, chamber pressure, mole fraction of Al and melting temperature on the real vapor pressure of Al in the vacuum chamber were analyzed. Because of the impeding effect of the real vapor pressure on the evaporation loss rate, within a short time (less than 10 s), the real vapor pressure tends to a constant value.When the chamber pressure is less than the saturated vapor pressure of Al, the real vapor pressure of Al is equal to the chamber pressure. While when the chamber pressure is higher than the saturated vapor pressure, the real vapor pressure of Al approaches to the saturated vapor pressure of Al of the same condition.

  1. Change law of real vapor pressure of Al element in Ti- x Al ( x =25~50) melt during ISM process

    Institute of Scientific and Technical Information of China (English)

    刘贵仲; 苏彦庆; 郭景杰; 丁宏升; 贾均; 傅恒志

    2002-01-01

    A new model was established to calculate the real vapor pressure of the Al element in the molten Ti- x Al ( x =25~50,mole fraction,%) alloy.The effects of the holding time,chamber pressure,mole fraction of Al and melting temperature on the real vapor pressure of Al element in the vacuum chamber were analyzed.Because of the impeding effect of the real vapor pressure on the evaporation loss rate,within a short time (less than 10 s),the real vapor pressure tends to a constant value.When the chamber pressure is less than the saturated vapor pressure of the Al component,the real vapor pressure of Al is equal to the chamber pressure.While when the chamber pressure is larger than the saturated vapor pressure,the real vapor pressure is equal to the saturated vapor pressure of the Al element of the same condition.

  2. 40 CFR 264.1054 - Standards: Pressure relief devices in gas/vapor service.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Standards: Pressure relief devices in gas/vapor service. 264.1054 Section 264.1054 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY..., AND DISPOSAL FACILITIES Air Emission Standards for Equipment Leaks § 264.1054 Standards: Pressure...

  3. Effects of growth pressure on morphology of ZnO nanostructures by chemical vapor transport

    Science.gov (United States)

    Babu, Eadi Sunil; Kim, Sungjin; Song, Jung-Hoon; Hong, Soon-Ku

    2016-08-01

    The effect of growth pressure on the morphology of the ZnO nanostructures in chemical vapor transport by using Zn powder and oxygen as source materials has been investigated. Highly uniform aligned ZnO nanorods or multifaceted tripod structures were grown depending on the growth pressure. The mechanism governing the morphology change was explained by the relative concentration of Zn vapor and supersaturation based on experimental observations. It was concluded that heterogeneous nucleation on the substrate is enhanced at low growth pressure, while homogeneous nucleation from vapor phase is enhanced at high growth pressure. The difference resulted in different morphology of ZnO nanostructures. ZnO nanorods grown at optimized condition were used for the fabrication of gas sensor for the detection of H2 gas.

  4. Economic feasibility of replacing sodium vapor and high pressure mercury vapor bulbs with LEDs for street lighting

    Directory of Open Access Journals (Sweden)

    Olusola Olorunfemi Bamisile

    2016-01-01

    Full Text Available The main aim of this article is to examine the feasibility of an energy audit program. LEDs are used to replace the sodium vapor lamps and high-pressured mercury vapor lamps that are currently used for the street lighting system in the Turkish Republic of Northern Cyprus. 44% of the fossil fuels imported into the Turkish Republic of Northern Cyprus is used for electricity generation, which makes the reduction in the consumption of electicity very important. This project will save as much as 36,880,410 kWh on site annually and 111,758,818 kWh from the source. The economic, environmental, and fossil fuels savings of this project are also evaluated.

  5. Improved Assessment Strategies for Vapor Intrusion Passive Samplers and Building Pressure Control

    Science.gov (United States)

    2013-09-01

    Long-Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive- Adsorptive Sampling Techniques,” Mr. Todd McAlary is...on Henry’s Law Constant as >1 × 10-5 atm-m3 mol-1 and a vapor pressure >1 mm Hg Pathway Screening Criteria: For sites with volatile chemicals in...Term Monitoring of Soil Vapor Intrusion to Indoor Air Using Quantitative Passive Diffusive- Adsorptive Sampling Techniques.” The focus of the

  6. Vapor pressure of ionic liquids at low temperatures from AC-chip-calorimetry.

    Science.gov (United States)

    Ahrenberg, Mathias; Beck, Martin; Neise, Christin; Keßler, Olaf; Kragl, Udo; Verevkin, Sergey P; Schick, Christoph

    2016-08-03

    The very low vapor pressure of ionic liquids is challenging to measure. At elevated temperatures the liquids might start to decompose, and at relatively low temperatures the vapor pressure becomes too low to be measured by conventional methods. In this work we developed a highly sensitive method for mass loss determination at temperatures starting from 350 K. This technique is based on an alternating current calorimeter equipped with a chip sensor that consists of a free-standing SiNx-membrane (thickness measuring area with lateral dimensions of the order of 1 mm. A small droplet (diameter ca. 600 μm) of an ionic liquid is vaporized isothermally from the chip sensor in a vacuum-chamber. The surface-to-volume-ratio of such a droplet is large and the relative mass loss due to evaporation is therefore easy to monitor by the changing heat capacity (J K(-1)) of the remaining liquid. The vapor pressure is determined from the measured mass loss rates using the Langmuir equation. The method was successfully tested for the determination of the vapor pressure and the vaporization enthalpy of an archetypical ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm][NTf2]). The data set created in this way in an extremely broad temperature range from 358 K to 780 K has allowed the estimation of the boiling temperature of [EMIm][NTf2]. The value (1120 ± 50) K should be considered as the first reliable boiling point of the archetypical ionic liquid obtained from experimental vapor pressures measured in the most possible close proximity to the normal boiling temperature.

  7. Vapor pressure and freezing point osmolality measurements applied to a volatile screen.

    Science.gov (United States)

    Draviam, E J; Custer, E M; Schoen, I

    1984-12-01

    This is a report of a rapid and precise screening procedure, developed for the determination of ethanol in serum using osmolality measurements. The osmolality of the patient is determined by freezing point method (freezing point osmometry) and dew point (water vapor pressure osmometry) method. The difference between freezing point osmolality and vapor pressure osmolality (delta osm) is due to the presence of volatiles in the serum, because the volatiles are not measured by vapor pressure osmometry. The amount of ethanol (mg/dL) in serum is estimated by multiplying delta osm by a factor of 4.2. As a comparison method, ethanol also is measured by a spectrophotometric alcohol dehydrogenase method. In addition, a significant difference between an osmometric alcohol assayed value and enzymatic spectrophotometric measurement indicates the presence of volatiles, other than ethanol. In addition to ethanol there is a linear relationship between osmolality and isopropanol or methanol when added in vitro to serum.

  8. Microfluidic vapor-diffusion barrier for pressure reduction in fully closed PCR modules.

    Science.gov (United States)

    Czilwik, G; Schwarz, I; Keller, M; Wadle, S; Zehnle, S; von Stetten, F; Mark, D; Zengerle, R; Paust, N

    2015-02-21

    Microfluidic systems for polymerase chain reaction (PCR) should be fully closed to avoid vapor loss and to exclude the risk of contaminating the laboratory environment. In closed systems however, the high temperatures of up to 95 °C associated with PCR cause high overpressures up to 100 kPa, dominated by the increase of vapor partial pressure upon evaporation. Such high overpressures pose challenges to the mechanical stability of microfluidic chips as well as to the liquid handling in integrated sample-to-answer systems. In this work, we drastically reduce the pressure increase in fully closed PCR systems by integrating a microchannel that serves as a vapor-diffusion barrier (VDB), separating the liquid-filled PCR chamber from an auxiliary air chamber. In such configurations, propagation of vapor from the PCR chamber into the auxiliary air chamber and as a consequence the increase of pressure is limited by the slow diffusion process of vapor through the VDB. At temperature increase from 23 °C to 95 °C, we demonstrate the reduction of overpressure from more than 80 kPa without the VDB to only 35 kPa with the VDB. We further demonstrate proper function of VDB and its easy integration with downstream processes for PCR based nucleic acid amplification within centrifugal microfluidics. Without integration of the VDB, malfunction due to pressure-induced delamination of the microfluidic chip occurred.

  9. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhne, W.

    2012-12-03

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that

  10. The effect of capillary pressure for concave liquid-vapor interface on interfacial evaporation

    Institute of Scientific and Technical Information of China (English)

    张金涛; 王补宣; 彭晓峰

    2001-01-01

    The analysis in this paper demonstrates that the capillary pressure on the concave liquid-vapor interface will promote the interfacial evaporation, therefore clarifying the confusion over the great difference between the estimated and real rate of interfacial evaporation. This difference increases with decreasing capillary radius, and becomes more apparent for liquid with high latent heat. The present analysis also shows that the capillary pressure on the concave interface will result in a decrease in liquid phase equilibrium temperature, which can explain the possibility of vapor bubble formation on micro liquid layer interfacial evaporation under low superheat, or even below the nominal saturated temperature.

  11. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    Science.gov (United States)

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  12. Growth of a dry spot under a vapor bubble at high heat flux and high pressure

    CERN Document Server

    Nikolayev, Vadim; Lagier, G -L; Hegseth, J

    2016-01-01

    We report a 2D modeling of the thermal diffusion-controlled growth of a vapor bubble attached to a heating surface during saturated boiling. The heat conduction problem is solved in a liquid that surrounds a bubble with a free boundary and in a semi-infinite solid heater by the boundary element method. At high system pressure the bubble is assumed to grow slowly, its shape being defined by the surface tension and the vapor recoil force, a force coming from the liquid evaporating into the bubble. It is shown that at some typical time the dry spot under the bubble begins to grow rapidly under the action of the vapor recoil. Such a bubble can eventually spread into a vapor film that can separate the liquid from the heater thus triggering the boiling crisis (critical heat flux).

  13. Vapour pressure and enthalpy of vaporization of aliphatic poly-amines

    Energy Technology Data Exchange (ETDEWEB)

    Efimova, Anastasia A.; Emel' yanenko, Vladimir N. [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Verevkin, Sergey P., E-mail: sergey.verevkin@uni-rostock.d [Department of Physical Chemistry, University of Rostock, Dr-Lorenz-Weg 1, D-18059 Rostock (Germany); Chernyak, Yury [Huntsman Corporation, Advanced Technology Center, 8600 Gosling Road, The Woodlands, 77381 TX (United States)

    2010-03-15

    Molar enthalpies of vaporization of aliphatic poly-amines: 1,4-dimethylpiperazine [106-58-1], 1-(2-aminoethyl)-piperazine, [140-31-8], 1-(2-aminoethyl)-4-methyl-piperazine [934-98-5], and triethylenetetramine [112-24-3] were obtained from the temperature dependence of the vapour pressure measured by the transpiration method. A large number of the primary experimental results on temperature dependences of vapour pressures of the parent compounds have been collected from the literature and have been treated uniformly in order to derive vaporization enthalpies of poly-amines at the reference temperature 298.15 K. An internal consistency check was performed on enthalpy of vaporization values for poly-amines studied in this work.

  14. Vapor film collapse triggered by external pressure pulse and the fragmentation of melt droplet in FCIs

    Institute of Scientific and Technical Information of China (English)

    LIN Qian; TONG Lili; CAO Xuewu; KRIVENTSEV Vladimir

    2008-01-01

    The fragmentation process of high-temperature molten drop is a key factor to determine the ratio heat transferred to power in FCIs,which estimates the possible damage degree during the hypothetical severe accident in the nuclear reactors.In this paper,the fragmentation process of melt droplet in FCIs is investigated by theoretic analysis.The fragmentation mechanism is studied when an external pressure pulse applied to a melt droplet,which is surrounded by vapor film.The vapor film collapse which induces fragmentation of melt droplet is analyzed and modeled.And then the generated pressure is calculated.The vapor film collapse model is introduced to fragmentation correlation,and the predicted fragment size is calculated and compared with experimental data.The result shows that the developed model can predict the diameter of fragments and can be used to calculate the fragmentation process appreciatively.

  15. SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

    Science.gov (United States)

    Pankow, J. F.; Asher, W. E.

    2008-05-01

    The SIMPOL.1 group contribution method is developed for predicting the liquid vapor pressure poL (atm) and enthalpy of vaporization Δ Hvap (kJ mol-1) of organic compounds as functions of temperature (T). For each compound i, the method assumes log10poL,i (T)=∑kνk,ibk(T) where νk,i is the number of groups of type k, and bk (T) is the contribution to log10poL,i (T) by each group of type k. A zeroeth group is included that uses b0 (T) with ν0,i=1 for all i. A total of 30 structural groups are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary), aromatic amine, amide (primary, secondary, and tertiary), peroxide, hydroperoxide, peroxy acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester, aromatic rings, non-aromatic rings, C=C-C=O in a non-aromatic ring, and carbon on the acid-side of an amide. The T dependence in each of the bk (T) is assumed to follow b(T)=B1/T+B2+B3T+B4ln T. Values of the B coefficients are fit using an initial basis set of 272 compounds for which experimentally based functions po L,i=fi (T) are available. The range of vapor pressure considered spans fourteen orders of magnitude. The ability of the initially fitted B coefficients to predict poL values is examined using a test set of 184 compounds and a T range that is as wide as 273.15 to 393.15 K for some compounds. σFIT is defined as the average over all points of the absolute value of the difference between experimental and predicted values of log10poL,i (T). After consideration of σFIT for the test set, the initial basis set and test set compounds are combined, and the B coefficients re-optimized. For all compounds and temperatures, σFIT=0.34: on average, poL,i (T) values are predicted to within a factor of 2. Because d(log10 poL,i (T))d(1/T) is related to the enthalpy of vaporization ΔHvap,i, the fitted B provide

  16. Measured Saturation Vapor Pressures of Phenolic and Nitro-aromatic Compounds.

    Science.gov (United States)

    Bannan, Thomas J; Booth, A Murray; Jones, Benjamin T; O'Meara, Simon; Barley, Mark H; Riipinen, Ilona; Percival, Carl J; Topping, David

    2017-04-04

    Phenolic and nitro-aromatic compounds are extremely toxic components of atmospheric aerosol that are currently not well understood. In this Article, solid and subcooled-liquid-state saturation vapor pressures of phenolic and nitro-aromatic compounds are measured using Knudsen Effusion Mass Spectrometry (KEMS) over a range of temperatures (298-318 K). Vapor pressure estimation methods, assessed in this study, do not replicate the observed dependency on the relative positions of functional groups. With a few exceptions, the estimates are biased toward predicting saturation vapor pressures that are too high, by 5-6 orders of magnitude in some cases. Basic partitioning theory comparisons indicate that overestimation of vapor pressures in such cases would cause us to expect these compounds to be present in the gas state, whereas measurements in this study suggest these phenolic and nitro-aromatic will partition into the condensed state for a wide range of ambient conditions if absorptive partitioning plays a dominant role. While these techniques might have both structural and parametric uncertainties, the new data presented here should support studies trying to ascertain the role of nitrogen containing organics on aerosol growth and human health impacts.

  17. Molar Mass and Second Virial Coefficient of Polyethylene Glycol by Vapor Pressure Osmometry

    Science.gov (United States)

    Schwinefus, Jeffrey J.; Checkal, Caleb; Saksa, Brian; Baka, Nadia; Modi, Kalpit; Rivera, Carlos

    2015-01-01

    In this laboratory experiment, students determine the number-average molar masses and second virial coefficients of polyethylene glycol (PEG) polymers ranging in molar mass from 200 to 1500 g mol[superscript -1] using vapor pressure osmometry (VPO). Students assess VPO in relation to accurate molar mass calculations of PEG polymers. Additionally,…

  18. Vapor Pressure Determination of VM Using the Denunder-Liquid Chromatography-Mass Spectrometry Technique

    Science.gov (United States)

    2015-01-01

    obtained using a mass flow controller (MFC), rotameter, or critical orifice , with a vacuum source. The vacuum source, which is external to the...The generator was then integrated into the vapor pressure test system. The airstream entered the side arm of the generator and passed through the

  19. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    Science.gov (United States)

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  20. Vapor Pressures of Di-n-Butyl Phthalate and Di-iso-Butyl Hexahydrophthalate at Reduced Pressures

    Institute of Scientific and Technical Information of China (English)

    齐欣; 徐立勇; 高正红; 刘志华

    2004-01-01

    In this paper the measured values of the vapor pressures by ebulliometer method of two important maleic anhydride recovery solvents, di-n-butyl phthalate (DBP) and di-iso-butyl hexahydrophthalate (DIBE), between 0.63-17.79 kPa and 0.49-30.95 kPa,are reported respectively.A comparison of the data of DBP with the published data has been made, which shows good consistency. For the convenient use of these vapor pressures, Cragoe equation, Antoine equation and Kirchhoff equation are selected to correlate them. The correlating results show that Antoine equation is the best one of the three equations to fit for the vapor pressures of the two solvents. According to Clausius-Clapeyron equation, the linear relationship between natural logarithm of pressure and reciprocal of temperature is used to calculate the molar latent heats of evaporation of the two organic solvents. The molar latent heats of evaporation of DBP and DIBE are 75.1 kJ/mol and 67.7 kJ/mol, respectively.

  1. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo [Tokyo Institute of Technology (Japan)

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  2. Deviations from Ideal Sublimation Vapor Pressure Behavior in Mixtures of Polycyclic Aromatic Compounds with Interacting Heteroatoms.

    Science.gov (United States)

    Goldfarb, Jillian L; Suuberg, Eric M

    2010-08-01

    Despite the relatively small atomic fraction of a given heteroatom in a binary mixture of polycyclic aromatic compounds (PAC), the inclusion of heteroatomic substituted compounds can significantly impact mixture vapor pressure behavior over a wide range of temperatures. The vapor pressures of several binary PAC mixtures containing various heteroatoms show varying behavior, from practically ideal behavior following Raoult's law to significant deviations from ideality depending on the heteroatom(s) present in the mixture. Mixtures were synthesized using the quench-cool technique with equimolar amounts of two PAC, both containing heteroatoms such as aldehyde, carboxyl, nitrogen, and sulfur substituent groups. For some mixtures, deviation from ideality is inversely related to temperature, though in other cases we see deviations from ideality increasing with temperature, whereas some appear independent of temperature. Most commonly we see lower vapor pressures than predicted by Raoult's law, which indicates that the interacting heteroatoms prefer the solid mixture phase as opposed to the vapor phase. Although negative deviations predominate from Raoult's Law, the varying mixtures investigated show both higher and lower enthalpies and entropies of sublimation than predicted. In each mixture, a higher enthalpy of sublimation leads to higher entropy of sublimation than predicted, and vice versa.

  3. Simulation Research of Vaporization and Pressure Variation in a Cryogenic Propellant Tank at the Launch Site

    Science.gov (United States)

    Chen, Liang; Liang, Guo-zhu

    2013-12-01

    In order to improve depiction of pressure variation and investigate the interrelation among the physical processes in propellant tanks, a 2D axial symmetry Volume-of-Fluid (VOF) CFD model is established to simulate a large-sized liquid propellant tank when the rocket is preparing for launch with propellant loaded at the launch site. The numerical model is considered with propellant free convection, heat transfer between the tank and the external environment, thermal exchange between propellant and inner tank wall surfaces, gas compressibility, and phase change modeled under the assumption of thermodynamic equilibrium. Vaporization rate of the vented LH2 tank and prediction of pressure change in the tank pressurized with GHe are obtained through simulation. We analysis the distributions of phase, temperature, and velocity vectors to reveal interactions among the propellant's own convection motion, heat transfer and phase change. The results show that the vaporization rate is mainly affected by heat leaks though the tank wall when the tank is vented, but it does not completely accord with the trend of the leakage because of convection motion and temperature nonuniformity of the liquid propellant in the tank. We also find that the main factors on pressure variation in the pressurized tank are the heat transfer on the tank wall surface bonding the ullage and propellant vaporization which has comparatively less influence.

  4. Advanced Computational Modeling of Vapor Deposition in a High-Pressure Reactor

    Science.gov (United States)

    Cardelino, Beatriz H.; Moore, Craig E.; McCall, Sonya D.; Cardelino, Carlos A.; Dietz, Nikolaus; Bachmann, Klaus

    2004-01-01

    In search of novel approaches to produce new materials for electro-optic technologies, advances have been achieved in the development of computer models for vapor deposition reactors in space. Numerical simulations are invaluable tools for costly and difficult processes, such as those experiments designed for high pressures and microgravity conditions. Indium nitride is a candidate compound for high-speed laser and photo diodes for optical communication system, as well as for semiconductor lasers operating into the blue and ultraviolet regions. But InN and other nitride compounds exhibit large thermal decomposition at its optimum growth temperature. In addition, epitaxy at lower temperatures and subatmospheric pressures incorporates indium droplets into the InN films. However, surface stabilization data indicate that InN could be grown at 900 K in high nitrogen pressures, and microgravity could provide laminar flow conditions. Numerical models for chemical vapor deposition have been developed, coupling complex chemical kinetics with fluid dynamic properties.

  5. Sublimation characterization and vapor pressure estimation of an HIV nonnucleoside reverse transcriptase inhibitor using thermogravimetric analysis.

    Science.gov (United States)

    Xie, Minli; Ziemba, Theresa M; Maurin, Michael B

    2003-01-01

    The purpose of this research is to investigate the sublimation process of DPC 963, a second-generation nonnucleoside reverse transcriptase inhibitor for HIV-1 retrovirus, and to better understand the effect of sublimation during active pharmaceutical ingredient (API) manufacture and formulation development, especially the drying processes. Sublimation of DPC 963 at 150 degrees C and above was determined by thermogravimetric analysis-Fourier transform infrared (TGA-FTIR). The rates of sublimation at different temperatures were measured using isothermal TGA. Condensed material was collected and analyzed by differential scanning calorimetry (DSC), x-ray powder diffraction (XRPD), and infrared (IR) spectrometry. Benzoic acid was used as a reference standard to derive a linear logarithmic relationship between sublimation/evaporation rate and vapor pressure specific to the TGA system used in this study. Sublimation and evaporation of DPC 963 were found to follow apparent zero-order kinetics. Using the Eyring equation, the enthalpy and entropy of the sublimation and evaporation processes were obtained. The enthalpies of sublimation and evaporation were found to be 29 and 22 kcal/mol, respectively. The condensed material from the vapor phase was found to exist in 2 physical forms, amorphous and crystalline. Using benzoic acid as a reference standard, vapor pressure of DPC 963 at different temperatures was calculated using the linear logarithmic relationship obtained. DPC 963 undergoes sublimation at appreciable rates at 150 degrees C and above but this is not likely to pose a serious issue during the manufacturing process. Vapor pressure estimation using thermogravimetric analysis provided sufficient accuracy to be used as a fast, simple, and safe alternative to the traditional methods of vapor pressure determination.

  6. Vapor pressure data for fatty acids obtained using an adaptation of the DSC technique

    Energy Technology Data Exchange (ETDEWEB)

    Matricarde Falleiro, Rafael M. [LPT, Departamento de Processos Quimicos (DPQ), Faculdade de Engenharia Quimica, Universidade de Campinas (UNICAMP), 13083-852 Campinas - SP (Brazil); Akisawa Silva, Luciana Y. [Departamento de Ciencias Exatas e da Terra, Universidade Federal de Sao Paulo (UNIFESP), 09972-270 Diadema - SP (Brazil); Meirelles, Antonio J.A. [EXTRAE, Departamento de Engenharia de Alimentos (DEA), Faculdade de Engenharia de Alimentos, Universidade de Campinas (UNICAMP), 13083-862 Campinas - SP (Brazil); Kraehenbuehl, Maria A., E-mail: mak@feq.unicamp.br [LPT, Departamento de Processos Quimicos (DPQ), Faculdade de Engenharia Quimica, Universidade de Campinas (UNICAMP), 13083-852 Campinas - SP (Brazil)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer Vapor pressure data of fatty acids were measured by Differential Scanning Calorimetry. Black-Right-Pointing-Pointer The DSC technique is especially advantageous for expensive chemicals. Black-Right-Pointing-Pointer High heating rate was used for measuring the vapor pressure data. Black-Right-Pointing-Pointer Antoine constants were obtained for the selected fatty acids. - Abstract: The vapor pressure data for lauric (C{sub 12:0}), myristic (C{sub 14:0}), palmitic (C{sub 16:0}), stearic (C{sub 18:0}) and oleic (C{sub 18:1}) acids were obtained using Differential Scanning Calorimetry (DSC). The adjustments made in the experimental procedure included the use of a small sphere (tungsten carbide) placed over the pinhole of the crucible (diameter of 0.8 mm), making it possible to use a faster heating rate than that of the standard method and reducing the experimental time. The measurements were made in the pressure range from 1333 to 9333 Pa, using small sample quantities of fatty acids (3-5 mg) at a heating rate of 25 K min{sup -1}. The results showed the effectiveness of the technique under study, as evidenced by the low temperature deviations in relation to the data reported in the literature. The Antoine constants were fitted to the experimental data whose values are shown in Table 5.

  7. High-pressure homogenization lowers water vapor permeability of soybean protein isolate-beeswax films.

    Science.gov (United States)

    Zhang, Chao; Ma, Yue; Guo, Kuan; Zhao, Xiaoyan

    2012-03-07

    Soybean-protein isolate (SPI) has excellent film-forming capacity. However, the water vapor permeability of SPI film is high, which will cause the moisture lose of packaged products. The effect of high-pressure homogenization (HPH) on the water vapor permeability of SPI-beeswax films was evaluated. The HPH was effective at lowering the water vapor permeability of SPI-beeswax films to about 50% of the control. The HPH reduced the particle size of films and made their matrix more compact. The HPH improved the hydrophobicity of SPI-beeswax films. For the first time, we proved that the HPH improved the bound-beeswax content in SPI-beeswax films. The bound beeswax was effective at lowering the water vapor permeability of films rather than the free beeswax in the film matrix. In summary, the HPH lowered water vapor permeability of SPI-beeswax films by reducing their particle size and raising their hydrophobicity and bound-beeswax content.

  8. Method of Measuring the Vapor Pressure and Concentration of Fluids using VLE and Vibrating Tube Densitometer Apparatuses

    OpenAIRE

    Abdalla, Momin Elhadi; Pannir, Siddharth

    2016-01-01

    This work presents the vapor pressure and concentration measurement of newly discovered environmentally friendly refrigerants 1, 1-difluoroethane (R152a) and 1,1,1,3,3-Pentafluorbutane (R365mfc), besides their mixture. The experimental procedure used in this work was a VLE recirculation type apparatus in which the liquid phase is circulating around the equilibrium cell. Special attention was given to enable a highly accurate vapor pressure measurement up to maximum pressure of 25 bar. The li...

  9. Growth of aligned ZnO nanowires via modified atmospheric pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yuping; Li, Chengchen [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Mingming, E-mail: andychain@live.cn [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Yu, Xiao; Chang, Yunwei [Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013 (China); Chen, Anqi [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Zhu, Hai, E-mail: zhuhai5@mail.sysu.edu.cn [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); Tang, Zikang, E-mail: zktang@umac.mo [State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics & Information Technology, Sun Yat-Sen University, Guangzhou Higher Education Mega Center (University Town), Guangzhou, 510006 (China); The Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau (China)

    2016-12-09

    In this work, we report the growth of high-quality aligned ZnO nanowires via a facile atmospheric pressure chemical vapor deposition (CVD) method. The CVD reactor chamber used was more complicated than a conventional one due to the quartz boats loaded with sources (ZnO/C) and substrates being inserted into a semi-open quartz tube, and then placed inside the CVD reactor. The semi-open quartz tube played a very important role in growing the ZnO nanowires, and demonstrated that the transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber. Aligned ZnO nanowires were successfully obtained, though they were only found at substrates located upstream. The very high crystalline quality of the obtained ZnO nanowires was demonstrated by high-resolution transmission electron microscopy and room temperature photoluminescence investigations. Such ZnO nanowires with high crystalline quality may provide opportunities for the fabrication of ZnO-based nano-devices in future. - Highlights: • High-quality aligned ZnO nanowires were obtained via modified chemical vapor deposition under atmospheric pressure. • The semi-open quartz tube plays very important roles in growing ZnO nanowires. • The transportation properties of Zn and O vapor differ from those in the conventional CVD reactor chamber.

  10. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  11. SIMPOL.1: a simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

    Directory of Open Access Journals (Sweden)

    J. F. Pankow

    2008-05-01

    Full Text Available The SIMPOL.1 group contribution method is developed for predicting the liquid vapor pressure poL (atm and enthalpy of vaporization Δ Hvap (kJ mol-1 of organic compounds as functions of temperature (T. For each compound i, the method assumes log10poL,i (T=∑kνk,ibk(T where νk,i is the number of groups of type k, and bk (T is the contribution to log10poL,i (T by each group of type k. A zeroeth group is included that uses b0 (T with ν0,i=1 for all i. A total of 30 structural groups are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary, aromatic amine, amide (primary, secondary, and tertiary, peroxide, hydroperoxide, peroxy acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester, aromatic rings, non-aromatic rings, C=C–C=O in a non-aromatic ring, and carbon on the acid-side of an amide. The T dependence in each of the bk (T is assumed to follow b(T=B1/T+B2+B3T+B4ln T. Values of the B coefficients are fit using an initial basis set of 272 compounds for which experimentally based functions po L,i=fi (T are available. The range of vapor pressure considered spans fourteen orders of magnitude. The ability of the initially fitted B coefficients to predict poL values is examined using a test set of 184 compounds and a T range that is as wide as 273

  12. Vapor pressure and Flory-Huggins interaction parameters in binary polymeric solutions

    Energy Technology Data Exchange (ETDEWEB)

    Khansary, Milad Asgarpour [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-04-15

    This communication reports two unique relationships for (1) Flory-Huggins interaction parameter (χ) and (2) vapor pressure of solvent (P), which explicitly show their composition dependency. There is no empirical constant in the proposed relationships, and no trial and error and/or data-fitting optimization is required for determination and/ or correlation of vapor pressure and Flory-Huggins interaction parameter. A straightforward computational technique for implementation of models is provided. For a number of systems, the calculated data have been compared and evaluated against experimental ones and the reliability and accuracy of proposed relationships was assured. IARD (%) values on the order of 0.05 demonstrate the accuracy of the proposed method.

  13. TiOxNy coatings grown by atmospheric pressure metal organic chemical vapor deposition

    OpenAIRE

    Maury, Francis; Duminica, Florin-Daniel

    2010-01-01

    International audience; Titanium oxynitride coatings were deposited on various substrates by an original atmospheric pressure metal organic chemical vapor deposition (MOCVD) process using titanium tetra-iso-propoxide as titanium and oxygen precursors and hydrazine as a nitrogen source. The films composition was monitored by controlling the N2H4 mole fraction in the initial reactive gas phase. The variation of the N content in the films results in significant changes in morphological, structur...

  14. Simulation of low-temperature, atmospheric-pressure plasma enhanced chemical vapor deposition reactors

    OpenAIRE

    Lorant, Christophe; Descamps, Pierre; De Wilde, Juray; 1st BeLux workshop on “Coating, Materials, surfaces and Interfaces

    2014-01-01

    The simulation of low-temperature, atmospheric-pressure plasma enhanced chemical vapor deposition reactors is challenging due to the coupling of the fluid dynamics, the chemical reactions and the electric field and the stiffness of the resulting mathematical system. The model equations and the rigorous model reduction to reduce the stiffness are addressed in this paper. Considering pure nitrogen plasma, simulations with two configurations are discussed.

  15. Vapor Pressure of Saturated Aqueous Solutions of Potassium Sulfate from 310 K to 345 K

    Directory of Open Access Journals (Sweden)

    Matias O. Maggiolo

    2011-01-01

    Full Text Available The experimental evaluation of the vapor pressure of saturated aqueous solutions of potassium sulfate was carried out in the range of temperatures 310 K≤T≤345 K. The experimental data were used to determine the corresponding values of the water activity in such solutions. The analytical expressions as a function of temperature of both, vapor pressure and water activity, were obtained from the correlation of the experimental results. The vapor pressure expression was also extrapolated to a different temperature range in order to make a comparison with the results obtained by other authors.

  16. Vapor pressures and sublimation enthalpies of seven heteroatomic aromatic hydrocarbons measured using the Knudsen effusion technique.

    Science.gov (United States)

    Goldfarb, Jillian L; Suuberg, Eric M

    2010-06-01

    The vapor pressures of seven heteroatom-containing cyclic aromatic hydrocarbons, ranging in molecular weight from (168.19 to 208.21) grams plus sign in circlemol(-1) were measured over the temperature range of (301 to 486) Kelvin using the isothermal Knudsen effusion technique. The compounds measured include: anthraquinone, 9-fluorenone, 9-fluorenone oxime, phenoxazine, phenoxathiin and 9H-pyrido[3,4-b]indole. These solid-state sublimation measurements provided values that are compared to vapor pressures of parent aromatic compounds (anthracene and fluorene) and to others with substituent groups in order to examine the effects of alcohol, ketone, pyridine, and pyrrole functionality on this property. The enthalpies and entropies of sublimation for each compound were determined from the Clausius-Clapeyron equation. Though there is no consistent trend in terms of the effects of substitutions on changes in the enthalpy or entropy of sublimation, we note that the prevalence of enthalpic or entropic driving forces on vapor pressure depend on molecule-specific factors and not merely molecular weight of the substituents.

  17. Vapor Pressure and Evaporation Coefficient of Silicon Monoxide over a Mixture of Silicon and Silica

    Science.gov (United States)

    Ferguson, Frank T.; Nuth, Joseph A., III

    2012-01-01

    The evaporation coefficient and equilibrium vapor pressure of silicon monoxide over a mixture of silicon and vitreous silica have been studied over the temperature range (1433 to 1608) K. The evaporation coefficient for this temperature range was (0.007 plus or minus 0.002) and is approximately an order of magnitude lower than the evaporation coefficient over amorphous silicon monoxide powder and in general agreement with previous measurements of this quantity. The enthalpy of reaction at 298.15 K for this reaction was calculated via second and third law analyses as (355 plus or minus 25) kJ per mol and (363.6 plus or minus 4.1) kJ per mol respectively. In comparison with previous work with the evaporation of amorphous silicon monoxide powder as well as other experimental measurements of the vapor pressure of silicon monoxide gas over mixtures of silicon and silica, these systems all tend to give similar equilibrium vapor pressures when the evaporation coefficient is correctly taken into account. This provides further evidence that amorphous silicon monoxide is an intimate mixture of small domains of silicon and silica and not strictly a true compound.

  18. In-Reactor Oxidation of Zircaloy-4 Under Low Water Vapor Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G.; Senor, David J.; Clayton, Kevin; Longhurst, Glen

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330° and 370°C). Data from these tests will be used to support fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr-4 over the specified range of test conditions. Comparisons between in- and ex- reactor test results were performed to evaluate the influence of irradiation.

  19. In-reactor oxidation of zircaloy-4 under low water vapor pressures

    Energy Technology Data Exchange (ETDEWEB)

    Luscher, Walter G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Senor, David J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Clayton, Kevin K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Longhurst, Glen R. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-01-01

    Complementary in- and ex-reactor oxidation tests have been performed to evaluate the oxidation and hydrogen absorption performance of Zircaloy-4 (Zr-4) under relatively low partial pressures (300 and 1000 Pa) of water vapor at specified test temperatures (330 and 370 ºC). Data from these tests will be used to support the fabrication of components intended for isotope-producing targets and provide information regarding the temperature and pressure dependence of oxidation and hydrogen absorption of Zr- 4 over the specified range of test conditions. Comparisons between in- and ex-reactor test results were performed to evaluate the influence of irradiation.

  20. Thermochemical and Vapor Pressure Behavior of Anthracene and Brominated Anthracene Mixtures.

    Science.gov (United States)

    Fu, Jinxia; Suuberg, Eric M

    2013-03-25

    The present work concerns the thermochemical and vapor pressure behavior of the anthracene (1) + 2-bromoanthracene (2) and anthracene (1) + 9-bromoanthracene (3) systems. Solid-liquid equilibrium temperature and differential scanning calorimetry studies indicate the existence of a minimum melting solid state near an equilibrium temperature of 477.65 K at x1 = 0.74 for the (1) + (2) system. Additionally, solid-vapor equilibrium studies for the (1) + (2) system show that the vapor pressure of the mixtures depends on composition, but does not follow ideal Raoult's law behaviour. The (1) + (3) system behaves differently from the (1) + (2) system. The (1) + (3) system has a solid solution like phase diagram. The system consists of two phases, an anthracene like phase and a 9-bromoanthracene like phase, while (1) + (2) mixtures only form a single phase. Moreover, experimental studies of the two systems suggest that the (1) + (2) system is in a thermodynamically lower energy state than the (1) + (3) system.

  1. Pressure intelligent control strategy of Waste heat recovery system of converter vapors

    Science.gov (United States)

    Feng, Xugang; Wu, Zhiwei; Zhang, Jiayan; Qian, Hong

    2013-01-01

    The converter gas evaporative cooling system is mainly used for absorbing heat in the high temperature exhaust gas which produced by the oxygen blowing reaction. Vaporization cooling steam pressure control system of converter is a nonlinear, time-varying, lagging behind, close coupling of multivariable control object. This article based on the analysis of converter operation characteristics of evaporation cooling system, of vaporization in a production run of pipe pressure variation and disturbance factors.For the dynamic characteristics of the controlled objects,we have improved the conventional PID control scheme.In Oxygen blowing process, we make intelligent control by using fuzzy-PID cascade control method and adjusting the Lance,that it can realize the optimization of the boiler steam pressure control.By design simulation, results show that the design has a good control not only ensures drum steam pressure in the context of security, enabling efficient conversion of waste heat.And the converter of 1800 flue gas through pipes and cool and dust removal also can be cooled to about 800. Therefore the converter haze evaporative cooling system has achieved to the converter haze temperature decrease effect and enhanced to the coal gas returns-ratio.

  2. High-Pressure Solvent Vapor Annealing with a Benign Solvent To Rapidly Enhance the Performance of Organic Photovoltaics.

    Science.gov (United States)

    Jung, Buyoung; Kim, Kangmin; Eom, Yoomin; Kim, Woochul

    2015-06-24

    A high-pressure solvent vapor annealing (HPSVA) treatment is suggested as an annealing process to rapidly achieve high-performance organic photovoltaics (OPVs); this process can be compatible with roll-to-roll processing methods and uses a benign solvent: acetone. Solvent vapor annealing can produce an advantageous vertical distribution in the active layer; however, conventional solvent vapor annealing is also time-consuming. To shorten the annealing time, high-pressure solvent vapor is exposed on the active layer of OPVs. Acetone is a nonsolvent for poly(3-hexylthiophene-2,5-diyl) (P3HT), but it can dissolve small amounts of 1-(3-methoxycarbonyl)-propyl-1,1-phenyl-(6,6)C61 (PCBM). Acetone vapor molecules can penetrate into the active layer under high vapor pressure conditions to alter the morphology. HPSVA induces a PCBM-rich phase near the cathode and facilitates the transport of free charge carriers to the electrode. Although P3HT is not soluble in acetone, locally rearranged P3HT crystallites are generated. The performance of OPV films was enhanced after HPSVA; the film treated at 30 kPa for 10 s showed optimum performance. Additionally, this HPSVA method could be adapted for mass production because the temporary exposure of films to high-pressure acetone vapor in ambient conditions also improved performance.

  3. SIMPOL.1: A simple group contribution method for predicting vapor pressures and enthalpies of vaporization of multifunctional organic compounds

    Directory of Open Access Journals (Sweden)

    J. F. Pankow

    2007-08-01

    Full Text Available The SIMPOL.1 group contribution method is developed for predicting the liquid vapor pressure pLo (atm and enthalpy of vaporization ΔHvap (kJ mol-1 of organic compounds as functions of temperature (T. For each compound i, the method assumes log10pL,io(T=Σkνk,ibk(T where νk,i is the number of groups of type k, and bk(T is the contribution to log10 pL,io(T by each group of type k. A zeroeth group is included that uses b0(T with ν0,i=1 for all i. A total of 30 structural groups are considered: molecular carbon, alkyl hydroxyl, aromatic hydroxyl, alkyl ether, alkyl ring ether, aromatic ether, aldehyde, ketone, carboxylic acid, ester, nitrate, nitro, alkyl amine (primary, secondary, and tertiary, aromatic amine, amide (primary, secondary, and tertiary, peroxide, hydroperoxide, peroxy acid, C=C, carbonylperoxynitrate, nitro-phenol, nitro-ester, aromatic rings, non-aromatic rings, C=C–C=O in a non-aromatic ring, and carbon on the acid-side of an amide. The T dependence in each of the bk(T is assumed to follow b(T=B1/T+B2+B3T+B4lnT. Values of the B coefficients are fit using an initial basis set of 272 compounds for which experimentally based functions pL,io=fi(T are available. The range of vapor pressure considered spans fourteen orders of magnitude. The ability of the initially fitted B coefficients to predict pLo values is examined using a test

  4. Correlation of the vapor pressure isotope effect with molecular force fields in the liquid state

    Energy Technology Data Exchange (ETDEWEB)

    Pollin, J.S.; Ishida, T.

    1976-07-01

    The present work is concerned with the development and application of a new model for condensed phase interactions with which the vapor pressure isotope effect (vpie) may be related to molecular forces and structure. The model considers the condensed phase as being represented by a cluster of regularly arranged molecules consisting of a central molecule and a variable number of molecules in the first coordination shell. The methods of normal coordinate analysis are used to determine the modes of vibration of the condensed phase cluster from which, in turn, the isotopic reduced partition function can be calculated. Using the medium cluster model, the observed vpie for a series of methane isotopes has been successfully reproduced with better agreement with experiment than has been possible using the simple cell model. We conclude, however, that insofar as the medium cluster model provides a reasonable picture of the liquid state, the vpie is not sufficiently sensitive to molecular orientation to permit an experimental determination of intermolecular configuration in the condensed phase through measurement of isotopic pressure ratios. The virtual independence of vapor pressure isotope effects on molecular orientation at large cluster sizes is a demonstration of the general acceptability of the cell model assumptions for vpie calculations.

  5. CONSTRUCTION OF EXPERIMENTAL INSTALLATION FOR RESEARCHING OF DENSITY AND SATURATED VAPOR PRESSURE (SVP OF PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Kharchenko P. M.

    2015-03-01

    Full Text Available The most important physical properties that characterize the substance are density and saturated vapor pressure (SVP. These parameters are required for the development of new technical processes in the petroleum and chemical industries, design of pipelines, pumping and fuel equipment, etc. Existing methods for calculating of density near and on the saturation lines are imperfect, and finding of the analytic dependence of SVP of petroleum products from all defining parameters associated with great difficulties. The purpose of present work is an experimental research and development of methods for calculating the density (specific volume near and on saturation lines, and saturated vapor pressure of gasoline straight-run fraction derived from petroleums from three fields: Mangyshlaksky, Trinity-Anastasevsky and West Siberian. The choice of objects for research is due to the necessity of creating methods for calculating of density and SVP of oils obtained from various hydrocarbon group composition petroleums. Area of state parameters in the present work by temperature (20 ÷ 320°C and pressure (0,03 ÷ 30 MPa provides the ability to research gasoline fractions to supercritical regions. Measurement of density and SVP of petroleum fractions performed with help of a specially created for this purpose experimental installation

  6. High-pressure (vapor + liquid) equilibria in the (nitrogen + n-heptane) system

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Sanchez, Fernando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)]. E-mail: fgarcias@imp.mx; Eliosa-Jimenez, Gaudencio [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Silva-Oliver, Guadalupe [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico); Godinez-Silva, Armando [Laboratorio de Termodinamica, Programa de Ingenieria Molecular, Instituto Mexicano del Petroleo, Eje Central Lazaro Cardenas 152, 07730 Mexico, D.F. (Mexico)

    2007-06-15

    In this work, new (vapor + liquid) equilibrium data for the (N{sub 2} + n-heptane) system were experimentally measured over a wide temperature range from (313.6 to 523.7) K and pressures up to 50 MPa. A static-analytic apparatus with visual sapphire windows and pneumatic capillary samplers was used in the experimental measurements. Equilibrium phase compositions and (vapor + liquid) equilibrium ratios are reported. The new results were compared with those reported by other authors. The comparison showed that the pressure-composition data reported in this work are less scattered than those determined by others. Hence, the results demonstrate the reliability of the experimental apparatus at high temperatures and pressures. The experimental data were represented with the PR and PC-SAFT equations of state by using one-fluid mixing rules and a single temperature independent interaction parameter. Results of the representation showed that the PC-SAFT equation was superior to the PR equation in correlating the experimental data of the (N{sub 2} + n-heptane) system.

  7. Measurement of vapor pressures and heats of sublimation of dicarboxylic acids using atmospheric solids analysis probe mass spectrometry.

    Science.gov (United States)

    Bruns, Emily A; Greaves, John; Finlayson-Pitts, Barbara J

    2012-06-21

    Vapor pressures of low volatility compounds are important parameters in several atmospheric processes, including the formation of new particles and the partitioning of compounds between the gas phase and particles. Understanding these processes is critical for elucidating the impacts of aerosols on climate, visibility, and human health. Dicarboxylic acids are an important class of compounds in the atmosphere for which reported vapor pressures often vary by more than an order of magnitude. In this study, atmospheric solids analysis probe mass spectrometry (ASAP-MS), a relatively new atmospheric pressure ionization technique, is applied for the first time to the measurement of vapor pressures and heats of sublimation of a series of dicarboxylic acids. Pyrene was also studied because its vapor pressures and heat of sublimation are relatively well-known. The heats of sublimation measured using ASAP-MS were in good agreement with published values. The vapor pressures, assuming an evaporation coefficient of unity, were typically within a factor of ∼3 lower than published values made at similar temperatures for most of the acids. The underestimation may be due to diffusional constraints resulting from evaporation at atmospheric pressure. However, this study establishes that ASAP-MS is a promising new technique for such measurements.

  8. The control of purity and stoichiometry of compound semiconductors by high vapor pressure transport

    Science.gov (United States)

    Bachmann, Klaus J.; Ito, Kazufumi; Scroggs, Jeffery S.; Tran, Hien T.

    1995-01-01

    In this report we summarize the results of a three year research program on high pressure vapor transport (HPVT) of compound semiconductors. Most of our work focused onto pnictides, in particular ZnGeP2, as a model system. Access to single crystals of well controlled composition of this material is desired for advancing the understanding and control of its point defect chemistry in the contest of remote, real-time sensing of trace impurities, e.g., greenhouse gases, in the atmosphere by ZnGeP2 optical parametric oscillators (OPO's).

  9. Solubility parameter and activity coefficient of HDEHP dimer in select organic diluents by vapor pressure osmometry

    Energy Technology Data Exchange (ETDEWEB)

    Gray, M.; Nilsson, M. [University of California Irvine, 916 Engineering Tower, UC Irvine, Irvine, CA 92697-2575 (United States); Zalupski, P. [Idaho National Laboratory, 2525 Fremont Avenue, Idaho Falls, ID 83415 (United States)

    2013-07-01

    A thorough understanding of the non-ideal behavior of the chemical components utilized in solvent extraction contributes to the success of any large-scale spent nuclear fuel treatment. To address this, our current work uses vapor pressure osmometry to characterize the non-ideal behavior of the solvent extraction agent di-(2-ethylhexyl) phosphoric acid (HDEHP), a common extractant in proposed separation schemes. Solubility parameters were fit to data on HDEHP at four temperatures using models based on Scatchard Hildebrand regular solution theory with Flory Huggins entropic corrections. The results are comparable but not identical to the activity coefficients from prior slope analysis in the literature. (authors)

  10. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols

    Directory of Open Access Journals (Sweden)

    A. J. Komkoua Mbienda

    2013-01-01

    Lee and Kesler (LK, and Ambrose-Walton (AW methods for estimating vapor pressures ( are tested against experimental data for a set of volatile organic compounds (VOC. required to determine gas-particle partitioning of such organic compounds is used as a parameter for simulating the dynamic of atmospheric aerosols. Here, we use the structure-property relationships of VOC to estimate . The accuracy of each of the aforementioned methods is also assessed for each class of compounds (hydrocarbons, monofunctionalized, difunctionalized, and tri- and more functionalized volatile organic species. It is found that the best method for each VOC depends on its functionality.

  11. Selective growth of GaAs by organometallic vapor phase epitaxy at atmospheric pressure

    Science.gov (United States)

    Azoulay, R.; Dugrand, L.

    1991-01-01

    Complete selective epitaxy of GaAs by organometallic vapor phase epitaxy at atmospheric pressure was achieved by using TMG, AsH3, and AsCl3 as starting gases. Selectivity was observed at growth temperatures ranging from 650 to 750 °C. The blocking of polycrystal deposition on the mask, Si3N4, or W, is attributed to the adsorption of HCl on the mask, thus preventing the nucleation of GaAs. On the openings, the growth rate may be adjusted by controlling the TMG/AsCl3 ratio. When TMG/AsCl3<1, no growth occurs, but etching is observed.

  12. Pressurization of a Flightweight, Liquid Hydrogen Tank: Evaporation & Condensation at a Liquid/Vapor Interface

    Science.gov (United States)

    Stewart, Mark E. M.

    2017-01-01

    This paper presents an analysis and simulation of evaporation and condensation at a motionless liquid/vapor interface. A 1-D model equation, emphasizing heat and mass transfer at the interface, is solved in two ways, and incorporated into a subgrid interface model within a CFD simulation. Simulation predictions are compared with experimental data from the CPST Engineering Design Unit tank, a cryogenic fluid management test tank in 1-g. The numerical challenge here is the physics of the liquid/vapor interface; pressurizing the ullage heats it by several degrees, and sets up an interfacial temperature gradient that transfers heat to the liquid phase-the rate limiting step of condensation is heat conducted through the liquid and vapor. This physics occurs in thin thermal layers O(1 mm) on either side of the interface which is resolved by the subgrid interface model. An accommodation coefficient of 1.0 is used in the simulations which is consistent with theory and measurements. This model is predictive of evaporation/condensation rates, that is, there is no parameter tuning.

  13. Vapor-liquid Phase Equilibria for CO2+Tertpentanol Binary System at Elevated Pressures

    Institute of Scientific and Technical Information of China (English)

    WANG Lin; LUO Jian-cheng; YANG Hao; CHEN Kai-xun

    2011-01-01

    Vapor-liquid phase equilibrium data of tertpentanol in carbon dioxide were measured at temperatures of 313.4,323.4,333.5 and 343.5 K and in the pressure range of 4.56-11.44 MPa.The phase equilibium apparatus used in the work was a variable-volume high-pressure cell.The experimental data were reasonably correlated with Peng-Robinson equation of state(PR-EOS) together with van der Waals-2 two-parameter mixing rules.Henry's Law constants and partial molar volumes of CO2 at infinite dilution were estimated with Krichevsky-Kasarnovsky equation,and Henry's Law constants increase with increasing temperature,however,partial molar volumes of CO2 at infinite dilution are negative whose magnitudes decrease with temperature.Partial molar volumes of CO2 and tertpentanol in liquid phase at equilibrium were calculated.

  14. High-pressure catalytic chemical vapor deposition of ferromagnetic ruthenium-containing carbon nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Khavrus, Vyacheslav O., E-mail: V.Khavrus@ifw-dresden.de; Ibrahim, E. M. M.; Bachmatiuk, Alicja; Ruemmeli, Mark H.; Wolter, A. U. B.; Hampel, Silke; Leonhardt, Albrecht [IFW Dresden (Germany)

    2012-06-15

    We report on the high-pressure catalytic chemical vapor deposition (CCVD) of ruthenium nanoparticles (NPs) and single-walled carbon nanotubes (SWCNTs) by means of gas-phase decomposition of acetonitrile and ruthenocene in a tubular quartz flow reactor at 950 Degree-Sign C and at elevated pressures (between 2 and 8 bar). The deposited material consists of Ru metal cores with sizes ranging between 1 and 3 nm surrounded by a carbon matrix. The high-pressure CCVD seems to be an effective route to obtain composite materials containing metallic NPs, Ru in this work, inside a nanostructured carbon matrix protecting them from oxidation in ambient air. We find that in contradiction to the weak paramagnetic properties characterizing bulk ruthenium, the synthesized samples are ferromagnetic as predicted for nanosized particles of nonmagnetic materials. At low pressure, the very small ruthenium catalyst particles are able to catalyze growth of SWCNTs. Their yield decreases with increasing reaction pressure. Transmission electron microscopy, selected area energy-dispersive X-ray analysis, Raman spectroscopy, and magnetic measurements were used to analyze and confirm properties of the synthesized NPs and nanotubes. A discussion on the growth mechanism of the Ru-containing nanostructures is presented.

  15. Evaporation rates and vapor pressures of individual aerosol species formed in the atmospheric oxidation of alpha- and beta-pinene.

    Science.gov (United States)

    Bilde, M; Pandis, S N

    2001-08-15

    The semivolatile oxidation products (trans-norpinic acid, pinic acid, cis-pinonic acid, etc.) of the biogenic monoterpenes (alpha-pinene, beta-pinene, etc.) contribute to the atmospheric burden of particulate matter. Using the tandem differential mobility analysis (TDMA) technique evaporation rates of glutaric acid, trans-norpinic acid, and pinic acid particles were measured in a laminar flow reactor. The vapor pressure of glutaric acid was found to be log(p0 glutaric/Pa) = - 3,510 K/T + 8.647 over the temperature range 290-300 K in good agreement with the values previously reported by Tao and McMurry (1989). The measured vapor pressure of trans-norpinic acid over the temperature range 290-312 K is log(p0 norpinic/Pa) = - 2,196.9 K/T + 3.522, and the vapor pressure of pinic acid is log(p0 pinic/ Pa) = - 5,691.7 K/T + 14.73 over the temperature range 290-323 K. The uncertainty on the reported vapor pressures is estimated to be approximately +/- 50%. The vapor pressure of cis-pinonic acid is estimated to be of the order of 7 x 10(-5) Pa at 296 K.

  16. A unified equation for calculating methane vapor pressures in the CH4-H2O system with measured Raman shifts

    Science.gov (United States)

    Lu, W.; Chou, I.-Ming; Burruss, R.C.; Song, Y.

    2007-01-01

    A unified equation has been derived by using all available data for calculating methane vapor pressures with measured Raman shifts of C-H symmetric stretching band (??1) in the vapor phase of sample fluids near room temperature. This equation eliminates discrepancies among the existing data sets and can be applied at any Raman laboratory. Raman shifts of C-H symmetric stretching band of methane in the vapor phase of CH4-H2O mixtures prepared in a high-pressure optical cell were also measured at temperatures between room temperature and 200 ??C, and pressures up to 37 MPa. The results show that the CH4 ??1 band position shifts to higher wavenumber as temperature increases. We also demonstrated that this Raman band shift is a simple function of methane vapor density, and, therefore, when combined with equation of state of methane, methane vapor pressures in the sample fluids at elevated temperatures can be calculated from measured Raman peak positions. This method can be applied to determine the pressure of CH4-bearing systems, such as methane-rich fluid inclusions from sedimentary basins or experimental fluids in hydrothermal diamond-anvil cell or other types of optical cell. ?? 2007 Elsevier Ltd. All rights reserved.

  17. The vapor pressures and activities of dicarboxylic acids reconsidered: the impact of the physical state of the aerosol

    Directory of Open Access Journals (Sweden)

    V. Soonsin

    2010-08-01

    Full Text Available We present vapor pressure data of the C2 to C5 dicarboxylic acids deduced from measured evaporation rates of single levitated particles as both, aqueous droplets and solid crystals. The data of aqueous solution particles over a wide concentration range allow us to directly calculate activities of the dicarboxylic acids and comparison of these activities with parameterizations reported in the literature. The data of the pure liquid state acids, i.e. the dicarboxylic acids in their supercooled melt state, exhibit no even-odd alternation in vapor pressure, while the acids in the solid form do. This observation is consistent with the known solubilities of the acids and our measured vapor pressures of the supercooled melt. Thus, the gas/particle partitioning of the different dicarboxylic acids in the atmosphere depends strongly on the physical state of the aerosol phase, the difference being largest for the even acids.

    Our results show also that, in general, measurements of vapor pressures of solid dicarboxylic acids may be compromised by the presence of amorphous fractions, polymorphic forms, crystalline structures with a high defect number, and/or solvent inclusions in the solid material, yielding a higher vapor pressure than the one of the thermodynamically stable crystalline form at the same temperature.

  18. The vapor pressures and activities of dicarboxylic acids reconsidered: the impact of the physical state of the aerosol

    Directory of Open Access Journals (Sweden)

    V. Soonsin

    2010-12-01

    Full Text Available We present vapor pressure data of the C2 to C5 dicarboxylic acids deduced from measured evaporation rates of single levitated particles as both, aqueous droplets and solid crystals. The data of aqueous solution particles over a wide concentration range allow us to directly calculate activities of the dicarboxylic acids and comparison of these activities with parameterizations reported in the literature. The data of the pure liquid state acids, i.e. the dicarboxylic acids in their supercooled melt state, exhibit no even-odd alternation in vapor pressure, while the acids in the solid form do. This observation is consistent with the known solubilities of the acids and our measured vapor pressures of the supercooled melt. Thus, the gas/particle partitioning of the different dicarboxylic acids in the atmosphere depends strongly on the physical state of the aerosol phase, the difference being largest for the even acids. Our results show also that, in general, measurements of vapor pressures of solid dicarboxylic acids may be compromised by the presence of polymorphic forms, crystalline structures with a high defect number, and/or solvent inclusions in the solid material, yielding a higher vapor pressure than the one of the thermodynamically stable crystalline form at the same temperature.

  19. LSER-based modeling vapor pressures of (solvent+salt) systems by application of Xiang-Tan equation

    Institute of Scientific and Technical Information of China (English)

    Aynur Senol

    2015-01-01

    The study deals with modeling the vapor pressures of (solvent+salt) systems depending on the linear solvation energy relation (LSER) principles. The LSER-based vapor pressure model clarifies the simultaneous impact of the vapor pressure of a pure solvent estimated by the Xiang-Tan equation, the solubility and solvatochromic parameters of the solvent and the physical properties of the ionic salt. It has been performed independently two structural forms of the generalized solvation model, i.e. the unified solvation model with the integrated properties (USMIP) containing nine physical descriptors and the reduced property-basis solvation model. The vapor pressure data of fourteen (solvent+salt) systems have been processed to analyze statistical y the reliabil-ity of existing models in terms of a log-ratio objective function. The proposed vapor pressure approaches reproduce the observed performance relatively accurately, yielding the overall design factors of 1.0643 and 1.0702 for the integrated property-basis and reduced property-basis solvation models.

  20. X-Ray Tomographic Characterization of the Macroscopic Porosity of Chemical Vapor Infiltration SiC/SiC Composites: Effects on the Elastic Behavior

    Energy Technology Data Exchange (ETDEWEB)

    Gelebart, L.; Chateau, C. [CEA Saclay, SRMA, F-91190 Gif Sur Yvette (France); Chateau, C.; Bornert, M. [Ecole Polytech, LMS, F-91128 Palaiseau (France); Crepin, J. [CDM Mines Paris Paristech, F-91003 Evry (France); Boller, E. [ESRF ID19, F-38043 Grenoble 9 (France)

    2010-07-01

    This paper focuses on the characterization of the macro-porosity, the porosity among the tows, observed in chemical vapor infiltration composites and on its effect on the thermo-mechanical behavior. The experimental characterization of macro-porosity is performed using an X-ray tomography technique. Numerical 3D images are used to describe the distribution of macro-porosity with respect to the position of the plies. It is clearly established that the stacking of the plies has a significant effect on the porosity distribution. As a consequence for the micromechanical modelling, a unique element that contains only one ply is not representative of the porosity distribution and is not sufficient to evaluate the 'effective' mechanical properties; several volume elements (VE), called 'statistical volume elements (SVE)', with at least two plies per VE have to be used in order to account for the variability of the stacking of the plies. Finally, such SVE are directly extracted from the tomographic image and the 'effective' elastic behavior is evaluated from the average of the 'apparent' behavior evaluated on each SVE. In spite of their quite important size, the 'apparent' behaviors evaluated for each SVE exhibit important fluctuations. (authors)

  1. Atmospheric pressure synthesis of photoluminescent hybrid materials by sequential organometallic vapor infiltration into polyethylene terephthalate fibers

    Energy Technology Data Exchange (ETDEWEB)

    Akyildiz, Halil I. [Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Mousa, Moataz Bellah M. [Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Jur, Jesse S., E-mail: jsjur@ncsu.edu [Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2015-01-28

    Exposing a polymer to sequential organometallic vapor infiltration (SVI) under low pressure conditions can significantly modify the polymer's chemical, mechanical, and optical properties. We demonstrate that SVI of trimethylaluminum into polyethylene terephthalate (PET) can also proceed readily at atmospheric pressure, and at 60 °C the extent of reaction determined by mass uptake is independent of pressure between 2.5 Torr and 760 Torr. At 120 °C, however, the mass gain is 50% larger at 2.5 Torr relative to that at 760 Torr, indicating that the precursor diffusion in the chamber and fiber matrix decreases at higher source pressure. Mass gain decreases, in general, as the SVI process temperature increases both at 2.5 Torr and 760 Torr attributed to the faster reaction kinetics forming a barrier layer, which prevents further diffusion of the reactive species. The resulting PET/Al-O{sub x} product shows high photoluminescence compared to untreated fibers. A physical mask on the polymer during infiltration at 760 Torr is replicated in the underlying polymer, producing an image in the polymer that is visible under UV illumination. Because of the reduced precursor diffusivity during exposure at 760 Torr, the image shows improved resolution compared to SVI performed under typical 2.5 Torr conditions.

  2. Pressure-induced changes in Cr3+-doped elpasolites and LiCaAlF6: Interpretation of macroscopic data

    DEFF Research Database (Denmark)

    Trueba, A. ,; García Lastra, Juan Maria; Aramburu, J. A.

    2010-01-01

    lattices as a function of pressure in the 0–5 GPa range. From the calculated values of the lattice parameter and the Cr3+-X− (X=F, Cl, and Br) distance, R, it is found that R varies with the cell volume, vc, as vc(1/3β) where β lies around 2.6. These results allow one to understand quantitatively the 10Dq...... dependence on V−m/3 for LiCaAlF6:Cr3+ where the measured exponent m=2.3 is seemingly anomalous when compared to the values found for ruby (m=4.5) or NiO (m=5)....

  3. Pressure-induced changes in Cr3+ -doped elpasolites and LiCaAlF6 : Interpretation of macroscopic data

    Science.gov (United States)

    Trueba, A.; García-Lastra, J. M.; Aramburu, J. A.; García-Fernández, P.; Barriuso, M. T.; Moreno, M.

    2010-06-01

    In the research of pressure effects on Cr3+ -doped insulating lattices, it is crucial to understand the dependence of the 10Dq parameter on the sample volume, V . This problem is explored in the present work through ab initio calculations on Cr3+ -doped K2NaScF6 , Cs2NaYCl6 , and Cs2NaYBr6 elpasolite lattices as a function of pressure in the 0-5 GPa range. From the calculated values of the lattice parameter and the Cr3+-X- ( X=F , Cl, and Br) distance, R , it is found that R varies with the cell volume, vc , as vc(1/3β) where β lies around 2.6. These results allow one to understand quantitatively the 10Dq dependence on V-m/3 for LiCaAlF6:Cr3+ where the measured exponent m=2.3 is seemingly anomalous when compared to the values found for ruby (m=4.5) or NiO (m=5) .

  4. Vapor pressures and heats of sublimation of crystalline β-cellobiose from classical molecular dynamics simulations with quantum mechanical corrections.

    Science.gov (United States)

    Wohlert, Jakob

    2014-05-22

    In this paper, we report the calculation of the enthalpy of sublimation, Δ(sub)H, as a function of temperature of crystalline β-cellobiose from molecular dynamics (MD) simulations, using two popular carbohydrate force fields. Together with the entropy difference between the solid and the vapor, ΔS, evaluated at atmospheric pressure, Δ(sub)H gives the vapor pressure of cellobiose over the solid phase as a function of T. It is found that when quantum mechanical corrections to the enthalpy calculated from the distribution of normal modes is applied both force fields give Δ(sub)H close to experiments. The entropy change, ΔS, which is calculated within a harmonic approximation becomes too small, leading to vapor pressures that are too low. These findings are relevant to MD simulations of crystalline carbohydrates in general, e.g., native cellulose.

  5. The separation and characterization of a hydrogen getter product mixture: Part 2, measurement of product vapor pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fircish, D.W.; Shell, T.R.

    1987-06-04

    HCPB is the acronym of an organic hydrogen getter compound used in weapon systems. When this material scavenges hydrogen by reacting with it, a number of compounds are formed, each of which is more volatile than HCPB. It is desirable to know the vapor pressure of these products in order to assess their migration potential within the weapon. In this study, individual compounds from a reacted HCPB mixture were isolated and their vapor pressures were measured. Three of the four fractions examined with a modified capacitance manometer were found to have vapor pressures under 1 mtorr; the fourth was measured at 92 +- 15 mtorr. An attempt was made to obtain boiling point data on the two liquid components of the getter mixture, but they decomposed before reaching their boiling points.

  6. A non-local Richards equation to model infiltration into highly heterogeneous media under macroscopic non-equilibrium pressure conditions

    Science.gov (United States)

    Neuweiler, I.; Dentz, M.; Erdal, D.

    2012-04-01

    Infiltration into dry strongly heterogeneous media, such as fractured rocks, can often not be modelled by a standard Richards equation with homogeneous parameters, as the averaged water content is not in equilibrium with the averaged pressure. Often, double continua approaches are used for such cases. We describe infiltration into strongly heterogeneous media by a Richards model for the mobile domain, that is characterized by a memory kernel that encodes the local mass transfer dynamics as well as the geometry of the immobile zone. This approach is based on the assumption that capillary flow can be approximated as diffusion. We demonstrate that this approximation is in many cases justified. Comparison of the model predictions to the results of numerical simulations of infiltration into vertically layered media shows that the non-local approach describes well non-equilibrium effects due to mass transfer between high and low conductivity zones.

  7. Fabrication of Planar Heterojunction Perovskite Solar Cells by Controlled Low-Pressure Vapor Annealing.

    Science.gov (United States)

    Li, Yanbo; Cooper, Jason K; Buonsanti, Raffaella; Giannini, Cinzia; Liu, Yi; Toma, Francesca M; Sharp, Ian D

    2015-02-05

    A new method for achieving high efficiency planar CH3NH3I3-xClx perovskite photovoltaics, based on a low pressure, reduced temperature vapor annealing is demonstrated. Heterojunction devices based on this hybrid halide perovskite exhibit a top PCE of 16.8%, reduced J-V hysteresis, and highly repeatable performance without need for a mesoporous or nanocrystalline metal oxide layer. Our findings demonstrate that large hysteresis is not an inherent feature of planar heterojunctions, and that efficient charge extraction can be achieved with uniform halide perovskite materials with desired composition. X-ray diffraction, valence band spectroscopy, and transient absorption measurements of these thin films reveal that structural modifications induced by chlorine clearly dominate over chemical and electronic doping effects, without affecting the Fermi level or photocarrier lifetime in the material.

  8. Effect of Vapor Pressure Scheme on Multiday Evolution of SOA in an Explicit Model

    Science.gov (United States)

    Lee-Taylor, J.; Madronich, S.; Aumont, B.; Camredon, M.; Emmons, L. K.; Tyndall, G. S.; Valorso, R.

    2011-12-01

    Recent modeling of the evolution of Secondary Organic Aerosol (SOA) has led to the critically important prediction that SOA mass continues to increase for several days after emission of primary pollutants. This growth of organic aerosol in dispersing plumes originating from urban point sources has direct implications for regional aerosol radiative forcing. We investigate the robustness of predicted SOA mass growth downwind of Mexico City in the model GECKO-A (Generator of Explicit Chemistry and Kinetics of Organics in the Atmosphere), by assessing its sensitivity to the choice of vapor pressure prediction scheme. We also explore the implications for multi-day SOA mass growth of glassification / solidification of SOA constituents during aging. Finally we use output from the MOZART-4 chemical transport model to evaluate our results in the regional and global context.

  9. The predictable influence of soil temperature and barometric pressure changes on vapor intrusion

    Science.gov (United States)

    Barnes, David L.; McRae, Mary F.

    2017-02-01

    Intrusion of volatile organic compounds in the gas phase has impacted many buildings in many different locations. Various building and environmental factors such as buoyancy of heated air and changes in barometric pressure can influence indoor air concentrations due to vapor intrusion in these buildings resulting in seasonal and daily variability. One environmental factor that previous research has not adequately addressed is soil temperature. In this study we present two northern region study sites where the seasonal trends in indoor air VOC concentrations positively correlate with soil temperature, and short-term (days) variations are associated with barometric pressure changes. We present simple and multivariate linear relationships of indoor air concentrations as a function of soil temperature and barometric pressure. Results from this study show that small changes in soil temperature can result in relatively large changes in indoor air VOC concentrations where the gas phase VOCs are sourced from non-aqueous phase liquids contained in the soil. We use the results from this study to show that a five degree Celsius increase in soil temperature, a variation in soil temperature that is possible in many climatic regions, results in a two-fold increase in indoor air VOC concentrations. Additionally, analysis provides insight into how building ventilation, diffusion, and the relative rate of soil-gas flow across the slab both from the subsurface into the building and from the building into the subsurface impact short term variations in concentrations. With these results we are able to provide monitoring recommendations for practitioners.

  10. Gas chromatographic vapor pressure determination of atmospherically relevant oxidation products of β-caryophyllene and α-pinene

    Science.gov (United States)

    Hartonen, Kari; Parshintsev, Jevgeni; Vilja, Vesa-Pekka; Tiala, Heidi; Knuuti, Sinivuokko; Lai, Ching Kwan; Riekkola, Marja-Liisa

    2013-12-01

    Vapor pressures (subcooled liquid, pliquid) of atmospherically relevant oxidation products of β-caryophyllene (β-caryophyllene aldehyde 0.18 ± 0.03 Pa and β-nocaryophyllene aldehyde 0.17 ± 0.03 Pa), and α-pinene (pinonaldehyde 16.8 ± 0.20 Pa, cis-pinic acid 0.12 ± 0.06 Pa, and cis-pinonic acid 0.99 ± 0.19 Pa) at 298 K were obtained by gas chromatography with flame ionization detection (FID) and mass spectrometric (MS) detection. The effects of stationary phase polarity and column film thickness on the vapor pressure values were investigated. Increase in stationary phase polarity provided smaller values, while increase in film thickness gave slightly higher values. Values for vapor pressure were at least two orders of magnitude lower when obtained by a method utilizing vaporization enthalpy (determined by gas chromatography-mass spectrometry) than by retention index method. Finally, the results were compared with values calculated by group contribution theory. For the β-caryophyllene oxidation products, the values measured by gas chromatography were slightly lower than those obtained by theoretical calculations. The opposite trend was observed for the α-pinene oxidation products. The methods based on gas chromatography are concluded to be highly useful for the determination of vapor pressures of semi-volatile compounds. Except for the most polar pinic and pinonic acids, differences between vapor pressure values obtained by GC-FID and GC-MS were small. Since GC-MS provides structural information simultaneously, the use of GC-MS is recommended.

  11. Measurement and modeling of high-pressure (vapor + liquid) equilibria of (CO{sub 2} + alkanol) binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Gutierrez, Jorge E. [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Araus, Karina A. [Departamento de Ingenieria Quimica y Bioprocesos, Pontificia Universidad Catolica de Chile, Avda. Vicuna Mackenna 4860, Macul, Santiago (Chile); Fuente, Juan C. de la, E-mail: juan.delafuente@usm.c [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Centro Regional de Estudios en Alimentos Saludables, Blanco 1623, Valparaiso (Chile)

    2011-05-15

    Research highlights: (Vapor + liquid) equilibria of three (CO{sub 2} + C{sub 5} alcohol) binary systems were measured. Complementary data are reported at (313, 323 and 333) K and from (2 to 11) MPa. No liquid immiscibility was observed at the temperatures and pressures studied. Experimental data were correlated with the PR-EoS and the van de Waals mixing rules. Correlation results showed relative deviations {<=}8 % (liquid) and {<=}2 % (vapor). - Abstract: Complementary isothermal (vapor + liquid) equilibria data are reported for the (CO{sub 2} + 3-methyl-2-butanol), (CO{sub 2} + 2-pentanol), and (CO{sub 2} + 3-pentanol) binary systems at temperatures of (313, 323, and 333) K, and at pressure range of (2 to 11) MPa. For all (CO{sub 2} + alcohol) systems, it was visually monitored that there was no liquid immiscibility at the temperatures and pressures studied. The experimental data were correlated with the Peng-Robinson equation of state using the quadratic mixing rules of van der Waals with two adjustable parameters. The calculated (vapor + liquid) equilibria compositions were found to be in good agreement with the experimental data with deviations for the mole fractions <8% and <2% for the liquid and vapor phase, respectively.

  12. The Comparative Study on Vapor-Polymerization and Pressure-dependent Conductance Behavior in Polypyrrole-hybridized Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Hanif, Zahid; Lee, Seyeong; Arsalani, Nasir; Geckeler, Kurt E.; Hong, Sukwon; Yoon, Myung-Han [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2016-02-15

    In this study, commercially available cellulose membranes were hybridized with conjugated polymer via vapor-phase polymerization using pyrrole and iron chloride as a monomer and oxidant, respectively. The iron (III) chloride layer dip-coated on the hydrophilic cell ulose surface oxidized the vaporized pyrrole monomer leading to the polypyrrole-cellulose hybrid membrane. The conductivity of hybrid membrane was optimized by varying the oxidant concentration and the monomer vapor exposure time. The various surface characterizations of polypyrrole-cellulose hybrid membrane show that the conductive polypyrrole layer was uniformly deposited onto the surface of cellulose fibrous networks unlike the polypyrrole-nylonhybrid membrane prepared in the similar way. The polypyrrole-incorporated cellulose networks exhibits steeper electrical conductance increase over the vertical pressure than its nylon counterpart. Our result suggests that the polypyrrole-cellulose hybrid membrane can be applicable for a disposable high-load pressure sensor.

  13. Determination of vapor-liquid equilibrium data in microfluidic segmented flows at elevated pressures using Raman spectroscopy.

    Science.gov (United States)

    Luther, Sebastian K; Stehle, Simon; Weihs, Kristian; Will, Stefan; Braeuer, Andreas

    2015-08-18

    A fast, noninvasive, and efficient analytical measurement strategy for the characterization of vapor-liquid equilibria (VLE) is presented, which is based on phase (state of matter) selective Raman spectroscopy in multiphase flows inside microcapillay systems (MCS). Isothermal VLE data were measured in binary and ternary mixtures composed of acetone, water, carbon dioxide or nitrogen at elevated pressures up to 10 MPa and temperatures up to 333 K. For validation, the obtained data were compared with literature data and reference measurements in a high-pressure variable volume cell. Additionally, the mixtures were investigated at temperatures and pressures where no data is available in literature to extend the high-pressure VLE database.

  14. Photosynthetic photon flux density, carbon dioxide concentration, and vapor pressure deficit effects on photosynthesis in cacao seedlings

    Science.gov (United States)

    Cacao (Theobroma cacao) is a shade plant, native to the under-story of the evergreen rain forest of the Amazon basin and adapted to low levels of photosynthetic photon flux density (PPFD). The influence of PPFD, leaf to air water vapor pressure deficit (VPD) and external carbon dioxide concentration...

  15. A thermodynamic study of glucose and related oligomers in aqueous solution: Vapor pressures and enthalpies of mixing

    DEFF Research Database (Denmark)

    Cooke, S.A.; Jonsdottir, Svava Osk; Westh, Peter

    2002-01-01

    -mentioned systems at 318.15 K. A theoretical model is examined in which existing interaction parameters, calculated for the water + 1,2-ethanediol system by using a molecular mechanical approach, are incorporated into the UNIQUAC equation to describe the vapor pressures of the aforementioned series of saccharides...

  16. An Integrated Approach to Introducing Biofuels, Flash Point, and Vapor Pressure Concepts into an Introductory College Chemistry Lab

    Science.gov (United States)

    Hoffman, Adam R.; Britton, Stephanie L.; Cadwell, Katie D.; Walz, Kenneth A.

    2011-01-01

    Students explore the fundamental chemical concepts of vapor pressure and flash point in a real-world technical context, while gaining insight into the contemporary societal issue of biofuels. Lab activities were developed using a closed-cup instrument to measure the flash point of various biodiesel samples. Pre- and post-tests revealed that the…

  17. Determination of saturation pressure and enthalpy of vaporization of semi-volatile aerosols: the integrated volume mentod

    Science.gov (United States)

    This study presents the integrated volume method for estimating saturation pressure and enthalpy of vaporization of a whole aerosol distribution. We measure the change of total volume of an aerosol distribution between a reference state and several heated states, with the heating...

  18. An Integrated Approach to Introducing Biofuels, Flash Point, and Vapor Pressure Concepts into an Introductory College Chemistry Lab

    Science.gov (United States)

    Hoffman, Adam R.; Britton, Stephanie L.; Cadwell, Katie D.; Walz, Kenneth A.

    2011-01-01

    Students explore the fundamental chemical concepts of vapor pressure and flash point in a real-world technical context, while gaining insight into the contemporary societal issue of biofuels. Lab activities were developed using a closed-cup instrument to measure the flash point of various biodiesel samples. Pre- and post-tests revealed that the…

  19. Prediction of vapor pressure and heats of vaporization of edible oil/fat compounds by group contribution

    DEFF Research Database (Denmark)

    Ceriani, Roberta; Gani, Rafiqul; Liu, Y.A.

    2013-01-01

    databank (2036 values) composed by fatty compounds, i.e., fatty acids, methyl-, ethyl-, propyl- and butyl- esters, fatty alcohols, tri-, di- and monoacylglycerols and hydrocarbons. This new methodology gives improved predictions when compared to a prior group contribution equation (Ceriani and Meirelles......, 2004) due to the inclusion of new experimental data for fatty esters and partial acylglycerols (besides hydrocarbons) and critical points, and a new temperature dependency. Heats of vaporization are properly described as a function of reduced temperature up to the critical condition....

  20. HIGH PRESSURE VAPOR-LIQUID EQUILIBRIA OF PALM FATTY ACIDS DISTILLATES-CARBON DIOXIDE SYSTEM

    Directory of Open Access Journals (Sweden)

    Nélio T. MACHADO

    1997-12-01

    Full Text Available Vapor-Liquid equilibria of palm fatty acids distillates/carbon dioxide system has been investigated experimentally at temperatures of 333, 353, and 373 K and pressures of 20, 23, 26, and 29 MPa using the static method. Experimental data for the quasi-binary system palm fatty acids distillates/carbon dioxide has been correlated with Redlich-Kwong-Aspen equation of state. Modeling shows good agreement with experimental data. Selectivity obtained indicates that supercritical carbon dioxide is a reasonable solvent for separating saturated (palmitic acid and unsaturated (oleic+linoleic acids fatty acids from palm fatty acids distillates in a continuous multistage countercurrent column.Foi investigado experimentalmente o equilíbrio líquido-vapor para o sistema Destilado Ácido de Óleo de Palma (PFAD/Dióxido de Carbono, nas temperaturas de 333, 353 e 373 K e pressões de 20, 23, 26 e 29 MPa, usando-se o método estático. Os dados experimentais do sistema pseudo-binário PFAD/CO2 foram correlacionados com a equação de estado de Redlich-Kwong do pacote computacional ASPEN. O modelo reproduz bem os resultados experimentais. A seletividade obtida indica que o CO2 supercrítico é um solvente razoável para a separação em coluna multi-estágio e contínua, do ácido graxo saturado (ácido palmítico daqueles insaturados (ácido oleico e ácido linoleico contidos no PFAD.

  1. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  2. Organic solvents vapor pressure and relative humidity effects on the phase transition rate of α and β forms of tegafur.

    Science.gov (United States)

    Petkune, Sanita; Bobrovs, Raitis; Actiņš, Andris

    2012-01-01

    The objective of this work was to investigate the relative humidity (RH) and solvent vapor pressure effects on the phase transition dynamics between tegafur polymorphic forms that do not form hydrates and solvates. The commercially available α and β modifications of 5-fluoro-1-(tetrahydro-2-furyl)-uracil, known as the antitumor agent tegafur, were used as model materials for this study. While investigating the phase transitions of α and β tegafur under various partial pressures of methanol, n-propanol, n-butanol, and water vapor, it was determined that the phase transition rate increased in the presence of solvent vapors, even though no solvates were formed. By increasing the relative air humidity from 20% to 80%, the phase transition rate constant of α and β tegafur was increased about 60 times. After increasing the partial pressure of methanol, n-propanol, or n-butanol vapor, the phase transition rate constant did not change, but the extent of phase transformation was increased. In the homologous row of n-alcohols, the phase transition rate constant decreased with increasing carbon chain length. The dependence of phase transformation extent versus the RH corresponded to the polymolecular adsorption isotherm with a possible capillary condensation effect.

  3. DETERMINATION OF SATURATION VAPOR PRESSURE OF LOW VOLATILE SUBSTANCES THROUGH THE STUDY OF EVAPORATION RATE BY THERMOGRAVIMETRIC ANALYSIS

    Directory of Open Access Journals (Sweden)

    R. V. Ralys

    2015-11-01

    Full Text Available Subject of Study.Research of vapor pressure of low volatile substances is a complicated problem due to both direct experimental implementation complexity and, most significantly, the issues faced correctness of the analysis and processing of experimental data. That is why it is usually required engaging the reference substances (with vapor pressures well studied. The latter drastically reduces the effectiveness of the experimental methods used and narrows their applicability. The paper deals with an approach to the evaporation process description (sublimation of low volatile substances based on molecular kinetic description in view of diffusive and convection processes. The proposed approach relies on experimental thermogravimetricfindingsina wide range of temperatures, flow rates ofthe purge gas and time. Method. A new approach is based on the calculation of the vapor pressure and uses the data about the speed of evaporation by thermogravimetric analysis depending on the temperature, the flow rate of the purge gas, and the evaporation time. The basis for calculation is the diffusion-kinetic description of the process of evaporation (mass loss of the substance from the exposed surface. The method is applicable to determine the thermodynamic characteristics for both the evaporation (the equilibrium liquid - vapor and sublimation (the equilibrium solid - vapor. We proposed the appropriate method of the experiment and analysis of its data in order to find the saturated vapor pressure of individual substances of low volatility. Main Results. The method has been tested on substances with insufficiently reliable and complete study of the thermodynamic characteristics but, despite this, are often used (because of the other data limitations as reference ones. The vaporization process (liquid-vapor has been studied for di-n-butyl phthalate C16H22O4 at 323,15–443,15 К, and sublimation for benzoic acid C7H6O2at 303,15–183,15 К. Both processes have

  4. Complementary vapor pressure data for 2-methyl-1-propanol and 3-methyl-1-butanol at a pressure range of (15 to 177) kPa

    Energy Technology Data Exchange (ETDEWEB)

    Bejarano, Arturo; Quezada, Nathalie [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile); Fuente, Juan C. de la [Departamento de Ingenieria Quimica y Ambiental, Universidad Tecnica Federico Santa Maria, Avda. Espana 1680, Valparaiso (Chile)], E-mail: juan.delafuente@usm.cl

    2009-09-15

    The vapor pressure of pure 2-methyl-1-propanol and 3-methyl-1-butanol, components called congeners that are present in aroma of wine, pisco, and other alcoholic beverages, were measured with a dynamic recirculation apparatus at a pressure range of (15 to 177) kPa with an estimated uncertainty <0.2%. The measurements were performed at temperature ranges of (337 to 392) K for 2-methyl-1-propanol and (358 to 422) K for 3-methyl-1-butanol. Data were correlated using a Wagner-type equation with standard deviations of 0.09 kPa for the vapor pressure of 2-methyl-1-propanol and 0.21 kPa for 3-methyl-1-butanol. The experimental data and correlation were compared with data selected from the literature.

  5. Use of Interrupted Helium Flow in the Analysis of Vapor Samples with Flowing Atmospheric-Pressure Afterglow-Mass Spectrometry

    Science.gov (United States)

    Storey, Andrew P.; Zeiri, Offer M.; Ray, Steven J.; Hieftje, Gary M.

    2017-02-01

    The flowing atmospheric-pressure afterglow (FAPA) source was used for the mass-spectrometric analysis of vapor samples introduced between the source and mass spectrometer inlet. Through interrupted operation of the plasma-supporting helium flow, helium consumption is greatly reduced and dynamic gas behavior occurs that was characterized by schlieren imaging. Moreover, mass spectra acquired immediately after the onset of helium flow exhibit a signal spike before declining and ultimately reaching a steady level. This initial signal appears to be due to greater interaction of sample vapor with the afterglow of the source when helium flow resumes. In part, the initial spike in signal can be attributed to a pooling of analyte vapor in the absence of helium flow from the source. Time-resolved schlieren imaging of the helium flow during on and off cycles provided insight into gas-flow patterns between the FAPA source and the MS inlet that were correlated with mass-spectral data.

  6. Nematicidal potential of hydrolates from the semi industrial vapor-pressure extraction of Spanish aromatic plants.

    Science.gov (United States)

    Andrés, Maria Fe; González-Coloma, Azucena; Muñoz, Ruben; De la Peña, Felipe; Julio, Luis Fernando; Burillo, Jesus

    2017-06-22

    The nematicidal activity of hydrolate by-products from the semi industrial vapor-pressure essential oil extraction of selected aromatic plant species (commercial: Lavandula × intermedia Emeric ex Loisel. var. super, Thymus vulgaris L., T. zygis Loefl ex L. and experimentally pre-domesticated: L. luisieri (Rozeira) Rivas-Martínez) was investigated against the root-knot nematode Meloidogyne javanica by in vitro and in vivo bioassays. Liquid-liquid extraction of hydrolates yielded the corresponding aqueous and organic fractions which were biological and chemically studied. Hydrolates from L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis showed strong in vitro nematicidal effects against M. javanica (J2 mortality and suppression of egg hatching). In the case of the Thymus species, the active components were found in the organic fraction, characterized by thymol as major component. Conversely, the nematicidal activity of L. × intermedia var. super and L. luisieri remained in the corresponding aqueous fractions. In vivo tests on tomato seedlings at sublethal doses of the hydrolates/organic fractions induced a significant reduction of nematode infectivity. In pot experiments, all hydrolates tested on tomato plants significantly affect the infection frequency and reproduction rate of the nematode population. This study demonstrates that L. × intermedia var. super, L. luisieri, T. vulgaris, and T. zygis hydrolates could be an exploitable source of potential waste protection products on root-knot nematodes.

  7. Diamond synthesis at atmospheric pressure by microwave capillary plasma chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hemawan, Kadek W.; Gou, Huiyang; Hemley, Russell J. [Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd., NW, Washington, DC 20015 (United States)

    2015-11-02

    Polycrystalline diamond has been synthesized on silicon substrates at atmospheric pressure, using a microwave capillary plasma chemical vapor deposition technique. The CH{sub 4}/Ar plasma was generated inside of quartz capillary tubes using 2.45 GHz microwave excitation without adding H{sub 2} into the deposition gas chemistry. Electronically excited species of CN, C{sub 2}, Ar, N{sub 2}, CH, H{sub β}, and H{sub α} were observed in the emission spectra. Raman measurements of deposited material indicate the formation of well-crystallized diamond, as evidenced by the sharp T{sub 2g} phonon at 1333 cm{sup −1} peak relative to the Raman features of graphitic carbon. Field emission scanning electron microscopy images reveal that, depending on the growth conditions, the carbon microstructures of grown films exhibit “coral” and “cauliflower-like” morphologies or well-facetted diamond crystals with grain sizes ranging from 100 nm to 10 μm.

  8. Effect of Chemical Composition on Enthalpy of Evaporation and Equilibrium Vapor Pressure

    CERN Document Server

    Dobruskin, Vladimir Kh

    2010-01-01

    Proceeding from the Clausius-Clapeyron equation, the relation is derived that establishes a correlation between the partial enthalpy of evaporation from binary solutions, concentrations of components, and equilibrium vapor pressures. The difference between enthalpies of evaporation of components from solutions and those from the pure liquids, D(DH), depends on the chemical nature and concentrations, X, of solutions. The effect of concentrations on D(DH) makes different appearances in ideal and non-ideal solutions, although, as a whole, D(DH) increases with the growth of concentration of the second component. A model is introduced, which considers D(DH) as the sum of energetic changes of three sequential stages: passage of molecules from the bulk liquid into the surface layer, exit of the molecules on the outer side of the interface, and the following desorption into the gas phase. In the framework of the model, the main contribution to enthalpy of evaporation comes from the processes in the surface layer. It ...

  9. Low-Pressure Vapor-Assisted Solution Process for Thiocyanate-Based Pseudohalide Perovskite Solar Cells.

    Science.gov (United States)

    Chiang, Yu-Hsien; Cheng, Hsin-Min; Li, Ming-Hsien; Guo, Tzung-Fang; Chen, Peter

    2016-09-22

    In this report, we fabricated thiocyanate-based perovskite solar cells with low-pressure vapor-assisted solution process (LP-VASP) method. Photovoltaic performances are evaluated with detailed materials characterizations. Scanning electron microscopy images show that SCN-based perovskite films fabricated using LP-VASP have long-range uniform morphology and large grain sizes up to 1 μm. The XRD and Raman spectra were employed to observe the characteristic peaks for both SCN-based and pure CH3 NH3 PbI3 perovskite. We observed that the Pb(SCN)2 film transformed to PbI2 before the formation of perovskite film. X-ray photoemission spectra (XPS) show that only a small amount of S remained in the film. Using LP-VASP method, we fabricated SCN-based perovskite solar cells and achieved a power conversion efficiency of 12.72 %. It is worth noting that the price of Pb(SCN)2 is only 4 % of PbI2 . These results demonstrate that pseudo-halide perovskites are promising materials for fabricating low-cost perovskite solar cells. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Uniformly Distributed Graphene Domain Grows on Standing Copper via Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shih-Hao Chan

    2013-01-01

    Full Text Available Uniformly distributed graphene domains were synthesized on standing copper foil by a low-pressure chemical vapor deposition system. This method improved the distribution of the graphene domains at different positions on the same piece of copper foil along the forward direction of the gas flow. Scanning electron microscopy (SEM showed the average size of the graphene domains to be about ~20 m. This results show that the sheet resistance of monolayer graphene on a polyethylene terephthalate (PET substrate is about ~359 /□ whereas that of the four-layer graphene films is about ~178 /□, with a transmittance value of 88.86% at the 550 nm wavelength. Furthermore, the sheet resistance can be reduced with the addition of HNO3 resulting in a value of 84 /□. These values meet the absolute standard for touch sensor applications, so we believe that this method can be a candidate for some transparent conductive electrode applications.

  11. SiGeSn growth studies using reduced pressure chemical vapor deposition towards optoelectronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Wirths, S., E-mail: s.wirths@fz-juelich.de [Peter Grünberg Institute (PGI 9-IT) and JARA-FIT, Forschungszentrum Juelich, 52425 (Germany); Buca, D. [Peter Grünberg Institute (PGI 9-IT) and JARA-FIT, Forschungszentrum Juelich, 52425 (Germany); Ikonic, Z.; Harrison, P. [Institute of Microwaves and Photonics, School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Tiedemann, A.T.; Holländer, B.; Stoica, T.; Mussler, G. [Peter Grünberg Institute (PGI 9-IT) and JARA-FIT, Forschungszentrum Juelich, 52425 (Germany); Breuer, U. [Central Institute for Engineering, Electronics and Analytics (ZEA-3), Forschungszentrum Juelich, 52425 (Germany); Hartmann, J.M. [CEA, LETI, MINATEC Campus, 17 rue des Martyrs, 38054 Grenoble (France); Grützmacher, D.; Mantl, S. [Peter Grünberg Institute (PGI 9-IT) and JARA-FIT, Forschungszentrum Juelich, 52425 (Germany)

    2014-04-30

    In this contribution, we propose a laser concept based on a double heterostructure consisting of tensile strained Ge as the active medium and SiGeSn ternaries as cladding layers. Electronic band-structure calculations were used to determine the Si and Sn concentrations yielding a type I heterostructure with appropriate band-offsets (50 meV) between strained Ge and SiGeSn. Reduced pressure chemical vapor deposition system was employed to study the laser structure growth. Detailed analyses regarding layer composition, crystal quality, surface morphology and elastic strain are presented. A strong temperature dependence of the Si and Sn incorporation has been obtained, ranging from 4 to 19 at.% Si and from 4 to 12 at.% Sn (growth temperatures between 350 °C and 475 °C). The high single crystalline quality and low surface roughness of 0.5–0.75 nm demonstrate that our layers are suitable for heterostructure laser fabrication. - Highlights: • Sn based group IV materials for photonics • Bandstructure calculations of SiGeSn/strained Ge double heterostructures. • Si and Sn concentrations in SiGeSn layers between 4 and 19 at.% and 4 and 11 at.%, respectively. • Growth of SiGeSn layers with high crystalline quality for optoelectronic applications.

  12. Chain Assemblies from Nanoparticles Synthesized by Atmospheric Pressure Plasma Enhanced Chemical Vapor Deposition: The Computational View.

    Science.gov (United States)

    Mishin, Maxim V; Zamotin, Kirill Y; Protopopova, Vera S; Alexandrov, Sergey E

    2015-12-01

    This article refers to the computational study of nanoparticle self-organization on the solid-state substrate surface with consideration of the experimental results, when nanoparticles were synthesised during atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD). The experimental study of silicon dioxide nanoparticle synthesis by AP-PECVD demonstrated that all deposit volume consists of tangled chains of nanoparticles. In certain cases, micron-sized fractals are formed from tangled chains due to deposit rearrangement. This work is focused on the study of tangled chain formation only. In order to reveal their formation mechanism, a physico-mathematical model was developed. The suggested model was based on the motion equation solution for charged and neutral nanoparticles in the potential fields with the use of the empirical interaction potentials. In addition, the computational simulation was carried out based on the suggested model. As a result, the influence of such experimental parameters as deposition duration, particle charge, gas flow velocity, and angle of gas flow was found. It was demonstrated that electrical charges carried by nanoparticles from the discharge area are not responsible for the formation of tangled chains from nanoparticles, whereas nanoparticle kinetic energy plays a crucial role in deposit morphology and density. The computational results were consistent with experimental results.

  13. Organic component vapor pressures and hygroscopicities of aqueous aerosol measured by optical tweezers.

    Science.gov (United States)

    Cai, Chen; Stewart, David J; Reid, Jonathan P; Zhang, Yun-hong; Ohm, Peter; Dutcher, Cari S; Clegg, Simon L

    2015-01-29

    Measurements of the hygroscopic response of aerosol and the particle-to-gas partitioning of semivolatile organic compounds are crucial for providing more accurate descriptions of the compositional and size distributions of atmospheric aerosol. Concurrent measurements of particle size and composition (inferred from refractive index) are reported here using optical tweezers to isolate and probe individual aerosol droplets over extended timeframes. The measurements are shown to allow accurate retrievals of component vapor pressures and hygroscopic response through examining correlated variations in size and composition for binary droplets containing water and a single organic component. Measurements are reported for a homologous series of dicarboxylic acids, maleic acid, citric acid, glycerol, or 1,2,6-hexanetriol. An assessment of the inherent uncertainties in such measurements when measuring only particle size is provided to confirm the value of such a correlational approach. We also show that the method of molar refraction provides an accurate characterization of the compositional dependence of the refractive index of the solutions. In this method, the density of the pure liquid solute is the largest uncertainty and must be either known or inferred from subsaturated measurements with an error of <±2.5% to discriminate between different thermodynamic treatments.

  14. Epitaxial film growth of chromium dioxide by low pressure chemical vapor deposition using chromium carbonyl

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jinwen [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Pathak, Manjit [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Zhong Xing [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Electrical and Computer Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); LeClair, Patrick [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Klein, Tonya M. [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States); Gupta, Arunava, E-mail: agupta@mint.ua.ed [MINT Center, University of Alabama, Tuscaloosa, AL 35487 (United States); Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL 35487 (United States)

    2010-09-30

    Epitaxial chromium dioxide (CrO{sub 2}) thin films have been deposited by low pressure chemical vapor deposition (LPCVD) on (100) TiO{sub 2} substrates using the precursor chromium hexacarbonyl (Cr(CO){sub 6}) within a narrow temperature window of 380-400 {sup o}C. Normal {theta}-2{theta} Bragg x-ray diffraction results show that the predominant phase is CrO{sub 2} with only a small amount of Cr{sub 2}O{sub 3} present, mostly at the film surface. The LPCVD films have a reasonably smooth surface morphology with a root mean square roughness of 4 nm on a scale of 5 {mu}m. Raman spectroscopy confirms the existence of rutile CrO{sub 2} in the deposited films, while transmission electron microscopy confirms the single-crystalline nature of the films. The LPCVD films showing a dominant CrO{sub 2} phase exhibit clear uniaxial magnetic anisotropy with the easy axis oriented along the c direction.

  15. Atmospheric Pressure Spray Chemical Vapor Deposited CuInS2 Thin Films for Photovoltaic Applications

    Science.gov (United States)

    Harris, J. D.; Raffaelle, R. P.; Banger, K. K.; Smith, M. A.; Scheiman, D. A.; Hepp, A. F.

    2002-01-01

    Solar cells have been prepared using atmospheric pressure spray chemical vapor deposited CuInS2 absorbers. The CuInS2 films were deposited at 390 C using the single source precursor (PPh3)2CuIn(SEt)4 in an argon atmosphere. The absorber ranges in thickness from 0.75 - 1.0 micrometers, and exhibits a crystallographic gradient, with the leading edge having a (220) preferred orientation and the trailing edge having a (112) orientation. Schottky diodes prepared by thermal evaporation of aluminum contacts on to the CuInS2 yielded diodes for films that were annealed at 600 C. Solar cells were prepared using annealed films and had the (top down) composition of Al/ZnO/CdS/CuInS2/Mo/Glass. The Jsc, Voc, FF and (eta) were 6.46 mA per square centimeter, 307 mV, 24% and 0.35%, respectively for the best small area cells under simulated AM0 illumination.

  16. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals.

    Science.gov (United States)

    Bhhatarai, Barun; Gramatica, Paola

    2011-10-01

    The majority of perfluorinated chemicals (PFCs) are of increasing risk to biota and environment due to their physicochemical stability, wide transport in the environment and difficulty in biodegradation. It is necessary to identify and prioritize these harmful PFCs and to characterize their physicochemical properties that govern the solubility, distribution and fate of these chemicals in an aquatic ecosystem. Therefore, available experimental data (10-35 compounds) of three important properties: aqueous solubility (AqS), vapor pressure (VP) and critical micelle concentration (CMC) on per- and polyfluorinated compounds were collected for quantitative structure-property relationship (QSPR) modeling. Simple and robust models based on theoretical molecular descriptors were developed and externally validated for predictivity. Model predictions on selected PFCs were compared with available experimental data and other published in silico predictions. The structural applicability domains (AD) of the models were verified on a bigger data set of 221 compounds. The predicted properties of the chemicals that are within the AD, are reliable, and they help to reduce the wide data gap that exists. Moreover, the predictions of AqS, VP, and CMC of most common PFCs were evaluated to understand the aquatic partitioning and to derive a relation with the available experimental data of bioconcentration factor (BCF).

  17. Aqueous solubilities, vapor pressures, and 1-octanol-water partition coefficients for C9-C14 linear alkylbenzenes

    Science.gov (United States)

    Sherblom, P.M.; Gschwend, P.M.; Eganhouse, R.P.

    1992-01-01

    Measurements and estimates of aqueous solubilities, 1-octanol-water partition coefficients (Kow), and vapor pressures were made for 29 linear alkylbenzenes having alkyl chain lengths of 9-14 carbons. The ranges of values observed were vapor pressures from 0.002 to 0.418 Pa, log Kow, from 6.83 to 9.95, and aqueous solubilities from 4 to 38 nmol??L-1. Measured values exhibited a relationship to both the alkyl chain length and the position of phenyl substitution on the alkyl chain. Measurement of the aqueous concentrations resulting from equilibration of a mixture of alkylbenzenes yielded higher than expected values, indicating cosolute or other interactive effects caused enhanced aqueous concentrations of these compounds. ?? 1992 American Chemical Society.

  18. MODELING VAPOR LIQUID EQUILIBRIUM OF IONIC LIQUIDS plus GAS BINARY SYSTEMS AT HIGH PRESSURE WITH CUBIC EQUATIONS OF STATE

    OpenAIRE

    Freitas, ACD; Cunico, LP; M. Aznar; Guirardello,R.

    2013-01-01

    Ionic liquids (IL) have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR) and Soave-Redlich-Kwong (SRK) equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (v...

  19. An instrument for environmental control of vapor pressure and temperature for tensile creep and other mechanical property measurements.

    Science.gov (United States)

    Majsztrik, P W; Bocarsly, A B; Benziger, J B

    2007-10-01

    An instrument for measuring the creep response of a material maintained under a controlled environment of temperature and vapor pressure is described. The temperature range of the instrument is 20-250 degrees C while the range of vapor pressure is 0-1 atm. Data are presented for tests conducted on this instrument with Nafion, a perfluorinated ionomer developed by DuPont and used as a membrane in polymer exchange membrane fuel cells, over a range of temperature and water vapor pressure. The data are useful for predicting long-term creep behavior of the material in the fuel cell environment as well as providing insight to molecular level interactions in the material as a function of temperature and hydration. Measurements including dynamic and equilibrium strain due to water uptake as well as elastic modulus are described. The main features of the instrument are presented along with experimental methodology and analysis of results. The adaptation of the instrument to other mechanical tests is briefly described.

  20. Evaluation of Vapor Pressure and Ultra-High Vacuum Tribological Properties of Ionic Liquids (2) Mixtures and Additives

    Science.gov (United States)

    Morales, Wilfredo; Koch, Victor R.; Street, Kenneth W., Jr.; Richard, Ryan M.

    2008-01-01

    Ionic liquids are salts, many of which are typically viscous fluids at room temperature. The fluids are characterized by negligible vapor pressures under ambient conditions. These properties have led us to study the effectiveness of ionic liquids containing both organic cations and anions for use as space lubricants. In the previous paper we have measured the vapor pressure and some tribological properties of two distinct ionic liquids under simulated space conditions. In this paper we will present vapor pressure measurements for two new ionic liquids and friction coefficient data for boundary lubrication conditions in a spiral orbit tribometer using stainless steel tribocouples. In addition we present the first tribological data on mixed ionic liquids and an ionic liquid additive. Post mortem infrared and Raman analysis of the balls and races indicates the major degradation pathway for these two organic ionic liquids is similar to those of other carbon based lubricants, i.e. deterioration of the organic structure into amorphous graphitic carbon. The coefficients of friction and lifetimes of these lubricants are comparable to or exceed these properties for several commonly used space oils.

  1. On-line coating of glass with tin oxide by atmospheric pressure chemical vapor deposition.

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Sopko, J.F. (PPF Industries, Pittsburgh, PA); Houf, William G.; Chae, Yong Kee; McDaniel, Anthony H.; Li, M. (PPF Industries, Pittsburgh, PA); McCamy, J.W. (PPF Industries, Pittsburgh, PA)

    2006-11-01

    Atmospheric pressure chemical vapor deposition (APCVD) of tin oxide is a very important manufacturing technique used in the production of low-emissivity glass. It is also the primary method used to provide wear-resistant coatings on glass containers. The complexity of these systems, which involve chemical reactions in both the gas phase and on the deposition surface, as well as complex fluid dynamics, makes process optimization and design of new coating reactors a very difficult task. In 2001 the U.S. Dept. of Energy Industrial Technologies Program Glass Industry of the Future Team funded a project to address the need for more accurate data concerning the tin oxide APCVD process. This report presents a case study of on-line APCVD using organometallic precursors, which are the primary reactants used in industrial coating processes. Research staff at Sandia National Laboratories in Livermore, CA, and the PPG Industries Glass Technology Center in Pittsburgh, PA collaborated to produce this work. In this report, we describe a detailed investigation of the factors controlling the growth of tin oxide films. The report begins with a discussion of the basic elements of the deposition chemistry, including gas-phase thermochemistry of tin species and mechanisms of chemical reactions involved in the decomposition of tin precursors. These results provide the basis for experimental investigations in which tin oxide growth rates were measured as a function of all major process variables. The experiments focused on growth from monobutyltintrichloride (MBTC) since this is one of the two primary precursors used industrially. There are almost no reliable growth-rate data available for this precursor. Robust models describing the growth rate as a function of these variables are derived from modeling of these data. Finally, the results are used to conduct computational fluid dynamic simulations of both pilot- and full-scale coating reactors. As a result, general conclusions are

  2. New Micro-Method for Prediction of Vapor Pressure of Energetic Materials

    Science.gov (United States)

    2014-07-01

    and HNS (20), caffeine (19, 21 both values used in linear regression), naphthalene (22), benzoic acid (23), adipic acid (24), anthraquinone (25...establishing an equilibrium concentration of vapor in a carrier gas above a test material. The test material is then separated from the carrier gas...equilibrium concentration of vapor in the headspace above a test material. Samples are then collected and analyzed by GC, which is calibrated in advance

  3. Determination of Water Vapor Pressure Over Corrosive Chemicals Versus Temperature Using Raman Spectroscopy as Exemplified with 85.5% Phosphoric Acid

    DEFF Research Database (Denmark)

    Rodier, Marion; Li, Qingfeng; Berg, Rolf W.

    2016-01-01

    A method to determine the water vapor pressure over a corrosive substance was developed and tested with 85.5 ± 0.4% phosphoric acid. The water vapor pressure was obtained at a range of temperatures from ∼25 ℃ to ∼200 ℃ using Raman spectrometry. The acid was placed in an ampoule and sealed with a ...

  4. Vapor-Liquid Phase Equilibria for Carbon Dioxide-I- Isopentanol Binary System at Elevated Pressure%Vapor-Liquid Phase Equilibria for Carbon Dioxide-I- Isopentanol Binary System at Elevated Pressure

    Institute of Scientific and Technical Information of China (English)

    王琳; 曹丰璞; 刘珊珊; 杨浩

    2011-01-01

    High-pressure vapor-liquid phase equilibrium data for carbon dioxide+ isopentanol were measured at tempera- tures of 313.2, 323.1, 333.5 and 343.4 K in the pressure range of 4.64 to 12.71 MPa in a variable-volume high-pressure visual cell. The experimental data were well correlated with Peng-Robinson equation of state (PR-EOS) together with van der Waals-2 two-parameter mixing rule, and the binary interaction parameters were obtained. Henry coefficients and partial molar volumes of CO2 at infinite dilution were estimated based on Krichevsky-Kasarnovsky equation, and Henry coefficients increase with increasing temperature, however, partial molar volumes of CO2 at infinite dilution are negative and the magnitudes decrease with temperature.

  5. Vapor pressures and evaporation coefficients for melts of ferromagnesian chondrule-like compositions

    Science.gov (United States)

    Fedkin, A. V.; Grossman, L.; Ghiorso, M. S.

    2006-01-01

    To determine evaporation coefficients for the major gaseous species that evaporate from silicate melts, the Hertz-Knudsen equation was used to model the compositions of residues of chondrule analogs produced by evaporation in vacuum by Hashimoto [Hashimoto A. (1983) Evaporation metamorphism in the early solar nebula-evaporation experiments on the melt FeO-MgO-SiO 2-CaO-Al 2O 3 and chemical fractionations of primitive materials. Geochem. J. 17, 111-145] and Wang et al. [Wang J., Davis A. M., Clayton R. N., Mayeda T. K., Hashimoto A. (2001) Chemical and isotopic fractionation during the evaporation of the FeO-MgO-SiO 2-CaO-Al 2O 3-TiO 2 rare earth element melt system. Geochim. Cosmochim. Acta 65, 479-494], in vacuum and in H 2 by Yu et al. [Yu Y., Hewins R. H., Alexander C. M. O'D., Wang J. (2003) Experimental study of evaporation and isotopic mass fractionation of potassium in silicate melts. Geochim. Cosmochim. Acta 67, 773-786], and in H 2 by Cohen et al. [Cohen B. A., Hewins R. H., Alexander C. M. O'D. (2004) The formation of chondrules by open-system melting of nebular condensates. Geochim. Cosmochim. Acta 68, 1661-1675]. Vapor pressures were calculated using the thermodynamic model of Ghiorso and Sack [Ghiorso M. S., Sack R. O. (1995) Chemical mass transfer in magmatic processes IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures. Contrib. Mineral. Petrol. 119, 197-212], except for the late, FeO-free stages of the Wang et al. (2001) and Cohen et al. (2004) experiments, where the CMAS activity model of Berman [Berman R. G. (1983) A thermodynamic model for multicomponent melts, with application to the system CaO-MgO-Al 2O 3-SiO 2. Ph.D. thesis, University of British Columbia] was used. From these vapor pressures, evaporation coefficients ( α) were obtained that give the best fits to the time variation of the residue compositions

  6. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    Directory of Open Access Journals (Sweden)

    A. M. Makarieva

    2010-10-01

    Full Text Available Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power – this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  7. Interference of macroscopic superpositions

    CERN Document Server

    Vecchi, I

    2000-01-01

    We propose a simple experimental procedure based on the Elitzur-Vaidman scheme to implement a quantum nondemolition measurement testing the persistence of macroscopic superpositions. We conjecture that its implementation will reveal the persistence of superpositions of macroscopic objects in the absence of a direct act of observation.

  8. High rate deposition of microcrystalline silicon films by high-pressure radio frequency plasma enhanced chemical vapor deposition (PECVD)

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hydrogenated microcrystalline silicon (μc-Si:H) thin films were prepared by high- pressure radio-frequency (13.56 MHz) plasma enhanced chemical vapor deposition (rf-PECVD) with a screened plasma. The deposition rate and crystallinity varying with the deposition pressure, rf power, hydrogen dilution ratio and electrodes distance were systematically studied. By optimizing the deposition parameters the device quality μc-Si:H films have been achieved with a high deposition rate of 7.8 /s at a high pressure. The Voc of 560 mV and the FF of 0.70 have been achieved for a single-junction μc-Si:H p-i-n solar cell at a deposition rate of 7.8 /s.

  9. Reduction in the Vapor Pressure in Condensation on Cold Droplets of a Liquid

    Science.gov (United States)

    Bochkareva, E. M.; Nemtsev, V. A.; Sorokin, V. V.; Terekhov, V. V.; Terekhov, V. I.

    2016-05-01

    A physicomathematical model of the process of depressurization in a pure saturated and superheated vapor due to the injection of monodisperse cold droplets of a liquid has been developed. A cellular model has been developed that is based on solving the equation of heat conduction in a liquid phase and on the integral method for a gas phase in a spherically symmetric one-dimensional formulation. Numerical investigation has been carried out of the influence of the size and concentration of the droplets and of the initial parameters of the steam on the dynamics of depressurization during the vapor condensation on the droplets.

  10. Studies on micro-structures at vapor-liquid interfaces of film boiling on hot liquid surface at arriving of a shock pressure

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Akira; Lee, S. [Tokyo Inst. of Tech. (Japan)

    1998-01-01

    In vapor explosions, a pressure wave (shock wave) plays a fundamental role in the generation, propagation and escalation of the explosion. Transient volume change by rapid heat flow from a high temperature liquid to a low temperature volatile one and phase change generate micro-scale flow and the pressure wave. One of key issues for the vapor explosion is to make clear the mechanism to support the explosive energy release from hot drop to cold liquid. According to our observations by an Image Converter Camera, growth rate of vapor film around a hot tin drop became several times higher than that around a hot Platinum tube at the same conditions when a pressure pulse collapsed the film. The thermally induced fragmentation was followed by the explosive growth rate of the hot drop. In the previous report, we have proposed that the interface instability and fragmentation model in which the fine Taylor instability of vapor-liquid interface at the collapsing and re-growth phase of vapor film and the instability induced by the high pressure spots at the drop surface were assumed. In this study, the behavior of the vapor-liquid interface region at arrival of a pressure pulse was investigated by the CIPRIS code which is able to simulate dynamics of transient multi-phase interface regions. It is compared with the observation results. Through detailed investigations of these results, the mechanisms of the thermal fragmentation of single drop are discussed. (J.P.N.)

  11. Reactivity of water vapor in an atmospheric pressure DBD -Application to LDPE surfaces

    CERN Document Server

    Collette, S; Viville, Pascal; Reniers, François

    2016-01-01

    The reactivity of water vapor introduced in an atmospheric dielectric barrier discharge supplied in argon is investigated through optical emission spectroscopy measurements. This discharge is also used for the treatment of LDPE surfaces. Water contact angles measurements, XPS and AFM techniques are used to study the grafting of oxygen functions on the LDPE surface and increase its hydrophilicity.

  12. Measurement and Prediction of Vapor Pressure for H2O+CH3OH/C2H5OH+[BMIM][DBP] Ternary Working Fluids

    Institute of Scientific and Technical Information of China (English)

    张晓冬; 胡大鹏; 赵宗昌

    2013-01-01

    The ionic liquid, 1-butyl-3-methylimidazolium dibutylphosphate ([BMIM][DBP]) was prepared and the vapor pressures of three set of binary solutions H2O(1)/CH3OH(1)/C2H5OH(1)+[BMIM][DBP](2) were measured at different temperature and in the ILs mole fraction range from 0.1 to 0.6 with a static equilibrium apparatus. The measured vapor pressures were correlated with Non-Random Two Liquid (NRTL) activity coefficient model and the average relative deviations (ARD) between experimental and correlated vapor pressures for these binary solutions were 3.19%, 2.42% and 2.95%, respectively. Then, the vapor pressures of two set of ternary solutions H2O(1)+CH3OH(2)/C2H5OH(2)+[BMIM][DBP](3) were measured with an inclined boiling apparatus and further predicted with NRTL activity coefficient model based on the binary interaction parameters coming from fitting the vapor pressures of the binary solutions. The results indicated that the ternary solutions containing [BMIM][DBP] were shown a strong negative deviation from Raoult’s Law when the mole fraction of [BMIM][DBP] was larger than 0.2, which meant that ternary solutions could absorb the refrigerant vapors at the same or below solution temperature. Meanwhile, the average relative deviations between experimental and predicted vapor pressures for ternary solutions were 2.92% and 3.06%, respectively. Consequently, the NRTL active coefficient model used for non-electrolyte solutions was still valid for predicting vapor-liquid equilibrium of binary or ternary solutions containing ILs.

  13. Review of methods and measurements of selected hydrophobic organic contaminant aqueous solubilities, vapor pressures, and air-water partition coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Bamford, H.A.; Baker, J.E.; Poster, D.L.

    1998-03-01

    Aqueous solubilities, vapor pressures, and Henry`s law constants for a wide range of organic contaminants of environmental interest are presented. Specifically, a discussion of methods used to measure these physical constants and resulting measurements are provided in an effort to examine the scope of physical constants reported in the scientific literature. Physical constants reviewed include those for 40 PAHs, 14 chlorinated aliphatics, 149 PCBs, 12 chlorinated benzenes, 16 dioxins, 63 furans, and 29 agrochemicals (a total of 323 compounds) and overall a total of 1,605 values are listed.

  14. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    Science.gov (United States)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.

    2002-01-01

    Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.

  15. EXTERIOR PRESSURE OF THE GASEOUS MEDIUM AS AN ADDITIONAL TECHNOLOGICAL FACTOR FOR OPTIMIZING THE VAPORIZATION PROCESS IN THE PRODUCTION OF CELLULAR SILICATE CONCRETE

    Directory of Open Access Journals (Sweden)

    A. A. Rezanov

    2012-11-01

    Full Text Available Statement of the problem. The quality of silicate porous concrete is largely determined by vapor-ization processes at the stage of the formation of the macrostructure of the obtained material. In the production of cellular concrete with the use of injection molding, the existing manufacturing technologies do not enable the expeditious handling of the vaporization process. This is why there is a growing need to develop additional efficient methods of handling the vaporization process thus improving cellular silicate concrete.Results. Based on modelling and detailed examination of the balance of pressure affecting devel-oping gas pores, mechanisms and factors governing a defect-free structure are found. An additional governing factor, which is a pressure of the external gaseous medium, was discovered. The approaches to handling the vaporization process have been developed and a plant fitted with a system of automatic control of vaporization process by conscious operative pressuring effect from the external gaseous phase on a poring mixture has been designed.Conclusions. Theoretical validation along with the results of the experimental study help to arrive at the conclusion about the efficiency of the suggested system in controlling vaporization that could provide a good addition to the traditional injection molding and make it more susceptible against varying characteristics of raw materials.

  16. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains.

    Science.gov (United States)

    Rocha, Marisa A A; Coutinho, João A P; Santos, Luís M N B F

    2014-10-01

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [CN/2CN/2im][NTf2] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [CN/2CN/2im][NTf2] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids. The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [CN-1C1im][NTf2]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C6C6im][NTf2], was detected. An intensification of the odd-even effect was observed starting from [C6C6im][NTf2], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C7C7im][NTf2] and [C9C9im][NTf2]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [CN/2CN/2im][NTf2] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C6C1and C6C6) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.

  17. Atmospheric pressure chemical vapor deposition (APCVD) grown bi-layer graphene transistor characteristics at high temperature

    KAUST Repository

    Qaisi, Ramy M.

    2014-05-15

    We report the characteristics of atmospheric chemical vapor deposition grown bilayer graphene transistors fabricated on ultra-scaled (10 nm) high-κ dielectric aluminum oxide (Al2O3) at elevated temperatures. We observed that the drive current increased by >400% as temperature increased from room temperature to 250 °C. Low gate leakage was maintained for prolonged exposure at 100 °C but increased significantly at temperatures >200 °C. These results provide important insights for considering chemical vapor deposition graphene on aluminum oxide for high temperature applications where low power and high frequency operation are required. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Experimental study of vapor local characteristics in upward low pressure boiling tube

    Institute of Scientific and Technical Information of China (English)

    SUN Qi; ZHAO Hua; XI Zhao; YANG Rui-Chang

    2003-01-01

    Radial distribution of vapor local parameters, including local void fraction, interfacial velocity, bubblesize, bubble frequency and interfacial area concentration, are investigated through the measurement in an upwardboiling tube using dual-sensor optical probe. In addition, a new local parameter -"local bubble number concentra-tion" is developed on the basis of bubble frequency. The analysis shows that this parameter can reflect bubble numberdensity in space, and has clear physical meaning.

  19. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    . The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...

  20. Method for estimating critical properties of heavy compounds suitable for cubic equations of state and its application to the prediction of vapor pressures

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Ioannis, Smirlis; Iakovos, Yakoumis

    1997-01-01

    Cubic equations of state (EoS) are often used for correlating and predicting phase equilibria. Before extending any EoS to mixtures, reliable vapor-pressure prediction is essential. This requires experimental, if possible, critical temperatures T-c, pressures P-c, and acentric factor omega...

  1. Isosteric Vapor Pressure – Temperature Data for Water Sorption in Hardened Cement Paste: Enthalpy, Entropy and Sorption Isotherms at Different Temperatures

    DEFF Research Database (Denmark)

    Radjy, Fariborz; Sellevold, Erik J.; Hansen, Kurt Kielsgaard

    and the temperatures range from 2 to 95 °C, differing for the specimen types. The data has been analyzed to yield differential enthalpy and entropy of adsorption, as well as the dependence of the relative vapor pressure on temperature at various constant moisture contents. The implications for the coefficient......PART I: In order to generate isosteric (constant mass) vapor pressure – temperature data (P-T data) for adsorbed pore water in hydrated cement paste, the Thermo Piestic Analysis system (the TPA system) described herein was developed. The TPA system generates high precision equilibrium isosteric P....... The accuracies for pressure, enthalpy and entropy are found to be 0.5% or less. PART II: The TPA-system has been used to generate water vapor pressure – temperature data for room temperature – and steam cured hardened cement pastes as well as porous vycor glass. The moisture contents range from saturated to dry...

  2. [Time lag effect between stem sap flow and photosynthetically active radiation, vapor pressure deficit of Acacia mangium].

    Science.gov (United States)

    Wang, Hua; Zhao, Ping; Cai, Xi-An; Ma, Ling; Rao, Xing-Quan; Zeng, Xiao-Ping

    2008-02-01

    Based on the measurement of the stem sap flow of Acacia mangium with Granier' s thermal dissipation probe, and the cross-correlation and time serial analysis of the sap flow and corresponding photosynthetically active radiation and vapor pressure deficit, this paper studied the time lag effect between the stem sap flow of A. mangium and the driving factors of the tree canopy transpiration. The results indicated that the main driving factors of the transpiration were photosynthetically active radiation (PAR) and vapor pressure deficit (VPD). Sap flux density (Js) was more dependent on PAR than on VPD, and the dependence was more significant in dry season than in wet season. Sap flow lagged behind PAR but advanced than VPD in both dry and wet seasons. The time lag did not show any significant variation across different size tree individuals, but showed significant variation in different seasons. Time lag effect was not correlated with tree height, diameter at the breast, and canopy size. The time lag between Js and VPD was significantly related to nighttime water recharge in dry season, but reversed in wet season.

  3. Modeling vapor liquid equilibrium of ionic liquids + gas binary systems at high pressure with cubic equations of state

    Directory of Open Access Journals (Sweden)

    A. C. D. Freitas

    2013-03-01

    Full Text Available Ionic liquids (IL have been described as novel environmentally benign solvents because of their remarkable characteristics. Numerous applications of these solvents continue to grow at an exponential rate. In this work, high pressure vapor liquid equilibria for 17 different IL + gas binary systems were modeled at different temperatures with Peng-Robinson (PR and Soave-Redlich-Kwong (SRK equations of state, combined with the van der Waals mixing rule with two binary interaction parameters (vdW-2. The experimental data were taken from the literature. The optimum binary interaction parameters were estimated by minimization of an objective function based on the average absolute relative deviation of liquid and vapor phases, using the modified Simplex algorithm. The solubilities of all gases studied in this work decrease as the temperature increases and increase with increasing pressure. The correlated results were highly satisfactory, with average absolute relative deviations of 2.10% and 2.25% for PR-vdW-2 and SRK-vdW-2, respectively.

  4. The novel technique of vapor pressure analysis to monitor the enzymatic degradation of PHB by HPLC chromatography.

    Science.gov (United States)

    Polyák, Péter; Rácz, Piroska; Rózsa, Péter; Nagy, Gergely N; Vértessy, Beáta G; Pukánszky, Béla

    2017-03-15

    A novel method was introduced for the quantitative determination of substances in aqueous solutions by using the evaporative light scattering (ELS) detector of a high performance liquid chromatograph (HPLC). The principle of the measurement is the different equilibrium vapor pressure of the solvent and the analyte resulting in decreasing evaporation rate, larger droplets and stronger signal with increasing concentration. The new technique based on vapor pressure analysis was validated with traditional UV-Vis detection carried out with a diode array detector (DAD). The new technique was used for monitoring the concentration of solutions obtained during the enzymatic degradation of poly(3-hydroxybutyrate) yielding the 3-hydroxybutyrate monomer as the product. The accuracy of the measurement allowed the determination of degradation kinetics as well. The results obtained with the two techniques showed excellent agreement at small concentrations. Deviations at larger concentrations were explained with the non-linear correlation between analyte concentration and detector signal and the linear regression used for calibration. Mathematical analysis of the method made possible the determination of the evaporation enthalpy of the analyte as well. The new approach is especially suitable for the quantitative analysis of compounds, which do not absorb in the detection range of the DAD detector or if their characteristic absorbance is close to the lower end of its wavelength range.

  5. Vapor pressures and calculated heats of vaporization of concentrated nitric acid solutions in the composition range 71 to 89 percent nitrogen dioxide, 1 to 10 percent water, and in the temperature range 10 to 60 degrees C

    Science.gov (United States)

    Mckeown, A B; Belles, Frank E

    1954-01-01

    Total vapor pressures were measured for 16 acid mixtures of the ternary system nitric acid, nitrogen dioxide, and water within the temperature range 10 degrees to 60 degrees Celsius, and with the composition range 71 to 89 weight percent nitric acid, 7 to 20 weight percent nitrogen dioxide, and 1 to 10 weight percent water. Heats of vaporization were calculated from the vapor pressure measurements for each sample for the temperatures 25, 40, and 60 degrees Celsius. The ullage of the apparatus used for the measurements was 0.46. Ternary diagrams showing isobars as a function of composition of the system were constructed from experimental and interpolated data for the temperatures 25, 40, 45, and 60 degrees C and are presented herein.

  6. Experimental measurement of vapor pressures and (vapor + liquid) equilibrium for {l_brace}1,1,1,2-tetrafluoroethane (R134a) + propane (R290){r_brace} by a recirculation apparatus with view windows

    Energy Technology Data Exchange (ETDEWEB)

    Dong Xueqiang [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Gong Maoqiong, E-mail: gongmq@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Liu Junsheng [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China); Graduate University of Chinese Academy of Sciences, Beijing 100039 (China); Wu Jianfeng, E-mail: jfwu@mail.ipc.ac.c [Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, P.O. Box 2711, Beijing 100190 (China)

    2011-03-15

    The saturated vapor pressures of 1,1,1,2-tetrafluoroethane (R134a) and propane (R290), and the (vapor + liquid) equilibrium (VLE) data at (255.000, 265.000, 275.000, and 285.000) K for the (R134a + R290) system were measured by a recirculation apparatus with view windows. The uncertainty of the temperatures, pressures, and compositions are less than {+-}5 mK, {+-}0.0005 MPa, and {+-}0.005, respectively. The saturated vapor pressures data were correlated by a Wagner type equation and compared with the reference data. The binary VLE data were correlated with the Peng-Robinson equation of state (PR EoS) incorporating the Huron-Vidal (HV) mixing rule utilizing the nonrandom two-liquid (NRTL) activity coefficient model. For mixtures, the maximum average absolute relative deviation of pressure is 0.15%, while the maximum average absolute deviation of vapor phase mole fraction is 0.0045. Azeotropic behavior can be found for the (R134a + R290) system at measured temperatures.

  7. Time variant layer control in atmospheric pressure chemical vapor deposition based growth of graphene

    KAUST Repository

    Qaisi, Ramy M.

    2013-04-01

    Graphene is a semi-metallic, transparent, atomic crystal structure material which is promising for its high mobility, strength and transparency - potentially applicable for radio frequency (RF) circuitry and energy harvesting and storage applications. Uniform (same number of layers), continuous (not torn or discontinuous), large area (100 mm to 200 mm wafer scale), low-cost, reliable growth are the first hand challenges for its commercialization prospect. We show a time variant uniform (layer control) growth of bi- to multi-layer graphene using atmospheric chemical vapor deposition system. We use Raman spectroscopy for physical characterization supported by electrical property analysis. © 2013 IEEE.

  8. High Pressure Vapor-Liquid Equilibrium of Supercritical Carbon Dioxide + n-Hexane System

    Institute of Scientific and Technical Information of China (English)

    YU Jinglin; TIAN Yiling; ZHU Rongjiao; LIU Zhihua

    2006-01-01

    Vapor-liquid equilibrium data of supercritical carbon dioxide + n-hexane system were measured at 313.15 K,333.15 K,353.15 K,and 373.15 K and their molar volumes and densities were measured both in the subcritical and supercritical regions ranging from 2.15 to 12.63 MPa using a variable-volume autoclave.The thermodynamic properties including mole fractions,densities,and molar volumes of the system were calculated with an equation of state by Heilig and Franck,in which a repulsion term and a square-well potential attraction term for intermolecular interaction was used.The pairwise combination rule was used to calculate the square-well molecular interaction potential and three adjustable parameters (ω,kε,kσ) were obtained.The Heilig-Franck equation of state is found to have good correlation with binary vapor-liquid equilibrium data of the carbon dioxide + n-hexane system.

  9. Mass Spectrometric Identification of Si-O-H(g) Species from the Reaction of Silica with Water Vapor at Atmospheric Pressure

    Science.gov (United States)

    Opila, Elizabeth J.; Fox, Dennis S.; Jacobson, Nathan S.

    1997-01-01

    A high-pressure sampling mass spectrometer was used to detect the volatile species formed from SiO2 at temperatures between 1200C and 1400C in a flowing water vapor/oxygen gas mixture at 1 bar total pressure. The primary vapor species identified was Si(OH)4. The fragment ion Si(OH)3+,' was observed in quantities 3 to 5 times larger than the parent ion Si(OH)4+. The Si(OH)3+ intensity was found to have a small temperature dependence and to increase with the water vapor partial pressure as expected. In addition, SiO(OH)+ believed to be a fragment of SiO(OH)2, was observed. These mass spectral results were compared to the behavior of silicon halides.

  10. Macroscopic quantum resonators (MAQRO)

    CERN Document Server

    Kaltenbaek, Rainer; Kiesel, Nikolai; Romero-Isart, Oriol; Johann, Ulrich; Aspelmeyer, Markus

    2012-01-01

    Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 10e8 atoms. Under these conditions, deviations due to various suggested alternative models to quantum th...

  11. Vapor Bubbles

    Science.gov (United States)

    Prosperetti, Andrea

    2017-01-01

    This article reviews the fundamental physics of vapor bubbles in liquids. Work on bubble growth and condensation for stationary and translating bubbles is summarized and the differences with bubbles containing a permanent gas stressed. In particular, it is shown that the natural frequency of a vapor bubble is proportional not to the inverse radius, as for a gas bubble, but to the inverse radius raised to the power 2/3. Permanent gas dissolved in the liquid diffuses into the bubble with strong effects on its dynamics. The effects of the diffusion of heat and mass on the propagation of pressure waves in a vaporous bubbly liquid are discussed. Other topics briefly touched on include thermocapillary flow, plasmonic nanobubbles, and vapor bubbles in an immiscible liquid.

  12. Determinação da pressão de vapor de compostos orgânicos por cromatografia gasosa Determination of vapor pressure of organic compounds by gas chromatography

    Directory of Open Access Journals (Sweden)

    Fabrício P. Povh

    2006-06-01

    Full Text Available O conhecimento das pressões de vapor dos compostos naturais e suas propriedades críticas, de grande interesse para a extração supercrítica e impregnação de polímeros pelo processo supercrítico, é imprescindível para se fazer a modelagem termodinâmica do equilíbrio de fases. No entanto, a escassez de dados experimentais desses compostos, devida à alta volatilidade, ou facilidade à degradação em temperaturas baixas, requer a utilização de métodos especiais. Neste trabalho, determinaram-se as pressões de vapor da curcumina, nicotina, d-limoneno, beta-mirceno, citronelal e linalol, através de um método que utiliza medidas de tempo de retenção por cromatografia gasosa. Utilizou-se detector de ionização de chama e coluna em fase estacionária não polar, em condições isotérmicas. O método apresenta vantagens em relação a outros métodos, quanto à rapidez de análise, quantidade e repetibilidade das amostras. Para as determinações das pressões de vapor destes compostos naturais requer-se o conhecimento da temperatura normal de ebulição, ou temperatura de fusão e das pressões de vapor dos homólogos dos compostos analisados.The knowledge of the vapor pressures of natural compounds, as well as their critical properties are of great interest for the application of supercritical extraction and supercritical impregnation dye, and necessary for the thermodynamic modeling of equilibria phase. The scarcity of experimental data for these compounds results from their low volatility or easiness to degrade at low temperatures, therefore, requires the use of special methods. In this work, the vapor pressures of curcumin, nicotine, d-limonene, ß-myrcene, citronellal and linalool were determined through a method based on the retention time in a gas chromatographer column. A flame ionization detector and a column with non-polar stationary phase were used, under isothermal conditions. This method has the advantages of giving

  13. Identification of Alternative Vapor Intrusion Pathways Using Controlled Pressure Testing, Soil Gas Monitoring, and Screening Model Calculations.

    Science.gov (United States)

    Guo, Yuanming; Holton, Chase; Luo, Hong; Dahlen, Paul; Gorder, Kyle; Dettenmaier, Erik; Johnson, Paul C

    2015-11-17

    Vapor intrusion (VI) pathway assessment and data interpretation have been guided by an historical conceptual model in which vapors originating from contaminated soil or groundwater diffuse upward through soil and are swept into a building by soil gas flow induced by building underpressurization. Recent studies reveal that alternative VI pathways involving neighborhood sewers, land drains, and other major underground piping can also be significant VI contributors, even to buildings beyond the delineated footprint of soil and groundwater contamination. This work illustrates how controlled-pressure-method testing (CPM), soil gas sampling, and screening-level emissions calculations can be used to identify significant alternative VI pathways that might go undetected by conventional sampling under natural conditions at some sites. The combined utility of these tools is shown through data collected at a long-term study house, where a significant alternative VI pathway was discovered and altered so that it could be manipulated to be on or off. Data collected during periods of natural and CPM conditions show that the alternative pathway was significant, but its presence was not identifiable under natural conditions; it was identified under CPM conditions when measured emission rates were 2 orders of magnitude greater than screening-model estimates and subfoundation vertical soil gas profiles changed and were no longer consistent with the conventional VI conceptual model.

  14. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    KAUST Repository

    Sharma, Ashish

    2016-09-08

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface. © 2016 IOP Publishing Ltd.

  15. Kinetics and dynamics of nanosecond streamer discharge in atmospheric-pressure gas bubble suspended in distilled water under saturated vapor pressure conditions

    Science.gov (United States)

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.; Cha, Min Suk

    2016-10-01

    We perform computational studies of nanosecond streamer discharges generated in helium bubbles immersed in distilled water under atmospheric pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description of the discharge kinetics. We find that the dynamic characteristics of the streamer discharge are different at low and high positive trigger voltages with the axial streamer evolution dominant for low voltages and a surface hugging mode favored for high voltages. We also find a substantial difference in initiation, transition and evolution stages of discharge for positive and negative trigger voltages with the volumetric distribution of species in the streamer channel much more uniform for negative trigger voltages on account of the presence of multiple streamers. We observe that the presence of water vapor does not affect the breakdown voltage even for oversaturated conditions but significantly influences the composition of dominant species in the trail of the streamer as well as the flux of the dominant species on the bubble surface.

  16. On the Origin of Light Emission in Silicon Rich Oxide Obtained by Low-Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    M. Aceves-Mijares

    2012-01-01

    Full Text Available Silicon Rich Oxide (SRO has been considered as a material to overcome the drawbacks of silicon to achieve optical functions. Various techniques can be used to produce it, including Low-Pressure Chemical Vapor Deposition (LPCVD. In this paper, a brief description of the studies carried out and discussions of the results obtained on electro-, cathode-, and photoluminescence properties of SRO prepared by LPCVD and annealed at 1,100°C are presented. The experimental results lead us to accept that SRO emission properties are due to oxidation state nanoagglomerates rather than to nanocrystals. The emission mechanism is similar to Donor-Acceptor decay in semiconductors, and a wide emission spectrum, from 450 to 850 nm, has been observed. The results show that emission is a function of both silicon excess in the film and excitation energy. As a result different color emissions can be obtained by selecting the suitable excitation energy.

  17. Hot-wall low pressure chemical vapor deposition growth and characterization of AlN thin films

    Science.gov (United States)

    Heinselman, Karen N.; Brown, Richard J.; Shealy, James R.

    2017-10-01

    Hot-wall low pressure chemical vapor deposition (LPCVD) of highly crystalline epitaxial thin-film AlN grown on silicon (1 1 1) substrates is reported for the first time. Deposition was carried out in a modified commercial LPCVD at 1000 °C and 2 torr. Preflow time for the aluminum precursor, trimethylaluminum, was varied to nucleate Al, and the resulting variation in X-ray diffraction (XRD) crystalline AlN peaks is presented. With a 30 s dichlorosilane (SiH2Cl2) pretreatment at 700 °C and the optimal TMAl preflow time, the FWHM of the resulting film was 1116 arcsec for the AlN (0 0 2) 2 θ - ω peak, and the AlN (0 0 2) peak had an omega rocking curve FWHM of 1.6°. This AlN film was shown to be epitaxially aligned to the Si (1 1 1) substrate.

  18. Effect of Phase Purity on Dislocation Density of Pressurized-Reactor Metalorganic Vapor Phase Epitaxy Grown InN

    Science.gov (United States)

    Iwabuchi, Takuya; Liu, Yuhuai; Kimura, Takeshi; Zhang, Yuantao; Prasertsuk, Kiattiwut; Watanabe, Haruna; Usami, Noritaka; Katayama, Ryuji; Matsuoka, Takashi

    2012-04-01

    The effect of the metastable zincblende (ZB) InN inclusion in the stable wurtzite (WZ) InN on the threading dislocation densities (TDDs) of an InN film grown by pressurized-reactor metalorganic vapor phase epitaxy has been studied by X-ray diffraction measurements. InN films are directly grown on c-plane sapphire substrates with nitrided surfaces at 1600 Torr with the different growth temperature from 500 to 700 °C. Films including ZB-InN show the correlation between the ZB volume fraction and the edge component of TDDs, not the screw component of TDDs. This result can be crystallographically understood by a simple model explaining how the ZB structure is included, i.e., ZB domains existing side-by-side with WZ domains and twined ZB domains. This can be clearly observed by electron backscatter diffraction.

  19. Growth of selective tungsten films on self-aligned CoSi/sub 2/ by low pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    van der Putte, P.; Sadana, D.K.; Broadbent, E.K.; Morgan, A.E.

    1986-12-22

    The selective deposition of tungsten films onto CoSi/sub 2/ and onto Co by low pressure chemical vapor deposition and their material properties have been investigated with Auger electron spectroscopy, transmission electron microscopy, and Rutherford backscattering. When using WF/sub 6/ and H/sub 2/, uniformly thick tungsten films can be deposited onto CoSi/sub 2/ without substrate alteration. In patterned structures, however, void formation was found at the perimeters of CoSi/sub 2/ contacts to silicon, indicating encroachment of WF/sub 6/ down the edge of the silicide-Si interface. In WF/sub 6/ and Ar, the film thickness was limited to 10 nm and some Si was locally consumed from the upper part of the CoSi/sub 2/ film. Transmission electron diffraction showed evidence of Co/sub 2/Si formation in these areas.

  20. Vapor-pressure osmometric study of the molecular weight and aggregation tendency of a reference-soil fulvic acid

    Science.gov (United States)

    Marinsky, J.A.; Reddy, M.M.

    1990-01-01

    The molecular weight and aggregation tendency of a reference-soil fulvic acid in Armadale horizon Bh were determined by vapor-pressure osmometry using tetrahydrofuran and water as solvents. With tetrahydrofuran, number-average molecular weight values of 767 ?? 34 and 699 ?? 8 daltons were obtained from two separate sets of measurements. Two sets of measurements with water also yielded values within this range (754 ?? 70 daltons) provided that the fulvic acid concentration in water did not exceed 7 mg ml-1; at higher concentrations (9.1-13.7 mg ml-1) a number-average molecular weight of 956 ?? 25 daltons was resolved, providing evidence of molecular aggregation. Extension of these studies to 80% neutralized fulvic acid showed that a sizeable fraction of the sodium counter ion is not osmotically active.

  1. Modeling and Real-Time Process Monitoring of Organometallic Chemical Vapor Deposition of III-V Phosphides and Nitrides at Low and High Pressure

    Science.gov (United States)

    Bachmann, K. J.; Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Sukidi, N.; McCall, S.

    1999-01-01

    The purpose of this paper is to review modeling and real-time monitoring by robust methods of reflectance spectroscopy of organometallic chemical vapor deposition (OMCVD) processes in extreme regimes of pressure. The merits of p-polarized reflectance spectroscopy under the conditions of chemical beam epitaxy (CBE) and of internal transmission spectroscopy and principal angle spectroscopy at high pressure are assessed. In order to extend OMCVD to materials that exhibit large thermal decomposition pressure at their optimum growth temperature we have designed and built a differentially-pressure-controlled (DCP) OMCVD reactor for use at pressures greater than or equal to 6 atm. We also describe a compact hard-shell (CHS) reactor for extending the pressure range to 100 atm. At such very high pressure the decomposition of source vapors occurs in the vapor phase, and is coupled to flow dynamics and transport. Rate constants for homogeneous gas phase reactions can be predicted based on a combination of first principles and semi-empirical calculations. The pressure dependence of unimolecular rate constants is described by RRKM theory, but requires variational and anharmonicity corrections not included in presently available calculations with the exception of ammonia decomposition. Commercial codes that include chemical reactions and transport exist, but do not adequately cover at present the kinetics of heteroepitaxial crystal growth.

  2. High-pressure vapor-liquid equilibrium data for CO2-orange peel oil

    Directory of Open Access Journals (Sweden)

    G.R. Stuart

    2000-06-01

    Full Text Available Recently, there has been a growing interest in fractionating orange peel oil by the use of supercritical carbon dioxide (SCCO2. However, progress in this area has been hindered by the lack of more comprehensive work concerning the phase equilibrium behavior of the SCCO2-orange peel oil system. In this context, the aim of this work is to provide new phase equilibrium data for this system over a wide range of temperatures and pressures, permitting the construction of coexistence PT-xy curves as well as the P-T diagram. The experiments were performed in a high-pressure variable-volume view cell in the temperature range of 50-70ºC from 70 to 135 atm and in the CO2 mass fraction composition range of 0.35-0.98. Based on the experimental phase equilibrium results, appropriate operating conditions can be set for high-pressure fractionation purposes.

  3. Preparation of high-pressure phase boron nitride films by physical vapor deposition

    CERN Document Server

    Zhu, P W; Zhao, Y N; Li, D M; Liu, H W; Zou Guang Tian

    2002-01-01

    The high-pressure phases boron nitride films together with cubic, wurtzic, and explosive high-pressure phases, were successfully deposited on the metal alloy substrates by tuned substrate radio frequency magnetron sputtering. The percentage of cubic boron nitride phase in the film was about 50% as calculated by Fourier transform infrared measurements. Infrared peak position of cubic boron nitride at 1006.3 cm sup - sup 1 , which is close to the stressless state, indicates that the film has very low internal stress. Transition electron microscope micrograph shows that pure cubic boron nitride phase exits on the surface of the film. The growth mechanism of the BN films was also discussed.

  4. Desenvolvimento de um equipamento para avaliação do efeito do etanol na pressão de vapor e entalpia de vaporização em gasolinas automotivas Development of a device to valuate the effect of ethanol on the vapor pressure and vaporization enthalpy of fuel gasolines

    Directory of Open Access Journals (Sweden)

    Renato Cataluña

    2006-06-01

    Full Text Available The quality of the gasoline utilized for fueling internal combustion engines with spark ignition is directly affected by the gasoline's properties. Thus, the fuel's properties must be in perfect equilibrium to allow the engine to perform optimally, not only insofar as fuel consumption is concerned, but also in order to reduce the emission of pollutants. Vapor pressure and vaporization enthalpy are important properties of a gasoline determining the fuel's behavior under different operating conditions in internal combustion engines. The study reported here involved the development of a device to determine the vapor pressure and the vaporization enthalpy of formulations containing volumes of 5, 15 and 25% of ethanol in four base gasolines (G1, G2, G3 and G4. The chemical composition of these gasolines was determined using a gas chromatographer equipped with a flame ionization detector (FID.

  5. Buoyancy-Driven Heat Transfer During Application of a Thermal Gradient for the Study of Vapor Deposition at Low Pressure Using and Ideal Gas

    Science.gov (United States)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.

    1996-01-01

    A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is

  6. Heat transport in cold-wall single-wafer low pressure chemical-vapor-deposition reactors

    NARCIS (Netherlands)

    Hasper, A.; Schmitz, J.E.J.; Holleman, J.; Verweij, J.F.

    1992-01-01

    A model is formulated to understand and predict wafer temperatures in a tungsten low pressure chemical‐vapor‐deposition (LPCVD) single‐wafer cold‐wall reactor equipped with hot plate heating. The temperature control is usually carried out on the hot plate temperature. Large differences can occur

  7. Vapor Pressure Data Analysis and Correlation Methodology for Data Spanning the Melting Point

    Science.gov (United States)

    2013-10-01

    of an accepted ASTM method7 and has been modified at ECBC to accommodate materials with a wide variety of volatilities, including the nerve agents ...1 are similar to the constants reported for a variety of analytes, particularly a series of nerve agent simulants.11 Several observations, or rules...Pressure of Chemical Agents GD, VX , EA 2223, EA 3547, EA 3580, EA 5365, and EA 5533; EC-TR-76058; Edgewood Arsenal: Aberdeen Proving Ground, MD, 1976

  8. Undoped and in-situ B doped GeSn epitaxial growth on Ge by atmospheric pressure-chemical vapor deposition

    DEFF Research Database (Denmark)

    Vincent, B.; Gencarelli, F.; Bender, H.

    2011-01-01

    In this letter, we propose an atmospheric pressure-chemical vapor deposition technique to grow metastable GeSn epitaxial layers on Ge. We report the growth of defect free fully strained undoped and in-situ B doped GeSn layers on Ge substrates with Sit contents up to 8%. Those metastable layers stay...

  9. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    Science.gov (United States)

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  10. Identifying Liquid-Gas System Misconceptions and Addressing Them Using a Laboratory Exercise on Pressure-Temperature Diagrams of a Mixed Gas Involving Liquid-Vapor Equilibrium

    Science.gov (United States)

    Yoshikawa, Masahiro; Koga, Nobuyoshi

    2016-01-01

    This study focuses on students' understandings of a liquid-gas system with liquid-vapor equilibrium in a closed system using a pressure-temperature ("P-T") diagram. By administrating three assessment questions concerning the "P-T" diagrams of liquid-gas systems to students at the beginning of undergraduate general chemistry…

  11. The gas phase emitter effect of lanthanum within ceramic metal halide lamps and its dependence on the La vapor pressure and operating frequency

    Energy Technology Data Exchange (ETDEWEB)

    Ruhrmann, C.; Hoebing, T.; Bergner, A.; Groeger, S.; Awakowicz, P.; Mentel, J. [Electrical Engineering and Plasma Technology, Ruhr University Bochum, D-44780 Bochum (Germany); Denissen, C.; Suijker, J. [Philips Lighting, Category Professional Lamps, P.O. Box 80020, NL-5600JM Eindhoven (Netherlands)

    2015-08-07

    The gas phase emitter effect increases the lamp lifetime by lowering the work function and, with it, the temperature of the tungsten electrodes of metal halide lamps especially for lamps in ceramic vessels due to their high rare earth pressures. It is generated by a monolayer on the electrode surface of electropositive atoms of certain emitter elements, which are inserted into the lamp bulb by metal iodide salts. They are vaporized, dissociated, ionized, and deposited by an emitter ion current onto the electrode surface within the cathodic phase of lamp operation with a switched-dc or ac-current. The gas phase emitter effect of La and the influence of Na on the emitter effect of La are studied by spatially and phase-resolved pyrometric measurements of the electrode tip temperature, La atom, and ion densities by optical emission spectroscopy as well as optical broadband absorption spectroscopy and arc attachment images by short time photography. An addition of Na to the lamp filling increases the La vapor pressure within the lamp considerably, resulting in an improved gas phase emitter effect of La. Furthermore, the La vapor pressure is raised by a heating of the cold spot. In this way, conditions depending on the La vapor pressure and operating frequency are identified, at which the temperature of the electrodes becomes a minimum.

  12. Characterization of atmospheric pressure plasma treated pure cashmere and wool/cashmere textiles: Treatment in air/water vapor mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zanini, Stefano, E-mail: stefano.zanini@mib.infn.it [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy); Grimoldi, Elisa [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy); Citterio, Attilio [Politecnico di Milano, Dipartimento di Chimica, Materiali ed Ingegneria Chimica “G. Natta”, Via Mancinelli 7, I-20131 Milano (Italy); Riccardi, Claudia, E-mail: riccardi@mib.infn.it [Università degli Studi di Milano-Bicocca, Dipartimento di Fisica “G. Occhialini”, p.za della Scienza, 3, I-20126 Milano (Italy)

    2015-09-15

    Highlights: • We treated cashmere and wool/cashmere textiles with atmospheric pressure plasma. • Wettability of the fabrics was increased. • The increment in wettability derived from a surface oxidation of the fibers. • Only minor etching effects were observed with scanning electron microscopy. - Abstract: We performed atmospheric pressure plasma treatments of pure cashmere and wool/cashmere textiles with a dielectric barrier discharge (DBD) in humid air (air/water vapor mixtures). Treatment parameters have been optimized in order to enhance the wettability of the fabrics without changing their bulk properties as well as their touch. A deep characterization has been performed to study the wettability, the surface morphologies, the chemical composition and the mechanical properties of the plasma treated textiles. The chemical properties of the plasma treated samples were investigated with attenuated total reflectance Fourier transform infrared (FTIR/ATR) spectroscopy and X-ray photoelectron microscopy (XPS). The analyses reveal a surface oxidation of the treated fabrics, which enhances their surface wettability. Morphological characterization of the treated fibers with scanning electron microscopy (SEM) reveals minor etching effects, an essential feature for the maintenance of the textile softness.

  13. Vapor Pressure Measurements of LiBH4, NaBH 4 and Ca(BH4)2 using Knudsen Torsion Effusion Gravimetric Method

    Science.gov (United States)

    Danyan, Mohammad Masoumi

    Hydrogen storage is one of the critical technologies needed on the path towards commercialization for mobile applications. In the past few years, a range of new light weight hydrogen containing material has been discovered with good storage properties. Among them, lithium borohydride (LiBH 4) sodium borohydride (NaBH4) and calcium borohydride (Ca(BH 4)2) have shown promising results to be used as solid state hydrogen storage material. In this work, we have determined equilibrium vapor pressures of LiBH 4 NaBH4 and Ca(BH4)2 obtained by Torsion effusion thermogravimetric method. Results for all the three hydrides exhibited that a small fraction of the materials showed congruency, and sublimed as gaseous compound, but the majority of the material showed incongruent vaporization. Two Knudsen cells of 0.3 and 0.6mm orifice size was employed to measure the total vapor pressures. A Whitman-Motzfeldt method is used to extrapolate the measured vapor pressures to zero orifice size to calculate the equilibrium vapor pressures. In the case of LiBH4 we found that 2% of the material evaporated congruently (LiBH4(s) → LiBH4(g)) according to the equation: logPLiBH4/P 0 =-3263.5 +/-309/T + (1.079 +/-0.69) and rest as incongruent vaporization to LiH, B, and hydrogen gas according to the equation logPeq/P0 =(-3263.5 +/-309)/T+ (2.458 +/-0.69) with DeltaH evap.= 62.47+/-5.9 kJ/mol of H2, DeltaSevap. = 47.05+/-13 J/mol of H2.K. The NaBH4 also had somewhat similar behavior, with 9% congruent evaporation and equilibrium vapor pressure equation of logPLiBH4=-7700+/-335/ T+ (6.7+/-1.5) and 91% incongruent decomposition to Na and Boron metal, and hydrogen gas. The enthalpy of vaporization; DeltaHevap. = 147.2+/-6.4kJ/molH2 and DeltaSevap.= 142 +/-28 kJ/molH2.K (550-650K). The Ca(BH4) 2 exhibited similar vaporization behavior with congruency of 3.2%. The decomposition products are CaH2 and Boron metal with evolution of hydrogen gas varying with the pressure equation as logPeq /P0 =(-1562

  14. Nanocell with a pressure-controlled Rb atomic vapor column thickness: Critical influence of the thickness on optical processes

    Science.gov (United States)

    Sargsyan, A.; Amiryan, A.; Cartaleva, S.; Sarkisyan, D.

    2017-07-01

    A new device is designed: it consists of a nanocell (NC) filled with Rb atom vapors and placed in a vacuum chamber. When the pressure in the chamber changes in the range 0-1 atm, the NC thickness is smoothly varied in the range L = 140-1700 nm, which is caused by the pressure-induced deformation of thin garnet windows in the chamber. The pressure dependence has excellent reproducibility even after many hundreds of cycles of letting in of air and its complete pumping out from the chamber. The accuracy of setting required thickness L is much better than in the wedge-gap NCs to be moved mechanically that were used earlier. The processes of Faraday rotation (FR) of a polarization plane, resonance absorption, and fluorescence are studied using the D 1-line narrow-band continuous laser radiation when the thickness changes from L = λ/2 (398 nm) to L = 2λ (1590 nm) at a step λ/2. The FR signal is shown to be maximal at L = λ/2 and 3λ/2 and to have the minimum spectral width (≈60 MHz). At L = λ and 2λ, the FR signal is minimal and has the maximum spectral width (≈200 MHz). The resonance absorption demonstrates the same oscillating behavior; however, the effect in the case of FR is much more pronounced. The oscillating effect is absent for resonance fluorescence: its spectral width and amplitude increase monotonically with L. The detected effects are explained and possible applications are noted.

  15. Effect of water vapor on sound absorption in nitrogen at low frequency/pressure ratios

    Science.gov (United States)

    Zuckerwar, A. J.; Griffin, W. A.

    1981-01-01

    Sound absorption measurements were made in N2-H2O binary mixtures at 297 K over the frequency/pressure range f/P of 0.1-2500 Hz/atm to investigate the vibrational relaxation peak of N2 and its location on f/P axis as a function of humidity. At low humidities the best fit to a linear relationship between the f/P(max) and humidity yields an intercept of 0.013 Hz/atm and a slope of 20,000 Hz/atm-mole fraction. The reaction rate constants derived from this model are lower than those obtained from the extrapolation of previous high-temperature data.

  16. Thermodynamics of the multicomponent vapor-liquid equilibrium under capillary pressure difference

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2001-01-01

    We discuss the two-phase multicomponent equilibrium, provided that the phase pressures are different due to the action of capillary forces. We prove the two general properties of such an equilibrium, which have previously been known for a single-component case, however, to the best of our knowledge......, not for the multicomponent mixtures. The importance is emphasized on the space of the intensive variables P, T and mu (i), where the laws of capillary equilibrium have a simple geometrical interpretation. We formulate thermodynamic problems specific to such an equilibrium, and outline changes to be introduced to common...... algorithms of flash calculations in order to solve these problems. Sample calculations show large variation of the capillary properties of the mixture in the very neighborhood of the phase envelope and the restrictive role of the spinodal surface as a boundary for possible equilibrium states with different...

  17. Three-dimensional modelling of horizontal chemical vapor deposition. I - MOCVD at atmospheric pressure

    Science.gov (United States)

    Ouazzani, Jalil; Rosenberger, Franz

    1990-01-01

    A systematic numerical study of the MOCVD of GaAs from trimethylgallium and arsine in hydrogen or nitrogen carrier gas at atmospheric pressure is reported. Three-dimensional effects are explored for CVD reactors with large and small cross-sectional aspect ratios, and the effects on growth rate uniformity of tilting the susceptor are investigated for various input flow rates. It is found that, for light carrier gases, thermal diffusion must be included in the model. Buoyancy-driven three-dimensional flow effects can greatly influence the growth rate distribution through the reactor. The importance of the proper design of the lateral thermal boundary conditions for obtaining layers of uniform thickness is emphasized.

  18. Prediction of subcooled vapor pressures (log PL) of 399 polychlorinated trans-azoxybenzenes by using the QSPR and ANN approach.

    Science.gov (United States)

    Piliszek, Sławomir; Wilczyńska-Piliszek, Agata J; Falandysz, Jerzy

    2012-01-01

    Environmentally relevant partitioning properties such as the sub-cooled vapor pressures (log PL) have been predicted for 399 congeners of chloro-trans-azoxybenzene (C-t-AOBs) by two computational methods. The quantitative structure-property relationship (QSPR), an approach which is based on geometry optimalization and quantum-chemical structural descriptors in RM1 and DFT methods and artificial neural networks (ANNs), an approach that predicts abilities that give similar results of estimated log P(L) and the accuracy of the methods was also similar. The RM1 method was less time consuming and less costly compared to calculations by the DFT method. Estimated from the RM1 and DFT methods of log P(L) values of 399 Ct-AOBs varied between -1.98 to -0.93 and -1.83 to -0.79 for Mono-, 3.12 to -1.46 and -3.00 to -1.46 for Di-, -4.03 to -1.39 and -3.53 to -1.67 for Tri-, -4.75 to -2.33 and -4.59 to -1.91 for Tetra-, -5.37 to -2.59 and -5.42 to -2.09 for Penta-, -5.82 to -2.88 and -5.66 to -2.58 for Hexa-, -5.88 to -3.24 and -5.60 to -2.93 for Hepta-, -6.28 to -4.33 and -5.60 to -4.29 for Octa-, -6.54 to -5.28 and -5.66 to -4.93 for NonaCt-AOBs, and -6.59 and -5.61 for DecaCt-AOB. According to a common classification of environmental contaminants and by sub-cooled vapor pressure values, MonoCt-AOBs and a few of the Di- and TriCt-AOBs (log P(L)from -2 to 0) fall into the group of compounds that are relatively well mobile in the ambient environment, while most of the Di- to HeptaCt-AOBs (log P(L) log P(L) < -4) are also weak mobile contaminants.

  19. Microstructure characteristics of ZrO2 coating produced by atmospheric pressure chemical vapor deposition.

    Science.gov (United States)

    Sun, Wei; Xiong, Xiang; Li, Xiaobin

    2011-09-01

    To settle the problem of low growth rate when prepare ZrO2 thermal barrier coating by Metalorganic CVD (MOCVD), a simple method was employed-atmospheric pressure CVD (APCVD). The paper firstly thermodynamic calculated the effect of O/Zr ratio and temperature on phase formation at various H/C ratios for ZrCl4-CO2-H2-Ar system. With temperature increment, the solid phase changes from C+ monoclinic ZrO2 to Monoclinic ZrO2 then to tetragonal ZrO2. With the increase of H/C ratio, the phase zone of C+ monoclinic ZrO2 expands. XRD and Raman spectrum were employed to measure phase structure of ZrO2 coating at different temperature. At 1300 degrees C, the coating contains a small amount tetragonal ZrO2 phase besides monoclinic phase; at 1100 degrees C, the coating is composed of monoclinic ZrO2 phase and a little C. The surface SEM images show the small grains evolve to polycrystals which have clear crystal form when raising temperature. The cross-section images show that dense ZrO2 column crystals arrange normal to the substrate.

  20. Quantitative relationships for the prediction of the vapor pressure of some hydrocarbons from the van der Waals molecular surface

    Directory of Open Access Journals (Sweden)

    Olariu Tudor

    2015-01-01

    Full Text Available A quantitative structure - property relationship (QSPR modeling of vapor pressure at 298.15 K, expressed as log (VP / Pa was performed for a series of 84 hydrocarbons (63 alkanes and 21 cycloalkanes using the van der Waals (vdW surface area, SW/Å2, calculated by the Monte Carlo method, as the molecular descriptor. The QSPR model developed from the subset of 63 alkanes (C1-C16, deemed as the training set, was successfully used for the prediction of the log (VP / Pa values of the 21 cycloalkanes, which was the external prediction (test subset. A QSPR model was also developed for a series composed of all 84 hydrocarbons. Both QSPR models were statistically tested for their ability to fit the data and for prediction. The results showed that the vdW molecular surface used as molecular descriptor (MD explains the variance of the majority of the log (VP / Pa values in this series of 84 hydrocarbons. This MD describes very well the intermolecular forces that hold neutral molecules together. The clear physical meaning of the molecular surface values, SW/Å2, could explain the success of the QSPR models obtained with a single structural molecular descriptor.

  1. Preparation of ZrC nano-particles reinforced amorphous carbon composite coating by atmospheric pressure chemical vapor deposition

    Science.gov (United States)

    Sun, W.; Xiong, X.; Huang, B. Y.; Li, G. D.; Zhang, H. B.; Xiao, P.; Chen, Z. K.; Zheng, X. L.

    2009-05-01

    To eliminate cracks caused by thermal expansion mismatch between ZrC coating and carbon-carbon composites, a kind of ZrC/C composite coating was designed as an interlayer. The atmospheric pressure chemical vapor deposition was used as a method to achieve co-deposition of ZrC and C from ZrCl 4-C 3H 6-H 2-Ar source. Zirconium tetrachloride (ZrCl 4) powder carrier was especially made to control accurately the flow rate. The microstructure of ZrC/C composite coating was studied using analytical techniques. ZrC/C coating shows same morphology as pyrolytic carbon. Transmission electron microscopy (TEM) shows ZrC grains with size of 10-50 nm embed in turbostratic carbon. The formation mechanism is that the growth of ZrC crystals was inhibited by surrounding pyrolytic carbon and kept as nano-particles. Fracture morphologies imply good combination between coating and substrate. The ZrC crystals have stoichiometric proportion near 1, with good crystalline but no clear preferred orientation while pyrolytic carbon is amorphous. The heating-up oxidation of ZrC/C coating shows 11.58 wt.% loss. It can be calculated that the coating consists of 74.04 wt.% ZrC and 25.96 wt.% pyrolytic carbon. The average density of the composite coating is 5.892 g/cm 3 by Archimedes' principle.

  2. High Temperature Nanocomposites For Nuclear Thermal Propulsion and In-Space Fabrication by Hyperbaric Pressure Laser Chemical Vapor Deposition

    Science.gov (United States)

    Maxwell, J. L.; Webb, N. D.; Espinoza, M.; Cook, S.; Houts, M.; Kim, T.

    Nuclear Thermal Propulsion (NTP) is an indispensable technology for the manned exploration of the solar system. By using Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD), the authors propose to design and build a promising next-generation fuel element composed of uranium carbide UC embedded in a latticed matrix of highly refractory Ta4HfC5 for an NTP rocket capable of sustaining temperatures up to 4000 K, enabling an Isp of up to 1250 s. Furthermore, HP-LCVD technology can also be harnessed to enable 3D rapid prototyping of a variety of materials including metals, ceramics and composites, opening up the possibility of in-space fabrication of components, replacement parts, difficult-to-launch solar sails and panels and a variety of other space structures. Additionally, rapid prototyping with HP-LCVD makes a feasible "live off the land" strategy of interplanetary and interstellar exploration ­ the precursors commonly used in the technology are found, often in abundance, on other solar system bodies either as readily harvestable gas (e.g. methane) or as a raw material that could be converted into a suitable precursor (e.g. iron oxide into ferrocene on Mars).

  3. Ultrasensitive ultraviolet-visible 20 fs absorption spectroscopy of low vapor pressure molecules in the gas phase.

    Science.gov (United States)

    Schriever, C; Lochbrunner, S; Riedle, E; Nesbitt, D J

    2008-01-01

    We describe an ultrasensitive pump-probe spectrometer for transient absorption measurements in the gas phase and in solution. The tunable UV pump and the visible (450-740 nm) probe pulses are generated by two independently tunable noncollinear optical parametric amplifiers, providing a temporal resolution of 20 fs. A homebuilt low gain photodetector is used to accommodate strong probe pulses with a shot noise significantly lower than the overall measurement noise. A matched digitizing scheme for single shot analysis of the light pulses at kilohertz repetition rates that minimizes the electronic noise contributions to the transient absorption signal is developed. The data processing scheme is optimized to yield best suppression of the laser excess noise and thereby transient absorbance changes down to 1.1 x 10(-6) can be resolved. A collinear focusing geometry optimized for a 50 mm interaction length combined with a heatable gas cell allows us to perform measurements on substances with low vapor pressures, e.g., on medium sized molecules which are crystalline at room temperature. As an application example highlighting the capability of this instrument, we present the direct time-domain observation of the ultrafast excited state intramolecular proton transfer of 2-(2(')-hydroxyphenyl)benzothiazole in the gas phase. We are able to compare the resulting dynamics in the gas phase and in solution with a temporal precision of better than 5 fs.

  4. In-Line Reactions and Ionizations of Vaporized Diphenylchloroarsine and Diphenylcyanoarsine in Atmospheric Pressure Chemical Ionization Mass Spectrometry.

    Science.gov (United States)

    Okumura, Akihiko; Takada, Yasuaki; Watanabe, Susumu; Hashimoto, Hiroaki; Ezawa, Naoya; Seto, Yasuo; Takayama, Yasuo; Sekioka, Ryoji; Yamaguchi, Shintaro; Kishi, Shintaro; Satoh, Takafumi; Kondo, Tomohide; Nagashima, Hisayuki; Nagoya, Tomoki

    2016-07-01

    We propose detecting a fragment ion (Ph2As(+)) using counter-flow introduction atmospheric pressure chemical ionization ion trap mass spectrometry for sensitive air monitoring of chemical warfare vomiting agents diphenylchloroarsine (DA) and diphenylcyanoarsine (DC). The liquid sample containing of DA, DC, and bis(diphenylarsine)oxide (BDPAO) was heated in a dry air line, and the generated vapor was mixed into the humidified air flowing through the sampling line of a mass spectrometer. Humidity effect on the air monitoring was investigated by varying the humidity of the analyzed air sample. Evidence of the in-line conversion of DA and DC to diphenylarsine hydroxide (DPAH) and then BDPAO was obtained by comparing the chronograms of various ions from the beginning of heating. Multiple-stage mass spectrometry revealed that the protonated molecule (MH(+)) of DA, DC, DPAH, and BDPAO could produce Ph2As(+) through their in-source fragmentation. Among the signals of the ions that were investigated, the Ph2As(+) signal was the most intense and increased to reach a plateau with the increased air humidity, whereas the MH(+) signal of DA decreased. It was suggested that DA and DC were converted in-line into BDPAO, which was a major source of Ph2As(+). Graphical Abstract ᅟ.

  5. Field-Emission Study of Multi-Walled Carbon Nanotubes Grown On Si Substrate by Low Pressure Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    J. Ali

    2011-01-01

    Full Text Available CNTs are synthesized by Low Pressure Chemical Vapor Deposition (LPCVD method at 600 °C. The Si substrate is coated with Fe, used as a catalyst, by RF- sputtering. The thickness of the catalyst film is measured to be approximately 15 nm. Three precursor gases Acetylene (C2H2, Ammonia (NH3 and Hydrogen (H2 with flow rates 15 sccm, 100 sccm and 100 sccm respectively are allowed to flow through the tube reactor for 20 minutes. The as grown CNTs sample was characterized by Scanning Electron Microscope (SEM. SEM images show that the diameter of as grown CNTs is in the range of 20-50 nm. Field emission properties of as grown sample have also been studied. The CNTs film shows good field emission with turn on field Eα = 2.10 V/μm at the current density of 4.59 mA/cm2 with enhancement factor β = 1.37 × 102.

  6. Synthesis and characterization of graphene layers prepared by low-pressure chemical vapor deposition using triphenylphosphine as precursor

    Energy Technology Data Exchange (ETDEWEB)

    Mastrapa, G.C.; Maia da Costa, M.E.H. Maia [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Larrude, D.G., E-mail: dunigl@vdg.fis.puc-rio.br [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Freire, F.L. [Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro, 22451-900, Rio de Janeiro, RJ (Brazil); Brazilian Center for Physical Research, 22290-180, Rio de Janeiro, RJ (Brazil)

    2015-09-15

    The synthesis of a single-layer graphene using a low-pressure Chemical Vapor Deposition (CVD) system with triphenylphosphine as precursor is reported. The amount of triphenylphosphine used as precursor was in the range of 10–40 mg. Raman spectroscopy was employed to analyze samples prepared with 10 mg of the precursor, and these spectra were found typical of graphene. The Raman measurements indicate that the progressive degradation of graphene occurs as the amount of triphenylphosphine increases. X-ray photoelectron spectroscopy measurements were performed to investigate the different chemical environments involving carbon and phosphorous atoms. Scanning electron microscopy and transmission electron microscopy were also employed and the results reveal the formation of dispersed nanostructures on top of the graphene layer, In addition, the number of these nanostructures is directly related to the amount of precursor used for sample growth. - Highlights: • We grow graphene using the solid precursor triphenylphosphine. • Raman analysis confirms the presence of monolayer graphene. • SEM images show the presence of small dark areas dispersed on the graphene surface. • Raman I{sub D}/I{sub G} ratio increases in the dark region of the graphene surface.

  7. Real-Time Optical Monitoring and Simulations of Gas Phase Kinetics in InN Vapor Phase Epitaxy at High Pressure

    Science.gov (United States)

    Dietz, Nikolaus; Woods, Vincent; McCall, Sonya D.; Bachmann, Klaus J.

    2003-01-01

    Understanding the kinetics of nucleation and coalescence of heteroepitaxial thin films is a crucial step in controlling a chemical vapor deposition process, since it defines the perfection of the heteroepitaxial film both in terms of extended defect formation and chemical integrity of the interface. The initial nucleation process also defines the film quality during the later stages of film growth. The growth of emerging new materials heterostructures such as InN or In-rich Ga(x)In(1-x)N require deposition methods operating at higher vapor densities due to the high thermal decomposition pressure in these materials. High nitrogen pressure has been demonstrated to suppress thermal decomposition of InN, but has not been applied yet in chemical vapor deposition or etching experiments. Because of the difficulty with maintaining stochiometry at elevated temperature, current knowledge regarding thermodynamic data for InN, e.g., its melting point, temperature-dependent heat capacity, heat and entropy of formation are known with far less accuracy than for InP, InAs and InSb. Also, no information exists regarding the partial pressures of nitrogen and phosphorus along the liquidus surfaces of mixed-anion alloys of InN, of which the InN(x)P(1-x) system is the most interesting option. A miscibility gap is expected for InN(x)P(1-x) pseudobinary solidus compositions, but its extent is not established at this point by experimental studies under near equilibrium conditions. The extension of chemical vapor deposition to elevated pressure is also necessary for retaining stoichiometric single phase surface composition for materials that are characterized by large thermal decomposition pressures at optimum processing temperatures.

  8. Covariant Macroscopic Quantum Geometry

    CERN Document Server

    Hogan, Craig J

    2012-01-01

    A covariant noncommutative algebra of position operators is presented, and interpreted as the macroscopic limit of a geometry that describes a collective quantum behavior of the positions of massive bodies in a flat emergent space-time. The commutator defines a quantum-geometrical relationship between world lines that depends on their separation and relative velocity, but on no other property of the bodies, and leads to a transverse uncertainty of the geometrical wave function that increases with separation. The number of geometrical degrees of freedom in a space-time volume scales holographically, as the surface area in Planck units. Ongoing branching of the wave function causes fluctuations in transverse position, shared coherently among bodies with similar trajectories. The theory can be tested using appropriately configured Michelson interferometers.

  9. The macroscopic pancake bounce

    Science.gov (United States)

    Andersen Bro, Jonas; Sternberg Brogaard Jensen, Kasper; Nygaard Larsen, Alex; Yeomans, Julia M.; Hecksher, Tina

    2017-01-01

    We demonstrate that the so-called pancake bounce of millimetric water droplets on surfaces patterned with hydrophobic posts (Liu et al 2014 Nat. Phys. 10 515) can be reproduced on larger scales. In our experiment, a bed of nails plays the role of the structured surface and a water balloon models the water droplet. The macroscopic version largely reproduces the features of the microscopic experiment, including the Weber number dependence and the reduced contact time for pancake bouncing. The scalability of the experiment confirms the mechanisms of pancake bouncing, and allows us to measure the force exerted on the surface during the bounce. The experiment is simple and inexpensive and is an example where front-line research is accessible to student projects.

  10. Correlation of retention times on liquid crystal capillary column with reported vapor pressures and half-lives of compounds used in pheromone formulations.

    Science.gov (United States)

    Heath, R R; Tumlinson, J H

    1986-11-01

    A method has been developed to determine by capillary gas chromatography on liquid crystal stationary phases the relative vapor pressures and half-lives of many compounds used as insect pheromones. This study demonstrated that the retention time of seven acetates on a liquid crystal column (cholesteryl-p-chlorocinnamate) could be correlated closely to the reported vapor pressures of the compounds. For 13 additional pheromonal acetates and alcohols, reported half-lives showed a high degree of correlation with their retention times on the liquid crystal column. Thus chromatography on capillary liquid crystal gas Chromatographie columns appears to be a useful method for determining the relative volatilities of many pheromones to facilitate the development of more precise formulations.

  11. Canonical quantization of macroscopic electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2010-12-15

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  12. Canonical quantization of macroscopic electromagnetism

    CERN Document Server

    Philbin, T G

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  13. Defect reduction and surface passivation of SiO{sub 2}/Si by heat treatment with high-pressure H{sub 2}O vapor

    Energy Technology Data Exchange (ETDEWEB)

    Sameshima, T.; Sakamoto, K.; Asada, K. [Tokyo Univ. of Agriculture and Technol. (Japan)

    1999-08-01

    Heat treatment with high-pressure H{sub 2}O vapor was applied to improve interface properties of SiO{sub 2}/Si and passivate the silicon surface. Heat treatment at 180-420 C with high-pressure H{sub 2}O vapor changed SiO{sub x} films, 150 nm thick formed at room temperature by thermal evaporation in vacuum, into SiO{sub 2} films with a Si-O-Si bonding network similar to that of thermally grown SiO{sub 2} films. Heat treatment at 130 C with 2.8 x 10{sup 5} Pa H{sub 2}O for 3 h reduced the recombination velocity for the electron minority carriers from 405 cm/s (as-fabricated 150-nm-thick SiO{sub x}/Si) to 5 cm/s. Field-effect passivation was demonstrated by an additional deposition of defective SiO{sub x} films on the SiO{sub 2} films formed by heat treatment at 340 C with high-pressure H{sub 2}O vapor. The SiO{sub x} deposition reduced the recombination velocity from 100 cm/s to 48 cm/s. (orig.) With 3 figs., 15 refs.

  14. Defect reduction and surface passivation of SiO2/Si by heat treatment with high-pressure H2O vapor

    Science.gov (United States)

    Sameshima, T.; Sakamoto, K.; Asada, K.

    Heat treatment with high-pressure H2O vapor was applied to improve interface properties of SiO2/Si and passivate the silicon surface. Heat treatment at 180-420 °C with high-pressure H2O vapor changed SiOx films, 150 nm thick formed at room temperature by thermal evaporation in vacuum, into SiO2 films with a Si-O-Si bonding network similar to that of thermally grown SiO2 films. Heat treatment at 130 °C with 2.8×105 Pa H2O for 3 h reduced the recombination velocity for the electron minority carriers from 405 cm/s (as-fabricated 150-nm-thick SiOx/Si) to 5 cm/s. Field-effect passivation was demonstrated by an additional deposition of defective SiOx films on the SiO2 films formed by heat treatment at 340 °C with high-pressure H2O vapor. The SiOx deposition reduced the recombination velocity from 100 cm/s to 48 cm/s.

  15. Using an Atmospheric Pressure Chemical Vapor Deposition Process for the Development of V2O5 as an Electrochromic Material

    Directory of Open Access Journals (Sweden)

    Dimitra Vernardou

    2017-02-01

    Full Text Available Vanadium pentoxide coatings were grown by atmospheric pressure chemical vapor deposition varying the gas precursor ratio (vanadium (IV chloride:water and the substrate temperature. All samples were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, cyclic voltammetry, and transmittance measurements. The water flow rate was found to affect the crystallinity and the morphological characteristics of vanadium pentoxide. Dense stacks of long grains of crystalline oxide are formed at the highest amount of water utilized for a substrate temperature of 450 °C. Accordingly, it was indicated that for higher temperatures and a constant gas precursor ratio of 1:7, the surface morphology becomes flattened, and columnar grains of uniform size and shape are indicated, keeping the high crystalline quality of the material. Hence, it was possible to define a frame of operating parameters wherein single-phase vanadium pentoxide may be reliably expected, including a gas precursor ratio of 1:7 with a substrate temperature of >450 °C. The as-grown vanadium pentoxide at 550 °C for a gas precursor ratio of 1:7 presented the best electrochemical performance, including a diffusion coefficient of 9.19 × 10−11 cm2·s−1, a charge density of 3.1 mC·cm−2, and a coloration efficiency of 336 cm2·C−1. One may then say that this route can be important for the growth of large-scale electrodes with good performance for electrochromic devices.

  16. InP/InGaAlAs distributed Bragg reflectors grown by low-pressure metal organic chemical vapor deposition

    Science.gov (United States)

    Lu, T. C.; Tsai, J. Y.; Chu, J. T.; Chang, Y. S.; Wang, S. C.

    2003-04-01

    Long-wavelength vertical cavity surface emitting lasers (VCSELs) are considered the best candidate for the future low-cost reliable light sources in fiber communications. However, the absence of high refractive index contrast in InP-lattice-matched materials impeded the development of 1.3-1.5 μm VCSELs. Although wafer fusions provided the alternative approaches to integrate the InP-based gain materials with the GaAs/AlAs materials for their inherent high refractive index contrast, the monolithic InP-based lattice-matched distributed Bragg reflectors (DBRs) are still highly attractive and desirable. In this report, we demonstrate InP/InGaAlAs DBRs with larger refractive index contrast than InP/InGaAsP and InAlAs/InGaAlAs DBRs. The switching between InP and InGaAlAs layers and growth rate control have been done by careful growth interruption technique and accurate in situ optical monitoring in low-pressure metal organic chemical vapor deposition. A 35 pairs 1.55 μm centered InP/InGaAlAs DBRs has the stopband of more than 100 nm and the highest reflectivity of more than 99%. A VCSEL structure incorporating 35 pairs InP/InGaAlAs DBR as the bottom mirror combined with a 2 λ thick periodic gain cavity and 10 pairs SiO 2/TiO 2 top dielectric mirrors was fabricated. The VCSELs lased at 1.56 μm by optical pumping at room temperature with the threshold pumping power of 30 mW.

  17. Nanoscale multilayered and porous carbide interphases prepared by pressure-pulsed reactive chemical vapor deposition for ceramic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Jacques, S., E-mail: jacques@lcts.u-bordeaux1.fr [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France); Jouanny, I.; Ledain, O.; Maillé, L.; Weisbecker, P. [LCTS, University of Bordeaux 1, CNRS, Herakles-Safran, CEA, 3 allee de la Boetie, F-33600 Pessac (France)

    2013-06-15

    In Ceramic Matrix Composites (CMCs) reinforced by continuous fibers, a good toughness is achieved by adding a thin film called “interphase” between the fiber and the brittle matrix, which acts as a mechanical fuse by deflecting the matrix cracks. Pyrocarbon (PyC), with or without carbide sub-layers, is typically the material of choice to fulfill this role. The aim of this work was to study PyC-free nanoscale multilayered carbide coatings as interphases for CMCs. Nanoscale multilayered (SiC–TiC){sub n} interphases were deposited by pressure-Pulsed Chemical Vapor Deposition (P-CVD) on single filament Hi-Nicalon fibers and embedded in a SiC matrix sheath. The thicknesses of the carbide interphase sub-layers could be made as low as a few nanometers as evidenced by scanning and transmission electron microscopy. By using the P-ReactiveCVD method (P-RCVD), in which the TiC growth involves consumption of SiC, it was not only possible to obtain multilayered (SiC–TiC){sub n} films but also TiC films with a porous multilayered microstructure as a result of the Kirkendall effect. The porosity in the TiC sequences was found to be enhanced when some PyC was added to SiC prior to total RCVD consumption. Because the porosity volume fraction was still not high enough, the role of mechanical fuse of the interphases could not be evidenced from the tensile curves, which remained fully linear even when chemical attack of the fiber surface was avoided.

  18. A Remote Sensing Method for Estimating Surface Air Temperature and Surface Vapor Pressure on a Regional Scale

    Directory of Open Access Journals (Sweden)

    Renhua Zhang

    2015-05-01

    Full Text Available This paper presents a method of estimating regional distributions of surface air temperature (Ta and surface vapor pressure (ea, which uses remotely-sensed data and meteorological data as its inputs. The method takes into account the effects of both local driving force and horizontal advection on Ta and ea. Good correlation coefficients (R2 and root mean square error (RMSE between the measurements of Ta/ea at weather stations and Ta/ea estimates were obtained; with R2 of 0.77, 0.82 and 0.80 and RMSE of 0.42K, 0.35K and 0.20K for Ta and with R2 of 0.85, 0.88, 0.88 and RMSE of 0.24hpa, 0.35hpa and 0.16hpa for ea, respectively, for the three-day results. This result is much better than that estimated from the inverse distance weighted method (IDW. The performance of Ta/ea estimates at Dongping Lake illustrated that the method proposed in the paper also has good accuracy for a heterogeneous surface. The absolute biases of Ta and ea estimates at Dongping Lake from the proposed method are less than 0.5Kand 0.7hpa, respectively, while the absolute biases of them from the IDW method are more than 2K and 3hpa, respectively. Sensitivity analysis suggests that the Ta estimation method presented in the paper is most sensitive to surface temperature and that the ea estimation method is most sensitive to available energy.

  19. Control of the nucleation and quality of graphene grown by low-pressure chemical vapor deposition with acetylene

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Meng, E-mail: youmou@rift.mech.tohoku.ac.jp [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Sasaki, Shinichirou [Department of Nanomechanics, Graduate School of Engineering, Tohoku University, Sendai 980-8579 (Japan); Suzuki, Ken; Miura, Hideo [Fracture and Reliability Research Institute, Tohoku University, Sendai 980-8579 (Japan)

    2016-03-15

    Graphical abstract: - Highlights: • For the first time, we succeeded in the LPCVD growth of monolayer graphene using acetylene as the precursor gas. • The growth rate is very high when acetylene is used as the source gas. Our process has exhibited the potential to shorten the growth time of CVD graphene. • We found that the domain size, defects density, layer number and the sheet resistance of graphene can be changed by changing the acetylene flow rates. • We found that it is also possible to form bilayer graphene using acetylene. However, further study are necessary to reduce the defects density. - Abstract: Although many studies have reported the chemical vapor deposition (CVD) growth of large-area monolayer graphene from methane, synthesis of graphene using acetylene as the source gas has not been fully explored. In this study, the low-pressure CVD (LPCVD) growth of graphene from acetylene was systematically investigated. We succeeded in regulating the domain size, defects density, layer number and the sheet resistance of graphene by changing the acetylene flow rates. Scanning electron microscopy and Raman spectroscopy were employed to confirm the layer number, uniformity and quality of the graphene films. It is found that a low flow rate of acetylene (0.28 sccm) is required to form high-quality monolayer graphene in our system. On the other hand, the high acetylene flow rate (7 sccm) will induce the growth of the bilayer graphene domains with high defects density. On the basis of selected area electron diffraction (SAED) pattern, the as-grown monolayer graphene domains were analyzed to be polycrystal. We also discussed the relation between the sheet resistacne and defects density in graphene. Our results provide great insights into the understanding of the CVD growth of monolayer and bilayer graphene from acetylene.

  20. Atmospheric pressure plasma-initiated chemical vapor deposition (AP-PiCVD) of poly(diethylallylphosphate) coating: a char-forming protective coating for cellulosic textile.

    Science.gov (United States)

    Hilt, Florian; Boscher, Nicolas D; Duday, David; Desbenoit, Nicolas; Levalois-Grützmacher, Joëlle; Choquet, Patrick

    2014-01-01

    An innovative atmospheric pressure chemical vapor deposition method toward the deposition of polymeric layers has been developed. This latter involves the use of a nanopulsed plasma discharge to initiate the free-radical polymerization of an allyl monomer containing phosphorus (diethylallylphosphate, DEAP) at atmospheric pressure. The polymeric structure of the film is evidence by mass spectrometry. The method, highly suitable for the treatment of natural biopolymer substrate, has been carried out on cotton textile to perform the deposition of an efficient and conformal protective coating.

  1. Field effect surface passivation of SiO{sub 2}/Si interfaces by heat treatment with high-pressure H{sub 2}O vapor

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, K.; Asada, K.; Sameshima, T. [Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, 184-8588 Tokyo (Japan)

    2001-01-01

    We investigated a simple field effect passivation of the silicon surfaces using the high-pressure H{sub 2}O vapor heating. Heat treatment with 2.1x10{sup 6}Pa H{sub 2}O vapor at 260C for 3h reduced the surface recombination velocity from 405cm/s (before the heat treatment) to 38cm/s for the thermally evaporated SiO{sub x} film/Si. Additional deposition of 140nm-SiO{sub x} films (x<2) with a high density of fixed positive charges on the SiO{sub 2}/Si samples further decreased the surface recombination velocity to 22cm/s. We also demonstrated the field effect passivation for n-type silicon wafer coated with thermally grown SiO{sub 2}. Additional deposition of 210nm SiO{sub x} films on both the front and rear surfaces increased the effective lifetime from 1.4 to 4.6ms. Combination of thermal evaporation of SiO{sub x} film and the heat treatment with high-pressure H{sub 2}O vapor is effective for low-temperature passivation of the silicon surface.

  2. Macroscopic erosion of divertor and first wall armour in future tokamaks

    Science.gov (United States)

    Würz, H.; Bazylev, B.; Landman, I.; Pestchanyi, S.; Safronov, V.

    2002-12-01

    Sputtering, evaporation and macroscopic erosion determine the lifetime of the 'in vessel' armour materials CFC, tungsten and beryllium presently under discussion for future tokamaks. For CFC armour macroscopic erosion means brittle destruction and dust formation whereas for metallic armour melt layer erosion by melt motion and droplet splashing. Available results on macroscopic erosion from hot plasma and e-beam simulation experiments and from tokamaks are critically evaluated and a comprehensive discussion of experimental and numerical macroscopic erosion and its extrapolation to future tokamaks is given. Shielding of divertor armour materials by their own vapor exists during plasma disruptions. The evolving plasma shield protects the armour from high heat loads, absorbs the incoming energy and reradiates it volumetrically thus reducing drastically the deposited energy. As a result, vertical target erosion by vaporization turns out to be of the order of a few microns per disruption event and macroscopic erosion becomes the dominant erosion source.

  3. 丙酮肟甲醚饱和蒸气压测定及关联%Vapor Pressure Measurement and Correlation of Acetone Oxime Methyl Ether

    Institute of Scientific and Technical Information of China (English)

    叶长燊; 董佳; 李玲

    2013-01-01

      采用动态法,利用Rose釜测定了丙酮肟甲醚在307.75~344.05 K的饱和蒸气压,并应用Antoine方程进行关联,获得Antoine常数A、B、C分别为20.64,2338.72和−88.86,Antoine方程计算值与饱和蒸气压实验测定值之间的平均相对误差为0.45%.在此基础上,通过Clausius-Clapeyron方程计算得到丙酮肟甲醚在307.75~344.05 K温度范围内的平均摩尔蒸发热为36479.24 kJ⋅kmol−1.所得饱和蒸气压方程对丙酮肟甲醚精馏分离过程的设计与操作具有重要意义.%Saturated vapor pressures of acetone oxime methyl ether(AOME) were measured in the temperature range of 307.75~344.05 K by dynamic method in a Rose still. The measured saturated vapor pressures and temperatures were correlated by Antoine equation and the constants of equation were determinated as A=20.64, B = 2338.72, and C = −88.86 by nonlinear regression method. The averaged relative error between saturated vapor pressures calculated from the Antoine equation and the experimental data is 0.45%. Based on the experimental data of vapor pressures, the latent heat of vaporization of acetone oxime methyl ether was also obtained by Clausius-Clapeyron equation and its value is 36479.24 kJ⋅kmol−1 in the temperature range of 307.75~344.05 K. It is very important to provide the Antoine constants and latent heat of acetone oxime methyl ether for the design and operation of its distillation separation process.

  4. The effect of carrier gas flow rate and source cell temperature on low pressure organic vapor phase deposition simulation by direct simulation Monte Carlo method.

    Science.gov (United States)

    Wada, Takao; Ueda, Noriaki

    2013-04-21

    The process of low pressure organic vapor phase deposition (LP-OVPD) controls the growth of amorphous organic thin films, where the source gases (Alq3 molecule, etc.) are introduced into a hot wall reactor via an injection barrel using an inert carrier gas (N2 molecule). It is possible to control well the following substrate properties such as dopant concentration, deposition rate, and thickness uniformity of the thin film. In this paper, we present LP-OVPD simulation results using direct simulation Monte Carlo-Neutrals (Particle-PLUS neutral module) which is commercial software adopting direct simulation Monte Carlo method. By estimating properly the evaporation rate with experimental vaporization enthalpies, the calculated deposition rates on the substrate agree well with the experimental results that depend on carrier gas flow rate and source cell temperature.

  5. Unified Application of Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    Science.gov (United States)

    Erickson, Gary E.

    2010-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack. The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  6. Unified Application Vapor Screen Flow Visualization and Pressure Sensitive Paint Measurement Techniques to Vortex- and Shock Wave-Dominated Flow Fields

    Science.gov (United States)

    Erickson, Gary E.

    2008-01-01

    Laser vapor screen (LVS) flow visualization and pressure sensitive paint (PSP) techniques were applied in a unified approach to wind tunnel testing of slender wing and missile configurations dominated by vortex flows and shock waves at subsonic, transonic, and supersonic speeds. The off-surface cross-flow patterns using the LVS technique were combined with global PSP surface static pressure mappings to characterize the leading-edge vortices and shock waves that coexist and interact at high angles of attack (alpha). The synthesis of LVS and PSP techniques was also effective in identifying the significant effects of passive surface porosity and the presence of vertical tail surfaces on the flow topologies. An overview is given of LVS and PSP applications in selected experiments on small-scale models of generic slender wing and missile configurations in the NASA Langley Research Center (NASA LaRC) Unitary Plan Wind Tunnel (UPWT) and 8-Foot Transonic Pressure Tunnel (8-Foot TPT).

  7. Quantum equilibria for macroscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)

    2006-06-30

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  8. The influence of methanol addition during the film growth of SnO 2 by atmospheric pressure chemical vapor deposition

    NARCIS (Netherlands)

    Volintiru, I.; Graaf, A. de; Deelen, J. van; Poodt, P.W.G.

    2011-01-01

    Undoped tin oxide (SnO2) thin films have been deposited in a stagnant point flow chemical vapor deposition reactor from a water/tin tetrachloride mixture. By adding methanol during the deposition process the film electrical properties change significantly: ten times more conductive SnO 2 films are o

  9. Low temperature carrier transport study of monolayer MoS{sub 2} field effect transistors prepared by chemical vapor deposition under an atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinke, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com; He, Jiazhu; Tang, Dan; Lu, Youming; Zhu, Deliang; Liu, Wenjun; Cao, Peijiang; Han, Sun [College of Materials Science and Engineering, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Nanshan District Key Lab for Biopolymer and Safety Evaluation, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060 (China); Liu, Qiang; Wen, Jiao; Yu, Wenjie [State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, CAS, 865 Chang Ning Road, Shanghai 200050 (China); Liu, Wenjun [State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, 220 Handan Road, Shanghai 200433 (China); Wu, Jing, E-mail: xkliu@szu.edu.cn, E-mail: wujing026@gmail.com [Department of Physics, National University of Singapore, 21 Lower Kent Ridge Road, 117576 Singapore (Singapore); He, Zhubing [Department of Materials Science and Engineering, South University of Science and Technology of China, 1088 Xueyuan Road, Shenzhen 518055 (China); Ang, Kah-Wee [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore (Singapore)

    2015-09-28

    Large size monolayer Molybdenum disulphide (MoS{sub 2}) was successfully grown by chemical vapor deposition method under an atmospheric pressure. The electrical transport properties of the fabricated back-gate monolayer MoS{sub 2} field effect transistors (FETs) were investigated under low temperatures; a peak field effect mobility of 59 cm{sup 2}V{sup −1}s{sup −1} was achieved. With the assist of Raman measurement under low temperature, this work identified the mobility limiting factor for the monolayer MoS{sub 2} FETs: homopolar phonon scattering under low temperature and electron-polar optical phonon scattering at room temperature.

  10. Ionic liquids as superior solvents for headspace gas chromatography of residual solvents with very low vapor pressure, relevant for pharmaceutical final dosage forms.

    Science.gov (United States)

    Laus, Gerhard; Andre, Max; Bentivoglio, Gino; Schottenberger, Herwig

    2009-08-07

    1-n-Butyl-3-methylimidazolium dimethyl phosphate (BMIM DMP) was identified as the most suitable ionic liquid as solvent for the headspace gas chromatographic analysis of solvents with very low vapor pressure such as dimethylsulfoxide, N-methylpyrrolidone, sulfolane, tetralin, and ethylene glycol in a realistic matrix of commonly used excipients (carboxymethylcellulose, magnesium stearate, guar flour, and corn starch) in pharmaceutical products. Limits of quantification and limits of detection were in the low microgram per gram range. The detection of traces of sulfolane in a real sample of tablets containing the drug cefpodoxim proxetil demonstrated the applicability of the method.

  11. Interstitial Boron-Doped TiO2 Thin Films: The Significant Effect of Boron on TiO2 Coatings Grown by Atmospheric Pressure Chemical Vapor Deposition.

    Science.gov (United States)

    Quesada-González, Miguel; Boscher, Nicolas D; Carmalt, Claire J; Parkin, Ivan P

    2016-09-28

    The work presented here describes the preparation of transparent interstitial boron-doped TiO2 thin-films by atmospheric pressure chemical vapor deposition (APCVD). The interstitial boron-doping, on TiO2, proved by X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), is shown to enhance the crystallinity and significantly improve the photocatalytic activity of the TiO2 films. The synthesis, highly suitable for a reel-to-reel process, has been carried out in one step.

  12. Measurements of octanol-air partition coefficients, vapor pressures and vaporization enthalpies of the (E) and (Z) isomers of the 2-ethylhexyl 4-methoxycinnamate as parameters of environmental impact assessment.

    Science.gov (United States)

    Pegoraro, César N; Chiappero, Malisa S; Montejano, Hernán A

    2015-11-01

    2-Ethylhexyl 4-methoxycinnamate is one of the UVB blocking agents more widely used in a variety of industrial fields. There are more than one hundred industrial suppliers worldwide. Given the enormous annual consumption of octinoxate, problems that arise due to the accumulation of this compound in nature should be taken into consideration. The GC-RT was used in this work with the aim of determining the vapor pressure, enthalpies of vaporization and octanol-air partition coefficient, for the BBP, DOP, E- and Z-EHMC esters. The results showed that Z-EHMC is almost five times more volatile than E-EHMC. Moreover, BBP, Z-EHMC and E-EHMC can be classified as substances with a relatively low mobility since they lie within the range of 810 and log(PL/Pa)<-4, therefore, a low mobility can be expected. From these parameters, their particle-bound fraction and gas-particle partition coefficient were also derived. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. The development and application of an automatic boundary segmentation methodology to evaluate the vaporizing characteristics of diesel spray under engine-like conditions

    Science.gov (United States)

    Ma, Y. J.; Huang, R. H.; Deng, P.; Huang, S.

    2015-04-01

    Studying the vaporizing characteristics of diesel spray could greatly help to reduce engine emission and improve performance. The high-speed schlieren imaging method is an important optical technique for investigating the macroscopic vaporizing morphological evolution of liquid fuel, and pre-combustion constant volume combustion bombs are often used to simulate the high pressure and high temperature conditions occurring in diesel engines. Complicated background schlieren noises make it difficult to segment the spray region in schlieren spray images. To tackle this problem, this paper develops a vaporizing spray boundary segmentation methodology based on an automatic threshold determination algorithm. The methodology was also used to quantify the macroscopic characteristics of vaporizing sprays including tip penetration, near-field and far-field angles, and projected spray area and spray volume. The spray boundary segmentation methodology was realized in a MATLAB-based program. Comparisons were made between the spray characteristics obtained using the program method and those acquired using a manual method and the Hiroyasu prediction model. It is demonstrated that the methodology can segment and measure vaporizing sprays precisely and efficiently. Furthermore, the experimental results show that the spray angles were slightly affected by the injection pressure at high temperature and high pressure and under inert conditions. A higher injection pressure leads to longer spray tip penetration and a larger projected area and volume, while elevating the temperature of the environment can significantly promote the evaporation of cold fuel.

  14. Effect of pressure and Al doping on structural and optical properties of ZnO nanowires synthesized by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Mohanta, Antaryami [Oak Ridge Institute for Science and Education, Research Participation Program, U.S. Army Aviation and Missile Research Development and Engineering Center (AMRDEC), Redstone Arsenal, AL 35898 (United States); Simmons, Jay G. [Department of Chemistry, Duke University, Durham, NC 27708 (United States); Everitt, Henry O. [U.S. Army Aviation and Missile Research Development and Engineering Center (AMRDEC), Redstone Arsenal, AL 35898 (United States); Shen, Gang; Margaret Kim, Seongsin [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States); Kung, Patrick, E-mail: patkung@eng.ua.edu [Department of Electrical and Computer Engineering, The University of Alabama, Tuscaloosa, AL 35487 (United States)

    2014-02-15

    The effect of Al doping concentration and oxygen ambient pressure on the structural and optical properties of chemical vapor deposition-grown, Al-doped ZnO nanowires is studied. As Al doping increases, the strength of the broad visible emission band decreases and the UV emission increases, but the growth rate depends on the oxygen pressure in a complex manner. Together, these behaviors suggest that Al doping is effective in reducing the number of oxygen vacancies responsible for visible emission, especially at low oxygen ambient pressure. The intensities and quantum efficiencies of these emission mechanisms are discussed in terms of the effect growth and doping conditions have on the underlying excitonic decay mechanisms. -- Highlights: • Correlated study of the photoluminescence of undoped and Al-doped ZnO nanowires. • Comparative study of structural and optical properties of ZnO and Al:ZnO nanowires. • Study of excitonic decay relaxation channels as function of pressure and Al doping. • More effective reduction of oxygen vacancies by Al doping at lower pressure.

  15. Macroscopic-microscopic mass models

    CERN Document Server

    Nix, J R; Nix, J Rayford; Moller, Peter

    1995-01-01

    We discuss recent developments in macroscopic-microscopic mass models, including the 1992 finite-range droplet model, the 1992 extended-Thomas-Fermi Strutinsky-integral model, and the 1994 Thomas-Fermi model, with particular emphasis on how well they extrapolate to new regions of nuclei. We also address what recent developments in macroscopic-microscopic mass models are teaching us about such physically relevant issues as the nuclear curvature energy, a new congruence energy arising from a greater-than-average overlap of neutron and proton wave functions, the nuclear incompressibility coefficient, and the Coulomb redistribution energy arising from a central density depression. We conclude with a brief discussion of the recently discovered rock of metastable superheavy nuclei near 272:110 that had been correctly predicted by macroscopic-microscopic models, along with a possible new tack for reaching an island near 290:110 beyond our present horizon.

  16. Obtenção da massa molar de asfaltenos através de osmometria de pressão de vapor Determination of the molar mass of asphaltenes using vapor pressure osmometry

    Directory of Open Access Journals (Sweden)

    Lyzette G. M. de Moura

    2009-01-01

    Full Text Available A massa molar é uma propriedade essencial na caracterização de asfaltenos e um dos principais parâmetros de entrada nos modelos para a predição da precipitação. Na literatura são relatadas massas molares entre 1000 e 10000 g.mol-1 para os asfaltenos, variando em função da técnica, natureza do petróleo, tipo de solvente e temperatura. Neste trabalho foi determinada a massa molar média numérica para dois asfaltenos em tolueno, o C7I (insolúveis em heptano e o C5I (insolúveis em pentano através da osmometria de pressão de vapor. Os dados experimentais foram avaliados levando em consideração efeitos da agregação dos asfaltenos em solução e sua maior dispersão em baixas concentrações. Foram feitos ainda ajustes matemáticos respeitando a tendência das curvas para diluições infinitas buscando produzir melhores resultados no valor da massa molar. Os valores obtidos foram comparados com os métodos convencionais aplicados à análise da osmometria de pressão de vapor, e situaram-se entre 3200 e 5200 g.mol-1 para o asfaltenos C5I e entre 4100 e 5400 g.mol-1 para o C7I.Molar mass is an essential property for the characterization of asphaltenes and one of the main input parameters in the models for the prediction of the precipitation. In the literature molar masses between 1,000 and 10,000 g.mol-1 for the asphaltenes are quoted, depending on the technique, petroleum origin, solvent nature and temperature. In this work the numerical average molar mass for two asphaltenes in toluene, the C7I (insoluble in heptane and the C5I (insoluble in pentane, was determined by vapor pressure osmometry. The experimental data were evaluated taking into account effects of asphaltenes aggregation in solution and its larger dispersion at low concentrations. Mathematical fittings were also made to comply with the curve bias for infinite dilutions, which was aimed at finding more accurate values for the molar mass. The results found were

  17. Extraction of Kinetic Parameters for the Chemical Vapor Deposition of Polycrystalline Silicon at Medium and Low Pressures

    NARCIS (Netherlands)

    Holleman, J.; Verweij, J.F.; Verweij, Jan F.

    1993-01-01

    The deposition of silicon (Si) from silane (SiH4) was studied in the silane pressure range from 0.5 to 100 Pa (0.005 to1 mbar) and total pressure range from 10 to 1000 Pa using N2 or He as carrier gases. The two reaction paths, namely,heterogeneous and homogeneous decomposition could be separated by

  18. Extraction of Kinetic Parameters for the Chemical Vapor Deposition of Polycrystalline Silicon at Medium and Low Pressures

    NARCIS (Netherlands)

    Holleman, Jisk; Verweij, Jan F.

    1993-01-01

    The deposition of silicon (Si) from silane (SiH4) was studied in the silane pressure range from 0.5 to 100 Pa (0.005 to1 mbar) and total pressure range from 10 to 1000 Pa using N2 or He as carrier gases. The two reaction paths, namely,heterogeneous and homogeneous decomposition could be separated by

  19. Prediciton of high-pressure vapor liquid equilibrium of six binary systems, carbon dioxide with six esters, using an artificial neural network model

    Directory of Open Access Journals (Sweden)

    C. Si-Moussa

    2008-03-01

    Full Text Available Artificial neural networks are applied to high-pressure vapor liquid equilibrium (VLE related literature data to develop and validate a model capable of predicting VLE of six CO2-ester binaries (CO2-ethyl caprate, CO2-ethyl caproate, CO2-ethyl caprylate, CO2-diethyl carbonate, CO2-ethyl butyrate and CO2-isopropyl acetate. A feed forward, back propagation network is used with one hidden layer. The model has five inputs (two intensive state variables and three pure ester properties and two outputs (two intensive state variables.The network is systematically trained with 112 data points in the temperature and pressure ranges (308.2-328.2 K, (1.665-9.218 MPa respectively and is validated with 56 data points in the temperature range (308.2-328.2 K. Different combinations of network architecture and training algorithms are studied. The training and validation strategy is focused on the use of a validation agreement vector, determined from linear regression analysis of the plots of the predicted versus experimental outputs, as an indication of the predictive ability of the neural network model. Statistical analyses of the predictability of the optimised neural network model show excellent agreement with experimental data (a coefficient of correlation equal to 0.9995 and 0.9886, and a root mean square error equal to 0.0595 and 0.00032 for the predicted equilibrium pressure and CO2 vapor phase composition respectively. Furthermore, the comparison in terms of average absolute relative deviation between the predicted results for each binary for the whole temperature range and literature results predicted by some cubic equation of state with various mixing rules and excess Gibbs energy models shows that the artificial neural network model gives far better results.

  20. A Novel Sulfided Mo/C Catalyst for Direct Vapor Phase Carbonylation of Methanol at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    Feng Peng

    2003-01-01

    The direct carbonylation of methanol, without any halide in the feed as a promoter, ispresented. A series of Mo catalysts supported on activated carbon, γ-Al2O3 and SiO2 were prepared.The results show that the support greatly affects the Mo catalyst in the direct vapor-phase carbonylationof methanol, and activated carbon is the best supports of the investigated supports. In addition, therelationships between adsorptions of NH3 and CO and carbonylation of methanol were investigated. A novelsulfided Mo/C catalyst had high activity and selectivity for the vapor phase carbonylation of methanol tomethyl acetate without the addition ofa CH3I promoter to the feed. The reaction conditions were optimizedat a reaction temperature of 573 K, a methanol concentration of 23 mol% and a carbon monoxide spacevelocity of 3,000 L/(kg.h). Under these optimal conditions a methanol conversion of 50%, carbonylationselectivity of 80 mol%, and space-time yield of 8.0 mol/(kg.h) were obtained. The active phase of thisnovel sulfided Mo/C catalyst is the non-crystalline phase, and the active component is present as MoS2.5on the surface of the activated carbon.

  1. Residual stress in thick low-pressure chemical-vapor deposited polycrystalline SiC coatings on Si substrates

    Science.gov (United States)

    Choi, D.; Shinavski, R. J.; Steffier, W. S.; Spearing, S. M.

    2005-04-01

    Residual stress in thick coatings of polycrystalline chemical-vapor deposited SiC on Si substrates is a key variable that must be controlled if SiC is to be used in microelectromechanical systems. Studies have been conducted to characterize the residual stress level as a function of deposition temperature, Si wafer and SiC coating thickness, and the ratios of methyltrichlorosilane to hydrogen and hydrogen chloride. Wafer curvature was used to monitor residual stress in combination with a laminated plate analysis. Compressive intrinsic (growth) stresses were measured with magnitudes in the range of 200-300MPa; however, these can be balanced with the tensile stress due to the thermal-expansion mismatch to leave near-zero stress at room temperature. The magnitude of the compressive intrinsic stress is consistent with previously reported values of surface stress in combination with the competition between grain-boundary energy and elastic strain energy.

  2. Investigation of odd-order nonlinear susceptibilities in atomic vapors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yaqi [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Teaching and Research Section of Maths and Physics, Guangzhou Commanding Academy of Chinese People’s Armed Police Force, Guangzhou, 510440 (China); Wu, Zhenkun; Si, Jinhai; Yan, Lihe; Zhang, Yiqi; Yuan, Chenzhi; Sun, Jia [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China); Zhang, Yanpeng, E-mail: ypzhang@mail.xjtu.edu.cn [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi’an Jiaotong University, Xi’an 710049 (China); Shaanxi Key Laboratory of Information Photonic Technique, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-06-15

    We theoretically deduce the macroscopic symmetry constraints for arbitrary odd-order nonlinear susceptibilities in homogeneous media including atomic vapors for the first time. After theoretically calculating the expressions using a semiclassical method, we demonstrate that the expressions for third- and fifth-order nonlinear susceptibilities for undressed and dressed four- and six-wave mixing (FWM and SWM) in atomic vapors satisfy the macroscopic symmetry constraints. We experimentally demonstrate consistence between the macroscopic symmetry constraints and the semiclassical expressions for atomic vapors by observing polarization control of FWM and SWM processes. The experimental results are in reasonable agreement with our theoretical calculations. -- Highlights: •The macroscopic symmetry constraints are deduced for homogeneous media including atomic vapors. •We demonstrate that odd-order nonlinear susceptibilities satisfy the constraints. •We experimentally demonstrate the deduction in part.

  3. Liquid phase growth of GaSe1-xTex mixed crystals by temperature difference method under controlled vapor pressure

    Science.gov (United States)

    Zhao, S.; Sato, Y.; Maeda, K.; Tanabe, T.; Ohtani, H.; Oyama, Y.

    2017-06-01

    GaSe crystal is one of a group of nonlinear optical (NLO) crystals expected to be utilized as a highly efficient generators of terahertz waves. However, GaSe has some drawbacks that limit it from further application. Firstly, it has poor crystallinity and, secondly, the layers are prone to exfoliation. In this work, crystal growth was carried out at a constant low temperature under a controlled Se vapor pressure to improve the crystallinity. In addition, Te was added in order to grow mixed crystals to improve the bonding forces between the layers. X-ray fluorescence was used to measure the Te composition in the grown crystals. Red shifts of the excitation peaks were found from photoluminescence with increasing Te composition, indicating that mixed crystals were successfully grown. The lattice constant, c, was calculated from the results of X-ray diffraction and was shown to have an almost linear dependence on Te composition.

  4. High-throughput walkthrough detection portal for counter terrorism: detection of triacetone triperoxide (TATP) vapor by atmospheric-pressure chemical ionization ion trap mass spectrometry.

    Science.gov (United States)

    Takada, Yasuaki; Nagano, Hisashi; Suzuki, Yasutaka; Sugiyama, Masuyuki; Nakajima, Eri; Hashimoto, Yuichiro; Sakairi, Minoru

    2011-09-15

    With the aim of improving security, a high-throughput portal system for detecting triacetone triperoxide (TATP) vapor emitted from passengers and luggage was developed. The portal system consists of a push-pull air sampler, an atmospheric-pressure chemical ionization (APCI) ion source, and an explosives detector based on mass spectrometry. To improve the sensitivity of the explosives detector, a novel linear ion trap mass spectrometer with wire electrodes (wire-LIT) is installed in the portal system. TATP signals were clearly obtained 2 s after the subject under detection passed through the portal system. Preliminary results on sensitivity and throughput show that the portal system is a useful tool for preventing the use of TATP-based improvised explosive devices by screening persons in places where many people are coming and going.

  5. Humid environment stability of low pressure chemical vapor deposited boron doped zinc oxide used as transparent electrodes in thin film silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Steinhauser, Jerome, E-mail: jerome.steinhauser@oerlikon.com [Institute of Microtechnology (IMT), University of Neuchatel, CH-2000 Neuchatel (Switzerland); Meyer, Stefan; Schwab, Marlene; Fay, Sylvie; Ballif, Christophe [Institute of Microtechnology (IMT), University of Neuchatel, CH-2000 Neuchatel (Switzerland); Kroll, U.; Borrello, D. [Oerlikon Solar-Lab, 2000 Neuchatel (Switzerland)

    2011-10-31

    The stability in humid environment of low pressure chemical vapor deposited boron doped zinc oxide (LPCVD ZnO:B) used as transparent conductive oxide in thin film silicon solar cells is investigated. Damp heat treatment (exposure to humid and hot atmosphere) induces a degradation of the electrical properties of unprotected LPCVD ZnO:B layers. By combining analyses of the electrical and optical properties of the films, we are able to attribute this behavior to an increase of electron grain boundary scattering. This is in contrast to the intragrain scattering mechanisms, which are not affected by damp heat exposure. The ZnO stability is enhanced for heavily doped films due to easier tunneling through potential barrier at grain boundaries.

  6. Microstructures of GaN Buffer Layers Grown on Si(111) Using Rapic Thermal Process Low-Pressure Metalorganic Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    CHEN Peng; ZHENG You-Dou; JIANG Shu-Sheng; FENG Duan; Z. C. Huang; SHEN Bo; ZHU Jian-Min; CHEN Zhi-Zhong; ZHOU Yu-Gang; XIE Shi-Yong; ZHANG Rong; HAN Ping; GU Shu-Lin

    2000-01-01

    Microstructures of GaN buffer layers grown on Si (111) substrates using rapid thermal process low-pressure metalorganic chemical vapor deposition are investigated by an atomic force microscope (AFM) and a high resolution transmission electron microscope (HRTEM). AFM images show that the islands appear in the GaN buffer layer after annealing at high temperature. Cross-sectional HRTEM micrographs of the buffer region of these samples indicate that there are bunched steps on the surface of the Si substrate and a lot of domains in GaN misorienting each other with small angles. The boundaries of those dowains locate near the bunched steps,and the regions of the film on a terrace between steps have the same crystal orientation. An amorphous-like layer, about 3 nm thick, can also be observed between the GaN buffer layer and the Si substrate.

  7. (Vapor + liquid) equilibrium data for (carbon dioxide + 1,1-difluoroethane) system at temperatures from (258 to 343) K and pressures up to about 8 MPa

    Energy Technology Data Exchange (ETDEWEB)

    Madani, Hakim [Laboratoire de l' Ingenierie des Procedes d' Environnement, Universite Mentouri Constantine (Algeria); Valtz, Alain; Coquelet, Christophe [Centre Energetique et Procedes (CEP-TEP), Mines Paris-ParisTech, CNRS FRE 2861, 35 Rue Saint Honore, 77305 Fontainebleau (France); Meniai, Abdeslam Hassen [Laboratoire de l' Ingenierie des Procedes d' Environnement, Universite Mentouri Constantine (Algeria); Richon, Dominique [Centre Energetique et Procedes (CEP-TEP), Mines Paris-ParisTech, CNRS FRE 2861, 35 Rue Saint Honore, 77305 Fontainebleau (France)], E-mail: richon@ensmp.fr

    2008-10-15

    Accurate thermo-physical data are of utmost interest for the development of new efficient refrigeration systems. Carbon dioxide (R744) and 1,1-difluoroethane (R152a) are addressed here. Isothermal (vapor + liquid) equilibrium data are reported herein for (R744 + R152a) binary system in the (258-343) K temperature range and in the (0.14 to 7.65) MPa pressure range. A reliable 'static-analytic' method taking advantage of two online ROLSI{sup TM} micro capillary samplers is used for all thermodynamic measurements. The data are correlated using our in-house ThermoSoft thermodynamic model using the Peng-Robinson equation of state, the Mathias-Copeman alpha function, the Wong-Sandler mixing rules, and the NRTL model.

  8. Effect of Growth Pressure on Epitaxial Graphene Grown on 4H-SiC Substrates by Using Ethene Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Shuxian Cai

    2015-08-01

    Full Text Available The Si(0001 face and C(000-1 face dependences on growth pressure of epitaxial graphene (EG grown on 4H-SiC substrates by ethene chemical vapor deposition (CVD was studied using atomic force microscopy (AFM and micro-Raman spectroscopy (μ-Raman. AFM revealed that EGs on Si-faced substrates had clear stepped morphologies due to surface step bunching. However, This EG formation did not occur on C-faced substrates. It was shown by μ-Raman that the properties of EG on both polar faces were different. EGs on Si-faced substrates were relatively thinner and more uniform than on C-faced substrates at low growth pressure. On the other hand, D band related defects always appeared in EGs on Si-faced substrates, but they did not appear in EG on C-faced substrate at an appropriate growth pressure. This was due to the μ-Raman covering the step edges when measurements were performed on Si-faced substrates. The results of this study are useful for optimized growth of EG on polar surfaces of SiC substrates.

  9. Effects of temperature and pressure on the nucleation and growth of silver clusters from supersaturated vapor: A molecular dynamics analysis

    Science.gov (United States)

    Wang, Qin; Xie, Hui; Chen, Yongshi; Liu, Chao

    2017-04-01

    The nucleation and growth of silver nanoparticles in the supersaturated system are investigated by molecular dynamics simulation at different temperatures and pressures. The variety of the atoms in the biggest cluster and the size of average clusters in the system versus the time are estimated to reveal the relationship between the nucleation as well as cluster growth. The nucleation rates in different situations are calculated with the threshold method. The effect of temperature and pressure on the nucleation rate is identified as obeying a linear function. Finally, the development of basal elements, such as monomers, dimers and trimmers, is revealed how the temperature and pressure affect the nucleation and growth of the silver cluster.

  10. Statistical thermodynamics understanding the properties of macroscopic systems

    CERN Document Server

    Fai, Lukong Cornelius

    2012-01-01

    Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th

  11. Atmospheric pressure plasma chemical vapor deposition reactor for 100 mm wafers, optimized for minimum contamination at low gas flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Anand, Venu, E-mail: venuanand@cense.iisc.ernet.in, E-mail: venuanand83@gmail.com; Shivashankar, S. A. [Centre for Nano Science and Engineering (CeNSE), Indian Institute of Science (IISc), Bangalore 560012 (India); Nair, Aswathi R.; Mohan Rao, G. [Department of Instrumentation and Applied Physics (IAP), Indian Institute of Science (IISc), Bangalore 560012 (India)

    2015-08-31

    Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems.

  12. Vapor Pressure Plus: An Experiment for Studying Phase Equilibria in Water, with Observation of Supercooling, Spontaneous Freezing, and the Triple Point

    Science.gov (United States)

    Tellinghuisen, Joel

    2010-01-01

    Liquid-vapor, solid-vapor, and solid-liquid-vapor equilibria are studied for the pure substance water, using modern equipment that includes specially fabricated glass cells. Samples are evaporatively frozen initially, during which they typically supercool to -5 to -10 [degrees]C before spontaneously freezing. Vacuum pumping lowers the temperature…

  13. A Microstructural Comparison of the Initial Growth of AIN and GaN Layers on Basal Plane Sapphire and SiC Substrates by Low Pressure Metalorganic Chemical Vapor Depositon

    Science.gov (United States)

    George, T.; Pike, W. T.; Khan, M. A.; Kuznia, J. N.; Chang-Chien, P.

    1994-01-01

    The initial growth by low pressure metalorganic chemical vapor deposition and subsequent thermal annealing of AIN and GaN epitaxial layers on SiC and sapphire substrates is examined using high resolution transmission electron microscopy and atomic force microscopy.

  14. Ionic association and solvation of the ionic liquid 1-hexyl-3-methylimidazolium chloride in molecular solvents revealed by vapor pressure osmometry, conductometry, volumetry, and acoustic measurements.

    Science.gov (United States)

    Sadeghi, Rahmat; Ebrahimi, Nosaibah

    2011-11-17

    A systematic study of osmotic coefficient, conductivity, volumetric and acoustic properties of solutions of ionic liquid 1-hexyl-3-methylimidazolium chloride ([C(6)mim][Cl]) in various molecular solvents has been made at different temperatures in order to study of ionic association and solvation behavior of [C(6)mim][Cl] in different solutions. Precise measurements on electrical conductances of solutions of [C(6)mim][Cl] in water, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and acetonitrile at 293.15, 298.15, and 303.15 K are reported and analyzed with Barthel's low-concentration chemical model (lcCM) to obtain the limiting molar conductivities and association constants of this ionic liquid in the investigated solvents. Strong ion pairing was found for the ionic liquid in 2-propanol, 1-butanol, and 1-propanol, whereas ion association in acetonitrile, methanol and ethanol is rather weak and in water the ionic liquid is fully dissociated. In the second part of this work, the apparent molar volumes and isentropic compressibilities of [C(6)mim][Cl] in water, methanol, ethanol, acetonitrile, 1-propanol, 2-propanol, and 1-butanol are obtained at the 288.15-313.15 K temperature range at 5 K intervals at atmospheric pressure from the precise measurements of density and sound velocity. The infinite dilution apparent molar volume and isentropic compressibility values of the free ions and ion pairs of [C(6)mim][Cl] in the investigated solvents as well as the excess molar volume of the investigated solutions are determined and their variations with temperature and type of solvents are also studied. Finally, the experimental measurements of osmotic coefficient at 318.15 K for binary solutions of [C(6)mim][Cl] in water, methanol, ethanol, 2-propanol, and acetonitrile are taken using the vapor pressure osmometry (VPO) method and from which the values of the solvent activity, vapor pressure, activity coefficients, and Gibbs free energies are calculated. The results are

  15. High-pressure vapor-phase hydrodeoxygenation of lignin-derived oxygenates to hydrocarbons by a PtMo bimetallic catalyst: Product selectivity, reaction pathway, and structural characterization

    Energy Technology Data Exchange (ETDEWEB)

    Yohe, Sara L.; Choudhari, Harshavardhan J.; Mehta, Dhairya D.; Dietrich, Paul J.; Detwiler, Michael D.; Akatay, Cem M.; Stach, Eric A.; Miller, Jeffrey T.; Delgass, W. Nicholas; Agrawal, Rakesh; Ribeiro, Fabio H.

    2016-12-01

    High-pressure, vapor-phase, hydrodeoxygenation (HDO) reactions of dihydroeugenol (2-methoxy-4-propylphenol), as well as other phenolic, lignin-derived compounds, were investigated over a bimetallic platinum and molybdenum catalyst supported on multi-walled carbon nanotubes (5%Pt2.5%Mo/MWCNT). Hydrocarbons were obtained in 100% yield from dihydroeugenol, including 98% yield of the hydrocarbon propylcyclohexane. The final hydrocarbon distribution was shown to be a strong function of hydrogen partial pressure. Kinetic analysis showed three main dihydroeugenol reaction pathways: HDO, hydrogenation, and alkylation. The major pathway occurred via Pt catalyzed hydrogenation of the aromatic ring and methoxy group cleavage to form 4-propylcyclohexanol, then Mo catalyzed removal of the hydroxyl group by dehydration to form propylcyclohexene, followed by hydrogenation of propylcyclohexene on either the Pt or Mo to form the propylcyclohexane. Transalkylation by the methoxy group occurred as a minor side reaction. Catalyst characterization techniques including chemisorption, scanning transmission electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy were employed to characterize the catalyst structure. Catalyst components identified were Pt particles, bimetallic PtMo particles, a Mo carbide-like phase, and Mo oxide phases.

  16. High-quality graphene grown on polycrystalline PtRh{sub 20} alloy foils by low pressure chemical vapor deposition and its electrical transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, He; Shen, Chengmin, E-mail: cmshen@iphy.ac.cn; Tian, Yuan; Bao, Lihong; Chen, Peng; Yang, Rong; Yang, Tianzhong; Li, Junjie; Gu, Changzhi; Gao, Hong-Jun [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-02-08

    High-quality continuous uniform monolayer graphene was grown on polycrystalline PtRh{sub 20} alloy foils by low pressure chemical vapor deposition. The morphology of graphene was investigated by Raman spectroscopy, scanning electron microscopy, and atomic force microscopy. Analysis results confirm that high quality single-layer graphene was fabricated on PtRh{sub 20} foil at 1050 °C using a lower flux of methane under low pressure. Graphene films were transferred onto the SiO{sub 2}/Si substrate by the bubbling transfer method. The mobility of a test field effect transistor made of the graphene grown on PtRh{sub 20} was measured and reckoned at room temperature, showing that the carrier mobility was about 4000 cm{sup 2} V{sup −1} s{sup −1}. The results indicate that desired quality of single-layer graphene grown on PtRh{sub 20} foils can be obtained by tuning reaction conditions.

  17. Influence of hydrogen input partial pressure on the polarity of InN on GaAs (1 1 1)A grown by metalorganic vapor phase epitaxy

    Science.gov (United States)

    Murakami, Hisashi; Eriguchi, Ken-ichi; Torii, Jun-ichi; Cho, Hyun-Chol; Kumagai, Yoshinao; Koukitu, Akinori

    2008-04-01

    Influences of hydrogen input partial pressure in the carrier gas ( F=PHo/(PHo+PNo)) on the crystalline quality and polarities of InN on GaAs (1 1 1)A surfaces were investigated by metalorganic vapor phase epitaxy (MOVPE). It was found that the polarity of the InN was affected by the hydrogen gas in the system regardless of the polarity of GaAs starting substrate. The polarity of InN layer grown with the hydrogen partial pressure of Fo=0.004 was a mixture of In-polarity and N-polarity, while that grown with Fo=0 was In-polarity. Degradation of the crystalline quality of InN grown with Fo=0.004 occurred due to the polarity inversion during the growth. The reason why the polarity of InN was influenced by the hydrogen carrier gas could be explained by the preferential growth of N-polarity InN in the H 2 contained ambient and/or the limiting reaction of InN decomposition.

  18. Effect of water vapor on plasma morphology, OH and H2O2 production in He and Ar atmospheric pressure dielectric barrier discharges

    Science.gov (United States)

    Du, Yanjun; Nayak, Gaurav; Oinuma, Gaku; Peng, Zhimin; Bruggeman, Peter J.

    2017-04-01

    Although atmospheric pressure dielectric barrier discharges (DBDs) have a long history, the effects of water vapor on the discharge morphology and kinetics have not been studied intensively. We report a simultaneous investigation of discharge morphology, OH and H2O2 production in Ar and He DBDs operated at different water vapor concentrations and powers. The combined study allows us to assess the impact of the discharge morphology and power on the concentration dependence of the OH and H2O2 production. The morphology of the discharge is investigated by ICCD images and current–voltage waveforms. These diagnostics are complemented by broadband absorption and a colorimetric method to measure the gas temperature and the OH and H2O2 concentrations. The number of filaments in Ar DBD increases with increasing water concentration and power. The surface discharge part of the micro-discharge also reduces with increasing water concentration most likely due to a change in surface conductivity of the dielectric with changing water concentration. The OH density in the case of Ar is approximately double the OH density in He for similar power and water admixture. In contrast to the root square dependence of the OH density on the water concentration in He similar to diffuse RF discharges, the OH density in Ar increases for small water concentrations followed by a saturation and reduces for higher water concentrations. This dependence of OH density on water concentration is found to correlate with changes in discharge morphology. An analytical balance of the production and destruction mechanism of H2O2 is shown to be able to reproduce the ratio of the measured OH and H2O2 density for realistic values of electron densities.

  19. High-pressure vapor-liquid equilibria of systems containing ethylene glycol, water and methane - Experimental measurements and modeling

    DEFF Research Database (Denmark)

    Folas, Georgios; Berg, Ole J.; Solbraa, Even;

    2007-01-01

    This work presents new experimental phase equilibrium measurements of the binary MEG-methane and the ternary MEG-water-methane system at low temperatures and high pressures which are of interest to applications related to natural gas processing. Emphasis is given to MEG and water solubility...... measurements in the gas phase. The CPA and SRK EoS, the latter using either conventional or EoS/G(E) mixing rules are used to predict the solubility of the heavy components in the gas phase. It is concluded that CPA and SRK using the Huron-Vidal mixing rule perform equally satisfactory, while CPA requires...

  20. Optical Sensor for Diverse Organic Vapors at ppm Concentration Ranges

    Directory of Open Access Journals (Sweden)

    Dora M. Paolucci

    2011-03-01

    Full Text Available A broadly responsive optical organic vapor sensor is described that responds to low concentrations of organic vapors without significant interference from water vapor. Responses to several classes of organic vapors are highlighted, and trends within classes are presented. The relationship between molecular properties (vapor pressure, boiling point, polarizability, and refractive index and sensor response are discussed.

  1. ESTIMATES OF THE ERROR OF EXPERIMENTAL DATA AT STUDIES OF DENSITY AND THE SATURATED VAPOR PRESSURE (SVP PETROLEUM PRODUCTS

    Directory of Open Access Journals (Sweden)

    Kharchenko P. M.

    2015-10-01

    Full Text Available At calculations, we have used the next assumptions: 1. Not excluded systematic errors distributed with equal probability; 2. Random errors are normally distributed; 3. Total error is the composition of not excluded systematic and random errors. In calculating of measurement error of pressure, we proceeded from working formula. The confidence interval of each variable less than instrumental error, therefore, to characterize the total error of the measured value P, we use the instrumental errors of all variables. In estimating of temperature measurement error was consider the systematic and random error. To estimate random error we used measurement data of the specific volume of water on six isotherms. Obtained values were compared with published data. As an approximate estimate of the random error of our experimental data, we can take it as a total for all the isotherms of the specific volume in comparison with the published data. For studied fractions confidence limit of total error of measurement results located in the range of 0,03 ч 0,1%. At temperatures close to the critical increasing influence of errors of reference and the error associated with the introduction of corrections on the thermal expansion of the piezometer. In the two-phase area confidence limit of total error increases and located between 0,08 ч 0,15%. This is due to the sharp increase in this area of reference error of pressure and error in determining to the weight of the substance in the piezometer

  2. In-Situ Partial Pressure Measurements and Visual Observation during Crystal Growth of ZnSe by Seeded Physical Vapor Transport

    Science.gov (United States)

    Su, Ching-Hua; Feth, Shari; Lehoczky, Sandor L.

    1999-01-01

    An in-situ monitoring furnace was constructed with side windows to perform partial pressure measurements by optical absorption and visual observation of the growing crystal. A fused silica -rowth ampoule with a 4.5 cm long square tube between the source and the seed was prepared for the optical absorption measurements. A ZnSe crystal was grown by the seeded physical vapor transport (PVT) technique in the horizontal configuration. The growth temperature was 1120 C and the furnace translation rate was 3nmVday. Partial pressures of Se2, P(sub Se2), at three locations along the length of the growth ampoule were measured at 90 min intervals during the growth process. The measured P (sub Se2) were in the range of 2.0 to 6.5 x 10(exp -3) atm. The P(sub Se2) results indicated that the partial pressure profile was inconsistent with the results of the one-dimensional diffusion mass transport model and that the source composition shifted toward Se-rich during the run, i.e. the grown crystal was more Zn-rich than the source. The visual observation showed that the seed crystal first etched back, with greater thermal etching occurring along the edges of the seed crystal. Once the growth started, the crystal crew in a predominately contactless mode and facets were evident during growth. The crystal did not grow symmetrically which is believed to be due to the unintentional asymmetry of the radial thermal profile in the furnace.

  3. 不同碳源催化化学气相沉积制备自支撑C/Ni-Fiber复合电极材料的电容脱盐性能%Self-supporting Macroscopic Carbon/Ni-Fiber Hybrid Electrodes Prepared by Catalytic Chemical Vapor Deposition Using Various Carbonaceous Compounds and Their Capacitive Deionization Performance

    Institute of Scientific and Technical Information of China (English)

    王喜文; 姜芳婷; 索全伶; 方玉珠; 路勇

    2011-01-01

    以甲烷、乙烯、乙醇和正丁醇为碳源,通过催化化学气相沉积在具有三维开放网络结构的烧结8 μm-Ni金属纤维上沉积碳的方法,制备了以金属Ni纤维网络为集流极、沉积碳为离子存储库的薄层大面积自支撑C/Ni-fiber复合电极材料.用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、热重分析(TGA)、X射线衍射(XRD)、N2-吸脱附等温线和循环伏安与电化学阻抗谱对电极材料进行了表征,并考察了其作为电极的电容脱盐性能.乙烯、甲烷、正丁醇和乙醇为碳源的沉积碳形态分别为鱼骨状碳纳米管(CNTs)、石墨烯面取向与轴平行的CNTs、棒状和蠕虫状碳纳米纤维(CNFs).C/Ni-fiber复合电极材料对NaCl的电吸附容量顺序为:乙烯>正丁醇>甲烷>乙醇,这与复合电极的电化学特性、孔结构和碳的纳米结构相关.在1.2V的工作电压下,以乙烯为碳源制备的C/Ni-fiber复合电极材料对水溶液中NaCl (100 mg·L-1)的电吸附容量达159 μmol·g-1.%We prepared a series of self-supported macroscopic C/Ni-fiber hybrid electrodes by catalytic chemical vapor deposition (CCVD) using methane, ethylene, ethanol and n-butanol as carbon sources to embed carbon onto a three-dimensional network of sinter-locked conductive 8 um-nickel fibers. For the as-prepared hybrid electrodes, the Ni-microfibrous network serves as a current collector and the carbons as ion storage media while the macroporous void space serves as an electrolyte reservoir. We characterized the hybrid electrodes using scanning electron microscopy (SEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), N2 isothermal adsorption-desorption, cyclic voltammetry and electrochemical impedance spectroscopy. The desalination performance of the C/Ni-fiber hybrids was evaluated as electrodes in a capacitive deionization system. The carbon morphology is dependent on the carbonaceous compounds

  4. ESTIMATION OF PRECIPITABLE WATER VAPOR BASED ON INTERPOLATED PRESSURE DATA%基于插值气压的GPS反演大气可降水量研究

    Institute of Scientific and Technical Information of China (English)

    刘立龙; 姚朝龙; 熊思; 黄良珂

    2013-01-01

    The meteorological data are obtained by pressure interpolation for the estimation of GPS precipitable water vapor (PWV) due to the lack of meteorological parameters at GPS sites.The pressure interpolation formula based on segmented height difference is derived by analyzing the relationship between the interpolated pressure at the GPS sites and the pressure at the nearby radiosonde (RS) stations,and the relationship between the interpolated pressure of the GPS sites and the height difference between the IGS stations and the nearby radiosonde stations using the standard atmosphere (SA) model.The new pressure interpolation formula has the same accuracy as the SA model,and the former is simple when the height difference is less than 100 m.GPS PWV is derived from the new pressure interpolation formula,Saastamoinen zenith hydrostatic delay (ZHD) model and the local weighted mean temperature of the atmosphere (Tm).By comparing with RS PWV,the results show that the new pressure interpolation model can be used to calculate GPS PWV with no meteorological data at GPS stations which the RMS error between GPS PWV obtained from the pressure interpolation formula based on segmented height difference and RS PWV is 1-3 mm.%为解决GPS反演大气可降水量(PWV)所需的气象参数,通过标准大气(SA)模型分析插值得到了GPS站气压与相邻探空站气压、GPS站与探空站之间高差的关系,及基于分段高差的气压插值公式.该公式与标准大气模型精度相当,且在高差小于100 m时,其计算更为简单.利用新的气压插值公式、Saastamoinen干延迟模型与建立的局地加权平均温度模型,将四个IGS站(BJFS、KUNM、LHAZ和TWTF)提供的对流层天顶延迟转化得到大气可降水量(GPS PWV),与探空大气可降水量(RS PWV)进行对比,结果表明在不同高差条件下基于分段高差的气压插值模型计算得到的GPS PWV与RS PWV差值的均方根误差为1~3mm,说明该气压插值模型可应用于无气象数据的GPS反演PWV.

  5. Macroscopic Theory of Dark Sector

    Directory of Open Access Journals (Sweden)

    Boris E. Meierovich

    2014-01-01

    Full Text Available A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out to be an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating nonsingular scenarios of evolution of the Universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the lower boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows displaying the main properties of the dark sector analytically. Although the physical nature of dark sector is still unknown, the macroscopic theory can help analyze the role of dark matter in astrophysical phenomena without resorting to artificial model assumptions.

  6. The influence of radiative heat exchange on the character of gasdynamic flows under conditions of pulsed discharge in high-pressure cesium vapor

    Science.gov (United States)

    Baksht, F. G.; Lapshin, V. F.

    2015-01-01

    The gasdynamics of pulse-periodic radiative discharge in high-pressure cesium vapor has been studied in the framework of a two-temperature multifluid model. It is established that, at a limited volume of the gas-discharge tube, the character of gasdynamic flows depends on the conditions of radiative heat exchange in discharge plasma. In cases in which the main contribution to radiative energy losses is related to a spectral region with optical thickness τ R (λ) ˜ 1, there is nonlocal radiative heat exchange in discharge plasma, which is uniformly heated over the entire tube volume and moves from the discharge axis to tube walls during the entire pulse of discharge current. Under the conditions of radiative losses determined by the spectral region where τ R (λ) ≪ 1, the reabsorption of radiation is absent and discharge plasma is nonuniformly heated by the current pulse. This leads to the appearance of reverse motions, so that the heated plasma is partly pushed toward the tube walls and partly returned to the discharge axis.

  7. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.

    Directory of Open Access Journals (Sweden)

    Dalong Zhang

    Full Text Available The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L. productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1 without environment control and (2 with a micro-fog system operating when the air vapor pressure deficit (VPD of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR, and to a lesser extent caused by leaf area ratio (LAR. Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season.

  8. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances.

    Science.gov (United States)

    Creese, Chris; Oberbauer, Steve; Rundel, Phil; Sack, Lawren

    2014-10-01

    The stomatal behavior of ferns provides an excellent system for disentangling responses to different environmental signals, which balance carbon gain against water loss. Here, we measured responses of stomatal conductance (gs ) to irradiance, CO2 , and vapor pressure deficit (VPD) for 13 phylogenetically diverse species native to open and shaded habitats, grown under high- and low-irradiance treatments. We tested two main hypotheses: that plants adapted and grown in high-irradiance environments would have greater responsiveness to all stimuli given higher flux rates; and that species' responsiveness to different factors would be correlated because of the relative simplicity of fern stomatal control. We found that species with higher light-saturated gs had larger responses, and that plants grown under high irradiance were more responsive to all stimuli. Open habitat species showed greater responsiveness to irradiance and CO2 , but lower responsiveness to VPD; a case of plasticity and adaptation tending in different directions. Responses of gs to irradiance and VPD were positively correlated across species, but CO2 responses were independent and highly variable. The novel finding of correlations among stomatal responses to different stimuli suggests coordination of hydraulic and photosynthetic signaling networks modulating fern stomatal responses, which show distinct optimization at growth and evolutionary time-scales.

  9. Characterization of the Sublimation and Vapor Pressure of 2-(2-Nitrovinyl) Furan (G-0) Using Thermogravimetric Analysis: Effects of Complexation with Cyclodextrins.

    Science.gov (United States)

    Ruz, Vivian; González, Mirtha Mayra; Winant, Danny; Rodríguez, Zenaida; Van den Mooter, Guy

    2015-08-19

    In the present work, the sublimation of crystalline solid 2-(2-nitrovinyl) furan (G-0) in the temperature range of 35 to 60 °C (below the melting point of the drug) was studied using thermogravimetric analysis (TGA). The sublimated product was characterized using Fourier-transformed-infrared spectroscopy (FT-IR) and thin layer chromatography (TLC). The sublimation rate at each temperature was obtained using the slope of the linear regression model and followed apparent zero-order kinetics. The sublimation enthalpy from 35 to 60 °C was obtained from the Eyring equation. The Gückel method was used to estimate the sublimation rate and vapor pressure at 25 °C. Physical mixtures, kneaded and freeze-dried complexes were prepared with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and analyzed using isothermal TGA at 50 °C. The complexation contributed to reducing the sublimation process. The best results were achieved using freeze-dried complexes with both cyclodextrins.

  10. Regulation of Vapor Pressure Deficit by Greenhouse Micro-Fog Systems Improved Growth and Productivity of Tomato via Enhancing Photosynthesis during Summer Season.

    Science.gov (United States)

    Zhang, Dalong; Zhang, Zhongdian; Li, Jianming; Chang, Yibo; Du, Qingjie; Pan, Tonghua

    2015-01-01

    The role of a proposed micro-fog system in regulating greenhouse environments and enhancing tomato (Solanum lycopersicum L.) productivity during summer season was studied. Experiments were carried out in a multi-span glass greenhouse, which was divided into two identical compartments involving different environments: (1) without environment control and (2) with a micro-fog system operating when the air vapor pressure deficit (VPD) of greenhouse was higher than 0.5 KPa. The micro-fog system effectively alleviated heat stress and evaporative demand in the greenhouse during summer season. The physiologically favourable environment maintained by micro-fog treatment significantly enhanced elongation of leaf and stem, which contributed to a substantial elevation of final leaf area and shoot biomass. These improvements in physiological and morphological traits resulted in around 12.3% increase of marketable tomato yield per plant. Relative growth rate (RGR) of micro-fog treatment was also significantly higher than control plants, which was mainly determined by the substantial elevation in net assimilation rate (NAR), and to a lesser extent caused by leaf area ratio (LAR). Measurement of leaf gas exchange parameters also demonstrated that micro-fog treatment significantly enhanced leaf photosynthesis capacity. Taken together, manipulation of VPD in greenhouses by micro-fog systems effectively enhanced tomato growth and productivity via improving photosynthesis during summer season.

  11. Doping characteristics of Si-doped n-GaN Epilayers grown by low-pressure metal-organic chemical-vapor deposition

    CERN Document Server

    Noh, S K; Park, S E; Lee, I H; Choi, I H; Son, S J; Lim, K Y; Lee, H J

    1998-01-01

    We studied doping behaviors through analysis of the electronic properties of a series of undoped and Si-doped GaN epilayers grown on (0001) sapphire substrates by the low-pressure metal-organic chemical-vapor deposition (LP-MOCVD) technique. The doping efficiency was in the range of 0.4 - 0.8, and an empirical relation expressed as eta = 0.45 log[Si] - 8.1 was obtained. The temperature dependence of carrier concentration showed that the donor activation energy monotonically decreased from 17.6 meV to almost zero as the doping level increased. We suggest that the reduction in the activation energy is related not to autodoped defect centers but to doped Si donors and that the behavior originates from the formation of an impurity band. On the basis of an abrupt change in the compensation ratio from 0.9 to 0.5 by Si-doping, an exceptional difference in the Hall mobility between the undoped and the Si-doped films is explained by a mixed conduction mechanism of electrons and holes.

  12. Characterization of the Sublimation and Vapor Pressure of 2-(2-Nitrovinyl Furan (G-0 Using Thermogravimetric Analysis: Effects of Complexation with Cyclodextrins

    Directory of Open Access Journals (Sweden)

    Vivian Ruz

    2015-08-01

    Full Text Available In the present work, the sublimation of crystalline solid 2-(2-nitrovinyl furan (G-0 in the temperature range of 35 to 60 °C (below the melting point of the drug was studied using thermogravimetric analysis (TGA. The sublimated product was characterized using Fourier-transformed-infrared spectroscopy (FT-IR and thin layer chromatography (TLC. The sublimation rate at each temperature was obtained using the slope of the linear regression model and followed apparent zero-order kinetics. The sublimation enthalpy from 35 to 60 °C was obtained from the Eyring equation. The Gückel method was used to estimate the sublimation rate and vapor pressure at 25 °C. Physical mixtures, kneaded and freeze-dried complexes were prepared with 2-hydroxypropyl-β-cyclodextrin (HP-β-CD and sulfobutyl ether-β-cyclodextrin (SBE-β-CD and analyzed using isothermal TGA at 50 °C. The complexation contributed to reducing the sublimation process. The best results were achieved using freeze-dried complexes with both cyclodextrins.

  13. Sub-micro a-C:H patterning of silicon surfaces assisted by atmospheric-pressure plasma-enhanced chemical vapor deposition

    Science.gov (United States)

    Boileau, Alexis; Gries, Thomas; Noël, Cédric; Perito Cardoso, Rodrigo; Belmonte, Thierry

    2016-11-01

    Micro and nano-patterning of surfaces is an increasingly popular challenge in the field of the miniaturization of devices assembled via top-down approaches. This study demonstrates the possibility of depositing sub-micrometric localized coatings—spots, lines or even more complex shapes—made of amorphous hydrogenated carbon (a-C:H) thanks to a moving XY stage. Deposition was performed on silicon substrates using chemical vapor deposition assisted by an argon atmospheric-pressure plasma jet. Acetylene was injected into the post-discharge region as a precursor by means of a glass capillary with a sub-micrometric diameter. A parametric study was carried out to study the influence of the geometric configurations (capillary diameter and capillary-plasma distance) on the deposited coating. Thus, the patterns formed were investigated by scanning electron microscopy and atomic force microscopy. Furthermore, the chemical composition of large coated areas was investigated by Fourier transform infrared spectroscopy according to the chosen atmospheric environment. The observed chemical bonds show that reactions of the gaseous precursor in the discharge region and both chemical and morphological stability of the patterns after treatment are strongly dependent on the surrounding gas. Various sub-micrometric a-C:H shapes were successfully deposited under controlled atmospheric conditions using argon as inerting gas. Overall, this new process of micro-scale additive manufacturing by atmospheric plasma offers unusually high-resolution at low cost.

  14. Characterization of amorphous hydrogenated carbon formed by low-pressure inductively coupled plasma enhanced chemical vapor deposition using multiple low-inductance antenna units.

    Science.gov (United States)

    Tsuda, Osamu; Ishihara, Masatou; Koga, Yoshinori; Fujiwara, Shuzo; Setsuhara, Yuichi; Sato, Naoyuki

    2005-03-24

    Three-dimensional plasma enhanced chemical vapor deposition (CVD) of hydrogenated amorphous carbon (a-C:H) has been demonstrated using a new type high-density volumetric plasma source with multiple low-inductance antenna system. The plasma density in the volume of phi 200 mm x 100 mm is 5.1 x 10(10) cm(-3) within +/-5% in the lateral directions and 5.2 x 10(10)cm(-3) within +/-10% in the axial direction for argon plasma under the pressure of 0.1 Pa and the total power as low as 400 W. The uniformity of the thickness and refractive index is within +/-3.5% and +/-1%, respectively, for the a-C:H films deposited on the substrates placed on the six side walls, the top of the phi 60 mm x 80 mm hexagonal substrate holder in the pure toluene plasma under the pressure is as low as 0.04 Pa, and the total power is as low as 300 W. It is also found that precisely controlled ion bombardment by pulse biasing led to the explicit observation in Raman and IR spectra of the transition from polymer-like structure to diamond-like structure accompanied by dehydrogenation due to ion bombardment. Moreover, it is also concluded that the pulse biasing technique is effective for stress reduction without a significant degradation of hardness. The stress of 0.6 GPa and the hardness of 15 GPa have been obtained for 2.0 microm thick films deposited with the optimized deposition conditions. The films are durable for the tribology test with a high load of 20 N up to more than 20,000 cycles, showing the specific wear rate and the friction coefficient were 1.2 x 10(-7) mm3/Nm and 0.04, respectively.

  15. Macroscopically-Discrete Quantum Cosmology

    CERN Document Server

    Chew, Geoffrey F

    2008-01-01

    To Milne's Lorentz-group-based spacetime and Gelfand-Naimark unitary representations of this group we associate a Fock space of 'cosmological preons'-quantum-theoretic universe constituents. Milne's 'cosmological principle' relies on Lorentz invariance of 'age'--global time. We divide Milne's spacetime into 'slices' of fixed macroscopic width in age, with 'cosmological rays' defined on (hyperbolic) slice boundaries-Fock space attaching only to these exceptional universe ages. Each (fixed-age) preon locates within a 6-dimensional manifold, one of whose 3 'extra' dimensions associates in Dirac sense to a self-adjoint operator that represents preon (continuous) local time, the operator canonically-conjugate thereto representing preon (total) energy. Self-adjoint-operator expectations at any spacetime-slice boundary prescribe throughout the following slice a non-fluctuating 'mundane reality'- electromagnetic and gravitational potentials 'tethered' to current densities of locally-conserved electric charge and ener...

  16. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  17. Modeling of Laser Vaporization and Plume Chemistry in a Boron Nitride Nanotube Production Rig

    Science.gov (United States)

    Gnoffo, Peter A.; Fay, Catharine C.

    2012-01-01

    Flow in a pressurized, vapor condensation (PVC) boron nitride nanotube (BNNT) production rig is modeled. A laser provides a thermal energy source to the tip of a boron ber bundle in a high pressure nitrogen chamber causing a plume of boron-rich gas to rise. The buoyancy driven flow is modeled as a mixture of thermally perfect gases (B, B2, N, N2, BN) in either thermochemical equilibrium or chemical nonequilibrium assuming steady-state melt and vaporization from a 1 mm radius spot at the axis of an axisymmetric chamber. The simulation is intended to define the macroscopic thermochemical environment from which boron-rich species, including nanotubes, condense out of the plume. Simulations indicate a high temperature environment (T > 4400K) for elevated pressures within 1 mm of the surface sufficient to dissociate molecular nitrogen and form BN at the base of the plume. Modifications to Program LAURA, a finite-volume based solver for hypersonic flows including coupled radiation and ablation, are described to enable this simulation. Simulations indicate that high pressure synthesis conditions enable formation of BN vapor in the plume that may serve to enhance formation of exceptionally long nanotubes in the PVC process.

  18. Passive Vaporizing Heat Sink

    Science.gov (United States)

    Knowles, TImothy R.; Ashford, Victor A.; Carpenter, Michael G.; Bier, Thomas M.

    2011-01-01

    A passive vaporizing heat sink has been developed as a relatively lightweight, compact alternative to related prior heat sinks based, variously, on evaporation of sprayed liquids or on sublimation of solids. This heat sink is designed for short-term dissipation of a large amount of heat and was originally intended for use in regulating the temperature of spacecraft equipment during launch or re-entry. It could also be useful in a terrestrial setting in which there is a requirement for a lightweight, compact means of short-term cooling. This heat sink includes a hermetic package closed with a pressure-relief valve and containing an expendable and rechargeable coolant liquid (e.g., water) and a conductive carbon-fiber wick. The vapor of the liquid escapes when the temperature exceeds the boiling point corresponding to the vapor pressure determined by the setting of the pressure-relief valve. The great advantage of this heat sink over a melting-paraffin or similar phase-change heat sink of equal capacity is that by virtue of the =10x greater latent heat of vaporization, a coolant-liquid volume equal to =1/10 of the paraffin volume can suffice.

  19. A Tentative Study on the Relationship Among External Pressure, Vapor Tension and Boiling Point%外压与沸点和蒸气压的关系浅论

    Institute of Scientific and Technical Information of China (English)

    李俊华; 陈彩虹; 屈景年; 曾荣英

    2009-01-01

    The relationship among external pressure, vapor tension and boiling point is discussed in single-component system and two-component system by thermodynamic formulas and phase diagrams. The relationship amongexternal pressure, vapor tension and boiling point is ascertained under different conditions. Meanwhile this relationships is also discussed ulteriorly from microcosmic points.%运用热力学基本公式和相图对单组分系统和二组分系统中外压与沸点和蒸气压之间的关系进行了讨论,明确了不同条件下三者之间的关系,同时从微观角度进行了进一步分析.

  20. The effect of thermal annealing on the adherence of $Al_2O_3$-films deposited by low-pressure, metal-organic, chemical-vapor deposition on AISI 304

    NARCIS (Netherlands)

    Haanappel, V.A.C.; Vendel, van de D.; Corbach, van H.D.; Fransen, T.; Gellings, P.J.

    1995-01-01

    Thin alumina films, deposited at 280°C by low-pressure, metal-organic, chemical-vapor deposition on stainless steel, type AISI 304, were annealed at 0.17 kPa in a nitrogen atmosphere for 2,4, and 17 hr at 600, 700, and 800°C. The effect of the annealing process on the adhesion of the thin alumina fi

  1. 1,3-二甲基咪唑四氟硼酸盐的合成及其水溶液的蒸气压测定%Vapor Pressure Measurement of Water+1,3-Dimethylimidazolium Tetrafluoroborate System

    Institute of Scientific and Technical Information of China (English)

    武向红; 李静; 范丽华; 郑丹; 董丽

    2011-01-01

    In absorption cycles, ionic liquid (IL) 1,3-dimethylimidazolium tetrafluoroborate ([Dmim]BF4) may be a promising absorbent of working pair using water as refrigerant. The vapor pressures of [Dmim]BF4 aqueous solution were measured with the boiling-point method in the temperature range from 312.25 to 403.60 K and in the mass concentration range of 65% to 90% of [Dmim]BF4. The experimental data were correlated with an Antoine-type equation and the Non-Random Two-Liquid (NRTL) model, and the average absolute deviations between the experimental and calculated values were 1.06% and 1.15%, respectively. For the [Dmim]BF4 aqueous solution, the experimental vapor pressures show negative deviations from the calculated data with Raoult's law. For higher mass concentration of the IL, the deviation is more negative. In addition, the vapor pressures, the hydrophilicity and the solubility of [Dmim]BF4 aqueous solutions were compared with those of [Dmim]C1 aqueous solutions and [Bmim]BF4 aqueous solutions at IL-mole fraction of 0.20.

  2. Volatilization of low vapor pressure--volatile organic compounds (LVP-VOCs) during three cleaning products-associated activities: Potential contributions to ozone formation.

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E; Bennett, Deborah H

    2016-06-01

    There have been many studies to reduce ozone formation mostly from volatile organic compound (VOC) sources. However, the role of low vapor pressure (LVP)-VOCs from consumer products remains mostly unexplored and unaddressed. This study explores the impact of high production volume LVP-VOCs on ozone formation from three cleaning products-associated activities (dishwashing, clothes washing, and surface cleaning). We develop a model framework to account for the portion available for ozone formation during the use phase and from the down-the-drain disposal. We apply experimental studies that measured emission rates or models that were developed for estimating emission rates of organic compounds during the use phase. Then, the fraction volatilized (fvolatilized) and the fraction disposed down the drain (fdown-the-drain) are multiplied by the portion available for ozone formation for releases to the outdoor air (fO3|volatilized) and down-the-drain (fO3|down-the-drain), respectively. Overall, for chemicals used in three specific cleaning-product uses, fvolatilized is less than 0.6% for all studied LVP-VOCs. Because greater than 99.4% of compounds are disposed of down the drain during the use phase, when combined with fO3|volatilized and fO3|down-the-drain, the portion available for ozone formation from the direct releases to outdoor air and the down-the-drain disposal is less than 0.4% and 0.2%, respectively. The results from this study indicate that the impact of the studied LVP-VOCs on ozone formation is very sensitive to what occurs during the use phase and suggest the need for future research on experimental work at the point of use.

  3. Atmospheric pressure chemical vapor deposition of CdTe for high efficiency thin film PV devices: Annual subcontract report, 26 January 1999--25 January 2000

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, P. V.; Kee, R.; Wolden, C.; Kestner, J.; Raja, L.; Kaydanov, V.; Ohno, T.; Collins, R.; Fahrenbruch, A.

    2000-05-30

    ITN's three year project Atmospheric Pressure Chemical Vapor Deposition (APCVD) of CdTe for High Efficiency Thin Film PV Devices has the overall objectives of improving thin film CdTe PV manufacturing technology and increasing CdTe PV device power conversion efficiency. CdTe deposition by APCVD employs the same reaction chemistry as has been used to deposit 16% efficient CdTe PV films, i.e., close spaced sublimation, but employs forced convection rather than diffusion as a mechanism of mass transport. Tasks of the APCVD program center on demonstration of APCVD of CdTe films, discovery of fundamental mass transport parameters, application of established engineering principles to the deposition of CdTe films, and verification of reactor design principles which could be used to design high throughput, high yield manufacturing equipment. Additional tasks relate to improved device measurement and characterization procedures that can lead to a more fundamental understanding of CdTe PV device operation and ultimately to higher device conversion efficiency and greater stability. Under the APCVD program, device analysis goes beyond conventional one-dimensional device characterization and analysis toward two dimension measurements and modeling. Accomplishments of the second year of the APCVD subcontract include: deposition of the first APCVD CdTe; identification of deficiencies in the first generation APCVD reactor; design, fabrication and testing of a ``simplified'' APCVD reactor; deposition of the first dense, adherent APCVD CdTe films; fabrication of the first APCVD CdTe PV device; modeling effects of CdSTe and SnOx layers; and electrical modeling of grain boundaries.

  4. Potential use of the PRI and active fluorescence for the diagnosis of the physiological state of plants under ozone exposure and high atmospheric vapor pressure deficit.

    Science.gov (United States)

    Merlier, Elodie; Hmimina, Gabriel; Bagard, Matthieu; Dufrêne, Eric; Soudani, Kamel

    2017-08-09

    Assessing photosynthesis rates with remote sensing is important for tracking the physiological state of plants. The photochemical reflectance index (PRI) is a good estimator of short-term light-use efficiency (LUE) at the leaf scale but its responses to environmental factors are poorly understood. In this study, we assessed changes in the responses of the PRI to ozone exposure and to an increase in atmospheric drought (separately and combined) in oak (Quercus robur) and holm oak (Quercus ilex) that were planted in climatic cells under controlled conditions. The aim was to evaluate the ability of the PRI as a relevant indicator to assess the impact of abiotic factors on photosynthesis. Leaf-scale measurements of biochemical, physiological and spectral properties, including the PRI in dim light on dark-adapted leaves (PRI0), kinetics of PRI responses to PAR variations (photosynthetically active radiation), and leaf chlorophyll fluorescence parameters were performed. The results show that PRI0 is a good proxy of the leaf chlorophyll content, and is correlated to chlorophyll fluorescence parameters on dark adapted leaves (Fo, Fm). The correction of the PRI from the leaf chlorophyll content variations (PRIc) significantly improves correlations between the PRI and NPQ (non-photochemical quenching). The variability of PARsat (estimated PAR value at PRI saturation using PRI vs. PAR relationships) depends on ozone exposure and on the increase in atmospheric vapor pressure deficit. For Quercus robur, results highlight that PARsat is linked to abiotic stress indicating that the PRI may be used as a relevant indicator of abiotic factors limiting the photosynthesis. Quercus ilex did not show significant variability in PRI0 and PARsat, which suggest that it is a more drought resistant species than Q. robur.

  5. Improved detection of low vapor pressure compounds in air by serial combination of single-sided membrane introduction with fiber introduction mass spectrometry (SS-MIMS-FIMS).

    Science.gov (United States)

    Cotte-Rodríguez, Ismael; Handberg, Eric; Noll, Robert J; Kilgour, David P A; Cooks, R Graham

    2005-05-01

    The use of two methods in tandem, single-sided membrane introduction mass spectrometry (SS-MIMS) and fiber introduction mass spectrometry (FIMS), is presented as a technique for field analysis. The combined SS-MIMS-FIMS technique was employed in both a modified commercial mass spectrometer and a miniature mass spectrometer for the selective preconcentration of the explosive simulant o-nitrotoluene (ONT) and the chemical warfare agent simulant, methyl salicylate (MeS), in air. A home-built FIMS inlet was fabricated to allow introduction of the solid-phase microextraction (SPME) fiber into the mass spectrometer chamber and subsequent desorption of the trapped compounds using resistive heating. The SS-MIMS preconcentration system was also home-built from commercial vacuum parts. Optimization experiments were done separately for each preconcentration system to achieve the best extraction conditions prior to use of the two techniques in combination. Improved limits of detection, in the low ppb range, were observed for the combination compared to FIMS alone, using several SS-MIMS preconcentration cycles. The SS-MIMS-FIMS response for both instruments was found to be linear over the range 50 to 800 ppb. Other parameters studied were absorption time profiles, effects of sample flow rate, desorption temperature, fiber background, memory effects, and membrane fatigue. This simple, sensitive, accurate, robust, selective, and rapid sample preconcentration and introduction technique shows promise for field analysis of low vapor pressure compounds, where analyte concentrations will be extremely low and the compounds are difficult to extract from a matrix like air.

  6. The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure

    Science.gov (United States)

    Luo, Run; Liu, Bo; Yang, Xiaoyan; Bao, Zheng; Li, Bing; Zhang, Jingquan; Li, Wei; Wu, Lili; Feng, Lianghuan

    2016-01-01

    The Cadmium telluride (CdTe) thin film has been prepared by physical vapor deposition (PVD), the Ar + O2 pressure is about 0.9 kPa. This method is a newer technique to deposit CdTe thin film in large area, and the size of the film is 30 × 40 cm2. This method is much different from the close-spaced sublimation (CSS), as the relevance between the source temperature and the substrate temperature is weak, and the gas phase of CdTe is transferred to the substrate by Ar + O2 flow. Through this method, the compact and uniform CdTe film (30 × 40 cm2) has been achieved, and the performances of the CdTe thin film have been determined by transmission spectrum, SEM and XRD. The film is observed to be compact with a good crystallinity, the CdTe is polycrystalline with a cubic structure and a strongly preferred (1 1 1) orientation. Using the CdTe thin film (3 × 5 cm2) which is taken from the deposited large-area film, the 14.6% efficiency CdS/CdTe thin film solar cell has been prepared successfully. The structure of the cell is glass/FTO/CdS/CdTe/graphite slurry/Au, short circuit current density (Jsc) of the cell is 26.9 mA/cm2, open circuit voltage (Voc) is 823 mV, and filling factor (FF) is 66.05%. This technique can be a quite promising method to apply in the industrial production, as it has great prospects in the fabricating of large-area CdTe film.

  7. Properties of heavily impurity-doped PbSnTe liquid-phase epitaxial layers grown by the temperature difference method under controlled Te vapor pressure

    Science.gov (United States)

    Yasuda, Arata; Takahashi, Yatsuhiro; Suto, Ken; Nishizawa, Jun-ichi

    2017-07-01

    We propose the use of heavily impurity-doped Pb1-xSnxTe/PbTe epitaxial layers grown via the temperature difference method under controlled vapor pressure (TDM-CVP) liquid-phase epitaxy (LPE) for the preparation of IV-VI compounds for mid- to far-infrared optical device applications. A flat surface morphology and the distribution of a constant Sn concentration for 0.05 ≤ x ≤ 0.33 were observed in the epitaxial layers using electron-probe microanalysis. The segregation coefficient of Sn in Pb1-xSnxTe grown via TDM-CVP LPE (Tg = 640 °C) was xSSn?xLSn = 0.28. The appearance of the Fermi level pinning and persistent photoconductivity effects in In-doped PbSnTe were also proposed; we estimated that the activation energies of these processes were 2.8 and 39.7 meV, respectively, based on the In-doped Pb1-xSnxTe carrier profile as a function of ambient temperature. In Hall mobility measurements, Sn was assumed to be a main scattering center in the Pb1-xSnxTe epitaxial crystals. The impurity effect was also observed in Pb1-xSnxTe epitaxial growth, similar to the effects observed for Tl-doped PbTe bulk crystals. We concluded that the heavily doped Pb1-xSnxTe crystals grown via TDM-CVP LPE can be used to fabricate high-performance mid- to far-infrared optical devices.

  8. Raman study of light-emitting SiN{sub x} films grown on Si by low-pressure chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Komarov, F. [A.N. Sevchenko Institute of Applied Physics Problems, Kurchatov Str. 7, 220045 Minsk (Belarus); Vlasukova, L. [Belarusian State University, Nezavisimosty Ave. 4, 220030 Minsk (Belarus); Parkhomenko, I., E-mail: irinaparkhomen@gmail.com [Belarusian State University, Nezavisimosty Ave. 4, 220030 Minsk (Belarus); Milchanin, O. [A.N. Sevchenko Institute of Applied Physics Problems, Kurchatov Str. 7, 220045 Minsk (Belarus); Mudryi, A. [Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, P. Brovki Str. 17, 220072 Minsk (Belarus); Togambaeva, A. [Al-Farabi Kazakh National University, Al-Farabiy Ave. 71, 050038 Almaty (Kazakhstan); Korolik, O. [Belarusian State University, Nezavisimosty Ave. 4, 220030 Minsk (Belarus)

    2015-03-31

    Si-rich silicon nitride (SRSN) films were deposited on Si wafers by low pressure chemical vapor deposition (LPCVD) technique and, subsequently, annealed at (800–1200) °C to form Si precipitates. The composition of SiN{sub x} films was measured by Rutherford backscattering spectrometry (RBS). Two sets of samples differed by the amount of excessive Si (Si{sub exc}) in silicon nitride were studied. Evolution of Si nanoclusters from amorphous to crystalline ones during high temperature treatment was examined by Raman scattering (RS) spectroscopy. The amorphous Si clusters were already revealed in as-deposited SiN{sub x} while the annealing results in their crystallization. The crystalline nanoprecipitates are only registered in nitride films after annealing at 1200 °C. A dependence of Raman scattering intensity from the Si wafer on the temperature of annealing of SiN{sub x}/Si structures was revealed. This information was used to explain the phase transformations in SRSNs during high temperature treatments. The peculiarities of photoluminescence (PL) spectra for two sets of Si-rich SiN{sub x} films are explained taking into account the contribution from the quantum confinement effect of Si nanocrystals and from the native defects in silicon nitride matrix, such as N- and K-centers. - Highlights: • The size of Si nanocrystals in Si-rich SiN{sub x} films depends on Si excess content. • Excess Si remains in SiN{sub 0.46} as randomly distributed Si atoms in atomic network. • In SiN{sub 1} films practically all excess Si is aggregated into Si nanoclusters.

  9. Macroscopic theory of dark sector

    CERN Document Server

    Meierovich, Boris E

    2013-01-01

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating soluti...

  10. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Pei Xiaoyan; Hu Jiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system. The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  11. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    PeiXiaoyan; HuJiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system.The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  12. The Proell Effect: A Macroscopic Maxwell's Demon

    Science.gov (United States)

    Rauen, Kenneth M.

    2011-12-01

    Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.

  13. Rank distributions: A panoramic macroscopic outlook

    Science.gov (United States)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  14. Vapor phase heat transport systems

    Energy Technology Data Exchange (ETDEWEB)

    Hedstrom, J.C.; Neeper, D.A.

    1985-09-01

    This report describes progress in theoretical and experimental investigations of various forms of a vapor transport system for solar space heating, which could also be applied to service water heating. Refrigerant is evaporated in a solar collector, which may be located on the external wall or roof of a building. The vapor is condensed in a passively discharged thermal storage unit located within the building. The condensed liquid can be returned to the collector either by a motor-driven pump or by a completely passive self-pumping mechanism in which the vapor pressure lifts the liquid from the condenser to the collector. The theoretical investigation analyzes this self-pumping scheme. Experiments in solar test cells compare the operation of both passive and active forms of the vapor system with the operation of a passive water wall. The vapor system operates as expected, with potential advantages over other passive systems in design flexibility and energy yield.

  15. High temperature and low pressure chemical vapor deposition of silicon nitride on AlGaN: Band offsets and passivation studies

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, Pramod; Washiyama, Shun; Kaess, Felix; Hernandez-Balderrama, Luis H.; Haidet, Brian B.; Alden, Dorian; Franke, Alexander; Sarkar, Biplab; Kohn, Erhard; Collazo, Ramon; Sitar, Zlatko [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States); Hayden Breckenridge, M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7919 (United States); REU, Physics Department at Wofford College, Spartanburg, South Carolina 29303 (United States)

    2016-04-14

    In this work, we employed X-ray photoelectron spectroscopy to determine the band offsets and interface Fermi level at the heterojunction formed by stoichiometric silicon nitride deposited on Al{sub x}Ga{sub 1-x}N (of varying Al composition “x”) via low pressure chemical vapor deposition. Silicon nitride is found to form a type II staggered band alignment with AlGaN for all Al compositions (0 ≤ x ≤ 1) and present an electron barrier into AlGaN even at higher Al compositions, where E{sub g}(AlGaN) > E{sub g}(Si{sub 3}N{sub 4}). Further, no band bending is observed in AlGaN for x ≤ 0.6 and a reduced band bending (by ∼1 eV in comparison to that at free surface) is observed for x > 0.6. The Fermi level in silicon nitride is found to be at 3 eV with respect to its valence band, which is likely due to silicon (≡Si{sup 0/−1}) dangling bonds. The presence of band bending for x > 0.6 is seen as a likely consequence of Fermi level alignment at Si{sub 3}N{sub 4}/AlGaN hetero-interface and not due to interface states. Photoelectron spectroscopy results are corroborated by current-voltage-temperature and capacitance-voltage measurements. A shift in the interface Fermi level (before band bending at equilibrium) from the conduction band in Si{sub 3}N{sub 4}/n-GaN to the valence band in Si{sub 3}N{sub 4}/p-GaN is observed, which strongly indicates a reduction in mid-gap interface states. Hence, stoichiometric silicon nitride is found to be a feasible passivation and dielectric insulation material for AlGaN at any composition.

  16. Contribution of low vapor pressure-volatile organic compounds (LVP-VOCs) from consumer products to ozone formation in urban atmospheres

    Science.gov (United States)

    Shin, Hyeong-Moo; McKone, Thomas E.; Bennett, Deborah H.

    2015-05-01

    Because recent laboratory testing indicates that some low vapor pressure-volatile organic compounds (LVP-VOC) solvents readily evaporate at ambient conditions, LVP-VOCs used in some consumer product formulations may contribute to ozone formation. The goal of this study is to determine the fraction of LVP-VOCs available for ozone formation from the use of consumer products for two hypothetical emissions. This study calculates and compares the fraction of consumed product available for ozone formation as a result of (a) volatilization to air during use and (b) down-the-drain disposal. The study also investigates the impact of different modes of releases on the overall fraction available in ambient air for ozone formation. For the portion of the LVP-VOCs volatilized to air during use, we applied a multi-compartment mass-balance model to track the fate of emitted LVP-VOCs in a multimedia urban environment. For the portion of the LVP-VOCs disposed down the drain, we used a wastewater treatment plant (WWTP) fate model to predict the emission rates of LVP-VOCs to ambient air at WWTPs or at the discharge zone of the facilities and then used these results as emissions in the multimedia urban environment model. In a WWTP, the LVP-VOCs selected in this study are primarily either biodegraded or removed via sorption to sludge depending on the magnitude of the biodegradation half-life and the octanol-water partition coefficient. Less than 0.2% of the LVP-VOCs disposed down the drain are available for ozone formation. In contrast, when the LVP-VOC in a consumer product is volatilized from the surface to which it has been applied, greater than 90% is available for photochemical reactions either at the source location or in the downwind areas. Comparing results from these two modes of releases allows us to understand the importance of determining the fraction of LVP-VOCs volatilized versus disposed down the drain when the product is used by consumers. The results from this study

  17. Macroscopic transport by synthetic molecular machines

    NARCIS (Netherlands)

    Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F

    2005-01-01

    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle

  18. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  19. Quantum Bell Inequalities from Macroscopic Locality

    CERN Document Server

    Yang, Tzyh Haur; Sheridan, Lana; Scarani, Valerio

    2010-01-01

    We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.

  20. Vapor-liquid equilibrium data for the carbon dioxide and oxygen (CO2 + O2) system at the temperatures 218, 233, 253, 273, 288 and 298 K and pressures up to 14 MPa

    OpenAIRE

    Westman, Snorre Foss; Stang, Hans Georg Jacob; Løvseth, Sigurd W.; Austegard, Anders; Snustad, Ingrid; Ertesvåg, Ivar S.

    2015-01-01

    Accurate thermophysical data for the CO2-rich mixtures relevant for carbon capture, transport and storage (CCS) are essential for the development of the accurate equations of state (EOS) and models needed for the design and operation of the processes within CCS. Vapor-liquid equilibrium measurements for the binary system CO2+O2 are reported at 218, 233, 253, 273, 288 and 298 K, with estimated standard uncertainties of maximum 8 mK in temperature, maximum 3 kPa in pressure, and max...

  1. The Cassie-Wenzel transition of fluids on nanostructured substrates: Macroscopic force balance versus microscopic density-functional theory

    Science.gov (United States)

    Tretyakov, Nikita; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen; Dünweg, Burkhard; Daoulas, Kostas Ch.

    2016-10-01

    Classical density functional theory is applied to investigate the validity of a phenomenological force-balance description of the stability of the Cassie state of liquids on substrates with nanoscale corrugation. A bulk free-energy functional of third order in local density is combined with a square-gradient term, describing the liquid-vapor interface. The bulk free energy is parameterized to reproduce the liquid density and the compressibility of water. The square-gradient term is adjusted to model the width of the water-vapor interface. The substrate is modeled by an external potential, based upon the Lennard-Jones interactions. The three-dimensional calculation focuses on substrates patterned with nanostripes and square-shaped nanopillars. Using both the force-balance relation and density-functional theory, we locate the Cassie-to-Wenzel transition as a function of the corrugation parameters. We demonstrate that the force-balance relation gives a qualitatively reasonable description of the transition even on the nanoscale. The force balance utilizes an effective contact angle between the fluid and the vertical wall of the corrugation to parameterize the impalement pressure. This effective angle is found to have values smaller than the Young contact angle. This observation corresponds to an impalement pressure that is smaller than the value predicted by macroscopic theory. Therefore, this effective angle embodies effects specific to nanoscopically corrugated surfaces, including the finite range of the liquid-solid potential (which has both repulsive and attractive parts), line tension, and the finite interface thickness. Consistently with this picture, both patterns (stripes and pillars) yield the same effective contact angles for large periods of corrugation.

  2. A Lithium Vapor Box similarity experiment employing water vapor

    Science.gov (United States)

    Schwartz, Ja; Jagoe, C.; Goldston, Rj; Jaworski, Ma

    2016-10-01

    Handling high power loads and heat flux in the divertor is a major challenge for fusion power plants. A detached plasma will likely be required. However, hydrogenic and impurity puffing experiments show that detached operation leads easily to X-point MARFEs, impure plasmas, degradation in confinement, and lower helium pressure at the exhaust. The concept of the Lithium Vapor Box Divertor is to use local evaporation and strong differential pumping through condensation to localize the gas-phase material that absorbs the plasma heat flux, and so avoid those difficulties. In order to design such a box first the vapor without plasma must be simulated. The density of vapor required can be estimated using the SOL power, major radius, poloidal box length, and cooling energy per lithium atom. For an NSTX-U-sized machine, the Knudsen number Kn spans 0.01 to 1, the transitional flow regime. This regime cannot handled by fluid codes or collisionless Monte Carlo codes, but can be handled by Direct Simulation Monte Carlo (DSMC) codes. To validate a DSMC model, we plan to build a vapor box test stand employing more-convenient water vapor instead of lithium vapor as the working fluid. Transport of vapor between the chambers at -50C will be measured and compared to the model. This work supported by DOE Contract No. DE-AC02-09CH11466.

  3. Comparative analysis of high pressure sodium vapor lamps and mercury vapor lamp with the solid state (LED) in the public lighting systems; Analise comparativa das lampadas de vapor de sodio a alta pressao e de vapor de mercurio com a lampada a estado solido (LED) em sistemas de iluminacao publica

    Energy Technology Data Exchange (ETDEWEB)

    Damato, J.C.; Bueno, J.E.; Astorga, O.A.M. [Universidade Estadual Paulista (LESIP/UNESP), Guaratingueta, SP (Brazil). Lab. de Eficiencia Energetica em Sistemas de Iluminacao Publica; Ricciulli, D.L.S. [Universidade Estadual Paulista (DEE/UNESP), Guaratingueta, SP (Brazil). Dept. de Engenharia Eletrica

    2009-07-01

    The necessity of energy conservation in Brazilian electric sector, with the intention to diminish the resources of generation investments, has going to use of electric energy conservation programs, being most important PROCEL - a national program of electric conservation energy by ELETROBRAS, and inside this, a national program for public illumination and efficient traffic signaling - named 'Reluz'. This program looks for a more efficient implantation of public lighting systems, that requires the use of lamp technologies that present a greater value in a relation between lumen/watt relation and then beyond providing economy, due to low consumption of electric energy. Besides technologies that are appearing, the inclusion of LED lamps, which offers a great application potential, comes blunting as improvement alternative, being that the next public illumination parks will be able count on these lamps associates to the high-pressure sodium lamps and other types currently used. (author)

  4. Macroscopic optical response and photonic bands

    CERN Document Server

    Perez-Huerta, J S; Mendoza, Bernardo S; Mochan, W Luis

    2012-01-01

    We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the longwavelenght approximation as it fully incorporates retardation effects. We test our formalism through the study the propagation of electromagnetic waves in 2D photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upo...

  5. A macroscopic challenge for quantum spacetime

    CERN Document Server

    Amelino-Camelia, Giovanni

    2013-01-01

    Over the last decade a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However I here observe that the arguments that originally lead to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles then for the composite macroscopic body the quantization of spa...

  6. On Macroscopic Complexity and Perceptual Coding

    CERN Document Server

    Scoville, John

    2010-01-01

    While Shannon information establishes limits to the universal data compression of binary data, no existing theory provides an equivalent characterization of the lossy data compression algorithms prevalent in audiovisual media. The current paper proposes a mathematical framework for perceptual coding and inference which quantifies the complexity of objects indistinguishable to a particular observer. A definition of the complexity is presented and related to a generalization of Boltzmann entropy for these equivalence classes. When the classes are partitions of phase space, corresponding to classical observations, this is the proper Boltzmann entropy and the macroscopic complexity agrees with the Algorithmic Entropy. For general classes, the macroscopic complexity measure determines the optimal lossy compression of the data. Conversely, perceptual coding algorithms may be used to construct upper bounds on certain macroscopic complexities. Knowledge of these complexities, in turn, allows perceptual inference whic...

  7. Nanoplasmon-enabled macroscopic thermal management

    CERN Document Server

    Jonsson, Gustav Edman; Dmitriev, Alexandre

    2013-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive materials featuring nanoplasmons. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. However, direct experimental evidence of plasmon-enabled macroscopic temperature increase that would result from these efficient absorptive properties is scarce. Here we derive a general quantitative method of characterizing light-capturing properties of a given heat-generating absorptive layer by macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with plasmon nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to thermophotovoltaics and othe...

  8. The Role of Oxygen Partial Pressure in Controlling the Phase Composition of La1- x Sr x Co y Fe1- y O3- δ Oxygen Transport Membranes Manufactured by Means of Plasma Spray-Physical Vapor Deposition

    Science.gov (United States)

    Marcano, D.; Mauer, G.; Sohn, Y. J.; Vaßen, R.; Garcia-Fayos, J.; Serra, J. M.

    2016-04-01

    La0.58Sr0.4Co0.2Fe0.8O3 - δ (LSCF) deposited on a metallic porous support by plasma spray-physical vapor deposition is a promising candidate for oxygen-permeation membranes. Ionic transport properties are regarded to depend on the fraction of perovskite phase present in the membrane. However, during processing, the LSCF powder decomposes into perovskite and secondary phases. In order to improve the ionic transport properties of the membranes, spraying was carried out at different oxygen partial pressures p(O2). It was found that coatings deposited at lower and higher oxygen partial pressures consist of 70% cubic/26% rhombohedral and 61% cubic/35% rhombohedral perovskite phases, respectively. During annealing, the formation of non-perovskite phases is driven by oxygen non-stoichiometry. The amount of oxygen added during spraying can be used to increase the perovskite phase fraction and suppress the formation of non-perovskite phases.

  9. 饱和蒸汽压式波纹管疏水阀热动元件实验研究%Experimental study on the saturated vapor pressure type thermostatic bellows for steam traps

    Institute of Scientific and Technical Information of China (English)

    李树勋; 徐登伟; 把桥环

    2011-01-01

    针对液体膨胀式波纹管蒸汽疏水阀排量不稳定、漏汽率高等问题,分析波纹管热动元件的热工特性.基于Riedel蒸汽压方程和气液平衡方程,建立饱和蒸汽压式波纹管热动元件的热力学模型,设计相应实验系统,进行不同参数下的实验研究.结果表明,饱和蒸汽压式波纹管热动元件伸长量是相变温度的单值函数,近似呈指数关系;采用不同混合比、刚度及填充方式,可调节疏水阀的排水过冷度.%In view of the instabilities of displacement and high steam leakage rate for the liquid-expansion type ther-mostatic bellows steam traps, thermodynamic characteristical of thermostatic bellows was analyzed. Based on the Riedel equation and the vapor-liquid equilibrium equation, thermodynamic model of the saturated vapor pressure type thermostatic bellows was set up, corresponding experimental system was designed, and experimental studies with different parameters was carried out. The experimental results agree well with the theoretical analysis. The results show that the elongation A/I of the saturated vapor pressure type thermostatic bellows is monodrome function of phase transition temperature T, and relationship between the elongation A/I and the phase change temperature t is an exponential function. The subcooled temperature of steam trap can be adjusted by using different mixture ratio, different bellows' stiffness and different sufficient attire method. This paper establishes theoretical and experimental foundation for improving the performance of thermostatic bellows steam traps.

  10. Vapor pressures of mixtures of CFC-114 with the potential replacement coolants C{sub 4}F{sub 10} and c-C{sub 4}F{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, L.D. [Oak Ridge K-25 Site, TN (United States); Otey, M.G. [Paducah Gaseous Diffusion Plant, KY (United States)

    1994-09-01

    The U.S. Enrichment Corporation`s production of isotopically enriched uranium depends solely on two plants which utilize the gaseous diffusion process. This process uses large quantities of CFC-114 as an evaporative coolant. CFC-114, however, will be phased out of production at the end of 1995 due to its potential to deplete stratospheric ozone. A search has been underway for substitutes for a number of years. The initial search (1988-89) for an ozone-friendly, commercially available, chemically compatible substitute yielded two candidates, FC-c318 (c-C{sub 4}F{sub 8}) and FC-3110 (C{sub 4}F{sub 10}). The intended mode of replacing coolant was to stage the new coolant into independent subsystems of the plants, so that some systems would continue to operate on CFC-114, and an increasing number would operate on the new coolant. During that changeover process, the possibility of coolant mixing arises in variety of scenarios. This work was intended to generate sufficient experimental information to be able to predict the vapor pressure of coolant mixtures over the range of operating conditions likely to be found in the diffusion plants. Specifically, vapor pressures were measured over the temperature range 322 to 355 K (120{degrees}F to 180{degrees}F) and over the full range of mole fractions for binary mixtures of CFC-114 with FC-3110, and of CFC-114 with FC-c318.

  11. Modified headspace solid-phase microextraction for the determination of quantitative relationships between components of mixtures consisting of alcohols, esters, and ethers - impact of the vapor pressure difference of the compounds.

    Science.gov (United States)

    Dawidowicz, Andrzej Lech; Szewczyk, Joanna; Dybowski, Michal P

    2017-07-01

    The quantitative relationship between analytes established by the headspace solid-phase microextraction procedure for multicomponent mixtures depends not only on the character and strength of interactions of individual components with solid-phase microextraction fiber but also on their vapor pressure in the applied headspace solid-phase microextraction system. This study proves that vapor pressure is of minor importance when the sample is dissolved/suspended in a low-volatility liquid of the same physicochemical character as that of the used solid phase microextraction fiber coating. It is demonstrated for mixtures of alcohols, esters, ethers and their selected representatives by applying a headspace solid-phase microextraction system composed of Carbowax fiber and sample solutions in polyethyleneglycol. The observed differences in quantitative relations between components of the examined mixtures established by their direct analysis and by modified headspace solid-phase microextraction are insignificant (Fexp  phase microextraction system due to low components concentration in polyethyleneglycol suspensions (Raoult's law) and due to strong specific interactions of analyte molecules with polyethyleneglycol molecules. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Validation of Hiriart equation to compute steam production by the lip pressure method; Validacion de la ecuacion de Hiriart para calculo de gasto de vapor por el metodo de presion de labio

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly [Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1996-09-01

    Mainly in new geothermal wells, it is necessary to evaluate the production in a very fast, simple and not expensive way, to know the convenience to install surface equipment, such as silencers and separators, to drive the steam to the commercial gathering system. In practice, one of the most known methods is the lip pressure one, which requires a simple set of installations. The objective of this paper is to validate the steam flow rate calculated by the lip pressure method, with respect to the ASME method. The ASME method is known for its accuracy, and is done by measuring the steam and liquid after a high pressure separator, by an orifice plate of known diameter and a triangular weir. Results of the validation show up the feasibility of application of the lip pressure method by using a simple adjustment equation. Percentage of mistake results less than 1%, without any notable influence of the production enthalpy. That equation to be applied in a general case, is as follows: Q{nu} =(20642)(F*P*D{sup 2}/{radical}h-2000). For the particular case of the Los Azufres geothermal field, the equation is: Q{nu}= 810*P*D{sup 2} [Espanol] En los pozos geotermicos, principalmente en los nuevos, es necesario evaluar su produccion de manera rapida, sencilla y economica, para determinar la conveniencia de instalar equipo superficial, como separadores, silenciadores, etc., que permita la integracion del vapor al sistema comercial de generacion electrica. Para fines practicos uno de los metodos mas conocidos es el de presion de labio, que solo requiere un arreglo sencillo de instalaciones superficiales. En este documento se validan y ajustan los calculos de produccion de vapor por ese metodo de presion de labio, con respecto a las mediciones exactas efectuadas con el metodo ASME. Este ultimo es reconocido internacionalmente por su precision, y se lleva a cabo separando la mezcla obtenida en superficie en un recipiente a presion para medir el vapor a traves de una placa de orificio

  13. Vaporization wave model for ion-ion central collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M.; Giansiracusa, G.; Piccitto, G. (Catania Univ. (Italy). Ist. di Fisica; Istituto Nazionale di Fisica Nucleare, Catania (Italy))

    1983-09-24

    We propose a simple model for central or nearly central ion-ion collisions at intermediate energies. It is based on the ''vaporization wave model'' developed by Bennett for macroscopic objects. The model offers a simple explanation of the observed deuteron/proton abundancy ratio as a function of the beam energy.

  14. Vaporization wave model for ion-ion central collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baldo, M.; Giansiracusa, G.; Piccitto, G. (Catania Univ. (Italy). Ist. di Fisica)

    1983-09-24

    A simple model for central or nearly central ion-ion collisions at intermediate energies is proposed. It is based on the ''vaporization wave model'' developed by Bennet for macroscopic objects. The model offers a simple explanation of the observed deuteron/proton abundancy ratio as a function of the beam energy.

  15. Separation of the Microscopic and Macroscopic Domains

    Science.gov (United States)

    Van Zandt, L. L.

    1977-01-01

    Examines the possibility of observing interference in quantum magnification experiments such as the celebrated "Schroedinger cat". Uses the possibility of observing interference for separating the realm of microscopic from macroscopic dynamics; estimates the dividing line to fall at system sizes of about 100 Daltons. (MLH)

  16. Entropy, Macroscopic Information, and Phase Transitions

    OpenAIRE

    Parrondo, Juan M. R.

    1999-01-01

    The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.

  17. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  18. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

    Science.gov (United States)

    Laslier, Benoît; Toninelli, Fabio Lucio

    2015-09-01

    We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".

  19. Macroscopic invisibility cloaking of visible light

    DEFF Research Database (Denmark)

    Chen, Xianzhong; Luo, Y.; Zhang, Jingjing

    2011-01-01

    to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale...

  20. Accurate and stable equal-pressure measurements of water vapor transmission rate reaching the 10‑6 g m‑2 day‑1 range

    Science.gov (United States)

    Nakano, Yoichiro; Yanase, Takashi; Nagahama, Taro; Yoshida, Hajime; Shimada, Toshihiro

    2016-10-01

    The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10‑6 g m‑2 day‑1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

  1. 二甲基苯基乙氧基硅烷饱和蒸汽压的研究%Saturated vapor pressure of pure ethoxydimethylphenylsilane

    Institute of Scientific and Technical Information of China (English)

    张宝华; 伍川; 董红; 蒋剑雄

    2012-01-01

    High pure ethoxydimethylphenylsilane was obtained by vacuum distillation method and its saturated vapor temperature from 1. 325 kPa to 99. 325 kPa was measured by inclined ebulliometer. The An-toine constants were obtained,I. E. ,A =5. 077 80,B =969. 550,C = - 152. 478 K. The maximum relative difference between the calculated saturated temperature and the experimental data was no more than 0. 24% . The molar enthalpy of vaporization ( △vapHm) of ethoxydimethylphenylsilane from 348. 32 K to 467. 92 K was estimated by Clausius-Clapeyron equation.%通过真空减压精馏分离得到高纯度二甲基苯基乙氧基硅烷,利用斜式沸点仪测定二甲基苯基乙氧基硅烷在1.325~99.325 kPa范围内的饱和温度并利用Antoine方程进行关联,得到Antoine常数A=5.077 80,B=969.550,C=-152.478 K.饱和温度计算值与实测值之间的最大相对偏差不大于0.24%.还利用Clausius-Clapeyron方程估算了348.32 ~467.92 K范围内二甲基苯基乙氧基硅烷的摩尔蒸发焓.

  2. Petroleum Vapor Intrusion

    Science.gov (United States)

    One type of vapor intrusion is PVI, in which vapors from petroleum hydrocarbons such as gasoline, diesel, or jet fuel enter a building. Intrusion of contaminant vapors into indoor spaces is of concern.

  3. High-Density Three-Dimension Graphene Macroscopic Objects for High-Capacity Removal of Heavy Metal Ions

    Science.gov (United States)

    Li, Weiwei; Gao, Song; Wu, Liqiong; Qiu, Shengqiang; Guo, Yufen; Geng, Xiumei; Chen, Mingliang; Liao, Shutian; Zhu, Chao; Gong, Youpin; Long, Mingsheng; Xu, Jianbao; Wei, Xiangfei; Sun, Mengtao; Liu, Liwei

    2013-01-01

    The chemical vapor deposition (CVD) fabrication of high-density three-dimension graphene macroscopic objects (3D-GMOs) with a relatively low porosity has not yet been realized, although they are desirable for applications in which high mechanical and electrical properties are required. Here, we explore a method to rapidly prepare the high-density 3D-GMOs using nickel chloride hexahydrate (NiCl2·6H2O) as a catalyst precursor by CVD process at atmospheric pressure. Further, the free-standing 3D-GMOs are employed as electrolytic electrodes to remove various heavy metal ions. The robust 3D structure, high conductivity (~12 S/cm) and large specific surface area (~560 m2/g) enable ultra-high electrical adsorption capacities (Cd2+ ~ 434 mg/g, Pb2+ ~ 882 mg/g, Ni2+ ~ 1,683 mg/g, Cu2+ ~ 3,820 mg/g) from aqueous solutions and fast desorption. The current work has significance in the studies of both the fabrication of high-density 3D-GMOs and the removal of heavy metal ions. PMID:23821107

  4. Vapor-modulated heat pipe for improved temperature control

    Science.gov (United States)

    Edwards, D. K.; Eninger, J. E.; Ludeke, E. E.

    1978-01-01

    Dryout induced by vapor throttling makes control of equipment temperature less dependent on variations in sink environment. Mechanism controls flow of vapor in heat pipe by using valve in return path to build difference in pressure and also difference in saturation temperature of the vapor. In steady state, valve closes just enough to produce partial dryout that achieves required temperature drop.

  5. 40 CFR 52.255 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.255... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.255 Gasoline transfer vapor control. (a) “Gasoline” means any petroleum distillate having a Reid vapor pressure of 4 pounds or...

  6. 40 CFR 52.787 - Gasoline transfer vapor control.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Gasoline transfer vapor control. 52.787... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Indiana § 52.787 Gasoline transfer vapor control. (a) Gasoline means any petroleum distillate having a Reid vapor pressure of 4 pounds or...

  7. Monte Carlo simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB): Pressure and temperature effects for the solid phase and vapor-liquid phase equilibria.

    Science.gov (United States)

    Rai, Neeraj; Bhatt, Divesh; Siepmann, J Ilja; Fried, Laurence E

    2008-11-21

    The transferable potentials for phase equilibria (TraPPE) force field was extended to nitro and amino substituents for aromatic rings via parametrization to the vapor-liquid coexistence curves of nitrobenzene and aniline, respectively. These groups were then transferred to model 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Without any further parametrization to solid state data, the TraPPE force field is able to predict TATB's unit cell lengths and angles at 295 K with mean unsigned percentage errors of 0.3% and 1.8% and the specific density within 0.5%. These predictions are comparable in accuracy to the GRBF model [Gee et al., J. Chem. Phys. 120, 7059 (2004)] that was parametrized directly to TATB's solid state properties. Both force fields are able to reproduce the pressure dependence of TATB's unit cell volume, but they underestimate its thermal expansion. Due to its energetic nature and unusually large cohesive energy, TATB is not chemically stable at temperature in its liquid range. Gibbs ensemble simulations allow one to determine TATB's vapor-liquid coexistence curve at elevated temperatures and the predicted critical temperature and density for the TraPPE and GRBF model are 937+/-8 and 1034+/-8 K, and 0.52+/-0.02 and 0.50+/-0.02 gcm(3), respectively.

  8. Preparation of AlGaN/GaN Heterostructures on Sapphire Using Light Radiation Heating Metal-Organic Chemical Vapor Deposition at Low Pressure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-Gang; ZHENG You-Dou; SHEN Bo; ZHANG Rong; LI Wei-Ping; CHEN Peng; CHEN Zhi-Zhong; GU Shu-Lin; SHI Yi; Z. C. Huang

    2000-01-01

    AlGaN/GaN heterostructures on sapphire substrate were fabricated by using light radiation heating metalor ganic chemical vapor deposition. Photoluminescence excitation spectra show that there are two abrupt slopes corresponding to the absorption edges of AlGaN and GaN, respectively. X-ray diffraction spectra clearly exhibit the GaN (0002), (0004), and A1GaN (0002), (0004) diffraction peaks, and no diffraction peak other than those from the GaN {0001} and A1GaN {0001} planes is found. Reciprocal space mapping indicates that there is no tilt between the AlGaN layer and the GaN layer. All results also indicate that the sample is of sound quality and the Al composition in the AlGaN layer is of high uniformity.

  9. LINE SHAPES OF DOPPLER-FREE RESONANCE IN SRFM: STRONG ATOM-WALL INTERACTION AND PRESSURE EFFECT ON THE FREQUENCY SHIFT OF AN ALKALI VAPOR

    Directory of Open Access Journals (Sweden)

    B BOUHAFS

    2003-12-01

    Full Text Available The attractive potential energy between the atoms of rubidium vapor and a dielectric wall has been investigated by monitoring the reflection light at the interface. The atom- wall interaction potential of the form V(z = - C /z3 (z: atom-wall allows to predict experimental results only for weak regime, i.e., where C<< 0.2 kHzmm3. In the strong interaction case, the dispersive line shape is turned into an absorption-type line shape. The influence of atomic density on the shift of  the selective reflection resonance  relatively to the frequency of unperturbed atomic transition is found to be red with a negative slope. This technique opens the way to characterize the windows made of different materials thin films.

  10. Macroscopic quantum mechanics in a classical spacetime.

    Science.gov (United States)

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.

  11. Macroscopic Invisibility Cloaking of Visible Light

    CERN Document Server

    Chen, Xianzhong; Zhang, Jingjing; Jiang, Kyle; Pendry, John B; Zhang, Shuang

    2010-01-01

    Invisibility cloaks of light, which used to be confined to the imagination, have now been turned into a scientific reality, thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realisation of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here we report realisation of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices.

  12. Macroscopic spin and charge transport theory

    Institute of Scientific and Technical Information of China (English)

    Li Da-Fang; Shi Jun-Ren

    2009-01-01

    According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized 'current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.

  13. Macroscopic entrainment of periodically forced oscillatory ensembles.

    Science.gov (United States)

    Popovych, Oleksandr V; Tass, Peter A

    2011-03-01

    Large-amplitude oscillations of macroscopic neuronal signals, such as local field potentials and electroencephalography or magnetoencephalography signals, are commonly considered as being generated by a population of mutually synchronized neurons. In a computational study in generic networks of phase oscillators and bursting neurons, however, we show that this common belief may be wrong if the neuronal population receives an external rhythmic input. The latter may stem from another neuronal population or an external, e.g., sensory or electrical, source. In that case the population field potential may be entrained by the rhythmic input, whereas the individual neurons are phase desynchronized both mutually and with their field potential. Intriguingly, the corresponding large-amplitude oscillations of the population mean field are generated by pairwise desynchronized neurons oscillating at frequencies shifted far away from the frequency of the macroscopic field potential.

  14. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  15. Macroscopic Invisible Cloak for Visible Light

    CERN Document Server

    Zhang, Baile; Liu, Xiaogang; Barbastathis, George

    2011-01-01

    Invisibility cloaks, a subject that usually occurs in science fiction and myths, have attracted wide interest recently because of their possible realization. The biggest challenge to true invisibility is known to be the cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye. Here we experimentally solve this problem by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques. A transparent cloak made of two pieces of calcite is created. This cloak is able to conceal a macroscopic object with a maximum height of 2 mm, larger than 3500 free-space-wavelength, inside a transparent liquid environment. Its working bandwidth encompassing red, green and blue light is also demonstrated.

  16. Macroscopic Quantum Resonators (MAQRO): 2015 update

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbaek, Rainer [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Aspelmeyer, Markus; Kiesel, Nikolai [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Barker, Peter F.; Bose, Sougato [University College London, Department of Physics and Astronomy, London (United Kingdom); Bassi, Angelo [University of Trieste, Department of Physics, Trieste (Italy); INFN - Trieste Section, Trieste (Italy); Bateman, James [University of Swansea, Department of Physics, College of Science, Swansea (United Kingdom); Bongs, Kai; Cruise, Adrian Michael [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Braxmaier, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Brukner, Caslav [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Christophe, Bruno; Rodrigues, Manuel [The French Aerospace Lab, ONERA, Chatillon (France); Chwalla, Michael; Johann, Ulrich [Airbus Defence and Space GmbH, Immenstaad (Germany); Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge [ENS-PSL Research University, Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, College de France, Paris (France); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dholakia, Kishan; Mazilu, Michael [University of St. Andrews, School of Physics and Astronomy, St. Andrews (United Kingdom); Diosi, Lajos [Wigner Research Center for Physics, P.O. Box 49, Budapest (Hungary); Doeringshoff, Klaus; Peters, Achim [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Ertmer, Wolfgang; Rasel, Ernst M. [Leibniz Universitaet Hannover, Institut fuer Quantenoptik, Hannover (Germany); Gieseler, Jan; Novotny, Lukas; Rondin, Loic [ETH Zuerich, Photonics Laboratory, Zuerich (Switzerland); Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Hechenblaikner, Gerald [Airbus Defence and Space GmbH, Immenstaad (Germany); European Southern Observatory (ESO), Garching bei Muenchen (Germany); Hossenfelder, Sabine [KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Kim, Myungshik [Imperial College London, QOLS, Blackett Laboratory, London (United Kingdom); Milburn, Gerard J. [University of Queensland, ARC Centre for Engineered Quantum Systems, Brisbane (Australia); Mueller, Holger [University of California, Department of Physics, Berkeley, CA (United States); Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Pikovski, Igor [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Pilan Zanoni, Andre [Airbus Defence and Space GmbH, Immenstaad (Germany); CERN - European Organization for Nuclear Research, EN-STI-TCD, Geneva (Switzerland); Riedel, Charles Jess [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Roura, Albert [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Schleich, Wolfgang P. [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Texas A and M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, College Station, TX (United States); Schmiedmayer, Joerg [Vienna University of Technology, Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, Vienna (Austria); Schuldt, Thilo [Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Schwab, Keith C. [California Institute of Technology, Applied Physics, Pasadena, CA (United States)

    2016-12-15

    Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)

  17. A macroscopic approach to creating exotic matter

    OpenAIRE

    Ridgely, C. T.

    2000-01-01

    Herein the Casimir effect is used to present a simple macroscopic view on creating exotic matter. The energy arising between two nearly perfectly conducting parallel plates is shown to become increasingly negative as the plate separation is reduced. It is proposed that the Casimir energy appears increasingly negative simply because the vacuum electromagnetic zero-point field performs positive work in pushing the plates together, transforming field energy into kinetic energy of the plates. Nex...

  18. Shot noise in linear macroscopic resistors

    OpenAIRE

    Gomila Lluch, Gabriel; Pennetta, C.; Reggiani, L.; Ferrari, G; Sampietro, M.; G. Bertuccio(Politecnico di Milano, Italy)

    2004-01-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devi...

  19. Shot Noise in Linear Macroscopic Resistors

    Science.gov (United States)

    Gomila, G.; Pennetta, C.; Reggiani, L.; Sampietro, M.; Ferrari, G.; Bertuccio, G.

    2004-06-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.

  20. Macroscopic Objects, Intrinsic Spin, and Lorentz Violation

    CERN Document Server

    Atkinson, David W; Tasson, Jay D

    2013-01-01

    The framework of the Standard-Model Extension (SME) provides a relativistic quantum field theory for the study of Lorentz violation. The classical, nonrelativistic equations of motion can be extracted as a limit that is useful in various scenarios. In this work, we consider the effects of certain SME coefficients for Lorentz violation on the motion of macroscopic objects having net intrinsic spin in the classical, nonrelativistic limit.

  1. Modeling the Capillary Pressure for the Migration of the Liquid Phase in Granular Solid-Liquid-Vapor Systems: Application to the Control of the Composition Profile in W-Cu FGM Materials

    Science.gov (United States)

    Missiaen, Jean-Michel; Raharijaona, Jean-Joël; Delannay, Francis

    2016-11-01

    A model is developed to compute the capillary pressure for the migration of the liquid phase out or into a uniform solid-liquid-vapor system. The capillary pressure is defined as the reduction of the overall interface energy per volume increment of the transferred fluid phase. The model takes into account the particle size of the solid particle aggregate, the packing configuration (coordination number, porosity), the volume fractions of the different phases, and the values of the interface energies in the system. The model is used for analyzing the stability of the composition profile during processing of W-Cu functionally graded materials combining a composition gradient with a particle size gradient. The migration pressure is computed with the model in two stages: (1) just after the melting of copper, i.e., when sintering and shape accommodation of the W particle aggregate can still be neglected and (2) at high temperature, when the system is close to full density with equilibrium particle shape. The model predicts well the different stages of liquid-phase migration observed experimentally.

  2. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  3. Comparison between Cooling Rate Dependence of Macroscopic and Microscopic Quantities in Simulated Aluminium Glass

    Institute of Scientific and Technical Information of China (English)

    LIU Chang-Song; ZHU Zhen-Gang

    2000-01-01

    Constant-pressure molecular dynamics simulations and an analysis of the local atomic structures have been performed to study the cooling rate dependence of some macroscopic and microscopic quantities in aluminium glass. Macroscopic quantities, enthalpy and density, see an observable but small dependence on the cooling rate. Icosahedral ordering units exhibit strong cooling rate dependence, which is responsible for the dependence of the enthalpy and the density on the cooling rate; while the almost independence of some microstructural units such as the 1541, 1431 and 1421 pairs of the cooling rate may lead to a small dependence of the enthalpy and the density on the cooling rate.

  4. Room Temperature Experiments with a Macroscopic Sapphire Mechanical Oscillator

    Science.gov (United States)

    Bourhill, Jeremy; Ivanov, Eugene; Tobar, Micahel

    2015-03-01

    We present initial results from a number of experiments conducted on a 0.53 kg sapphire ``dumbbell'' crystal. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects frequency modulate resonant microwave whispering gallery modes, simultaneously excited within the crystal. A novel microwave readout system is described allowing extremely low noise measurements of this frequency modulation with a phase noise floor of -160 dBc/Hz at 100 kHz, near our modes of interest. Fine-tuning of the crystal's suspension have allowed for the optimisation of mechanical Q-factors in preparation for cryogenic experiments, with a value of 8 x 107 achieved so far. Finally, results are presented that demonstrate the excitation of mechanical modes via radiation pressure force. These are all important steps towards the overall goal of the experiment; to cool a macroscopic device to the quantum ground state.

  5. Effect of inhibitors on macroscopical oxidation kinetics of calcium sulfite

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yi; WANG Li-dong; WANG Xiao-ming; LI Qiang-wei; XU Pei-yao

    2005-01-01

    In the presence of inhibitors, the macroscopical oxidation kinetics of calcium sulfite, the main byproduct in wet limestone scrubbing, was studied for the first time by adding different inhibitors and varying pH, concentration of calcium sulfite, oxygen partial pressure, concentration of inhibitors and temperature. The mathematical model about the general oxidation reaction was established,which was controlled by three steps involving dissolution of calcium sulfite, mass transfer of oxygen and chemical reaction in the solution.It was concluded that the general reaction was controlled by mass transfer of oxygen under uncatalyzed conditions, while it was controlled by dissolution of calcium sulfite after adding three kinds of inhibitors. Thus, the theory was provided for investigating the mechanism and oxidation kinetics of sulfite. The beneficial references were also supplied for design of oxidation technics in the wet limestone scrubbing.

  6. A heated vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium.

    Science.gov (United States)

    McCarron, Daniel J; Hughes, Ifan G; Tierney, Patrick; Cornish, Simon L

    2007-09-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D(2) transitions in atomic rubidium is described. A 5 cm long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field and cell temperature. For the weaker transitions both the amplitude and gradient of the signal are increased by an order of magnitude.

  7. Mechanistic feature-scale profile simulation of SiO{sub 2} low-pressure chemical vapor deposition by tetraethoxysilane pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Labun, Andrew H. [Compaq Computer Corporation, 334 South Street, Shrewsbury, Massachusetts 01545 (United States); Moffat, Harry K. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Cale, Timothy S. [Dept. of Chemical Engineering, School of Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States)

    2000-01-01

    Simulation of chemical vapor deposition in submicron features typical of semiconductor devices has been facilitated by extending the EVOLVE [T. S. Cale, T. H. Gandy, and G. B. Raupp, J. Vac. Sci. Technol. A 9, 524 (1991)] thin film etch and deposition simulation code to use thermal reaction mechanisms expressed in the Chemkin format. This allows consistent coupling between EVOLVE and reactor simulation codes that use Chemkin. In an application of a reactor-scale simulation code providing surface fluxes to a feature-scale simulation code, a proposed reaction mechanism for tetraethoxysilane [Si(OC{sub 2}H{sub 5}){sub 4}] pyrolysis to deposit SiO{sub 2}, which had been applied successfully to reactor-scale simulation, does not correctly predict the low step coverage over trenches observed under short reactor residence time conditions. One apparent discrepancy between the mechanism and profile-evolution observations is a reduced degree of sensitivity of the deposition rate to the presence of reaction products, i.e., the by-product inhibition effect is underpredicted. The cause of the proposed mechanism's insensitivity to by-product inhibition is investigated with the combined reactor and topography simulators. This is done first by manipulating the surface-to-volume ratio of a simulated reactor and second by adjusting parameters in the proposed mechanism such as the calculated free energies of proposed surface species. The conclusion is that simply calibrating mechanism parameters to enhance the by-product inhibition can improve the fit to profile evolution data; however, the agreement between with reactor-scale data and simulations decreases. Additional surface reaction channels seem to be required to simultaneously reproduce experimental reactor-scale growth rates and feature-scale step coverages. (c) 2000 American Vacuum Society.

  8. Rainbow correlation imaging with macroscopic twin beam

    Science.gov (United States)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  9. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiong; He Gui-ming; Zhang Yun

    2003-01-01

    In the Automatic Fingerprint Identification System (AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characteristic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  10. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang; Xiong; He; Gui-Ming; 等

    2003-01-01

    In the Automatic Fingerprint Identification System(AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characterstic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  11. Macroscopic Quantum Criticality in a Circuit QED

    CERN Document Server

    Wang, Y D; Nori, F; Quan, H T; Sun, C P; Liu, Yu-xi; Nori, Franco

    2006-01-01

    Cavity quantum electrodynamic (QED) is studied for two strongly-coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator. We analyze the dressed state structure of this superconducting circuit QED system and the selection rules of electromagnetic-induced transitions between any two of these dressed states. Its macroscopic quantum criticality, in the form of ground state level crossing, is also analyzed, resulting from competition between the Ising-type inter-qubit coupling and the controllable on-site potentials.

  12. Macroscopic fluctuations theory of aerogel dynamics

    CERN Document Server

    Lefevere, Raphael; Zambotti, Lorenzo

    2010-01-01

    We consider extensive deterministic dynamics made of $N$ particles modeling aerogels under a macroscopic fluctuation theory description. By using a stochastic model describing those dynamics after a diffusive rescaling, we show that the functional giving the exponential decay in $N$ of the probability of observing a given energy and current profile is not strictly convex as a function of the current. This behaviour is caused by the fact that the energy current is carried by particles which may have arbitrary low speed with sufficiently large probability.

  13. Spin models as microfoundation of macroscopic market models

    Science.gov (United States)

    Krause, Sebastian M.; Bornholdt, Stefan

    2013-09-01

    Macroscopic price evolution models are commonly used for investment strategies. There are first promising achievements in defining microscopic agent based models for the same purpose. Microscopic models allow a deeper understanding of mechanisms in the market than the purely phenomenological macroscopic models, and thus bear the chance for better models for market regulation. However microscopic models and macroscopic models are commonly studied separately. Here, we exemplify a unified view of a microscopic and a macroscopic market model in a case study, deducing a macroscopic Langevin equation from a microscopic spin market model closely related to the Ising model. The interplay of the microscopic and the macroscopic view allows for a better understanding and adjustment of the microscopic model, as well, and may guide the construction of agent based market models as basis of macroscopic models.

  14. Study on the Vapor-Liquid Equilibrium for Cyclohexene-Cyclohexanone Binary System under Normal Atmospheric Pressure%常压下环己烯-环己酮二元体系汽液平衡研究

    Institute of Scientific and Technical Information of China (English)

    王训遒; 庄新亮; 陈静波; 蒋登高

    2011-01-01

    During the process of producing epoxycyclohexane by oxidizing cyclohexene with hydrogen peroxide, many byproducts including cyclohexanone, cyclohexanol and etc. were formed. In order to obtain high purity epoxycyclohexane, the byproducts must be removed via rectification, and the rectification process needs the vapor-liquid equilibrium (VLE) data of the relative system. In this study, the VLE data of cyclohexene-cyclohexanone system were determined under normal atmospheric pressure by using an improved Rose vapor-liquid equilibrium still, and the thermodynamic consistencies of the obtained data were examined.The results show that the experimental data satisfy the examination of the thermodynamic consistencies. Then the VLE data obtained were correlated by Wilson equation, and the model parameters of the equation were determined by using the error sum squares of vapor phase composition as the target function. The comparison of the experimental VLE data with those calculated by Wilson model shows that the deviations are little, which indicates that the model is suitable to be used for the engineering separation design.%H2O2氧化环己烯合成环氧环己烷有很多副产物生成,如环己酮、环己醇等,为了获得较纯的环氧环己烷需采用精馏提纯的方法将副产物分离出来.而精馏提纯需要相关体系的汽液平衡数据,为此用改进的Rose汽液平衡釜测定常压下环己烯-环己酮二元体系汽液平衡数据,并对数据进行热力学一致性检验,结果表明实验数据符合热力学一致性.以汽相组成的误差平方和作为目标函数,用Wilson方程关联实验数据,得到Wilson方程的配偶参数,并对汽液平衡计算值与实验值进行比较,发现二者偏差较小,可以满足工程上分离设计的需要.

  15. Vapor-barrier Vacuum Isolation System

    Science.gov (United States)

    Weinstein, Leonard M. (Inventor); Taminger, Karen M. (Inventor)

    2014-01-01

    A system includes a collimated beam source within a vacuum chamber, a condensable barrier gas, cooling material, a pump, and isolation chambers cooled by the cooling material to condense the barrier gas. Pressure levels of each isolation chamber are substantially greater than in the vacuum chamber. Coaxially-aligned orifices connect a working chamber, the isolation chambers, and the vacuum chamber. The pump evacuates uncondensed barrier gas. The barrier gas blocks entry of atmospheric vapor from the working chamber into the isolation chambers, and undergoes supersonic flow expansion upon entering each isolation chamber. A method includes connecting the isolation chambers to the vacuum chamber, directing vapor to a boundary with the working chamber, and supersonically expanding the vapor as it enters the isolation chambers via the orifices. The vapor condenses in each isolation chamber using the cooling material, and uncondensed vapor is pumped out of the isolation chambers via the pump.

  16. Recommended reference materials for realization of physicochemical properties pressure-volume-temperature relationships

    CERN Document Server

    Herington, E F G

    1977-01-01

    Recommended Reference Materials for Realization of Physicochemical Properties presents recommendations of reference materials for use in measurements involving physicochemical properties, namely, vapor pressure; liquid-vapor critical temperature and critical pressure; orthobaric volumes of liquid and vapor; pressure-volume-temperature properties of the unsaturated vapor or gas; and pressure-volume-temperature properties of the compressed liquid. This monograph focuses on reference materials for vapor pressures at temperatures up to 770 K, as well as critical temperatures and critical pressures

  17. MACROSCOPIC STRAIN POTENTIALS IN NONLINEAR POROUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    刘熠; 黄筑平

    2003-01-01

    By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper.According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed,and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castafneda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.

  18. Quantum correlations of lights in macroscopic environments

    Science.gov (United States)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear

  19. Binary Schemes of Vapor Bubble Growth

    Science.gov (United States)

    Zudin, Yu. B.

    2015-05-01

    A problem on spherically symmetric growth of a vapor bubble in an infi nite volume of a uniformly superheated liquid is considered. A description of the limiting schemes of bubble growth is presented. A binary inertial-thermal bubble growth scheme characterized by such specifi c features as the "three quarters" growth law and the effect of "pressure blocking" in a vapor phase is considered.

  20. 蒸气压对聚合物包膜肥料氮素释放特性的影响%Influence of Vapor Pressure on the Nitrogen Release of Polymer-coated Fertilizers

    Institute of Scientific and Technical Information of China (English)

    陈可可; 张保林; 侯翠红

    2013-01-01

    为了从微观和动力学的角度揭示聚合物包膜肥料氮素释放的机理,研究了不同介质的蒸汽压对国内外生产工艺、养分释放机理不相同的4种聚合物包膜肥料中的氮素释放特性的影响。结果表明:在水、KH2PO4饱和溶液、KCl 饱和溶液3种介质蒸汽压下,4种供试肥料的氮素累积释放率均为:H2O>KH2PO4饱和溶液>KCl饱和溶液,利用一级动力学方程和Arrhenius方程联合得出3种介质蒸汽压下4种供试肥料的氮素释放活化能依次为:H2O<KH2PO4饱和溶液<KCl饱和溶液。缓/控释肥料的氮素累积释放率随包膜层内外的蒸汽压差增大而增大,包膜材料、肥料核心养分类型均影响肥料养分的释放。%In order to reveal the mechanism of nitrogen release of polymer-coated fertilizers, the N release characteristic from 4 polymer-coated fertilizers which have different produce technics and nutrition release mechanism was investigated in this paper. The results showed that: based on the experiments of nitrogen release under different vapor pressure, the cumulate release rate of nitrogen from polymer-coated fertilizers was: H2O > saturated solution of KH2PO4 > saturated solution of KCl; the nitrogen release activation energy from polymer-coated fertilizers was: H2O < saturated solution of KH2PO4 < saturated solution of KCl. The cumulate release rate of nitrogen from polymer-coated fertilizers increased as the difference between vapor pressure in or out integument increasing, and both the coated materials and the types of nutrient affected the release rate of nitrogen release from fertilizers.

  1. Thermodynamics and kinetics of vapor bubbles nucleation in one-component liquids.

    Science.gov (United States)

    Alekseechkin, Nikolay V

    2012-08-09

    The multivariable theory of nucleation (J. Chem. Phys. 2006, 124, 124512) is applied to the problem of vapor bubbles formation in pure liquids. The presented self-consistent macroscopic theory of this process employs thermodynamics (classical, statistical, and linear nonequilibrium), hydrodynamics, and interfacial kinetics. As a result of thermodynamic study of the problem, the work of formation of a bubble is obtained and parameters of the critical bubble are determined. The variables V (the bubble volume), ρ (the vapor density), and T (the vapor temperature) are shown to be natural for the given task. An equation for the dependence of surface tension on bubble state parameters is obtained. An algorithm of writing the equations of motion of a bubble in the space {V, ρ, T}--equations for V, ρ, and T--is offered. This algorithm ensures symmetry of the matrix of kinetic coefficients. The equation for T written on the basis of this algorithm is shown to represent the first law of thermodynamics for a bubble. The negative eigenvalue of the motion equations which alongside with the work of the critical bubble formation determines the stationary nucleation rate of bubbles is obtained. Various kinetic limits are considered. One of the kinetic constraints leads to the fact that the nucleation cannot occur in the whole metastable region; it occurs only in some subregion of the latter. Zeldovich's theory of cavitation is shown to be a limiting case of the theory presented. The limiting effects of various kinetic processes on the nucleation rate of bubbles are shown analytically. These are the inertial motion of a liquid as well as the processes of particles exchange and heat exchange between a bubble and surrounding liquid. The nucleation rate is shown to be determined by the slowest kinetic process at positive and moderately negative pressures in a liquid. The limiting effects of the processes of evaporation-condensation and heat exchange vanish at high negative

  2. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HU Hui; LO Rong; ZHU Jia-Lin; XIONG Jia-Jiong

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80 (1998) 169), but also have great influence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.

  3. Micro- and macroscopic simulation of periodic metamaterials

    Directory of Open Access Journals (Sweden)

    R. Schuhmann

    2008-05-01

    Full Text Available In order to characterize three-dimensional, left-handed metamaterials (LHM we use electromagnetic field simulations of unit cells. For waves traveling in one of the main directions of the periodic LHM-arrays, the analysis is concentrated on the calculation of global quantities of the unit cells, such as scattering parameters or dispersion diagrams, and a careful interpretation of the results. We show that the concept of equivalent material values – which may be negative in a narrow frequency range – can be validated by large "global" simulations of a wedge structure. We also discuss the limitations of this concept, since in some cases the macroscopic behavior of an LHM cannot be accurately described by equivalent material values.

  4. Microscopic versus macroscopic calculation of dielectric nanospheres

    Science.gov (United States)

    Kühn, M.; Kliem, H.

    2008-12-01

    The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.

  5. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  6. Casimir effect from macroscopic quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2011-06-15

    The canonical quantization of macroscopic electromagnetism was recently presented in (Philbin 2010 New J. Phys. 12 123008). This theory is used here to derive the Casimir effect, by considering the special case of thermal and zero-point fields. The stress-energy-momentum tensor of the canonical theory follows from Noether's theorem, and its electromagnetic part in thermal equilibrium gives the Casimir energy density and stress tensor. The results hold for arbitrary inhomogeneous magnetodielectrics and are obtained from a rigorous quantization of electromagnetism in dispersive, dissipative media. Continuing doubts about the status of the standard Lifshitz theory as a proper quantum treatment of Casimir forces do not apply to the derivation given here. Moreover, the correct expressions for the Casimir energy density and stress tensor inside media follow automatically from the simple restriction to thermal equilibrium, without the need for complicated thermodynamical or mechanical arguments.

  7. Taming macroscopic jamming in transportation networks

    CERN Document Server

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    In transportation networks, a spontaneous jamming transition is often observed, e.g in urban road networks and airport networks. Because of this instability, flow distribution is significantly imbalanced on a macroscopic level. To mitigate the congestion, we consider a simple control method, in which congested nodes are closed temporarily, and investigate how it influences the overall system. Depending on the timing of the node closure and opening, and congestion level of a network, the system displays three different phases: free-flow phase, controlled phase, and deadlock phase. We show that when the system is in the controlled phase, the average flow is significantly improved, whereas when in the deadlock phase, the flow drops to zero. We study how the control method increases the network flow and obtain their transition boundary analytically.

  8. Black Holes and Quantumness on Macroscopic Scales

    CERN Document Server

    Flassig, D; Wintergerst, N

    2012-01-01

    It has recently been suggested that black holes may be described as condensates of weakly interacting gravitons at a critical point, exhibiting strong quantum effects. In this paper, we study a model system of attractive bosons in one spatial dimension which is known to undergo a quantum phase transition. We demonstrate explicitly that indeed quantum effects are important at the critical point, even if the number of particles is macroscopic. Most prominently, we evaluate the entropy of entanglement between different momentum modes and observe it to become maximal at the critical point. Furthermore, we explicitly see that the leading entanglement is between long wavelength modes and is hence a feature independent of ultraviolet physics. If applicable to black holes, our findings substantiate the conjectured breakdown of semiclassical physics even for large black holes. This can resolve long standing mysteries, such as the information paradox and the no-hair theorem.

  9. Variability of macroscopic dimensions of Moso bamboo.

    Science.gov (United States)

    Cui, Le; Peng, Wanxi; Sun, Zhengjun; Sun, Zhengjun; Sun, Zhengjun; Lu, Huangfei; Chen, Guoning

    2015-03-01

    In order to the macroscopic geometry distributions of vascular bundles in Moso bamboo tubes. The circumference of bamboo tubes was measured, used a simple quadratic diameter formula to analyze the differences between the tubes in bamboo culm, and the arrangement of vascular bundles was investigated by cross sectional images of bamboo tubes. The results shown that the vascular bundles were differently distributed in a bamboo tube. In the outer layer, the vascular bundles had a variety of shapes, and were aligned parallel to each other. In the inner layers, the vascular bundles weren't aligned but uniform in shape. It was concluded that the vascular bundle sections arranged in parallel should be separated from the non-parallel sections for the maximum bamboo utilization.

  10. Robust macroscopic entanglement without complex encodings

    CERN Document Server

    Chaves, Rafael; Acín, Antonio

    2011-01-01

    One of the main challenges for the experimental manipulation and storage of macroscopic entanglement is its fragility under noise. We present a simple recipe for the systematic enhancement of the resistance of multipartite entanglement against any local noise with a privileged direction in the Bloch sphere. For the case of exact local dephasing along any given basis, and for all noise strengths, our prescription grants full robustness: even states whose entanglement decays exponentially with the number of parts are mapped to states whose entanglement is constant. In contrast to previous techniques resorting to complex logical-qubit encodings, such enhancement is attained simply by performing local unitary rotations before the noise acts. The scheme is therefore highly experimentally-friendly, as it brings no overhead of extra physical qubits to encode logical ones. In addition, we show that, apart from entanglement, the resilience of the states as resources for useful practical tasks such as metrology and non...

  11. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HUHui; LURong; 等

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model.On the basis of instanton technique in the spin-coherent-state path-integral representation,both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained.We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys.Rev.Lett.80(1998)169),but also have great influence on the intensity of the ground-state tunnel splitting.Those features clearly have no analogue in the ferromagnetic molecular magnets.We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets.The analytical results are complemented by exact diagonalization calculation.

  12. Determining the Macroscopic Properties of Relativistic Jets

    Science.gov (United States)

    Hardee, P. E.

    2004-08-01

    The resolved relativistic jets contain structures whose observed proper motions are typically assumed to indicate the jet flow speed. In addition to structures moving with the flow, various normal mode structures such as pinching or helical and elliptical twisting can be produced by ejection events or twisting perturbations to the jet flow. The normal mode structures associated with relativistic jets, as revealed by numerical simulation, theoretical calculation, and suggested by observation, move more slowly than the jet speed. The pattern speed is related to the jet speed by the sound speed in the jet and in the surrounding medium. In the event that normal mode structures are observed, and where proper motions of pattern and flow speed are available or can be estimated, it is possible to determine the sound speed in the jet and surrounding medium. Where spatial development of normal mode structures is observed, it is possible to make inferences as to the heating rate/macroscopic viscosity of the jet fluid. Ultimately it may prove possible to separate the microscopic energization of the synchrotron radiating particles from the macroscopic heating of the jet fluid. Here I present the relevant properties of useful normal mode structures and illustrate the use of this technique. Various aspects of the work presented here have involved collaboration with I. Agudo (Max-Planck, Bonn), M.A. Aloy (Max-Planck, Garching), J. Eilek (NM Tech), J.L. Gómez (U. Valencia), P. Hughes (U. Michigan), A. Lobanov (Max-Planck, Bonn), J.M. Martí (U. Valencia), & C. Walker (NRAO).

  13. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions.

    Science.gov (United States)

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η(coup)) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  14. Fabrication method for microscopic vapor cells for alkali atoms.

    Science.gov (United States)

    Baluktsian, T; Urban, C; Bublat, T; Giessen, H; Löw, R; Pfau, T

    2010-06-15

    A quantum network that consists of several components should ideally work on a single physical platform. Neutral alkali atoms have the potential to be very well suited for this purpose due to their electronic structure, which involves long-lived nuclear spins and very sensitive highly excited Rydberg states. In this Letter, we describe a fabrication method based on quartz glass to structure arbitrary shapes of microscopic vapor cells. We show that the usual spectroscopic properties known from macroscopic vapor cells are almost unaffected by the strong confinement.

  15. 大管径垂直管道内高压汽液混合流动的数值研究%Numerical Study of High Pressure Vapor-Liquid Flow in Large-Diameter Vertical Pipes

    Institute of Scientific and Technical Information of China (English)

    黄娜; 周云龙; 高聚

    2015-01-01

    A numerical simulation based on the volume of fluid (VOF) method was used to study vapor–liquid flow in a 190 mm vertical tube under high pressure, and the flow pattern maps of the two-phase convection flow were investigated under pressure of 5.07, 10.13 and 17.23 MPa, respectively. The results of flow under high pressure were compared with that of normal pressure. The results show that the flow pattern maps under high pressure in large-diameter vertical pipes are not consistent with the Hewitt and Roberts flow pattern maps. No wispy annular is presented under high pressure in large-diameter vertical pipes, and the bubbly zone and churn zone are enlarged. The slug zone becomes particularly small with little change happened to the annular zone. The simulation results show that the interfacial wave amplitude of the vapor-liquid churn flow decreases with the increase of pressure in large-diameter vertical pipes, and the interface stability is enhanced at the same time. The pipe central area has the highest velocity, which fluctuates at the boundary area and reduces to zero on the pipe wall. Moreover, the disorder degree of the oscillatory velocity field near the pipe wall decreases under high pressure. Mechanisms were analyzed following the simulation results dicussed.%采用流体体积模型(VOF)对高压环境下190 mm大管径垂直管内水蒸汽-水混合流动进行数值研究。数值计算得到了5.07,10.13与17.23 MPa高压下大管径垂直管内汽液流型分布图及搅混流态的相分布图和速度场分布,并与常压下的计算结果进行对比,以研究压力环境带来的影响。数值结果表明,高压环境下大管径垂直管内的流型图与Hewitt和Roberts流型图的吻合度较差。高压环境下大管径垂直管内没有出现雾状流;泡状流和搅混流的发生区域扩大;弹状流的发生区域被压缩得很小;环状流的变化最小。随着压力的增大,大管径垂直管内汽液搅混流中

  16. Modelling and simulation of the steam line, the high and low pressure turbines and the pressure regulator for the SUN-RAH nucleo electric university simulator; Modelado y simulacion de la linea de vapor, las turbinas de alta y de baja presion y el regulador de presion para el simulador universitario de nucleo electricas SUN RAH

    Energy Technology Data Exchange (ETDEWEB)

    Lopez R, A. [DEPFI, Campus Morelos, en IMTA Jiutepec, Morelos, UNAM (Mexico)]. e-mail: andyskamx@yahoo.com.mx

    2003-07-01

    In the following article the development of a simulator that allows to represent the dynamics of the following systems: steam line, nozzle, vapor separator, reheater, high pressure turbine, low pressure turbine, power generator and the pressure regulator of a nucleo electric power station. We start from the supposition that this plant will be modeled from a nuclear reactor type BWR (Boiling Water Reactor), using models of reduced order that represent the more important dynamic variables of the physical processes that happen along the steam line until the one generator. To be able to carry out the simulation in real time the Mat lab mathematical modeling software is used, as well as the specific simulation tool Simulink. It is necessary to point out that the platform on which the one is executed the simulator is the Windows operating system, to allow the intuitive use that only this operating system offers. The above-mentioned obeys to that the objective of the simulator it is to help the user to understand some of the dynamic phenomena that are present in the systems of a nuclear plant, and to provide a tool of analysis and measurement of variables to predict the desirable behavior of the same ones. The model of a pressure controller for the steam lines, the high pressure turbine and the low pressure turbine is also presented that it will be the one in charge of regulating the demand of the system according to the characteristics and critic restrictions of safety and control, assigned according to those wanted parameters of performance of this system inside the nucleo electric plant. This simulator is totally well defined and it is part of the University student nucleo electric simulator with Boiling Water Reactor (SUN-RAH), an integral project and of greater capacity. (Author)

  17. Effect of growth conditions on the Al composition and optical properties of Al x Ga 1−x N layers grown by atmospheric-pressure metal organic vapor phase epitaxy

    KAUST Repository

    Soltani, S.

    2017-02-17

    The effect of growth conditions on the Al composition and optical properties of AlxGa1-xN layers grown by atmospheric-pressure metal organic vapor phase epitaxy is investigated. The Al content of the samples is varied between 3.0% and 9.3% by changing the gas flow rate of either trimethylaluminum (TMA) or trimethylgallium (TMG) while other growth parameters are kept constant. The optical properties of the AlxGa1-xN layers are studied by photoreflectance and time-resolved photoluminescence (TR-PL) spectroscopies. A degeneration in the material quality of the samples is revealed when the Al content is increased by increasing the TMA flow rate. When the TMG flow rate is decreased with a fixed TMA flow rate, the Al content of the AlxGa1-xN layers is increased and, furthermore, an improvement in the optical properties corresponding with an increase in the PL decay time is observed. (C) 2017 Elsevier B.V. All rights reserved.

  18. Combinatorial atmospheric pressure chemical vapor deposition of graded TiO₂-VO₂ mixed-phase composites and their dual functional property as self-cleaning and photochromic window coatings.

    Science.gov (United States)

    Wilkinson, Mia; Kafizas, Andreas; Bawaked, Salem M; Obaid, Abdullah Y; Al-Thabaiti, Shaeel A; Basahel, Sulaiman N; Carmalt, Claire J; Parkin, Ivan P

    2013-06-10

    A combinatorial film with a phase gradient from V:TiO₂ (V: Ti ≥ 0.08), through a range of TiO₂-VO₂ composites, to a vanadium-rich composite (V: Ti = 1.81) was grown by combinatorial atmospheric pressure chemical vapor deposition (cAPCVD). The film was grown from the reaction of TiCl₄, VCl₄, ethyl acetate (EtAc), and H₂O at 550 °C on glass. The gradient in gas mixtures across the reactor induced compositional film growth, producing a single film with numerous phases and compositions at different positions. Seventeen unique positions distributed evenly along a central horizontal strip were investigated. The physical properties were characterized by wavelength dispersive X-ray (WDX) analysis, X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and UV-visible spectroscopy. The functional properties examined included the degree of photoinduced hydrophilicity (PIH), UVC-photocatalysis, and thermochromism. Superhydrophilic contact angles could be achieved at all positions, even within a highly VO₂-rich composite (V: Ti = 1.81). A maximum level of UVC photocatalysis was observed at a position bordering the solubility limit of V:TiO₂ (V: Ti ≈ 0.21) and fragmentation into a mixed-phase composite. Within the mixed-phase TiO₂: VO₂ composition region (V: Ti = 1.09 to 1.81) a decrease in the semiconductor-to-metal transition temperature of VO₂ from 68 to 51 °C was observed.

  19. Observability of relative phases of macroscopic quantum states

    CERN Document Server

    Pati, A K

    1998-01-01

    After a measurement, to observe the relative phases of macroscopically distinguishable states we have to ``undo'' a quantum measurement. We generalise an earlier model of Peres from two state to N-state quantum system undergoing measurement process and discuss the issue of observing relative phases of different branches. We derive an inequality which is satisfied by the relative phases of macroscopically distinguishable states and consequently any desired relative phases can not be observed in interference setups. The principle of macroscopic complementarity is invoked that might be at ease with the macroscopic world. We illustrate the idea of limit on phase observability in Stern-Gerlach measurements and the implications are discussed.

  20. Evolution and distribution of macroscopic gas channels in an overburden strata

    Institute of Scientific and Technical Information of China (English)

    Liu; Hongtao; Ma; Nianjie; Ma; Wang; Ren; Guoqiang

    2012-01-01

    The evolution of gas bearing channels in the roof,and their spatial distribution,was studied.A complete consideration of gas flow changes through the stress-strain changes in the roof near a working face is made.The theoretical abutment pressure distribution using displacement monitors and borehole visual recording instruments allow a theoretical analysis.Field test research determined the conditions for formation of macroscopic gas channels.These appear along the working face roof,normally distributed to it.These results show that the coal rock stratification becomes a macroscopic gas channel boundary if its deformation is less than the lower layer,or greater than the layer above it.At the same time the stability is greater than the distance from the roof for hanging dew conditions.The working face advances and the roof gas channels experience a cycle of development.Microscopic channels dominate the initial stage then macroscopic gas channels form,develop,and close.The evolution of the macroscopic channels depends on the ratio between the distances from the new compaction area in the goaf to the initial stress area in front of the working face.The amount of daily advance of the face also affects channel development.The experimental observations in one mining area showed that the main gas channels are located about 2 and 6.2 m above the lower surface of the roof and that they have an evolution period 7 to 11 days long.

  1. Mixed-Organic-Cation (FA)x(MA)1-xPbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process.

    Science.gov (United States)

    Chen, Jing; Xu, Jia; Xiao, Li; Zhang, Bing; Dai, Songyuan; Yao, Jianxi

    2017-01-25

    Compared to that of methylammonium lead iodide perovskite (MAPbI3), formamidinium lead iodide perovskite (FAPbI3) has a smaller energy band gap and greater potential efficiency. To prevent the transformation of α-FAPbI3 to δ-FAPbI3, preparation of (FA)x(MA)1-xPbI3 was regarded as an effective route. Usually, the planar (FA)x(MA)1-xPbI3 perovskite solar cells are fabricated by a solution process. Herein, we report a low-pressure vapor-assisted solution process (LP-VASP) for the growth of (FA)x(MA)1-xPbI3 perovskite solar cells that features improved electron transportation, uniform morphology, high power conversion efficiency (PCE), and better crystal stability. In LP-VASP, the (FA)x(MA)1-xPbI3 films were formed by the reaction between the PbI2 film with FAI and MAI vapor in a very simple vacuum oven. LP-VASP is an inexpensive way to batch-process solar cells, avoiding the repeated deposition solution process for PbI2 films, and the device had a low cost. We demonstrate that, with an increase in the MAI content, the (101) peak position of FAPbI3 shifts toward the (110) peak position of MAPbI3, the (FA)x(MA)1-xPbI3 perovskites are stable, and no decomposition or phase transition is observed after 14 days. The photovoltaic performance was effectively improved by the introduction of MA(+) with the highest efficiency being 16.48% under conditions of 40 wt % MAI. The carrier lifetime of (FA)x(MA)1-xPbI3 perovskite films is approximately three times longer than that of pure FAPbI3. Using this process, solar cells with a large area of 1.00 cm(2) were fabricated with the PCE of 8.0%.

  2. Non-equilibrium phenomena near vapor-liquid interfaces

    CERN Document Server

    Kryukov, Alexei; Puzina, Yulia

    2013-01-01

    This book presents information on the development of a non-equilibrium approach to the study of heat and mass transfer problems using vapor-liquid interfaces, and demonstrates its application to a broad range of problems. In the process, the following peculiarities become apparent: 1. At vapor condensation on the interface from gas-vapor mixture, non-condensable components can lock up the interface surface and condensation stops completely. 2. At the evolution of vapor film on the heater in superfluid helium (He-II), the boiling mass flux density from the vapor-liquid interface is effectively zero at the macroscopic scale. 3. In problems concerning the motion of He-II bridges inside capillaries filled by vapor, in the presence of axial heat flux the He-II bridge cannot move from the heater as would a traditional liquid, but in the opposite direction instead. Thus the heater attracts the superfluid helium bridge. 4. The shape of liquid-vapor interface at film boiling on the axis-symmetric heaters immersed in l...

  3. Investigation of dissipative forces near macroscopic media

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.S.

    1982-12-01

    The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed.

  4. Searching for the nanoscopic–macroscopic boundary

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, E.A. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, A.A. 5222, Medellín (Colombia); Altbir, D. [Departamento de Física, Universidad de Santiago de Chile (USACH), CEDENNA, Santiago (Chile); Mazo-Zuluaga, J. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Duque, L.F. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Física Teórica, Aplicada y Didáctica, Facultad de Ciencias Exactas y Aplicadas Instituto Tecnológico Metropolitano, Medellín (Colombia); Mejía-López, J., E-mail: jmejia@puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, CEDENNA, Santiago (Chile)

    2013-12-15

    Several studies have focused on the size-dependent properties of elements, looking for a unique definition of the nanoscopic–macroscopic boundary. By using a novel approach consisting of an energy variational method combined with a quantum Heisenberg model, here we address the size at which the ordering temperature of a magnetic nanoparticle reaches its bulk value. We consider samples with sizes in the range 1–500 nm, as well as several geometries and crystalline lattices and observe that, contrarily to what is commonly argued, the nanoscopic-microscopic boundary depends on both factors: shape and crystalline structure. This suggests that the surface-to-volume ratio is not the unique parameter that defines the behavior of a nanometric sample whenever its size increases reaching the bulk dimension. Comparisons reveal very good agreement with experimental evidence with differences less than 2%. Our results have broad implications for practical issues in measurements on systems at the nanometric scale. - Highlights: • A novel quantum-Heisenberg variational energy method is implemented. • The asymptotic behavior toward the thermodynamic limit is explored. • An important dependence of the nano-bulk boundary on the geometry is found. • And also an important dependence on the crystalline lattice. • We obtain a very good agreement with experimental evidence with differences <2%.

  5. Macroscopic superpositions and gravimetry with quantum magnetomechanics

    Science.gov (United States)

    Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason

    2016-11-01

    Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10-10 Hz-1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.

  6. Cloud Macroscopic Organization: Order Emerging from Randomness

    Science.gov (United States)

    Yuan, Tianle

    2011-01-01

    Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  7. Distributivity breaking and macroscopic quantum games

    CERN Document Server

    Grib, A A; Parfionov, G N; Starkov, K A

    2005-01-01

    Examples of games between two partners with mixed strategies, calculated by the use of the probability amplitude as some vector in Hilbert space are given. The games are macroscopic, no microscopic quantum agent is supposed. The reason for the use of the quantum formalism is in breaking of the distributivity property for the lattice of yes-no questions arising due to the special rules of games. The rules of the games suppose two parts: the preparation and measurement. In the first part due to use of the quantum logical orthocomplemented non-distributive lattice the partners freely choose the wave functions as descriptions of their strategies. The second part consists of classical games described by Boolean sublattices of the initial non-Boolean lattice with same strategies which were chosen in the first part. Examples of games for spin one half are given. New Nash equilibria are found for some cases. Heisenberg uncertainty relations without the Planck constant are written for the "spin one half game".

  8. Cloud macroscopic organization: order emerging from randomness

    Directory of Open Access Journals (Sweden)

    T. Yuan

    2011-01-01

    Full Text Available Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds and it follows a power-law distribution with exponent γ close to 2. γ is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also show clear-cloudy sky symmetry in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random simple interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. This approach is fully complementary to deterministic models and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  9. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeterminism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  10. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeter- minism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  11. Macroscopic and microscopic observations of needle insertion into gels

    NARCIS (Netherlands)

    Veen, van Youri R.J.; Jahya, Alex; Misra, Sarthak

    2012-01-01

    Needle insertion into soft tissue is one of the most common medical interventions. This study provides macroscopic and microscopic observations of needle–gel interactions. A gelatin mixture is used as a soft-tissue simulant. For the macroscopic studies, system parameters, such as insertion velocity,

  12. Vapor pressure studies of the solubilization of hydrocarbons by surfactant micelles. Final report, April 1, 1984-December 31, 1984. [Solubilization data for system benzene/sodium octylsulfate/sodium chloride/water at 15/sup 0/, 25/sup 0/, 35/sup 0/ and 45/sup 0/C

    Energy Technology Data Exchange (ETDEWEB)

    Christian, S.D.; Tucker, E.E.

    1985-04-01

    This final report describes vapor pressure studies of the solubilization of hydrocarbons and hydrocarbon derivatives by aqueous micellar solutions. An automated vapor pressure apparatus and a manual apparatus incorporating a mercury-covered sintered-glass disk inlet valve were used to obtain highly precise data for the solubilization of hydrocarbons and aliphatic alcohols into aqueous solutions of the ionic surfactants sodium octylsulfate and n-hexadecylpyridinium chloride (cetylpyridinium chloride). A mass-action model based on a modification of the Poisson distribution equations has been developed and applied to data for the system benzene/sodium octylsulfate/sodium chloride/water at 15/sup 0/, 25/sup 0/, 35/sup 0/, and 45/sup 0/C. An excellent goodness of fit is achieved with the model. Tabulated experimental results (485 sets of activity and concentration data) are included in this report. 12 references, 2 figures.

  13. Vaporization characteristics of carbon heat shields under radiative heating.

    Science.gov (United States)

    Davy, W. C.; Bar-Nun, A.

    1972-01-01

    Study of the vaporization characteristics of samples of ATJ graphite, a material that has been considered for use on a Jovian probe. These samples were subjected to radiative heating loads of approximately 2 kW/sq cm in argon atmospheres of pressures from 0.00046 to 1 atm. Surface temperatures, mass loss rates, and spatially resolved emission spectral data were recorded. These data are analyzed to determine carbon vapor pressure as a function of temperature and are compared with current models for the vapor pressure of carbon. The effects of finite vaporization (i.e., nonequilibrium) rates are considered and compared with experiment. Estimates of the heat of vaporization from an energy balance are also presented.

  14. LETTERS AND COMMENTS: Adiabatic process reversibility: microscopic and macroscopic views

    Science.gov (United States)

    Anacleto, Joaquim; Pereira, Mário G.

    2009-05-01

    The reversibility of adiabatic processes was recently addressed by two publications. In the first (Miranda 2008 Eur. J. Phys. 29 937-43), an equation was derived relating the initial and final volumes and temperatures for adiabatic expansions of an ideal gas, using a microscopic approach. In that relation the parameter r accounts for the process reversibility, ranging between 0 and 1, which corresponds to the free and reversible expansion, respectively. In the second (Anacleto and Pereira 2009 Eur. J. Phys. 30 177-83), the authors have shown that thermodynamics can effectively and efficiently be used to obtain the general law for adiabatic processes carried out by an ideal gas, including compressions, for which r \\ge 1. The present work integrates and extends the aforementioned studies, providing thus further insights into the analysis of the adiabatic process. It is shown that Miranda's work is wholly valid for compressions. In addition, it is demonstrated that the adiabatic reversibility coefficient given in terms of the piston velocity and the root mean square velocity of the gas particles is equivalent to the macroscopic description, given just by the quotient between surroundings and system pressure values.

  15. 支持向量机用于多溴联苯醚蒸汽压的QSPR研究%QSPR study of vapor pressure of PBDEs by SVM method

    Institute of Scientific and Technical Information of China (English)

    罗元锋; 黄俊; 余刚

    2009-01-01

    With MOPAC-PM3 method in the ChemOffice 8.0 software, 6 quantum chemistry parameters for 23 kinds of PBDEs were calculated. Using support vector machine (SVM) method based on polynomial kernel, radial basis kernel, sigmoid kernel, a QSPR model has been set up for vapor pressure of 23 kinds of PBDEs. For the training set, the correlation coefficient R2 of the three types of kernel function is 0. 994, 0. 996 and 0. 994, the mean square error (MSE) is 0. 0102, 0. 0081 and 0. 0095, respectively. The correla-tion coefficient R2 of Leave One Out (LOO) cross validation is 0. 992, 0. 991 and 0. 991, respectively. For the testing set, the correla-tion coefficient R2 of the three types of kernel function is 0. 994, 0. 986 and 0. 991, the MSE is 0. 0225,0. 0458 and 0. 0247, respec-tively. The results show that the SVM regression algorithm play an excellent performance on QSPR modeling for the vapor pressure of PBDEs, and the choice of kernel function of SVM model do not significantly affect performance. The overall performance of the three types of kernel functions has been compared through model fitting, prediction ability and the stability, and compared the influence of the support vector number on the prediction ability. The results show that the properties of polynomial kernel and sigmoid kernel are similar, better than radial basis kernel.%应用ChemOffice 8.0中的MOPAC-PM3算法计算得到多溴联苯醚(PBDEs)的6个量子化学参数,采用基于多项式核,径向基核及Sigmoid核的支持向量机(SVM)方法建立了23种PBDEs蒸汽压的QSPR模型.三类核函数对训练集拟合的相关系数R2分别为0.994,0.996,0.994.,均方误差MSE分别为0.0102,0.0081,0.0095;留一法交叉验证(LOO)的相关系数分别为0.992,0.991,0.991.对测试集进行同归的相关系数分别为0.994,0.986,0.991,均方误差MSE分别为0.0225,0.0458,0.0247.结果表明SVM回归算法在PBDEs蒸汽压的QSPR建模上表现出色,核函数的选择对SVM模犁性能影响不

  16. Influence of macroscopic graphite particulates on the damping properties of Zn-Al eutectoid alloy

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The paper presents in detail the effects of macroscopic graphite (Gr) particulates on the damping behavior of Zn-Al eutectoid alloy (Zn-Al). Macroscopic defects are graphite particulates with sizes of the order of a millimeter (0.5 mm and 1.0 mm). Macroscopic graphite particulate-reinforced Zn-Al eutectoid alloys were prepared by the air pressure infiltration process. The damping characterization was conducted on a multifunction internal friction apparatus (MFIFA). The internal friction (IF), as well as the relative dynamic modulus, was measured at different frequencies over the temperature range of 20 to 400℃. The damping capacity of the Zn-Al/Gr, with two different volume fractions of macroscopic graphite particulates, was compared with that of bulk Zn-Al eutectoid alloy. The damping capacity of the materials is shown to increase with increasing volume fraction of macroscopic graphite particulates. Two IF peaks were found in the IF-temperature curves. The first is a grain boundary peak, which is associated with the diffusive flux on a boundary between like phases, Al/Al. Its activation energy has been calculated to be 1.13±0.03 eV and the pre-exponential factor is 10?14 s in IF measurements. The second is a phase transition peak, which results from the transformation of Zn-Al eutectoid. In light of internal friction measurements and differential scanning calorimetry (DSC) experiments, its activation energy has been calculated to be 2.36±0.08 eV.

  17. Influence of macroscopic graphite particulates on the damping properties of Zn-Al eutectoid alloy

    Institute of Scientific and Technical Information of China (English)

    WEI JianNing; SONG ShiHua; HU KongGang; XIE WeiJun; MA MingLiang; LI GenMei

    2009-01-01

    The paper presents in detail the effects of macroscopic graphite (Gr) particulates on the damping be-havior of Zn-AI eutectoid alloy (Zn-AI). Macroscopic defects are graphite particulates with sizes of the order of a millimeter (0.5 mm and 1.0 mm). Macroscopic graphite particulate-reinforced Zn-AI eutectoid alloys were prepared by the air pressure infiltration process. The damping characterization was con-ducted on a multifunction internal friction apparatus (MFIFA). The internal friction (IF), as well as the relative dynamic modulus, was measured at different frequencies over the temperature range of 20 to 400"C. The damping capacity of the Zn-AI/Gr, with two different volume fractions of macroscopic graphite particulates, was compared with that of bulk Zn-Al eutectoid alloy. The damping capacity of the materials is shown to increase with increasing volume fraction of macroscopic graphite particulates. Two IF peaks were found in the IF-temperature curves. The first is a grain boundary peak, which is as-sociated with the diffusive flux on a boundary between like phases, Al/Al. Its activation energy has been calculated to be 1.13±0.03 eV and the pre-exponential factor is 10-14 s in IF measurements. The second is a phase transition peak, which results from the transformation of Zn-AI eutectoid. In light of internal friction measurements and differential scanning calorimetry (DSC) experiments, its activation energy has been calculated to be 2.36±0.08 eV.

  18. 含离子液体溴化1-丙基-3-甲基咪唑的二元和三元体系的蒸气压测定%Determination of Vapor Pressures for Binary and Ternary Mixtures Containing Ionic Liquid 1-propyl-3-methylimidazolium Bromide

    Institute of Scientific and Technical Information of China (English)

    Zakariya R.Abusen; 赵瑾; 李春喜; 王子镐

    2005-01-01

    Vapor pressure values of binary systems water + ethanol, water + ionic liquid 1-propyl-3-methylimidazolium bromide ([PMIM] [Br]), ethanol + [PMIM][Br] and ternary system water + ethanol + [PMIM] [Br]at different temperatures were measured by using a modified boiling point method in various concentrations of (16.66%, 33.7%), (17.4%, 33.9%) and (16.5%, 32%) mass percent of ionic liquid, respectively. The experimental vapor pressures of solvent were well correlated by the Antoine-type equation, and the overall average absolute deviation (AAD) was found to be 0.39%. The experimental results for mixtures containing ionic liquid indicate that the vapor pressure of the solvents can be decreased noticeably to different extent due to the affinity difference between ionic liquid and solvent, which is similar to the salt effect of common inorganic salts. As a result, ionic liquid may find industrial applications in extractive distillations for the system with a low separation factor or even for an azeotropic mixture.

  19. Determination of octanol-air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas-particle partitioning in an urban atmosphere

    Science.gov (United States)

    Odabasi, Mustafa; Cetin, Eylem; Sofuoglu, Aysun

    Octanol-air partition coefficients ( KOA) for 14 polycyclic aromatic hydrocarbons (PAHs) were determined as a function of temperature using the gas chromatographic retention time method. log KOA values at 25° ranged over six orders of magnitude, between 6.34 (acenaphthylene) and 12.59 (dibenz[ a,h]anthracene). The determined KOA values were within factor of 0.7 (dibenz[ a,h]anthracene) to 15.1 (benz[ a]anthracene) of values calculated as the ratio of octanol-water partition coefficient to dimensionless Henry's law constant. Supercooled liquid vapor pressures ( PL) of 13 PAHs were also determined using the gas chromatographic retention time technique. Activity coefficients in octanol calculated using KOA and PL ranged between 3.2 and 6.2 indicating near-ideal solution behavior. Atmospheric concentrations measured in this study in Izmir, Turkey were used to investigate the partitioning of PAHs between particle and gas-phases. Experimental gas-particle partition coefficients ( Kp) were compared to the predictions of KOA absorption and KSA (soot-air partition coefficient) models. Octanol-based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. Ratios of measured/modeled partition coefficients ranged between 1.1 and 15.5 (4.5±6.0, average±SD) for KOA model. KSA model predictions were relatively better and measured to modeled ratios ranged between 0.6 and 5.6 (2.3±2.7, average±SD).

  20. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11,000 cm(2)/V·s.

    Science.gov (United States)

    Smith, Casey; Qaisi, Ramy; Liu, Zhihong; Yu, Qingkai; Hussain, Muhammad Mustafa

    2013-07-23

    Utilization of graphene may help realize innovative low-power replacements for III-V materials based high electron mobility transistors while extending operational frequencies closer to the THz regime for superior wireless communications, imaging, and other novel applications. Device architectures explored to date suffer a fundamental performance roadblock due to lack of compatible deposition techniques for nanometer-scale dielectrics required to efficiently modulate graphene transconductance (gm) while maintaining low gate capacitance-voltage product (CgsVgs). Here we show integration of a scaled (10 nm) high-κ gate dielectric aluminum oxide (Al2O3) with an atmospheric pressure chemical vapor deposition (APCVD)-derived graphene channel composed of multiple 0.25 μm stripes to repeatedly realize room-temperature mobility of 11,000 cm(2)/V·s or higher. This high performance is attributed to the APCVD graphene growth quality, excellent interfacial properties of the gate dielectric, conductivity enhancement in the graphene stripes due to low tox/Wgraphene ratio, and scaled high-κ dielectric gate modulation of carrier density allowing full actuation of the device with only ±1 V applied bias. The superior drive current and conductance at Vdd = 1 V compared to other top-gated devices requiring undesirable seed (such as aluminum and poly vinyl alcohol)-assisted dielectric deposition, bottom gate devices requiring excessive gate voltage for actuation, or monolithic (nonstriped) channels suggest that this facile transistor structure provides critical insight toward future device design and process integration to maximize CVD-based graphene transistor performance.

  1. Low-voltage back-gated atmospheric pressure chemical vapor deposition based graphene-striped channel transistor with high-κ dielectric showing room-temperature mobility > 11 000 cm2/V·s

    KAUST Repository

    Smith, Casey

    2013-07-23

    Utilization of graphene may help realize innovative low-power replacements for III-V materials based high electron mobility transistors while extending operational frequencies closer to the THz regime for superior wireless communications, imaging, and other novel applications. Device architectures explored to date suffer a fundamental performance roadblock due to lack of compatible deposition techniques for nanometer-scale dielectrics required to efficiently modulate graphene transconductance (gm) while maintaining low gate capacitance-voltage product (CgsVgs). Here we show integration of a scaled (10 nm) high-κ gate dielectric aluminum oxide (Al2O3) with an atmospheric pressure chemical vapor deposition (APCVD)-derived graphene channel composed of multiple 0.25 μm stripes to repeatedly realize room-temperature mobility of 11 000 cm 2/V·s or higher. This high performance is attributed to the APCVD graphene growth quality, excellent interfacial properties of the gate dielectric, conductivity enhancement in the graphene stripes due to low t ox/Wgraphene ratio, and scaled high-κ dielectric gate modulation of carrier density allowing full actuation of the device with only ±1 V applied bias. The superior drive current and conductance at Vdd = 1 V compared to other top-gated devices requiring undesirable seed (such as aluminum and poly vinyl alcohol)-assisted dielectric deposition, bottom gate devices requiring excessive gate voltage for actuation, or monolithic (nonstriped) channels suggest that this facile transistor structure provides critical insight toward future device design and process integration to maximize CVD-based graphene transistor performance. © 2013 American Chemical Society.

  2. Heat-Exchange Fluids for Sulfuric Acid Vaporizers

    Science.gov (United States)

    Lawson, D. D.; Petersen, G. R.

    1982-01-01

    Some fluorine-substituted organic materials meet criteria for heat-exchange fluids in contact with sulfuric acid. Most promising of these are perfluoropropylene oxide polymers with degree of polymerization (DP) between 10 and 50. It is desirable to have DP in high range because vapor pressure of material decreases as DP increases, and high-DP liquids have lower loss due to vaporization.

  3. The experimental and numerical investigation of a grooved vapor chamber

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ming [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China); Liu Zhongliang [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)], E-mail: liuzhl@bjut.edu.cn; Ma Guoyuan [Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education and Key Laboratory of Heat Transfer and Energy Conversion, Beijing Education Commission, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100022 (China)

    2009-02-15

    An effective thermal spreader can achieve more uniform heat flux distribution and thus enhance heat dissipation of heat sinks. Vapor chamber is one of highly effective thermal spreaders. In this paper, a novel grooved vapor chamber was designed. The grooved structure of the vapor chamber can improve its axial and radial heat transfer and also can form the capillary loop between condensation and evaporation surfaces. The effect of heat flux, filling amount and gravity to the performance of this vapor chamber is studied by experiment. From experiment, we also obtained the best filling amount of this grooved vapor chamber. By comparing the thermal resistance of a solid copper plate with that of the vapor chamber, it is suggested that the critical heat flux condition should be maintained to use vapor chamber as efficient thermal spreaders for electronics cooling. A two-dimensional heat and mass transfer model for the grooved vapor chamber is developed. The numerical simulation results show the thickness distribution of liquid film in the grooves is not uniform. The temperature and velocity field in vapor chamber are obtained. The thickness of the liquid film in groove is mainly influenced by pressure of vapor and liquid beside liquid-vapor interface. The thin liquid film in heat source region can enhance the performance of vapor chamber, but if the starting point of liquid film is backward beyond the heat source region, the vapor chamber will dry out easily. The optimal filling ratio should maintain steady thin liquid film in heat source region of vapor chamber. The vapor condenses on whole condensation surface, so that the condensation surface achieves great uniform temperature distribution. By comparing the experimental results with numerical simulation results, the reliability of the numerical model can be verified.

  4. Modelling vaporous cavitation on fluid transients

    CERN Document Server

    Shu, Jian-Jun

    2014-01-01

    A comprehensive study of the problem of modelling vaporous cavitation in transmission lines is presented. The two-phase homogeneous equilibrium vaporous cavitation model which has been developed is compared with the conventional column separation model. The latter predicts unrealistically high pressure spikes because of a conflict arising from the prediction of negative cavity sizes if the pressure is not permitted to fall below the vapour pressure, or the prediction of negative absolute pressures if the cavity size remains positive. This is verified by a comparison of predictions with previously published experimental results on upstream, midstream and downstream cavitation. The new model has been extended to include frequency-dependent friction. The characteristics predicted by the frequency-dependent friction model show close correspondence with experimental data.

  5. Solvent-vapor-assisted imprint lithography

    NARCIS (Netherlands)

    Voicu, Nicoleta E.; Ludwigs, Sabine; Crossland, Edward J. W.; Andrew, Piers; Steiner, Ullrich

    2007-01-01

    Sub-micrometer features are replicated into high-molecular-weight polymer resists by using solvent-assisted nanoimprint lithography (see figure). By swelling the polymer in a controlled solvent-vapor atmosphere, millibar pressures and ambient temperatures are sufficient to achieve high-fidelity

  6. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...... space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 +/- 0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any...

  7. A heated vapor cell unit for DAVLL in atomic rubidium

    OpenAIRE

    McCarron, Daniel J.; Hughes, Ifan G.; Tierney, Patrick; Cornish, Simon L

    2007-01-01

    The design and performance of a compact heated vapor cell unit for realizing a dichroic atomic vapor laser lock (DAVLL) for the D2 transitions in atomic rubidium is described. A 5 cm-long vapor cell is placed in a double-solenoid arrangement to produce the required magnetic field; the heat from the solenoid is used to increase the vapor pressure and correspondingly the DAVLL signal. We have characterized experimentally the dependence of important features of the DAVLL signal on magnetic field...

  8. Macroscopic manipulation of high-order-harmonic generation through bound-state coherent control.

    Science.gov (United States)

    Hadas, Itai; Bahabad, Alon

    2014-12-19

    We propose a paradigm for macroscopic control of high-order harmonic generation by modulating the bound-state population of the medium atoms. A unique result of this scheme is that apart from regular spatial quasi-phase-matching (QPM), also purely temporal QPM of the emitted radiation can be established. Our simulations demonstrate temporal QPM by inducing homogenous Rabi oscillations in the medium and also spatial QPM by creating a grating of population inversion using the process of rapid adiabatic passage. In the simulations a scaled version of high-order harmonic generation is used: a far off-resonance 2.6  μm source generates UV-visible high-order harmonics from alkali-metal-atom vapor, while a resonant near IR source is used to coherently control the medium.

  9. Thermodynamics and Kinetics of Silicate Vaporization

    Science.gov (United States)

    Jacobson, Nathan S.; Costa, Gustavo C. C.

    2015-01-01

    Silicates are a common class of materials that are often exposed to high temperatures. The behavior of these materials needs to be understood for applications as high temperature coatings in material science as well as the constituents of lava for geological considerations. The vaporization behavior of these materials is an important aspect of their high temperature behavior and it also provides fundamental thermodynamic data. The application of Knudsen effusion mass spectrometry (KEMS) to silicates is discussed. There are several special considerations for silicates. The first is selection of an appropriate cell material, which is either nearly inert or has well-understood interactions with the silicate. The second consideration is proper measurement of the low vapor pressures. This can be circumvented by using a reducing agent to boost the vapor pressure without changing the solid composition or by working at very high temperatures. The third consideration deals with kinetic barriers to vaporization. The measurement of these barriers, as encompassed in a vaporization coefficient, is discussed. Current measured data of rare earth silicates for high temperature coating applications are discussed. In addition, data on magnesium-iron-silicates (olivine) are presented and discussed.

  10. Viscous Coalescence of Two Drops in a Saturated Vapor Phase

    Science.gov (United States)

    Baroudi, Lina; Nagel, Sidney R.; Morris, Jeffrey F.; Lee, Taehun

    2016-11-01

    When two liquid drops come into contact, a microscopic liquid bridge forms between them and rapidly expands until the two drops merge into a single bigger drop. Numerous studies have been devoted to the investigation of the coalescence singularity in the case where the drops coalesce in a medium of negligible vapor pressure such as vacuum or air. However, coalescence of liquid drops may also take place in a medium of relatively high vapor pressure (condensable vapor phase), where the effect of the surrounding vapor phase should not be neglected, such as the merging of drops in clouds. In this study, we carry out Lattice Boltzmann numerical simulations to investigate the dynamics of viscous coalescence in a saturated vapor phase. Attention is paid to the effect of the vapor phase on the formation and growth dynamics of the liquid bridge in the viscous regime. We observe that the onset of the coalescence occurs earlier and the expansion of the bridge initially proceeds faster when the coalescence takes place in a saturated vapor compared to the coalescence in a non-condensable gas. The initially faster evolution of the coalescence process in the saturated vapor is caused by the vapor transport through condensation during the early stages of the coalescence.

  11. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    Science.gov (United States)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  12. Accumulation of small protein molecules in a macroscopic complex coacervate

    NARCIS (Netherlands)

    Lindhoud, S.; Claessens, M.M.A.E.

    2016-01-01

    To obtain insight into the accumulation of proteins into macroscopic complex coacervate phases, the lysozyme concentration in complex coacervates containing the cationic polyelectrolyte poly-(N,N dimethylaminoethyl methacrylate) and the anionic polyelectrolyte polyacrylic acid was investigated as a

  13. Macroscopic cumulative fatigue damage of material under nonsymmetrical cycle

    Institute of Scientific and Technical Information of China (English)

    盖秉政

    2002-01-01

    Hashin's macroscopic theory of fatigue damage is further discussed and a new method has been proposed for prediction of cumulative fatigue damage of material and its lifetime under nonsymmetrical cyclic loading.

  14. Large Deviations for the Macroscopic Motion of an Interface

    Science.gov (United States)

    Birmpa, P.; Dirr, N.; Tsagkarogiannis, D.

    2017-03-01

    We study the most probable way an interface moves on a macroscopic scale from an initial to a final position within a fixed time in the context of large deviations for a stochastic microscopic lattice system of Ising spins with Kac interaction evolving in time according to Glauber (non-conservative) dynamics. Such interfaces separate two stable phases of a ferromagnetic system and in the macroscopic scale are represented by sharp transitions. We derive quantitative estimates for the upper and the lower bound of the cost functional that penalizes all possible deviations and obtain explicit error terms which are valid also in the macroscopic scale. Furthermore, using the result of a companion paper about the minimizers of this cost functional for the macroscopic motion of the interface in a fixed time, we prove that the probability of such events can concentrate on nucleations should the transition happen fast enough.

  15. Quantum fluctuations, gauge freedom and mesoscopic/macroscopic stability

    Energy Technology Data Exchange (ETDEWEB)

    Del Giudice, E [Istituto Nazionale di Fisica Nucleare, Via Celoria 16, I-20133 Milan (Italy); Vitiello, G [Dipartimento di Matematica e Informatica, Universita di Salerno and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Salerno, 84100 Salerno (Italy)

    2007-11-15

    We study how the mesoscopic/macroscopic stability of coherent extended domains is generated out of the phase locking between gauge field and matter field. The role of the radiative gauge field in sustaining the coherent regime is discussed.

  16. New Tests of Macroscopic Local Realism using Continuous Variable Measurements

    CERN Document Server

    Reid, M D

    2001-01-01

    We show that quantum mechanics predicts an Einstein-Podolsky-Rosen paradox (EPR), and also a contradiction with local hidden variable theories, for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new, very strong premise, called macroscopic local realism. We link this premise to the Schrodinger-cat paradox. Our proposed experiments ensure all fields incident on each measurement apparatus are macroscopic. We show that an alternative measurement scheme corresponds to balanced homodyne detection of quadrature phase amplitudes. The implication is that where either EPR correlations or failure of local realism is predicted for continuous variable (quadrature phase amplitude) measurements, one can perform a modified experiment which would lead to conclusions about the much stronger premise of macroscopic local realism.

  17. Alumina Volatility in Water Vapor at Elevated Temperatures: Application to Combustion Environments

    Science.gov (United States)

    Opila, Elizabeth J.; Myers, Dwight L.

    2003-01-01

    The volatility of alumina in high temperature water vapor was determined by measuring weight loss of sapphire coupons at temperatures between 1250 and 1500 C, water vapor partial pressures between 0.15 and 0.68 atm in oxygen, at one atmosphere total pressure, and a gas velocity of 4.4 centimeters per second. The variation of the volatility with water vapor partial pressure was consistent with Al(OH)3(g) formation. The enthalpy of reaction to form Al(OH)3(g) from alumina and water vapor was found to be 210 plus or minus 20 kJ/mol. Surface rearrangement of ground sapphire surfaces increased with water vapor partial pressure, temperature and volatility rate. Recession rates of alumina due to volatility were determined as a function of water vapor partial pressure and temperature to evaluate limits for use of alumina in long term applications in combustion environments.

  18. Numerical simulation of superheated vapor bubble rising in stagnant liquid

    Science.gov (United States)

    Samkhaniani, N.; Ansari, M. R.

    2017-09-01

    In present study, the rising of superheated vapor bubble in saturated liquid is simulated using volume of fluid method in OpenFOAM cfd package. The surface tension between vapor-liquid phases is considered using continuous surface force method. In order to reduce spurious current near interface, Lafaurie smoothing filter is applied to improve curvature calculation. Phase change is considered using Tanasawa mass transfer model. The variation of saturation temperature in vapor bubble with local pressure is considered with simplified Clausius-Clapeyron relation. The couple velocity-pressure equation is solved using PISO algorithm. The numerical model is validated with: (1) isothermal bubble rising and (2) one-dimensional horizontal film condensation. Then, the shape and life time history of single superheated vapor bubble are investigated. The present numerical study shows vapor bubble in saturated liquid undergoes boiling and condensation. It indicates bubble life time is nearly linear proportional with bubble size and superheat temperature.

  19. Characterization of Bioeffects on Endothelial Cells under Acoustic Droplet Vaporization.

    Science.gov (United States)

    Seda, Robinson; Li, David S; Fowlkes, J Brian; Bull, Joseph L

    2015-12-01

    Gas embolotherapy is achieved by locally vaporizing microdroplets through acoustic droplet vaporization, which results in bubbles that are large enough to occlude blood flow directed to tumors. Endothelial cells, lining blood vessels, can be affected by these vaporization events, resulting in cell injury and cell death. An idealized monolayer of endothelial cells was subjected to acoustic droplet vaporization using a 3.5-MHz transducer and dodecafluoropentane droplets. Treatments included insonation pressures that varied from 2 to 8 MPa (rarefactional) and pulse lengths that varied from 4 to 16 input cycles. The bubble cloud generated was directly dependent on pressure, but not on pulse length. Cellular damage increased with increasing bubble cloud size, but was limited to the bubble cloud area. These results suggest that vaporization near the endothelium may impact the vessel wall, an effect that could be either deleterious or beneficial depending on the intended overall therapeutic application.

  20. Shock wave of vapor-liquid two-phase flow

    Institute of Scientific and Technical Information of China (English)

    Liangju ZHAO; Fei WANG; Hong GAO; Jingwen TANG; Yuexiang YUAN

    2008-01-01

    The shock wave of vapor-liquid two-phase flow in a pressure-gain steam injector is studied by build-ing a mathematic model and making calculations. The results show that after the shock, the vapor is nearly com-pletely condensed. The upstream Mach number and the volume ratio of vapor have a great effect on the shock. The pressure and Mach number of two-phase shock con-form to the shock of ideal gas. The analysis of available energy shows that the shock is an irreversible process with entropy increase.

  1. Guidance on Soil Vapor Extraction Optimization

    Science.gov (United States)

    2001-06-01

    343 Table LNAPL DNAPL Source: after USEPA 1991 draw\\$vehandbk3.cdr aee p1 4/5/01 M~ssive Clay ) . ’C. ~AA_··’’’· --V,V~ . >:’ .’ ’·Sand...for removing orgamc contaminants with a vapor pressure greater than 0.5 mm mercury (Hg) at 200 Celsius (C). This includes common chlorinated solvents...liquids ( DNAPLs ), solvent vapors, or dissolved contaminants. • Depth to groundwater, seasonal variations, recharge and discharge information including

  2. Oxidation/vaporization of silicide coated columbium base alloys

    Science.gov (United States)

    Kohl, F. J.; Stearns, C. A.

    1971-01-01

    Mass spectrometric and target collection experiments were made at 1600 K to elucidate the mode of oxidative vaporization of two columbium alloys, fused-slurry-coated with a complex silicide former (Si-20Cr-Fe). At oxygen pressures up to 0.0005 torr the major vapor component detected by mass spectrometry for oxidized samples was gaseous silicon monoxide. Analysis of condensates collected at oxygen pressures of 0.1, 1.0 and 10 torr revealed that chromium-, silicon-, iron- and tungsten- containing species were the major products of vaporization. Equilibrium thermochemical diagrams were constructed for the metal-oxygen system corresponding to each constituent metal in both the coating and base alloy. The major vaporizing species are expected to be the gaseous oxides of chromium, silicon, iron and tungsten. Plots of vapor phase composition and maximum vaporization rate versus oxygen pressure were calculated for each coating constituent. The major contribution to weight loss by vaporization at oxygen pressures above 1 torr was shown to be the chromium-containing species.

  3. Condensers for measuring steam quality at the inlet of back-pressure units of the Los Azufres, Mich., geothermal field; Condensadores para medir la calidad del vapor a la entrada de las turbinas a contrapresion del campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Medina, Fernando; Gonzalez Gonzalez, Rubi; Reyes Delgado, Lisette; Medina Martinez, Moises [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia de Los Azufres (Mexico)]. E-mail: fernando.sandoval@cfe.gob.mx

    2007-01-15

    Electrical conductivity is an indirect measurement of the quality of the steam supplied to power units. In the Los Azufres, Mich., geothermal field, the electrical conductivity once was measured in a discrete and periodic way by condensing steam samples through a water-cooled condenser. In an attempt to continuously measure conductivity, conductivity meters were installed where the units discharged, but the values proved unstable and unrepresentative. Thereafter, taking into account that steam quality should be measured at the steam delivery-reception point, equipment was designed and tested for continuously condensing steam. Finally it was possible to get an air-cooled condenser able to condense 500 milliliters per minute, enough to collect a representative flow of the steam and to measure its electrical conductivity. The equipment was installed in all seven back-pressure units operating in the field and to date has been operating in an optimal manner. [Spanish] La conductividad electrica es una medida indirecta de la calidad del vapor que se suministra a las unidades turbogeneradoras. En el campo geotermico de Los Azufres, Mich., la conductividad electrica se media en forma puntual y periodica, condensando muestras de vapor por medio de un serpentin enfriado con agua. Despues, ante la necesidad de medirla en forma continua, se instalaron conductivimetros en las descargas de las unidades, pero los valores resultaron muy inestables y poco representativos. Considerando, ademas, que la calidad del vapor debe medirse en el punto de entrega-recepcion, se disenaron y probaron equipos para condensar vapor de manera continua, lograndose construir un condensador enfriado por aire que logra condensar un flujo de 500 mililitros por minuto, cantidad suficiente para tener un flujo representativo del vapor que alimenta a las turbinas y medirle su conductividad electrica. Se instalaron estos equipos en las siete unidades turbogeneradoras a contrapresion que funcionan en el campo

  4. Steam regulation for 5 MW back-pressure units when a failure occurs in the Los Humeros, Pue., field, Mexico; Regulacion del vapor en caso de falla a unidades a contrapresion de 5 MW en el campo de Los Humeros, Pue., Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rosales Lopez, Cesar [Comision Federal de Electricidad, Puebla (Mexico)]. E-mail: cesar.rosales@cfe.gob.mx

    2006-07-15

    Four out of the seven back-pressure power units of 5 MW operating in the Los Humeros geothermal field, State of Puebla, Mexico, are fed by one steam pipe gathering the steam produced by nine wells. When a failure occurred in any of the units and the excedence valve had to be open to deviate the steam, a decrease in the steam flow for the remaining units was noted, along with lower electrical generation. The cause for that is analyzed and explained in this paper by comparing the interconnected steam supply system to an electric circuit. A way to maintain a uniform and continuous supply of steam in the Los Humeros field has been found. It was implemented several months ago and the problem has not reoccurred. [Spanish] Cuatro de las siete unidades de 5 MW a contrapresion que operan en el campo geotermico de Los Humeros, Puebla, son alimentadas por un solo vaporducto que reune el vapor de nueve pozos productores. Cuando ocurria una falla en alguna de estas unidades y se abria por completo la valvula de excedencia para desviar el vapor, se observaba una reduccion en el flujo de vapor que llegaba a las otras tres unidades, lo que a su vez ocasionaba que la generacion de electricidad se redujera notoriamente. En este trabajo se analiza y explica la causa de ello, mediante la comparacion de este sistema interconectado de suministro de vapor con un circuito electrico, y se explica la solucion que se encontro e implemento en el campo de Los Humeros para regular el suministro continuo y uniforme de vapor, con resultados satisfactorios a varios meses de su implementacion en las cuatro unidades interconectadas.

  5. AMTEC vapor-vapor series connected cells

    Science.gov (United States)

    Underwood, Mark L.; Williams, Roger M.; Ryan, Margaret A.; Nakamura, Barbara J.; Oconnor, Dennis E.

    1995-08-01

    An alkali metal thermoelectric converter (AMTEC) having a plurality of cells structurally connected in series to form a septum dividing a plenum into two chambers, and electrically connected in series, is provided with porous metal anodes and porous metal cathodes in the cells. The cells may be planar or annular, and in either case a metal alkali vapor at a high temperature is provided to the plenum through one chamber on one side of the wall and returned to a vapor boiler after condensation at a chamber on the other side of the wall in the plenum. If the cells are annular, a heating core may be placed along the axis of the stacked cells. This arrangement of series-connected cells allows efficient generation of power at high voltage and low current.

  6. Study on the effect of subcooling on vapor film collapse on high temperature particle surface

    Energy Technology Data Exchange (ETDEWEB)

    Abe, Yutaka; Tochio, Daisuke; Yanagida, Hiroshi [Department of Mechanical Systems Engineering, Yamagata Univ., Yonezawa, Yamagata (Japan)

    2000-11-01

    Thermal detonation model is proposed to describe vapor explosion. According to this model, vapor film on pre-mixed high temperature droplet surface is needed to be collapsed for the trigger of the vapor explosion. It is pointed out that the vapor film collapse behavior is significantly affected by the subcooling of low temperature liquid. However, the effect of subcooling on micro-mechanism of vapor film collapse behavior is not experimentally well identified. The objective of the present research is to experimentally investigate the effect of subcooling on micro-mechanism of film boiling collapse behavior. As the results, it is experimentally clarified that the vapor film collapse behavior in low subcooling condition is qualitatively different from the vapor film collapse behavior in high subcooling condition. In case of vapor film collapse by pressure pulse, homogeneous vapor generation occurred all over the surface of steel particle in low subcooling condition. On the other hand, heterogeneous vapor generation was observed for higher subcooling condition. In case of vapor film collapse spontaneously, fluctuation of the gas-liquid interface after quenching propagated from bottom to top of the steel particle heterogeneously in low subcooling condition. On the other hand, simultaneous vapor generation occurred for higher subcooling condition. And the time transient of pressure, particle surface temperature, water temperature and visual information were simultaneously measured in the vapor film collapse experiment by external pressure pulse. Film thickness was estimated by visual data processing technique with the pictures taken by the high-speed video camera. Temperature and heat flux at the vapor-liquid interface were estimated by solving the heat condition equation with the measured pressure, liquid temperature and vapor film thickness as boundary conditions. Movement of the vapor-liquid interface were estimated with the PIV technique with the visual observation

  7. Gasoline Vapor Recovery

    Science.gov (United States)

    1979-01-01

    Gasoline is volatile and some of it evaporates during storage, giving off hydrocarbon vapor. Formerly, the vapor was vented into the atmosphere but anti-pollution regulations have precluded that practice in many localities, so oil companies and storage terminals are installing systems to recover hydrocarbon vapor. Recovery provides an energy conservation bonus in that most of the vapor can be reconverted to gasoline. Two such recovery systems are shown in the accompanying photographs (mid-photo at right and in the foreground below). They are actually two models of the same system, although.configured differently because they are customized to users' needs. They were developed and are being manufactured by Edwards Engineering Corporation, Pompton Plains, New Jersey. NASA technological information proved useful in development of the equipment.

  8. Vapor Control Layer Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-09-08

    This information sheet describes the level of vapor control required on the interior side of framed walls with typical fibrous cavity insulation (fibreglass, rockwool, or cellulose, based on DOE climate zone of construction.

  9. Electromagnetically induced transparency and quadripartite macroscopic entanglement generated in a ring cavity

    Institute of Scientific and Technical Information of China (English)

    Ma Yong-Hong; Zhou Ling

    2013-01-01

    We propose a feasible scheme to generate electromagnetically induced transparency (EIT) and quadripartite macroscopic entanglement in an optomechanical system with one fixed mirror and three movable perfectly reflecting mirrors.We explore the EIT phenomena in this optomechanical system.Results show the appearance of EIT dips in the output field.Moreover,we demonstrate how steady-state quadripartite entanglement can be generated via radiation pressure.We also quantify the bipartite entanglement in each field-mirror subsystem and in the mirror-mirror subsystem.Findings show that a high intensity of entanglement between two subsystems can be achieved.

  10. Extended Macroscopic Study of Dilute Gas Flow within a Microcavity

    Directory of Open Access Journals (Sweden)

    Mohamed Hssikou

    2016-01-01

    Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.

  11. The quantum interaction of macroscopic objects and gravitons

    Science.gov (United States)

    Piran, Tsvi

    2016-09-01

    Copious production of gravitational radiation requires a compact source that moves relativistically. Such sources are rare and are found only in extreme cases such as the formation of a black hole in either via a gravitational collapse or via a merger. Noncompact, nonrelativistic objects emit gravitational radiation, however, this emission is extremely weak due to very large value of the Planck energy. The quantum nature of gravitons, namely the fact that a single graviton carries energy of order ℏω implies that macroscopic objects whose kinetic energy is less than the Planck energy emit gravitons quantum mechanically, emitting a single graviton at a time. This is a unique situation in which a macroscopic object behaves quantum mechanically. While it is impossible to check experimentally this quantum gravitational effect, it might be possible to carry out analogous electromagnetic experiments that will shed light on this macroscopic quantum mechanical behavior.

  12. Geometric aspects of Schnakenberg's network theory of macroscopic nonequilibrium observables

    Science.gov (United States)

    Polettini, M.

    2011-03-01

    Schnakenberg's network theory deals with macroscopic thermodynamical observables (forces, currents and entropy production) associated to the steady states of diffusions on generic graphs. Using results from graph theory and from the theory of discrete differential forms we recast Schnakenberg's treatment in the form of a simple discrete gauge theory, which allows to interpret macroscopic forces as the Wilson loops of a real connection. We discuss the geometric properties of transient states, showing that heat fluxes allow for a notion of duality of macroscopic observables which interchanges the role of the environment and that of the system. We discuss possible generalizations to less trivial gauge groups and the relevance for nonequilibrium fluctuation theorems. Based on work in collaboration with professor A. Maritan, University of Padua, to be published.

  13. Broadband Macroscopic Cortical Oscillations Emerge from Intrinsic Neuronal Response Failures

    Directory of Open Access Journals (Sweden)

    Amir eGoldental

    2015-10-01

    Full Text Available Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which was extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism - the intrinsic stochastic neuronal response failures. These neuronal response failures, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives.

  14. Reconciling power laws in microscopic and macroscopic neural recordings

    CERN Document Server

    Pettersen, Klas H; Tetzlaff, Tom; Einevoll, Gaute T

    2013-01-01

    Power laws, characterized by quantities following 1/x^\\alpha{} distributions, are commonly reported when observing nature or society, and the question of their origin has for a long time intrigued physicists. Power laws have also been observed in neural recordings, both at the macroscopic and microscopic levels: at the macroscopic level, the power spectral density (PSD) of the electroencephalogram (EEG) has been seen to follow 1/f^\\alpha{} distributions; at the microscopic level similar power laws have been observed in single-neuron recordings of the neuronal soma potential and soma current, yet with different values of the power-law exponent \\alpha. In this theoretical study we find that these observed macroscopic and microscopic power laws may, despite the widely different spatial scales and different exponents, have the same source. By a combination of simulation on a biophysical detailed, pyramidal neuron model and analytical investigations of a simplified ball and stick neuron, we find that the transfer ...

  15. Microscopic and macroscopic infarct complicating pediatric epilepsy surgery.

    Science.gov (United States)

    Rubinger, Luc; Hazrati, Lili-Naz; Ahmed, Raheel; Rutka, James; Snead, Carter; Widjaja, Elysa

    2017-03-01

    There is some suggestion that microscopic infarct could be associated with invasive monitoring, but it is unclear if the microscopic infarct is also visible on imaging and associated with neurologic deficits. The aims of this study were to assess the rates of microscopic and macroscopic infarct and other major complications of pediatric epilepsy surgery, and to determine if these complications were higher following invasive monitoring. We reviewed the epilepsy surgery data from a tertiary pediatric center, and collected data on microscopic infarct on histology and macroscopic infarct on postoperative computed tomography (CT) or magnetic resonance imaging (MRI) done one day after surgery and major complications. Three hundred fifty-two patients underwent surgical resection and there was one death. Forty-two percent had invasive monitoring. Thirty patients (9%) had microscopic infarct. Univariable analyses showed that microscopic infarct was higher among patients with invasive monitoring relative to no invasive monitoring (20% vs. 0.5%, respectively, p microscopic infarct had transient right hemiparesis, and two with both macroscopic and microscopic infarct had unexpected persistent neurologic deficits. Thirty-two major complications (9.1%) were reported, with no difference in major complications between invasive monitoring and no invasive monitoring (10% vs. 7%, p = 0.446). In the multivariable analysis, invasive monitoring increased the odds of microscopic infarct (odds ratio [OR] 15.87, p = 0.009), but not macroscopic infarct (OR 2.6, p = 0.173) or major complications (OR 1.4, p = 0.500), after adjusting for age at surgery, sex, age at seizure onset, operative type, and operative location. Microscopic infarct was associated with invasive monitoring, and none of the patients had permanent neurologic deficits. Macroscopic infarct was not associated with invasive monitoring, and two patients with macroscopic infarct had persistent neurologic deficits. Wiley

  16. Approximating macroscopic observables in quantum spin systems with commuting matrices

    CERN Document Server

    Ogata, Yoshiko

    2011-01-01

    Macroscopic observables in a quantum spin system are given by sequences of spatial means of local elements $\\frac{1}{2n+1}\\sum_{j=-n}^n\\gamma_j(A_{i}), \\; n\\in{\\mathbb N},\\; i=1,...,m$ in a UHF algebra. One of their properties is that they commute asymptotically, as $n$ goes to infinity. It is not true that any given set of asymptotically commuting matrices can be approximated by commuting ones in the norm topology. In this paper, we show that for macroscopic observables, this is true.

  17. On the notion of a macroscopic quantum system

    CERN Document Server

    Khrenikov, A Yu

    2004-01-01

    We analyse the notion of macroscopic quantum system from the point of view of the statistical structure of quantum theory. We come to conclusion that the presence of interference of probabilities should be used the main characteristic of quantumness (in the opposition to N. Bohr who permanently emphasized the crucial role of quantum action). In the light of recent experiments with statistical ensembles of people who produced interference of probabilities for special pairs of questions (which can be considered as measurements on people) human being should be considered as a macroscopic quantum system. There is also discussed relation with experiments of A. Zeilinger on interference of probabilities for macromoleculas.

  18. Stimuli-deformable graphene materials: from nanosheet to macroscopic assembly

    Directory of Open Access Journals (Sweden)

    Fei Zhao

    2016-04-01

    Full Text Available Stimulus-induced deformation (SID of graphene-based materials has triggered rapidly increasing research interest due to the spontaneous response to external stimulations, which enables precise configurational regulation of single graphene nanosheets (GNSs through control over the environmental conditions. While the micro-strain of GNS is barely visible, the deformation of graphene-based macroscopic assemblies (GMAs is remarkable, thereby presenting significant potential for future application in smart devices. This review presents the current progress of SID of graphene in the manner of nanosheets and macroscopic assemblies in both the experimental and theoretical fronts, and summarizes recent advancements of SID of graphene for applications in smart systems.

  19. Vapor Crystal Growth (VCG) experiment Cell

    Science.gov (United States)

    1992-01-01

    The image shows a test cell of Crystal Growth experiment inside the Vapor Crystal Growth System (VCGS) furnace aboard the STS-42, International Microgravity Laboratory-1 (IML-1), mission. The goal of IML-1, a pressurized marned Spacelab module, was to explore in depth the complex effects of weightlessness of living organisms and materials processing. More than 200 scientists from 16 countires participated in the investigations.

  20. Macroscopic Properties of Hollow Cone Spray Using an Outwardly Opening Piezoelectric Injector in GCI Engine

    KAUST Repository

    Cheng, Penghui

    2016-07-01

    Fuel mixture formation and spray characteristics are crucial for the advancement of Gasoline Compression Ignition (GCI) engine. For investigations of spray characteristics, a high-pressure high-temperature spray chamber with constant volume has been designed, tested and commissioned at CCRC, KAUST. Back light illumination technique has been applied to investigate the macroscopic spray properties of an outwardly opening piezoelec- tric injector. Three parameters including injection pressure, ambient pressure, and ambient temperature have been involved. A total of 18 combinations of experimental conditions were tested under non-reactive conditions. Through qualitative analysis of spray morphology under different operating conditions, an apparent distinction of spray morphology has been noticed. Spray morphology and propagation have shown strong dependencies on ambient pressure and ambient tempera- ture while injection pressure has a negligible effect on spray shape. Increasingly compact and bushier spray patterns were observed in the cases of high ambient pressure due to in- creasing aerodynamic drag force on spray boundary. It should also be noted that ambient temperature plays a fairly important role in fuel evaporation rate. At 200 °C, oscillating and considerably short spray shape was produced. Also, circumferential ring-like vortices and distinctive string-like structures have been identified for the fuel spray exiting this hollow cone injector. It has been observed that high ambient pressure conditions (Pamb = 4 bar and 10.5 bar) are favorable to the vortices generation, which has also been reported in previous literature. The quantitative description of macroscopic spray properties reveals that ambient pres- sure and ambient temperature are found to be the most influential parameters on liquid penetration length. The rise of ambient pressure results in considerably shorter liquid pen- etration length. Ambient temperature also appears to be a very effective

  1. Vapor concentration monitor

    Science.gov (United States)

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  2. Chemical reaction between water vapor and stressed glass

    Science.gov (United States)

    Soga, N.; Okamoto, T.; Hanada, T.; Kunugi, M.

    1979-01-01

    The crack velocity in soda-lime silicate glass was determined at room temperature at water-vapor pressures of 10 to 0.04 torr using the double torsion technique. A precracked glass specimen (70 x 16 x 1.6 mm) was placed in a vacuum chamber containing a four-point bending test apparatus. The plotted experimental results show that the crack propagation curve in water agrees fairly well with that of Wiederhorn (1967). Attention is given to the effect of water vapor pressure on crack velocity at K(I) = 550,000 N/m to the 3/2 power, with (Wiederhorn's data) or without N2 present. The plotted results reveal that the present crack velocity is about two orders of magnitude higher than that of Wiederhorn at high water-vapor conditions, but the difference decreases as the water-vapor concentration diminishes or the crack velocity slows down.

  3. Experimental Study on Unconfined Vapor Cloud Explosion

    Institute of Scientific and Technical Information of China (English)

    毕明树; ABULITI; Abudula

    2003-01-01

    An experimental system was setup to study the pressure field of unconfined vapor cloud explosions.The semi-spherical vapor clouds were formed by slotted 0.02mm polyethylene film.In the Center of the cloud was an ignition electrode that met ISO6164"Explosion protection System" and NFPA68 "Guide for Venting of Deflagrations". A data-acquisition system,with dymame responding time less than 0.001s with 0.5% accuracy,recorded the pressure-time diagram of acetylene-air mixture explosion with stoichiometrical ratio.The initial cloud diameters varied from 60cm to 300cm.Based on the analysis of experimental data,the quantitative relationship is obtained for the cloud explosion pressure,the cloud radius and the distance from ignition point .Present results provide a useful way to evaluate the building damage caused by unconfined vapor cloud explosions and to determine the indispensable explosion grade in the application of multi-energy model.

  4. Quantum statistical derivation of the macroscopic Maxwell equations

    NARCIS (Netherlands)

    Schram, K.

    1960-01-01

    The macroscopic Maxwell equations in matter are derived on a quantum statistical basis from the microscopic equations for the field operators. Both the density operator formalism and the Wigner distribution function method are discussed. By both methods it can be proved that the quantum statistical

  5. Macroscopic and Microscopic Gradient Structures of Bamboo Culms

    Directory of Open Access Journals (Sweden)

    Suwat SUTNAUN

    2005-01-01

    Full Text Available This work studied the structure of bamboo culms which is naturally designed to retard the bending stress caused by a wind load. A macroscopic gradient structure (diameter, thickness and internodal length and a microscopic one (distribution of fiber of three sympodial bamboo species i.e. Tong bamboo (Dendrocalamus asper Backer., Pah bamboo (Gigantochloa bambos and Pak bamboo (Gigantochloa hasskarliana were examined. From the macroscopic point of view, the wind-load generated bending stress for the tapered hollow tube of bamboo was found to vary uniformly with height, especially at the middle of the culms. Furthermore, the macroscopic shape of bamboo culm is about 2-6 times stiffer in bending mode than one with a solid circular section for the same amount of wood material. Microscopically, the distribution of fiber in the radial direction linearly decreases from the outer surface to the inner surface in the same manner as that of the distribution of the bending stress in the radial direction. Distribution of fiber along the vertical length of bamboos at each height is proportional to the level of bending stress generated by the wind load. Both macroscopic and microscopic gradient structures of sympodial type bamboos were found to be less effective to retard the bending stress than those of monopodial type bamboo.

  6. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, Vitaliy Anatolyevich

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  7. Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters

    DEFF Research Database (Denmark)

    Nedelchev, L.; Nikolova, L.; Matharu, A.

    2002-01-01

    A study of the propagation of elliptically polarized light and the resulting formation of macroscopic chiral structures in a series of azobenzene side-chain copolyesters, in which the morphology is varied from liquid crystalline to amorphous, is reported. Real-time measurements are presented...

  8. [Macroscopic observations on corneal epithelial wound healing in the rabbit].

    Science.gov (United States)

    Hayashi, K

    1991-02-01

    A newly-developed macroscope was applied to observe the healing process of corneal epithelial wound in vivo. After removing epithelium of the central cornea, the changes of the corneal surface were observed with the macroscope and the findings were compared with histological examinations. At 12 hours after abrasion, areas unstained with Richardson's staining (R staining) appeared. In the histological section, a single layer of regenerating epithelial cells covered the same area. At 24 and 36 hours after abrasion, the epithelial defects became smaller but surrounding epithelium was rough and showed dot-like staining with R solution. By 2 days, the epithelial defects disappeared. On macroscopic observation, the central corneal surface showed a pavement-like appearance. Histology revealed that the regenerating epithelium still consisted of one or two layers. At 3 days, dot-like stainings were present only in the center and the corneal surface appeared considerably smooth. Histology also showed that regenerating epithelium became columnar and multilayered, thereby suggesting stratification. By 7 days, the abraded corneal surface had recovered its smooth appearance. Histologic sections also demonstrated that the epithelium had regained its normal structure. Thus, using this macroscope, findings suggesting the process of epithelial migration and proliferation could be observed.

  9. The black hole information paradox and macroscopic superpositions

    CERN Document Server

    Hsu, Stephen D H

    2010-01-01

    We investigate the experimental capabilities required to test whether black holes destroy information. We show that an experiment capable of illuminating the information puzzle must necessarily be able to detect or manipulate macroscopic superpositions (i.e., Everett branches). Hence, it could also address the fundamental question of decoherence versus wavefunction collapse.

  10. Macroscopic domain formation in the platelet plasma membrane

    DEFF Research Database (Denmark)

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.;

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...

  11. A Macroscopic Analogue of the Nuclear Pairing Potential

    Science.gov (United States)

    Dunlap, Richard A.

    2013-01-01

    A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…

  12. Data requirements for traffic control on a macroscopic level

    NARCIS (Netherlands)

    Knoop, V.L.; Van Lint, J.W.C.; Hoogendoorn, S.P.

    2011-01-01

    With current techniques, traffic monitoring and control is a data intensive process. Network control on a higher level, using high level variables, can make this process less data demanding. The macroscopic fundamental diagram relates accumulation, i.e. the number of vehicles in an area, to the netw

  13. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  14. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2016-11-01

    Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation dF^{(meso)}/dt=E_{in}-e_{p} in which the free energy input rate E_{in} and dissipation rate e_{p} are both non-negative, and E_{in}≤e_{p}. We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F^{(meso)} converges to φ^{ss}, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φ^{ss} now satisfies a balance equation dφ^{ss}(x)/dt=cmf(x)-σ(x), in which x represents chemical concentration. The chemical motive force cmf(x) and entropy production rate σ(x) are both non-negative, and cmf(x)≤σ(x). The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.

  15. Diagnosis of bladder tumours in patients with macroscopic haematuria

    DEFF Research Database (Denmark)

    Gandrup, Karen L; Løgager, Vibeke B; Bretlau, Thomas

    2015-01-01

    OBJECTIVE: The aim of this study was to compare split-bolus computed tomography urography (CTU), magnetic resonance urography (MRU) and flexible cystoscopy in patients with macroscopic haematuria regarding the diagnosis of bladder tumours. MATERIALS AND METHODS: In this prospective study, 150...

  16. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, V.

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  17. Integrating a macro emission model with a macroscopic traffic model

    NARCIS (Netherlands)

    Klunder, G.A.; Stelwagen, U.; Taale, H.

    2013-01-01

    This paper presents a macro emission module for macroscopic traffic models to be used for assessment of ITS and traffic management. It especially focuses on emission estimates for different intersection types. It provides emission values for CO, CO2, HC, NOx, and PM10. It is applied and validated fo

  18. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.

  19. Numerical solutions of a generalized theory for macroscopic capillarity

    NARCIS (Netherlands)

    Doster, F.; Zegeling, P.A.; Hilfer, R.

    2010-01-01

    A recent macroscopic theory of biphasic flow in porous media [R. Hilfer, Phys. Rev. E 73, 016307 (2006)] has proposed to treat microscopically percolating fluid regions differently from microscopically nonpercolating regions. Even in one dimension the theory reduces to an analytically intractable se

  20. The fundamental diagram : a macroscopic traffic flow model.

    NARCIS (Netherlands)

    Botma, H.

    1976-01-01

    In models of traffic flow, the interactions between vehicles are of prime interest, and are based on characteristics of the drivers, road and vehicles. The fundamental diagram is a representation of a relationship on a macroscopic level in the steady state between the quantity of traffic and a chara