Macroscopic acoustoelectric charge transport in graphene
Bandhu, L.; Lawton, L. M.; Nash, G. R.
2013-09-01
We demonstrate macroscopic acoustoelectric transport in graphene, transferred onto piezoelectric lithium niobate substrates, between electrodes up to 500 μm apart. Using double finger interdigital transducers we have characterised the acoustoelectric current as a function of both surface acoustic wave intensity and frequency. The results are consistent with a relatively simple classical relaxation model, in which the acoustoelectric current is proportional to both the surface acoustic wave intensity and the attenuation of the wave caused by the charge transport.
Macroscopic transport by synthetic molecular machines
Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F
Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle
Thermodynamical properties and thermoelastic coupling of complex macroscopic structure
International Nuclear Information System (INIS)
Fabbri, M.; Sacripanti, A.
1996-11-01
Gross qualitative/quantitative analysis about thermodynamical properties and thermoelastic coupling (or elastocaloric effect) of complex macroscopic structure (running shoes) is performed by infrared camera. The experimental results showed the achievability of a n industrial research project
Macroscopic properties of model disordered materials
International Nuclear Information System (INIS)
Knackstedt, M.A.; Roberts, A.P.
1996-01-01
Disordered materials are ubiquitous in nature and in industry. Soils, sedimentary rocks, wood, bone, polymer composites, foams, catalysts, gels, concretes and ceramics have properties that depend on material structure. Present techniques for predicting properties are limited by the theoretical and computational difficulty of incorporating a realistic description of material structure. A general model for microstructure was recently proposed by Berk [Berk, Phys.Rev.A, 44 5069 (1991)]. The model is based on level cuts of a Gaussian random field with arbitrary spectral density. The freedom in specifying the parameters of the model allows the modeling of physical materials with diverse morphological characteristics. We have shown that the model qualitatively accounts for the principal features of a wider variety of disordered materials including geologic media, membranes, polymer blends, ceramics and foams. Correlation functions are derived for the model microstructure. From this characterisation we derive mechanical and conductive properties of the materials. Excellent agreement with experimentally measured properties of disordered solids is obtained. The agreement provides a strong hint that it is now possible to correlate effective physical properties of porous solids to microstructure. Simple extensions to modelling properties of non-porous multicomponent blends; metal alloys, ceramics, metal/matrix and polymer composites are also discussed
Macroscopic Modeling of Transport Phenomena in Direct Methanol Fuel Cells
DEFF Research Database (Denmark)
Olesen, Anders Christian
An increasing need for energy efficiency and high energy density has sparked a growing interest in direct methanol fuel cells for portable power applications. This type of fuel cell directly generates electricity from a fuel mixture consisting of methanol and water. Although this technology...... surpasses batteries in important areas, fundamental research is still required to improve durability and performance. Particularly the transport of methanol and water within the cell structure is difficult to study in-situ. A demand therefore exist for the fundamental development of mathematical models...... for studying their transport. In this PhD dissertation the macroscopic transport phenomena governing direct methanol fuel cell operation are analyzed, discussed and modeled using the two-fluid approach in the computational fluid dynamics framework of CFX 14. The overall objective of this work is to extend...
Statistical thermodynamics understanding the properties of macroscopic systems
Fai, Lukong Cornelius
2012-01-01
Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th
Transport processes in macroscopically disordered media from mean field theory to percolation
Snarskii, Andrei A; Sevryukov, Vladimir A; Morozovskiy, Alexander; Malinsky, Joseph
2016-01-01
This book reflects on recent advances in the understanding of percolation systems to present a wide range of transport phenomena in inhomogeneous disordered systems. Further developments in the theory of macroscopically inhomogeneous media are also addressed. These developments include galvano-electric, thermoelectric, elastic properties, 1/f noise and higher current momenta, Anderson localization, and harmonic generation in composites in the vicinity of the percolation threshold. The book describes how one can find effective characteristics, such as conductivity, dielectric permittivity, magnetic permeability, with knowledge of the distribution of different components constituting an inhomogeneous medium. Considered are a wide range of recent studies dedicated to the elucidation of physical properties of macroscopically disordered systems. Aimed at researchers and advanced students, it contains a straightforward set of useful tools which will allow the reader to derive the basic physical properties of compli...
The N-salicylidene aniline mesogen: Microscopic and macroscopic properties
International Nuclear Information System (INIS)
Nesrullazade, A.
2004-01-01
The vast majority of compounds exhibiting Iiquid crystalline phases may be regarded as having a rigid molecular central group with one or two flexible terminal alkyl or alkyloxy chains. The N-saIicyIidene anilines are very interesting and important materials both from fundamental and application points of view. These materials are on the one hand the ligands used to obtain metal containing complexes and on the other hand they are materials having the thermotropic mesomorphism. In this work we present investigations of microscopic and macroscopic properties of the 4-(Octyloxy)-N-(4-hexylphenyl)-2-hydrobenzaIimine (8SA) compound which was synthesized by our group. The 8SA compound shows the smectic C and nematic mesophases. These mesophases are enantiotropic and display specific confocal and schlieren textures, respectively. Thermotropic and thermodynamical properties of the straight and reverse phase transitions between smectic C and nematic mesophases and between nematic mesophase and isotropic liquid have been investigated
Tracer sorption and macroscopic transport in clay nano-pores: a lattice-Boltzmann study
International Nuclear Information System (INIS)
Levesque, Maximilien; Rotenberg, Benjamin; Duvail, Magali; Benichou, Olivier; Voituriez, Raphael; Pagonabarraga, Ignacio; Frenkel, Daan
2012-01-01
Document available in extended abstract form only. The Agence Nationale pour la gestion des Dechets Radioactifs (ANDRA) has been entrusted to find a safe solution for disposing of existing and future nuclear wastes. A prototype site has been considered for the waste disposal in a deep underground sedimentary geological formation. It is composed of clay minerals chosen, among other reasons, for their remarkable ability to limit radionuclide transport. Clay minerals are complex charged porous media characterized by heterogeneities at several length scales. They naturally occur as an assembly of few nano-meter-sized particles connected to form 10 to 100 nm interparticle pores containing water and ions. This intrinsically multi-scale structure, that gives the material its remarkable properties, makes the description of sorption and transport phenomena of transported ions particularly challenging. Experimental studies of water and ion transport through clays mostly consist in evaluating macroscopic effective transport coefficients like permeability or conductivity. They showed that the main transport mechanism is an effective diffusion that not only depends on particle charge but also on its chemical nature, or specificity. The goal of assessing the performance of clays as confinement barriers, particularly in the context of the geological disposal of nuclear waste, requires not only quantitative prediction of the retention and transport of species but also an understanding of the microscopic mechanisms underlying them. A successful approach has been to use numerical simulations via the Lattice-Boltzmann method (LB). It consists in making evolve populations describing the fluid at a level which is consistent with time and length-scales involved in transport properties, while still including a microscopic description of the phenomena. The transport of charged ions at the pore scale has recently been included in LB. In this method, the evolution of a tracer population is
Influence of microscopic inhomogeneity on macroscopic transport current of Ag/Bi2223 tapes
International Nuclear Information System (INIS)
Ogawa, Kazuhiro; Osamura, Kozo
2004-01-01
In Ag/Bi2223 tapes, inhomogeneities such as spatially distributed weak links or non-superconducting oxides are inevitably introduced because of the complicated manufacturing process and thermodynamic instability. In order to clarify the effect of the difference in such microscopic inhomogeneites on the macroscopic current transport properties, we carried out a numerical analysis. By changing volume fraction (V f ) of the Bi2223 phase and the shape of local distribution of critical current at each weak link, it is revealed that I-V characteristics are largely affected by the breadth of local distributions with different dependence on V f of Bi2223 and calculated results can be analyzed by Weibull distribution function with some parameters including the information of two-dimensional distribution
Microstructure and macroscopic properties of polydisperse systems of hard spheres
Ogarko, V.
2014-01-01
This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the
Relationship Between Filler-Matrix Interface and Macroscopical Properties of Polymer Nanocomposites
Ventura, Isaac Aguilar
2017-01-01
The macroscopic properties of Multiwall Carbon Nanotube (MWCNT) polymer nano-composites and multiscale composites have been studied from a multifunctional standpoint. The objective is to understand and correlate the mechanisms in which the addition
Macroscopic behavior and microscopic magnetic properties of nanocarbon
Energy Technology Data Exchange (ETDEWEB)
Lähderanta, E., E-mail: Erkki.Lahderanta@lut.fi [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Ryzhov, V.A. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Coppice, Gatchina, Leningrad province 188300 (Russian Federation); Lashkul, A.V. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Galimov, D.M. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); South Ural State University, 454080 Chelyabinsk (Russian Federation); Titkov, A.N. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); A. F. Ioffe Physico-Technical Institute, 194021 St. Petersburg (Russian Federation); Matveev, V.V. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Saint-Petersburg State University, Saint-Petersburg 198504 (Russian Federation); Mokeev, M.V. [Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg (Russian Federation); Kurbakov, A.I. [Petersburg Nuclear Physics Institute, NRC “Kurchatov Institute”, Orlova Coppice, Gatchina, Leningrad province 188300 (Russian Federation); Lisunov, K.G. [Lappeenranta University of Technology, PO Box 20, FIN-53851 Lappeenranta (Finland); Institute of Applied Physics ASM, Academiei Str., 5, MD 2028 Kishinev (Moldova, Republic of)
2015-06-01
Here are presented investigations of powder and glass-like samples containing carbon nanoparticles, not intentionally doped and doped with Ag, Au and Co. The neutron diffraction study reveals an amorphous structure of the samples doped with Au and Co, as well as the magnetic scattering due to a long-range FM order in the Co-doped sample. The composition and molecular structure of the sample doped with Au is clarified with the NMR investigations. The temperature dependence of the magnetization, M (T), exhibits large irreversibility in low fields of B=1–7 mT. M (B) saturates already above 2 T at high temperatures, but deviates from the saturation behavior below ~50 (150 K). Magnetic hysteresis is observed already at 300 K and exhibits a power-law temperature decay of the coercive field, B{sub c} (T). The macroscopic behavior above is typical of an assembly of partially blocked magnetic nanoparticles. The values of the saturation magnetization, M{sub s}, and the blocking temperature, T{sub b}, are obtained as well. However, the hysteresis loop in the Co-doped sample differs from that in other samples, and the values of B{sub c} and M{sub s} are noticeably increased. - Highlights: • We have investigated powder and glassy samples with carbon nanoparticles. • They include an undoped sample and those doped with Ag, Au and Co. • Neutron diffraction study reveals amorphous structure of Au- and Co-doped samples. • Composition and molecular structure of Au-doped sample was investigated with NMR. • Magnetic behavior is typical of an assembly of partially blocked magnetic nanoparticles.
Macroscopic behavior and microscopic magnetic properties of nanocarbon
International Nuclear Information System (INIS)
Lähderanta, E.; Ryzhov, V.A.; Lashkul, A.V.; Galimov, D.M.; Titkov, A.N.; Matveev, V.V.; Mokeev, M.V.; Kurbakov, A.I.; Lisunov, K.G.
2015-01-01
Here are presented investigations of powder and glass-like samples containing carbon nanoparticles, not intentionally doped and doped with Ag, Au and Co. The neutron diffraction study reveals an amorphous structure of the samples doped with Au and Co, as well as the magnetic scattering due to a long-range FM order in the Co-doped sample. The composition and molecular structure of the sample doped with Au is clarified with the NMR investigations. The temperature dependence of the magnetization, M (T), exhibits large irreversibility in low fields of B=1–7 mT. M (B) saturates already above 2 T at high temperatures, but deviates from the saturation behavior below ~50 (150 K). Magnetic hysteresis is observed already at 300 K and exhibits a power-law temperature decay of the coercive field, B c (T). The macroscopic behavior above is typical of an assembly of partially blocked magnetic nanoparticles. The values of the saturation magnetization, M s , and the blocking temperature, T b , are obtained as well. However, the hysteresis loop in the Co-doped sample differs from that in other samples, and the values of B c and M s are noticeably increased. - Highlights: • We have investigated powder and glassy samples with carbon nanoparticles. • They include an undoped sample and those doped with Ag, Au and Co. • Neutron diffraction study reveals amorphous structure of Au- and Co-doped samples. • Composition and molecular structure of Au-doped sample was investigated with NMR. • Magnetic behavior is typical of an assembly of partially blocked magnetic nanoparticles
NMR studies of macroscopic and microscopic properties of liquid crystals
International Nuclear Information System (INIS)
Hughes, J.R.
1998-03-01
The work presented is concerned with studies of orientational order in liquid crystals and the behaviour of certain mesophases. The experimental technique used in common with all the work is deuterium NMR spectroscopy. Much of the work involves studies of the orientational order of deuteriated solute molecules dissolved in liquid crystal solvents. Chapter 1 gives an introduction to liquid crystals followed by a quantitative description of orientational order. Deuterium NMR in liquid crystals is described and an outline of the molecular field theory behind the orientational order of a rigid, biaxial solute in a uniaxial mesophase is given. In Chapter 2 a novel type of mesophase induction is studied using NMR, where a solute induces up to two extra phases in a discotic mesogen depending on its concentration. The purpose of this work is to try to gain an understanding into the mechanism of the phase induction involved. Chapter 3 is concerned primarily with the macroscopic behaviour of the nematic phase formed by a semi-rigid main-chain polymer in solution. Of particular interest is the study of the reorientation of the monodomain, once the director has been rotated with respect to the magnetic field of the NMR spectrometer. A mesogen which has been claimed to exhibit a biaxial nematic phase is studied in Chapter 4, in order to determine the symmetry of the phase using NMR. Finally, Chapter 5 deals with the differing behaviour of a liquid crystal monomer and its dimer dissolved in common nematic solvents in order to determine whether this agrees with molecular field theory. (author)
Relationship Between Filler-Matrix Interface and Macroscopical Properties of Polymer Nanocomposites
Aguilar Ventura, Isaac Enrique
2017-11-01
The macroscopic properties of Multiwall Carbon Nanotube (MWCNT) polymer nano-composites and multiscale composites have been studied from a multifunctional standpoint. The objective is to understand and correlate the mechanisms in which the addition of a small content of MWCNTs can affect the mechanical, thermal and electrical properties of thermoplastic and thermoset polymer nanocomposites. While CNTs are well-known to possess extraordinary properties in the nanoscale, it has been shown that, the CNT/polymer matrix and CNT/CNT interactions are mainly responsible for the modification of properties in the nanocomposites. Observation of the mechanical properties revealed that the addition of CNTs can increase the stiffness of the material, but the increment of interfacial regions can accelerate the damage process under cyclic loading conditions. Additionally, CNTs can interact with polymer chains in the matrix affecting thermomechanical properties such as the glass transition temperature and the storage modulus. A low content of well-dispersed CNTs can form percolated networks within the matrix, which, due to the nature of the electrical conduction mechanism, have demonstrated potential in increasing the electrical conductivity of the nanocomposites. In contrast, high phonon scattering at the interconnections along the CNT network are responsible for marginal increases in thermal conductivity. In this study, a special focus was placed in modifying the CNT interconnections with a conductive polymer "bridge" to increase the efficiency of the electrical carrier transport. Additional experimental observations such as piezoresistivity and electrical conductivity/temperature dependency, demonstrated the major role of the interfacial regions with respect to the observed material properties in the macroscale. Controlling the interactions that occur in these regions is key to achieve tailorable, multifunctional nanocomposites.
Laser modification of macroscopic properties of metal surface layer
Kostrubiec, Franciszek
1995-03-01
Surface laser treatment of metals comprises a number of diversified technological operations out of which the following can be considered the most common: oxidation and rendering surfaces amorphous, surface hardening of steel, modification of selected physical properties of metal surface layers. In the paper basic results of laser treatment of a group of metals used as base materials for electric contacts have been presented. The aim of the study was to test the usability of laser treatment from the viewpoint of requirements imposed on materials for electric contacts. The results presented in the paper refer to two different surface treatment technologies: (1) modification of infusible metal surface layer: tungsten and molybdenum through laser fusing of their surface layer and its crystallization, and (2) modification of surface layer properties of other metals through laser doping of their surface layer with foreign elements. In the paper a number of results of experimental investigations obtained by the team under the author's supervision are presented.
Correlation of macroscopic material properties with microscopic nuclear data
International Nuclear Information System (INIS)
Simons, R.L.
1981-01-01
Two primary irradiation-induced changes occur during neutron irradiation: the displacement of atoms forming crystal defects and the transmutation of atoms into either gaseous or solid products. The material scientist studying irradiation damage to material by fusion-produced neutrons is faced with several questions: Is the nature of high-energy (14-MeV) displacement damage the same as or different from that caused by fission neutrons (< 2 MeV). How do the high helium concentrations expected in a fusion environment affect the material properties. What effects do solid transmutation products have on the behavior of the irradiated materials. In the past few years, much work has been done to answer these questions. This paper reviews recent work in this area
Thermodynamic properties of minerals: Macroscopic and microscopic approaches
International Nuclear Information System (INIS)
Richet, P.; Gillet, P.; Fiquet, G.
1992-01-01
Thermodynamic modeling of experimental or natural-phase equilibria has become an integral part of petrology. In this respect, the isobaric heat capacity (C p ) has manifold importance. First, C p data constitute the basis of third-law determinations of the entropy of minerals. Second, these data are needed to calculate the variation with temperature of the entropy, the entropy, and the Gibbs free energy. As a result, it necessary to know accurately heat capacities when retrieving thermodynamic information from phase equilibria data, especially when trying to separate the effects of the enthalpies and entropies of transformation. In this paper, we broadly review the main empiricial and theoretical aspects of the heat capacity of minerals. We begin with a brief review of the three main techniques that are currently in use for determining heat capacities from 0 to 2000 K, namely, adiabatic, differential scanning (DSC), and drop colarimetry, paying attention to the experimental constraints that limit measurements to certain conditions. When minerals can be subjected at best to limited calorimetric measurements, either because of lack of gram-sized samples or of instability at high temperatures (as if often the case with high-pressure minerals), other ways have to be found for predicting standard entropies and high-temperature properties. The validity of empiricial methods of prediction of the heat capacity as a function of temperature and composition will thus be discussed
Electronic transport properties
International Nuclear Information System (INIS)
Young, W.H.
1985-01-01
The theory of the electron transport properties of liquid alkali metals is described. Conductivity coefficients, Boltzmann theory, Ziman theory, alkali form factors, Ziman theory and alkalis, Faber-Ziman alloy theory, Faber-Ziman theory and alkali-alkali methods, status of Ziman theory, and other transport properties, are all discussed. (UK)
Sialic acid-triggered macroscopic properties switching on a smart polymer surface
Xiong, Yuting; Li, Minmin; Wang, Hongxi; Qing, Guangyan; Sun, Taolei
2018-01-01
Constructing smart surfaces with responsive polymers capable of dynamically and reversibly changing their chemical and physical properties by responding to the recognition of biomolecules remains a challenging task. And, the key to achieving this purpose relies on the design of polymers to precisely interact with the target molecule and successfully transform the interaction signal into tunable macroscopic properties, further achieve special bio-functions. Herein, inspired by carbohydrate-carbohydrate interaction (CCI) in life system, we developed a three-component copolymer poly(NIPAAm-co-PT-co-Glc) bearing a binding unit glucose (Glc) capable of recognizing sialic acid, a type of important molecular targets for cancer diagnosis and therapy, and reported the sialic acid triggered macroscopic properties switching on this smart polymer surface. Detailed mechanism studies indicated that multiple hydrogen bonding interactions between Glc unit and Neu5Ac destroyed the initial hydrogen bond network of the copolymer, leading to a reversible "contraction-to-swelling" conformational transition of the copolymer chains, accompanied with distinct macroscopic property switching (i.e., surface wettability, morphology, stiffness) of the copolymer film. And these features enabled this copolymer to selectively capture sialic acid-containing glycopeptides from complex protein samples. This work provides an inspiration for the design of novel smart polymeric materials with sensitive responsiveness to sialic acid, which would promote the development of sialic acid-specific bio-devices and drug delivery systems.
Magnetic properties and macroscopic heterogeneity of FeCoNbB Hitperms
Energy Technology Data Exchange (ETDEWEB)
Butvin, Pavol [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)], E-mail: fyzipbut@savba.sk; Butvinova, Beata [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Sitek, Jozef; Degmova, Jarmila [Department of Nuclear Physics and Technology, FEI, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia); Vlasak, Gabriel; Svec, Peter; Janickovic, Dusan [Institute of Physics, Slovak Academy of Sciences, Dubravska cesta 9, 845 11 Bratislava (Slovakia)
2008-03-15
Nanocrystalline ribbons of Fe{sub 81-x}Co{sub x}Nb{sub 7}B{sub 12} (where x ranges from 0 to 40.5 at%) Hitperm alloys have been investigated as to their basic magnetic properties and the influence of the macroscopic heterogeneity. Different crystalline share at surfaces compared with the volume average is observed by conversion electron Moessbauer spectroscopy (CEMS) and Moessbauer spectroscopy (MS), respectively. This marks the presence of macroscopic heterogeneity in these Hitperms. The heterogeneity is generally more significant in Ar-annealed samples than in the vacuum-annealed ones. The characteristic slant hysteresis loops (hard-ribbon-axis) are seen as a rule with few exceptions. An inspection of hysteresis loop response of resin potted samples shows that the surfaces bi-axially squeeze the ribbon interior in heterogeneous Hitperms when the ribbons cool down after annealing. Certain compositions show macroscopic viscous flow prior to crystallization so the heterogeneity gets another chance to induce anisotropy during annealing. The induction attains 1.5 T but saturates poorly due to the heterogeneity and the ensuing anisotropy. Moreover the heterogeneity appears to hamper the crystallization within the ribbon interior. Unlike Finemets, the density of these Hitperms show no pronounced trend with annealing.
Magnetic properties and macroscopic heterogeneity of FeCoNbB Hitperms
Butvin, Pavol; Butvinová, Beata; Sitek, Jozef; Degmová, Jarmila; Vlasák, Gabriel; Švec, Peter; Janičkovič, Dušan
Nanocrystalline ribbons of Fe 81-xCo xNb 7B 12 (where x ranges from 0 to 40.5 at%) Hitperm alloys have been investigated as to their basic magnetic properties and the influence of the macroscopic heterogeneity. Different crystalline share at surfaces compared with the volume average is observed by conversion electron Mössbauer spectroscopy (CEMS) and Mössbauer spectroscopy (MS), respectively. This marks the presence of macroscopic heterogeneity in these Hitperms. The heterogeneity is generally more significant in Ar-annealed samples than in the vacuum-annealed ones. The characteristic slant hysteresis loops (hard-ribbon-axis) are seen as a rule with few exceptions. An inspection of hysteresis loop response of resin potted samples shows that the surfaces bi-axially squeeze the ribbon interior in heterogeneous Hitperms when the ribbons cool down after annealing. Certain compositions show macroscopic viscous flow prior to crystallization so the heterogeneity gets another chance to induce anisotropy during annealing. The induction attains 1.5 T but saturates poorly due to the heterogeneity and the ensuing anisotropy. Moreover the heterogeneity appears to hamper the crystallization within the ribbon interior. Unlike Finemets, the density of these Hitperms show no pronounced trend with annealing.
CH-π Interaction Driven Macroscopic Property Transition on Smart Polymer Surface
Li, Minmin; Qing, Guangyan; Xiong, Yuting; Lai, Yuekun; Sun, Taolei
2015-10-01
Life systems have evolved to utilize weak noncovalent interactions, particularly CH-π interaction, to achieve various biofunctions, for example cellular communication, immune response, and protein folding. However, for artificial materials, it remains a great challenge to recognize such weak interaction, further transform it into tunable macroscopic properties and realize special functions. Here we integrate monosaccharide-based CH-π receptor capable of recognizing aromatic peptides into a smart polymer with three-component “Recognition-Mediating-Function” design, and report the CH-π interaction driven surface property switching on smart polymer film, including wettability, adhesion, viscoelasticity and stiffness. Detailed studies indicate that, the CH-π interaction induces the complexation between saccharide unit and aromatic peptide, which breaks the initial amphiphilic balance of the polymer network, resulting in contraction-swelling conformational transition for polymer chains and subsequent dramatic switching in surface properties. This work not only presents a new approach to control the surface property of materials, but also points to a broader research prospect on CH-π interaction at a macroscopic level.
Wu, M; Li, J; Ludwig, A; Kharicha, A
2014-09-01
Part 1 of this two-part investigation presented a multiphase solidification model incorporating the finite diffusion kinetics and ternary phase diagram with the macroscopic transport phenomena (Wu et al., 2013). In Part 2, the importance of proper treatment of the finite diffusion kinetics in the calculation of macrosegregation is addressed. Calculations for a two-dimensional (2D) square casting (50 × 50 mm 2 ) of Fe-0.45 wt.%C-1.06 wt.%Mn considering thermo-solutal convection and crystal sedimentation are performed. The modeling result indicates that the infinite liquid mixing kinetics as assumed by classical models (e.g., the Gulliver-Scheil or lever rule), which cannot properly consider the solute enrichment of the interdendritic or inter-granular melt at the early stage of solidification, might lead to an erroneous estimation of the macrosegregation. To confirm this statement, further theoretical and experimental evaluations are desired. The pattern and intensity of the flow and crystal sedimentation are dependent on the crystal morphologies (columnar or equiaxed); hence, the potential error of the calculated macrosegregation caused by the assumed growth kinetics depends on the crystal morphology. Finally, an illustrative simulation of an engineering 2.45-ton steel ingot is performed, and the results are compared with experimental results. This example demonstrates the model applicability for engineering castings regarding both the calculation efficiency and functionality.
Fission observables from 4D Langevin calculations with macroscopic transport coefficients
Directory of Open Access Journals (Sweden)
Usang Mark D.
2018-01-01
Full Text Available We have extended the Langevin equations to 4 dimensions (4D by allowing the independent deformation for the left (δ1 and right fragments (δ2 of the fissioning nucleus. At the moment we are only able to use them in conjunction with the macroscopic transport coefficients. Nevertheless, we can see a considerable improvement in the preliminary results for the fission observables, especially those related to the total kinetic energy (TKE of fission fragments. By plotting the TKE distributions we have revealed the super-long fission modes in 236U and super-short fission modes in 257Fm. By plotting the distribution of δ against the fragment’s TKE we have noted a correlation between the values of δ and Brosa’s fission modes. We have found that the standard fission modes correspond to prolate tips of the light fragments while the complementary heavy fragments have oblate fission tips. On the other hand, if both fragments were prolate at the tips, we get super-long fission modes. If both fragments were oblate at the tips, we get super-short fission modes.
International Nuclear Information System (INIS)
Freyss, M.
2015-01-01
As presented in the first chapter of this book, atomic transport properties govern a large panel of nuclear fuel properties, from its microstructure after fabrication to its behaviour under irradiation: grain growth, oxidation, fission product release, gas bubble nucleation. The modelling of the atomic transport properties is therefore the key to understanding and predicting the material behaviour under irradiation or in storage conditions. In particular, it is noteworthy that many modelling techniques within the so-called multi-scale modelling scheme of materials make use of atomic transport data as input parameters: activation energies of diffusion, diffusion coefficients, diffusion mechanisms, all of which are then required to be known accurately. Modelling approaches that are readily used or which could be used to determine atomic transport properties of nuclear materials are reviewed here. They comprise, on the one hand, static atomistic calculations, in which the migration mechanism is fixed and the corresponding migration energy barrier is calculated, and, on the other hand, molecular dynamics calculations and kinetic Monte-Carlo simulations, for which the time evolution of the system is explicitly calculated. (author)
Induction of novel macroscopic properties by local symmetry violations in spin-spiral multiferroics
Meier, D.; Leo, N.; Becker, P.; Bohaty, L.; Ramesh, R.; Fiebig, M.
2011-03-01
Incommensurate (IC) structures are omnipresent in strongly correlated electron systems as high-TC superconductors, CMR manganites, as well as multiferroics. In each case they are origin of a pronounced symmetry reduction reflecting the complexity of the underlying microscopic interactions. Macroscopically, this can lead to new phases and possibilities to gain control of the host material. Here we report how the IC nature of a spin-spiral multiferroic induces new physical properties by renormalizing the relevant length scales of the system. Local symmetry violations directly manifest in the macroscopic response of the material and co-determine the multiferroic order giving rise to additional domain states. These usually hidden degrees of freedom become visible when non-homogenous fields are applied and condition for instance the second harmonic generation. Our study shows that incommensurabilities play a vital role in the discussion of the physical properties of multiferroics -- they represent a key ingredient for further enhancing the functionality of this class of materials. This work was supported by the DFG through the SFB 608. D.M. thanks the AvH for financial support.
Directory of Open Access Journals (Sweden)
Zhenqing Wang
2013-01-01
Full Text Available The effect of nanosilica contents on mechanical properties of the epoxy matrix with some nanoparticle aggregations was studied in macroscopic experiments and nanoscale simulation, particularly with regard to the effective modulus and ultimate stress. Three analytical models were used to obtain the effective elastic modulus of nanoparticle-reinforced composites. Based on Monte-Carlo method, the special program for the automatic generation of 2D random distribution particles without overlapping was developed for nanocomposite modeling. Weight fractions of nanoparticles were converted to volume fractions, in order to coordinate the content unit in the simulation. In numerical analysis, the weak interface strengthening and toughening mechanism was adopted. Virtual crack closure technique (VCCT and extended finite element method (XFEM were used to simulate phenomena of nanoparticle debonding and matrix crack growth. Experimental and simulation results show a good agreement with each other. By way of simulation, the weak interface toughening and strengthening mechanism of nanocomposites is confirmed.
Sun, Xuemei; Chen, Tao; Yang, Zhibin; Peng, Huisheng
2013-02-19
To improve the practical application of carbon nanotubes, it is critically important to extend their physical properties from the nanoscale to the macroscopic scale. Recently, chemists aligned continuous multiwalled carbon nanotube (MWCNT) sheets and fibers to produce materials with high mechanical strength and electrical conductivity. This provided an important clue to the use of MWCNTs at macroscopic scale. Researchers have made multiple efforts to optimize this aligned structure and improve the properties of MWCNT sheets and fibers. In this Account, we briefly highlight the new synthetic methods and promising applications of aligned MWCNTs for organic optoelectronic materials and devices. We describe several general methods to prepare both horizontally and perpendicularly aligned MWCNT/polymer composite films, through an easy solution or melting process. The composite films exhibit the combined properties of being flexible, transparent, and electrically conductive. These advances may pave the way to new flexible substrates for organic solar cells, sensing devices, and other related applications. Similarly, we discuss the synthesis of aligned MWCNT/polymer composite fibers with interesting mechanical and electrical properties. Through these methods, we can incorporate a wide variety of soluble or fusible polymers for such composite films and fibers. In addition, we can later introduce functional polymers with conjugated backbones or side chains to improve the properties of these composite materials. In particular, cooperative interactions between aligned MWCNTs and polymers can produce novel properties that do not occur individually. Common examples of this are two types of responsive polymers, photodeformable azobenzene-containing liquid crystalline polymer and chromatic polydiacetylene. Aligning the structure of MWCNTs induces the orientation of azobenzene-containing mesogens, and produces photodeformable polymer elastomers. This strategy also solves the long
DEFF Research Database (Denmark)
Eitelberger, Johannes; Svensson, Staffan; Hofstetter, Karin
2011-01-01
transport when used to describe transient processes. A suitable modeling approach was found by distinguishing between the two phases of water in wood, namely bound water in the cell walls and water vapor in the lumens. Such models are capable of reproducing transient moisture transport processes......, but the physical origin of the coupling between the two phases remains unclear. In this paper, the physical background on the microscale is clarified and transformed into a comprehensive macroscopic description, ending up with a dual-scale model comprising three coupled differential equations for bound water...
A new methodology for determination of macroscopic transport parameters in drying porous media
Attari Moghaddam, A.; Kharaghani, A.; Tsotsas, E.; Prat, M.
2015-12-01
Two main approaches have been used to model the drying process: The first approach considers the partially saturated porous medium as a continuum and partial differential equations are used to describe the mass, momentum and energy balances of the fluid phases. The continuum-scale models (CM) obtained by this approach involve constitutive laws which require effective material properties, such as the diffusivity, permeability, and thermal conductivity which are often determined by experiments. The second approach considers the material at the pore scale, where the void space is represented by a network of pores (PN). Micro- or nanofluidics models used in each pore give rise to a large system of ordinary differential equations with degrees of freedom at each node of the pore network. In this work, the moisture transport coefficient (D), the pseudo desorption isotherm inside the network and at the evaporative surface are estimated from the post-processing of the three-dimensional pore network drying simulations for fifteen realizations of the pore space geometry from a given probability distribution. A slice sampling method is used in order to extract these parameters from PN simulations. The moisture transport coefficient obtained in this way is shown in Fig. 1a. The minimum of average D values demonstrates the transition between liquid dominated moisture transport region and vapor dominated moisture transport region; a similar behavior has been observed in previous experimental findings. A function is fitted to the average D values and then is fed into the non-linear moisture diffusion equation. The saturation profiles obtained from PN and CM simulations are shown in Fig. 1b. Figure 1: (a) extracted moisture transport coefficient during drying for fifteen realizations of the pore network, (b) average moisture profiles during drying obtained from PN and CM simulations.
Langevin dynamics encapsulate the microscopic and emergent macroscopic properties of midge swarms
2018-01-01
In contrast to bird flocks, fish schools and animal herds, midge swarms maintain cohesion but do not possess global order. High-speed imaging techniques are now revealing that these swarms have surprising properties. Here, I show that simple models found on the Langevin equation are consistent with this wealth of recent observations. The models predict correctly that large accelerations, exceeding 10 g, will be common and they predict correctly the coexistence of core condensed phases surrounded by dilute vapour phases. The models also provide new insights into the influence of environmental conditions on swarm dynamics. They predict that correlations between midges increase the strength of the effective force binding the swarm together. This may explain why such correlations are absent in laboratory swarms but present in natural swarms which contend with the wind and other disturbances. Finally, the models predict that swarms have fluid-like macroscopic mechanical properties and will slosh rather than slide back and forth after being abruptly displaced. This prediction offers a promising avenue for future experimentation that goes beyond current quasi-static testing which has revealed solid-like responses. PMID:29298958
Directory of Open Access Journals (Sweden)
Marta Galanti
2016-08-01
Full Text Available Describing particle transport at the macroscopic or mesoscopic level in non-ideal environments poses fundamental theoretical challenges in domains ranging from inter and intra-cellular transport in biology to diffusion in porous media. Yet, often the nature of the constraints coming from many-body interactions or reflecting a complex and confining environment are better understood and modeled at the microscopic level.In this paper we review the subtle link between microscopic exclusion processes and the mean-field equations that ensue from them in the continuum limit. We show that in an inhomogeneous medium, i.e. when jumps are controlled by site-dependent hopping rates, one can obtain three different nonlinear advection-diffusion equations in the continuum limit, suitable for describing transport in the presence of quenched disorder and external fields, depending on the particular rule embodying site inequivalence at the microscopic level. In a situation that might be termed point-like scenario, when particles are treated as point-like objects, the effect of crowding as imposed at the microscopic level manifests in the mean-field equations only if some degree of inhomogeneity is enforced into the model. Conversely, when interacting agents are assigned a finite size, under the more realistic extended crowding framework, exclusion constraints persist in the unbiased macroscopic representation.
Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.
Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald
2017-11-07
Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cheng, Penghui
2016-07-01
Fuel mixture formation and spray characteristics are crucial for the advancement of Gasoline Compression Ignition (GCI) engine. For investigations of spray characteristics, a high-pressure high-temperature spray chamber with constant volume has been designed, tested and commissioned at CCRC, KAUST. Back light illumination technique has been applied to investigate the macroscopic spray properties of an outwardly opening piezoelec- tric injector. Three parameters including injection pressure, ambient pressure, and ambient temperature have been involved. A total of 18 combinations of experimental conditions were tested under non-reactive conditions. Through qualitative analysis of spray morphology under different operating conditions, an apparent distinction of spray morphology has been noticed. Spray morphology and propagation have shown strong dependencies on ambient pressure and ambient tempera- ture while injection pressure has a negligible effect on spray shape. Increasingly compact and bushier spray patterns were observed in the cases of high ambient pressure due to in- creasing aerodynamic drag force on spray boundary. It should also be noted that ambient temperature plays a fairly important role in fuel evaporation rate. At 200 °C, oscillating and considerably short spray shape was produced. Also, circumferential ring-like vortices and distinctive string-like structures have been identified for the fuel spray exiting this hollow cone injector. It has been observed that high ambient pressure conditions (Pamb = 4 bar and 10.5 bar) are favorable to the vortices generation, which has also been reported in previous literature. The quantitative description of macroscopic spray properties reveals that ambient pres- sure and ambient temperature are found to be the most influential parameters on liquid penetration length. The rise of ambient pressure results in considerably shorter liquid pen- etration length. Ambient temperature also appears to be a very effective
Transport properties of liquids
International Nuclear Information System (INIS)
Rajagopal, K.
1976-07-01
The transport coefficients, self diffusivity, dinamical viscosity,total viscosity (i.e., the first and second viscosity coefficient) and thermal conductivity, are calculated at several temperatures and saturation pressures for the Argon, Krypton and Xenon liquids, from the Mie otential and the hard sphere theory. (L.C.) [pt
Macroscopic cross sections for analyzing the transport of neutral particles in plasmas
International Nuclear Information System (INIS)
Suzuki, Tadakazu; Taji, Yuukichi; Nakahara, Yasuaki
1975-05-01
Algorithms have been developed for calculating the ionization and charge exchange cross sections required for analyzing the neutral transport in plasmas. In our algorithms, the integration of the expression for reaction rate of neutrals with plasmas is performed by expanding the integrand with the use of polynomials. At present, multi-energy-group sets of the cross sections depending on plasma temperature and energy of neutrals can be prepared by means of Maxwellian averages over energy. Calculational results are printed out in the FIDO format. Some numerical examples are given for several forms of spatial distributions assumed for the plasma ion temperature and source neutral energy. (auth.)
Transport properties of molecular junctions
Zimbovskaya, Natalya A
2013-01-01
A comprehensive overview of the physical mechanisms that control electron transport and the characteristics of metal-molecule-metal (MMM) junctions is presented. As far as possible, methods and formalisms presented elsewhere to analyze electron transport through molecules are avoided. This title introduces basic concepts—a description of the electron transport through molecular junctions—and briefly describes relevant experimental methods. Theoretical methods commonly used to analyze the electron transport through molecules are presented. Various effects that manifest in the electron transport through MMMs, as well as the basics of density-functional theory and its applications to electronic structure calculations in molecules are presented. Nanoelectronic applications of molecular junctions and similar systems are discussed as well. Molecular electronics is a diverse and rapidly growing field. Transport Properties of Molecular Junctions presents an up-to-date survey of the field suitable for researchers ...
Rieger, R; Auregan, J C; Hoc, T
2018-03-01
The objective of the present study is to assess the mechanical behavior of trabecular bone based on microCT imaging and micro-finite-element analysis. In this way two methods are detailed: (i) direct determination of macroscopic elastic property of trabecular bone; (ii) inverse approach to assess mechanical properties of trabecular bone tissue. Thirty-five females and seven males (forty-two subjects) mean aged (±SD) 80±11.7 years from hospitals of Assistance publique-Hôpitaux de Paris (AP-HP) diagnosed with osteoporosis following a femoral neck fracture due to a fall from standing were included in this study. Fractured heads were collected during hip replacement surgery. Standardized bone cores were removed from the femoral head's equator by a trephine in a water bath. MicroCT images acquisition and analysis were performed with CTan ® software and bone volume fraction was then determined. Micro-finite-element simulations were per-formed using Abaqus 6.9-2 ® software in order to determine the macroscopic mechanical behaviour of the trabecular bone. After microCT acquisition, a longitudinal compression test was performed and the experimental macroscopic Young's Modulus was extracted. An inverse approach based on the whole trabecular bone's mechanical response and micro-finite-element analysis was performed to determine microscopic mechanical properties of trabecular bone. In the present study, elasticity of the tissue was shown to be similar to that of healthy tissue but with a lower yield stress. Classical histomorphometric analysis form microCT imaging associated with an inverse micro-finite-element method allowed to assess microscopic mechanical trabecular bone parameters. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Directory of Open Access Journals (Sweden)
R. A. Bosch
2008-09-01
Full Text Available In a two-stage compression and acceleration system, where each stage compresses a chirped bunch in a magnetic chicane, wakefields affect high-current bunches. The longitudinal wakes affect the macroscopic energy and current profiles of the compressed bunch and cause microbunching at short wavelengths. For macroscopic wavelengths, impedance formulas and tracking simulations show that the wakefields can be dominated by the resistive impedance of coherent edge radiation. For this case, we calculate the minimum initial bunch length that can be compressed without producing an upright tail in phase space and associated current spike. Formulas are also obtained for the jitter in the bunch arrival time downstream of the compressors that results from the bunch-to-bunch variation of current, energy, and chirp. Microbunching may occur at short wavelengths where the longitudinal space-charge wakes dominate or at longer wavelengths dominated by edge radiation. We model this range of wavelengths with frequency-dependent impedance before and after each stage of compression. The growth of current and energy modulations is described by analytic gain formulas that agree with simulations.
Padrino, Juan C.; Sprittles, James; Lockerby, Duncan
2017-11-01
Thermophoresis refers to the forces on and motions of objects caused by temperature gradients when these objects are exposed to rarefied gases. This phenomenon can occur when the ratio of the gas mean free path to the characteristic physical length scale (Knudsen number) is not negligible. In this work, we obtain the thermophoretic force on a rigid, heat-conducting spherical particle immersed in a rarefied gas resulting from a uniform temperature gradient imposed far from the sphere. To this end, we model the gas dynamics using the steady, linearized version of the so-called regularized 13-moment equations (R13). This set of equations, derived from the Boltzmann equation using the moment method, provides closures to the mass, momentum, and energy conservation laws in the form of constitutive, transport equations for the stress and heat flux that extends the Navier-Stokes-Fourier model to include rarefaction effects. Integration of the pressure and stress on the surface of the sphere leads to the net force as a function of the Knudsen number, dimensionless temperature gradient, and particle-to-gas thermal conductivity ratio. Results from this expression are compared with predictions from other moment-based models as well as from kinetic models. Supported in the UK by the Engineering and Physical Sciences Research Council (EP/N016602/1).
Directory of Open Access Journals (Sweden)
Schmidt K.-H.
2010-10-01
Full Text Available A new model description of fission-fragment yields and prompt neutron emission is developed. The yields of the different fission channels and their properties are attributed to the number of relevant states above the potential-energy landscape on the fission path at the moment of dynamical freeze-out, which is specific to the collective coordinate considered. The model combines well established ideas with novel concepts. The separability principle of macroscopic properties of the compound nucleus and microscopic properties of the fragments strongly reduces the number of model parameters and assures a high predictive power. The recently discovered energy-sorting mechanism in superfluid nuclear dynamics determines the sharing of intrinsic excitation energy at scission and the enhancement of even-odd structure in asymmetric splits.
TRANSPORT PROPERTIES FOR REFRIGERANT MIXTURES
Directory of Open Access Journals (Sweden)
V. Geller
2014-06-01
Full Text Available A set of models to predict viscosity and thermal conductivity of refrigerant mixtures is developed. A general model for viscosity and thermal conductivity use the three contributions sum form (the dilute-gas terms, the residual terms, and the liquid terms. The corresponding states model is recommended to predict the dense gas transport properties over a range of reduced density from 0 to 2. It is shown that the RHS model provides the most reliable results for the saturated-liquid and the compressed-liquid transport properties over a range of given temperatures from 0,5 to 0,95.
Transport Properties in Nuclear Pasta
Caplan, Matthew; Horowitz, Charles; Berry, Donald; da Silva Schneider, Andre
2016-09-01
At the base of the inner crust of neutron stars, where matter is near the nuclear saturation density, nuclear matter arranges itself into exotic shapes such as cylinders and slabs, called `nuclear pasta.' Lepton scattering from these structures may govern the transport properties of the inner crust; electron scattering from protons in the pasta determines the thermal and electrical conductivity, as well as the shear viscosity of the inner crust. These properties may vary in pasta structures which form at various densities, temperatures, and proton fractions. In this talk, we report on our calculations of lepton transport in nuclear pasta and the implication for neutron star observables.
Institute of Scientific and Technical Information of China (English)
Liang Kou; Yingjun Liu; Cheng Zhang; Le Shao; Zhanyuan Tian; Zengshe Deng; Chao Gao
2017-01-01
Nanocarbon-based materials, such as carbon nanotubes(CNTs) and graphene have been attached much attention by scientific and industrial community. As two representative nanocarbon materials, one-dimensional CNTs and twodimensional graphene both possess remarkable mechanical properties. In the past years, a large amount of work have been done by using CNTs or graphene as building blocks for constructing novel, macroscopic, mechanically strong fibrous materials. In this review, we summarize the assembly approaches of CNT-based fibers and graphene-based fibers in chronological order, respectively. The mechanical performances of these fibrous materials are compared, and the critical influences on the mechanical properties are discussed. Personal perspectives on the fabrication methods of CNT-and graphene-based fibers are further presented.
Probing the surface properties of a polymer glass with macroscopic friction
International Nuclear Information System (INIS)
Bureau, Lionel
2007-01-01
We show how macroscopic friction can be used as a sensitive probe of chain dynamics at the surface of a glassy polymer. We present experiments in which a smooth poly(methylmethacrylate) (PMMA) solid slides on flat surfaces presenting different densities of pinning sites available for polymer/substrate bond formation. These experiments indicate that: (i) at high pinning level, frictional dissipation occurs through the sudden flips of molecular-sized bistable regions localized in a nm-thick layer of confined chains, which responds to shear as an elasto-plastic solid, and (ii) in situations of weak pinning, dissipation appears to be governed by a process akin to that proposed for rubber friction. This suggests that some 'glass-to-rubber' transition occurs at the polymer surface when its interaction with the substrate goes from strong to weak. The temperature-dependence of friction provides further support for the presence of a nm-thick layer at the polymer surface, which exhibits a rubberlike response in situation of weak interaction with the countersurface. This behavior results from the interplay between viscous flow in this surface layer, and shear induced depinning of adsorbed surface chains. Moreover, a quantitative analysis of the results indicates that the pinning dynamics of polymer chains is controlled by localized β rotational motions at the interface
International Nuclear Information System (INIS)
Simonovski, Igor; Cizelj, Leon; Garrido, Oriol Costa
2013-01-01
Highlights: ► Grain boundary stiffness should be at least 1.5× higher that the stiffness of bulk grains. ► The ratio δ n pl /δ n el should be at least 400. ► Simultaneous increase of δ n el and δ n pl at constant grain boundary strength increases numerical stability but results in high percentage of damage grain boundary area. ► Shear contributes significantly to damage initialization. -- Abstract: In this work a model, based on a X-ray diffraction contrast tomography data of a stainless steel wire with a diameter of 0.4 mm is presented. As measured 3D grain geometry and crystallographic orientation of individual grains are directly transferred into a finite element model. Anisotropic elasticity and crystal plasticity constitutive laws are used for the bulk grain material while the grain boundaries are explicitly modeled using the cohesive zone approach. A parametric study on the effects of the grain boundary strength and other cohesive zone parameters on the macroscopic response and damaged grain boundary area of a polycrystalline aggregate is presented. Recommendations for the cohesive zone parameters values aimed at achieving low damaged grain boundary area during numerical tensile tests are given while at the same time taking into account the numerical stability of the simulations
Energy Technology Data Exchange (ETDEWEB)
Simonovski, Igor, E-mail: Igor.Simonovski@ec.europa.eu [European Commission, DG-JRC, Institute for Energy and Transport, P.O. Box 2, NL-1755 ZG Petten (Netherlands); Cizelj, Leon, E-mail: Leon.Cizelj@ijs.si [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia); Garrido, Oriol Costa, E-mail: Oriol.Costa@ijs.si [Jožef Stefan Institute, Reactor Engineering Division, Jamova Cesta 39, SI-1000 Ljubljana (Slovenia)
2013-08-15
Highlights: ► Grain boundary stiffness should be at least 1.5× higher that the stiffness of bulk grains. ► The ratio δ{sub n}{sup pl}/δ{sub n}{sup el} should be at least 400. ► Simultaneous increase of δ{sub n}{sup el} and δ{sub n}{sup pl} at constant grain boundary strength increases numerical stability but results in high percentage of damage grain boundary area. ► Shear contributes significantly to damage initialization. -- Abstract: In this work a model, based on a X-ray diffraction contrast tomography data of a stainless steel wire with a diameter of 0.4 mm is presented. As measured 3D grain geometry and crystallographic orientation of individual grains are directly transferred into a finite element model. Anisotropic elasticity and crystal plasticity constitutive laws are used for the bulk grain material while the grain boundaries are explicitly modeled using the cohesive zone approach. A parametric study on the effects of the grain boundary strength and other cohesive zone parameters on the macroscopic response and damaged grain boundary area of a polycrystalline aggregate is presented. Recommendations for the cohesive zone parameters values aimed at achieving low damaged grain boundary area during numerical tensile tests are given while at the same time taking into account the numerical stability of the simulations.
International Nuclear Information System (INIS)
Kuksa, L.V.; Arzamaskova, L.M.
2000-01-01
The results of studies on elastic and plastic properties of the single- and two-phase polycrystalline materials in dependence on the choice of the consideration scale level are presented. The experimental and theoretical methods, making it possible to study the role of the scale factor by consideration on the micro- and macrolevel and the peculiarities of forming the physicomechanical properties of the material as a whole, are developed. The dependences, characterizing the change of the physicomechanical properties by different scales of consideration, are obtained [ru
Magnetothermoelectric transport properties in phosphorene
Ma, R.; Liu, S. W.; Deng, M. X.; Sheng, L.; Xing, D. Y.; Sheng, D. N.
2018-02-01
We numerically study the electrical and thermoelectric transport properties in phosphorene in the presence of both a magnetic field and disorder. The quantized Hall conductivity is similar to that of a conventional two-dimensional electron gas, but the positions of all the Hall plateaus shift to the left due to the spectral asymmetry, in agreement with the experimental observations. The thermoelectric conductivity and Nernst signal exhibit remarkable anisotropy, and the thermopower is nearly isotropic. When a bias voltage is applied between top and bottom layers of phosphorene, both thermopower and Nernst signal are enhanced and their peak values become large.
Linear elastic properties derivation from microstructures representative of transport parameters.
Hoang, Minh Tan; Bonnet, Guy; Tuan Luu, Hoang; Perrot, Camille
2014-06-01
It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport parameters involved in the description of long wavelength acoustic wave propagation and dissipation through real foam samples may also be used as a standpoint to estimate their macroscopic linear elastic properties. Application of the model yields quantitative agreement between numerical homogenization results, available literature data, and experiments. Key contributions of this work include recognizing the importance of membranes and properties of the base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may be used to understand and predict not only the sound absorbing properties of porous materials but also their transmission loss, which is critical for sound insulation problems.
Trask, Erik Harold
The plasma parameters and characteristics of the Irvine Field-Reversed Configuration (IFRC) are summarized in this thesis. Particular emphasis is placed on the development of the different diagnostics used to make measurements in the experiment, as well as the measurements themselves. Whenever possible, actual measurements are used in lieu of theoretical or analytical fits to data. Analysis of magnetic probes (B-dots) comprises the bulk of what is known about the IFRC. From these B-dot probes, the magnetic field structure in a two dimensional plane at constant toroidal position has been determined, and has been found to be consistent with a field-reversed configuration. Peak reversed fields of approximately 250 Gauss have been observed. Further analyses have been developed to extract information from the magnetic field structure, including components of the electric field, the current density, and plasma pressure in the same two dimensional plane. Electric field magnitudes reach 600 V/m, concurrent with current densities greater than 105 Amps/m2 and thermal pressures over 200 Pa. Spectroscopic analysis of hydrogen lines has been done to make estimates of the electron temperature, while spectroscopic measurements of the Doppler broadening of the Halpha line31 have allowed an estimate of the ion temperature. Particle losses out one axial end plane measured by an array of Faraday cups quantify the how well the configuration traps particles. Spectral information derived from B-dot probes indicates that there is substantial power present at frequencies lying between the hydrogen cyclotron and mean gyrofrequency. These various measurements are used to find the following parameters that characterize the Irvine FRC: (1) Electromagnetic and thermal stored energies as functions of time. (2) Power balance, including input power from the field coils, resistive heating, power lost by particle transport and radiation, and particle and energy confinement times. (3) Strong
Magnetic Vortices in Nanodisks: What are the implications in macroscopic magnetic properties?
Gelvez Pedroza, Ciro Fernando; Patino, Edgar J.; Superconductivity; Nanodevices Laboratory Team
The study of nanodevices is of great importance nowadays. In particular nanodisks present extraordinary properties when varying their size, shape and materials. One of the most interesting ones has been the presence of magnetic vortices which are normally not present in continuous films or bulk materials. For that reason, these constitute of great interest in potential applications such as data storage, binary logic gates or nano-plasmonics. Although there are many high cost methods for fabrication we have chosen a low cost technique based on Colloidal Lithography. Using Polystyrene Nanoparticles (100nm) nanodisks of about 180 nm in diameter have been grown using Electron Beam evaporation. The fabrication technique requires a number of steps such as spin coating, oxygen plasma and Ion Beam Etching. The samples obtained with this method were Ti/Co/Nb nanodisks with various thickness of the Co layer. Micromagnetic simulations were carried out in OOMMF giving magnetic domain structure and hysteresis loops which were later compared with those obtained experimentally using Vibrating Sample Magnetometry. Simulation results suggest a critical thickness for the appearance of magnetic vortices, revealed by hysteresis loops with substantially lower coercive fields. Facultad de Ciencias,Vicerrectoria de Investigaciones - Universidad de los Andes.
Evolution of the macroscopic properties of two epoxy resins during ageing under irradiation
International Nuclear Information System (INIS)
Vignoud, L.
2001-11-01
In this study, the thermomechanical properties of two epoxy resins (DGEBA/TETA and DGEBA/DDM systems) are analysed as a function of the irradiation dose. The maximum conversion and reticulation is obtained by post-curing treatment. Irradiation by electrons results in a decrease of the glass transition temperature and of the elastic modulus in the rubbery region. These results can be interpreted invoking a destruction of the crosslinks and chains breaks within the resin. The Arrhenius diagrams obtained for the various doses shows that the cooperative mobility associated with the α relaxation becomes faster after the irradiation. On the contrary, more local mobility corresponding to the γ relaxation is also modified, but in a lesser extent. The stress-strain curves are also discussed. In uniaxial compression test, the plastic flow stress σ p decreases when the irradiation dose increases and this effect can largely be accounted for by a variation of T g . Post-irradiative effects are studied in inert atmosphere. Reticulation increases when the material is heated to a higher temperature than its T g . This effect suggest the presence of radical formed during irradiation. For DGEBA/TETA system, glass transition temperature T g shifts towards lowest temperatures. This shift increases the molecular mobility and enhances the physical ageing process at the ambient temperature. The results are well described by the quasi point defects theory. Direct effect of irradiation and physical ageing evolve with the scale parameter t 0 . This parameter characterizes the gap (in time and/or temperature) between the principal relaxation and simplest ones. By connecting t 0 to the amount of irradiation, it is possible to predict the modifications of the behaviour and to predict these evolutions for various amounts. (author)
Directory of Open Access Journals (Sweden)
A. Santos
2013-12-01
Full Text Available Aim of the study: The aim of the study is to assess the variation of pith eccentricity, heartwood proportion, latewood percentage and basic wood density along the stem of 45-year-old A. melanoxylon trees collected in four sites of Portugal, and investigate the eventual relationship between these variables.Area of study: Sites covering littoral north, mid interior north and centre interior of Portugal.Materials and methods: Four sites and five trees per site were selected in the Acacia melanoxylon Portuguese forest.One wood sample at each of six height levels per tree was collected in order to evaluate its basic density, pith eccentricity, heartwood and latewood proportions.Main results: The high variability of the wood macroscopic properties among trees from the same site regarding to the variation of the corresponding average properties along the stem is a key characteristic of the experimental data.As a consequence, a multiple linear regression model tested was not able to properly explain the wood basic density variation of the 120 wood samples analysed. In spite of this, the following trends could be recognized: (i excluding the base level, wood basic density moderately increased with tree level; (ii latewood proportion followed similar behaviour; (iii pith eccentricity was low; (iv heartwood proportion decreased markedly with tree height, from 70% at the base to 7% at the top.Research highlights: The high basic density, the relatively low variability along the stem and the low pith eccentricity enable us to anticipate good performance as raw material for the wood industry.Key words: Acacia melanoxylon; basic density; earlywood; latewood; heartwood; sapwood; pith eccentricity.
Transport properties of organic liquids
Latini, G; Passerini, G
2006-01-01
The liquid state is possibly the most difficult and intriguing state of matter to model. Organic liquids are required, mainly as working fluids, in almost all industrial activities and in most appliances (e.g. in air conditioning). Transport properties (namely dynamic viscosity and thermal conductivity) are possibly the most important properties for the design of devices and appliances. The aim of this book is to present both theoretical approaches and the latest experimental advances on the issue, and to merge them into a wider approach. It concentrates on applicability of models.This book is organized into five chapters plus a data collection. The chapters discuss the following topics: the liquid state and some well-know theories able to explain the behaviour of liquids; a rather complete review of models, based on theoretical assumptions and/or upon physical paradigms, to evaluate heat transfer in organic liquids; a review of several well-known semi-empirical methods to predict the thermal conductivity coe...
Transport properties of chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Puhr, Matthias
2017-04-26
Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume
International Nuclear Information System (INIS)
Salles, F.
2006-10-01
Smectites have interesting properties which make them potential candidates for engineered barriers in deep geological nuclear waste repository: low permeability, swelling and cations retention. The subject of this thesis consists in the determination of the relationship between hydration properties, swelling properties and cations mobility in relation with confinement properties of clayey materials. The aim is to understand and to predict the behaviour of water in smectites, following two research orientations: the mechanistic aspects and the energetic aspects of the hydration of smectites. We worked on the Na-Ca montmorillonite contained in the MX80 bentonite, with the exchanged homo ionic structure (saturated with alkaline cations and calcium cations). The approach crosses the various scales (microscopic, mesoscopic and macroscopic) and implied the study of the various components of the system (layer-cation-water), by using original experimental methods (thermo-poro-metry and electric conductivity for various relative humidities (RH) and electrostatic calculations. Initially, the dry state is defined by SCTA (scanning calorimetry thermal analysis). Then a classical characterization of the smectite porosity for the dry state is carried out using mercury intrusion and nitrogen adsorption. We evidenced the existence of a meso-porosity which radius varies from 2 to 10 nm depending on the compensating cation. The thermo-poro-metry and conductivity experiments performed at various hydration states made it possible to follow the increase in the pore sizes and the cations mobility as a function of the hydration state. We highlight in particular the existence of an osmotic mesoscopic swelling for low RH (approximately 50-60%RH for Li and Na). By combining the results of thermo-poro-metry, X-ray diffraction and electric conductivity, we are able to propose a complete hydration sequence for each cation, showing the crucial role of the compensating cation in the hydration of
Czech Academy of Sciences Publication Activity Database
Steiger, Kateřina; Mokrý, P.
2015-01-01
Roč. 24, č. 2 (2015), 025026-025026 ISSN 0964-1726 R&D Projects: GA MŠk(CZ) LO1206; GA ČR GA13-10365S Institutional support: RVO:61389021 Keywords : piezoelectric macro-fiber composite actuator * macroscopic material properties * finite element analysis (FEA) Subject RIV: BI - Acoustics Impact factor: 2.769, year: 2015 http://iopscience.iop.org/0964-1726
Transport properties of fission product vapors
International Nuclear Information System (INIS)
Im, K.H.; Ahluwalia, R.K.
1983-07-01
Kinetic theory of gases is used to calculate the transport properties of fission product vapors in a steam and hydrogen environment. Provided in tabular form is diffusivity of steam and hydrogen, viscosity and thermal conductivity of the gaseous mixture, and diffusivity of cesium iodide, cesium hydroxide, diatomic tellurium and tellurium dioxide. These transport properties are required in determining the thermal-hydraulics of and fission product transport in light water reactors
Transport properties of dense matter
International Nuclear Information System (INIS)
Itoh, Naoki; Mitake, Shinichi; Iyetomi, Hiroshi; Ichimaru, Setsuo
1983-01-01
Transport coefficients, electrical and thermal conductivities in particular, are essential physical quantities for the theories of stellar structure. Since the discoveries of pulsars and X-ray stars, an accurate evaluation of the transport coefficients in the dense matter has become indispensable to the quantitative understanding of the observed neutron stars. The authors present improved calculations of the electrical and thermal conductivities of the dense matter in the liquid metal phase, appropriate to white dwarfs and neutron stars. (Auth.)
Transport properties of alumina nanofluids
International Nuclear Information System (INIS)
Wong, Kau-Fui Vincent; Kurma, Tarun
2008-01-01
Recent studies have showed that nanofluids have significantly greater thermal conductivity compared to their base fluids. Large surface area to volume ratio and certain effects of Brownian motion of nanoparticles are believed to be the main factors for the significant increase in the thermal conductivity of nanofluids. In this paper all three transport properties, namely thermal conductivity, electrical conductivity and viscosity, were studied for alumina nanofluid (aluminum oxide nanoparticles in water). Experiments were performed both as a function of volumetric concentration (3-8%) and temperature (2-50 deg. C). Alumina nanoparticles with a mean diameter of 36 nm were dispersed in water. The effect of particle size was not studied. The transient hot wire method as described by Nagaska and Nagashima for electrically conducting fluids was used to test the thermal conductivity. In this work, an insulated platinum wire of 0.003 inch diameter was used. Initial calibration was performed using de-ionized water and the resulting data was within 2.5% of standard thermal conductivity values for water. The thermal conductivity of alumina nanofluid increased with both increase in temperature and concentration. A maximum thermal conductivity of 0.7351 W m -1 K -1 was recorded for an 8.47% volume concentration of alumina nanoparticles at 46.6 deg. C. The effective thermal conductivity at this concentration and temperature was observed to be 1.1501, which translates to an increase in thermal conductivity by 22% when compared to water at room temperature. Alumina being a good conductor of electricity, alumina nanofluid displays an increasing trend in electrical conductivity as volumetric concentration increases. A microprocessor-based conductivity/TDS meter was used to perform the electrical conductivity experiments. After carefully calibrating the conductivity meter's glass probe with platinum tip, using a standard potassium chloride solution, readings were taken at various
DEFF Research Database (Denmark)
Yeghiazarian, L.L.; Walker, M.J.; Binning, Philip John
2006-01-01
is important for accurate risk assessment and prediction of water contamination events. This paper presents a stochastic Markov model of microorganism transport, with distinct states of microorganism behavior capturing the microbial partitioning between solid and aqueous phases in runoff and soil surface...
Nanofluidics thermodynamic and transport properties
Michaelides, Efstathios E (Stathis)
2014-01-01
This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...
Faizrahnemoon, Mahsa; Schlote, Arieh; Maggi, Lorenzo; Crisostomi, Emanuele; Shorten, Robert
2015-11-01
This paper describes a Markov-chain-based approach to modelling multi-modal transportation networks. An advantage of the model is the ability to accommodate complex dynamics and handle huge amounts of data. The transition matrix of the Markov chain is built and the model is validated using the data extracted from a traffic simulator. A realistic test-case using multi-modal data from the city of London is given to further support the ability of the proposed methodology to handle big quantities of data. Then, we use the Markov chain as a control tool to improve the overall efficiency of a transportation network, and some practical examples are described to illustrate the potentials of the approach.
Transport Properties of Nanostructured Graphene
DEFF Research Database (Denmark)
Jauho, Antti-Pekka
2017-01-01
Despite of its many wonderful properties, pristine graphene has one major drawback: it does not have a band gap, which complicates its applications in electronic devices. Many routes have been suggested to overcome this difficulty, such as cutting graphene into nanoribbons, using chemical methods...... device operation. In this talk I elaborate these ideas and review the state-of-the-art both from the theoretical and the experimental points of view. I also introduce two new ideas: (1) triangular antidots, and (2) nanobubbles formed in graphene. Both of these nanostructuring methods are predicted...
Nuclear physics: Macroscopic aspects
International Nuclear Information System (INIS)
Swiatecki, W.J.
1993-12-01
A systematic macroscopic, leptodermous approach to nuclear statics and dynamics is described, based formally on the assumptions ℎ → 0 and b/R << 1, where b is the surface diffuseness and R the nuclear radius. The resulting static model of shell-corrected nuclear binding energies and deformabilities is accurate to better than 1 part in a thousand and yields a firm determination of the principal properties of the nuclear fluid. As regards dynamics, the above approach suggests that nuclear shape evolutions will often be dominated by dissipation, but quantitative comparisons with experimental data are more difficult than in the case of statics. In its simplest liquid drop version the model exhibits interesting formal connections to the classic astronomical problem of rotating gravitating masses
Transport properties of quasi-free Fermions
Aschbacher, W; Pautrat, Y; Pillet, C A
2006-01-01
Using the scattering approach to the construction of Non-Equilibrium Steady States proposed by Ruelle we study the transport properties of systems of independent electrons. We show that Landauer-Buttiker and Green-Kubo formulas hold under very general conditions.
Transport properties at 3C-SiC interfaces
Eriksson, Gustav Jens Peter
2011-01-01
For years cubic (3C) silicon carbide (SiC) has been believed to be a very promising wide bandgap semiconductor for high frequency and high power electronics. However, 3C-SiC is fraught with large concentrations of various defects, which have so far hindered the achievement of the predicted properties at a macroscopic level. These defects have properties that are inherently nanoscale and that will have a strong influence on the electrical behavior of the material, particularly at interfaces c...
International Nuclear Information System (INIS)
Yoneda, A; Sohag, F H
2010-01-01
The bulk physical properties of composite systems are difficult to predict - even when the properties of the constituent materials in the system are well known. We conducted a finite-element method simulation to examine the inclusion effect by substituting an inclusion phase (second phase) into a host phase (first phase). We have organized the simulation results as a function of the elasticity of host and inclusion phases. In this procedure, special attention was paid to the initial change of elastic constants as the inclusion volume ratio was varied. To accomplish this, we introduced a new parameter D ij defined as the derivatives of the normalized stiffness elastic constant over the inclusion volume ratio. We succeeded in obtaining useful systematic formulations for D ij . These formulations are expected to be applicable to the study of composite systems in many disciplines, such as geophysics, mechanics, material engineering, and biology. The present results provide much more effective constraints on the physical properties of composite systems, like rocks, than traditional methods, such as the Voigt-Reuss bounds.
Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium
Hunt, J. L.; Boney, L. R.
1973-01-01
Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.
Directory of Open Access Journals (Sweden)
Andrej Kastrin
Full Text Available Concept associations can be represented by a network that consists of a set of nodes representing concepts and a set of edges representing their relationships. Complex networks exhibit some common topological features including small diameter, high degree of clustering, power-law degree distribution, and modularity. We investigated the topological properties of a network constructed from co-occurrences between MeSH descriptors in the MEDLINE database. We conducted the analysis on two networks, one constructed from all MeSH descriptors and another using only major descriptors. Network reduction was performed using the Pearson's chi-square test for independence. To characterize topological properties of the network we adopted some specific measures, including diameter, average path length, clustering coefficient, and degree distribution. For the full MeSH network the average path length was 1.95 with a diameter of three edges and clustering coefficient of 0.26. The Kolmogorov-Smirnov test rejects the power law as a plausible model for degree distribution. For the major MeSH network the average path length was 2.63 edges with a diameter of seven edges and clustering coefficient of 0.15. The Kolmogorov-Smirnov test failed to reject the power law as a plausible model. The power-law exponent was 5.07. In both networks it was evident that nodes with a lower degree exhibit higher clustering than those with a higher degree. After simulated attack, where we removed 10% of nodes with the highest degrees, the giant component of each of the two networks contains about 90% of all nodes. Because of small average path length and high degree of clustering the MeSH network is small-world. A power-law distribution is not a plausible model for the degree distribution. The network is highly modular, highly resistant to targeted and random attack and with minimal dissortativity.
Thermodynamic and transport properties of liquid gallium
International Nuclear Information System (INIS)
Park, H.Y.; Jhon, M.S.
1982-01-01
The significant structure theory of liquids has been successfully applied to liquid gallium. In this work, we have assumed that two structures exist simultaneously in liquid gallium. One is considerec as loosely close packed β-Ga-like structure and the other is remainder of solid α-Ga or α-Ga-like structure. This two structural model is introduced to construct the liquid partition function. Using the partition function, the thermodynamic and transport properties are calculated ever a wide temperature range. The calculated results are quite satisfactory when compared with the experimental results. (Author)
Iglesias, Daniel; Senokos, Evgeny; Alemán, Belén; Cabana, Laura; Navío, Cristina; Marcilla, Rebeca; Prato, Maurizio; Vilatela, Juan J; Marchesan, Silvia
2018-02-14
The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.
TRANSPORT PROPERTIES OF THE STRONGLY CORRELATED SYSTEMS
Directory of Open Access Journals (Sweden)
T.Domanski
2004-01-01
Full Text Available The transport properties of various systems are studied here in the context of three different models. These are: - the disordered Hubbard model applicable to correlated binary alloys with a general disorder, - the Anderson model used in describing the Kondo physics of a quantum dot connected to the external superconducting leads, and - the Ranninger-Robaszkiewicz model applied to the study of optical properties of the system with preformed electron pairs above the temperature of transition to the superconducting state. We calculate the density of states, specific heat, the Wilson ratio and conductivity of the correlated binary alloy with off-diagonal disorder. We investigate the conditions under which the Kondo peak appears in the density of states and in the conductance of a dot coupled to the external superconducting leads. We analyze the effect of the pseudogap on the optical spectra in the high temperature superconductors described by the boson-fermion model.
Electronic transport properties of phenylacetylene molecular junctions
International Nuclear Information System (INIS)
Liu Wen; Cheng Jie; Yan Cui-Xia; Li Hai-Hong; Wang Yong-Juan; Liu De-Sheng
2011-01-01
Electronic transport properties of a kind of phenylacetylene compound— (4-mercaptophenyl)-phenylacetylene are calculated by the first-principles method in the framework of density functional theory and the nonequilibrium Green's function formalism. The molecular junction shows an obvious rectifying behaviour at a bias voltage larger than 1.0 V. The rectification effect is attributed to the asymmetry of the interface contacts. Moreover, at a bias voltage larger than 2.0 V, which is not referred to in a relevant experiment [Fang L, Park J Y, Ma H, Jen A K Y and Salmeron M 2007 Langmuir 23 11522], we find a negative differential resistance phenomenon. The negative differential resistance effect may originate from the change of the delocalization degree of the molecular orbitals induced by the bias. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Electron Transport Properties of Ge nanowires
Hanrath, Tobias; Khondaker, Saiful I.; Yao, Zhen; Korgel, Brian A.
2003-03-01
Electron Transport Properties of Ge nanowires Tobias Hanrath*, Saiful I. Khondaker, Zhen Yao, Brian A. Korgel* *Dept. of Chemical Engineering, Dept. of Physics, Texas Materials Institute, and Center for Nano- and Molecular Science and Technology University of Texas at Austin, Austin, Texas 78712-1062 e-mail: korgel@mail.che.utexas.edu Germanium (Ge) nanowires with diameters ranging from 6 to 50 nm and several micrometer in length were grown via a supercritical fluid-liquid-solid synthesis. Parallel electron energy loss spectroscopy (PEELS) was employed to study the band structure and electron density in the Ge nanowires. The observed increase in plasmon peak energy and peak width with decreasing nanowire diameter is attributed to quantum confinement effects. For electrical characterization, Ge nanowires were deposited onto a patterned Si/SiO2 substrate. E-beam lithography was then used to form electrode contacts to individual nanowires. The influence of nanowire diameter, surface chemistry and crystallographic defects on electron transport properties were investigated and the comparison of Ge nanowire conductivity with respect to bulk, intrinsic Ge will be presented.
Optical and transport properties of polyaniline films
International Nuclear Information System (INIS)
Tzamalis, Georgios
2002-01-01
This thesis presents the results of a comprehensive study on the transport and optical properties of polyaniline (PANI) films. The films are derived by protonation (doping) of the emeraldine base form of polyaniline, as synthesized in Durham, with either 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA) or 10-camphorsulfonic acid. Thus, two distinct PANI systems are obtained: PANI-CSA and PANI-AMPSA. The variation of the doping level can affect the metallic properties of the final system, so that samples close to the boundary as well as samples at either side of a disorder induced metal-insulator can be obtained. The relation between the doping level and the degree of disorder, along with the existence of an inherently metallic behaviour in PANI, are investigated through a series of experiments. Temperature dependent dc conductivity measurements ranging from 10-295 K are performed using a closed loop helium cryostat under dynamic vacuum (∼10 -5 mbar). From the conductivity data curves, typical fingerprints of the metallic behaviour are detected for certain samples and an initial estimate of the degree of disorder is implicitly attained. More specific information regarding the microscopic contributions to the transport mechanisms is obtained via low temperature (down to 1.5 K) magnetoconductance measurements on selected samples. The magnetic field dependence of conductivity for fields up to 14 T is measured and the suitability of the localization-interaction model for the understanding of the transport mechanism in PANI is examined. Infrared reflectivity (20-9000 cm -1 ) measurements on samples of both PANI systems are performed. The experimental configuration permits the determination of the sample's absolute reflectivity. The optical constants are deduced from Kramers-Kronig analysis of the reflectivity data. Typical features of metallic behaviour are examined and analysed in the context of the localization modified Drude model. The results are shown to be
Electronic transport properties of (fluorinated) metal phthalocyanine
Fadlallah, M M; Eckern, U; Romero, A H; Schwingenschlö gl, Udo
2015-01-01
The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.
Electronic transport properties of (fluorinated) metal phthalocyanine
Fadlallah, M M
2015-12-21
The magnetic and transport properties of the metal phthalocyanine (MPc) and F16MPc (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn and Ag) families of molecules in contact with S–Au wires are investigated by density functional theory within the local density approximation, including local electronic correlations on the central metal atom. The magnetic moments are found to be considerably modified under fluorination. In addition, they do not depend exclusively on the configuration of the outer electronic shell of the central metal atom (as in isolated MPc and F16MPc) but also on the interaction with the leads. Good agreement between the calculated conductance and experimental results is obtained. For M = Ag, a high spin filter efficiency and conductance is observed, giving rise to a potentially high sensitivity for chemical sensor applications.
Electronic and transport properties of kinked graphene
DEFF Research Database (Denmark)
Rasmussen, Jesper Toft; Gunst, Tue; Bøggild, Peter
2013-01-01
Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction for the ads......Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction...... for the adsorption of atomic hydrogen at linear bends in graphene. We find a significant barrier lowering (≈15%) for realistic radii of curvature (≈20 Å) and that adsorption along the linear bend leads to a stable linear kink. We compute the electronic transport properties of individual and multiple kink lines......, and demonstrate how these act as efficient barriers for electron transport. In particular, two parallel kink lines form a graphene pseudo-nanoribbon structure with a semimetallic/semiconducting electronic structure closely related to the corresponding isolated ribbons; the ribbon band gap translates...
Macroscopic theory of superconductors
International Nuclear Information System (INIS)
Carr, W.J. Jr.
1981-01-01
A macroscopic theory for bulk superconductors is developed in the framework of the theory for other magnetic materials, where ''magnetization'' current is separated from ''free'' current on the basis of scale. This contrasts with the usual separation into equilibrium and nonequilibrium currents. In the present approach magnetization, on a large macroscopic scale, results from the vortex current, while the Meissner current and other surface currents are surface contributions to the Maxwell j. The results are important for the development of thermodynamics in type-II superconductors. The advantage of the description developed here is that magnetization becomes a local concept and its associated magnetic field can be given physical meaning
Macroscopic magnetic Self assembly
Löthman, Per Arvid
2018-01-01
Exploring the macroscopic scale's similarities to the microscale is part and parcel of this thesis as reflected in the research question: what can we learn about the microscopic scale by studying the macroscale? Investigations of the environment in which the self-assembly takes place, and the
Yan, Zhifeng; Liu, Chongxuan; Liu, Yuanyuan; Bailey, Vanessa L.
2017-11-01
Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.
Transport properties through graphene grain boundaries: strain effects versus lattice symmetry
Hung Nguyen, V.; Hoang, Trinh X.; Dollfus, P.; Charlier, J.-C.
2016-06-01
As most materials available at the macroscopic scale, graphene samples usually appear in a polycrystalline form and thus contain grain boundaries. In the present work, the effect of uniaxial strain on the electronic transport properties through graphene grain boundaries is investigated using atomistic simulations. A systematic picture of transport properties with respect to the strain and lattice symmetry of graphene domains on both sides of the boundary is provided. In particular, it is shown that strain engineering can be used to open a finite transport gap in all graphene systems where the two domains are arranged in different orientations. This gap value is found to depend on the strain magnitude, on the strain direction and on the lattice symmetry of graphene domains. By choosing appropriately the strain direction, a large transport gap of a few hundred meV can be achieved when applying a small strain of only a few percents. For a specific class of graphene grain boundary systems, strain engineering can also be used to reduce the scattering on defects and thus to significantly enhance the conductance. With a large strain-induced gap, these graphene heterostructures are proposed to be promising candidates for highly sensitive strain sensors, flexible electronic devices and p-n junctions with non-linear I-V characteristics.
International Nuclear Information System (INIS)
Varloteaux, C.
2012-01-01
The geo-sequestration of carbon dioxide (CO 2 ) is an attractive option to reduce the emission of greenhouse gases. Within carbonate reservoirs, acidification of brine in place can occur during CO 2 injection. This acidification leads to mineral dissolution which can modify the transport properties of a solute in porous media. The aim of this study is to quantify the impact of reactive transport on a solute distribution and on the structural modification induced by the reaction from the pore to the reservoir scale. This study is focused on reactive transport problem in the case of single phase flow in the limit of long time. To do so, we used a multi-scale up-scaling method that takes into account (i) the local scale, where flow, reaction and transport are known; (ii) the pore scale, where the reactive transport is addressed by using averaged formulation of the local equations; (iii) the Darcy scale (also called core scale), where the structure of the rock is taken into account by using a three-dimensions network of pore-bodies connected by pore-throats; and (iv) the reservoir scale, where physical phenomenon, within each cell of the reservoir model, are taken into account by introducing macroscopic coefficients deduced from the study of these phenomenon at the Darcy scale, such as the permeability, the apparent reaction rate, the solute apparent velocity and dispersion. (author)
Macroscopic Optomechanically Induced Transparency
Pate, Jacob; Castelli, Alessandro; Martinez, Luis; Thompson, Johnathon; Chiao, Ray; Sharping, Jay
Optomechanically induced transparency (OMIT) is an effect wherein the spectrum of a cavity resonance is modified through interference between coupled excitation pathways. In this work we investigate a macroscopic, 3D microwave, superconducting radio frequency (SRF) cavity incorporating a niobium-coated, silicon-nitride membrane as the flexible boundary. The boundary supports acoustic vibrational resonances, which lead to coupling with the microwave resonances of the SRF cavity. The theoretical development and physical understanding of OMIT for our macroscopic SRF cavity is the same as that for other recently-reported OMIT systems despite vastly different optomechanical coupling factors and device sizes. Our mechanical oscillator has a coupling factor of g0 = 2 π . 1 ×10-5 Hz and is roughly 38 mm in diameter. The Q = 5 ×107 for the SRF cavity allows probing of optomechanical effects in the resolved sideband regime.
Superposition and macroscopic observation
International Nuclear Information System (INIS)
Cartwright, N.D.
1976-01-01
The principle of superposition has long plagued the quantum mechanics of macroscopic bodies. In at least one well-known situation - that of measurement - quantum mechanics predicts a superposition. It is customary to try to reconcile macroscopic reality and quantum mechanics by reducing the superposition to a mixture. To establish consistency with quantum mechanics, values for the apparatus after a measurement are to be distributed in the way predicted by the superposition. The distributions observed, however, are those of the mixture. The statistical predictions of quantum mechanics, it appears, are not borne out by observation in macroscopic situations. It has been shown that, insofar as specific ergodic hypotheses apply to the apparatus after the interaction, the superposition which evolves is experimentally indistinguishable from the corresponding mixture. In this paper an idealized model of the measuring situation is presented in which this consistency can be demonstrated. It includes a simplified version of the measurement solution proposed by Daneri, Loinger, and Prosperi (1962). The model should make clear the kind of statistical evidence required to carry of this approach, and the role of the ergodic hypotheses assumed. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Grachev, Valentin G.; Vrable, Ian A.; Malovichko, Galina I. [Physics Department, Montana State University, Bozeman, Montana 59717 (United States); Pritula, Igor M.; Bezkrovnaya, Olga N.; Kosinova, Anna V. [Institute for Single Crystals, NAS of Ukraine, Kharkiv (Ukraine); Yatsyna, Vasyl O.; Gayvoronsky, Vladimir Ya. [Institute of Physics, NAS of Ukraine, 03680 Kiev (Ukraine)
2012-07-01
Results from the successful growth of high quality KH{sub 2}PO{sub 4} (KDP) crystals with incorporated TiO{sub 2} anatase nanoparticles and the characterization of these crystals using several complementary methods are presented. The study allowed the nature and distribution of macroscopic and microscopic defects in the KDP:TiO{sub 2} crystals to be clarified. The relationship between these defects and the distribution of TiO{sub 2} nanoparticles, and the influence of incorporated nanoparticles on the nonlinear optical properties of composite crystals in comparison with pure crystals were also elucidated. Visual observations, transmission and scanning electron microscopy have shown that the anatase nanoparticles were captured mainly by the pyramidal growth sector and, to a considerably lesser extent, by the prismatic growth sector. Energy dispersive x-ray analysis was able to confirm that the growth layer stacks contain the TiO{sub 2} particles. Fourier transformation infrared spectra have clearly shown the presence of an absorption band at about 800 cm{sup -1} in both KDP:TiO{sub 2} and TiO{sub 2}, and the disappearance of the band, associated with hydroxyl OH{sup -} groups on the TiO{sub 2} surface in KDP:TiO{sub 2}. Significant variation in the imaginary and real parts of the cubic nonlinear optical susceptibilities and refractive index changes at continuous wave excitation were found in prism and pyramid parts of pure KDP and KDP:TiO{sub 2} samples. Deciphering complicated electron paramagnetic resonance spectra in KDP:TiO{sub 2} and comparison with published data permitted the identification of paramagnetic defects along with their associated g-factors and zero-field splitting parameters (in some cases for the first time). It was found that the dominant lines belong to four different centers Fe{sub A}{sup 3+}, Fe{sub B}{sup 3+}, Cr{sub R}{sup 3+}, and Cr{sub GB}{sup 3+}. From analysis of line intensities it was concluded that the concentration of intrinsic
Electronic transport properties of nanostructured MnSi-films
Schroeter, D.; Steinki, N.; Scarioni, A. Fernández; Schumacher, H. W.; Süllow, S.; Menzel, D.
2018-05-01
MnSi, which crystallizes in the cubic B20 structure, shows intriguing magnetic properties involving the existence of skyrmions in the magnetic phase diagram. Bulk MnSi has been intensively investigated and thoroughly characterized, in contrast to MnSi thin film, which exhibits widely varying properties in particular with respect to electronic transport. In this situation, we have set out to reinvestigate the transport properties in MnSi thin films by means of studying nanostructure samples. In particular, Hall geometry nanostructures were produced to determine the intrinsic transport properties.
Current Transport Properties of Monolayer Graphene/n-Si Schottky Diodes
Pathak, C. S.; Garg, Manjari; Singh, J. P.; Singh, R.
2018-05-01
The present work reports on the fabrication and the detailed macroscopic and nanoscale electrical characteristics of monolayer graphene/n-Si Schottky diodes. The temperature dependent electrical transport properties of monolayer graphene/n-Si Schottky diodes were investigated. Nanoscale electrical characterizations were carried out using Kelvin probe force microscopy and conducting atomic force microscopy. Most the values of ideality factor and barrier height are found to be in the range of 2.0–4.4 and 0.50–0.70 eV for monolayer graphene/n-Si nanoscale Schottky contacts. The tunneling of electrons is found to be responsible for the high value of ideality factor for nanoscale Schottky contacts.
Transport properties and specific heat of UTe and USb
International Nuclear Information System (INIS)
Ochiai, A.; Suzuki, Y.; Shikama, T.; Suzuki, K.; Hotta, E.; Haga, Y.; Suzuki, T.
1994-01-01
Uranium monochalcogenides and monopnictides crystallize in the NaCl-type structure and exhibit ferromagnetic and antiferromagnetic order, respectively. These series reveal interesting properties such as Kondo behavior of UTe. However, such interesting properties are much sample dependent. We grew single crystals of USb and UTe with high purity using the Bridgman technique, and measured transport properties and specific heat. ((orig.))
Macroscopic effects in attosecond pulse generation
International Nuclear Information System (INIS)
Ruchon, T; Varju, K; Mansten, E; Swoboda, M; L'Huillier, A; Hauri, C P; Lopez-Martens, R
2008-01-01
We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium
Macroscopic effects in attosecond pulse generation
Energy Technology Data Exchange (ETDEWEB)
Ruchon, T; Varju, K; Mansten, E; Swoboda, M; L' Huillier, A [Department of Physics, Lund University, PO Box 118, SE-221 00 Lund (Sweden); Hauri, C P; Lopez-Martens, R [Laboratoire d' Optique Appliquee, Ecole Nationale Superieure des Techniques Avancees (ENSTA)-Ecole Polytechnique CNRS UMR 7639, 91761 Palaiseau (France)], E-mail: anne.lhuillier@fysik.lth.se
2008-02-15
We examine how the generation and propagation of high-order harmonics in a partly ionized gas medium affect their strength and synchronization. The temporal properties of the resulting attosecond pulses generated in long gas targets can be significantly influenced by macroscopic effects, in particular by the intensity in the medium and the degree of ionization which control the dispersion. Under some conditions, the use of gas targets longer than the absorption length can lead to the generation of compressed attosecond pulses. We show these macroscopic effects experimentally, using a 6 mm-long argon-filled gas cell as the generating medium.
Transport properties site descriptive model. Guidelines for evaluation and modelling
International Nuclear Information System (INIS)
Berglund, Sten; Selroos, Jan-Olof
2004-04-01
This report describes a strategy for the development of Transport Properties Site Descriptive Models within the SKB Site Investigation programme. Similar reports have been produced for the other disciplines in the site descriptive modelling (Geology, Hydrogeology, Hydrogeochemistry, Rock mechanics, Thermal properties, and Surface ecosystems). These reports are intended to guide the site descriptive modelling, but also to provide the authorities with an overview of modelling work that will be performed. The site descriptive modelling of transport properties is presented in this report and in the associated 'Strategy for the use of laboratory methods in the site investigations programme for the transport properties of the rock', which describes laboratory measurements and data evaluations. Specifically, the objectives of the present report are to: Present a description that gives an overview of the strategy for developing Site Descriptive Models, and which sets the transport modelling into this general context. Provide a structure for developing Transport Properties Site Descriptive Models that facilitates efficient modelling and comparisons between different sites. Provide guidelines on specific modelling issues where methodological consistency is judged to be of special importance, or where there is no general consensus on the modelling approach. The objectives of the site descriptive modelling process and the resulting Transport Properties Site Descriptive Models are to: Provide transport parameters for Safety Assessment. Describe the geoscientific basis for the transport model, including the qualitative and quantitative data that are of importance for the assessment of uncertainties and confidence in the transport description, and for the understanding of the processes at the sites. Provide transport parameters for use within other discipline-specific programmes. Contribute to the integrated evaluation of the investigated sites. The site descriptive modelling of
Low-temperature localization in the transport properties of self ...
Indian Academy of Sciences (India)
Transport properties; scattering mechanisms; low temperature localization. 1. Introduction ... Mn4+ appears in these compounds due to the La defi- ciency, leading ... microscopy (SEM) image in figure 1 shows the size and mor- phology of the ...
Density functional theory calculations of charge transport properties ...
Indian Academy of Sciences (India)
ZIRAN CHEN
2017-08-04
Aug 4, 2017 ... properties of 'plate-like' coronene topological structures ... Keywords. Organic semiconductors; density functional theory; charge carrier mobility; ambipolar transport; ..... nology Department of Sichuan Province (Grant Number.
Computer program for calculating thermodynamic and transport properties of fluids
Hendricks, R. C.; Braon, A. K.; Peller, I. C.
1975-01-01
Computer code has been developed to provide thermodynamic and transport properties of liquid argon, carbon dioxide, carbon monoxide, fluorine, helium, methane, neon, nitrogen, oxygen, and parahydrogen. Equation of state and transport coefficients are updated and other fluids added as new material becomes available.
Molecular properties of bacterial multidrug transporters
Putman, M; van Veen, HW; Konings, WN
2000-01-01
One of the mechanisms that bacteria utilize to evade the toxic effects of antibiotics is the active extrusion of structurally unrelated drugs from the cell. Both intrinsic and acquired multidrug transporters play an important role in antibiotic resistance of several pathogens, including Neisseria
Energy Technology Data Exchange (ETDEWEB)
Giorgi, R.; Turtu' , S. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Innovazione; Ascarelli, P. [Consiglio Nazionale delle Ricerche, Montelibretti, RM (Italy). Ist. di Metodologie Inorganiche Avanzate
1999-07-01
In this work the electronic properties and the composition of the three layers (diffusive, catalytic and outermost) are studied separately. In the first part, an anomalous behaviour of the photoemission peaks from the diffusive layer has been evidenced and correlated with the macroscopic electronic conductivity. In the second part, the electronic properties of the PT clusters are compared with the macroscopic electron conductivity. In the second part, the electronic properties of the PT clusters are compared with those of PT bulk, as a function of thermal treatment and after half-cell measurements. A correlation of the binding energy, asymmetry and width of the peaks with the different status of the metal has been attempted. [Italian] Il lavoro consiste di due parti: l'una dedicata allo studio delle caratteristiche dello strato di supporto e diffusivo, l'altra allo studio dello strato catalizzatore. Nella prima parte, la presenza anomala negli spettri XPS viene messa in relazione con la conducibilita' elettronica delle nanoparticelle metalliche in funzione delle condizioni di preparazione degli elettrodi e delle simulazioni di funzionamento. Sono messe in evidenza le problematiche connesse all'interpretazione degli spettri di fotoemissione da sistemi costituiti da particelle nanometriche, intermedi tra la condizione di atomo isolato e quella del solido, in cui gli effetti di dimensione svolgono un ruolo importante nel determinare risposte diverse ed inaspettate rispetto al comportamento del metallo massivo.
Calculations of the transport properties within the PAW formalism
Energy Technology Data Exchange (ETDEWEB)
Mazevet, S.; Torrent, M.; Recoules, V.; Jollet, F. [CEA Bruyeres-le-Chatel, DIF, 91 (France)
2010-07-01
We implemented the calculation of the transport properties within the PAW formalism in the ABINIT code. This feature allows the calculation of the electrical and optical properties, including the XANES spectrum, as well as the electronic contribution to the thermal conductivity. We present here the details of the implementation and results obtained for warm dense aluminum plasma. (authors)
Physical transport properties of marine microplastic pollution
Ballent, A.; Purser, A.; Mendes, P. de Jesus; Pando, S.; Thomsen, L.
2012-12-01
Given the complexity of quantitative collection, knowledge of the distribution of microplastic pollution in many regions of the world ocean is patchy, both spatially and temporally, especially for the subsurface environment. However, with knowledge of typical hydrodynamic behavior of waste plastic material, models predicting the dispersal of pelagic and benthic plastics from land sources into the ocean are possible. Here we investigate three aspects of plastic distribution and transport in European waters. Firstly, we assess patterns in the distribution of plastics found in fluvial strandlines of the North Sea and how distribution may be related to flow velocities and distance from source. Second, we model transport of non-buoyant preproduction pellets in the Nazaré Canyon of Portugal using the MOHID system after assessing the density, settling velocity, critical and depositional shear stress characteristics of such waste plastics. Thirdly, we investigate the effect of surface turbulences and high pressures on a range of marine plastic debris categories (various densities, degradation states and shapes tested) in an experimental water column simulator tank and pressure laboratory. Plastics deposited on North Sea strandlines varied greatly spatially, as a function of material composition and distance from source. Model outputs indicated that such dense production pellets are likely transported up and down canyon as a function of tidal forces, with only very minor net down canyon movement. Behaviour of plastic fragments under turbulence varied greatly, with the dimensions of the material, as well as density, playing major determining roles. Pressure was shown to affect hydrodynamic behaviours of only low density foam plastics at pressures ≥ 60 bar.
Statistical properties of transport in plasma turbulence
DEFF Research Database (Denmark)
Naulin, V.; Garcia, O.E.; Nielsen, A.H.
2004-01-01
The statistical properties of the particle flux in different types of plasma turbulence models are numerically investigated using probability distribution functions (PDFs). The physics included in the models range from two-dimensional drift wave turbulence to three-dimensional MHD dynamics...
Investigation of electronic transport properties of some liquid transition metals
Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.
2018-04-01
We investigated electronic transport properties of some liquid transition metals (V, Cr, Mn, Fe, Co and Pt) using Ziman formalism. Our parameter free model potential which is realized on ionic and atomic radius has been incorporated with the Hard Sphere Yukawa (HSY) reference system to study the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q). The screening effect on aforesaid properties has been studied by using different screening functions. The correlations of our results and others data with in addition experimental values are profoundly promising to the researchers working in this field. Also, we conclude that our newly constructed parameter free model potential is capable to explain the aforesaid electronic transport properties.
Klatt, Michael A.; Torquato, Salvatore
2018-01-01
In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.
CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989
Mcbride, B.
1994-01-01
Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for
Energy Technology Data Exchange (ETDEWEB)
Yan, Zhifeng [Institute of Surface-Earth System Science, Tianjin University, Tianjin China; Pacific Northwest National Laboratory, Richland WA USA; Liu, Chongxuan [Pacific Northwest National Laboratory, Richland WA USA; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen China; Liu, Yuanyuan [Pacific Northwest National Laboratory, Richland WA USA; School of Earth Science and Engineering, Nanjing University, Nanjing China; Bailey, Vanessa L. [Pacific Northwest National Laboratory, Richland WA USA
2017-11-01
Biofilms are critical locations for biogeochemical reactions in the subsurface environment. The occurrence and distribution of biofilms at microscale as well as their impacts on macroscopic biogeochemical reaction rates are still poorly understood. This paper investigated the formation and distributions of biofilms in heterogeneous sediments using multiscale models, and evaluated the effects of biofilm heterogeneity on local and macroscopic biogeochemical reaction rates. Sediment pore structures derived from X-ray computed tomography were used to simulate the microscale flow dynamics and biofilm distribution in the sediment column. The response of biofilm formation and distribution to the variations in hydraulic and chemical properties was first examined. One representative biofilm distribution was then utilized to evaluate its effects on macroscopic reaction rates using nitrate reduction as an example. The results revealed that microorganisms primarily grew on the surfaces of grains and aggregates near preferential flow paths where both electron donor and acceptor were readily accessible, leading to the heterogeneous distribution of biofilms in the sediments. The heterogeneous biofilm distribution decreased the macroscopic rate of biogeochemical reactions as compared with those in homogeneous cases. Operationally considering the heterogeneous biofilm distribution in macroscopic reactive transport models such as using dual porosity domain concept can significantly improve the prediction of biogeochemical reaction rates. Overall, this study provided important insights into the biofilm formation and distribution in soils and sediments as well as their impacts on the macroscopic manifestation of reaction rates.
Unsaturated Zone and Saturated Zone Transport Properties (U0100)
Energy Technology Data Exchange (ETDEWEB)
J. Conca
2000-12-20
This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion.
Unsaturated Zone and Saturated Zone Transport Properties (U0100)
International Nuclear Information System (INIS)
Conca, J.
2000-01-01
This Analysis/Model Report (AMR) summarizes transport properties for the lower unsaturated zone hydrogeologic units and the saturated zone at Yucca Mountain and provides a summary of data from the Busted Butte Unsaturated Zone Transport Test (UZTT). The purpose of this report is to summarize the sorption and transport knowledge relevant to flow and transport in the units below Yucca Mountain and to provide backup documentation for the sorption parameters decided upon for each rock type. Because of the complexity of processes such as sorption, and because of the lack of direct data for many conditions that may be relevant for Yucca Mountain, data from systems outside of Yucca Mountain are also included. The data reported in this AMR will be used in Total System Performance Assessment (TSPA) calculations and as general scientific support for various Process Model Reports (PMRs) requiring knowledge of the transport properties of different materials. This report provides, but is not limited to, sorption coefficients and other relevant thermodynamic and transport properties for the radioisotopes of concern, especially neptunium (Np), plutonium (Pu), Uranium (U), technetium (Tc), iodine (I), and selenium (Se). The unsaturated-zone (UZ) transport properties in the vitric Calico Hills (CHv) are discussed, as are colloidal transport data based on the Busted Butte UZTT, the saturated tuff, and alluvium. These values were determined through expert elicitation, direct measurements, and data analysis. The transport parameters include information on interactions of the fractures and matrix. In addition, core matrix permeability data from the Busted Butte UZTT are summarized by both percent alteration and dispersion
Transport properties of mesoscopic graphene rings
International Nuclear Information System (INIS)
Xu, N.; Ding, J.W.; Wang, B.L.; Shi, D.N.; Sun, H.Q.
2012-01-01
Based on a recursive Green's function method, we investigate the conductance of mesoscopic graphene rings in the presence of disorder, in the limit of phase coherent transport. Two models of disorder are considered: edge disorder and surface disorder. Our simulations show that the conductance decreases exponentially with the edge disorder and the surface disorder. In the presence of flux, a clear Aharonov-Bohm conductance oscillation with the period Φ 0 (Φ 0 =h/e) is observed. The edge disorder and the surface disorder have no effect on the period of AB oscillation. The amplitudes of AB oscillations vary with gate voltage and flux, which is consistent with the previous results. Additionally, ballistic rectification and negative differential resistance are observed in I-V curves, with on/off characteristic.
Microscopic and macroscopic bell inequalities
International Nuclear Information System (INIS)
Santos, E.
1984-01-01
The Bell inequalities, being derived for micro-systems, cannot be tested by (macroscopic) experiments without additional assumptions. A macroscopic definition of local realism is proposed which might be the starting point for deriving Bell inequalities testable without auxiliary assumptions. (orig.)
Thermodynamic and transport properties of sodium liquid and vapor
International Nuclear Information System (INIS)
Fink, J.K.; Leibowitz, L.
1995-01-01
Data have been reviewed to obtain thermodynamically consistent equations for thermodynamic and transport properties of saturated sodium liquid and vapor. Recently published Russian recommendations and results of equation of state calculations on thermophysical properties of sodium have been included in this critical assessment. Thermodynamic properties of sodium liquid and vapor that have been assessed include: enthalpy, heat capacity at constant pressure, heat capacity at constant volume, vapor pressure, boiling point, enthalpy of vaporization, density, thermal expansion, adiabatic and isothermal compressibility, speed of sound, critical parameters, and surface tension. Transport properties of liquid sodium that have been assessed include: viscosity and thermal conductivity. For each property, recommended values and their uncertainties are graphed and tabulated as functions of temperature. Detailed discussions of the analyses and determinations of the recommended equations include comparisons with recommendations given in other assessments and explanations of consistency requirements. The rationale and methods used in determining the uncertainties in the recommended values are also discussed
Simultaneous measurements of transport and poroelastic properties of rocks.
Hasanov, Azar K; Prasad, Manika; Batzle, Michael L
2017-12-01
A novel laboratory apparatus has been developed for simultaneous measurements of transport and poroelastic rock properties. These transport and poroelastic properties at reservoir pressure and temperature conditions are required inputs for various geoscience applications, such as reservoir simulation, basin modeling, or modeling of pore pressure generation. Traditionally, the transport and poroelastic properties are measured separately using, for example, the oscillating pore pressure method to measure hydraulic transport properties, static strain measurements for elastic properties, and pore volumometry for storage capacity. In addition to time, the separate set of measurements require either aliquot cores or subjecting the same core to multiple pressure tests. We modified the oscillating pore pressure method to build an experimental setup, capable of measuring permeability, storage capacity, and pseudo-bulk modulus of rocks simultaneously. We present here the test method, calibration measurements (capillary tube), and sample measurements (sandstone) of permeability and storage capacity at reservoir conditions. We establish that hydraulically measured storage capacities were overestimated by an order of magnitude when compared to elastically derived ones. Our concurrent measurement of elastic properties during the hydraulic experiment provides an independent constraint on storage capacity.
Transport properties of different BSCCO wires
International Nuclear Information System (INIS)
Metra, P.; Gherardi, L.; Vellego, G.; Masini, R.; Zannella, S.
1990-01-01
This paper reports on two classes of solver sheathed BSCCO wires and laminates were prepared from 2223 (Pb substituted) and 2212 powders, respectively, by the powder in tube method. By suitable heat treatments (sintering and annealing below the melting temperature for 2223, melting + annealing for 2212), we obtained sample wires with Tc of ∼110 and ∼85 K respectively, comparable Jc at 77 K (∼10 3 A/cm 2 ), and dramatically different transport behavior. Measurements of critical current at different temperatures and as a function of applied magnetic field were carried out, to characterize the two classes of samples, together with other electrical testing (e.g. d.c. susceptibility) and structural analyses. The granular nature of the higher Tc BSCCO, qualitatively similar to the one of YBCO, was well documented. The melt-processed material showed no apparent granularity, but very strong field dependence of Jc at high temperature. The effect of mechanical deformation on Jc was also investigated by bending samples on different diameters before and after heat treatment. Wires and tapes with 2212 were found to be bendable on very small diameters before treatment, but also the 2223 filled samples were shown to accept significant deformation before sintering
Industrial Requirements for Thermodynamics and Transport Properties
DEFF Research Database (Denmark)
Hendriks, Eric; Kontogeorgis, Georgios; Dohrn, Ralf
2010-01-01
the direction for future development. The use of new methods, such as SAFT, is increasing, but they are not yet in position to replace traditional methods such as cubic equations of state (especially in oil and gas industry) and the UNIFAC group contribution approach. A common problem with novel methods is lack...... addressed to or written by industrial colleagues, are discussed initially. This provides the context of the survey and material with which the results of the survey can be compared. The results of the survey have been divided into the themes: data, models, systems, properties, education, and collaboration...... of standardization, reference data, and correct and transparent implementations, especially in commercially available simulation programs. The survey indicates a great variety of systems where further work is required. For instance, for electrolyte systems better models are needed, capable of describing all types...
Structure and transport properties of nanostructured materials.
Sonwane, C G; Li, Q
2005-03-31
In the present manuscript, we have presented the simulation of nanoporous aluminum oxide using a molecular-dynamics approach with recently developed dynamic charge transfer potential using serial/parallel programming techniques (Streitz and Mintmire Phys. Rev. B 1994, 50, 11996). The structures resembling recently invented ordered nanoporous crystalline material, MCM-41/SBA-15 (Kresge et al. Nature 1992, 359, 710), and inverted porous solids (hollow nanospheres) with up to 10 000 atoms were fabricated and studied in the present work. These materials have been used for separation of gases and catalysis. On several occasions including the design of the reactor, the knowledge of surface diffusion is necessary. In the present work, a new method for estimating surface transport of gases based on a hybrid Monte Carlo method with unbiased random walk of tracer atom on the pore surface has been introduced. The nonoverlapping packings used in the present work were fabricated using an algorithm of very slowly settling rigid spheres from a dilute suspension into a randomly packed bed. The algorithm was modified to obtain unimodal, homogeneous Gaussian and segregated bimodal porous solids. The porosity of these solids was varied by densification using an arbitrary function or by coarsening from a highly densified pellet. The surface tortuosity for the densified solids indicated an inverted bell shape curve consistent with the fact that at very high porosities there is a reduction in the connectivity while at low porosities the pores become inaccessible or dead-end. The first passage time distribution approach was found to be more efficient in terms of computation time (fewer tracer atoms needed for the linearity of Einstein's plot). Results by hybrid discrete-continuum simulations were close to the discrete simulations for a boundary layer thickness of 5lambda.
Transport properties of supercooled confined water
International Nuclear Information System (INIS)
Mallamace, F.; Baglioni, P.; Corsaro, C.; Spooren, J.; Stanley, H.E.; Chen, S.-H.
2011-01-01
We present an overview of recent experiments performed on water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We examine data generated by nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, and study water confined in nanometer-scale environments. When contained within small pores, water does not crystallize and can be supercooled well below its homogeneous nucleation temperature T H. On this basis, it is possible to carry out a careful analysis of the well-known thermodynamic anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, liquid water is a mixture of two different local structures: a low density liquid (LDL) and a high-density liquid (HDL). The LLPT line terminates at a low-T liquid-liquid critical point. We discuss the following experimental findings: 1.) the crossover from non-Arrhenius behavior at high T to Arrhenius behavior at low T in transport parameters; 2.) the breakdown of the Stokes-Einstein relation; 3.) the existence of a Widom line, which is the locus of points corresponding to a maximum correlation length in the P-T phase diagram and which ends in the liquid-liquid critical point; 4.) the direct observation of the LDL phase; and 5.) the minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results strongly support the LLPT hypothesis. All of the basic science and technology community should be impressed by the fact that, although the few ideas (apparently elementary) developed concerning water approximately 27 centuries ago have changed very little up to now, because of the current expansion in our knowledge in this area, they can begin to change in the near future.
Transport properties of a discrete helical electrostatic quadrupole
International Nuclear Information System (INIS)
Meitzler, C.R.; Antes, K.; Datte, P.; Huson, F.R.; Xiu, L.
1991-01-01
The helical electrostatic quadrupole (HESQ) lens has been proposed as a low energy beam transport system which permits intense H - beams to be focused into an RFQ without seriously increasing the beam's emittance. A stepwise continuous HESQ lens has been constructed, and preliminary tests have shown that the structure does provide focusing. In order to understand the transport properties of this device, further detailed studies have been performed. Emittances were measured 3.5 cm from the end of the HESQ at two different voltages on the HESQ electrodes. A comparison of these experimental results with a linear model of the HESQ beam transport is made. 4 refs., 5 figs
Investigation of transport properties of colossal magnetoresistive materials
International Nuclear Information System (INIS)
Kaurav, Netram
2006-01-01
The transport properties, i.e. resistivity, heat capacity, thermal conductivity and optical conductivity have been theoretically analysed for colossal magnetoresistive materials within the framework of double exchange mechanism. Following an effective interaction potential, we deduce acoustic (optical) phonon modes, coupling strength for electron-phonon and phonon-impurities, the phonon (magnon) scattering rate and constants characterise the scattering of charge and heat carriers with various disorders in the crystal. The theoretical models have been developed to account the anomalies observed in the transport phenomenon. It is noticed that electron-electron, electron-phonon and electron-magnon interactions are essential in discussing the transport behaviour of doped magnetites. (author)
Prediction of transport and other physical properties of fluids
Bretsznajder, S
1971-01-01
Prediction of Transport and Other Physical Properties of Fluids reviews general methods for predicting the transport and other physical properties of fluids such as gases and liquids. Topics covered range from the theory of corresponding states and methods for estimating the surface tension of liquids to some basic concepts of the kinetic theory of gases. Methods of estimating liquid viscosity based on the principle of additivity are also described. This volume is comprised of eight chapters and opens by presenting basic information on gases and liquids as well as intermolecular forces and con
Impact of carbonation on water transport properties of cementitious materials
International Nuclear Information System (INIS)
Auroy, Martin
2014-01-01
Carbonation is a very well-known cementitious materials pathology. It is the major cause of reinforced concrete structures degradation. It leads to rebar corrosion and consequent concrete cover cracking. In the framework of radioactive waste management, cement-based materials used as building materials for structures or containers would be simultaneously submitted to drying and atmospheric carbonation. Although scientific literature regarding carbonating is vast, it is clearly lacking information about the influence of carbonation on water transport properties. This work then aimed at studying and understanding the change in water transport properties induced by carbonation. Simultaneously, the representativeness of accelerated carbonation (in the laboratory) was also studied. (author) [fr
Thermomechanical macroscopic model of shape memory alloys
International Nuclear Information System (INIS)
Volkov, A.E.; Sakharov, V.Yu.
2003-01-01
The phenomenological macroscopic model of the mechanical behaviour of the titanium nickelide-type shape memory alloys is proposed. The model contains as a parameter the average phase shear deformation accompanying the martensite formation. It makes i possible to describe correctly a number of functional properties of the shape memory alloys, in particular, the pseudoelasticity ferroplasticity, plasticity transformation and shape memory effects in the stressed and unstressed samples [ru
Quantum equilibria for macroscopic systems
International Nuclear Information System (INIS)
Grib, A; Khrennikov, A; Parfionov, G; Starkov, K
2006-01-01
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered
Quantum equilibria for macroscopic systems
Energy Technology Data Exchange (ETDEWEB)
Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)
2006-06-30
Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.
The heat and moisture transport properties of wet porous media
International Nuclear Information System (INIS)
Wang, B.X.; Fang, Z.H.; Yu, W.P.
1989-01-01
Existing methods for determining heat and moisture transport properties in porous media are briefly reviewed, and their merits and deficiencies are discussed. Emphasis is placed on research in developing new transient methods undertaken in China during the recent years. An attempt has been made to relate the coefficients in the heat and mass transfer equations with inherent properties of the liquid and matrix and then to predict these coefficients based on limited measurements
Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide
2014-07-14
Lou, Sina Najmaei, Matin Amani, Matthew L. Chin, Zheng Se. TASK NUMBER Liu Sf. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8...Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide Sina Najmaei,t.§ Matin Ama ni,M Matthew L. Chin,* Zhe ng liu/ ·"·v: A. Gle n
Oxygen transport properties estimation by DSMC-CT simulations
Energy Technology Data Exchange (ETDEWEB)
Bruno, Domenico [Istituto di Metodologie Inorganiche e dei Plasmi, Consiglio Nazionale delle Ricerche - Via G. Amendola, 122 - 70125 Bari (Italy); Frezzotti, Aldo; Ghiroldi, Gian Pietro [Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano - Via La Masa, 34 - 20156 Milano (Italy)
2014-12-09
Coupling DSMC simulations with classical trajectories calculations is emerging as a powerful tool to improve predictive capabilities of computational rarefied gas dynamics. The considerable increase of computational effort outlined in the early application of the method (Koura,1997) can be compensated by running simulations on massively parallel computers. In particular, GPU acceleration has been found quite effective in reducing computing time (Ferrigni,2012; Norman et al.,2013) of DSMC-CT simulations. The aim of the present work is to study rarefied Oxygen flows by modeling binary collisions through an accurate potential energy surface, obtained by molecular beams scattering (Aquilanti, et al.,1999). The accuracy of the method is assessed by calculating molecular Oxygen shear viscosity and heat conductivity following three different DSMC-CT simulation methods. In the first one, transport properties are obtained from DSMC-CT simulations of spontaneous fluctuation of an equilibrium state (Bruno et al, Phys. Fluids, 23, 093104, 2011). In the second method, the collision trajectory calculation is incorporated in a Monte Carlo integration procedure to evaluate the Taxman’s expressions for the transport properties of polyatomic gases (Taxman,1959). In the third, non-equilibrium zero and one-dimensional rarefied gas dynamic simulations are adopted and the transport properties are computed from the non-equilibrium fluxes of momentum and energy. The three methods provide close values of the transport properties, their estimated statistical error not exceeding 3%. The experimental values are slightly underestimated, the percentage deviation being, again, few percent.
Synthesis, structure, thermal, transport and magnetic properties of VN ceramics
Czech Academy of Sciences Publication Activity Database
Huber, Š.; Jankovský, O.; Sedmidubský, D.; Luxa, J.; Klimová, K.; Hejtmánek, Jiří; Sofer, Z.
2016-01-01
Roč. 42, č. 16 (2016), s. 18779-18784 ISSN 0272-8842 R&D Projects: GA ČR GA13-20507S Institutional support: RVO:68378271 Keywords : vanadium mononitride * phase transition * electronic structure * heat capacity * transport properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.986, year: 2016
Superconductivity and macroscopic quantum phenomena
International Nuclear Information System (INIS)
Rogovin, D.; Scully, M.
1976-01-01
It is often asserted that superconducting systems are manifestations of quantum mechanics on a macroscopic scale. In this review article it is demonstrated that this quantum assertion is true within the framework of the microscopic theory of superconductivity. (Auth.)
Nonlinear transport properties of non-ideal systems
International Nuclear Information System (INIS)
Pavlov, G A
2009-01-01
The theory of nonlinear transport is elaborated to determine the Burnett transport properties of non-ideal multi-element plasma and neutral systems. The procedure for the comparison of the phenomenological conservation equations of a continuous dense medium and the microscopic equations for dynamical variable operators is used for the definition of these properties. The Mori algorithm is developed to derive the equations of motion of dynamical value operators of a non-ideal system in the form of the generalized nonlinear Langevin equations. In consequence, the microscopic expressions of transport coefficients corresponding to second-order thermal disturbances (temperature, mass velocity, etc) have been found in the long wavelength and low frequency limits
Macroscopic constraints on string unification
International Nuclear Information System (INIS)
Taylor, T.R.
1989-03-01
The comparison of sting theory with experiment requires a huge extrapolation from the microscopic distances, of order of the Planck length, up to the macroscopic laboratory distances. The quantum effects give rise to large corrections to the macroscopic predictions of sting unification. I discus the model-independent constraints on the gravitational sector of string theory due to the inevitable existence of universal Fradkin-Tseytlin dilatons. 9 refs
Interpretation of macroscopic quantum phenomena
International Nuclear Information System (INIS)
Baumann, K.
1986-01-01
It is argued that a quantum theory without observer is required for the interpretation of macroscopic quantum tunnelling. Such a theory is obtained by augmenting QED by the actual electric field in the rest system of the universe. An equation of the motion of this field is formulated form which the correct macroscopic behavior of the universe and the validity of the Born interpretation is derived. Care is taken to use mathematically sound concepts only. (Author)
Measurement of gas transport properties for chemical vapor infiltration
Energy Technology Data Exchange (ETDEWEB)
Starr, T.L.; Hablutzel, N. [Georgia Inst. of Tech., Atlanta, GA (United States). School of Materials Science and Engineering
1996-12-01
In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.
Structural properties of the Chinese air transportation multilayer network
International Nuclear Information System (INIS)
Hong, Chen; Zhang, Jun; Cao, Xian-Bin; Du, Wen-Bo
2016-01-01
Highlights: • We investigate the structural properties of the Chinese air transportation multilayer network (ATMN). • We compare two main types of layers corresponding to major and low-cost airlines. • It is found that small-world property and rich-club effect of the Chinese ATMN are mainly caused by major airlines. - Abstract: Recently multilayer networks are attracting great attention because the properties of many real-world systems cannot be well understood without considering their different layers. In this paper, we investigate the structural properties of the Chinese air transportation multilayer network (ATMN) by progressively merging layers together, where each commercial airline (company) defines a layer. The results show that the high clustering coefficient, short characteristic path length and large collection of reachable destinations of the Chinese ATMN can only emerge when several layers are merged together. Moreover, we compare two main types of layers corresponding to major and low-cost airlines. It is found that the small-world property and the rich-club effect of the Chinese ATMN are mainly caused by those layers corresponding to major airlines. Our work will highlight a better understanding of the Chinese air transportation network.
Wentzel-Bardeen singularity in coupled Luttinger liquids: Transport properties
International Nuclear Information System (INIS)
Martin, T.
1994-01-01
The recent progress on 1 D interacting electrons systems and their applications to study the transport properties of quasi one dimensional wires is reviewed. We focus on strongly correlated elections coupled to low energy acoustic phonons in one dimension. The exponents of various response functions are calculated, and their striking sensitivity to the Wentzel-Bardeen singularity is discussed. For the Hubbard model coupled to phonons the equivalent of a phase diagram is established. By increasing the filling factor towards half filling the WB singularity is approached. This in turn suppresses antiferromagnetic fluctuations and drives the system towards the superconducting regime, via a new intermediate (metallic) phase. The implications of this phenomenon on the transport properties of an ideal wire as well as the properties of a wire with weak or strong scattering are analyzed in a perturbative renormalization group calculation. This allows to recover the three regimes predicted from the divergence criteria of the response functions
Bimodality in macroscopic dynamics of nuclear fission
International Nuclear Information System (INIS)
Bastrukov, S.I.; Salamatin, V.S.; Strteltsova, O.I.; Molodtsova, I.V.; Podgainy, D.V.; )
2000-01-01
The elastodynamic collective model of nuclear fission is outlined whose underlying idea is that the stiff structure of nuclear shells imparts to nucleus properties typical of a small piece of an elastic solid. Emphasis is placed on the macroscopic dynamics of nuclear deformations resulting in fission by two energetically different modes. The low-energy S-mode is the fission due to disruption of elongated quadrupole spheroidal shape. The characteristic features of the high-energy T-mode of division by means of torsional shear deformations is the compact scission configuration. Analytic and numerical estimates for the macroscopic fission-barrier heights are presented, followed by discussion of fingerprints of the above dynamical bimodality in the available data [ru
Active Polar Two-Fluid Macroscopic Dynamics
Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.
2014-03-01
We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.
Liu, Tao; Angelo, James M; Lin, Dong-Qiang; Lenhoff, Abraham M; Yao, Shan-Jing
2017-09-29
The structural and functional properties of a series of dextran-grafted and non-grafted hydrophobic charge-induction chromatographic (HCIC) agarose resins were characterized by macroscopic and microscopic techniques. The effects of dextran grafting and mobile phase conditions on the pore dimensions of the resins were investigated with inverse size exclusion chromatography (ISEC). A significantly lower pore radius (17.6nm) was found for dextran-grafted than non-grafted resins (29.5nm), but increased salt concentration would narrow the gap between the respective pore radii. Two proteins, human immunoglobulin G (hIgG) and bovine serum albumin (BSA), were used to examine the effect of protein characteristics. The results of adsorption isotherms showed that the dextran-grafted resin with high ligand density had substantially higher adsorption capacity and enhanced the salt-tolerance property for hIgG, but displayed a significantly smaller benefit for BSA adsorption. Confocal laser scanning microscopy (CLSM) showed that hIgG presented more diffuse and slower moving adsorption front compared to BSA during uptake into the resins because of the selective binding of multiple species from polyclonal IgG; polymer-grafting with high ligand density could enhance the rate of hIgG transport in the dextran-grafted resins without salt addition, but not for the case with high salt and BSA. The results indicate that microscopic analysis using ISEC and CLSM is useful to improve the mechanistic understanding of resin structure and of critical functional parameters involving protein adsorption and transport, which would guide the rational design of new resins and processes. Copyright © 2017. Published by Elsevier B.V.
Transport processes in partially saturate concrete: Testing and liquid properties
Villani, Chiara
The measurement of transport properties of concrete is considered by many to have the potential to serve as a performance criterion that can be related to concrete durability. However, the sensitivity of transport tests to several parameters combined with the low permeability of concrete complicates the testing. Gas permeability and diffusivity test methods are attractive due to the ease of testing, their non-destructive nature and their potential to correlate to in-field carbonation of reinforced concrete structures. This work was aimed at investigating the potential of existing gas transport tests as a way to reliably quantify transport properties in concrete. In this study gas permeability and diffusivity test methods were analyzed comparing their performance in terms of repeatability and variability. The influence of several parameters was investigated such as moisture content, mixture proportions and gas flow. A closer look to the influence of pressure revealed an anomalous trend of permeability with respect to pressure. An alternative calculation is proposed in an effort to move towards the determination of intrinsic material properties that can serve as an input for service life prediction models. The impact of deicing salts exposure was also analyzed with respect to their alteration of the degree of saturation as this may affect gas transport in cementitious materials. Limited information were previously available on liquid properties over a wide range of concentrations. To overcome this limitation, this study quantified surface tension, viscosity in presence of deicing salts in a broad concentration range and at different temperatures. Existing models were applied to predict the change of fluid properties during drying. Vapor desorption isotherms were obtained to investigate the influence of deicing salts presence on the non-linear moisture diffusion coefficient. Semi-empirical models were used to quantify the initiation and the rate of drying using liquid
Charge carrier transport properties in layer structured hexagonal boron nitride
Directory of Open Access Journals (Sweden)
T. C. Doan
2014-10-01
Full Text Available Due to its large in-plane thermal conductivity, high temperature and chemical stability, large energy band gap (˜ 6.4 eV, hexagonal boron nitride (hBN has emerged as an important material for applications in deep ultraviolet photonic devices. Among the members of the III-nitride material system, hBN is the least studied and understood. The study of the electrical transport properties of hBN is of utmost importance with a view to realizing practical device applications. Wafer-scale hBN epilayers have been successfully synthesized by metal organic chemical deposition and their electrical transport properties have been probed by variable temperature Hall effect measurements. The results demonstrate that undoped hBN is a semiconductor exhibiting weak p-type at high temperatures (> 700 °K. The measured acceptor energy level is about 0.68 eV above the valence band. In contrast to the electrical transport properties of traditional III-nitride wide bandgap semiconductors, the temperature dependence of the hole mobility in hBN can be described by the form of μ ∝ (T/T0−α with α = 3.02, satisfying the two-dimensional (2D carrier transport limit dominated by the polar optical phonon scattering. This behavior is a direct consequence of the fact that hBN is a layer structured material. The optical phonon energy deduced from the temperature dependence of the hole mobility is ħω = 192 meV (or 1546 cm-1, which is consistent with values previously obtained using other techniques. The present results extend our understanding of the charge carrier transport properties beyond the traditional III-nitride semiconductors.
Transport properties of electrons in fractal magnetic-barrier structures
Sun, Lifeng; Fang, Chao; Guo, Yong
2010-09-01
Quantum transport properties in fractal magnetically modulated structures are studied by the transfer-matrix method. It is found that the transmission spectra depend sensitively not only on the incident energy and the direction of the wave vector but also on the stage of the fractal structures. Resonance splitting, enhancement, and position shift of the resonance peaks under different magnetic modulation are observed at four different fractal stages, and the relationship between the conductance in the fractal structure and magnetic modulation is also revealed. The results indicate the spectra of the transmission can be considered as fingerprints for the fractal structures, which show the subtle correspondence between magnetic structures and transport behaviors.
Fabrication and Transport Properties of Manganite-Polyacrylamide-Based Composites
Directory of Open Access Journals (Sweden)
Viorel Sandu
2009-01-01
Full Text Available We present the fabrication and transport properties of a series of composites made of La2/3Sr1/3MnO3 and acrylamide-based copolymers. The most important result is the very narrow transition, of only 27 K, displayed by the peak that appears around the metal-insulator transition of the composites made with poly(acrylamide-vinylacetate. Although the amount of polymer is rather low, different copolymers change drastically the electric transport characteristics.
Anisotropic bias dependent transport property of defective phosphorene layer
Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang
2015-01-01
Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, no systematic studies on the transport properties modified due to defects have been performed. Here, we present the electronic band structure, defect formation energy and bias dependent transport property of various defective systems. We found that the defect formation energy is much less than that in graphene. The defect configuration strongly affects the electronic structure. The band gap vanishes in single vacancy layers, but the band gap reappears in divacancy layers. Interestingly, a single vacancy defect behaves like a p-type impurity for transport property. Unlike the common belief, we observe that the vacancy defect can contribute to greatly increasing the current. Along the zigzag direction, the current in the most stable single vacancy structure was significantly increased as compared with that found in the pristine layer. In addition, the current along the armchair direction was always greater than along the zigzag direction and we observed a strong anisotropic current ratio of armchair to zigzag direction. PMID:26198318
Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires
Energy Technology Data Exchange (ETDEWEB)
Sun, Tao [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Kang, Wei [HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China); Wang, Jianxiang, E-mail: jxwang@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); HEDPS, Center for Applied Physics and Technology, College of Engineering, Peking University, Beijing 100871 (China)
2015-01-21
We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence of the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion.
Impact of isotopic disorders on thermal transport properties of nanotubes and nanowires
International Nuclear Information System (INIS)
Sun, Tao; Kang, Wei; Wang, Jianxiang
2015-01-01
We present a one-dimensional lattice model to describe thermal transport in isotopically doped nanotubes and nanowires. The thermal conductivities thus predicted, as a function of isotopic concentration, agree well with recent experiments and other simulations. Our results display that for any given concentration of isotopic atoms in a lattice without sharp atomic interfaces, the maximum thermal conductivity is attained when isotopic atoms are placed regularly with an equal space, whereas the minimum is achieved when they are randomly inserted with a uniform distribution. Non-uniformity of disorder can further tune the thermal conductivity between the two values. Moreover, the dependence of the thermal conductivity on the nanoscale feature size becomes weak at low temperature when disorder exists. In addition, when self-consistent thermal reservoirs are included to describe diffusive nanomaterials, the thermal conductivities predicted by our model are in line with the results of macroscopic theories with an interfacial effect. Our results suggest that the disorder provides an additional freedom to tune the thermal properties of nanomaterials in many technological applications including nanoelectronics, solid-state lighting, energy conservation, and conversion
Transport properties in GaTe under hydrostatic pressure
International Nuclear Information System (INIS)
Gouskov, L.; Carvalho, M.
1980-01-01
First results of the resistivity rho(perpendicular) and rho(parallel)(perpendicular and parallel to the normal to the cleavage plane) under hydrostatic pressure (1 bar <= P <= 3 kbar) on GaTe grown by the Bridgman method, are given and discussed. The analysis of electrical transport properties of GaTe under pressure, indicates a complex nature of the acceptor level in this material. The activation energy Esub(a) has a negative pressure coefficient which is sample dependent. The comparison of the variations of rho(parallel) and rho(perpendicular) versus pressure shows that the activation energy E of the rho(parallel)/rho(perpendicular) ratio has also a negative pressure coefficient which can be justified in the frame of a one-dimensional disorder model proposed by Maschke and Schmid, in order to explain the transport properties in the direction of the normal to the cleavage plane. (author)
Relaxation and transport properties of liquid n-triacontane
International Nuclear Information System (INIS)
Kondratyuk, N D; Lankin, A V; Norman, G E; Stegailov, V V
2015-01-01
Molecular modelling is used to calculate transport properties and to study relaxation of liquid n-triacontane (C 30 H 62 ). The problem is important in connection with the behavior of liquid isolators in a pre-breakdown state. Two all-atom models and a united-atom model are used. Shear viscosity is calculated using the Green-Kubo formula. The force fields are compared with each other using the following criteria: the required time for one molecular dynamics step, the compliance of the main physical and transport properties with experimental values. The problem of the system equilibration is considered. The united-atom potential is used to model the n-triacontane liquid with an initial directional orientation. The time of relaxation to the disordered state, when all molecules orientations are randomized, are obtained. The influence of the molecules orientations on the shear viscosity value and the shear viscosity relaxation are treated. (paper)
Transport Properties Of Van Der Waals Hybrid Heterostructures.
Pacheco, M.; Orellana, P. A.; Felix, A. B.; Latge, A.
Here we study transport properties of van der Waals heterostructures composed of carbon nanotubes adsorbed on nanoribbons of distinct 2D materials. Calculations of the electronic density of states and conductance of the hybrid systems are obtained in single band tight-binding approximation in the Green function formalism by adopting real-space renormalization schemes. We show that an analytical approach may be derived when both systems are formed by the same type of atoms. In the coupled structures the different electronic paths along the ribbons and finite nanotubes lead to quantum interference effects which are reflected as Fano antiresonances in the conductance. The electronic and transport properties of these materials are modulated by changing geometrical and structural parameters, such as the nanotube diameter and the widths and edge type of the ribbons. FONDECYT 1151316-1140571.
Ab Initio Calculations of Transport Properties of Vanadium Oxides
Lamsal, Chiranjivi; Ravindra, N. M.
2018-04-01
The temperature-dependent transport properties of vanadium oxides have been studied near the Fermi energy using the Kohn-Sham band structure approach combined with Boltzmann transport equations. V2O5 exhibits significant thermoelectric properties, which can be attributed to its layered structure and stability. Highly anisotropic electrical conduction in V2O5 is clearly manifested in the calculations. Due to specific details of the band structure and anisotropic electron-phonon interactions, maxima and crossovers are also seen in the temperature-dependent Seebeck coefficient of V2O5. During the phase transition of VO2, the Seebeck coefficient changes by 18.9 µV/K, which is close to (within 10% of) the observed discontinuity of 17.3 µV/K.
Transport properties of a ladder with two random dimer chains
International Nuclear Information System (INIS)
Hu Dong-Sheng; Zhu Chen-Ping; Zhang Yong-Mei
2011-01-01
We investigate the transport properties of a ladder with two random dimer (RD) chains. It is found that there are two extended states in the ladder with identical RD chains and a critical state regarded as an extended state in the ladder with pairing RD chains. Such a critical state is caused by the chiral symmetry. The ladder with identical RD chains can be decoupled into two isolated RD chains and the ladder with pairing RD chains can not. The analytic expressions of the extended states are presented for the ladder with identical RD chains. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Transport Properties of the Metallic State of TMTSF-DMTCNQ
DEFF Research Database (Denmark)
Bechgaard, Klaus; Andersen, Jan Rud; Andrieux, A.
1979-01-01
The authors report the transport properties (longitudinal and transverse conductivity, magnetoresistance and thermopower) of TMTSF-DMTCNQ for pressures up to 13 kbar and temperatures down to 1.2K together with the phase diagram which results from these measurements. The most striking results...... at any temperature (σ∥≳105 (Ωcm)-1) and an enormous magnetoresistance Δρ/ρ≈15) is found for a field of 75 kOe perpendicular to the conducting chains...
Thermal Transport Properties of Dry Spun Carbon Nanotube Sheets
Directory of Open Access Journals (Sweden)
Heath E. Misak
2016-01-01
Full Text Available The thermal properties of carbon nanotube- (CNT- sheet were explored and compared to copper in this study. The CNT-sheet was made from dry spinning CNTs into a nonwoven sheet. This nonwoven CNT-sheet has anisotropic properties in in-plane and out-of-plane directions. The in-plane direction has much higher thermal conductivity than the out-of-plane direction. The in-plane thermal conductivity was found by thermal flash analysis, and the out-of-plane thermal conductivity was found by a hot disk method. The thermal irradiative properties were examined and compared to thermal transport theory. The CNT-sheet was heated in the vacuum and the temperature was measured with an IR Camera. The heat flux of CNT-sheet was compared to that of copper, and it was found that the CNT-sheet has significantly higher specific heat transfer properties compared to those of copper. CNT-sheet is a potential candidate to replace copper in thermal transport applications where weight is a primary concern such as in the automobile, aircraft, and space industries.
Interface disorder and transport properties in HTC/CMR superlattices
International Nuclear Information System (INIS)
Haberkorn, N.; Guimpel, J.; Sirena, M.; Steren, L.B.; Campillo, G.; Saldarriaga, W.; Gomez, M.E.
2004-01-01
The physical properties of superlattices are affected by interface disorder, like roughness and interdiffusion. X-ray diffraction allows its measurement through modeling and structure refinement. The high-T c RBa 2 Cu 3 O 7 (RBCO) and colossal magnetoresistance La x A 1-x MnO 3 (LAMO) perovskites are interesting superlattice partners given their similar lattice parameters and because the combination of magnetic and superconducting properties is interesting for both basic and applied research. We have investigated the structural and transport properties of YBCO/La 2/3 Ca 1/3 MnO 3 and GdBCO/La 0.6 Sr 0.04 MnO 3 superlattices grown by sputtering on (1 0 0)MgO. We find a roughness of 1 RBCO unit cell and a 30% interdiffusion in the same length from the interfaces for all samples. The superconducting behavior is found strongly dependent on the LAMO layer thickness
Single-Phase Bundle Flows Including Macroscopic Turbulence Model
Energy Technology Data Exchange (ETDEWEB)
Lee, Seung Jun; Yoon, Han Young [KAERI, Daejeon (Korea, Republic of); Yoon, Seok Jong; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of)
2016-05-15
To deal with various thermal hydraulic phenomena due to rapid change of fluid properties when an accident happens, securing mechanistic approaches as much as possible may reduce the uncertainty arising from improper applications of the experimental models. In this study, the turbulence mixing model, which is well defined in the subchannel analysis code such as VIPRE, COBRA, and MATRA by experiments, is replaced by a macroscopic k-e turbulence model, which represents the aspect of mathematical derivation. The performance of CUPID with macroscopic turbulence model is validated against several bundle experiments: CNEN 4x4 and PNL 7x7 rod bundle tests. In this study, the macroscopic k-e model has been validated for the application to subchannel analysis. It has been implemented in the CUPID code and validated against CNEN 4x4 and PNL 7x7 rod bundle tests. The results showed that the macroscopic k-e turbulence model can estimate the experiments properly.
Macroscopic models for traffic safety.
Oppe, S.
1988-01-01
Recently there has been an increased interest in the application of macroscopic models for the description of developments in traffic safety. A discussion was started on the causes of the sudden decrease in the number of fatal and injury accidents after 1974. Before that time these numbers had
Red cell properties after different modes of blood transportation
Directory of Open Access Journals (Sweden)
Asya Makhro
2016-07-01
Full Text Available Transportation of blood samples is unavoidable for assessment of specific parameters in blood of patients with rare anemias, blood doping testing or for research purposes. Despite the awareness that shipment may substantially alter multiple parameters, no study of that extend has been performed to assess these changes and optimize shipment conditions to reduce transportation-related artifacts. Here we investigate the changes in multiple parameters in blood of healthy donors over 72 hours of simulated shipment conditions. Three different anticoagulants (K3EDTA, Sodium Heparin and citrate-based CPDA for two temperatures (4oC and room temperature were tested to define the optimal transportation conditions. Parameters measured cover common cytology and biochemistry parameters (complete blood count, hematocrit, morphological examination, red blood cell (RBC volume, ion content and density, membrane properties and stability (hemolysis, osmotic fragility, membrane heat stability, patch-clamp investigations and formation of micro vesicles, Ca2+ handling, RBC metabolism, activity of numerous enzymes and O2 transport capacity. Our findings indicate that individual sets of parameter may require different shipment settings (anticoagulants, temperature. Most of the parameters except for ion (Na+, K+, Ca2+ handling and, possibly, reticulocytes counts, tend to favor transportation at 4oC. Whereas plasma and intraerythrocytic Ca2+ cannot be accurately measured in the presence of chelators such as citrate and EDTA, majority of Ca2+-dependent parameters are stabilized in CPDA samples. Even in blood samples from healthy donors transported using optimized shipment protocol the majority of parameters were stable within 24 hours, the condition that may not hold for the samples of patients with rare anemias. This implies for the as short as possible shipping using fast courier services to the closest expert laboratory at reach. Mobile laboratories or the travel of the
Influence of biofilms on transport properties in porous media
Davit, Y.
2015-12-01
Microbial activity and biofilm growth in porous media can drastically modify transport properties such as permeability, longitudinal and transverse dispersion or effective reaction rates. Understanding these effects has proven to be a considerable challenge. Advances in this field have been hindered by the difficulty of modeling and visualizing these multi-phase non-linear effects across a broad range of spatial and temporal scales. To address these issues, we are developing a strategy that combines imaging techniques based on x-ray micro-tomography with homogenization of pore-scale transport equations. Here, we review recent progress in x-ray imaging of biofilms in porous media, with a particular focus on the contrast agents that are used to differentiate between the fluid and biofilm phases. We further show how the 3D distribution of the different phases can be used to extract specific information about the biofilm and how effective properties can be calculated via the resolution of closure problems. These closure problems are obtained using the method of volume averaging and must be adapted to the problem of interest. In hydrological systems, we show that a generic formulation for reactive solute transport is based on a domain decomposition approach at the micro-scale yielding macro-scale models reminiscent of multi-rate mass transfer approaches.
Transport Properties of operational gas mixtures used at LHC
Assran, Yasser
2011-01-01
This report summarizes some useful data on the transport characteristics of gas mixtures which are required for detection of charged particles in gas detectors. We try to replace Freon used for RPC detector in the CMS experiment with another gas while maintaining the good properties of the Freon gas mixture unchanged. We try to switch to freonless gas mixture because Freon is not a green gas, it is very expensive and its availability is decreasing. Noble gases like Ar, He, Ne and Xe (with some quenchers like carbon dioxide, methane, ethane and isobutene) are investigated. Transport parameters like drift velocity, diffusion, Townsend coefficient, attachment coefficient and Lorentz angle are computed using Garfield software for different gas mixtures and compared with experimental data.
Structural and robustness properties of smart-city transportation networks
Zhang, Zhen-Gang; Ding, Zhuo; Fan, Jing-Fang; Meng, Jun; Ding, Yi-Min; Ye, Fang-Fu; Chen, Xiao-Song
2015-09-01
The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. Project supported by the Major Projects of the China National Social Science Fund (Grant No. 11 & ZD154).
Structural and robustness properties of smart-city transportation networks
International Nuclear Information System (INIS)
Zhang Zhen-Gang; Ding Zhuo; Fan Jing-Fang; Chen Xiao-Song; Meng Jun; Ye Fang-Fu; Ding Yi-Min
2015-01-01
The concept of smart city gives an excellent resolution to construct and develop modern cities, and also demands infrastructure construction. How to build a safe, stable, and highly efficient public transportation system becomes an important topic in the process of city construction. In this work, we study the structural and robustness properties of transportation networks and their sub-networks. We introduce a complementary network model to study the relevance and complementarity between bus network and subway network. Our numerical results show that the mutual supplement of networks can improve the network robustness. This conclusion provides a theoretical basis for the construction of public traffic networks, and it also supports reasonable operation of managing smart cities. (rapid communication)
Coherence properties and quantum state transportation in an optical conveyor belt.
Kuhr, S; Alt, W; Schrader, D; Dotsenko, I; Miroshnychenko, Y; Rosenfeld, W; Khudaverdyan, M; Gomer, V; Rauschenbeutel, A; Meschede, D
2003-11-21
We have prepared and detected quantum coherences of trapped cesium atoms with long dephasing times. Controlled transport by an "optical conveyor belt" over macroscopic distances preserves the atomic coherence with slight reduction of coherence time. The limiting dephasing effects are experimentally identified, and we present an analytical model of the reversible and irreversible dephasing mechanisms. Our experimental methods are applicable at the single-atom level. Coherent quantum bit operations along with quantum state transport open the route towards a "quantum shift register" of individual neutral atoms.
Simulating liquid water for determining its structural and transport properties
International Nuclear Information System (INIS)
Arismendi-Arrieta, Daniel; Medina, Juan S.; Fanourgakis, George S.; Prosmiti, Rita; Delgado-Barrio, Gerardo
2014-01-01
Molecular dynamics simulations are carried out for calculating structural and transport properties of pure liquid water, such as radial distribution functions and self-diffusion and viscosity coefficients, respectively. We employed reparameterized versions of the ab initio water potential by Niesar, Clementi and Corongiu (NCC). In order to investigate the role of the electrostatic contribution, the partial charges of the NCC model are adjusted so that to reproduce the dipole moment values of the SPC/E, SPC/Fw and TIP4P/2005 water models. The single and collective transport coefficients are obtained by employing the Green–Kubo relations at various temperatures. Additionally, in order to overcome convergence difficulties arising from the long correlation times of the stress-tensor autocorrelation functions, a previously reported fitting scheme was employed. The present results indicate that there is a significant relationship between the dipole moment value of the model, and the calculated transport coefficients. We found that by adjusting the molecular dipole moment of the NCC to the value of the TIP4P/2005, the obtained values for the self-diffusion and viscosity coefficients are in better agreement with experiment, compared to the values obtained with the original NCC model. Even though the predictions of the present model exhibits an overall correct behavior, we conclude that further improvements are still required. In order to achieve that, a careful reparameterization of the repulsion–dispersion terms of the potential model is proposed. Also, the effect of the inclusion of many-body effects such as polarizability, should also be investigated. - Highlights: ► Transport properties of liquid water are important in bio-simulations. ► Self-diffusion coefficient, shear and bulk viscosities calculations from NVE molecular dynamics simulations. ► Their comparison with experimental data provides information on intermolecular forces, and serve to develop water
Influence of short range ordering and clustering on transport properties
International Nuclear Information System (INIS)
Vigier, G.; Pelletier, J.M.
1982-01-01
The influence of short range ordering and clustering phenomena on the electrical resistivity p and the thermopower S is investigated both theoretically and experimentally. According to the considered alloys either increases or decreases of transport properties may be observed when deviations from a random distribution of solute atoms occur. These observations are explained with a model based on free electrons and Born approximations the importance of the potential choice is underlined; two kinds of description of the structure factor are investigated. A good semiquantitative agreement is obtained between computed results and experimental observations
1D-transport properties of single superconducting lead nanowires
DEFF Research Database (Denmark)
Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.
2003-01-01
of the nanowire is small enough to ensure a 1D superconducting regime in a wide temperature range below T. The non-zero resistance in the superconducting state and its variation caused by fluctuations of the superconducting order parameter were measured versus temperature, magnetic field, and applied DC current......We report on the transport properties of single superconducting lead nanowires grown by an electrodeposition technique, embedded in a nanoporous track-etched polymer membrane. The nanowires are granular, have uniform diameter of ̃40 nm and a very large aspect ratio (̃500). The diameter...
Quantum oscillations and the electronic transport properties in multichain nanorings
International Nuclear Information System (INIS)
Racolta, D.
2009-01-01
We consider a system of multichain nanorings in static electric and magnetic field. The magnetic field induces characteristic phase changes. These phase shifts produce interference phenomena in the case of nanosystems for which the coherence length is larger than the sample dimension. We obtain energy solutions that are dependent on the number of sites N α characterizing a chain, of phase on the phase φ α and on the applied voltage. We found rich oscillations structures exhibited by the magnetic flux and we established the transmission probability. This proceeds by applying Landauer conductance formulae which opens the way to study electronic transport properties. (authors)
Electrical and thermal transport properties of uranium and plutonium carbides
International Nuclear Information System (INIS)
Lewis, H.D.; Kerrisk, J.F.
1976-09-01
Contributions of many authors are outlined with respect to the experimental measurement methods used and characteristics of the sample materials. Discussions treat the qualitative effects of sample material composition; oxygen, nitrogen, and nickel concentrations; porosity; microstructural variations; and the variability in transport property values obtained by the various investigators. Temperature-dependent values are suggested for the electrical resistivities and thermal conductivities of selected carbide compositions based on a comparative evaluation of the available data and the effects of variation in the characteristics of sample materials
Soil properties and preferential solute transport at the field scale
DEFF Research Database (Denmark)
Koestel, J K; Minh, Luong Nhat; Nørgaard, Trine
An important fraction of water flow and solute transport through soil takes place through preferential flow paths. Although this had been already observed in the nineteenth century, it had been forgotten by the scientific community until it was rediscovered during the 1970s. The awareness...... of the relevance of preferential flow was broadly re-established in the community by the early 1990s. However, since then, the notion remains widespread among soil scientists that the occurrence and strength of preferential flow cannot be predicted from measurable proxy variables such as soil properties or land...
Stacking dependence of carrier transport properties in multilayered black phosphorous
Sengupta, A.; Audiffred, M.; Heine, T.; Niehaus, T. A.
2016-02-01
We present the effect of different stacking orders on carrier transport properties of multi-layer black phosphorous. We consider three different stacking orders AAA, ABA and ACA, with increasing number of layers (from 2 to 6 layers). We employ a hierarchical approach in density functional theory (DFT), with structural simulations performed with generalized gradient approximation (GGA) and the bandstructure, carrier effective masses and optical properties evaluated with the meta-generalized gradient approximation (MGGA). The carrier transmission in the various black phosphorous sheets was carried out with the non-equilibrium green’s function (NEGF) approach. The results show that ACA stacking has the highest electron and hole transmission probabilities. The results show tunability for a wide range of band-gaps, carrier effective masses and transmission with a great promise for lattice engineering (stacking order and layers) in black phosphorous.
Elastic properties and electron transport in InAs nanowires
Energy Technology Data Exchange (ETDEWEB)
Migunov, Vadim
2013-02-22
The electron transport and elastic properties of InAs nanowires grown by chemical vapor deposition on InAs (001) substrate were studied experimentally, in-situ in a transmission electron microscope (TEM). A TEM holder allowing the measurement of a nanoforce while simultaneous imaging nanowire bending was used. Diffraction images from local areas of the wire were recorded to correlate elastic properties with the atomic structure of the nanowires. Another TEM holder allowing the application of electrical bias between the nanowire and an apex of a metallic needle while simultaneous imaging the nanowire in TEM or performing electron holography was used to detect mechanical vibrations in mechanical study or holographical observation of the nanowire inner potential in the electron transport studies. The combination of the scanning probe methods with TEM allows to correlate the measured electric and elastic properties of the nanowires with direct identification of their atomic structure. It was found that the nanowires have different atomic structures and different stacking fault defect densities that impacts critically on the elastic properties and electric transport. The unique methods, that were applied in this work, allowed to obtain dependencies of resistivity and Young's modulus of left angle 111 right angle -oriented InAs nanowires on defect density and diameter. It was found that the higher is the defect density the higher are the resistivity and the Young's modulus. Regarding the resistivity, it was deduced that the stacking faults increase the scattering of the electrons in the nanowire. These findings are consistent with the literature, however, the effect described by the other groups is not so pronounced. This difference can be attributed to the significant incompleteness of the physical models used for the data analysis. Regarding the elastic modulus, there are several mechanisms affecting the elasticity of the nanowires discussed in the thesis. It
TASK 7 DEMONSTRATION OF THAMES FOR MICROSTRUCTURE AND TRANSPORT PROPERTIES
Energy Technology Data Exchange (ETDEWEB)
Langton, C.; Bullard, J.; Stutzman, P.; Snyder, K.; Garboczi, E.
2010-03-29
The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and realible set of tools to reduce the uncertainty in predicting the structural, hydraulic and chemical performance of cement barriers used in nuclear applications that are exposed to dynamic environmental conditions over extended time frames. One of these tools, the responsibility of NIST, is THAMES (Thermodynamic Hydration and Microstructure Evolution Simulator), which is being developed to describe cementitious binder microstructures and calculate important engineering properties during hydration and degradation. THAMES is designed to be a 'micro-probe', used to evaluate changes in microstructure and properties occurring over time because of hydration or degradation reactions in a volume of about 0.001 mm{sup 3}. It will be used to map out microstructural and property changes across reaction fronts, for example, with spatial resolution adequate to be input into other models (e.g., STADIUM{reg_sign}, LeachSX{trademark}) in the integrated CBP package. THAMES leverages thermodynamic predictions of equilibrium phase assemblages in aqueous geochemical systems to estimate 3-D virtual microstructures of a cementitious binder at different times during the hydration process or potentially during degradation phenomena. These virtual microstructures can then be used to calculate important engineering properties of a concrete made from that binder at prescribed times. In this way, the THAMES model provides a way to calculate the time evolution of important material properties such as elastic stiffness, compressive strength, diffusivity, and permeability. Without this model, there would be no way to update microstructure and properties for the barrier materials considered as they are exposed to the environment, thus greatly increasing the uncertainty of long-term transport predictions. This Task 7 report demonstrates the current capabilities of THAMES. At the start of the CBP
Transport properties in monolayer-bilayer-monolayer graphene planar junctions
Institute of Scientific and Technical Information of China (English)
Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang
2017-01-01
The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.
Effects of Te inclusions on charge-carrier transport properties in CdZnTe radiation detectors
International Nuclear Information System (INIS)
Gu, Yaxu; Rong, Caicai; Xu, Yadong; Shen, Hao; Zha, Gangqiang; Wang, Ning; Lv, Haoyan; Li, Xinyi; Wei, Dengke; Jie, Wanqi
2015-01-01
Highlights: • This work reveals the behaviors of Te inclusion in affecting charge-carrier transport properties in CdZnTe detectors for the first time and analysis the mechanism therein. • The results show that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from the Hecht rule. • This phenomenon is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. • A modified Hecht equation is further proposed to explain the effects of high-density localized defects, say Te inclusions, on the charge collection efficiency. • We believe that this research has wide appeal to analyze the macroscopic defects and their influence on charge transport properties in semiconductor radiation detectors. - Abstract: The influence of tellurium (Te) inclusions on the charge collection efficiency in cadmium zinc telluride (CdZnTe or CZT) detectors has been investigated using ion beam induced charge (IBIC) technique. Combining the analysis of infrared transmittance image, most of the low charge collection areas in the IBIC images prove the existence of Te inclusions. To further clarify the role of Te inclusions on charge transport properties, bias dependent local IBIC scan was performed on Te inclusion related regions from 20 V to 500 V. The result shows that charge collection efficiencies in Te inclusion degraded regions experience fast ascent under low biases and slow descent at high applied biases, which deviates from Hecht rule. This behavior is attributed to the competitive influence of two mechanisms under different biases, namely charge carrier trapping due to uniformly distributed point defects and Te inclusion induced transient charge loss. A modified Hecht equation is further proposed to explain the effects of high
Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Greck, Peter
2012-11-26
We present a novel quantum transport method that follows the non-equilibrium Green's function (NEGF) framework but side steps any self-consistent calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. We termed this method the multi-scattering Buettiker-Probe (MSB) method. It generalizes the so-called Buettiker-Probe model but takes into account all relevant individual scattering mechanisms. It is orders of magnitude more efficient than a fully selfconsistent non-equilibrium Green's function calculation for realistic devices, yet accurately reproduces the results of the latter method as well as experimental data. This method is fairly easy to implement and opens the path towards realistic three-dimensional quantum transport calculations. In this work, we review the fundamentals of the non-equilibrium Green's function formalism for quantum transport calculations. Then, we introduce our novel MSB method after briefly reviewing the original Buettiker-Probe model. Finally, we compare the results of the MSB method to NEGF calculations as well as to experimental data. In particular, we calculate quantum transport properties of quantum cascade lasers in the terahertz (THz) and the mid-infrared (MIR) spectral domain. With a device optimization algorithm based upon the MSB method, we propose a novel THz quantum cascade laser design. It uses a two-well period with alternating barrier heights and complete carrier thermalization for the majority of the carriers within each period. We predict THz laser operation for temperatures up to 250 K implying a new temperature record.
Macroscopic plasma properties and stability theory
International Nuclear Information System (INIS)
Sakanaka, P.H.
1981-01-01
1. Two-fluid equations: (a) Boltzmann equation: complete set of equations; collision models - Vlasov, BGK, Fokker-Planck-Landau, Boltzmann. (b) Moments of the Boltzmann equation: problem of closure. (c) Two-fluid equations. 2. One-fluid equation: (a) One-fluid variables. (b) One-fluid equations: quasi-neutrality. (c) Resistive MHD equations. (d) Ideal MHD equations: one-adiabatic approximation; double-adiabatic approximation - CGL. 3. MHD stability problem - energy principle: (a) Linearized ideal MHD equations: force-operator equation. (b) Boundary conditions. (c) Self-adjointness of force operator. (d) The energy principle. 4. Stability problems: application of the energy principle; stability of sharp-boundary plasmas. 5. Thermodynamic approach for stability of plasmas: Newcomb and Rosenbluth's stability criteria. (author)
Axial crystals macroscopic symmetry and tensor properties
Czech Academy of Sciences Publication Activity Database
Janovec, Václav
2017-01-01
Roč. 90, č. 1 (2017), s. 1-10 ISSN 0141-1594 Institutional support: RVO:68378271 Keywords : axial * polar * pseudopolar * chiral * enantiomorphism * optical activity Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.060, year: 2016
Extended Macroscopic Study of Dilute Gas Flow within a Microcavity
Directory of Open Access Journals (Sweden)
Mohamed Hssikou
2016-01-01
Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.
Directory of Open Access Journals (Sweden)
Samujlov E.
2013-04-01
Full Text Available In case of system with chemical reaction the most important properties are heat conductivity and heat capacity. In this work we have considered the equation for estimate the component of these properties caused by chemical reaction and ionization processes. We have evaluated the contribution of this part in heat conductivity and heat capacity too. At the high temperatures contribution in heat conductivity from ionization begins to play an important role. We have created a model, which describe partial and full ionization of gases and gas mixtures. In addition, in this work we present the comparison of our result with experimental data and data from numerical simulation. We was used the data about transport properties of middle composition of Russian coals and the data of thermophysical properties of natural gas for comparison.
Interface disorder and transport properties in HTC/CMR superlattices
Energy Technology Data Exchange (ETDEWEB)
Haberkorn, N.; Guimpel, J.; Sirena, M.; Steren, L.B.; Campillo, G.; Saldarriaga, W.; Gomez, M.E
2004-08-01
The physical properties of superlattices are affected by interface disorder, like roughness and interdiffusion. X-ray diffraction allows its measurement through modeling and structure refinement. The high-T{sub c} RBa{sub 2}Cu{sub 3}O{sub 7} (RBCO) and colossal magnetoresistance La{sub x}A{sub 1-x}MnO{sub 3} (LAMO) perovskites are interesting superlattice partners given their similar lattice parameters and because the combination of magnetic and superconducting properties is interesting for both basic and applied research. We have investigated the structural and transport properties of YBCO/La{sub 2/3}Ca{sub 1/3}MnO{sub 3} and GdBCO/La{sub 0.6}Sr{sub 0.04}MnO{sub 3} superlattices grown by sputtering on (1 0 0)MgO. We find a roughness of 1 RBCO unit cell and a 30% interdiffusion in the same length from the interfaces for all samples. The superconducting behavior is found strongly dependent on the LAMO layer thickness.
Investigation of transport properties of FeTe compound
Lodhi, Pavitra Devi; Solanki, Neha; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Transport properties of FeTe parent compound has been investigated by measurements of electrical resistivity, magnetic susceptibility and Seebeck coefficient. The sample was synthesized through a standard solid state reaction route via vacuum encapsulation and characterized by x-ray diffraction, which indicated a tetragonal phase with space group P4/nmm. The parent FeTe compound does not exhibit superconductivity but shows an anomaly in the resistivity measurement at around 67 K, which corresponds to a structural phase transition along with in the vicinity of a magnetic phase transition. In the low temperature regime, Seebeck coefficient, S(T), exhibited an anomalous dip feature and negative throughout the temperature range, indicating electron-like charge carrier conduction mechanism.
Fluid and ionic transport properties of deformed salt rock
International Nuclear Information System (INIS)
Peach, C.J.; Spiers, C.J.; Tankink, A.J.; Zwart, H.J.
1987-01-01
This is a final report on work done on the transport properties of salt during the period 1 January 1984 to 30 June 1985. This work was directed largely at the measurement of creep-induced permeability in salt rock, at determining the permeability persistence/decay characteristics of creep-dilated salt rock under hydrostatic conditions, and at ion migration/retention experiments on both deformed and undeformed material. The permeability work was carried out using both gas (argon) and brine, and involved the design and construction of corresponding permeametry systems for use in conjunction with dilatometric triaxial testing apparatus. Ion migration/retention studies involved the use of contaminant species such as Sr 2+ , Cs + , Fe 3+ and TcO 4
Perovskite solid electrolytes: Structure, transport properties and fuel cell applications
DEFF Research Database (Denmark)
Bonanos, N.; Knight, K.S.; Ellis, B.
1995-01-01
Doped barium cerate perovskites, first investigated by Iwahara and co-workers, have ionic conductivities of the order of 20 mS/cm at 800 degrees C making them attractive as fuel cell electrolytes for this temperature region. They have been used to construct laboratory scale fuel cells, which...... vapour transfer in a cell in which the perovskite is exposed to wet hydrogen on both sides. The evolution of transport properties with temperature is discussed in relation to structure. Neutron diffraction studies of doped and undoped barium cerate are reported, revealing a series of phase transitions...... between ambient temperature and 1000 degrees C. The available literature on chemical stability of cerate perovskites to reduction and attack by carbon dioxide is reviewed in brief....
Electronic transport properties of carbon nanotube metal-semiconductor-metal
Directory of Open Access Journals (Sweden)
F Khoeini
2008-07-01
Full Text Available In this work, we study electronic transport properties of a quasi-one dimensional pure semi-conducting Zigzag Carbon Nanotube (CNT attached to semi-infinite clean metallic Zigzag CNT leads, taking into account the influence of topological defect in junctions. This structure may behave like a field effect transistor. The calculations are based on the tight-binding model and Green’s function method, in which the local density of states(LDOS in the metallic section to semi-conducting section, and muli-channel conductance of the system are calculated in the coherent and linear response regime, numerically. Also we have introduced a circuit model for the system and investigated its current. The theoretical results obtained, can be a base, for developments in designing nano-electronic devices.
Low temperature carrier transport properties in isotopically controlled germanium
Energy Technology Data Exchange (ETDEWEB)
Itoh, Kohei [Univ. of California, Berkeley, CA (United States)
1994-12-01
Investigations of electronic and optical properties of semiconductors often require specimens with extremely homogeneous dopant distributions and precisely controlled net-carrier concentrations and compensation ratios. The previous difficulties in fabricating such samples are overcome as reported in this thesis by growing high-purity Ge single crystals of controlled ^{75}Ge and ^{70}Ge isotopic compositions, and doping these crystals by the neutron transmutation doping (NTD) technique. The resulting net-impurity concentrations and the compensation ratios are precisely determined by the thermal neutron fluence and the [^{74}Ge]/[^{70}Ge] ratios of the starting Ge materials, respectively. This method also guarantees unprecedented doping uniformity. Using such samples the authors have conducted four types of electron (hole) transport studies probing the nature of (1) free carrier scattering by neutral impurities, (2) free carrier scattering by ionized impurities, (3) low temperature hopping conduction, and (4) free carrier transport in samples close to the metal-insulator transition.
Electronic transport properties of copper and gold at atomic scale
Energy Technology Data Exchange (ETDEWEB)
Mohammadzadeh, Saeideh
2010-11-23
The factors governing electronic transport properties of copper and gold atomic-size contacts are theoretically examined in the present work. A two-terminal conductor using crystalline electrodes is adopted. The non-equilibrium Green's function combined with the density functional tight-binding method is employed via gDFTB simulation tool to calculate the transport at both equilibrium and non-equilibrium conditions. The crystalline orientation, length, and arrangement of electrodes have very weak influence on the electronic characteristics of the considered atomic wires. The wire width is found to be the most effective geometric aspect determining the number of conduction channels. The obtained conductance oscillation and linear current-voltage curves are interpreted. To analyze the conduction mechanism in detail, the transmission channels and their decomposition to the atomic orbitals are calculated in copper and gold single point contacts. The presented results offer a possible explanation for the relation between conduction and geometric structure. Furthermore, the results are in good agreement with available experimental and theoretical studies. (orig.)
Transport properties of ultrathin black phosphorus on hexagonal boron nitride
Energy Technology Data Exchange (ETDEWEB)
Doganov, Rostislav A.; Özyilmaz, Barbaros [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 28 Medical Drive, 117456 Singapore (Singapore); Koenig, Steven P.; Yeo, Yuting [Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, 117546 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, 117542 Singapore (Singapore); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)
2015-02-23
Ultrathin black phosphorus, or phosphorene, is a two-dimensional material that allows both high carrier mobility and large on/off ratios. Similar to other atomic crystals, like graphene or layered transition metal dichalcogenides, the transport behavior of few-layer black phosphorus is expected to be affected by the underlying substrate. The properties of black phosphorus have so far been studied on the widely utilized SiO{sub 2} substrate. Here, we characterize few-layer black phosphorus field effect transistors on hexagonal boron nitride—an atomically smooth and charge trap-free substrate. We measure the temperature dependence of the field effect mobility for both holes and electrons and explain the observed behavior in terms of charged impurity limited transport. We find that in-situ vacuum annealing at 400 K removes the p-doping of few-layer black phosphorus on both boron nitride and SiO{sub 2} substrates and reduces the hysteresis at room temperature.
Elastic and transport properties of topological semimetal ZrTe
Guo, San-Dong; Wang, Yue-Hua; Lu, Wan-Li
2017-11-01
Topological semimetals may have substantial applications in electronics, spintronics, and quantum computation. Recently, ZrTe was predicted as a new type of topological semimetal due to the coexistence of Weyl fermions and massless triply degenerate nodal points. In this work, the elastic and transport properties of ZrTe are investigated by combining the first-principles calculations and semiclassical Boltzmann transport theory. Calculated elastic constants prove the mechanical stability of ZrTe, and the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio also are calculated. It is found that spin-orbit coupling (SOC) has slightly enhanced effects on the Seebeck coefficient, which along the a(b) and c directions for pristine ZrTe at 300 K is 46.26 μVK-1 and 80.20 μVK-1, respectively. By comparing the experimental electrical conductivity of ZrTe (300 K) with the calculated value, the scattering time is determined as 1.59 × 10-14 s. The predicted room-temperature electronic thermal conductivity along the a(b) and c directions is 2.37 {{Wm}}-1{{{K}}}-1 and 2.90 {{Wm}}-1{{{K}}}-1, respectively. The room-temperature lattice thermal conductivity is predicted as 17.56 {{Wm}}-1{{{K}}}-1 and 43.08 {{Wm}}-1{{{K}}}-1 along the a(b) and c directions, showing very strong anisotropy. Calculated results show that isotope scattering produces an observable effect on lattice thermal conductivity. To observably reduce lattice thermal conductivity by nanostructures, the characteristic length should be smaller than 70 nm, based on cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP) at 300 K. It is noted that the average room-temperature lattice thermal conductivity of ZrTe is slightly higher than that of isostructural MoP, which is due to larger phonon lifetimes and smaller Grüneisen parameters. Finally, the total thermal conductivity as a function of temperature is predicted for pristine ZrTe. Our works provide valuable
Energy Technology Data Exchange (ETDEWEB)
Salles, F
2006-10-15
Smectites have interesting properties which make them potential candidates for engineered barriers in deep geological nuclear waste repository: low permeability, swelling and cations retention. The subject of this thesis consists in the determination of the relationship between hydration properties, swelling properties and cations mobility in relation with confinement properties of clayey materials. The aim is to understand and to predict the behaviour of water in smectites, following two research orientations: the mechanistic aspects and the energetic aspects of the hydration of smectites. We worked on the Na-Ca montmorillonite contained in the MX80 bentonite, with the exchanged homo ionic structure (saturated with alkaline cations and calcium cations). The approach crosses the various scales (microscopic, mesoscopic and macroscopic) and implied the study of the various components of the system (layer-cation-water), by using original experimental methods (thermo-poro-metry and electric conductivity for various relative humidities (RH) and electrostatic calculations. Initially, the dry state is defined by SCTA (scanning calorimetry thermal analysis). Then a classical characterization of the smectite porosity for the dry state is carried out using mercury intrusion and nitrogen adsorption. We evidenced the existence of a meso-porosity which radius varies from 2 to 10 nm depending on the compensating cation. The thermo-poro-metry and conductivity experiments performed at various hydration states made it possible to follow the increase in the pore sizes and the cations mobility as a function of the hydration state. We highlight in particular the existence of an osmotic mesoscopic swelling for low RH (approximately 50-60%RH for Li and Na). By combining the results of thermo-poro-metry, X-ray diffraction and electric conductivity, we are able to propose a complete hydration sequence for each cation, showing the crucial role of the compensating cation in the hydration of
Magnetic and transport properties of Fe-based nanocrystalline materials
Barandiarán, J. M.
1994-01-01
Fe-rich amorphous alloys containing late transition metals like Nb, V, Zr,..., sometimes with the addition of Cu, can crystallize in ultrafine grains of a crystalline phase, a few nanometers in diameter, embedded in a disordered matrix. In such state they have shown excellent soft magnetic properties for technical applications, rising the interest for deep studies. In this paper, recent work on some Fe-Nb and Fe-Zr based alloys both in amorphous state and after several degrees of nanocrystallization is presented. The nanocrystallization process has been achieved by conventional heat treatments (about 1 h at temperatures around 400-500 °C in a controlled atmosphere furnance) as well as by Joule heating using an electrical current flowing through the sample. Magnetic measurements, electrical resistivity, x-rays diffraction and 57Fe Mössbauer spectroscopy were used in the study of the crystalline phases appearing after the thermal treatments. The basic magnetic and transport properties of the nanocrystals do not differ appreciably from their bulk values. The magnetic anisotropy, however, is very sensitive to grain size and to the intergranular magnetic coupling. The effect of such coupling is deduced from the coercivity changes at the Curie Temperature of the amorphous matrix remaining after nanocrystallization.
Charge transport properties in microcrystalline KDyFe(China)6
International Nuclear Information System (INIS)
Aubert, P.H.; Goubard, F.; Chevrot, C.; Tabuteau, A.
2007-01-01
Microcrystalline solid dysprosium(III) hexacyanoferrate(II) was synthesized by co-precipitation in aqueous solution. The resulting solid has been studied by Fourier transform infrared spectroscopy, X-ray analysis and solid state electrochemistry. The use of a cavity microelectrode was necessary to explore a wide range of time scale and minimize the (undesired) capacitive currents. Cyclic voltametric experiments were very helpful to understand the kinetic of charge transfer in such microstructure. A structure-properties relationship has been established from the crystallographic and the electrochemical properties. A square-scheme is presented to explain the unique electrochemical behavior of hexacyanoferrate containing dysprosium since this compound exhibits a second redox system. The solid presents an open channel-like morphology in which the motion of charged species occurs during the redox processes. Precisely, the electronic transfer is accompanied by a cation diffusion inside the microcrystalline structure. The size of these channels strongly suggests that the kinetic of charge transfer is limited by the cation transport into these structures. - Graphical abstract: Dy and Fe polyhedra packing in the cell of KDyFe(China) 6 .3.5H 2 O shows occluded water molecules and potassium ions forming a pseudohexagonal 2D sub-lattice connected to each other by diffusion channels
Thermodynamic and transport properties of YbNi 4Cd
Lee, J.; Park, H.; Lee-Hone, N. R.; Broun, D. M.; Mun, E.
2018-05-01
The single crystal growth and the physical properties of the intermetallic compounds R Ni4Cd (R =Y and Yb) which crystallize in the face-centered cubic (fcc) MgCu4Sn -type structure (space group F 4 ¯3 m ) are discussed. Thermodynamic and transport properties of YbNi4Cd are studied by measuring the magnetization, electrical resistivity, and specific heat. The magnetic susceptibility measurement shows that the 4 f electrons of Yb3 + ions are well localized. The electrical resistivity and specific heat exhibits an antiferromagnetic ordering below TN=0.97 K. Applying the field along the [111] direction results in the suppression of TN below 0.4 K at the critical field Hc˜4.5 kOe. No non-Fermi liquid behavior has been observed in the vicinity of Hc. Above Hc, the magnetoresistivity shows an unconventional temperature dependence ρ (T ) =ρ0+A Tn with n >2 , suggesting that an additional scattering mechanism in the resistivity needs to be considered. Based on the analysis of experimental results, we conclude that the Yb3 + moments and conduction electrons are weakly coupled. Despite the antiferromagnetic ordering below TN, YbNi4Cd exhibits a large frustration parameter | θp/TN|˜16 , where the magnetic Yb3 + ions occupy the tetrahedra on the fcc lattice.
Anomalous Transport Properties of Dense QCD in a Magnetic Field
de la Incera, Vivian
2017-06-01
Despite recent advancements in the study and understanding of the phase diagram of strongly interacting matter, the region of high baryonic densities and low temperatures has remained difficult to reach in the lab. Things are expected to change with the planned HIC experiments at FAIR in Germany and NICA in Russia, which will open a window to the high-density-low-temperature segment of the QCD phase map, providing a unique opportunity to test the validity of model calculations that have predicted the formation of spatially inhomogeneous phases with broken chiral symmetry at intermediate-to-high densities. Such a density region is also especially relevant for the physics of neutron stars, as they have cores that can have several times the nuclear saturation density. On the other hand, strong magnetic fields, whose presence is fairly common in HIC and in neutron stars, can affect the properties of these exotic phases and lead to signatures potentially observable in these two settings. In this paper, I examine the anomalous transport properties produced by the spectral asymmetry of the lowest Landau level (LLL) in a QCD-inspired NJL model with a background magnetic field that exhibits chiral symmetry breaking at high density via the formation of a Dual Chiral Density Wave (DCDW) condensate. It turns out that in this model the electromagnetic interactions are described by the axion electrodynamics equations and there is a dissipationless Hall current.
Electrical and optical transport properties of single layer WSe2
Tahir, M.
2018-03-01
The electronic properties of single layer WSe2 are distinct from the famous graphene due to strong spin orbit coupling, a huge band gap and an anisotropic lifting of the degeneracy of the valley degree of freedom under Zeeman field. In this work, band structure of the monolayer WSe2 is evaluated in the presence of spin and valley Zeeman fields to study the electrical and optical transport properties. Using Kubo formalism, an explicit expression for the electrical Hall conductivity is examined at finite temperatures. The electrical longitudinal conductivity is also evaluated. Further, the longitudinal and Hall optical conductivities are analyzed. It is observed that the contributions of the spin-up and spin-down states to the power absorption spectrum depend on the valley index. The numerical results exhibit absorption peaks as a function of photon energy, ℏ ω, in the range ∼ 1.5 -2 eV. Also, the optical response lies in the visible frequency range in contrast to the conventional two-dimensional electron gas or graphene where the response is limited to terahertz regime. This ability to isolate carriers in spin-valley coupled structures may make WSe2 a promising candidate for future spintronics, valleytronics and optical devices.
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
2007-10-02
Some arguments of Bristow (1960) concerning the effects of cracks on elastic and transport (i.e., electrical or thermal conduction) properties of cold-worked metals are reexamined. The discussion is posed in terms of a modern understanding of bounds and estimates for physical properties of polycrystals--in contrast to Bristow's approach using simple mixture theory. One type of specialized result emphasized here is the cross-property estimates and bounds that can be obtained using the methods presented. Our results ultimately agree with those of Bristow, i.e., confirming that microcracking is not likely to be the main cause of the observed elastic behavior of cold-worked metals. However, it also becomes clear that the mixture theory approach to the analysis is too simple and that crack-crack interactions are necessary for proper quantitative study of Bristow's problem.
Macroscopic balance model for wave rotors
Welch, Gerard E.
1996-01-01
A mathematical model for multi-port wave rotors is described. The wave processes that effect energy exchange within the rotor passage are modeled using one-dimensional gas dynamics. Macroscopic mass and energy balances relate volume-averaged thermodynamic properties in the rotor passage control volume to the mass, momentum, and energy fluxes at the ports. Loss models account for entropy production in boundary layers and in separating flows caused by blade-blockage, incidence, and gradual opening and closing of rotor passages. The mathematical model provides a basis for predicting design-point wave rotor performance, port timing, and machine size. Model predictions are evaluated through comparisons with CFD calculations and three-port wave rotor experimental data. A four-port wave rotor design example is provided to demonstrate model applicability. The modeling approach is amenable to wave rotor optimization studies and rapid assessment of the trade-offs associated with integrating wave rotors into gas turbine engine systems.
Macroscopic Floquet topological crystalline steel and superconductor pump
Rossi, Anna M. E. B.; Bugase, Jonas; Fischer, Thomas M.
2017-08-01
The transport of a macroscopic steel sphere and a superconducting sphere on top of two-dimensional periodic magnetic patterns is studied experimentally and compared with the theory and with experiments on topological transport of magnetic colloids. Transport of the steel and superconducting sphere is achieved by moving an external permanent magnet on a closed loop around the two-dimensional crystal. The transport is topological, i.e., the spheres are transported by a primitive unit vector of the lattice when the external magnet loop winds around specific directions. We experimentally determine the set of directions the loops must enclose for nontrivial transport of the spheres into various directions. We show that the loops can be used to sort steel and superconducting spheres. We show that the topological transport is robust with respect to the scale of the system and therefore speculate on its down scalability to the molecular scale.
Validity of macroscopic concepts for fluids on a microscopic scale
International Nuclear Information System (INIS)
Alder, B.J.; Alley, W.E.; Pollock, E.L.
1981-01-01
By Fourier decomposition of the appropriate fluctuation it is possible within the regime of linear response to extend the concept of both thermodynamic quantities and transport coefficients to their dependence on both wavelength and frequency. Experimentally these generalized macroscopic properties are accessible through neutron diffraction and, as examples, the dependence of the sound speed on wavelength and the diffusion coefficient on time are discussed. Through the molecular dynamics computer method the dependence of the viscosity on wavelength is calculated and applied with spectacular success to predict the dependence of the friction coefficient on the size of a Brownian particle all the way to atomic dimensions. On the other hand, the dielectric constant continuum concept, as applied to a charge or dipole in a cavity, generally fails to predict even the correct field at large distance from the charge. Avoiding the introduction of a cavity cures that problem, but the generalized dielectric constant fails badly in predicting the field at shorter distances from the charge. (orig.)
DEFF Research Database (Denmark)
Shapiro, Alexander
2004-01-01
The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general statis...... of the heat conductivity coefficient for ideal gas. (C) 2003 Elsevier B.V. All rights reserved.......The theory of transport properties in multicomponent gas and liquid mixtures, which was previously developed for diffusion coefficients, is extended onto thermodiffusion coefficients and heat conductivities. The derivation of the expressions for transport properties is based on the general...
Transport properties of olivine grain boundaries from electrical conductivity experiments
Pommier, Anne; Kohlstedt, David L.; Hansen, Lars N.; Mackwell, Stephen; Tasaka, Miki; Heidelbach, Florian; Leinenweber, Kurt
2018-05-01
Grain boundary processes contribute significantly to electronic and ionic transports in materials within Earth's interior. We report a novel experimental study of grain boundary conductivity in highly strained olivine aggregates that demonstrates the importance of misorientation angle between adjacent grains on aggregate transport properties. We performed electrical conductivity measurements of melt-free polycrystalline olivine (Fo90) samples that had been previously deformed at 1200 °C and 0.3 GPa to shear strains up to γ = 7.3. The electrical conductivity and anisotropy were measured at 2.8 GPa over the temperature range 700-1400 °C. We observed that (1) the electrical conductivity of samples with a small grain size (3-6 µm) and strong crystallographic preferred orientation produced by dynamic recrystallization during large-strain shear deformation is a factor of 10 or more larger than that measured on coarse-grained samples, (2) the sample deformed to the highest strain is the most conductive even though it does not have the smallest grain size, and (3) conductivity is up to a factor of 4 larger in the direction of shear than normal to the shear plane. Based on these results combined with electrical conductivity data for coarse-grained, polycrystalline olivine and for single crystals, we propose that the electrical conductivity of our fine-grained samples is dominated by grain boundary paths. In addition, the electrical anisotropy results from preferential alignment of higher-conductivity grain boundaries associated with the development of a strong crystallographic preferred orientation of the grains.
Seismic scanning tunneling macroscope - Theory
Schuster, Gerard T.
2012-09-01
We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.
Seismic scanning tunneling macroscope - Theory
Schuster, Gerard T.; Hanafy, Sherif M.; Huang, Yunsong
2012-01-01
We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.
Interfacial and transport properties of nanoconstrained inorganic and organic materials
Kocherlakota, Lakshmi Suhasini
Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60
Transport properties of damaged materials. Cementitious barriers partnership
Energy Technology Data Exchange (ETDEWEB)
Langton, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)
2014-11-01
The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in
Transport properties of damaged materials. Cementitious barriers partnership
International Nuclear Information System (INIS)
Langton, C.
2014-01-01
The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in
Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction
DEFF Research Database (Denmark)
Poulsen, Tjalfe
Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....
Transport properties of ruthenophanes – A theoretical insight
Energy Technology Data Exchange (ETDEWEB)
Garcia, Leone C., E-mail: leoqmc@ifsc.edu.br [Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040-900 (Brazil); Instituto Federal de Educação Ciência e Tecnologia de Santa Catarina – Campus São José, São José, SC 88103-310 (Brazil); Caramori, Giovanni F. [Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040-900 (Brazil); Bergamo, Pedro A.S. [Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP 14404-600 (Brazil); Parreira, Renato L.T., E-mail: renato.parreira@unifran.edu.br [Departamento de Química, Universidade Federal de Santa Catarina, Campus Universitário Trindade, CP 476, Florianópolis, SC 88040-900 (Brazil)
2016-10-20
In this article, the electron transport properties of a series of ruthenophanes, 1–4, containing electron-donor and electron-acceptor substituents are studied. The electronic transmission at zero bias is mainly driven by only one eigenchannel. The substitutions constrain the energies in which the probability of electronic transmission is significant. The results suggest that the conductance at zero bias is dependent on the nature of the employed substituent. The eigenchannel wave functions show that the central molecules are preferentially coupled with right electrode. The calculated molecular projected self-consistent hamiltonian states also suggest that there is a dependence of the conductance at zero bias with the nature of the employed substituent. The current–voltage analyses suggest that the negative differential resistance effect is present in ruthenophanes, but it is dependent on both the nature of the substituent and the bias. Despite the moderate rectification ratio of the ruthenophanes, they present non-ohmic behaviour, indicating that they can be used as potential candidates in electronic molecular devices such as switches, oscillators, and frequency multipliers.
Structural and transport properties of Sn-Mg alloys
International Nuclear Information System (INIS)
Meydaneri, F.; Saatci, E.; Oezdemir, M.; Ari, M.; Durmus, S.
2010-01-01
The structural and temperature dependence transport of Sn-Mg alloys have been investigated for five different samples (Pure Sn, Sn-1.0 wt % Mg , Sn-2.0 wt % Mg , Sn-6.0 wt.% Mg and Pure Mg). Scanning Electron Microscopy (SEM), x-ray diffraction (XRD) and Energy Dispersive x-ray Analysis (EDX) measurements were carried out in order to clarify the structural properties of the samples. It has been found that, the samples have tetragonal crystal symmetry except the pure Mg which has hexagonal crystal symmetry. The cell parameters decrease slightly with addition of Mg element. The SEM micrographs of the samples show that, the samples have smooth surfaces with clear grain boundary. There is no crack, porosity or defects on the surfaces. The electrical resistivity of the samples increases almost linearly with the increasing temperature, which were measured by four-point probe technique. The thermal conductivity values are in between 0.60-1.00 W/Km, which are decrease slightly with temperature and increase with composition of Mg. The thermal conductivity values of the alloys are in between the values of the pure samples. Thermal conductivity results of the alloys have been compared with available other studies and a good agreement has been seen between the results. In addition, the temperature coefficients of electrical resistivity and thermal conductivity have been determined, which are independent with the compositions of alloying elements
Oxygen nonstoichiometry and transport properties of strontium substituted lanthanum cobaltite
DEFF Research Database (Denmark)
Søgaard, Martin; Hendriksen, Peter Vang; Mogensen, Mogens Bjerg
2006-01-01
Oxygen nonstoichiometry, structure and transport properties of the two compositions (La-0.6 Sr-0.4)(0.99)CoO3-delta (LSC40) and La0.85Sr0.15CoO3-delta (LSC15) were measured. It was found that the oxygen nonstoichiometry as a function of the temperature and oxygen partial pressure could be described...... using the itinerant electron model. The electrical conductivity, sigma, of the materials is high (sigma > 500 S cm(-1)) in the measured temperature range (650 - 1000 degrees C) and oxygen partial pressure range (0.209-10(-4) atm). At 900 degrees C the electrical conductivity is 1365 and 1491 S cm(-1......) in air for LSC40 and LSC15, respectively. A linear correlation between the electrical conductivity and the oxygen vacancy concentration was found for both samples. The mobility of the electron-holes was inversely proportional with the absolute temperature indicating a metallic type conductivity for LSC40...
Landau levels and magneto-transport property of monolayer phosphorene
Zhou, X. Y.; Zhang, R.; Sun, J. P.; Zou, Y. L.; Zhang, D.; Lou, W. K.; Cheng, F.; Zhou, G. H.; Zhai, F.; Chang, Kai
2015-01-01
We investigate theoretically the Landau levels (LLs) and magneto-transport properties of phosphorene under a perpendicular magnetic field within the framework of the effective k·p Hamiltonian and tight-binding (TB) model. At low field regime, we find that the LLs linearly depend both on the LL index n and magnetic field B, which is similar with that of conventional semiconductor two-dimensional electron gas. The Landau splittings of conduction and valence band are different and the wavefunctions corresponding to the LLs are strongly anisotropic due to the different anisotropic effective masses. An analytical expression for the LLs in low energy regime is obtained via solving the decoupled Hamiltonian, which agrees well with the numerical calculations. At high magnetic regime, a self-similar Hofstadter butterfly (HB) spectrum is obtained by using the TB model. The HB spectrum is consistent with the LL fan calculated from the effective k·p theory in a wide regime of magnetic fields. We find the LLs of phosphorene nanoribbon depend strongly on the ribbon orientation due to the anisotropic hopping parameters. The Hall and the longitudinal conductances (resistances) clearly reveal the structure of LLs. PMID:26159856
Strain dependence of the heat transport properties of graphene nanoribbons
International Nuclear Information System (INIS)
Emmeline Yeo, Pei Shan; Loh, Kian Ping; Gan, Chee Kwan
2012-01-01
Using a combination of accurate density-functional theory and a nonequilibrium Green’s function method, we calculate the ballistic thermal conductance characteristics of tensile-strained armchair (AGNR) and zigzag (ZGNR) edge graphene nanoribbons, with widths between 3 and 50 Å. The optimized lateral lattice constants for AGNRs of different widths display a three-family behavior when the ribbons are grouped according to N modulo 3, where N represents the number of carbon atoms across the width of the ribbon. Two lowest-frequency out-of-plane acoustic modes play a decisive role in increasing the thermal conductance of AGNR-N at low temperatures. At high temperatures the effect of tensile strain is to reduce the thermal conductance of AGNR-N and ZGNR-N. These results could be explained by the changes in force constants in the in-plane and out-of-plane directions with the application of strain. This fundamental atomistic understanding of the heat transport in graphene nanoribbons paves a way to effect changes in their thermal properties via strain at various temperatures. (paper)
Hanna, Amir
2012-01-01
injection and transport are believed to affect various properties of ferroelectric films such as remnant polarization values and polarization fatigue behavior.. Thus, this thesis aims to study charge injection in P(VDF-TrFE) and its transport properties as a
Gordon, S.; Mcbride, B.; Zeleznik, F. J.
1984-01-01
An addition to the computer program of NASA SP-273 is given that permits transport property calculations for the gaseous phase. Approximate mixture formulas are used to obtain viscosity and frozen thermal conductivity. Reaction thermal conductivity is obtained by the same method as in NASA TN D-7056. Transport properties for 154 gaseous species were selected for use with the program.
Opto-electronic and quantum transport properties of semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Sabathil, M.
2005-01-01
In this work a novel and efficient method for the calculation of the ballistic transport properties of open semiconductor nanostructures connected to external reservoirs is presented. It is based on the Green's function formalism and reduces the effort to obtain the transmission and the carrier density to a single solution of a hermitian eigenvalue problem with dimensions proportional to the size of the decoupled device and the multiple inversion of a small matrix with dimensions proportional to the size of the contacts to the leads. Using this method, the 4-band GaAs hole transport through a 2-dimensional three-terminal T-junction device, and the resonant tunneling current through a 3-dimensional InAs quantum dot molecule embedded into an InP heterostructure have been calculated. The further extension of the method into a charge self-consistent scheme enables the efficient prediction of the IV-characteristics of highly doped nanoscale field effect transistors in the ballistic regime, including the influence of quasi bound states and the exchange-correlation interaction. Buettiker probes are used to emulate the effect of inelastic scattering on the current for simple 1D devices, systematically analyzing the dependence of the density of states and the resulting self-consistent potential on the scattering strength. The second major topic of this work is the modeling of the optical response of quantum confined neutral and charged excitons in single and coupled self-assembled InGaAs quantum dots. For this purpose the existing device simulator nextnano{sup 3} has been extended to incorporate particle-particle interactions within the means of density functional theory in local density approximation. In this way the exciton transition energies for neutral and charged excitons as a function of an externally applied electric field have been calculated, revealing a systematic reduction of the intrinsic dipole with the addition of extra holes to the exciton, a finding
International Nuclear Information System (INIS)
Kazama, Shigeo; Masubuchi, Shin-ichi; Matsuyama, Tomochika; Matsushita, Rokuji.
1994-01-01
Electric transport properties in most of the conducting organic polymers have provided a riddle that prevents a thorough physical understanding of the conduction mechanism. Major difficulties for approaching the most substantial aspect in the electrical transport properties underlie in complicated higher order structure inherent to polymeric materials consisting of crystalline regions entangled with disordered amorphous regions. In order to clearly understand the origin of the metallic nature of conducting polymers, we have to extract the proper transport properties characteristics of the ordered crystalline regions. We have made a series of experimental studies of the transport properties in conductive polythiophene and poly(3-methylthiophene) obtained with the electrochemical polymerization. For polythiophene, we have investigated both the as-grown samples and the ones that contain controlled amount of dopant species exchanged after the neutralization aiming to see the effect of dopant concentration on the transport properties. (author)
Moisture transport properties of mortar and mortar joint: A NMR study
Brocken, H.J.P.; Adant, O.C.G.; Pel, L.
1997-01-01
The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick laying, curing conditions of mortar in mortar joint differ from curing conditions of separately cured mortar. Consequently, the moisture transport properties of mortar joint differ. In addition to the ...
Moisture transport properties of mortar and mortar joint: a NMR study
Brocken, H.J.P.; Adan, O.C.G.; Pel, L.
1997-01-01
The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick laying, curing conditions of mortar in mortar joint differ from curing conditions of separately cured mortar. Consequently, the moisture transport properties of mortar joint differ. In addition to the ...
Electronic transport properties of 4f shell elements of liquid metal using hard sphere Yukawa system
Patel, H. P.; Sonvane, Y. A.; Thakor, P. B.
2018-04-01
The electronic transport properties are analyzed for 4f shell elements of liquid metals. To examine the electronic transport properties like electrical resistivity (ρ), thermal conductivity (σ) and thermo electrical power (Q), we used our own parameter free model potential with the Hard Sphere Yukawa (HSY) reference system. The screening effect on aforesaid properties has been examined by using different screening functions like Hartree (H), Taylor (T) and Sarkar (S). The correlations of our resultsand other data with available experimental values are intensely promising. Also, we conclude that our newly constructed parameter free model potential is capable of explaining the above mentioned electronic transport properties.
Transport properties near the superfluid transition in helium
International Nuclear Information System (INIS)
Ikushima, Akira
1980-01-01
Description are given primarily on recent experimental results and related topics of acoustic attenuation and dispersion, and of thermal transport properties near the superfluid transition in pure 4 He and 3 He- 4 He mixtures ( 3 He). Attenuation and dispersion of sound above the lambda point T sub(lambda) can well be understood fundamentally from the dynamic scaling hypothesis with the mode coupling theory. Attenuation and dispersion at T sub(lambda) as a function of frequency is expressed with the exponent which is slightly dependent on frequency and on 3 He concentration. The situation below T sub(lambda) would still have problems since at higher frequencies the simple splitting of observed attenuation and dispersion into that due to order-parameter fluctuation and that due to order-parameter relaxation proposed by Pokrovskii and Khalatnikov does not work. The possibility that the recent theory of Ferrell and Bhattacharjee offers explanations for the results above and below T sub(lambda) is discussed. Thermal conductivity in 4 He and mixtures, and thermo-diffusion ratio in mixtures are measured near the superfluid transition points. Thermal conductivity in the absence of a concentration gradient and its corresponding thermal diffusivity are then calculated. The critical exponent of this thermal diffusivity is approximately 1/3, irrespective of 3 He concentration. The thermo-diffusion ratio has very weak divergence, if any, when T sub(lambda) is approached. Two damping modes in mixtures in non-stationary condition are then calculated. Only the mode corresponding to the Brillouin linewidth does diverge with critical exponent approximately equal to 1/3, irrespective of 3 He concentration. (author)
Electrical transport properties of calcium and barium aluminates
Metselaar, R.; Hoefsloot, A.M.
1987-01-01
Electrical conductivity and ionic transport numbers have been measured of barium and calcium aluminates with composition CaO·nAl2O3 (n=7/12, 1, 2, 6) and 0.82 BaO·6Al2O3. At room temperatures these compounds are insulators, but at high temperatures mixed conductivity is observed. Ionic transport
Structural Properties of the Brazilian Air Transportation Network
Directory of Open Access Journals (Sweden)
GUILHERME S. COUTO
2015-09-01
Full Text Available The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network.
Structural Properties of the Brazilian Air Transportation Network.
Couto, Guilherme S; da Silva, Ana Paula Couto; Ruiz, Linnyer B; Benevenuto, Fabrício
2015-09-01
The air transportation network in a country has a great impact on the local, national and global economy. In this paper, we analyze the air transportation network in Brazil with complex network features to better understand its characteristics. In our analysis, we built networks composed either by national or by international flights. We also consider the network when both types of flights are put together. Interesting conclusions emerge from our analysis. For instance, Viracopos Airport (Campinas City) is the most central and connected airport on the national flights network. Any operational problem in this airport separates the Brazilian national network into six distinct subnetworks. Moreover, the Brazilian air transportation network exhibits small world characteristics and national connections network follows a power law distribution. Therefore, our analysis sheds light on the current Brazilian air transportation infrastructure, bringing a novel understanding that may help face the recent fast growth in the usage of the Brazilian transport network.
Macroscopic realism and quantum measurement: measurers as a natural kind
International Nuclear Information System (INIS)
Jaeger, Gregg
2014-01-01
The notion of macroscopic realism has been used in attempts to achieve consistency between physics and everyday experience and to locate some boundary between the realms of classical mechanics and quantum meachanics. Its ostensibly underlying conceptual components, realism and macroscopicity, have most often appeared in the foundations of physics in relation to quantum measurement: reality became a prominent topic of discussion in quantum physics after the notion of element of reality was defined and used by Einstein, Podolsky and Rosen in that context, and macroscopicity is often explicitly assumed to be an essential property of any measuring apparatus. However, macroscopicity turns out to be a rather vaguer and less consistently understood notion than typically assumed by physicists who have not explicitly explored the notion themselves. For this reason, it behooves those investigating the foundations of quantum mechanics from a realist perspective to look for alternative notions for grounding quantum measurement. Here, the merits of treating the measuring instrument as a ‘natural kind’ as a means of avoiding anthropocentrism in the foundations of quantum measurement are pointed out as a means of advancing quantum measurement theory. (paper)
Rank distributions: A panoramic macroscopic outlook
Eliazar, Iddo I.; Cohen, Morrel H.
2014-01-01
This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.
EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas
International Nuclear Information System (INIS)
Colonna, G.; D'Angola, A.
2012-01-01
EquilTheTA (EQUILibrium for plasma THErmodynamics and Transport Applications) is a web-based software which calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture in wide temperature and pressure ranges. The program calculates chemical equilibrium by using a hierarchical approach, thermodynamic properties and transport coefficients starting from recent and accurate databases of atomic and molecular energy levels and collision integrals. In the calculations, Debye length and cut-off are consistently updated and virial corrections (up to third order) can be considered. Transport coefficients are calculated by using high order approximations of the Chapman-Enskog method.
Electrolytes: transport properties and non-equilibrium thermodynamics
International Nuclear Information System (INIS)
Miller, D.G.
1980-12-01
This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions
Searching for the nanoscopic–macroscopic boundary
Energy Technology Data Exchange (ETDEWEB)
Velásquez, E.A. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, A.A. 5222, Medellín (Colombia); Altbir, D. [Departamento de Física, Universidad de Santiago de Chile (USACH), CEDENNA, Santiago (Chile); Mazo-Zuluaga, J. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Duque, L.F. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Física Teórica, Aplicada y Didáctica, Facultad de Ciencias Exactas y Aplicadas Instituto Tecnológico Metropolitano, Medellín (Colombia); Mejía-López, J., E-mail: jmejia@puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, CEDENNA, Santiago (Chile)
2013-12-15
Several studies have focused on the size-dependent properties of elements, looking for a unique definition of the nanoscopic–macroscopic boundary. By using a novel approach consisting of an energy variational method combined with a quantum Heisenberg model, here we address the size at which the ordering temperature of a magnetic nanoparticle reaches its bulk value. We consider samples with sizes in the range 1–500 nm, as well as several geometries and crystalline lattices and observe that, contrarily to what is commonly argued, the nanoscopic-microscopic boundary depends on both factors: shape and crystalline structure. This suggests that the surface-to-volume ratio is not the unique parameter that defines the behavior of a nanometric sample whenever its size increases reaching the bulk dimension. Comparisons reveal very good agreement with experimental evidence with differences less than 2%. Our results have broad implications for practical issues in measurements on systems at the nanometric scale. - Highlights: • A novel quantum-Heisenberg variational energy method is implemented. • The asymptotic behavior toward the thermodynamic limit is explored. • An important dependence of the nano-bulk boundary on the geometry is found. • And also an important dependence on the crystalline lattice. • We obtain a very good agreement with experimental evidence with differences <2%.
Kim, Jihwan; Kim, Bum-Kyu; Kim, Hong-Seok; Hwang, Ahreum; Kim, Bongsoo; Doh, Yong-Joo
2017-11-08
We report on the fabrication and electrical transport properties of superconducting junctions made of β-Ag 2 Se topological insulator (TI) nanowires in contact with Al superconducting electrodes. The temperature dependence of the critical current indicates that the superconducting junction belongs to a short and diffusive junction regime. As a characteristic feature of the narrow junction, the critical current decreases monotonously with increasing magnetic field. The stochastic distribution of the switching current exhibits the macroscopic quantum tunneling behavior, which is robust up to T = 0.8 K. Our observations indicate that the TI nanowire-based Josephson junctions can be a promising building block for the development of nanohybrid superconducting quantum bits.
DEFF Research Database (Denmark)
Barreto, Lucas; Perkins, Edward; Johannsen, Jens
2013-01-01
The electronic transport properties of epitaxial monolayer graphene (MLG) and hydrogen-intercalated quasi free-standing bilayer graphene (QFBLG) on SiC(0001) are investigated by micro multi-point probes. Using a probe with 12 contacts, we perform four-point probe measurements with the possibility...
Macroscopic quantum waves in non local theories
International Nuclear Information System (INIS)
Ventura, I.
1979-01-01
By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also apear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He. (Author) [pt
Macroscopic quantum waves in non local theories
International Nuclear Information System (INIS)
Ventura, I.
1979-01-01
By means of an expansion in the density, it is shown that Macroscopic Quantum Waves also appear in non local theories. This result reinforces the conjecture that these waves should exist in liquid 4 He [pt
Transport properties of high-temperature superconductors: Surface vs bulk effect
International Nuclear Information System (INIS)
Burlachkov, L.; Koshelev, A.E.; Vinokur, V.M.
1996-01-01
We investigate surface-related transport properties of high-temperature superconductors. We find the mean vortex velocity under applied transport current determined by the activation energies for vortex penetration and exit through the Bean-Livingston barrier. We determine the current distribution between the surfaces of superconductor and the field and current dependencies of the transport activation energies. For a three-dimensional superconductor the transport activation energy, U s 3D , is found to decrease with the external field, H, and transport current, J, as U s 3D ∝H -1/2 and U s 3D ∝J -1/2 , respectively. In the quasi-two-dimensional compounds, U s 2D decays logarithmically with field and current. The interplay between the surface and the bulk contributions to the transport properties, such as current-voltage characteristics, is discussed. copyright 1996 The American Physical Society
Montes Muñ oz, Enrique; Schwingenschlö gl, Udo
2017-01-01
We investigate the electronic transport properties of silicon nanotubes attached to metallic electrodes from first principles, using density functional theory and the non-equilibrium Green's function method. The influence of the surface termination
Synthesis, transport and dielectric properties of polyaniline/Co3O4 ...
Indian Academy of Sciences (India)
TECS
Synthesis, transport and dielectric properties of polyaniline/Co3O4 composites ... Initial increment in conductivity is due to extended chain length of polyaniline where polarons possess .... Figure 3 displays the scanning electron micrograph of.
Assessments of macroscopicity for quantum optical states
DEFF Research Database (Denmark)
Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund
2015-01-01
With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....
Nuclear fission as a macroscopic quantum tunneling
International Nuclear Information System (INIS)
Takigawa, N.
1995-01-01
We discuss nuclear fission from the point of view of a macroscopic quantum tunneling, one of whose major interests is to study the effects of environments on the tunneling rate of a macroscopic variable. We show that a vibrational excitation of the fissioning nucleus significantly enhances the fission rate. We show this effect by two different methods. The one is to treat the vibrational excitation as an environmental degree of freedom, the other treats the fission as a two dimensional quantum tunneling. (author)
Physicochemical properties and transport of steroids across Caco-2 cells
Faassen, F.; Kelder, J.; Lenders, J.; Onderwater, R.; Vromans, H.
2003-01-01
Purpose. The purpose of this work was to study the relevant physicochemical properties for the absorption of steroids. Methods. Various physicochemical properties of steroids were calculated (molecular weight, ClogP, static polar surface area [PSA], etc.). Within this series of steroids, different
Nishio, Kengo; Ozaki, Taisuke; Morishita, Tetsuya; Mikami, Masuhiro
2010-01-01
We explore the possibility of controllable tuning of the electronic transport properties of silicon-fullerene-linked nanowires by encapsulating guest atoms into their cages. Our first-principles calculations demonstrate that the guest-free nanowires are semiconductors, and do not conduct electricity. The iodine or sodium doping improves the transport properties, and makes the nanowires metallic. In the junctions of I-doped and Na-doped NWs, the current travels through the boundary by quantum ...
First-principles-based study of transport properties of Fe thin films on Cu surfaces
Energy Technology Data Exchange (ETDEWEB)
Kishi, Tomoya [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Nakanishi, Hiroshi [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Dino, Wilson Agerico [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Komori, Fumio [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8587 (Japan)
2004-12-08
We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties.
First-principles-based study of transport properties of Fe thin films on Cu surfaces
International Nuclear Information System (INIS)
Kishi, Tomoya; Kasai, Hideaki; Nakanishi, Hiroshi; Dino, Wilson Agerico; Komori, Fumio
2004-01-01
We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties
Core transport properties in JT-60U and JET identity plasmas
Litaudon, X.; Sakamoto, Y.; de Vries, P. C.; Salmi, A.; Tala, T.; Angioni, C.; Benkadda, S.; Beurskens, M. N. A.; Bourdelle, C.; Brix, M.; Crombe, K.; Fujita, T.; Futatani, S.; Garbet, X.; Giroud, C.; Hawkes, N. C.; Hayashi, N.; Hoang, G. T.; Hogeweij, G. M. D.; Matsunaga, G.; Nakano, T.; Oyama, N.; Parail, V.; Shinohara, K.; Suzuki, T.; Takechi, M.; Takenaga, H.; Takizuka, T.; Urano, H.; Voitsekhovitch, I.; Yoshida, M.
2011-01-01
The paper compares the transport properties of a set of dimensionless identity experiments performed between JET and JT-60U in the advanced tokamak regime with internal transport barrier, ITB. These International Tokamak Physics Activity, ITPA, joint experiments were carried out with the same plasma
Moisture transport properties of mortar and mortar joint: A NMR study
Brocken, H.J.P.; Adant, O.C.G.; Pel, L.
1997-01-01
The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick
Moisture transport properties of mortar and mortar joint: a NMR study
Brocken, H.J.P.; Adan, O.C.G.; Pel, L.
1997-01-01
The moisture transport in mortar and mortar joint often is an important parameter in degeneration of brick masonry and other block constructions. In this study, the influence of single additives on the moisture transport properties of mortar is investigated. Due to water extraction during brick
A comparative study of the proton transport properties of metal (IV ...
Indian Academy of Sciences (India)
Unknown
study the transport properties of these materials.5,6 The mechanism of diffusion and ionic transport in crystalline ... Cu-Kα radiation with a nickel filter. Chemical ... All the tungstates were hard and white except TiW which is yellow. The chemical.
Prediction of Thermal Transport Properties of Materials with Microstructural Complexity
Energy Technology Data Exchange (ETDEWEB)
Chen, Youping
2017-10-10
This project aims at overcoming the major obstacle standing in the way of progress in dynamic multiscale simulation, which is the lack of a concurrent atomistic-continuum method that allows phonons, heat and defects to pass through the atomistic-continuum interface. The research has led to the development of a concurrent atomistic-continuum (CAC) methodology for multiscale simulations of materials microstructural, mechanical and thermal transport behavior. Its efficacy has been tested and demonstrated through simulations of dislocation dynamics and phonon transport coupled with microstructural evolution in a variety of materials and through providing visual evidences of the nature of phonon transport, such as showing the propagation of heat pulses in single and polycrystalline solids is partially ballistic and partially diffusive. In addition to providing understanding on phonon scattering with phase interface and with grain boundaries, the research has contributed a multiscale simulation tool for understanding of the behavior of complex materials and has demonstrated the capability of the tool in simulating the dynamic, in situ experimental studies of nonequilibrium transient transport processes in material samples that are at length scales typically inaccessible by atomistically resolved methods.
Transport properties and electronic structure of epitaxial tunnel junctions
Czech Academy of Sciences Publication Activity Database
Freyss, M.; Papanikolaou, N.; Bellini, V.; Zeller, R.; Dederichs, P.; Turek, Ilja
2002-01-01
Roč. 240, 1/3 (2002), s. 117-120 ISSN 0304-8853 R&D Projects: GA ČR GA106/02/0943; GA MŠk ME 374 Institutional research plan: CEZ:AV0Z2041904 Keywords : junctions * transport Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.046, year: 2002
Lanyi, Janos K.
1977-01-01
Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.
Problems related to macroscopic electric fields in the magnetosphere
International Nuclear Information System (INIS)
Faelthammar, C.
1977-01-01
The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles. A particularly interesting feature of magnetospheric electric fields is that they can have substantial components along the geomagnetic field, as has recently been confirmed by observations. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic mirror effect, anomalous resistivity, the collisionless thermoelectric effect, and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data
Cell Membrane Transport Mechanisms: Ion Channels and Electrical Properties of Cell Membranes.
Kulbacka, Julita; Choromańska, Anna; Rossowska, Joanna; Weżgowiec, Joanna; Saczko, Jolanta; Rols, Marie-Pierre
2017-01-01
Cellular life strongly depends on the membrane ability to precisely control exchange of solutes between the internal and external (environmental) compartments. This barrier regulates which types of solutes can enter and leave the cell. Transmembrane transport involves complex mechanisms responsible for passive and active carriage of ions and small- and medium-size molecules. Transport mechanisms existing in the biological membranes highly determine proper cellular functions and contribute to drug transport. The present chapter deals with features and electrical properties of the cell membrane and addresses the questions how the cell membrane accomplishes transport functions and how transmembrane transport can be affected. Since dysfunctions of plasma membrane transporters very often are the cause of human diseases, we also report how specific transport mechanisms can be modulated or inhibited in order to enhance the therapeutic effect.
Mechanical properties used for the qualification of transport casks
International Nuclear Information System (INIS)
Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.
1993-01-01
The qualification process that should be sufficient for qualification of a specific cask (material/geometry combination) has been examined. The prototype cask should be tested to determine its overall variation in microstructure, chemistry, and mechanical properties. This prototype may also be subjected to 'proof testing' to demonstrate the validity of the design analysis (including the mechanical properties used in the analysis). The complete mechanical property mapping does not necessarily have to precede the proof testing (i.e., portions of the cask which experience only low (elastic) loads during the drop test are suitable for mechanical test specimens). The behavior of the prototype cask and the production casks are linked by assuring that each cask possesses at least the minimum level of one or more critical mechanical properties. This may be done by measuring the properties of interest directly, or by relying on a secondary measurement (such as subsize mechanical test results or microstructure/compositional measurements) which has been statistically correlated to the critical properties. The database required to show the correlation between the secondary measurement and the valid design property may be established by tests on the material from the prototype cask. The production controls must be demonstrated as being adequate to assure that a uniform product is produced. The testing of coring (or test block or prolongation) samples can only be viewed as providing a valid link to the benchmark results provided by the prototype cask if the process used to create follow-on casks remains essentially similar. The MOSAIK Test Program has demonstrated the qualification method through the benchmarking stage. The program did not establish for qualifying serial production casks through, for example, a correlation between small specimen parameters and valid design fracture toughness properties. Such a correlation would require additional experimental work. (J.P.N.)
Temperature dependence of electronic transport property in ferroelectric polymer films
Energy Technology Data Exchange (ETDEWEB)
Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.
2014-10-15
Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.
Comparison on thermal transport properties of graphene and phosphorene nanoribbons
Peng, Xiao-Fang; Chen, Ke-Qiu
2015-01-01
We investigate ballistic thermal transport at low temperatures in graphene and phosphorene nanoribbons (PNRS) modulated with a double-cavity quantum structure. A comparative analysis for thermal transport in these two kinds of nanomaterials is made. The results show that the thermal conductance in PNRS is greater than that in graphene nanoribbons (GNRS). The ratio kG/kP (kG is the thermal conductivity in GNRS and kP is the thermal conductivity in PNRS) decreases with lower temperature or for narrower nanoribbons, and increases with higher temperature or for wider nanoribbons. The greater thermal conductance and thermal conductivity in PNRS originate from the lower cutoff frequencies of the acoustic modes. PMID:26577958
Thermoelectric transport properties of high mobility organic semiconductors
Venkateshvaran, Deepak; Broch, Katharina; Warwick, Chris N.; Sirringhaus, Henning
2016-09-01
Transport in organic semiconductors has traditionally been investigated using measurements of the temperature and gate voltage dependent mobility of charge carriers within the channel of organic field-effect transistors (OFETs). In such measurements, the behavior of charge carrier mobility with temperature and gate voltage, studied together with carrier activation energies, provide a metric to quantify the extent of disorder within these van der Waals bonded materials. In addition to the mobility and activation energy, another potent but often-overlooked transport coefficient useful in understanding disorder is the Seebeck coefficient (also known as thermoelectric power). Fundamentally, the Seebeck coefficient represents the entropy per charge carrier in the solid state, and thus proves powerful in distinguishing materials in which charge carriers move freely from those where a high degree of disorder causes the induced carriers to remain trapped. This paper briefly covers the recent highlights in the field of organic thermoelectrics, showing how significant strides have been made both from an applied standpoint as well as from a viewpoint of fundamental thermoelectric transport physics. It shall be illustrated how thermoelectric transport parameters in organic semiconductors can be tuned over a significant range, and how this tunability facilitates an enhanced performance for heat-to-electricity conversion as well as quantifies energetic disorder and the nature of the density of states (DOS). The work of the authors shall be spotlighted in this context, illustrating how Seebeck coefficient measurements in the polymer indacenodithiophene-co-benzothiadiazole (IDTBT) known for its ultra-low degree of torsion within the polymer backbone, has a trend consistent with low disorder. 1 Finally, using examples of the small molecules C8-BTBT and C10-DNTT, it shall be discussed how the Seebeck coefficient can aid the estimation of the density and distribution of trap states
Formation and electrical transport properties of pentacene nanorod crystal
International Nuclear Information System (INIS)
Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Kuwahara, Y; Aono, M
2010-01-01
The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.
Formation and electrical transport properties of pentacene nanorod crystal.
Akai-Kasaya, M; Ohmori, C; Kawanishi, T; Nashiki, M; Saito, A; Aono, M; Kuwahara, Y
2010-09-10
The monophasic formation of an uncharted pentacene crystal, the pentacene nanorod, has been investigated. The restricted formation of the pentacene nanorod on a bare mica surface reveals a peculiar surface catalytic crystal growth mode of the pentacene. We demonstrated the charge transport measurements through a single pentacene nanorod and analyzed the data using a periodic hopping conduction model. The results revealed that the pentacene nanorod has a periodic conductive node within their one-dimensional crystal.
Conductance fluctuations in a macroscopic 3-dimensional Anderson insulator
International Nuclear Information System (INIS)
Sanquer, M.
1990-01-01
We report magnetoconductance experiment on a amorphous Y x -Si 1-x alloy (∼0.3). which is an Anderson insulator where spin-orbit scattering is strong. Two principal and new features emerge from the data: the first one is an halving of the localization length by the application of a magnetic field of about 2.5 Teslas. This effect is predicted by a new approach of transport in Anderson insulators where basic symetry considerations are the most important ingredient. The second one is the observation of reproducible conductance fluctuations at very low temperature in this macroscopic 3 D amorphous material
Czech Academy of Sciences Publication Activity Database
Machanová, Karolina; Boisset, A.; Sedláková, Zuzana; Anouti, M.; Bendová, Magdalena; Jacquemin, J.
2012-01-01
Roč. 57, č. 8 (2012), s. 2227-2235 ISSN 0021-9568. [European Conference on Thermophysical Properties /19./. Thessaloniki, 28.08.2011-01.09.2011] R&D Projects: GA ČR GP203/09/P141; GA MŠk(CZ) MEB021009 Grant - others:Égide PHC(FR) 22000XB Institutional support: RVO:67985858 Keywords : ionic liquids * density * transport properties Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.004, year: 2012
International Nuclear Information System (INIS)
Grandjean, A.
2006-07-01
The author gives an overview of his research activity during which she worked on three main subjects. The first one dealt with the investigation of transport mechanisms in metal alloys (experimental investigation of diffusion in amorphous alloys, oxidation mechanism of Zircaloy-4 under temperature and in water or in dry oxygen). The second one dealt with the synthesis and properties of specific confinement matrices (effect of chemical composition on sintering of a carbonate powder, effect of microstructure of high Mo and P content vitro-crystals on lixiviation properties, incorporation of fluorine compounds in the case of borosilicate systems). The third one dealt with the transport in borosilicate glasses and melts (ionic transport, properties, and electrical transport glass-RuO 2 particles composites)
Influence of deformation on the fluid transport properties of salt rocks
Peach, C.J.
1991-01-01
While the fluid transport properties of rocks are well understood under hydrostatic conditions, little is known regarding these properties in rocks undergoing crystal plastic deformation. However, such data are needed as input in the field of radioactive waste disposal in salt formations. They are
Influence of deformation on the fluid transport properties of salt rocks
Peach, C.J.
1991-01-01
While the fluid transport properties of rocks are well understood under hydrostatic conditions, little is known regarding these properties in rocks undergoing crystal plastic deformation. However, such data are needed as input in the field of radioactive waste disposal in salt formations. They
Equation of state and transport properties of uranium and plutonium carbides in the liquid region
International Nuclear Information System (INIS)
Sheth, A.; Leibowitz, L.
1975-09-01
By the use of available low-temperature data for various thermophysical and transport properties for uranium and plutonium carbides, values above the melting point were estimated. Sets of recommended values have been prepared for the compounds UC, PuC, and (U,Pu)C. The properties that have been evaluated are density, heat capacity, enthalpy, vapor pressure, thermal conductivity, viscosity, and emissivity
DEFF Research Database (Denmark)
Fürst, Joachim Alexander; Hashemi, J.; Markussen, Troels
2009-01-01
Fullerene functionalized carbon nanotubes-NanoBuds-form a novel class of hybrid carbon materials, which possesses many advantageous properties as compared to the pristine components. Here, we report a theoretical study of the electronic transport properties of these compounds. We use both ab init...
Electronic transport properties of pentacene single crystals upon exposure to air
Jurchescu, OD; Baas, J; Palstra, TTM; Jurchescu, Oana D.
2005-01-01
We report the effect of air exposure on the electronic properties of pentacene single crystals. Air can diffuse reversibly in and out of the crystals and influences the physical properties. We discern two competing mechanisms that modulate the electronic transport. The presence of oxygen increases
Humidity effects on the electronic transport properties in carbon based nanoscale device
International Nuclear Information System (INIS)
He, Jun; Chen, Ke-Qiu
2012-01-01
By applying nonequilibrium Green's functions in combination with the density functional theory, we investigate the effect of humidity on the electronic transport properties in carbon based nanoscale device. The results show that different humidity may form varied localized potential barrier, which is a very important factor to affect the stability of electronic transport in the nanoscale system. A mechanism for the humidity effect is suggested. -- Highlights: ► Electronic transport in carbon based nanoscale device. ► Humidity affects the stability of electronic transport. ► Different humidity may form varied localized potential barrier.
The Improvement of Foam Concrete Geoecoprotective Properties in Transport Construction
Svatovskaya, Larisa; Kabanov, Alexander; Sychov, Maxim
2017-10-01
The article analyses 2 kinds of properties of silica sol foam concrete: technical and geoecoprotective ones. Foam concrete stabilized with silica sol foam has lower heat conductivity resulting in fuel saving. Foam concrete obtained according to sol absorption technology has lower water absorption and is good enough for blocking to prevent the environment pollution. Pollution blocking can be achieved by two methods. The first method is saturation of an article affected by oil products with silica sol. The second method is to create a special preventive protection using silica sol screen. The article shows geoecoprotective properties of protein foam soil systems.
Le, Nguyen-Quoc-Khanh; Nguyen, Trinh-Trung-Duong; Ou, Yu-Yen
2017-05-01
The electron transport proteins have an important role in storing and transferring electrons in cellular respiration, which is the most proficient process through which cells gather energy from consumed food. According to the molecular functions, the electron transport chain components could be formed with five complexes with several different electron carriers and functions. Therefore, identifying the molecular functions in the electron transport chain is vital for helping biologists understand the electron transport chain process and energy production in cells. This work includes two phases for discriminating electron transport proteins from transport proteins and classifying categories of five complexes in electron transport proteins. In the first phase, the performances from PSSM with AAIndex feature set were successful in identifying electron transport proteins in transport proteins with achieved sensitivity of 73.2%, specificity of 94.1%, and accuracy of 91.3%, with MCC of 0.64 for independent data set. With the second phase, our method can approach a precise model for identifying of five complexes with different molecular functions in electron transport proteins. The PSSM with AAIndex properties in five complexes achieved MCC of 0.51, 0.47, 0.42, 0.74, and 1.00 for independent data set, respectively. We suggest that our study could be a power model for determining new proteins that belongs into which molecular function of electron transport proteins. Copyright © 2017 Elsevier Inc. All rights reserved.
Resilient Design Properties in a Driverless Transport System
DEFF Research Database (Denmark)
Wied, Morten; Oehmen, Josef; Welo, Torgeir
2018-01-01
From its origin in ecology, resilient system properties have attracted wider interest for their applications to man-made systems. Previous research has shown that a simple conceptual model seems to capture much resilience thinking across disciplines and system types. In this paper, we apply...
Cross sections and transport properties for Na+ in (DXE gas
Directory of Open Access Journals (Sweden)
Nikitović Željka D.
2016-01-01
Full Text Available In this work we select most probable reactions of alkali metal ion Na+ with dimethoxyethane (DXE molecule. Appropriate gas phase enthalpies of formation for the products were used to calculate scattering cross section as a function of kinetic energy with Denpoh-Nanbu theory. Calculated cross sections were compared with existing experimental results obtained by guided ion beam tandem mass spectrometry. Three body association reactions of ions with DXE is studied and compared to experimental results. Calculated cross sections were used to obtain transport parameters for alkali metal ion in DXE gas. [Projekat Ministarstva nauke Republike Srbije, br. ON 171037 i br. III 410011
Electronic transport properties in [n]cycloparaphenylenes molecular devices
Hu, Lizhi; Guo, Yandong; Yan, Xiaohong; Zeng, Hongli; Zhou, Jie
2017-07-01
The electronic transport of [n]cycloparaphenylenes ([n]CPPs) is investigated based on nonequilibrium Green's function formalism in combination with the density-functional theory. Negative differential resistance (NDR) phenomenon is observed. Further analysis shows that the reduction of the transmission peak induced by the bias changing near Fermi energy results in the NDR effect. Replacing the electrode (from carbon chain to Au electrode), doping with N atom and changing the size of the nanohoop (n = 5, 6, 8, 10) have also been studied and the NDR still exists, suggesting the NDR behavior is the intrinsic feature of such [n]CPPs systems, which would be quite useful in future nanoelectronic devices.
Growth and quantum transport properties of vertical Bi2Se3 nanoplate films on Si substrates.
Li, M Z; Wang, Z H; Yang, L; Pan, D S; Li, Da; Gao, Xuan; Zhang, Zhi-Dong
2018-05-14
Controlling the growth direction (planar vs. vertical) and surface-to-bulk ratio can lead to lots of unique properties for two-dimensional (2D) layered materials. We report a simple method to fabricate continuous films of vertical Bi2Se3 nanoplates on Si substrate and investigate the quantum transport properties of such films. In contrast to (001) oriented planar Bi2Se3 nanoplate film, vertical Bi2Se3 nanoplate films are enclosed by (015) facets, which possess high surface-to-bulk ratio that can enhance the quantum transport property of topological surface states. And by controlling the compactness of vertical Bi2Se3 nanoplates, we realized an effective tuning of the weak antilocalization (WAL) effect from topological surface states in Bi2Se3 films. Our work paves a way for exploring the unique transport properties of this unconventional structure topological insulator film. © 2018 IOP Publishing Ltd.
Swanson, Ryan D; Binley, Andrew; Keating, Kristina; France, Samantha; Osterman, Gordon; Day-Lewis, Frederick D.; Singha, Kamini
2015-01-01
The advection-dispersion equation (ADE) fails to describe commonly observed non-Fickian solute transport in saturated porous media, necessitating the use of other models such as the dual-domain mass-transfer (DDMT) model. DDMT model parameters are commonly calibrated via curve fitting, providing little insight into the relation between effective parameters and physical properties of the medium. There is a clear need for material characterization techniques that can provide insight into the geometry and connectedness of pore spaces related to transport model parameters. Here, we consider proton nuclear magnetic resonance (NMR), direct-current (DC) resistivity, and complex conductivity (CC) measurements for this purpose, and assess these methods using glass beads as a control and two different samples of the zeolite clinoptilolite, a material that demonstrates non-Fickian transport due to intragranular porosity. We estimate DDMT parameters via calibration of a transport model to column-scale solute tracer tests, and compare NMR, DC resistivity, CC results, which reveal that grain size alone does not control transport properties and measured geophysical parameters; rather, volume and arrangement of the pore space play important roles. NMR cannot provide estimates of more-mobile and less-mobile pore volumes in the absence of tracer tests because these estimates depend critically on the selection of a material-dependent and flow-dependent cutoff time. Increased electrical connectedness from DC resistivity measurements are associated with greater mobile pore space determined from transport model calibration. CC was hypothesized to be related to length scales of mass transfer, but the CC response is unrelated to DDMT.
Magnetic property effect on transport processes in resistance spot welding
Energy Technology Data Exchange (ETDEWEB)
Wei, P S [Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424 (China); Wu, T H, E-mail: pswei@mail.nsysu.edu.tw, E-mail: wux0064@gmail.com [Department of Mechanical Engineering, Yung Ta Institute of Technology and Commerce, Pintong, Taiwan 909 (China)
2011-08-17
This study investigates the effects of the Curie temperature and magnetic permeability on transport variables, solute distribution and nugget shapes during resistance spot welding. The Curie temperature is the temperature below which a metal or alloy is ferromagnetic with a high magnetic permeability, and above which it is paramagnetic with a small magnetic permeability. The model proposed here accounts for electromagnetic force, heat generation and contact resistance at the faying surface and electrode-workpiece interfaces and bulk resistance in workpieces. Contact resistance includes constriction and film resistances, which are functions of hardness, temperature, electrode force and surface condition. The computed results show that transport variables and nugget shapes can be consistently interpreted from the delay of response time and jump of electric current density as a result of finite magnetic diffusion, rather than through the examination of the variations of dynamic electrical resistance with time. The molten nugget on the faying surface is initiated earlier with increasing magnetic permeability and Curie temperature. A high Curie temperature enhances convection and solute mixing, and readily melts through the workpiece surface near the electrode edge. Any means to reduce the Curie temperature or magnetic permeability, such as adjusting the solute content, can be a good way to control weld quality. This study can also be applied to interpret the contact problems encountered in various electronics and packaging technologies, and so on.
Studies of Transport Properties of Fractures: Final Report
Energy Technology Data Exchange (ETDEWEB)
Stephen R. Brown
2006-06-30
We proposed to study several key factors controlling the character and evolution of fracture system permeability and transport processes. We suggest that due to surface roughness and the consequent channeling in single fractures and in fracture intersections, the tendency of a fracture system to plug up, remain permeable, or for permeability to increase due to chemical dissolution/precipitation conditions will depend strongly on the instantaneous flow channel geometry. This geometry will change as chemical interaction occurs, thus changing the permeability through time. To test this hypothesis and advance further understanding toward a predictive capability, we endeavored to physically model and analyze several configurations of flow and transport of inert and chemically active fluids through channels in single fractures and through fracture intersections. This was an integrated program utilizing quantitative observations of fractures and veins in drill core, quantitative and visual observations of flow and chemical dissolution and precipitation within replicas of real rough-walled fractures and fracture intersections, and numerical modeling via lattice Boltzmann methods.
Properties of internal transport barrier formation in JT-60U
International Nuclear Information System (INIS)
Sakamoto, Yoshiteru; Suzuki, T.; Ide, S.
2003-01-01
The dependence of the ion thermal diffusivity (χ i ) on the radial electric field (E r ) shear has been investigated in JT-60U plasmas. In positive magnetic shear (PS) plasmas, χ i in the core region generally increases with the heating power, similar to the L mode at low heating power. However, as a result of the intensive central heating, which is relevant to the enhancement of the E γ shear, a weak internal transport barrier (ITB) is formed, and χ i in the core region starts to decrease. Corresponding to a further increase of the heating power, a strong ITB is formed and χ i is reduced substantially. In the case of reversed magnetic shear (RS) plasmas, on the other hand, no power degradation of χ i is observed in any of heating regimes. The electron thermal diffusivity (χ e ) is strongly correlated with χ i in PS and RS plasmas. There exists a threshold in the effective E γ shear to change the state from a weak to a strong ITB. It is found that the threshold of the effective E γ shear in the case of a PS plasma depends on the poloidal magnetic field at the ITB. There are multiple levels of reduced transport in the strong ITB for RS plasmas. (author)
Properties of internal transport barrier formation in JT-60U
International Nuclear Information System (INIS)
Sakamoto, Y.; Suzuki, T.; Ide, S.
2003-01-01
The dependence of the ion thermal diffusivity (χ i ) on the radial electric field (E r ) shear has been investigated in JT-60U plasmas. In positive magnetic shear (PS) plasmas, χ i in the core region generally increases with the heating power, similar to the L mode at low heating power. However, as a result of the intensive central heating, which is relevant to the enhancement of the E r shear, a weak internal transport barrier (ITB) is formed, and χ i in the core region starts to decrease. Corresponding to a further increase of the heating power, a strong ITB is formed and χ i is reduced substantially. In the case of reversed magnetic shear (RS) plasmas, on the other hand, no power degradation of χ i is observed in any of the heating regimes. The electron thermal diffusivity (χ e ) is strongly correlated with χ i in PS and RS plasmas. There exists a threshold in the effective E r shear to change the state from a weak to a strong ITB. It is found that the threshold of the effective E r shear in the case of a PS plasma depends on the poloidal magnetic field at the ITB. There are multiple levels of reduced transport in the strong ITB for RS plasmas. (author)
Computing and the electrical transport properties of coupled quantum networks
Cain, Casey Andrew
In this dissertation a number of investigations were conducted on ballistic quantum networks in the mesoscopic range. In this regime, the wave nature of electron transport under the influence of transverse magnetic fields leads to interesting applications for digital logic and computing circuits. The work specifically looks at characterizing a few main areas that would be of interest to experimentalists who are working in nanostructure devices, and is organized as a series of papers. The first paper analyzes scaling relations and normal mode charge distributions for such circuits in both isolated and open (terminals attached) form. The second paper compares the flux-qubit nature of quantum networks to the well-established spintronics theory. The results found exactly contradict the conventional school of thought for what is required for quantum computation. The third paper investigates the requirements and limitations of extending the Thevenin theorem in classic electric circuits to ballistic quantum transport. The fourth paper outlines the optimal functionally complete set of quantum circuits that can completely satisfy all sixteen Boolean logic operations for two variables.
Macroscopic averages in Qed in material media
International Nuclear Information System (INIS)
Dutra, S.M.; Furuya, K.
1997-01-01
The starting point of macroscopic theories of quantum electrodynamics in material media is usually the classical macroscopic Maxwell equations that are then quantized. Such approach however, is based on the assumption that a macroscopic description is attainable, i.e., it assumes that we can describe the effect of the atoms of material on the field only in terms of a dielectric constant in the regime where the field has to be treated quantum mechanically. The problem we address is whether this assumption is valid at all and if so, under what conditions. We have chosen a simple model, which allows us to start from first principles and determine the validity of these approximations, without simply taking them for granted as in previous papers
Conversion of light into macroscopic helical motion
Iamsaard, Supitchaya; Aßhoff, Sarah J.; Matt, Benjamin; Kudernac, Tibor; Cornelissen, Jeroen J. L. M.; Fletcher, Stephen P.; Katsonis, Nathalie
2014-03-01
A key goal of nanotechnology is the development of artificial machines capable of converting molecular movement into macroscopic work. Although conversion of light into shape changes has been reported and compared to artificial muscles, real applications require work against an external load. Here, we describe the design, synthesis and operation of spring-like materials capable of converting light energy into mechanical work at the macroscopic scale. These versatile materials consist of molecular switches embedded in liquid-crystalline polymer springs. In these springs, molecular movement is converted and amplified into controlled and reversible twisting motions. The springs display complex motion, which includes winding, unwinding and helix inversion, as dictated by their initial shape. Importantly, they can produce work by moving a macroscopic object and mimicking mechanical movements, such as those used by plant tendrils to help the plant access sunlight. These functional materials have potential applications in micromechanical systems, soft robotics and artificial muscles.
Nonequilibrium work relation in a macroscopic system
International Nuclear Information System (INIS)
Sughiyama, Yuki; Ohzeki, Masayuki
2013-01-01
We reconsider a well-known relationship between the fluctuation theorem and the second law of thermodynamics by evaluating stochastic evolution of the density field (probability measure valued process). In order to establish a bridge between microscopic and macroscopic behaviors, we must take the thermodynamic limit of a stochastic dynamical system following the standard procedure in statistical mechanics. The thermodynamic path characterizing a dynamical behavior in the macroscopic scale can be formulated as an infimum of the action functional for the stochastic evolution of the density field. In our formulation, the second law of thermodynamics can be derived only by symmetry of the action functional without recourse to the Jarzynski equality. Our formulation leads to a nontrivial nonequilibrium work relation for metastable (quasi-stationary) states, which are peculiar in the macroscopic system. We propose a prescription for computing the free energy for metastable states based on the resultant work relation. (paper)
Transport properties of graphene under periodic and quasiperiodic magnetic superlattices
Energy Technology Data Exchange (ETDEWEB)
Lu, Wei-Tao, E-mail: luweitao@lyu.edu.cn [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Wang, Shun-Jin [Department of Physics, Sichuan University, 610064 Chengdu (China); Wang, Yong-Long; Jiang, Hua [School of Science, Linyi University, 276005 Linyi (China); Institute of Condensed Matter Physics, Linyi University, 276005 Linyi (China); Li, Wen [School of Science, Linyi University, 276005 Linyi (China)
2013-08-15
We study the transmission of Dirac electrons through the one-dimensional periodic, Fibonacci, and Thue–Morse magnetic superlattices (MS), which can be realized by two different magnetic blocks arranged in certain sequences in graphene. The numerical results show that the transmission as a function of incident energy presents regular resonance splitting effect in periodic MS due to the split energy spectrum. For the quasiperiodic MS with more layers, they exhibit rich transmission patterns. In particular, the transmission in Fibonacci MS presents scaling property and fragmented behavior with self-similarity, while the transmission in Thue–Morse MS presents more perfect resonant peaks which are related to the completely transparent states. Furthermore, these interesting properties are robust against the profile of MS, but dependent on the magnetic structure parameters and the transverse wave vector.
Properties of Douglas Point Generating Station heat transport corrosion products
International Nuclear Information System (INIS)
Montford, B.; Rummery, T.E.
1975-09-01
Chemical, radiochemical and structural properties of circulating and fixed corrosion products from the Douglas Point Generating Station are documented. Interaction of Monel-400 and carbon steel corrosion products is described, and the mechanisms of Monel-400 surface deposit release, and activity buildup in the coolant system, are briefly discussed. Efficiencies of filters and ion-exchangers for the removal of released radionuclides are given. (author)
Optical properties and electron transport in low-dimensional nanostructures
Czech Academy of Sciences Publication Activity Database
Král, Karel; Menšík, Miroslav
2011-01-01
Roč. 54, 2-2 (2011), s. 4-13 ISSN 0021-3411 R&D Projects: GA MŠk(CZ) OC10007 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z40500505 Keywords : quantum dots * electron -photon interaction * optical properties * electron relaxation * DNA molecule Subject RIV: BE - The oretical Physics http://elibrary.ru/contents.asp?issueid=1010336
Macroscopic quantum electrodynamics of high-Q cavities
International Nuclear Information System (INIS)
Khanbekyan, Mikayel
2009-01-01
In this thesis macroscopic quantum electrodynamics in linear media was applied in order to develop an universally valid quantum theory for the description of the interaction of the electromagnetic field with atomic sources in high-Q cavities. In this theory a complete description of the characteristics of the emitted radiation is given. The theory allows to show the limits of the applicability of the usually applied theory. In order to establish an as possible generally valid theory first the atom-field interaction was studied in the framework of macroscopic quantum electrodynamics in dispersive and absorptive media. In order to describe the electromagnetic field from Maxwell's equations was started, whereby the noise-current densities, which are connected with the absorption of the medium, were included. The solution of these equations expresses the electromagnetic field variables by the noise-current densities by means of Green's tensor of the macroscopic Maxwell equations. The explicit quantization is performed by means of the noise-current densities, whereby a diagonal Hamiltonian is introduced, which then guarantees the time development according to Maxwell's equation and the fulfillment of the fundamental simultaneous commutation relations of the field variables. In the case of the interaction of the medium-supported field with atoms the Hamiltonian must be extended by atom-field interactions energies, whereby the canonical coupling schemes of the minimal or multipolar coupling can be used. The dieelectric properties of the material bodies as well as their shape are coded in the Green tensor of the macroscopic Maxwell equations. As preparing step first the Green tensor was specified in order to derive three-dimensional input-output relations for the electromagnetic field operators on a plane multilayer structure. Such a general dewscription of the electromagnetic field allows the inclusion both of dispersion and absorption of the media and the possible
Directory of Open Access Journals (Sweden)
Le Bescop P.
2013-07-01
Full Text Available Within the context of long-lived intermediate level radioactive waste geological disposal, reinforced concrete would be used. In service life conditions, the concrete structures would be subjected to drying and carbonation. Carbonation relates to the reaction between carbon dioxide (CO2 and the main hydrates of the cement paste (portlandite and C-S-H. Beyond the fall of the pore solution pH, indicative of steel depassivation, carbonation induces mineralogical and microstructural changes (due to portlandite and C-S-H dissolution and calcium carbonate precipitation. This results in the modification of the transport properties, which can impact the structure durability. Because concrete durability depends on water transport, this study focuses on the influence of carbonation on water transport properties. In fact, the transport properties of sound materials are known but they still remain to be assessed for carbonated ones. An experimental program has been designed to investigate the transport properties in carbonated materials. Four hardened cement pastes, differing in mineralogy, are carbonated in an accelerated carbonation device (in controlled environmental conditions at CO2 partial pressure of about 3%. Once fully carbonated, all the data needed to describe water transport, using a simplified approach, will be evaluated.
Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.
2015-12-01
Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5
International Nuclear Information System (INIS)
Yetis, H.; Kilic, A.; Kilic, K.; Altinkok, A.; Olutas, M.
2008-01-01
Current-voltage (I-V) measurements were carried out for different current sweep rates (dI/dt) of transport current at zero magnetic field (H = 0) and H ≠ 0 in a polycrystalline sample of Bi 1.7 Pb 0.3 Sr 2 Ca 2 Cu 3 O x (BSCCO) with a macroscopic cylindrical hole (CH) drilled. Similar measurements were also performed in the same BSCCO sample without CH for a comparison before drilling CH. For the same values of H, T, and dI/dt taken for both samples, it was observed that hysteresis effects appear in I-V curves upon cycling of transport current in upward and downward directions which contain the increasing and decreasing current values, respectively. However these effects which are seen in I-V curves of BSCCO sample with CH is more prominent than that of the BSCCO sample without CH. Further, the irreversibility effects in I-V curves of the BSCCO sample without CH disappears for H ≠ 0 exhibiting nearly a linear behaviour, whereas the hysteretic behaviour in I-V curves of the BSCCO sample with CH is still observed. This interesting behaviour could be evaluated that macroscopic cylindrical hole improves pinning properties of sample acting as a macroscopic flux pinning center for flux lines
Energy Technology Data Exchange (ETDEWEB)
Yetis, H. [Department of Physics, Turgut Gulez Research Laboratory, Abant Izzet Baysal University, 14280 Bolu (Turkey)], E-mail: yetis_h@ibu.edu.tr; Kilic, A.; Kilic, K.; Altinkok, A.; Olutas, M. [Department of Physics, Turgut Gulez Research Laboratory, Abant Izzet Baysal University, 14280 Bolu (Turkey)
2008-09-15
Current-voltage (I-V) measurements were carried out for different current sweep rates (dI/dt) of transport current at zero magnetic field (H = 0) and H {ne} 0 in a polycrystalline sample of Bi{sub 1.7}Pb{sub 0.3}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} (BSCCO) with a macroscopic cylindrical hole (CH) drilled. Similar measurements were also performed in the same BSCCO sample without CH for a comparison before drilling CH. For the same values of H, T, and dI/dt taken for both samples, it was observed that hysteresis effects appear in I-V curves upon cycling of transport current in upward and downward directions which contain the increasing and decreasing current values, respectively. However these effects which are seen in I-V curves of BSCCO sample with CH is more prominent than that of the BSCCO sample without CH. Further, the irreversibility effects in I-V curves of the BSCCO sample without CH disappears for H {ne} 0 exhibiting nearly a linear behaviour, whereas the hysteretic behaviour in I-V curves of the BSCCO sample with CH is still observed. This interesting behaviour could be evaluated that macroscopic cylindrical hole improves pinning properties of sample acting as a macroscopic flux pinning center for flux lines.
Direct measurements of transport properties are essential for site characterization
International Nuclear Information System (INIS)
Wright, J.; Conca, J.L.
1994-08-01
Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber
Charge transport properties of CdMnTe radiation detectors
Energy Technology Data Exchange (ETDEWEB)
Kim K.; Rafiel, R.; Boardman, M.; Reinhard, I.; Sarbutt, A.; Watt, G.; Watt, C.; Uxa, S.; Prokopovich, D.A.; Belas, E.; Bolotnikov, A.E.; James, R.B.
2012-04-11
Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe)radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading chargecollection is reduced with increasing values of bias voltage. The electron transit time was determined from time of flight measurements. From the dependence of drift velocity on applied electric field the electron mobility was found to be n = (718 55) cm2/Vs at room temperature.
Charge transport properties of CdMnTe radiation detectors
Directory of Open Access Journals (Sweden)
Prokopovich D. A.
2012-10-01
Full Text Available Growth, fabrication and characterization of indium-doped cadmium manganese telluride (CdMnTe radiation detectors have been described. Alpha-particle spectroscopy measurements and time resolved current transient measurements have yielded an average charge collection efficiency approaching 100 %. Spatially resolved charge collection efficiency maps have been produced for a range of detector bias voltages. Inhomogeneities in the charge transport of the CdMnTe crystals have been associated with chains of tellurium inclusions within the detector bulk. Further, it has been shown that the role of tellurium inclusions in degrading charge collection is reduced with increasing values of bias voltage. The electron drift velocity was calculated from the rise time distribution of the preamplifier output pulses at each measured bias. From the dependence of drift velocity on applied electric field the electron mobility was found to be μn = (718 ± 55 cm2/Vs at room temperature.
Modeling charge transport properties of cyano-substituted PPV
International Nuclear Information System (INIS)
Correia, Helena M.G.; Ramos, Marta M.D.
2003-01-01
In recent years, poly (p-phenylenevinylene) (PPV) and its derivatives have attracted much interest due to their applications in light-emitting diodes (LEDs). One of the issues that determine device performance is the transport of charge carriers along the polymer strands. For that reason, we investigate the influence of cyano substitution on geometry and electronic behaviour of PPV chains using self-consistent quantum molecular dynamics simulations. Our results suggest that substitution by cyano groups induce distortion in the PPV chains and a charge rearrangement among the polymer atoms. Specifically addressed is the issue concerning estimates of charge (electron and hole) mobility by computer experiments. Significant differences have been found both in the strength of the electric field needed to move positive and negative charge carriers along the polymer chain as well as in charge mobility
A Review on Macroscopic Pedestrian Flow Modelling
Directory of Open Access Journals (Sweden)
Anna Kormanová
2013-12-01
Full Text Available This paper reviews several various approaches to macroscopic pedestrian modelling. It describes hydrodynamic models based on similarity of pedestrian flow with fluids and gases; first-order flow models that use fundamental diagrams and conservation equation; and a model similar to LWR vehicular traffic model, which allows non-classical shocks. At the end of the paper there is stated a comparison of described models, intended to find appropriate macroscopic model to eventually be a part of a hybrid model. The future work of the author is outlined.
Energy Technology Data Exchange (ETDEWEB)
A.P. Poloski; R.C. Daniel; D.R. Rector; P.R. Bredt; E.C. Buck; Berg, J.C.; Saez, A.E.
2006-09-29
This project had two primary objectives. The first was to understand the physical properties and behavior of select Hanford tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale. The specific tank wastes considered herein are contained in thirteen Hanford tanks including three double-shell tanks (DSTs) (AW-103, AW-105, and SY-102) and ten single-shell tanks (SSTs) (B-201 through B-204, T-201 through T-204, T-110, and T-111). At the outset of the project, these tanks were designated as potentially containing transuranic (TRU) process wastes that would be treated and disposed of in a manner different from the majority of the tank wastes.
International Nuclear Information System (INIS)
Shimozuma, T.; Kubo, S.; Idei, H.
2005-01-01
Two kinds of improved core confinement were observed during centrally focused Electron Cyclotron Heating (ECH) into plasmas sustained by Counter (CNTR) and Co Neutral Beam Injections (NBI) in the Large Helical Device (LHD). One shows transition phenomena to the high-electron-temperature state and has a clear electron Internal Transport Barrier (eITB) in CNTR NBI plasma. Another has no clear transition and no ECH power threshold, but shows a broad high temperature profiles with moderate temperature gradient, which indicates the improved core confinement with additional ECH in Co NBI plasma. The electron heat transport characteristics of these plasmas were directly investigated by using the heat pulse propagation excited by Modulated ECH (MECH). The difference of the features could be caused by the existence of the m/n=2/1 rational surface or island determined by the direction of NBI beam-driven current. (author)
International Nuclear Information System (INIS)
Shimozuma, T.; Kubo, S.; Idei, H.; Inagaki, S.; Tamura, N.; Tokuzawa, T.; Morisaki, T.; Watanabe, K.Y.; Ida, K.; Yamada, I.; Narihara, K.; Muto, S.; Yokoyama, M.; Yoshimura, Y.; Notake, T.; Ohkubo, K.; Seki, T.; Saito, K.; Kumazawa, R.; Mutoh, T.; Watari, T.; Komori, A.
2005-01-01
Two types of improved core confinement were observed during centrally focused electron cyclotron heating (ECH) into plasmas sustained by counter (CNTR) and Co neutral beam injections (NBI) in the Large Helical Device. The CNTR NBI plasma displayed transition phenomena to the high-electron-temperature state and had a clear electron internal transport barrier, while the Co NBI plasma did not show a clear transition or an ECH power threshold but showed broad high temperature profiles with moderate temperature gradient. This indicated that the Co NBI plasma with additional ECH also had an improved core confinement. The electron heat transport characteristics of these plasmas were directly investigated using heat pulse propagation excited by modulated ECH. These effects appear to be related to the m/n = 2/1 rational surface or the island induced by NBI beam-driven current
Correlating substituent parameter values to electron transport properties of molecules
International Nuclear Information System (INIS)
Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl
2004-01-01
There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values (σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared (R 2 ) of 0.863
Thin film separators with ion transport properties for energy applications
Li, Zhongyuan
2017-09-01
Recent years, along with the increasing need of energy, energy storage also becomes a challenging problem which we need to deal with. The batterieshave a good developing prospect among energy storage system in storing energy such as wind, solar and geothermal energy. One hurdle between the lab-scale experiment and industry-scale application of the advanced batteries is the urgent need for limiting charging capacity degradation and improving cycling stability, known as the shuttle effect in lithium-sulfur batteries or electroosmotic drag coefficient in fuel-cell batteries. The microporous separator between the cathode and anode could be molecular engineered to possessesion selective permeation properties, which can greatly improves the energy efficiency and extends application range of the battery. The present review offers the fundamental fabrication methods of separator film with different material. The review also contains the chemical or physical structure of different materials which are used in making separator film. A table offers the reader a summary of properties such as ionic conductivity, ionic exchange capacity and current density etc.
Thermodynamic and transport properties of uranium dioxide and related phases
International Nuclear Information System (INIS)
1965-01-01
The high melting point of uranium dioxide and its stability under irradiation have led to its use as a fuel in a variety of types of nuclear reactors. A wide range of chemical and physical studies has been stimulated by this circumstances and by the complex nature of the uranium dioxide phase itself. The boundaries of this phase widen as the temperature is increased; at 2000 deg. K a single, homogeneous phase exists from U 2.27 to a hypostoichiometric (UO 2-x ) composition, depending on the oxygen potential of the surroundings. Since there is often an incentive to operate a reactor at the maximum practicable heat rating and, therefore, maximum thermal gradient in the fuel, the determination of the physical properties of the UO 2-x phase becomes a matter of great technological importance. In addition a complex sequence of U-O phases may be formed during the preparation of powder feed material or during the sintering process; these affect the microstructure and properties of the final product and have also received much attention. 184 refs, 33 figs, 15 tabs
Charge Carrier Transport Properties of Vacuum Evaporated Anthrylvinylbenzene Thin Films
Directory of Open Access Journals (Sweden)
Haikel HRICHI
2014-05-01
Full Text Available The charge carrier conduction processes and dielectric properties of two new materials based on anthracene core structure, 1-(9 anthrylvinyl-4-benzyloxybenzene (AVB and 1,4- bis(9-anthrylvinylbenzene (AV2B diodes have been investigated using dc current density–voltage (J–V and AC impedance spectroscopy (100 Hz–10 MHz. The DC electrical properties of ITO/anthracene derivative /Al device showing an ohmic behavior at low voltages and switches to space charge limited current (SCLC conduction with exponential trap distribution at higher voltages. The best performance device was achieved from ITO/AVB/Al structure showing the high charge carrier mobility which has also been evaluated from SCLC as 6.55´10-6 cm/Vs. According to the impedance spectroscopy results the structures were modeled by equivalent circuit designed as a parallel resistor Rp and capacitor Cp network in series with resistor Rs. The evolution of the electrical parameters with frequency and bias voltage of these anthracene-based systems has been discussed. The conductivity s(w evolution with frequency and bias voltage was studied for ITO/anthracene derivatives/Al devices. The dc conductivity sdc for these devices has been determined. The ac conductivity sac showed a variation in angular frequency as A.ws with a critical exponent s< 1 suggesting a hopping conduction mechanism at high frequency.
Macroscopic polarization in crystalline dielectrics: the geometric phase approach
International Nuclear Information System (INIS)
Resta, R.
1994-01-01
The macroscopic electric polarization of a crystal is often defined as the dipole of a unit cell. In fact, such a dipole moment is ill defined, and the above definition is incorrect. Looking more closely, the quantity generally measured is differential polarization, defined with respect to a ''reference state'' of the same material. Such differential polarizations include either derivatives of the polarization (dielectric permittivity, Born effective charges, piezoelectricity, pyroelectricity) or finite differences (ferroelectricity). On the theoretical side, the differential concept is basic as well. Owing to continuity, a polarization difference is equivalent to a macroscopic current, which is directly accessible to the theory as a bulk property. Polarization is a quantum phenomenon and cannot be treated with a classical model, particularly whenever delocalized valence electrons are present in the dielectric. In a quantum picture, the current is basically a property of the phase of the wave functions, as opposed to the charge, which is a property of their modulus. An elegant and complete theory has recently been developed by King-Smith and Vanderbilt, in which the polarization difference between any two crystal states--in a null electric field--takes the form of a geometric quantum phase. This gives a comprehensive account of this theory, which is relevant for dealing with transverse-optic phonons, piezoelectricity, and ferroelectricity. Its relation to the established concepts of linear-response theory is also discussed. Within the geometric phase approach, the relevant polarization difference occurs as the circuit integral of a Berry connection (or ''vector potential''), while the corresponding curvature (or ''magnetic field'') provides the macroscopic linear response
Node-node correlations and transport properties in scale-free networks
Obregon, Bibiana; Guzman, Lev
2011-03-01
We study some transport properties of complex networks. We focus our attention on transport properties of scale-free and small-world networks and compare two types of transport: Electric and max-flow cases. In particular, we construct scale-free networks, with a given degree sequence, to estimate the distribution of conductances for different values of assortative/dissortative mixing. For the electric case we find that the distributions of conductances are affect ed by the assortative mixing of the network whereas for the max-flow case, the distributions almost do not show changes when node-node correlations are altered. Finally, we compare local and global transport in terms of the average conductance for the small-world (Watts-Strogatz) model
The Effect of Voltage Charging on the Transport Properties of Gold Nanotube Membranes.
Experton, Juliette; Martin, Charles R
2018-05-01
Porous membranes are used in chemical separations and in many electrochemical processes and devices. Research on the transport properties of a unique class of porous membranes that contain monodisperse gold nanotubes traversing the entire membrane thickness is reviewed here. These gold nanotubes can act as conduits for ionic and molecular transports through the membrane. Because the tubes are electronically conductive, they can be electrochemically charged by applying a voltage to the membrane. How this "voltage charging" affects the transport properties of gold nanotube membranes is the subject of this Review. Experiments showing that voltage charging can be used to reversibly switch the membrane between ideally cation- and anion-transporting states are reviewed. Voltage charging can also be used to enhance the ionic conductivity of gold nanotube membranes. Finally, voltage charging to accomplish electroporation of living bacteria as they pass through gold nanotube membranes is reviewed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Cross Sections and Transport Properties of BR- Ions in AR
Jovanovic, Jasmina; Stojanovic, Vladimir; Raspopovic, Zoran; Petrovic, Zoran
2014-10-01
We have used a combination of a simple semi-analytic theory - Momentum Transfer Theory (MTT) and exact Monte Carlo (MC) simulations to develop Br- in Ar momentum transfer cross section based on the available data for reduced mobility at the temperature T = 300 K over the range 10 Td higher energies based on behavior of similar ions in similar gases and by the addition of the total detachment cross section that was used from the threshold around 7.7 eV. Relatively complete set was derived which can be used in modeling of plasmas by both hybrid, particle in cell (PIC) and fluid codes. A good agreement between calculated and measured ion mobilities and longitudinal diffusion coefficients is an independent proof of the validity of the cross sections that were derived for the negative ion mobility data. In addition to transport coefficients we have also calculated the net rate coefficients of elastic scattering and detachment. Author acknowledge Ministry of Education, Science and Technology, Proj. Nos. 171037 and 410011.
Experimental study of tungsten transport properties in T-10 plasma
Krupin, V. A.; Nurgaliev, M. R.; Klyuchnikov, L. A.; Nemets, A. R.; Zemtsov, I. A.; Dnestrovskij, A. Yu.; Sarychev, D. V.; Lisitsa, V. S.; Shurygin, V. A.; Leontiev, D. S.; Borschegovskij, A. A.; Grashin, S. A.; Ryjakov, D. V.; Sergeev, D. S.; Mustafin, N. A.; Trukhin, V. M.; Solomatin, R. Yu.; Tugarinov, S. N.; Naumenko, N. N.
2017-06-01
First experimental results of tungsten transport investigation in OH and ECRH plasmas in the T-10 tokamak with W-limiter and movable Li-limiter are presented. It is shown that tungsten tends to accumulate (a joint process of cumulation and peaking) near the plasma axis in ohmic regimes. The cumulation of W is enhanced in discharges with high values of the parameter γ ={{\\bar{n}}\\text{e}}\\centerdot {{\\bar{Z}}\\text{eff}}\\centerdot I\\text{pl}-1.5 that coincides with accumulation conditions of light and medium impurities in T-10 plasmas. Experiments with Li-limiter show the immeasurable level of Li3+ (0.3-0.5% of n e) of T-10 CXRS diagnostics because of the low inflow of Li with respect to other light impurities. Nevertheless, the strong influence of lithium on inflow of light and tungsten impurities is observed. In discharges with lithized walls, vanishing of light impurities occurs and values of {{Z}\\text{eff}}≈ 1 are obtained. It is also shown that the tungsten density in the plasma center decreases by 15 to 20 times while the W inflow reduces only by 2 to 4 times. In lithized discharges with high γ, the flattening of the tungsten density profile occurs and its central concentration decreases up to 10 times during the on-axis ECRH. This effect is observed together with the increase of the W inflow by 3 to 4 times at the ECRH stage.
Spin-polarized quantum transport properties through flexible phosphorene
Chen, Mingyan; Yu, Zhizhou; Xie, Yiqun; Wang, Yin
2016-10-01
We report a first-principles study on the tunnel magnetoresistance (TMR) and spin-injection efficiency (SIE) through phosphorene with nickel electrodes under the mechanical tension and bending on the phosphorene region. Both the TMR and SIE are largely improved under these mechanical deformations. For the uniaxial tension (ɛy) varying from 0% to 15% applied along the armchair transport (y-)direction of the phosphorene, the TMR ratio is enhanced with a maximum of 107% at ɛy = 10%, while the SIE increases monotonously from 8% up to 43% with the increasing of the strain. Under the out-of-plane bending, the TMR overall increases from 7% to 50% within the bending ratio of 0%-3.9%, and meanwhile the SIE is largely improved to around 70%, as compared to that (30%) of the flat phosphorene. Such behaviors of the TMR and SIE are mainly affected by the transmission of spin-up electrons in the parallel configuration, which is highly dependent on the applied mechanical tension and bending. Our results indicate that the phosphorene based tunnel junctions have promising applications in flexible electronics.
Transport properties of the topological Kondo insulator SmB6 under the irradiation of light
International Nuclear Information System (INIS)
Zhu Guo-Bao; Yang Hui-Min
2016-01-01
In this paper, we study transport properties of the X point in the Brillouin zone of the topological Kondo insulator SmB 6 under the application of a circularly polarized light. The transport properties at high-frequency regime and low-frequency regime as a function of the ratio ( κ ) of the Dresselhaus-like and Rashba-like spin–orbit parameter are studied based on the Floquet theory and Boltzmann equation respectively. The sign of Hall conductivity at high-frequency regime can be reversed by the ratio κ and the amplitude of the light. The amplitude of the current can be enhanced by the ratio κ . Our findings provide a way to control the transport properties of the Dirac materials at low-frequency regime. (paper)
International Nuclear Information System (INIS)
Zong-Liang, Li; Huai-Zhi, Li; Yong, Ma; Guang-Ping, Zhang; Chuan-Kui, Wang
2010-01-01
A first-principles computational method based on the hybrid density functional theory is developed to simulate the electronic transport properties of oligomeric phenylene ethynylene molecular junctions with H 2 O molecules accumulated in the vicinity as recently reported by Na et al. [Nanotechnology 18 424001 (2007)]. The numerical results show that the hydrogen bonds between the oxygen atoms of the oligomeric phenylene ethynylene molecule and H 2 O molecules result in the localisation of the molecular orbitals and lead to the lower transition peaks. The H 2 O molecular chains accumulated in the vicinity of the molecular junction can not only change the electronic structure of the molecular junctions, but also open additional electronic transport pathways. The obvious influence of H 2 O molecules on the electronic structure of the molecular junction and its electronic transport properties is thus demonstrated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Electronic, magnetic and transport properties of graphene ribbons terminated by nanotubes
International Nuclear Information System (INIS)
Akhukov, M A; Yuan Shengjun; Fasolino, A; Katsnelson, M I
2012-01-01
We study, by density functional and large-scale tight-binding transport calculations, the electronic structure, magnetism and transport properties of the recently proposed graphene ribbons with edges rolled to form nanotubes. Edges with armchair nanotubes present magnetic moments localized either in the tube or the ribbon and of metallic or half-metallic character, depending on the symmetry of the junction. These properties have potential for spin valve and spin filter devices with advantages over other proposed systems. Edges with zigzag nanotubes are either metallic or semiconducting without affecting the intrinsic mobility of the ribbon. Varying the type and size of the nanotubes and ribbons offers the possibility to tailor the magnetic and transport properties, making these systems very promising for applications. (paper)
Tuning of Transport and Magnetic Properties in Epitaxial LaMnO3+δ Thin Films
Directory of Open Access Journals (Sweden)
J. Chen
2014-01-01
Full Text Available The effect of compressive strain on the transport and magnetic properties of epitaxial LaMnO3+δ thin films has been investigated. It is found that the transport and magnetic properties of the LaMnO3+δ thin films grown on the LaAlO3 substrates can be tuned by the compressive strain through varying film thickness. And the insulator-metal transition, charge/orbital ordering transition, and paramagnetic-ferromagnetic transition are suppressed by the compressive strain. Consequently, the related electronic and magnetic transition temperatures decrease with an increase in the compressive strain. The present results can be explained by the strain-controlled lattice deformation and the consequent orbital occupation. It indicates that the lattice degree of freedom is crucial for understanding the transport and magnetic properties of the strongly correlated LaMnO3+δ.
Transport properties of YBa2Cu3O7/PrBa2Cu3O7-superlattices
International Nuclear Information System (INIS)
El Tahan, Ayman Mohamed Moussa
2010-01-01
occurrence of a crossover from elastic (collective) vortex creep at low temperature to plastic vortex creep at high T. The second type of transport experiments was to measure directly a possible Josephson coupling between superconducting CuO 2 double planes in the superlattices by investigation of the transport properties perpendicular to the superconducting planes. Here three different experiments have been performed. The first one was to pattern mesa structures photolithographically as in previous works. The second used three-dimensional nanostructures cut by a focused ion beam. A third experiment used a-axis and (110) oriented YBCO films, where in-plane patterning can in principle be sufficient to measure transport perpendicular to the superconducting planes. Therefore the deposition of films with this unusual growth orientation was optimized and investigated. The structural and microstructural evolution of c-axis to a-axis orientation was monitored using X-ray diffraction, scanning electron microscopy and magnetization measurements. Films with full a-axis alignment parallel to the substrate normal could be achieved on (100)SrTiO 3 . Transferring the deposition conditions to films grown on (110)SrTiO 3 allowed the growth of (110) oriented YBCO films with a unique in-plane c-axis orientation. While these films were of high quality by crystallographic and macroscopic visual inspection, electron microscopy revealed a coherent crack pattern on a nanoscale. (orig.)
International Nuclear Information System (INIS)
Massimiliano, Rosa; Azmy, Y.Y.; Morel, J.E.
2005-01-01
The general expressions for the matrix elements of the discrete Sn-equivalent integral transport operator have been derived in slab geometry. Their asymptotic behavior has been investigated both for a homogeneous slab and for a heterogeneous slab characterized by a periodic material discontinuity wherein each optically thick cell is surrounded by two optically thin cells in a repeating pattern. In the case of a homogeneous slab, the asymptotic analysis conducted in a diffusive limit obtained as the thick limit of computational cell size for a highly scattering medium, has shown that the discretized integral transport operator is approximated by a sparse matrix characterized by a tri-diagonal diffusion-like coupling stencil. Also, the tri-diagonal matrix structure, characteristic of the diffusion coupling stencil, is approached at a fast exponential rate. In the case of periodically heterogeneous slab configurations, the asymptotic behavior investigated is that in which the cells' optical thicknesses are pushed apart, i.e. the thick is made thicker while the thin is made thinner at a prescribed rate. It has been shown that in this limit the discretized integral transport operator is approximated by a penta-diagonal structure. Notwithstanding, the discrete operator is amenable to algebraic transformations leading to a matrix representation still asymptotically approaching a tri-diagonal structure at a fast exponential rate. The existence of a low order tri-diagonal approximation to the full discrete integral transport operator in the case of a periodically heterogeneous slab might provide a basic understanding of the superior convergence properties of diffusion-based acceleration schemes observed in slab geometry, even in the presence of sharp material discontinuities. The obtained results also suggest that a sparse approximation to the S n -equivalent integral transport operator might itself be used as the low-order operator in an acceleration scheme for the
Macroscopic optical response and photonic bands
International Nuclear Information System (INIS)
Pérez-Huerta, J S; Luis Mochán, W; Ortiz, Guillermo P; Mendoza, Bernardo S
2013-01-01
We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well-defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the long-wavelength approximation as it fully incorporates retardation effects. We test our formalism through the study of the propagation of electromagnetic waves in two-dimensional photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upon substitution into the macroscopic field equations. We can also account approximately for the spatial dispersion through a local magnetic permeability and analyze the resulting dispersion relation, obtaining a region of left handedness. (paper)
Berkeley Experiments on Superfluid Macroscopic Quantum Effects
International Nuclear Information System (INIS)
Packard, Richard
2006-01-01
This paper provides a brief history of the evolution of the Berkeley experiments on macroscopic quantum effects in superfluid helium. The narrative follows the evolution of the experiments proceeding from the detection of single vortex lines to vortex photography to quantized circulation in 3He to Josephson effects and superfluid gyroscopes in both 4He and 3He
Macroscopic sizes of field of superrelativistic charges
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1995-01-01
Based on the equation of Lienard-Wiechert equipotentials, it is shown that the field of superrelativistic charges reaches macroscopic sizes (e.g., R || = 2 m at E e = 50 GeV). This phenomenon serves an initial cause of the known considerable growth of formation length at high energies. 3 refs., 1 tab
On quantum mechanics for macroscopic systems
International Nuclear Information System (INIS)
Primas, H.
1992-01-01
The parable of Schroedinger's cat may lead to several up-to date questions: how to treat open systems in quantum theory, how to treat thermodynamically irreversible processes in the quantum mechanics framework, how to explain, following the quantum theory, the existence, phenomenologically evident, of classical observables, what implies the predicted existence by the quantum theory of non localized macroscopic material object ?
Energy Technology Data Exchange (ETDEWEB)
Poloski, Adam P.; Daniel, Richard C.; Rector, David R.; Bredt, Paul R.; Buck, Edgar C.; Berg, John C.; Saez, Avelino E.
2006-09-29
Hanford TRU tank sludges are complex mixtures of undissolved minerals and salt solids in an aqueous phase of high ionic strength. They show complex rheological behavior resulting from interactions at the macroscopic level, such as interparticle friction between grains in the coarse fraction, as well as from interactions at the nano-scale level, such as the agglomeration of colloidal particles. An understanding of how phenomena such as interparticle friction and aggregate stability under shear will allow better control of Hanford TRU tank sludges being processed for disposal. The project described in this report had two objectives. The first was to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of sludge physical properties by correlating the macroscopic behavior with interactions occurring at the particle/colloidal scale. These objectives were accomplished by: 1) developing continuum models for coarse granular slurries and 2) studying the behavior of colloidal agglomerates under shear and under irradiation.
Transport Properties of ZnSe- ITO Hetero Junction
Ichibakase, Tsuyoshi
In this report, ITO(Indium Tin Oxide) was used on the glass substrates as the transparent electrode, and ZnSe layer was prepared by the vacuum deposition on this ITO. Then, the electrical characteristics of this sample were investigated by mans of the electric current transport analysis. The sample that ZnSe was prepared as 3.4 μm in case of ITO-ZnSe sample, has high density level at the junction surface. The ITO-ZnSe junction has two type of diffusion current. However, the ITO-ZnSe sample that ZnSe layer was prepared as 0.1 μm can be assumed as the ohmic contact, and ITO-ZnSe(0.1μm) -CdTe sample shows the avalanche breakdown, and it is considered that the avalanche breakdown occurs in CdTe layer. It is difficult to occur the avalanche breakdown, if ZnSe-CdTe junction has high-density level and CdTe layer has high-density defect. Hence, the ZnSe-CdTe sample that CdTe layer was prepared on ITO-ZnSe(0.1μm) substrate has not high-density level at the junction surface, and the CdTe layer with little lattice imperfection can be prepared. It found that ITO-ZnSe(0.1μm) substrate is available for the II-VI compounds semiconductor device through above analysis result.
Electrical transport properties in Co nanocluster-assembled granular film
Zhang, Qin-Fu; Wang, Lai-Sen; Wang, Xiong-Zhi; Zheng, Hong-Fei; Liu, Xiang; Xie, Jia; Qiu, Yu-Long; Chen, Yuanzhi; Peng, Dong-Liang
2017-03-01
A Co nanocluster-assembled granular film with three-dimensional cross-connection paralleled conductive paths was fabricated by using the plasma-gas-condensation method in a vacuum environment. The temperature-dependent longitudinal resistivity and anomalous Hall effect of this new type granular film were systematically studied. The longitudinal resistivity of the Co nanocluster-assembled granular film first decreased and then increased with increasing measuring temperature, revealing a minimum value at certain temperature, T min . In a low temperature region ( T governed the electrical transport process, and the temperature coefficient of resistance (TCR) showed an insulator-type behavior. The thermal fluctuation-induced tunneling conduction progressively increased with increasing temperature, which led to a decrease in the longitudinal resistivity. In a high temperature region, the TCR showed a metallic-type behavior, which was primarily attributed to the temperature-dependent scattering. Different from the longitudinal resistivity behavior, the saturated anomalous Hall resistivity increased monotonically with increasing measuring temperature. The value of the anomalous Hall coefficient ( R S ) reached 2.3 × 10-9 (Ω cm)/G at 300 K, which was about three orders of magnitude larger than previously reported in blocky single-crystal Co [E. N. Kondorskii, Sov. Phys. JETP 38, 977 (1974)]. Interestingly, the scaling relation ( ρx y A ∝ ρx x γ ) between saturated anomalous Hall resistivity ( ρx y A ) and longitudinal resistivity ( ρ x x ) was divided into two regions by T min . However, after excluding the contribution of tunneling, the scaling relation followed the same rule. The corresponding physical mechanism was also proposed to explain these phenomena.
Transport properties of Dirac fermions in two dimensions
DaSilva, Ashley M.
The Dirac equation in particle physics is used to describe spin 1/2 fermions (such as electrons) moving at relativistic speeds. In condensed matter physics, this is usually not relevant, since particles in matter move slowly compared to the speed of light. However, recent progress has revealed two-dimensional realizations of Dirac fermions in condensed matter systems with zero mass and a redefined "speed of light." One of these systems, graphene, has been studied theoretically for decades as a building block of graphite. The other, the topological insulator, is quite new; this state of matter was predicted less than 10 years ago. Graphene was first isolated in 2004, and since then there has been an explosion of graphene research in the physics community. Much of the recent excitement has to do with the potential applications of graphene in devices. In this dissertation, I will discuss two problems related to graphene devices, and in particular how to use the strong interaction of graphene with its surroundings as an asset. I will show that a Boltzmann transport theory with all scattering mechanisms describes the current vs voltage of a graphene sheet extremely well using no adjustable parameters. One crucial element of this model is the transfer of energy from electrons directly to the substrate via scattering with optical phonons at the interface. The interaction is due to an electric field that is set up by these optical phonons, which is so strongly interacting in part due to the two dimensionality of the graphene. I will also discuss the adsorption of He atoms on a graphene sheet. This causes a change in the graphene conductivity which is large enough to be measurable. Work in this direction could provide a route to graphene sensors. The topological insulator is a recently predicted state of matter which is nominally an insulator but has metallic surface states which are topologically protected. This topological protection arises from the symmetry of the system
International Nuclear Information System (INIS)
Fisera, O.; Kares, J.
2014-01-01
A container for transport of environmental samples to the analytical laboratory is being developed as part of the development of system for collection and transport of samples contaminated with chemical, biological, radioactive and nuclear (CBRN) substances after CBRN incidents. The proposed system corresponds with current requirements of NATO publication AEP-66. The proposed container will meet the requirements of mechanical stability and tightness for the packaging of the chemical, biological and radioactive substances. Verification of shielding properties and satisfaction of requirements of radiation protection during transport of potentially relatively high active samples was the aim of this part of research. The results, together with a wall thickness of the inner steel container, the inner lining and the outer transport package, give excellent assumption that the radiation protection requirements for the proposed container and transport package will be satisfied. (authors)
Reversible optical control of macroscopic polarization in ferroelectrics
Rubio-Marcos, Fernando; Ochoa, Diego A.; Del Campo, Adolfo; García, Miguel A.; Castro, Germán R.; Fernández, José F.; García, José E.
2018-01-01
The optical control of ferroic properties is a subject of fascination for the scientific community, because it involves the establishment of new paradigms for technology1-9. Domains and domain walls are known to have a great impact on the properties of ferroic materials1-24. Progress is currently being made in understanding the behaviour of the ferroelectric domain wall, especially regarding its dynamic control10-12,17,19. New research is being conducted to find effective methodologies capable of modulating ferroelectric domain motion for future electronics. However, the practical use of ferroelectric domain wall motion should be both stable and reversible (rewritable) and, in particular, be able to produce a macroscopic response that can be monitored easily12,17. Here, we show that it is possible to achieve a reversible optical change of ferroelectric domains configuration. This effect leads to the tuning of macroscopic polarization and its related properties by means of polarized light, a non-contact external control. Although this is only the first step, it nevertheless constitutes the most crucial one in the long and complex process of developing the next generation of photo-stimulated ferroelectric devices.
Magneto-transport properties of a random distribution of few-layer graphene patches
International Nuclear Information System (INIS)
Iacovella, Fabrice; Mitioglu, Anatolie; Pierre, Mathieu; Raquet, Bertrand; Goiran, Michel; Plochocka, Paulina; Escoffier, Walter; Trinsoutrot, Pierre; Vergnes, Hugues; Caussat, Brigitte; Conédéra, Véronique
2014-01-01
In this study, we address the electronic properties of conducting films constituted of an array of randomly distributed few layer graphene patches and investigate on their most salient galvanometric features in the moderate and extreme disordered limit. We demonstrate that, in annealed devices, the ambipolar behaviour and the onset of Landau level quantization in high magnetic field constitute robust hallmarks of few-layer graphene films. In the strong disorder limit, however, the magneto-transport properties are best described by a variable-range hopping behaviour. A large negative magneto-conductance is observed at the charge neutrality point, in consistency with localized transport regime
Spin-polarized transport properties of a pyridinium-based molecular spintronics device
Zhang, J.; Xu, B.; Qin, Z.
2018-05-01
By applying a first-principles approach based on non-equilibrium Green's functions combined with density functional theory, the transport properties of a pyridinium-based "radical-π-radical" molecular spintronics device are investigated. The obvious negative differential resistance (NDR) and spin current polarization (SCP) effect, and abnormal magnetoresistance (MR) are obtained. Orbital reconstruction is responsible for novel transport properties such as that the MR increases with bias and then decreases and that the NDR being present for both parallel and antiparallel magnetization configurations, which may have future applications in the field of molecular spintronics.
Transport properties of magnetic atom bridges controlled by a scanning tunneling microscope
International Nuclear Information System (INIS)
Nakanishi, H.; Kishi, T.; Kasai, H.; Komori, F.; Okiji, A.
2003-01-01
We have investigated the transport and magnetic properties of the atom bridge made from magnetic materials, which is the atom-scale wire constructed between a scanning tunneling microscope (STM) tip and a solid surface, by the use of ab initio calculations. In the case of the twisted ladder structure atom bridge made of Fe, we have found that the magnetic state of the bridge changes from ferromagnetic to paramagnetic, as we compress the bridge in length. We report the spin dependent quantized conductance of the bridge. And we discuss the origin of a change in transport properties as we compress the bridge in length
Spintronic and transport properties of linear atomic strings of transition metals (Fe, Co, Ni)
Energy Technology Data Exchange (ETDEWEB)
Tyagi, Neha, E-mail: nehatyagi.phy@gmail.com [Department of Applied Physics, Delhi Technological University, New Delhi (India); Jaiswal, Neeraj K. [Discipline of Physics, PDPM-Indian Institute of Information Technology, Design & Manufacturing, Jabalpur (India); Srivastava, Pankaj [Nanomaterials Research Group, ABV-Indian Institute of Information Technology & Management, Gwalior (India)
2016-05-06
In the present work, first-principles investigations have been performed to study the spintronic and transport properties of linear atomic strings of Fe, Co and Ni. The structural stabilities of the considered strings were compared on the basis of binding energies which revealed that all the strings are energetically feasible to be achieved. Further, all the considered strings are found to be ferromagnetic and the observed magnetic moment ranges from 1.38 to 1.71 μ{sub B}. The observed transport properties and high spin polarization points towards their potential for nano interconnects and spintronic applications.
Modifying zirconia solid electrolyte surface property to enhance oxide transport
Energy Technology Data Exchange (ETDEWEB)
Liaw, B.Y.; Song, S.Y. [Univ. of Hawaii, Honolulu, HI (United States)
1996-12-31
Bismuth-strontium-calcium-copper oxide (Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}, BSCCO) is known for its high T{sub c} superconducting behavior and mixed conducting property. The applicability of similar high T{sub c} cuprates for intermediate-temperature solid oxide fuel cell (SOFC) application has been studied recently. We investigated the electrochemical behavior of several Ag{vert_bar}BSCCO{vert_bar}10 mol% yttria-stabilized zirconia (YSZ){vert_bar}Ag and Ag{vert_bar}YSZ{vert_bar}Ag cells using complex impedance spectroscopy. A highly uniform and porous microstructure was observed at the interface of the YSZ and BSCCO. The ionic conductivity determined from the Nyquest plots in the temperature range of 200-700{degrees}C agrees with the values reported in the literature. The specific resistance of the BSCCO{vert_bar}YSZ interface was also determined to be lower than those of the conventional manganite electrode, suggesting that BSCCO seems attractive for cathode applications in SOFC.
High-field thermal transports properties of REBCO coated conductors
Bonura, M
2015-01-01
The use of REBCO coated conductors is envisaged for many applications, extending from power cables to high-ﬁeld magnets. Whatever the case, thermal properties of REBCO tapes play a key role for the stability of superconducting devices. In this work, we present the ﬁrst study on the longitudinal thermal conductivity (k) of REBCO coated conductors in magnetic ﬁelds up to 19 T applied both parallelly and perpendicularly to the thermal-current direction. Copper-stabilized tapes from six industrial manufacturers have been investigated. We show that zero-ﬁeld k of coated conductors can be calculated with an accuracy of ‡ 15% from the residual resistivity ratio of the stabilizer and the Cu/non-Cu ratio. Measurements performed at high ﬁelds have allowed us to evaluate the consistency of the procedures generally used for estimating in-ﬁeld k in the framework of the Wiedemann-Franz law from an electrical characterization of the materials. In-ﬁeld data are intended to provide primary ingredients for the ...
Structure and transport properties of polymer grafted nanoparticles
Goyal, Sushmit; Escobedo, Fernando A.
2011-01-01
We perform molecular dynamics simulations on a bead-spring model of pure polymer grafted nanoparticles (PGNs) and of a blend of PGNs with a polymer melt to investigate the correlation between PGN design parameters (such as particle core concentration, polymer grafting density, and polymer length) and properties, such as microstructure, particle mobility, and viscous response. Constant strain-rate simulations were carried out to calculate viscosities and a constant-stress ensemble was used to calculate yield stresses. The PGN systems are found to have less structural order, lower viscosity, and faster diffusivity with increasing length of the grafted chains for a given core concentration or grafting density. Decreasing grafting density causes depletion effects associated with the chains leading to close contacts between some particle cores. All systems were found to shear thin, with the pure PGN systems shear thinning more than the blend; also, the pure systems exhibited a clear yielding behavior that was absent in the blend. Regarding the mechanism of shear thinning at the high shear rates examined, it was found that the shear-induced decrease of Brownian stresses and increase in chain alignment, both correlate with the reduction of viscosity in the system with the latter being more dominant. A coupling between Brownian stresses and chain alignment was also observed wherein the non-equilibrium particle distribution itself promotes chain alignment in the direction of shear. © 2011 American Institute of Physics.
Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties
International Nuclear Information System (INIS)
London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C.; Jacques, S.L.
1995-01-01
The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered
Preparation and transport properties of novel lithium ionic liquids
International Nuclear Information System (INIS)
Shobukawa, Hitoshi; Tokuda, Hiroyuki; Tabata, Sei-Ichiro; Watanabe, Masayoshi
2004-01-01
Novel lithium salts of borates having two electron-withdrawing groups (either 1,1,1,3,3,3-hexafluoro-2-propoxy or pentafluorophenoxy group) and two methoxy-oligo(ethylene oxide) groups (number of repeating unit: n = 3, 4, 7.2) were prepared by successive substitution-reactions from LiBH 4 . The obtained lithium salts were clear and colorless liquids at room temperature. The density, thermal property, viscosity, and ionic conductivity were measured for the lithium ionic liquids. The pulsed-gradient spin-echo NMR (PGSE-NMR) method was used to independently determine self-diffusion coefficients of the lithium cation ( 7 Li NMR) and the anion ( 19 F NMR) in the bulk. The ionic conductivity of the new lithium salts was 10 -5 to 10 -4 S cm -1 at 30 deg. C, which was lower than that of typical ionic liquids by two orders of magnitude. However, the degree of self-dissociation of the lithium ionic liquids; the ratio of the molar conductivity determined by the complex impedance method to that calculated from the self-diffusion coefficients and the Nernst-Einstein equation, ranged from 0.1 to 0.4, which are comparable values to those of a highly dissociable salt in an aprotic polar solvent and of typical ionic liquids. The main reason for the meager conductivity was high viscosities of the lithium ionic liquids. It should be noted that the lithium ionic liquids have self-dissociation ability and conduct the ions in the absence of organic solvents
Impact of carbonation on water transport properties of cement-based materials
International Nuclear Information System (INIS)
Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.
2015-01-01
Cement-based materials would be commonly used for nuclear waste management and, particularly for geological disposal vaults as well as containers in France. Under service conditions, the structures would be subjected to simultaneous drying and carbonation. Carbonation relates to the reaction between CO 2 and the hydrated cement phases (mainly portlandite and C-S-H). It induces mineralogical and microstructural changes (due to hydrates dissolution and calcium carbonate precipitation). It results in transport properties modifications, which can have important consequences on the durability of reinforced concrete structures. Concrete durability is greatly influenced by water: water is necessary for chemical reactions to occur and significantly impacts transport. The evaluation of the unsaturated water transport properties in carbonated materials is then an important issue. That is the aim of this study. A program has been established to assess the water transport properties in carbonated materials. In this context, four mature hardened cement pastes (CEM I, CEM III/A, CEM V/A according to European standards and a Low-pH blend) are carbonated. Accelerated carbonation tests are performed in a specific device, controlling environmental conditions: (i) CO 2 content of 3%, to ensure representativeness of the mineralogical evolution compared to natural carbonation and (ii) 25 C. degrees and 55% RH, to optimize carbonation rate. After carbonation, the data needed to describe water transport are evaluated in the framework of simplified approach. Three physical parameters are required: (1) the concrete porosity, (2) the water retention curve and, (3) the effective permeability. The obtained results allow creating link between water transport properties of non-carbonated materials to carbonated ones. They also provide a better understanding of the effect of carbonation on water transport in cementitious materials and thus, complement literature data. (authors)
The PTFE-nanocomposites mechanical properties for transport systems dynamic sealing devices elements
Mashkov, Y. K.; Egorova, V. A.; Chemisenko, O. V.; Maliy, O. V.
2017-06-01
The mechanical properties study results of polymer nanocomposites based on polytetrafluoroethylene with modifiers in the form of micro- and nanoscale cryptocrystalline graphite and silicon dioxide powders are determined. The nanocomposites mechanical properties determined values provide high sealing degree of transport systems dynamic sealing devices elements. When the temperature changes from cryogenic to high positive then the elastic modulus, tensile strength decrease significantly and nonlinearly, the latter limits the composite usage in heavily loaded tribosystems operating at elevated temperatures.
Chiral transport of neutrinos in supernovae
Directory of Open Access Journals (Sweden)
Yamamoto Naoki
2017-01-01
Full Text Available The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.
Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport
Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.
2017-09-01
Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.
Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials
Directory of Open Access Journals (Sweden)
Y. N. Wu
2017-09-01
Full Text Available Based on the density functional theory combined with the nonequilibrium Green’s function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs and the composite of AGNRs and single walled carbon nanotubes (SWCNTs were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6 increases in the presence of the wrinkle, which is opposite to that of AGNR(5 and AGNR(7. The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.
Electronic and transport properties of Cobalt-based valence tautomeric molecules and polymers
Chen, Yifeng; Calzolari, Arrigo; Buongiorno Nardelli, Marco
2011-03-01
The advancement of molecular spintronics requires further understandings of the fundamental electronic structures and transport properties of prototypical spintronics molecules and polymers. Here we present a density functional based theoretical study of the electronic structures of Cobalt-based valence tautomeric molecules Co III (SQ)(Cat)L Co II (SQ)2 L and their polymers, where SQ refers to the semiquinone ligand, and Cat the catecholate ligand, while L is a redox innocent backbone ligand. The conversion from low-spin Co III ground state to high-spin Co II excited state is realized by imposing an on-site potential U on the Co atom and elongating the Co-N bond. Transport properties are subsequently calculated by extracting electronic Wannier functions from these systems and computing the charge transport in the ballistic regime using a Non-Equilibrium Green's Function (NEGF) approach. Our transport results show distinct charge transport properties between low-spin ground state and high-spin excited state, hence suggesting potential spintronics devices from these molecules and polymers such as spin valves.
Electronic structure and transport properties of quasi-one-dimensional carbon nanomaterials
Wu, Y. N.; Cheng, P.; Wu, M. J.; Zhu, H.; Xiang, Q.; Ni, J.
2017-09-01
Based on the density functional theory combined with the nonequilibrium Green's function, the influence of the wrinkle on the electronic structures and transport properties of quasi-one-dimensional carbon nanomaterials have been investigated, in which the wrinkled armchair graphene nanoribbons (wAGNRs) and the composite of AGNRs and single walled carbon nanotubes (SWCNTs) were considered with different connection of ripples. The wrinkle adjusts the electronic structures and transport properties of AGNRs. With the change of the strain, the wAGNRs for three width families reveal different electrical behavior. The band gap of AGNR(6) increases in the presence of the wrinkle, which is opposite to that of AGNR(5) and AGNR(7). The transport of AGNRs with the widths 6 or 7 has been modified by the wrinkle, especially by the number of isolated ripples, but it is insensitive to the strain. The nanojunctions constructed by AGNRs and SWCNTs can form the quantum wells, and some specific states are confined in wAGNRs. Although these nanojunctions exhibit the metallic, they have poor conductance due to the wrinkle. The filling of C20 into SWCNT has less influence on the electronic structure and transport of the junctions. The width and connection type of ripples have greatly influenced on the electronic structures and transport properties of quasi-one-dimensional nanomaterials.
Transport and Phase Equilibria Properties for Steam Flooding of Heavy Oils
Energy Technology Data Exchange (ETDEWEB)
Gabitto, Jorge; Barrufet, Maria
2002-11-20
The objectives of this research included experimental determination and rigorous modeling and computation of phase equilibrium diagrams, volumetric, and transport properties of hydrocarbon/CO2/water mixtures at pressures and temperatures typical of steam injection processes for thermal recovery of heavy oils.
On calculating phase shifts and performing fits to scattering cross sections or transport properties
International Nuclear Information System (INIS)
Hepburn, J.W.; Roy, R.J. Le
1978-01-01
Improved methods of calculating quantum mechanical phase shifts and for performing least-squares fits to scattering cross sections or transport properties, are described. Their use in a five-parameter fit to experimental differential cross sections reduces the computer time by a factor of 4-7. (Auth.)
Bakker, E.; Hangx, S.J.T.|info:eu-repo/dai/nl/30483579X; Niemeijer, A.R.|info:eu-repo/dai/nl/370832132; Spiers, C.J.|info:eu-repo/dai/nl/304829323
2016-01-01
We investigated the effects of long-term CO2-brine-rock interactions on the frictional and transport properties of reservoir-derived fault gouges, prepared from both unexposed and CO2-exposed sandstone, and from aragonite-cemented fault rock of an active CO2-leaking conduit, obtained from a natural
Pressure and irradiation effects on transport properties of samarium compounds with instable valence
International Nuclear Information System (INIS)
Morillo, J.
1981-01-01
Electron transport properties in samarium compounds with instable valence are studied in this thesis: from SmS in its integer valence phases at common pressure to SmB 6 compound IV at common pressure through SmSsub(1-x)Psub(x) (x 6 is presented [fr
Conduction band splitting and transport properties of Bi2Se3
Czech Academy of Sciences Publication Activity Database
Navrátil, Jiří; Horák, Jaromír; Plecháček, T.; Kamba, Stanislav; Lošťák, P.; Dyck, J. S.; Chen, W.; Uher, C.
2004-01-01
Roč. 177, č. 4-5 (2004), s. 1704-1712 ISSN 0022-4596 R&D Projects: GA AV ČR KSK2050602; GA AV ČR KSK1010104 Keywords : transport properties * carrier scattering Subject RIV: CA - Inorganic Chemistry Impact factor: 1.815, year: 2004
Dc-transport properties of ferromagnetic (Ga,Mn)As semiconductors
Czech Academy of Sciences Publication Activity Database
Jungwirth, Tomáš; Sinova, J.; Wang, K. Y.; Edmonds, K. W.; Campion, R. P.; Gallagher, B. L.; Foxon, C. T.; Niu, Q.; MacDonald, A. H.
2003-01-01
Roč. 83, č. 2 (2003), s. 320-322 ISSN 0003-6951 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * dc transport properties * (Ga, Mn)As Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.049, year: 2003
Static transport properties of random alloys: Vertex corrections in conserving approximations
Czech Academy of Sciences Publication Activity Database
Turek, Ilja
2016-01-01
Roč. 93, č. 24 (2016), 245114-1-245114-6 ISSN 2469-9950 R&D Projects: GA ČR GA15-13436S Institutional support: RVO:68081723 Keywords : transport properties * random alloys * coherent-potential approximation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016
DEFF Research Database (Denmark)
Scheffler, Gregor Albrecht; Plagge, Rudolf
2010-01-01
This paper addresses the modelling of hygric material coefficients bridging the gap between measured material properties and the non-linear storage and transport coefficients in the transfer equation. The conductivity approach and a bundle of tubes model are the basis. By extending this model wit...
International Nuclear Information System (INIS)
Lee, W.W.
2003-01-01
Particle simulation has played an important role for the recent investigations on turbulence in magnetically confined plasmas. In this paper, theoretical and numerical properties of a gyrokinetic plasma as well as its relationship with magnetohydrodynamics (MHD) are discussed with the ultimate aim of simulating microturbulence in transport time scale using massively parallel computers
DEFF Research Database (Denmark)
Ryuzaki, Sou; Meyer, Jakob Abild Stengaard; Petersen, Søren Vermehren
2014-01-01
Charge transport properties of chemically reduced graphene oxide (RGO) sheets prepared by treatment with hydrazine were examined using conductive atomic force microscopy. The current-voltage (I-V) characteristics of monolayer RGO sheets prepared under atmospheric pressure followed an exponentially...
Response matrix method for neutron transport in reactor lattices using group symmetry properties
International Nuclear Information System (INIS)
Mund, E.H.
1991-01-01
This paper describes a response matrix method for the approximate solution of one-velocity, multi-dimensional transport problems in reactor lattices, with isotropic neutron scattering. The transport equation is solved on a homogeneous cell by using a Petrov-Galerkin technique based on a set of trial and test functions (including polynomials and exponential functions) closely related to transport problems in infinite media. The number of non-zero elements of the response matrices reduces to a minimum when the symmetry properties of the cell are included ab initio in the span of the basis functions. To include these properties, use is made of projection operations which are performed very efficiently on symbolic manipulation programs. Numerical results of model problems in square geometry show a good agreement with reference solutions
Statistical properties of turbulent transport and fluctuations in tokamak and stellarator devices
Energy Technology Data Exchange (ETDEWEB)
Hidalgo, C; Pedrosa, M A; Milligen, B Van; Sanchez, E; Balbin, R; Garcia-Cortes, I [Euratom-CIEMAT Association, Madrid (Spain); Bleuel, J; Giannone, L.; Niedermeyer, H [Euratom-IPP Association, Garching (Germany)
1997-05-01
The statistical properties of fluctuations and turbulent transport have been studied in the plasma boundary region of stellarator (TJ-IU, W7-AS) and tokamak (TJ-I) devices. The local flux probability distribution function shows the bursty character of the flux and presents a systematic change as a function of the radial location. There exist large amplitude transport bursts that account for a significant part of the total flux. There is a strong similarity between the statistical properties of the turbulent fluxes in different devices. The value of the radial coherence associated with fluctuations and turbulent transport is strongly intermittent. This result emphasizes the importance of measurements with time resolution in understanding the interplay between the edge and the core regions in the plasma. For measurements in the plasma edge region of the TJ-IU torsatron, the turbulent flux does not, in general, show a larger radial coherence than the one associated with the fluctuations. (author). 14 refs, 6 figs.
Electronic transport properties of nano-scale Si films: an ab initio study
Maassen, Jesse; Ke, Youqi; Zahid, Ferdows; Guo, Hong
2010-03-01
Using a recently developed first principles transport package, we study the electronic transport properties of Si films contacted to heavily doped n-type Si leads. The quantum transport analysis is carried out using density functional theory (DFT) combined with nonequilibrium Green's functions (NEGF). This particular combination of NEGF-DFT allows the investigation of Si films with thicknesses in the range of a few nanometers and lengths up to tens of nanometers. We calculate the conductance, the momentum resolved transmission, the potential profile and the screening length as a function of length, thickness, orientation and surface structure. Moreover, we compare the properties of Si films with and without a top surface passivation by hydrogen.
International Nuclear Information System (INIS)
Zhou, Quanlin; Liu, Hui-Hai; Bodvarsson, Gudmundur S.; Oldenburg, Curtis M.
2002-01-01
The heterogeneity of hydrogeologic properties at different scales may have different effects on flow and transport processes in a subsurface system. A model for the unsaturated zone of Yucca Mountain, Nevada, is developed to represent complex heterogeneity at two different scales: (1) layer scale corresponding to geologic layering and (2) local scale. The layer-scale hydrogeologic properties are obtained using inverse modeling, based on the available measurements collected from the Yucca Mountain site. Calibration results show a significant lateral and vertical variability in matrix and fracture properties. Hydrogeologic property distributions in a two-dimensional, vertical cross section of the site are generated by combining the average layer-scale matrix and fracture properties with local-scale perturbations generated using a stochastic simulation method. The unsaturated water flow and conservative (nonsorbing) tracer transport through the cross section are simulated for different sets of matrix and fracture property fields. Comparison of simulation results indicates that the local-scale heterogeneity of matrix and fracture properties has a considerable effect on unsaturated flow processes, leading to fast flow paths in fractures and the matrix. These paths shorten the travel time of a conservative tracer from the source (repository) horizon in the unsaturated zone to the water table for small fractions of total released tracer mass. As a result, the local-scale heterogeneity also has a noticeable effect on global tracer transport processes, characterized by an average breakthrough curve at the water table, especially at the early arrival time of tracer mass. However, the effect is not significant at the later time after 20 percent tracer mass reaches the water table. The simulation results also verify that matrix diffusion plays an important role in overall solute transport processes in the unsaturated zone at Yucca Mountain
Macroscopic and non-linear quantum games
International Nuclear Information System (INIS)
Aerts, D.; D'Hooghe, A.; Posiewnik, A.; Pykacz, J.
2005-01-01
Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)
Yin, Yiheng; Niu, Yanxiong; Zhang, Huiyun; Zhang, Yuping; Liu, Haiyue
2016-02-01
Utilizing the transfer matrix method, we develop the electronic band structure and transport properties in Thue-Morse aperiodic graphene superlattices with magnetic barriers. It is found that the normal transmission is blocked and the position of the Dirac point can be shifted along the wavevector axis by changing the height and width ratio of magnetic barriers, which is intrinsic different from electronic field modulated superlattices. In addition, the angular threshold property of the transmission spectra and the oscillatory property of the conductance have been studied.
Macroscopic Quantum Resonators (MAQRO): 2015 update
International Nuclear Information System (INIS)
Kaltenbaek, Rainer; Aspelmeyer, Markus; Kiesel, Nikolai; Barker, Peter F.; Bose, Sougato; Bassi, Angelo; Bateman, James; Bongs, Kai; Cruise, Adrian Michael; Braxmaier, Claus; Brukner, Caslav; Christophe, Bruno; Rodrigues, Manuel; Chwalla, Michael; Johann, Ulrich; Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge; Curceanu, Catalina; Dholakia, Kishan; Mazilu, Michael; Diosi, Lajos; Doeringshoff, Klaus; Peters, Achim; Ertmer, Wolfgang; Rasel, Ernst M.; Gieseler, Jan; Novotny, Lukas; Rondin, Loic; Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus; Hechenblaikner, Gerald; Hossenfelder, Sabine; Kim, Myungshik; Milburn, Gerard J.; Mueller, Holger; Paternostro, Mauro; Pikovski, Igor; Pilan Zanoni, Andre; Riedel, Charles Jess; Roura, Albert; Schleich, Wolfgang P.; Schmiedmayer, Joerg; Schuldt, Thilo; Schwab, Keith C.; Tajmar, Martin; Tino, Guglielmo M.; Ulbricht, Hendrik; Ursin, Rupert; Vedral, Vlatko
2016-01-01
Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)
Macroscopic Quantum Resonators (MAQRO): 2015 update
Energy Technology Data Exchange (ETDEWEB)
Kaltenbaek, Rainer [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Aspelmeyer, Markus; Kiesel, Nikolai [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Barker, Peter F.; Bose, Sougato [University College London, Department of Physics and Astronomy, London (United Kingdom); Bassi, Angelo [University of Trieste, Department of Physics, Trieste (Italy); INFN - Trieste Section, Trieste (Italy); Bateman, James [University of Swansea, Department of Physics, College of Science, Swansea (United Kingdom); Bongs, Kai; Cruise, Adrian Michael [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Braxmaier, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Brukner, Caslav [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Christophe, Bruno; Rodrigues, Manuel [The French Aerospace Lab, ONERA, Chatillon (France); Chwalla, Michael; Johann, Ulrich [Airbus Defence and Space GmbH, Immenstaad (Germany); Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge [ENS-PSL Research University, Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, College de France, Paris (France); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dholakia, Kishan; Mazilu, Michael [University of St. Andrews, School of Physics and Astronomy, St. Andrews (United Kingdom); Diosi, Lajos [Wigner Research Center for Physics, P.O. Box 49, Budapest (Hungary); Doeringshoff, Klaus; Peters, Achim [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Ertmer, Wolfgang; Rasel, Ernst M. [Leibniz Universitaet Hannover, Institut fuer Quantenoptik, Hannover (Germany); Gieseler, Jan; Novotny, Lukas; Rondin, Loic [ETH Zuerich, Photonics Laboratory, Zuerich (Switzerland); Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Hechenblaikner, Gerald [Airbus Defence and Space GmbH, Immenstaad (Germany); European Southern Observatory (ESO), Garching bei Muenchen (Germany); Hossenfelder, Sabine [KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Kim, Myungshik [Imperial College London, QOLS, Blackett Laboratory, London (United Kingdom); Milburn, Gerard J. [University of Queensland, ARC Centre for Engineered Quantum Systems, Brisbane (Australia); Mueller, Holger [University of California, Department of Physics, Berkeley, CA (United States); Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Pikovski, Igor [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Pilan Zanoni, Andre [Airbus Defence and Space GmbH, Immenstaad (Germany); CERN - European Organization for Nuclear Research, EN-STI-TCD, Geneva (Switzerland); Riedel, Charles Jess [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Roura, Albert [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Schleich, Wolfgang P. [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Texas A and M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, College Station, TX (United States); Schmiedmayer, Joerg [Vienna University of Technology, Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, Vienna (Austria); Schuldt, Thilo [Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Schwab, Keith C. [California Institute of Technology, Applied Physics, Pasadena, CA (United States); Tajmar, Martin [Technische Universitaet Dresden, Institut fuer Luft- und Raumfahrttechnik, Dresden (Germany); Tino, Guglielmo M. [Universita di Firenze, Dipartimento di Fisica e Astronomia and LENS, INFN, Sesto Fiorentino, Firenze (Italy); Ulbricht, Hendrik [University of Southampton, Physics and Astronomy, Southampton (United Kingdom); Ursin, Rupert [Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Vedral, Vlatko [University of Oxford, Atomic and Laser Physics, Clarendon Laboratory, Oxford (United Kingdom); National University of Singapore, Center for Quantum Technologies, Singapore (SG)
2016-12-15
Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)
Special relativity - the foundation of macroscopic physics
International Nuclear Information System (INIS)
Dixon, W.G.
1978-01-01
This book aims to show that an understanding of the basic laws of macroscopic systems can be gained more easily within relativistic physics than within Newtonian physics. The unity of dynamics, thermodynamics and electromagnetism under the umbrella of special relativity is examined under chapter headings entitled: the physics of space and time, affine spaces in mathematics and physics, foundations of dynamics, relativistic simple fluids, and, electrodynamics of polarizable fluids. (U.K.)
Testing quantum behaviour at the macroscopic level
International Nuclear Information System (INIS)
Ghirardi, G.C.
1994-07-01
We reconsider recent proposals to test macro realism versus quantum mechanics in experiments involving noninvasive measurement processes on a Squid. In spite of the fact that we are able to prove that the proposed experiments do not represent a test of macro realism but simply of macroscopic quantum coherence we call attention to their extreme conceptual relevance. We also discuss some recent criticisms which have been raised against the considered proposal and we show that they are not relevant. (author). 12 refs
Microscopic and macroscopic models for pedestrian crowds
Makmul, Juntima
2016-01-01
This thesis is concerned with microscopic and macroscopic models for pedes- trian crowds. In the first chapter, we consider pedestrians exit choices and model human behaviour in an evacuation process. Two microscopic models, discrete and continuous, are studied in this chapter. The former is a cellular automaton model and the latter is a social force model. Different numerical test cases are investigated and their results are compared. In chapter 2, a hierarchy of models for...
Macroscopic behaviour of a charged Boltzmann gas
International Nuclear Information System (INIS)
Banyai, L.; Gartner, P.; Protopopescu, V.
1980-08-01
We consider a classical charged gas (with self-consistent Coulomb interaction) described by a solvable linearized Boltzman equation with thermaljzation on unifopmly distributed scatterers. It is shown that jf one scales the time t, the reciprocal space coordinate k vector and the Debye length l as lambda 2 t, k vector/lambda, lambda l respectively, in the lambda→infinity limit the charge density is equal to the solution of the corresponding diffusion-conduction (macroscopic) equation. (author)
Applications of asymmetric nanotextured parylene surface using its wetting and transport properties
Sekeroglu, Koray
In this thesis, basic digital fluidics devices were introduced using polymeric nanorods (nano-PPX) inspired from nature. Natural inspiration ignited this research by observing butterfly wings, water strider legs, rye grass leaves, and their asymmetric functions. Nano-PPX rods, manufactured by an oblique angle polymerization (OAP) method, are asymmetrically aligned structures that have unidirectional wetting properties. Nano-PPX demonstrates similar functions to the directional textured surfaces of animals and plants in terms of wetting, adhesion, and transport. The water pin-release mechanism on the asymmetric nano-PPX surface with adhesion function provides a great transport property. How the asymmetry causes transport is discussed in terms of hysteresis and interface contact of water droplets. In this study, the transport property of nano-PPX rods is used to guide droplets as well as transporting cargo such as microgels. With the addition of tracks on the nano-PPX rods, the surfaces were transformed into basic digital fluidics devices. The track-assisted nano-PPX has been employed to applications (i.e. sorting, mixing, and carrying cargo particles). Thus, digital fluidics devices fabricated on nano-PPX surface is a promising pathway to assemble microgels in the field of bioengineering. The characterization of the nano textured surface was completed using methods such as Scanning Electron Microscopy, Atomic Force Microscopy, Contact Angle Goniometry, and Fourier Transform Infra-Red Spectroscopy. These methods helped to understand the physical and chemical properties of nano-PPX. Parameters such as advancing and receding contact angles, nanorod tilt angle, and critical drop volumes were utilized to investigate the anisotropic wetting properties of nano-PPX surface. This investigation explained the directional wetting behavior of the surface as well as approaching new design parameters for adjusting surface properties. The nanorod tilt angle was a key parameter
Parameterized representation of macroscopic cross section for PWR reactor
International Nuclear Information System (INIS)
Fiel, João Cláudio Batista; Carvalho da Silva, Fernando; Senra Martinez, Aquilino; Leal, Luiz C.
2015-01-01
Highlights: • This work describes a parameterized representation of the homogenized macroscopic cross section for PWR reactor. • Parameterization enables a quick determination of problem-dependent cross-sections to be used in few group calculations. • This work allows generating group cross-section data to perform PWR core calculations without computer code calculations. - Abstract: The purpose of this work is to describe, by means of Chebyshev polynomials, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 92 U enrichment. The cross-section data analyzed are fission, scattering, total, transport, absorption and capture. The parameterization enables a quick and easy determination of problem-dependent cross-sections to be used in few group calculations. The methodology presented in this paper will allow generation of group cross-section data from stored polynomials to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by the proposed methodology when compared with results from the SCALE code calculations show very good agreement
Macroscopic nonclassical-state preparation via postselection
Montenegro, Víctor; Coto, Raúl; Eremeev, Vitalie; Orszag, Miguel
2017-11-01
Macroscopic quantum superposition states are fundamental to test the classical-quantum boundary and present suitable candidates for quantum technologies. Although the preparation of such states has already been realized, the existing setups commonly consider external driving and resonant interactions, predominantly by considering Jaynes-Cummings-like and beam-splitter-like interactions, as well as the nonlinear radiation pressure interaction in cavity optomechanics. In contrast to previous works on the matter, we propose a feasible probabilistic scheme to generate a macroscopic mechanical qubit, as well as phononic Schrödinger's cat states with no need of any energy exchange with the macroscopic mechanical oscillator. Essentially, we investigate an open dispersive spin-mechanical system in the absence of any external driving under nonideal conditions, such as the detrimental effects due to the oscillator and spin energy losses in a thermal bath at nonzero temperature. In our work, we show that the procedure to generate the mechanical qubit state is solely based on spin postselection in the weak to moderate coupling regime. Finally, we demonstrate that the mechanical superposition is related to the amplification of the mean values of the mechanical quadratures as they maximize the quantum coherence.
Scanner-based macroscopic color variation estimation
Kuo, Chunghui; Lai, Di; Zeise, Eric
2006-01-01
Flatbed scanners have been adopted successfully in the measurement of microscopic image artifacts, such as granularity and mottle, in print samples because of their capability of providing full color, high resolution images. Accurate macroscopic color measurement relies on the use of colorimeters or spectrophotometers to provide a surrogate for human vision. The very different color response characteristics of flatbed scanners from any standard colorimetric response limits the utility of a flatbed scanner as a macroscopic color measuring device. This metamerism constraint can be significantly relaxed if our objective is mainly to quantify the color variations within a printed page or between pages where a small bias in measured colors can be tolerated as long as the color distributions relative to the individual mean values is similar. Two scenarios when converting color from the device RGB color space to a standardized color space such as CIELab are studied in this paper, blind and semi-blind color transformation, depending on the availability of the black channel information. We will show that both approaches offer satisfactory results in quantifying macroscopic color variation across pages while the semi-blind color transformation further provides fairly accurate color prediction capability.
Review and assessment of thermodynamic and transport properties for the CONTAIN Code
International Nuclear Information System (INIS)
Valdez, G.D.
1988-12-01
A study was carried out to review available data and correlations on the thermodynamic and transport properties of materials applicable to the CONTAIN computer code. CONTAIN is the NRC's best-estimate, mechanistic computer code for modeling containment response to a severe accident. Where appropriate, recommendations have been made for suitable approximations for material properties of interests. Based on a modified Benedict-Webb-Rubin (BWR) equation of state, a procedure is introduced for calculating thermodynamic properties for common gases in the CONTAIN code. These gases are nitrogen, oxygen, hydrogen, carbon dioxide, carbon monoxide, steam, helium, and argon. The thermodynamic equations for density, currently represented in CONTAIN by relatively simple fits, were independently checked and are recommended to be replaced by the Lee-Kesler equation of state which substantially improves accuracy without too much sacrifice in computational efficiency. The accuracy of the calculated values have been found to be generally acceptable. Various correlations and models for single component gas transport properties, viscosity and thermal conductivity, were also assessed with available experimental data. When a suitable correlation or model was not available, transport properties were obtained by performing least-squares fit on experimental data. 50 refs., 126 figs., 3 tabs
International Nuclear Information System (INIS)
Zhang Aixia; Xue Jukui
2012-01-01
We propose a scheme to reveal the interplay between dipole–dipole interaction (DDI), inter-level coupling and macroscopic phase transitions in dipolar condensates. By considering a macroscopic sample of dipolar bosons in triple-well potentials, DDI-induced coupling between the inter-level physics and the macroscopic phase transitions is presented. When the DDI exceeds certain thresholds, the degeneracy of the two lowest energy levels and the excitation of new eigenstates occur, respectively. Interestingly, these thresholds give the boundaries of various quantum phase transitions. That is, the quantum phase transitions are the consequence of the levels' degeneracy and the new eigenstates' excitation. Furthermore, DDI-induced long-range macroscopic Josephson oscillations are observed and long-range coherent quantum transportation is achieved. Our results give clear proof of the interplay between the multi-level physics and quantum phase transitions, and also provide a way for designing the long-range coherent quantum transportation. (paper)
Electron transport properties in InAs four-terminal ballistic junctions under weak magnetic fields
International Nuclear Information System (INIS)
Koyama, M.; Fujiwara, K.; Amano, N.; Maemoto, T.; Sasa, S.; Inoue, M.
2009-01-01
We report on the electron transport properties based on ballistic electrons under magnetic fields in four-terminal ballistic junctions fabricated on an InAs/AlGaSb heterostructure. The four-terminal junction structure is composed of two longitudinal stems with two narrow wires slanted with 30 degree from the perpendicular axis. The electron focusing peak was obtained with the bend resistance measurement. Then it was investigated the nonlinear electron transport property of potential difference between longitudinal stems due to ballistic electrons with applying direct current from narrow wires. Observed nonlinearity showed clear rectification effects which have negative polarity regardless of input voltage polarity. Although this nonlinearity was qualitatively changed due to the Lorentz force under magnetic fields, the degradation of ballistic effects on nonlinear properties were observed when the current increased to higher strength. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Khaleque, M.A.; Bhuiyan, G.M.; Rashid, R.I.M.A.
1998-01-01
Thermodynamic properties such as entropy, specific heat capacity at constant pressure and isothermal compressibility have been calculated for liquid 3d, 4d and 5d transition metals near melting temperature. The hard sphere diameter for all such systems is estimated from the potential profile generated from the Wills and Harrison's prescription using linearized WCA theory of liquid. Evaluated values of entropy and specific heat capacity are found to be in good agreement with the experimental data. Transport property like shear viscosity for these liquid metals is obtained using the same potential profile. Lack of experimental data at melting temperatures hampers detailed comparison for all such systems. However, for the case of transport property, the results obtained are found to compare qualitatively well with the available experimental data. (author)
Effect of Fast Neutron Irradiation on Current Transport Properties of HTS Materials
Ballarino, A; Kruglov, V S; Latushkin, S T; Lubimov, A N; Ryazanov, A I; Shavkin, S V; Taylor, T M; Volkov, P V
2004-01-01
The effect of fast neutron irradiation with energy up to 35 MeV and integrated fluence of up to 5 x 10**15 cm-2 on the current transport properties of HTS materials Bi-2212 and Bi-2223 has been studied, both at liquid nitrogen and at room temperatures. The samples irradiated were selected after verification of the stability of their superconducting properties after temperature cycling in the range of 77 K - 293 K. It has been found that the irradiation by fast neutrons up to the above dose does not produce a significant degradation of critical current. The effect of room temperature annealing on the recovery of transport properties of the irradiated samples is also reported, as is a preliminary microstructure investigation of the effect of irradiation on the soldered contacts.
Energy Technology Data Exchange (ETDEWEB)
Barzola-Quiquia, J; Dusari, S; Bridoux, G; Bern, F; Molle, A; Esquinazi, P, E-mail: j.barzola@physik.uni-leipzig.de, E-mail: esquin@physik.uni-leipzig.de [Division of Superconductivity and Magnetism, Universitaet Leipzig, Linnestrasse 5, D-04103 Leipzig (Germany)
2010-04-09
We studied the influence of 30 keV Ga{sup +}-ions-commonly used in focused-ion-beam (FIB) devices-on the transport properties of thin crystalline graphite flakes, and La{sub 0.7}Ca{sub 0.3}MnO{sub 3} and Co thin films. The changes in electrical resistance were measured in situ during irradiation and also the temperature and magnetic field dependence before and after irradiation. Our results show that the transport properties of these materials strongly change at Ga{sup +} fluences much below those used for patterning and ion-beam-induced deposition (IBID), seriously limiting the use of FIB when the intrinsic properties of the materials of interest are of importance. We present a method that can be used to protect the sample as well as to produce selectively irradiation-induced changes.
Pathways toward understanding Macroscopic Quantum Phenomena
International Nuclear Information System (INIS)
Hu, B L; Subaşi, Y
2013-01-01
Macroscopic quantum phenomena refer to quantum features in objects of 'large' sizes, systems with many components or degrees of freedom, organized in some ways where they can be identified as macroscopic objects. This emerging field is ushered in by several categories of definitive experiments in superconductivity, electromechanical systems, Bose-Einstein condensates and others. Yet this new field which is rich in open issues at the foundation of quantum and statistical physics remains little explored theoretically (with the important exception of the work of A J Leggett [1], while touched upon or implied by several groups of authors represented in this conference. Our attitude differs in that we believe in the full validity of quantum mechanics stretching from the testable micro to meso scales, with no need for the introduction of new laws of physics.) This talk summarizes our thoughts in attempting a systematic investigation into some key foundational issues of quantum macroscopic phenomena, with the goal of ultimately revealing or building a viable theoretical framework. Three major themes discussed in three intended essays are the large N expansion [2], the correlation hierarchy [3] and quantum entanglement [4]. We give a sketch of the first two themes and then discuss several key issues in the consideration of macro and quantum, namely, a) recognition that there exist many levels of structure in a composite body and only by judicious choice of an appropriate set of collective variables can one give the best description of the dynamics of a specific level of structure. Capturing the quantum features of a macroscopic object is greatly facilitated by the existence and functioning of these collective variables; b) quantum entanglement, an exclusively quantum feature [5], is known to persist to high temperatures [6] and large scales [7] under certain conditions, and may actually decrease with increased connectivity in a quantum network [8]. We use entanglement as a
Energy Technology Data Exchange (ETDEWEB)
Sappia, Luciano D.; Trujillo, Matias R. [Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, T4000ILI San Miguel de Tucumán (Argentina); Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán (Argentina); Lorite, Israel [Division of Superconductivity and Magnetism, Institute for Experimental Physics II, University of Leipzig, Linnéstrasse 5, 04103 Leipzig (Germany); Madrid, Rossana E., E-mail: rmadrid@herrera.unt.edu.ar [Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET, Chacabuco 461, T4000ILI San Miguel de Tucumán (Argentina); Laboratorio de Medios e Interfases (LAMEIN), Departamento de Bioingeniería, Fac. de Cs. Exactas y Tecnología, Universidad Nacional de Tucumán, Av. Independencia 1800, 4000 San Miguel de Tucumán (Argentina); Tirado, Monica [NanoProject and Laboratorio de Nanomateriales y Propiedades Dieléctricas, Departamento de Física, Universidad Nacional de Tucumán, Avenida Independencia 1800, Tucumán (Argentina); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) (Argentina); and others
2015-10-15
Graphical abstract: - Highlights: • We study electrical transport in nanostructured ZnO films by impedance spectroscopy. • Bioaggregates on the surface produce strong changes in film transport properties. • This behavior is explained by modeling data with RC parallel circuits. • Electrical responses of ZnO films to aggregates are promising for biosensing. - Abstract: Nanomaterials based on ZnO have been used to build glucose sensors due to its high isoelectric point, which is important when a protein like Glucose Oxidase (GOx) is attached to a surface. It also creates a biologically friendly environment to preserve the activity of the enzyme. In this work we study the electrical transport properties of ZnO thin films (TFs) and single crystals (SC) in contact with different solutions by using impedance spectroscopy. We have found that the composition of the liquid, by means of the charge of the ions, produces strong changes in the transport properties of the TF. The enzyme GOx and phosphate buffer solutions have the major effect in the conduction through the films, which can be explained by the entrapment of carriers at the grain boundaries of the TFs. These results can help to design a new concept in glucose biosensing.
2013-02-08
..., L.L.C.--Acquisition of Property--Golden Ring Travel & Transportation, Inc. AGENCY: Surface... authority under 49 U.S.C. 14303 to acquire the property of Golden Ring Travel & Transportation, Inc. (Golden... approximately 400 motor coaches and more than 500 drivers. Academy is indirectly controlled by the Tedesco...
Smolina, Irina Yu.
2015-10-01
Mechanical properties of a cable are of great importance in design and strength calculation of flexible cables. The problem of determination of elastic properties and rigidity characteristics of a cable modeled by anisotropic helical elastic rod is considered. These characteristics are calculated indirectly by means of the parameters received from statistical processing of experimental data. These parameters are considered as random quantities. With taking into account probable nature of these parameters the formulas for estimation of the macroscopic elastic moduli of a cable are obtained. The calculating expressions for macroscopic flexural rigidity, shear rigidity and torsion rigidity using the macroscopic elastic characteristics obtained before are presented. Statistical estimations of the rigidity characteristics of some cable grades are adduced. A comparison with those characteristics received on the basis of deterministic approach is given.
International Nuclear Information System (INIS)
Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray
2012-01-01
Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: ► Transport of a quantum Brownian particle in a periodic potential has been addressed. ► Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. ► A coordinate transformation is used to recast QSE with constant diffusion. ► Transport properties increases in comparison to the corresponding classical result. ► This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.
Saeed, Yasir
2014-05-11
Thermoelectric materials can convert waste heat into electric power and thus provide a way to reduce the dependence on fossil fuels. Our aim is to model the underlying materials properties and, in particular, the transport as controlled by electrons and lattice vibrations. The goal is to develop an understanding of the thermoelectric properties of selected materials at a fundamental level. The structural, electronic, optical, and phononic properties are studied in order to tune the transport, focusing on KxRhO2, NaxRhO2, PtSb2 and Bi2Se3. The investigations are based on density functional theory as implemented in the all electron linearized augmented plane wave plus local orbitals WIEN2k and pseudo potential Quantum-ESPRESSO codes. The thermoelectric properties are derived from Boltzmann transport theory under the constant relaxation time approximation, using the BoltzTraP code. We will discuss first the changes in the electronic band structure under variation of the cation concentration in layered KxRhO2 in the 2H phase and NaxRhO2 in the 3R phase. We will also study the hydrated phase. The deformations of the RhO6 octahedra turn out to govern the thermoelectric properties, where the high Seebeck coefficient results from ”pudding mold" bands. We investigate the thermoelectric properties of electron and hole doped PtSb2, which is not a layered material but shares “pudding mold" bands. PtSb2 has a high Seebeck coefficient at room temperature, which increases significantly under As alloying by bandgap opening and reduction of the lattice thermal conductivity. Bi2Se3 (bulk and thin film) has a larger bandgap then the well-known thermoelectric material Bi2Te3, which is important at high temperature. The structural stability, electronic structure, and transport properties of one to six quintuple layers of Bi2Se3 will be discussed. We also address the effect of strain on a single quintuple layer by phonon band structures. We will analyze the electronic and transport
Polynomial parameterized representation of macroscopic cross section for PWR reactor
International Nuclear Information System (INIS)
Fiel, Joao Claudio B.
2015-01-01
The purpose of this work is to describe, by means of Tchebychev polynomial, a parameterized representation of the homogenized macroscopic cross section for PWR fuel element as a function of soluble boron concentration, moderator temperature, fuel temperature, moderator density and 235 U 92 enrichment. Analyzed cross sections are: fission, scattering, total, transport, absorption and capture. This parameterization enables a quick and easy determination of the problem-dependent cross-sections to be used in few groups calculations. The methodology presented here will enable to provide cross-sections values to perform PWR core calculations without the need to generate them based on computer code calculations using standard steps. The results obtained by parameterized cross-sections functions, when compared with the cross-section generated by SCALE code calculations, or when compared with K inf , generated by MCNPX code calculations, show a difference of less than 0.7 percent. (author)
Experimental demonstration of macroscopic quantum coherence in Gaussian states
DEFF Research Database (Denmark)
Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.
2007-01-01
We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...
Charge transport properties of a twisted DNA molecule: A renormalization approach
Energy Technology Data Exchange (ETDEWEB)
Almeida, M.L. de; Ourique, G.S.; Fulco, U.L. [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Albuquerque, E.L., E-mail: eudenilson@gmail.com [Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal-RN (Brazil); Moura, F.A.B.F. de; Lyra, M.L. [Instituto de Física, Universidade Federal de Alagoas, 57072-900 Maceió-AL (Brazil)
2016-10-20
In this work we study the charge transport properties of a nanodevice consisting of a finite segment of the DNA molecule sandwiched between two metallic electrodes. Our model takes into account a nearest-neighbor tight-binding Hamiltonian considering the nucleobases twist motion, whose solutions make use of a two-steps renormalization process to simplify the algebra, which can be otherwise quite involved. The resulting variations of the charge transport efficiency are analyzed by numerically computing the main features of the electron transmittance spectra as well as their I × V characteristic curves.
International Nuclear Information System (INIS)
Liu, Chunyu; Chang, Kaiwen; Guo, Wenbin; Li, Hao; Shen, Liang; Chen, Weiyou; Yan, Dawei
2014-01-01
Carbon quantum dots (Cdots) are synthesized by a simple method and introduced into active layer of polymer solar cells (PSCs). The performance of doped devices was apparently improved, and the highest power conversion efficiency of 7.05% was obtained, corresponding to a 28.2% enhancement compared with that of the contrast device. The charge transport properties, resistance, impedance, and transient absorption spectrum are systematically investigated to explore how the Cdots affect on PSCs performance. This study reveals the importance of Cdots in enhancing the efficiency of PSCs and gives insight into the mechanism of charge transport improvement.
Poly(o-aminophenol) film electrodes synthesis, transport properties and practical applications
Tucceri, Ricardo
2014-01-01
This review book is concerned with the synthesis, charge transport properties and practical applications of poly (o-aminophenol) (POAP) film electrodes. It is divided into three parts. The first one has a particular emphasis on problems of synthesis and structure of POAP. The second part deals with the mechanism of charge transfer and charge transport processes occurring in the course of the redox reactions of POAP. The third part describes the promising applications of POAP in the different fields of sensors, electrocatalysis, bioelectrochemistry, corrosion protection, among others. This review covers the literature on POAP in the time period comprised between 1987 and 2013.
Defect chemistry of ''BaCuO2''. Pt. 2. Transport properties and nature of defects
International Nuclear Information System (INIS)
Chiodelli, G.; Consiglio Nazionale delle Ricerche, Pavia; Anselmi-Tamburini, U.; Consiglio Nazionale delle Ricerche, Pavia; Arimondi, M.; Consiglio Nazionale delle Ricerche, Pavia; Spinolo, G.; Consiglio Nazionale delle Ricerche, Pavia; Flor, G.; Consiglio Nazionale delle Ricerche, Pavia
1995-01-01
The charge transport properties of ''BaCuO 2 '' with 88:90 (Ba:Cu) cation ratio were characterized by thermopower, electrical conductivity and ionic transport number measurements in a wide range of temperature and oxygen partial pressure conditions. The nature of carriers is always represented by small polarons due to self-trapping of the electronic holes generated by the oxygen non-stoichiometry equilibrium. Some anomalies in carrier mobility as a function of temperature are shown not to be related to incomplete ionization of oxygen atoms on interstitial sites (orig.)
International Nuclear Information System (INIS)
Sanchez Valdes, C.F.; Perez-Penichet, C.; Noda, C.; Arronte, M.; Batista-Leyva, A.J.; Haugen, O.; Johansen, T.H.; Han, Z.; Altshuler, E.
2007-01-01
The determination of inter- and intra-filament characteristics in superconducting composites such as BSCCO-Ag tapes is of great importance for material evaluation towards applications. Most attempts to separate the two contributions have relied on indirect methods based on magnetic measurements such as SQUID or magneto-optic imaging techniques. Here we show that laser patterning of superconducting BSCCO-Ag tapes constitutes a simple approach to measure local transport properties in a direct way, even able to separate inter- and intra-filament contributions to the overall transport behavior of the sample
High-pressure transport properties of CrB{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Regnat, Alexander; Becker, Julian; Spallek, Jan; Bauer, Andreas; Chacon, Alfonso; Ritz, Robert; Pfleiderer, Christian [Physik-Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Blum, Christian; Wurmehl, Sabine [Leibniz Institute for Solid State and Materials Research IFW, D-01171 Dresden (Germany)
2015-07-01
High quality single crystals of the itinerant antiferromagnet CrB{sub 2}, T{sub N} = 88 K, were grown by means of optical float zoning. Bulk, transport and de Haas-van Alphen measurements were carried out. Here, we present a comprehensive study of the high-pressure transport properties. Samples were investigated under hydrostatic, uniaxial and quasi-hydrostatic conditions. As a result we are able to attribute contradictory reports for the pressure dependence of T{sub N} to uniaxial strain. Perhaps most interestingly, we find a pronounced low temperature resistivity anomaly around 3 GPa in the quasi-hydrostatic case.
Two-temperature thermodynamic and transport properties of SF6–Cu plasmas
International Nuclear Information System (INIS)
Wu, Yi; Chen, Zhexin; Yang, Fei; Rong, Mingzhe; Sun, Hao; Cressault, Yann; Murphy, Anthony B; Guo, Anxiang; Liu, Zirui
2015-01-01
SF 6 and Cu are widely adopted in electrical equipment as a dielectric medium and for conductive components, respectively. SF 6 –Cu plasmas are frequently formed, particularly in high-voltage circuit breaker arcs and fault current arcs, due to erosion of the Cu components. In this paper, calculated values of the thermodynamic and transport properties of plasmas in SF 6 –Cu mixtures are presented for both thermal equilibrium and non-equilibrium conditions. The composition is determined by the two-temperature Saha equation and Guldberg–Waage equation in the form derived by van de Sanden. The composition and the thermodynamic properties are evaluated through a classical statistical mechanics approach. For the transport coefficients, the simplified Chapman–Enskog method developed by Devoto, which decouples the electrons and heavy species, has been applied using the most recent collision integrals. The thermodynamic and transport properties are calculated for different electron temperatures (300–40 000 K), ratios of electron to heavy-species temperature (1–10), pressures (0.1–10 atm) and copper molar proportions (0–50%). It is found that deviations from thermal equilibrium strongly affect the thermodynamic and transport properties of the SF 6 –Cu plasmas. Further, the presence of copper has different effects on some of the properties for plasmas in and out of thermal equilibrium. The main reason for these changes is that dissociation reactions are delayed for non-thermal equilibrium plasmas, which in turn influences the ionization reactions that occur. (paper)
International Nuclear Information System (INIS)
Bock, Claudia; Weingart, Sonja; Karaissaridis, Epaminondas; Kunze, Ulrich; Speck, Florian; Seyller, Thomas
2012-01-01
In this paper we investigate the influence of material and device properties on the ballistic transport in epitaxial monolayer graphene and epitaxial quasi-free-standing monolayer graphene. Our studies comprise (a) magneto-transport in two-dimensional (2D) Hall bars, (b) temperature- and magnetic-field-dependent bend resistance of unaligned and step-edge-aligned orthogonal cross junctions, and (c) the influence of the lead width of the cross junctions on ballistic transport. We found that ballistic transport is highly sensitive to scattering at the step edges of the silicon carbide substrate. A suppression of the ballistic transport is observed if the lead width of the cross junction is reduced from 50 nm to 30 nm. In a 50 nm wide device prepared on quasi-free-standing graphene we observe a gradual transition from the ballistic into the diffusive transport regime if the temperature is increased from 4.2 to about 50 K, although 2D Hall bars show a temperature-independent mobility. Thus, in 1D devices additional temperature-dependent scattering mechanisms play a pivotal role. (paper)
Macroscopic superposition states and decoherence by quantum telegraph noise
Energy Technology Data Exchange (ETDEWEB)
Abel, Benjamin Simon
2008-12-19
In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)
Macroscopic superposition states and decoherence by quantum telegraph noise
International Nuclear Information System (INIS)
Abel, Benjamin Simon
2008-01-01
In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)
Catalytic Growth of Macroscopic Carbon Nanofibers Bodies with Activated Carbon
Abdullah, N.; Rinaldi, A.; Muhammad, I. S.; Hamid, S. B. Abd.; Su, D. S.; Schlogl, R.
2009-06-01
Carbon-carbon composite of activated carbon and carbon nanofibers have been synthesized by growing Carbon nanofiber (CNF) on Palm shell-based Activated carbon (AC) with Ni catalyst. The composites are in an agglomerated shape due to the entanglement of the defective CNF between the AC particles forming a macroscopic body. The macroscopic size will allow the composite to be used as a stabile catalyst support and liquid adsorbent. The preparation of CNT/AC nanocarbon was initiated by pre-treating the activated carbon with nitric acid, followed by impregnation of 1 wt% loading of nickel (II) nitrate solutions in acetone. The catalyst precursor was calcined and reduced at 300° C for an hour in each step. The catalytic growth of nanocarbon in C2H4/H2 was carried out at temperature of 550° C for 2 hrs with different rotating angle in the fluidization system. SEM and N2 isotherms show the level of agglomeration which is a function of growth density and fluidization of the system. The effect of fluidization by rotating the reactor during growth with different speed give a significant impact on the agglomeration of the final CNF/AC composite and thus the amount of CNFs produced. The macrostructure body produced in this work of CNF/AC composite will have advantages in the adsorbent and catalyst support application, due to the mechanical and chemical properties of the material.
Mccarty, R. D.
1980-01-01
The thermodynamic and transport properties of selected cryogens had programmed into a series of computer routines. Input variables are any two of P, rho or T in the single phase regions and either P or T for the saturated liquid or vapor state. The output is pressure, density, temperature, entropy, enthalpy for all of the fluids and in most cases specific heat capacity and speed of sound. Viscosity and thermal conductivity are also given for most of the fluids. The programs are designed for access by remote terminal; however, they have been written in a modular form to allow the user to select either specific fluids or specific properties for particular needs. The program includes properties for hydrogen, helium, neon, nitrogen, oxygen, argon, and methane. The programs include properties for gaseous and liquid states usually from the triple point to some upper limit of pressure and temperature which varies from fluid to fluid.
Directory of Open Access Journals (Sweden)
Jerome A. Ramirez
2015-07-01
Full Text Available Hydrothermal liquefaction (HTL presents a viable route for converting a vast range of materials into liquid fuel, without the need for pre-drying. Currently, HTL studies produce bio-crude with properties that fall short of diesel or biodiesel standards. Upgrading bio-crude improves the physical and chemical properties to produce a fuel corresponding to diesel or biodiesel. Properties such as viscosity, density, heating value, oxygen, nitrogen and sulphur content, and chemical composition can be modified towards meeting fuel standards using strategies such as solvent extraction, distillation, hydrodeoxygenation and catalytic cracking. This article presents a review of the upgrading technologies available, and how they might be used to make HTL bio-crude into a transportation fuel that meets current fuel property standards.
Dermol-Cerne, Janja; Miklavcic, Damijan
2018-02-01
Current models of tissue electroporation either describe tissue with its bulk properties or include cell level properties, but model only a few cells of simple shapes in low-volume fractions or are in two dimensions. We constructed a three-dimensional model of realistically shaped cells in realistic volume fractions. By using a 'unit cell' model, the equivalent dielectric properties of whole tissue could be calculated. We calculated the dielectric properties of electroporated skin. We modeled electroporation of single cells by pore formation on keratinocytes and on the papillary dermis which gave dielectric properties of the electroporated epidermis and papillary dermis. During skin electroporation, local transport regions are formed in the stratum corneum. We modeled local transport regions and increase in their radii or density which affected the dielectric properties of the stratum corneum. The final model of skin electroporation accurately describes measured electric current and voltage drop on the skin during electroporation with long low-voltage pulses. The model also accurately describes voltage drop on the skin during electroporation with short high-voltage pulses. However, our results indicate that during application of short high-voltage pulses additional processes may occur which increase the electric current. Our model connects the processes occurring at the level of cell membranes (pore formation), at the level of a skin layer (formation of local transport region in the stratum corneum) with the tissue (skin layers) and even level of organs (skin). Using a similar approach, electroporation of any tissue can be modeled, if the morphology of the tissue is known.
The macroscopic harmonic oscillator and quantum measurements
International Nuclear Information System (INIS)
Hayward, R.W.
1982-01-01
A quantum mechanical description of a one-dimensional macroscopic harmonic oscillator interacting with its environment is given. Quasi-coherent states are introduced to serve as convenient basis states for application of a density matrix formalism to characterize the system. Attention is given to the pertinent quantum limits to the precision of measurement of physical observables that may provide some information on the nature of a weak classical force interacting with the oscillator. A number of ''quantum nondemolition'' schemes proposed by various authors are discussed. (Auth.)
Macroscopic quantum tunneling of the magnetic moment
Tejada, J.; Hernandez, J. M.; del Barco, E.
1999-05-01
In this paper we review the work done on magnetic relaxation during the last 10 years on both single-domain particles and magnetic molecules and its contribution to the discovery of quantum tunneling of the magnetic moment (Chudnovsky and Tejada, Macroscopic Quantum tunneling of the Magnetic moment, Cambridge University press, Cambridge, 1998). We present first the theoretical expressions and their connection to quantum relaxation and secondly, we show and discuss the experimental results. Finally, we discuss very recent hysteresis data on Mn 12Ac molecules at extremely large sweeping rate for the external magnetic field which suggest the existence of quantum spin—phonon avalanches.
Compressor Has No Moving Macroscopic Parts
Gasser, Max
1995-01-01
Compressor containing no moving macroscopic parts functions by alternating piston and valve actions of successive beds of magnetic particles. Fabricated easily because no need for precisely fitting parts rotating or sliding on each other. Also no need for lubricant fluid contaminating fluid to be compressed. Compressor operates continuously, eliminating troublesome on/off cycling of other compressors, and decreasing consumption of energy. Phased cells push fluid from bottom to top, adding increments of pressure. Each cell contains magnetic powder particles loose when electromagnet coil deenergized, but tightly packed when coil energized.
Transport Properties of the Nuclear Pasta Phase with Quantum Molecular Dynamics
Nandi, Rana; Schramm, Stefan
2018-01-01
We study the transport properties of nuclear pasta for a wide range of density, temperature, and proton fractions, relevant for different astrophysical scenarios adopting a quantum molecular dynamics model. In particular, we estimate the values of shear viscosity as well as electrical and thermal conductivities by calculating the static structure factor S(q) using simulation data. In the density and temperature range where the pasta phase appears, the static structure factor shows irregular behavior. The presence of a slab phase greatly enhances the peak in S(q). However, the effect of irregularities in S(q) on the transport coefficients is not very dramatic. The values of all three transport coefficients are found to have the same orders of magnitude as found in theoretical calculations for the inner crust matter of neutron stars without the pasta phase; therefore, the values are in contrast to earlier speculations that a pasta layer might be highly resistive, both thermally and electrically.
Energy Technology Data Exchange (ETDEWEB)
Zhao, Jun [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Zeng, Hui, E-mail: zenghui@yangtzeu.edu.cn [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China); Wei, Jianwei [College of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Li, Biao; Xu, Dahai [College of Physical Science and Technology, Yangtze University, Jingzhou, Hubei 434023 (China)
2014-01-17
Using the first principles calculations associated with nonequilibrium Green's function, we have studied the electronic structures and quantum transport properties of defective armchair graphene nanoribbon (AGNR) in the presence of divacancy defects. The triple pentagon–triple heptagon (555–777) defect in the defective AGNR is energetically more favorable than the pentagon–octagon–pentagon (5–8–5) defect. Our calculated results reveal that both 5–8–5-like defect and 555–777-like defect in AGNR could improve the electron transport. It is anticipated that defective AGNRs can exhibit large range variations in transport behaviors, which are strongly dependent on the distributions of the divacancy defect.
Transport, Structural and Mechanical Properties of Quaternary FeVTiAl Alloy
Bhat, Tahir Mohiuddin; Gupta, Dinesh C.
2016-11-01
The electronic, structural, magnetic and transport properties of FeVTiAl quaternary alloy have been investigated within the framework of density functional theory. The material is a completely spin-polarized half-metallic ferromagnet in its ground state with F-43m structure. The structural stability was further confirmed by elastic constants in the cubic phase with high Young's modulus and brittle nature. The present study predicts an energy band gap of 0.72 eV in a localized minority spin channel at equilibrium lattice parameter of 6.00 Å. The transport properties of the material are discussed based on the Seebeck coefficient, and electrical and thermal conductivity coefficients. The alloy presents large values of Seebeck coefficients, ~39 μV K-1 at room temperature (300 K), and has an excellent thermoelectric performance with ZT = ~0.8.
On the statistical and transport properties of a non-dissipative Fermi-Ulam model
Livorati, André L. P.; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.
2015-10-01
The transport and diffusion properties for the velocity of a Fermi-Ulam model were characterized using the decay rate of the survival probability. The system consists of an ensemble of non-interacting particles confined to move along and experience elastic collisions with two infinitely heavy walls. One is fixed, working as a returning mechanism of the colliding particles, while the other one moves periodically in time. The diffusion equation is solved, and the diffusion coefficient is numerically estimated by means of the averaged square velocity. Our results show remarkably good agreement of the theory and simulation for the chaotic sea below the first elliptic island in the phase space. From the decay rates of the survival probability, we obtained transport properties that can be extended to other nonlinear mappings, as well to billiard problems.
Theoretical study of electronic transport properties of a graphene-silicene bilayer
Energy Technology Data Exchange (ETDEWEB)
Berdiyorov, G. R. [Qatar Environment and Energy Research Institute, Qatar Foundation, P.O. Box 5825, Doha (Qatar); Bahlouli, H. [Department of Physics, King Fahd University of Petroleum and Minerals, 31261 Dhahran (Saudi Arabia); Saudi Center for Theoretical Physics, 31261 Dhahran (Saudi Arabia); Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)
2015-06-14
Electronic transport properties of a graphene-silicene bilayer system are studied using density-functional theory in combination with the nonequilibrium Green's function formalism. Depending on the energy of the electrons, the transmission can be larger in this system as compared to the sum of the transmissions of separated graphene and silicene monolayers. This effect is related to the increased electron density of states in the bilayer sample. At some energies, the electronic states become localized in one of the layers, resulting in the suppression of the electron transmission. The effect of an applied voltage on the transmission becomes more pronounced in the layered sample as compared to graphene due to the larger variation of the electrostatic potential profile. Our findings will be useful when creating hybrid nanoscale devices where enhanced transport properties will be desirable.
Thermal transport properties of niobium and some niobium-based alloys from 80 to 1600 K
Energy Technology Data Exchange (ETDEWEB)
Moore, J P; Graves, R S; Williams, R K [Oak Ridge National Lab., TN (USA)
1980-01-01
The electric resistivity, rho, and Seebeck coefficient, S, of 99.8 at% niobium, and Nb-4.8 at% W, Nb-5 at% Mo, Nb-10 at% Mo, and Nb-2.4 at% Mo-2.4 at% Zr alloys were measured from 80 to 1600 K, and the thermal conductivity, lambda, of the niobium and the Nb-5 at% W alloy was measured from 80 to 1300 K. A technique is described for measuring rho and S of a specimen during radial-heat-flow measurements of lambda. The transport property results, which had uncertainties of +-0.4% for rho and +-1.4% for lambda, showed the influence of tungsten and molybdenum solutes on the transport properties of niobium and were used to obtain the electronic Lorenz function of pure niobium, which was found to approach the Sommerfeld value at high temperatures.
Thermal transport properties of niobium and some niobium base alloys from 80 to 16000K
International Nuclear Information System (INIS)
Moore, J.P.; Graves, R.S.; Williams, R.K.
1980-01-01
The electrical resistivities and absolute Seebeck coefficients of 99.8 at. % niobium with a RRR of 36, Nb-4.8 at. % W, Nb-5 at. % Mo, Nb-10 at. % Mo, and Nb-2.4 at. % Mo-2.4 at. % Zr were measured from 80 to 1600 0 K, and the thermal conductivities of the niobium and Nb-5 at. % W were measured from 80 to 1300 0 K. A technique is described for measuring the electrical resistivity and Seebeck coefficient of a specimen during radial heat flow measurements of the thermal conductivity. The transport property results, which had uncertainties of +-0.4%for electrical resistivity and +-1.4% for thermal conductivity, showed the influence of tungsten and molybdenum solutes on the transport properties of niobium and were used to obtain the electronic Lorenz function of pure niobium, which was found to approach the Sommerfeld value at high temperatures
Effect of surface roughness scattering on the transport properties of a 2DEG
International Nuclear Information System (INIS)
Yarar, Z.
2004-01-01
In this work surface roughness scattering of electrons in a two dimensional electron gas (2DEG) formed at heterojunction interfaces is investigated for various auto-correlation functions. Gaussian, exponential and Lorentzian auto-correlation functions are used to represent surface roughness. Poisson and Schrodinger equations are solved self consistently at the hetero interface to find the energy levels, the wave functions corresponding to each level and electron concentrations at each level. Using these wave functions and the auto-correlation functions mentioned above, the scattering rates due to surface roughness are calculated. Scattering rates resulting from acoustic and optical phonons are also calculated. These rates are used to study the transport properties of the two dimensional electrons using ensemble Monte Carlo method at various temperatures. Emphasis is given to the effect of surface roughness scattering on the transport properties of the electrons
Sarath Kumar, S. R.
2012-02-01
The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.
Edge modulation of electronics and transport properties of cliff-edge phosphorene nanoribbons
Guo, Caixia; Wang, Tianxing; Xia, Congxin; Liu, Yufang
2017-12-01
Based on the first-principles calculations, we study the electronic structures and transport properties of cliff-like edge phosphorene nanoribbons (CPNRs), considering different types of edge passivation. The band structures of bare CPNRs possess the metallic features; while hydrogen (H), fluorine (F), chlorine (Cl) and oxygen (O) atoms-passivated CPNRs are semiconductor materials, and the band gap values monotonically decrease when the ribbon width increases. Moreover, the H and F-passivated CPNRs exhibit the direct band gap characteristics, while the Cl and O-passivated cases show the features of indirect band gap. In addition, the edge passivated CPNRs are more energetically stable than bare edge case. Meanwhile, our results also show that the transport properties of the CPNRs can be obviously influenced by the different edge passivation.
International Nuclear Information System (INIS)
Wang, C.Y.; Hauguth, S.; Polyakov, V.; Schwierz, F.; Cimalla, V.; Kups, T.; Himmerlich, M.; Schaefer, J.A.; Krischok, S.; Ambacher, O.; Morales, F.M.; Lozano, J.G.; Gonzalez, D.; Lebedev, V.
2008-01-01
The structural, chemical and electron transport properties of In 2 O 3 /InN heterostructures and oxidized InN epilayers are reported. It is shown that the accumulation of electrons at the InN surface can be manipulated by the formation of a thin surface oxide layer. The epitaxial In 2 O 3 /InN heterojunctions show an increase in the electron concentration due to the increasing band banding at the heterointerface. The oxidation of InN results in improved transport properties and in a reduction of the sheet carrier concentration of the InN epilayer very likely caused by a passivation of surface donors. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
International Nuclear Information System (INIS)
Chen, Shu-Fang; Wei, Hao Han; Liu, Chuan-Pu; Hsu, C Y; Huang, J C A
2010-01-01
The magnetic and magneto-transport properties of Ni nanowire (NW) arrays, fabricated by electrodeposition in anodic-aluminum-oxide (AAO) templates, have been investigated. The AAO pores have diameters ranging from 35 to 75 nm, and the crystallinity of the Ni NW arrays could change from poly-crystalline to single-crystalline with the [111] and [110] orientations based on the electrodeposition potential. Notably, double switching magnetization loops and double-peaked magnetoresistance curves were observed in [110]-oriented NWs. The crystalline orientation of the Ni NW arrays is found to influence the corresponding magnetic and magneto-transport properties significantly. These magnetic behaviors are dominated by the competition between the magneto-crystalline and shape anisotropy.
Directory of Open Access Journals (Sweden)
Sophia Haussener
2012-01-01
Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.
Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, Mohamed N.; Alshareef, Husam N.
2012-01-01
The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.
A numerical model of non-equilibrium thermal plasmas. I. Transport properties
Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong
2013-03-01
A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.
A numerical model of non-equilibrium thermal plasmas. I. Transport properties
Energy Technology Data Exchange (ETDEWEB)
Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)
2013-03-15
A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.
Transport properties and Raman spectra of impurity substituted MgB2
International Nuclear Information System (INIS)
Masui, T.
2007-01-01
Recent advances in the study of MgB 2 are reviewed, with focus on the transport properties and Raman scattering measurements for impurity substituted crystals. Carbon and Aluminium substitution change band filling, introduce intraband and interband scattering. These effects are seen in the temperature dependence of resistivity, Hall coefficients, and phonon peak of Raman spectra. Manganese substitution introduces magnetic scattering, that increases resistivity but gives little change in Raman spectra. The effect of disorder in neutron irradiated samples is also discussed
Energy Technology Data Exchange (ETDEWEB)
Rozhkov, A.V., E-mail: arozhkov@gmail.co [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412, Moscow (Russian Federation); Giavaras, G. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Bliokh, Yury P. [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Technion-Israel Institute of Technology, Haifa 32000 (Israel); Freilikher, Valentin [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, Bar-Ilan University, Ramat-Gan 52900 (Israel); Nori, Franco [Advanced Science Institute, RIKEN, Wako-shi, Saitama, 351-0198 (Japan); Department of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)
2011-06-15
This brief review discusses electronic properties of mesoscopic graphene-based structures. These allow controlling the confinement and transport of charge and spin; thus, they are of interest not only for fundamental research, but also for applications. The graphene-related topics covered here are: edges, nanoribbons, quantum dots, pn-junctions, pnp-structures, and quantum barriers and waveguides. This review is partly intended as a short introduction to graphene mesoscopics.
Study of structural and electronic transport properties of Ce-doped ...
Indian Academy of Sciences (India)
Abstract. The structural and electronic transport properties of La1−x Cex MnO3 (x =0.0–1.0) have been studied. All the samples exhibit orthorhombic crystal symmetry and the unit cell volume de- creases with Ce doping. They also make a metal–insulator transition (MIT) and transition temper- ature increases with increase in ...
中村 博文; 西 正孝
2003-01-01
Re-evaluation of tritium permeation through vertical target of divertor under the ITER operation condition was carried out using tritium transport properties in the candidate materials such as the diffusion coefficient and the trapping factors in tungsten for armor, and the surface recombination coefficient on copper for the heat sink obtained by authors' recent investigation (authors' data), which simulated the plasma-facing conditions of ITER. Evaluation with the data set of previous evalua...
Transport properties of a piecewise linear transformation and deterministic Levy flights
International Nuclear Information System (INIS)
Miyaguchi, Tomoshige
2006-01-01
The transport properties of a 1-dimensional piecewise linear dynamical system are investigated through the spectrum of its Frobenius-Perron operator. For a class of initial densities, eigenvalues and eigenfunctions of the Frobenius-Perron operator are obtained explicitly. It is also found that in the long length wave limit, this system exhibits normal diffusion and super diffusion called Levy flight. The diffusion constant and stable index are derived from the eigenvalues. (author)
Spatial and temporal variations of the callus mechanical properties during bone transport
Energy Technology Data Exchange (ETDEWEB)
Mora-Macias, J.; Reina-Romo, E.; Pajares, A.; Miranda, P.; Dominguez, J.
2016-07-01
Nanoindentation allows obtaining the elastic modulus and the hardness of materials point by point. This technique has been used to assess the mechanical propeties of the callus during fracture healing. However, as fas as the authors know, the evaluation of mechanical properties by this technique of the distraction and the docking-site calluses generated during bone transport have not been reported yet. Therefore, the aim of this work is using nanoindentation to assess the spatial and temporal variation of the elastic modulus of the woven bone generated during bone transport. Nanoindentation measurements were carried out using 6 samples from sheep sacrificed at different stages of the bone transport experiments. The results obtained show an important heterogeneity of the elastic modulus of the woven bone without spatial trends. In the case of temporal variation, a clear increase of the mean elastic modulus with time after surgery was observed (from 7±2GPa 35 days after surgery to 14±2GPa 525 days after surgery in the distraction callus and a similar increase in the docking site callus). Comparison with the evolution of the elastic modulus in the woven bone generated during fracture healing shows that mechanical properties increase slower in the case of the woven bone generated during bone transport. (Author)
State-specific transport properties of electronically excited Ar and C
Istomin, V. A.; Kustova, E. V.
2018-05-01
In the present study, a theoretical model of state-resolved transport properties in electronically excited atomic species developed earlier is applied to argon and carbon atomic species. It is shown that for Ar and C, similarly to the case of atomic nitrogen and oxygen, the Slater-like models can be applied to calculate diameters of electronically excited atoms. Using the Slater-like model it is shown that for half-filled N (2 px1py1pz1) and full-filled Ar (3 px2py2pz2) electronic shells the growth of atomic radius goes slowly compared to C (2 px1py1) and O (2 px2py1pz1). The effect of collision diameters on the transport properties of Ar and C is evaluated. The influence of accounted number of electronic levels on the transport coefficients is examined for the case of Boltzmann distributions over electronic energy levels. It is emphasized that in the temperature range 1000-14000 K, for Boltzmann-like distributions over electronic states the number of accounted electronic levels do not influence the transport coefficients. Contrary to this, for higher temperatures T > 14000 K this effect becomes of importance, especially for argon.
Spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons
International Nuclear Information System (INIS)
Zhang, Z L; Chen, Y P; Xie, Y E; Zhang, M; Zhong, J X
2011-01-01
The spin-polarized transport properties of Fe atomic chain adsorbed on zigzag graphene nanoribbons (ZGNRs) are investigated using the density-functional theory in combination with the nonequilibrium Green's function method. We find that the Fe chain has drastic effects on spin-polarized transport properties of ZGNRs compared with a single Fe atom adsorbed on the ZGNRs. When the Fe chain is adsorbed on the centre of the ZGNR, the original semiconductor transforms into metal, showing a very wide range of spin-polarized transport. Particularly, the spin polarization around the Fermi level is up to 100%. This is because the adsorbed Fe chain not only induces many localized states but also has effects on the edge states of ZGNR, which can effectively modulate the spin-polarized transports. The spin polarization of ZGNRs is sensitive to the adsorption site of the Fe chain. When the Fe chain is adsorbed on the edge of ZGNR, the spin degeneracy of conductance is completely broken. The spin polarization is found to be more pronounced because the edge state of one edge is destroyed by the additional Fe chain. These results have direct implications for the control of the spin-dependent conductance in ZGNRs with the adsorption of Fe chains.
Tuning transport properties of graphene three-terminal structures by mechanical deformation
Torres, V.; Faria, D.; Latgé, A.
2018-04-01
Straintronic devices made of carbon-based materials have been pushed up due to the graphene high mechanical flexibility and the possibility of interesting changes in transport properties. Properly designed strained systems have been proposed to allow optimized transport responses that can be explored in experimental realizations. In multiterminal systems, comparisons between schemes with different geometries are important to characterize the modifications introduced by mechanical deformations, especially if the deformations are localized at a central part of the system or extended in a large region. Then, in the present analysis, we study the strain effects on the transport properties of triangular and hexagonal graphene flakes, with zigzag and armchair edges, connected to three electronic terminals, formed by semi-infinite graphene nanoribbons. Using the Green's function formalism with circular renormalization schemes, and a single band tight-binding approximation, we find that resonant tunneling transport becomes relevant and is more affected by localized deformations in the hexagonal graphene flakes. Moreover, triangular systems with deformation extended to the leads, like longitudinal three-folded type, are shown as an interesting scenario for building nanoscale waveguides for electronic current.
International Nuclear Information System (INIS)
Strasburg, Sean; Davidson, Ronald C.
2000-01-01
The macroscopic warm-fluid model developed by Lund and Davidson [Phys.Plasmas 5, 3028 (1998)] is used in the smooth-focusing approximation to investigate detailed stability properties of an intense charged particle beam with pressure anisotropy, assuming small-amplitude electrostatic perturbations about a waterbag equilibrium
Studies on transport properties of copper doped tungsten diselenide single crystals
Deshpande, M. P.; Parmar, M. N.; Pandya, Nilesh N.; Chaki, Sunil; Bhatt, Sandip V.
2012-02-01
During recent years, transition metal dichalcogenides of groups IVB, VB and VIB have received considerable attention because of the great diversity in their transport properties. 2H-WSe 2 (Tungsten diselenide) is an interesting member of the transition metal dichalcogenide (TMDC's) family and known to be a semiconductor useful for photovoltaic and optoelectronic applications. The anisotropy usually observed in this diamagnetic semiconductor material is a result of the sandwich structure of Se-W-Se layers interacting with each other, loosely bonded by the weak Van der Waals forces. Recent efforts in studying the influence of the anisotropic electrical and optical properties of this layered-type transition metal dichalcogenides have been implemented by doping the samples with different alkali group elements. Unfortunately, little work is reported on doping of metals in WSe 2. Therefore, it is proposed in this work to carry out a systematic growth of single crystals of WSe 2 by doping it with copper in different proportions i.e. Cu xWSe 2 ( x=0, 0.5, 1.0) by direct vapour transport technique. Transport properties like low and high temperature resistivity measurements, high pressure resistivity, Seebeck coefficient measurements at low temperature and Hall Effect at room temperature were studied in detail on all these samples. These measurements show that tungsten diselenide single crystals are p-type whereas doped with copper makes it n-type in nature. The results obtained and their implications are discussed in this paper.
Macroscopic reality and the dynamical reduction program
International Nuclear Information System (INIS)
Ghirardi, G.C.
1995-10-01
With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe individual physical systems within a genuine Hilbert space framework, the nice features of spontaneous reduction theories drastically limit the class of states which are dynamically stable. This allows one to work out a description of the world in terms of a mass density function in ordinary configuration space. A topology based on this function and differing radically from the one characterizing the Hilbert space is introduced and in terms of it the idea of similarity of macroscopic situations is made precise. Finally it is shown how the formalism and the proposed interpretation yield a natural criterion for establishing the psychophysical parallelism. The conclusion is that, within the considered theoretical models and at the nonrelativistic level, one can satisfy all sensible requirements for a consistent, unified, and objective description of reality at the macroscopic level. (author). 16 refs
Macroscopic description of isoscalar giant multipole resonances
International Nuclear Information System (INIS)
Nix, J.R.; Sierk, A.J.
1980-01-01
On the basis of a simple macroscopic model, we calculate the isoscalar giant-resonance energy as a function of mass number and multipole degree. The restoring force is determined from the distortion of the Fermi surface, and the inertia is determined for the incompressible, irrotational flow of nucleons with unit effective mass. With no adjustable parameters, the resulting closed expression reproduces correctly the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole energy and the magnitude of the giant octupole energy for 208 Pb. We also calculate the isoscalar giant-resonance width as a function of mass number and multipole degree for various macroscopic damping mechanisms, including two-body viscosity, one-body dissipation, and modified one-body dissipation. None of these damping mechanisms reproduces correctly all features of the available experimental data, namely the magnitude and dependence upon mass number of the giant quadrupole width and the magnitude of the giant octupole width for 208 Pb
Macroscopic quantum tunneling in Mn12-acetat
International Nuclear Information System (INIS)
Beiter, J.; Reissner, M.; Hilscher, G.; Steiner, W.; Pajic, D.; Zadro, K.; Bartel, M.; Linert, W.
2004-01-01
Molecules provide the exciting opportunity to study magnetism on the passage from atomic to macroscopic level. One of the most interesting effects in such mesoscopic systems is the appearance of quantum tunnelling of magnetization (MQT) at low temperatures. In the last decade molecular chemistry has had a large impact in this field by providing new single molecule magnets. They consist of small clusters exhibiting superparamagnetic behavior, similar to that of conventional nanomagnetic particles. The advantage of these new materials is that they form macroscopic samples consisting of regularly arranged small identical high-spin clusters which are widely separated by organic molecules. The lack of distributions in size and shape of the magnetic clusters and the very weak intercluster interaction lead in principle to only one barrier for the spin reversal. We present detailed magnetic investigations on a Mn 12 -ac single crystal. In this compound the tetragonal ordered clusters consist of a central tetrahedron of four Mn 4+ (S = 3/2) atoms surrounded by eight Mn 3+ (S = 2) atoms with antiparallel oriented spins, leading to an overall spin moment of S = 10. In the hysteresis loops nine different jumps at regularly spaced fields are identified in the investigated temperature range (1.5 < T < 3 K). At these fields the relaxation of moment due to thermal activation is superimposed by strong quantum tunnelling. In lowering the temperature the time dependence changes from thermally activated to thermally assisted tunnelling. (author)
Macroscopic effects of the quantum trace anomaly
International Nuclear Information System (INIS)
Mottola, Emil; Vaulin, Ruslan
2006-01-01
The low energy effective action of gravity in any even dimension generally acquires nonlocal terms associated with the trace anomaly, generated by the quantum fluctuations of massless fields. The local auxiliary field description of this effective action in four dimensions requires two additional scalar fields, not contained in classical general relativity, which remain relevant at macroscopic distance scales. The auxiliary scalar fields depend upon boundary conditions for their complete specification, and therefore carry global information about the geometry and macroscopic quantum state of the gravitational field. The scalar potentials also provide coordinate invariant order parameters describing the conformal behavior and divergences of the stress tensor on event horizons. We compute the stress tensor due to the anomaly in terms of its auxiliary scalar potentials in a number of concrete examples, including the Rindler wedge, the Schwarzschild geometry, and de Sitter spacetime. In all of these cases, a small number of classical order parameters completely determine the divergent behaviors allowed on the horizon, and yield qualitatively correct global approximations to the renormalized expectation value of the quantum stress tensor
Measurement contextuality is implied by macroscopic realism
International Nuclear Information System (INIS)
Chen Zeqian; Montina, A.
2011-01-01
Ontological theories of quantum mechanics provide a realistic description of single systems by means of well-defined quantities conditioning the measurement outcomes. In order to be complete, they should also fulfill the minimal condition of macroscopic realism. Under the assumption of outcome determinism and for Hilbert space dimension greater than 2, they were all proved to be contextual for projective measurements. In recent years a generalized concept of noncontextuality was introduced that applies also to the case of outcome indeterminism and unsharp measurements. It was pointed out that the Beltrametti-Bugajski model is an example of measurement noncontextual indeterminist theory. Here we provide a simple proof that this model is the only one with such a feature for projective measurements and Hilbert space dimension greater than 2. In other words, there is no extension of quantum theory providing more accurate predictions of outcomes and simultaneously preserving the minimal labeling of events through projective operators. As a corollary, noncontextuality for projective measurements implies noncontextuality for unsharp measurements. By noting that the condition of macroscopic realism requires an extension of quantum theory, unless a breaking of unitarity is invoked, we arrive at the conclusion that the only way to solve the measurement problem in the framework of an ontological theory is by relaxing the hypothesis of measurement noncontextuality in its generalized sense.
Macroscopic reality and the dynamical reduction program
Energy Technology Data Exchange (ETDEWEB)
Ghirardi, G C
1995-10-01
With reference to recently proposed theoretical models accounting for reduction in terms of a unified dynamics governing all physical processes, we analyze the problem of working out a worldview accommodating our knowledge about natural phenomena. We stress the relevant conceptual differences between the considered models and standard quantum mechanics. In spite of the fact that both theories describe individual physical systems within a genuine Hilbert space framework, the nice features of spontaneous reduction theories drastically limit the class of states which are dynamically stable. This allows one to work out a description of the world in terms of a mass density function in ordinary configuration space. A topology based on this function and differing radically from the one characterizing the Hilbert space is introduced and in terms of it the idea of similarity of macroscopic situations is made precise. Finally it is shown how the formalism and the proposed interpretation yield a natural criterion for establishing the psychophysical parallelism. The conclusion is that, within the considered theoretical models and at the nonrelativistic level, one can satisfy all sensible requirements for a consistent, unified, and objective description of reality at the macroscopic level. (author). 16 refs.
Smirnov, N. A.
2018-03-01
The paper investigates the role of spin-orbit interaction in the prediction of structural stability, lattice dynamics, elasticity, thermodynamic and transport properties (electrical resistivity and thermal conductivity) of lead under pressure with the FP-LMTO (full-potential linear-muffin-tin orbital) method for the first-principles band structure calculations. Our calculations were carried out for three polymorphous lead modifications (fcc, hcp, and bcc) in generalized gradient approximation with the exchange-correlation functional PBEsol. They suggest that compared to the scalar-relativistic calculation, the account for the SO effects insignificantly influences the compressibility of Pb. At the same time, in the calculation of phonon spectra and transport properties, the role of SO interaction is important, at least, for P ≲150 GPa. At higher pressures, the contribution from SO interaction reduces but not vanishes. As for the relative structural stability, our studies show that SO effects influence weakly the pressure of the fcc →hcp transition and much higher the pressure of the hcp →bcc transition.
Ulla, Hidayath; Kiran, M. Raveendra; Garudachari, B.; Ahipa, T. N.; Tarafder, Kartick; Adhikari, Airody Vasudeva; Umesh, G.; Satyanarayan, M. N.
2017-09-01
In this article, the synthesis, characterization and use of two novel naphthalimides as electron-transporting emitter materials for organic light emitting diode (OLED) applications are reported. The molecules were obtained by substituting electron donating chloro-phenoxy group at the C-4 position. A detailed optical, thermal, electrochemical and related properties were systematically studied. Furthermore, theoretical calculations (DFT) were performed to get a better understanding of the electronic structures. The synthesized molecules were used as electron transporters and emitters in OLEDs with three different device configurations. The devices with the molecules showed blue emission with efficiencies of 1.89 cdA-1, 0.98 lmW-1, 0.71% at 100 cdm-2. The phosphorescent devices with naphthalimides as electron transport materials displayed better performance in comparison to the device without any electron transporting material and were analogous with the device using standard electron transporting material, Alq3. The results demonstrate that the naphthalimides could play a significant part in the progress of OLEDs.
Electronic transport properties of 1D-defects in graphene and other 2D-systems
Energy Technology Data Exchange (ETDEWEB)
Willke, P.; Wenderoth, M. [IV. Physical Institute, Solids and Nanostructures, Georg-August-University Goettingen (Germany); Schneider, M.A. [Lehrstuhl fuer Festkoerperphysik, Universitaet Erlangen-Nuernberg, Erlangen (Germany)
2017-11-15
The continuous progress in device miniaturization demands a thorough understanding of the electron transport processes involved. The influence of defects - discontinuities in the perfect and translational invariant crystal lattice - plays a crucial role here. For graphene in particular, they limit the carrier mobility often demanded for applications by contributing additional sources of scattering to the sample. Due to its two-dimensional nature graphene serves as an ideal system to study electron transport in the presence of defects, because one-dimensional defects like steps, grain boundaries and interfaces are easy to characterize and have profound effects on the transport properties. While their contribution to the resistance of a sample can be extracted by carefully conducted transport experiments, scanning probe methods are excellent tools to study the influence of defects locally. In this letter, the authors review the results of scattering at local defects in graphene and other 2D systems by scanning tunneling potentiometry, 4-point-probe microscopy, Kelvin probe force microscopy and conventional transport measurements. Besides the comparison of the different defect resistances important for device fabrication, the underlying scattering mechanisms are discussed giving insight into the general physics of electron scattering at defects. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Confinement and transport properties during current ramps in the ASDEX Upgrade tokamak
Fable, E.; Angioni, C.; Hobirk, J.; Pereverzev, G.; Fietz, S.; Hein, T.; ASDEX Upgrade Team
2011-04-01
A detailed analysis of experimental data from the ASDEX Upgrade tokamak is carried out to shed light on the properties of confinement and transport in the current ramp-up and ramp-down phases of the plasma discharge. The experimental database is used to identify the relevant ranges of parameters explored during the ramp-up and the ramp-down. The energy confinement time observed in the two ramps displays interesting evolution, in many cases attaining different values at the same current level between ramp-up and ramp-down. The possible reasons for this behaviour are investigated. Interpretative transport simulations are used as a tool to clarify the interplay between different parameters, which are coupled in a non-linear way. In addition, a theory-based transport model is used to understand the behaviour of confinement as observed in the experiment, evidencing the role of both turbulent and neoclassical transport. Linear gyrokinetic calculations are performed to identify the relevant turbulence regime, showing that a broad range of frequencies, in the trapped electron modes (TEMs) and in the ion temperature gradient modes (ITGs) regimes, is explored during both the ramp-up and ramp-down. In the same framework, a quasi-linear model is applied to calculate the value of the local logarithmic density gradient and compare it with the experimental value. Finally, first non-linear simulations of heat transport during the current ramps are presented.
Thermoelectric transport properties of BaBiTe{sub 3}-based materials
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yiming; Zhao, Li-Dong, E-mail: zhaolidong@buaa.edu.cn
2017-05-15
BaBiTe{sub 3}, a material with low thermal conductivity, is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. We choose two types of dopants, K and La, trying to optimize its electrical transport properties. The minority carriers, which harm the Seebeck coefficient in this system, are suppressed by La doping. With the increase of both electrical conductivity and Seebeck coefficient, the power factor of 3% La doped BaBiTe{sub 3} reaches 3.7 μW cm{sup −1} K{sup −2} which increased by 40% from undoped BaBiTe{sub 3}. Besides high power factor, the thermal conductivity is also reduced in it. Eventually, a high ZT value, 0.25 at 473 K, for n-type BaBiTe{sub 3} is achieved in 3% La doped BaBiTe{sub 3}. - Graphical abstract: BaBiTe{sub 3} possesses a low thermal conductivity. However, it is an inferior thermoelectric material due to the poor electrical properties originated from its narrow band gap. A high ZT value of 0.25 at 473 K for n-type BaBiTe{sub 3} can be achieved through optimizing electrical transport properties via La doping. - Highlights: • BaBiTe{sub 3} is an analogue of these promising thermoelectric materials: such as CsBi{sub 4}Te{sub 6} and K{sub 2}Bi{sub 8}Se{sub 13}, etc. • BaBiTe{sub 3} possesses a low thermal conductivity. • La is an effective dopant to enhance electrical transport properties. • A high ZT value of 0.25 at 473 K can be achieved in n-type La-doped BaBiTe{sub 3}.
Magnetic and transport properties of Co–Cu microwires with granular structure
Energy Technology Data Exchange (ETDEWEB)
Zhukova, V., E-mail: valentina.zhukova@ehu.es [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); Garcia, C. [Bogazici Univ., Dept Phys, TR-34342 Istanbul (Turkey); Departamento de Fisica, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaiso (Chile); Val, J.J. del; Ilyn, M. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); Granovsky, A. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); Moscow State University, Moscow, Phys. Faculty, 119991 (Russian Federation); Zhukov, A. [Dpto. de Física de Materiales, Fac. Químicas, UPV/EHU, 20018, San Sebastián (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain)
2013-09-30
Magnetic, transport and structural properties of granular Co{sub x}–Cu{sub 100−x} (5 < x < 40 at.%) glass-coated microwires were studied. Co–Cu microwires exhibited giant magnetoresistance (GMR) effect. For x = 5% we observed the resistivity minimum at 40 K associated with the Kondo effect. For x > 10 partial evidences of granular structure have been observed. For x ≥ 30 anisotropic contribution to GMR has been observed giving rise to non-monotonic dependence of GMR on the field. Temperature dependence of magnetization measured during a cooling regime without external magnetic field and in the presence of the field shows considerable difference at low temperatures, being attributed to the presence of small Co grains embedded in the Cu matrix. By X-ray diffraction we found, that the structure of the metallic nucleus is granular consisting of two phases: fcc Cu appearing in all the samples and fcc α-Co presented only in microwires with higher Co content. For low Co content (x ≤ 10%) X-ray diffraction technique indicates that Co atoms are distributed within the Cu crystals. The quantity and the crystallite size of the formed phases strongly depend on the geometry of the microwire. The structure, magnetic and transport properties were affected by the glass coating inducing the internal stresses and affecting the quenching rate. - Highlights: ► Systematic study of magnetic and transport properties of Co-Cu microwires. ► Observation of Giant Magnetoresistance effect in Co{sub x}Cu100{sub −x} microwires. ► Observation of Kondo-like behavior in Co{sub x}Cu100{sub −x} at lower Co content (5%). ► Discussions of the effect of internal stresses on the properties of Co-Cu microwires. ► Discussion of the effect of composition on the properties of Co-Cu microwires.
Modeling Macroscopic Shape Distortions during Sintering of Multi-layers
DEFF Research Database (Denmark)
Tadesse Molla, Tesfaye
as to help achieve defect free multi-layer components. The initial thickness ratio between the layers making the multi-layer has also significant effect on the extent of camber evolution depending on the material systems. During sintering of tubular bi-layer structures, tangential (hoop) stresses are very...... large compared to radial stresses. The maximum value of hoop stress, which can generate processing defects such as cracks and coating peel-offs, occurs at the beginning of the sintering cycle. Unlike most of the models defining material properties based on porosity and grain size only, the multi...... (firing). However, unintended features like shape instabilities of samples, cracks or delamination of layers may arise during sintering of multi-layer composites. Among these defects, macroscopic shape distortions in the samples can cause problems in the assembly or performance of the final component...
The effect of interlayer adhesion on the mechanical behaviors of macroscopic graphene oxide papers.
Gao, Yun; Liu, Lu-Qi; Zu, Sheng-Zhen; Peng, Ke; Zhou, Ding; Han, Bao-Hang; Zhang, Zhong
2011-03-22
High mechanical performances of macroscopic graphene oxide (GO) papers are attracting great interest owing to their merits of lightweight and multiple functionalities. However, the loading role of individual nanosheets and its effect on the mechanical properties of the macroscopic GO papers are not yet well understood. Herein, we effectively tailored the interlayer adhesions of the GO papers by introducing small molecules, that is, glutaraldehyde (GA) and water molecules, into the gallery regions. With the help of in situ Raman spectroscopy, we compared the varied load-reinforcing roles of nanosheets, and further predicted the Young's moduli of the GO papers. Systematic mechanical tests have proven that the enhancement of the tensile modulus and strength of the GA-treated GO paper arose from the improved load-bearing capability of the nanosheets. On the basis of Raman and macroscopic mechanical tests, the influences of interlayer adhesions on the fracture mechanisms of the strained GO papers were inferred.
Mechanical Behaviour of Materials Volume 1 Micro- and Macroscopic Constitutive Behaviour
François, Dominique; Zaoui, André
2012-01-01
Advances in technology are demanding ever-increasing mastery over the materials being used: the challenge is to gain a better understanding of their behaviour, and more particularly of the relations between their microstructure and their macroscopic properties. This work, of which this is the first volume, aims to provide the means by which this challenge may be met. Starting from the mechanics of deformation, it develops the laws governing macroscopic behaviour – expressed as the constitutive equations – always taking account of the physical phenomena which underlie rheological behaviour. The most recent developments are presented, in particular those concerning heterogeneous materials such as metallic alloys, polymers and composites. Each chapter is devoted to one of the major classes of material behaviour. As the subtitles indicate, Volume 1 deals with micro- and macroscopic constitutive behaviour and Volume 2 with damage and fracture mechanics. A third volume will be devoted to exercises and the...
Energy Technology Data Exchange (ETDEWEB)
Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)
2016-12-01
Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.
Atomistic Force Field for Pyridinium-Based Ionic Liquids: Reliable Transport Properties
DEFF Research Database (Denmark)
Voroshylova, I. V.; Chaban, V. V.
2014-01-01
Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis(trifluoromethanesulfonyl)......Reliable force field (FF) is a central issue in successful prediction of physical chemical properties via computer simulations. This work introduces refined FF parameters for six popular ionic liquids (ILs) of the pyridinium family (butylpyridinium tetrafluoroborate, bis......(trifluoromethanesulfonyl)imide, dicyanamide, hexafluorophosphate, triflate, chloride). We elaborate a systematic procedure, which allows accounting for specific cationanion interactions in the liquid phase. Once these interactions are described accurately, all experimentally determined transport properties can be reproduced. We prove...... and elevated temperature. The developed atomistic models provide a systematic refinement upon the well-known Canongia LopesPadua (CL&P) FF. Together with the original CL&P parameters the present models foster a computational investigation of ionic liquids....
Thompson, Richard A.; Lee, Kam-Pui; Gupta, Roop N.
1991-01-01
The computer codes developed here provide self-consistent thermodynamic and transport properties for equilibrium air for temperatures from 500 to 30000 K over a temperature range of 10 (exp -4) to 10 (exp -2) atm. These properties are computed through the use of temperature dependent curve fits for discrete values of pressure. Interpolation is employed for intermediate values of pressure. The curve fits are based on mixture values calculated from an 11-species air model. Individual species properties used in the mixture relations are obtained from a recent study by the present authors. A review and discussion of the sources and accuracy of the curve fitted data used herein are given in NASA RP 1260.
Mixing rules for optical and transport properties of warm, dense matter
International Nuclear Information System (INIS)
Kress, Joel D.; Horner, Daniel A.; Collins, Lee A.
2009-01-01
The warm, dense matter (WDM) regime requires a sophisticated treatment since neither ideal gas laws or fully ionized plasma models apply. Mixtures represent the predominant form of matter throughout the universe and the ability to predict the properties of a mixture, though direct simulation or from convolution of the properties of the constituents is both a challenging prospect and an important goal. Through quantum molecular dynamics (QMD), we accurately simulate WDM and compute equations of state, transport, and optical properties of such materials, including mixtures, in a self-consistent manner from a single simulation. With the ability to directly compute the mixture properties, we are able to validate mixing rules for combining the optical and dynamical properties of Li and H separately to predict the properties of lithium hydride (LiH). We have examined two such mixing rules and extend them to morphologies beyond a simple liquid alloy. We have also studied a mixture of polyethylene and aluminum at T = 1 eV.
Empirical investigation of topological and weighted properties of a bus transport network from China
Shu-Min, Feng; Bao-Yu, Hu; Cen, Nie; Xiang-Hao, Shen; Yu-Sheng, Ci
2016-03-01
Many bus transport networks (BTNs) have evolved into directed networks. A new representation model for BTNs is proposed, called directed-space P. The bus transport network of Harbin (BTN-H) is described as a directed and weighted complex network by the proposed representation model and by giving each node weights. The topological and weighted properties are revealed in detail. In-degree and out-degree distributions, in-weight and out-weight distributions are presented as an exponential law, respectively. There is a strong relation between in-weight and in-degree (also between out-weight and out-degree), which can be fitted by a power function. Degree-degree and weight-weight correlations are investigated to reveal that BTN-H has a disassortative behavior as the nodes have relatively high degree (or weight). The disparity distributions of out-degree and in-degree follow an approximate power-law. Besides, the node degree shows a near linear increase with the number of routes that connect to the corresponding station. These properties revealed in this paper can help public transport planners to analyze the status quo of the BTN in nature. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA110304).
Literature Survey of Crude Oil Properties Relevant to Handling and Fire Safety in Transport.
Energy Technology Data Exchange (ETDEWEB)
Lord, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Luketa, Anay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wocken, Chad [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Schlasner, Steve [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aulich, Ted [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Allen, Ray [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rudeen, David Keith [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-03-01
Several fiery rail accidents in 2013-2015 in the U.S. and Canada carrying crude oil produced from the Bakken region of North Dakota have raised questions at many levels on the safety of transporting this, and other types of crude oil, by rail. Sandia National Laboratories was commissioned by the U.S. Department of Energy to investigate the material properties of crude oils, and in particular the so-called "tight oils" like Bakken that comprise the majority of crude oil rail shipments in the U.S. at the current time. The current report is a literature survey of public sources of information on crude oil properties that have some bearing on the likelihood or severity of combustion events that may occur around spills associated with rail transport. The report also contains background information including a review of the notional "tight oil" field operating environment, as well a basic description of crude oils and potential combustion events in rail transport. This page intentionally blank
Research Update: Structural and transport properties of (Ca,La)FeAs{sub 2} single crystal
Energy Technology Data Exchange (ETDEWEB)
Caglieris, F.; Pallecchi, I.; Lamura, G.; Putti, M. [CNR-SPIN and Università di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Sala, A. [CNR-SPIN and Università di Genova, Via Dodecaneso 33, I-16146 Genova (Italy); Department of Applied Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565 (Japan); Fujioka, M. [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan); Hokkaido University, Sapporo, Hokkaido 001-0020 (Japan); Hummel, F.; Johrendt, D. [Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstr. 5-13, 81377 München (Germany); Takano, Y. [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan); Ishida, S.; Iyo, A.; Eisaki, H. [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565 (Japan); Ogino, H.; Yakita, H. [Department of Applied Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Shimoyama, J. [Department of Applied Chemistry, The University of Tokyo, Bunkyo, Tokyo 113-8656 (Japan); Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258 (Japan)
2016-02-01
Structural and transport properties in the normal and superconducting states are investigated in a Ca{sub 0.8}La{sub 0.2}FeAs{sub 2} single crystal with T{sub c} = 27 K, belonging to the newly discovered 112 family of iron based superconductors. The transport critical current density J{sub c} for both field directions measured in a focused ion beam patterned microbridge reveals a weakly field dependent and low anisotropic behaviour with a low temperature value as high as J{sub c}(B = 0) ∼ 10{sup 5} A/cm{sup 2}. This demonstrates not only bulk superconductivity but also the potential of 112 superconductors towards applications. Interestingly, this superconducting compound undergoes a structural transition below 100 K which is evidenced by temperature-dependent X-ray diffraction measurements. Data analysis of Hall resistance and magnetoresistivity indicate that magnetotransport properties are largely dominated by an electron band, with a change of regime observed in correspondence of the onset of a structural transition. In the low temperature regime, the contribution of a hole band to transport is suggested, possibly playing a role in determining the superconducting state.
The obtaining and properties of asymmetric ion transport membrane for separating of oxygen from air
Solovieva, A. A.; Kulbakin, I. V.
2018-04-01
The bilayer oxygen-permeable membrane, consisting of a thin-film dense composite based on Co3O4 - 36 wt. % Bi2O3, and of a porous ceramic substrate of Co2SiO4, was synthesized and characterized. The way for obtaining of porous ceramic based on cobalt silicate was found, while the microstructure and the mechanical properties of porous ceramic were studied. Layered casting with post-pressing was used to cover the surface of porous support of Co2SiO4 by the Co3O4 - 36 wt. % Bi2O3 - based film. Transport properties of the asymmetric membrane have been studied, the kinetic features of oxygen transport have been established, and the characteristic thickness of the membrane has been estimated. The methods to prevent the high-temperature creep of ion transport membranes based on solid/molten oxides, which are the promising ones for obtaining of pure oxygen from air, are proposed and discussed.
The local structure, magnetic, and transport properties of Cr-doped In2O3 films
International Nuclear Information System (INIS)
Wang Shiqi; An Yukai; Feng Deqiang; Liu Jiwen; Wu Zhonghua
2013-01-01
Cr-doped In 2 O 3 films were deposited on Si (100) substrates by RF-magnetron sputtering technique. The local structure, magnetic, and transport properties of films are investigated by X-ray diffraction, X-ray photoelectron spectroscopy, X-ray absorption fine structure, Hall effect, R-T, and magnetic measurements. Structural analysis clearly indicates that Cr ions substitute for In 3+ sites of the In 2 O 3 lattice in the valence of +2 states and Cr-related secondary phases or clusters as the source of ferromagnetism is safely ruled out. The films with low Cr concentration show a crossover from semiconducting to metallic transport behavior, whereas only semiconducting behavior is observed in high Cr concentration films. The transport property of all films is governed by Mott variable range hopping behavior, suggesting that the carriers are strongly localized. Magnetic characterizations show that the saturated magnetization of films increases first, and then decreases with Cr doping, while carrier concentration n c decreases monotonically, implying that the ferromagnetism is not directly induced by the mediated carriers. It can be concluded the ferromagnetism of films is intrinsic and originates from electrons bound in defect states associated with oxygen vacancies.
Raghavan, Balaji; Niknezhad, Davood; Bernard, Fabrice; Kamali-Bernard, Siham
2016-09-01
The transport properties of cementitious composites such as concrete are important indicators of their durability, and are known to be heavily influenced by mechanical loading. In the current work, we use meso-scale hygro-mechanical modeling with a morphological 3D two phase mortar-aggregate model, in conjunction with experimentally obtained properties, to investigate the coupling between mechanical loading and damage and the permeability of the composite. The increase in permeability of a cylindrical test specimen at 28% aggregate fraction during a uniaxial displacement-controlled compression test at 85% of the peak load was measured using a gas permeameter. The mortar's mechanical behavior is assumed to follow the well-known compression damaged plasticity (CDP) model with isotropic damage, at varying thresholds, and obtained from different envelope curves. The damaged intrinsic permeability of the mortar evolves according to a logarithmic matching law with progressive loading. We fit the matching law parameters to the experimental result for the test specimen by inverse identification using our meso-scale model. We then subject a series of virtual composite specimens to quasi-static uniaxial compressive loading with varying boundary conditions to obtain the simulated damage and strain evolutions, and use the damage data and the previously identified parameters to determine the evolution of the macroscopic permeability tensor for the specimens, using a network model. We conduct a full parameter study by varying aggregate volume fraction, granulometric distribution, loading/boundary conditions and "matching law" parameters, as well as for different strain-damage thresholds and uniaxial loading envelope curves. Based on this study, we propose Avrami equation-based upper and lower bounds for the evolution of the damaged permeability of the composite.
Partitioning a macroscopic system into independent subsystems
Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten
2017-08-01
We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.
Quantum teleportation between stationary macroscopic objects
Energy Technology Data Exchange (ETDEWEB)
Bao, Xiao-Hui; Yuan, Zhen-Sheng; Pan, Jian-Wei [Physikalisches Institut, Universitaet Heidelberg (Germany); Hefei National Laboratory for Physical Sciences at Microscale, Department of Modern Physics, University of Science and Technology of China, Hefei (China); Xu, Xiao-Fan [Physikalisches Institut, Universitaet Heidelberg (Germany); Li, Che-Ming [Physikalisches Institut, Universitaet Heidelberg (Germany); Department of Physics, National Center for Theoretical Sciences, National Cheng Kung University, Tainan (China)
2010-07-01
Quantum teleportation is a process to transfer a quantum state of an object without transferring the state carrier itself. So far, most of the teleportation experiments realized are within the photonic regime. For the teleportation of stationary states, the largest system reported is a single ion. We are now performing an experiment to teleport the state of an macroscopic atomic cloud which consists about 10{sup 6} single atoms. In our experiment two atomic ensembles are utilized. In the first ensemble A we prepare the collective atomic state to be teleported using the quantum feedback technique. The second ensemble B is utilized to generate entanglement between it collective state with a scattered single-photon. Teleportation is realized by converting the atomic state of A to a single-photon and making a Bell state measurement with the scattered single-photon from ensemble B.
Macroscopic quantum tunneling in a dc SQUID
International Nuclear Information System (INIS)
Chen, Y.C.
1986-01-01
The theory of macroscopic quantum tunneling is applied to a current-biased dc SQUID whose dynamics can be described by a two-dimensional mechanical system with a dissipative environment. Based on the phenomenological model proposed by Caldeira and Leggett, the dissipative environment is represented by a set of harmonic oscillators coupling to the system. After integrating out the environmental degrees of freedom, an effective Euclidean action is found for the two-dimensional system. The action is used to provide the quantum tunneling rate formalism for the dc SQUID. Under certain conditions, the tunneling rate reduces to that of a single current-biased Josephson junction with an adjustable effective critical current
Ab initio calculation of transport properties between PbSe quantum dots facets with iodide ligands
Wang, B.; Patterson, R.; Chen, W.; Zhang, Z.; Yang, J.; Huang, S.; Shrestha, S.; Conibeer, G.
2018-01-01
The transport properties between Lead Selenide (PbSe) quantum dots decorated with iodide ligands has been studied using density functional theory (DFT). Quantum conductance at each selected energy levels has been calculated along with total density of states and projected density of states. The DFT calculation is carried on using a grid-based planar augmented wave (GPAW) code incorporated with the linear combination of atomic orbital (LCAO) mode and Perdew Burke Ernzerhof (PBE) exchange-correlation functional. Three iodide ligand attached low index facets including (001), (011), (111) are investigated in this work. P-orbital of iodide ligand majorly contributes to density of state (DOS) at near top valence band resulting a significant quantum conductance, whereas DOS of Pb p-orbital shows minor influence. Various values of quantum conductance observed along different planes are possibly reasoned from a combined effect electrical field over topmost surface and total distance between adjacent facets. Ligands attached to (001) and (011) planes possess similar bond length whereas it is significantly shortened in (111) plane, whereas transport between (011) has an overall low value due to newly formed electric field. On the other hand, (111) plane with a net surface dipole perpendicular to surface layers leading to stronger electron coupling suggests an apparent increase of transport probability. Apart from previously mentioned, the maximum transport energy levels located several eVs (1 2 eVs) from the edge of valence band top.
Choi, Garam; Lee, Won Bo
Metal alloys, especially Al-based, are commonly-used materials for various industrial applications. In this paper, the Al-Cu alloys with varying the Al-Cu ratio were investigated based on the first-principle calculation using density functional theory. And the electronic transport properties of the Al-Cu alloys were carried out using Boltzmann transport theory. From the results, the transport properties decrease with Cu-containing ratio at the temperature from moderate to high, but with non-linearity. It is inferred by various scattering effects from the calculation results with relaxation time approximation. For the Al-Cu alloy system, where it is hard to find the reliable experimental data for various alloys, it supports understanding and expectation for the thermal electrical properties from the theoretical prediction. Theoretical and computational soft matters laboratory.
National Research Council Canada - National Science Library
Adams, James; Carr, Ron; Chebl, Maroun; Coleman, Robert; Costantini, William; Cox, Robert; Dial, William; Jenkins, Robert; McGovern, James; Mueller, Peter
2006-01-01
...., trains, ships, etc.) and maximizing intermodal efficiency. A healthy balance must be achieved between the flow of international commerce and security requirements regardless of transportation mode...
Sarath Kumar, S. R.; Cha, Dong Kyu; Alshareef, Husam N.
2011-01-01
Lattice dynamics, low-temperature electrical transport, and high-temperature thermoelectric properties of (In, Yb)-doped CoSb3thin films on different substrates are reported. Pulsed laser deposition under optimized conditions yielded single
Villanueva-Cab, J; Anta, J A; Oskam, G
2016-05-28
Correction for 'The effect of recombination under short-circuit conditions on the determination of charge transport properties in nanostructured photoelectrodes' by J. Villanueva-Cab et al., Phys. Chem. Chem. Phys., 2016, 18, 2303-2308.
Xu, Guangwei; Gao, Nan; Lu, Congyan; Wang, Wei; Ji, Zhuoyu; Bi, Chong; Han, Zhiheng; Lu, Nianduan; Yang, Guanhua; Li, Yuan; Liu, Qi; Li, Ling; Liu, Ming
2018-01-01
, the charge transport properties of organic diodes are usually characterized by probing the current–voltage (I–V) curves of the devices. However, to unveil the landscape of the underlying potential/charge distribution, which essentially determines the I
Pressure tuning of the electrical transport properties of the Weyl semimetal NbP
Energy Technology Data Exchange (ETDEWEB)
Reis, Ricardo dos; Ajeesh, M.O.; Sun, Yan; Shekhar, Chandra; Schmidt, Marcus; Felser, Claudia; Yan, Binghai; Nicklas, Michael [Max Planck Institute for Chemical Physics of Solids, Dresden (Germany)
2016-07-01
Recently enormous attention has been given to a class of material called Weyl semimetal (WSM) due to the prediction of many exotic phenomena, in particular exceptional transport properties, making these systems not only interesting for fundamental research, but also promising materials for novel applications. WSM can be viewed as the hybrid of 3D graphene and topological insulators. The band crossing point, the so-called Weyl point, acts as a magnetic monopole (a singular point of Berry curvature) in momentum space, which always comes in a pairs. If the time-reversal and inversion symmetries are respected, a pair of Weyl points is degenerate in energy, forming another topological phase called Dirac semimetal. Owing this complex band structure the details of the electronic structure can play a significant role in the electrical transport properties of these materials. In this context, external pressure is an important control parameter to effectively tune lattice structures and the corresponding electronic states in a systematic fashion, avoiding the complexity brought by chemical doping. Here, we present a high pressure study of the magnetotransport properties of the Weyl semimetal NbP, which are particularly important to explore novel phenomena and understand the physics behind.
Effect of spin reorientation on magnetocaloric and transport properties of NdAl{sub 2}
Energy Technology Data Exchange (ETDEWEB)
Souza, M.V. de, E-mail: marcos_vinicios@hotmail.com [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Silva, J.A. da [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Silva, L.S. [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Instituto Federal de Tocantins, IFTO – Campus Colinas do Tocantins, AV. Bernardo Sayao S/N, Chácara Raio de Sol, Setor Santa Maria, CEP 77760-000 Colinas do Tocantins, TO (Brazil)
2017-01-01
We report the magneto-thermal and resistive properties of rare-earth dialuminide NdAl{sub 2}, including spin reorientation transition. To this purpose, we used a theoretical model that considers the interactions of exchange and Zeeman, besides the anisotropy due to the electrical crystal field. The theoretical results obtained were compared to experimental data of the NdAl{sub 2} in single crystal and bulk forms. Explicitly, we have calculated the anisotropic variation of magnetic entropy with the magnetic field oriented along the three principal crystallographic directions: [100], [110], and [111] of NdAl{sub 2} single crystal, where a signature of the spin reorientation is observed in the [110] and [111] directions. Moreover, of magnetoresistivity we consider the applied magnetic field along the crystallographic directions [100] and [110]. In turn, for the polycrystalline form, the good agreement between theory and experiment confirms the presence of spin reorientation, which was predicted theoretically in magnetization curves. - Highlights: • Modeling of the thermodynamics quantities in NdAl{sub 2} single crystal and policrystal. • Modeling of the transport properties in NdAl{sub 2} single crystal. • Effect of reorientation of spin on caloric and transport properties.
Enhancement in transport properties of seeded melt-textured YBCO by Cu-site doping
Energy Technology Data Exchange (ETDEWEB)
Zhou, Yu X. [Department of Physics, Hong Kong Baptist University, Kowloon (China); Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Lo, W.; Salama, Kamel [Texas Center for Superconductivity and Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Tang, Tong B. [Department of Physics, Hong Kong Baptist University, Kowloon (China)
2002-05-01
A significant research effort has been made worldwide to introduce nanometre-scale weak superconducting regions into seeded melt-textured superconductors to enhance their critical current density, trapped magnetic field and levitation force. The enhancement in these properties is dependent on the pinning forces exerted on the magnetic flux lines. In this paper we present a substantial improvement in the transport properties of these materials by optimizing the fabrication conditions, controlling the oxygen deficiency, as well as adjusting the doping level of Zn in YBa{sub 2}(Cu{sub 1-x}Zn{sub x}){sub 3}O{sub 7-}{delta} large grains. The enhancement is found to be as much as 30% by doping between about x=0.001 25 and 0.002 53. The results strongly indicate that the introduction of local nanometre-scale weak superconducting regions by Zn substitution for Cu in the CuO{sub 2} plane enhances the transport properties. Due to the simplicity of the processing conditions, these doping techniques can have a significant potential for a variety of engineering applications. (author)
Thermodynamic and transport properties of two-temperature SF6 plasmas
International Nuclear Information System (INIS)
Wang Weizong; Rong Mingzhe; Wu Yi; Spencer, Joseph W.; Yan, Joseph D.; Mei, DanHua
2012-01-01
This paper deals with thermodynamic and transport properties of SF 6 plasmas in a two-temperature model for both thermal equilibrium and non-equilibrium conditions. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and Guldberg-Waage equation according to deviation of van de Sanden et al. Transport properties including diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are calculated with most recent collision interaction potentials by adopting Devoto’s electron and heavy particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of Chapman–Enskog method. The results are computed for various values of pressures from 0.1 atm to 10 atm and ratios of the electron temperature to the heavy particle temperature from 1 to 20 with electron temperature range from 300 to 40 000 K. In the local thermodynamic equilibrium regime, results are compared with available results of previously published studies.
The role of free carbon in the transport and magnetic properties of boron carbide
International Nuclear Information System (INIS)
Bandyopadhyay, A.K.; Beuneu, F.; Zuppiroli, L.; Beauvy, M.
1984-01-01
Boron carbide is a ceramic which has a wide field of application because of its mechanical and nuclear properties. This material is difficult to characterise due to the presence of different levels of disorder and inhomogeneities which are found in the usual available samples. The transport and magnetic properties of several samples of boron carbide have been measured from liquid helium to room temperature as a function of temperature and composition. We have attempted to attribute the different features of these properties to the different levels of disorder. The role of free carbon, in form of thin layers of graphite within the disordered semi-conducting matrix, was investigated in particular details, because it was either ignored or neglected by others. Free carbon is found to dominate the D.C. transport when its concentration is larger than 5%; while the principal features of the electron spin resonance (E.S.R.) line show a dominance of free carbon when the concentration is larger than 3.5%. Below these concentrations conductivities as well as spin relaxation rates do not depend very much on free carbon; neither these have been found to be correlated in a simple way to the stoichiometry. (author)
Experimental characterization of the water transport properties of PEM fuel cells diffusion media
Ramos-Alvarado, Bladimir; Sole, Joshua D.; Hernandez-Guerrero, Abel; Ellis, Michael W.
2012-11-01
A full experimental characterization of the liquid water transport properties of Toray TGP-090 paper is carried out in this work. Porosity, capillary pressure curves (capillary pressure-saturation relationships), absolute permeability, and relative permeability are obtained via experimental procedures. Porosity was determined using two methods, both aimed to obtain the solid volume of the network of fibers comprising the carbon paper. Capillary pressure curves were obtained using a gas displacement porosimeter where liquid water is injected using a syringe pump and the capillary pressure is recorded using a differential pressure transducer. Absolute and relative permeability were also measured with an apparatus designed at Virginia Tech. Absolute permeability was calculated at different flow rates using nitrogen. On the other hand, relative permeability was a more complicated task to carry out giving the complexity (two-phase flow condition) of this property. All of the water transport properties of Toray TGP-090 were studied under the effects of wet-proofing (PTFE treatment) and compression. Some observations were that wet-proofing reduces the porosity of the raw material, increases the hydrophobicity (Pc-S curves), and reduces the permeability of the material. Similar effects were observed for compression, where compressed material exhibited trends similar to those of wet-proofing effects. The results presented here will allow a more accurate modeling of PEMFCs, providing an experimentally verified alternative to the assumptions frequently employed.
Modification of Local Urban Aerosol Properties by Long-Range Transport of Biomass Burning Aerosol
Directory of Open Access Journals (Sweden)
Iwona S. Stachlewska
2018-03-01
Full Text Available During August 2016, a quasi-stationary high-pressure system spreading over Central and North-Eastern Europe, caused weather conditions that allowed for 24/7 observations of aerosol optical properties by using a complex multi-wavelength PollyXT lidar system with Raman, polarization and water vapour capabilities, based at the European Aerosol Research Lidar Network (EARLINET network urban site in Warsaw, Poland. During 24–30 August 2016, the lidar-derived products (boundary layer height, aerosol optical depth, Ångström exponent, lidar ratio, depolarization ratio were analysed in terms of air mass transport (HYSPLIT model, aerosol load (CAMS data and type (NAAPS model and confronted with active and passive remote sensing at the ground level (PolandAOD, AERONET, WIOS-AQ networks and aboard satellites (SEVIRI, MODIS, CATS sensors. Optical properties for less than a day-old fresh biomass burning aerosol, advected into Warsaw’s boundary layer from over Ukraine, were compared with the properties of long-range transported 3–5 day-old aged biomass burning aerosol detected in the free troposphere over Warsaw. Analyses of temporal changes of aerosol properties within the boundary layer, revealed an increase of aerosol optical depth and Ångström exponent accompanied by an increase of surface PM10 and PM2.5. Intrusions of advected biomass burning particles into the urban boundary layer seem to affect not only the optical properties observed but also the top height of the boundary layer, by moderating its increase.
Effect of d-wave pairing symmetry in transport properties of silicene-based superconductor junction
Vosoughi-nia, S.; Rashedi, G.; hajati, Y.
2018-06-01
We theoretically study the tunneling conductance of a normal/d-wave superconductor silicene junction using Blonder-Tinkham-Klapwijk (BTK) formalism. We discuss how the conductance spectra are affected by changing the chemical potential (μN) in the normal silicene region. It is obtained that the amplitude of the spin/valley-dependent Andreev reflection (AR) and charge conductance (G) of the junction can be strongly modulated by the orientation angle of superconductive gap (β) and perpendicular electric field (Ez). We demonstrate that the charge conductance exhibits an oscillatory behavior as a function of β by a period of π/2. Remarkably, variation of μN strongly modifies the amplitude of the oscillations and periodically there are transport gaps in the G - β oscillations for a range of μN. These findings suggest that one may experimentally tune the transport properties of the junction through changing β, Ez and μN.
Electron transport properties in ZnO nanowires/poly(3-hexylthiophene) hybrid nanostructure
International Nuclear Information System (INIS)
Cheng Ke; Cheng Gang; Wang Shujie; Fu Dongwei; Zou Bingsuo; Du Zuliang
2010-01-01
The ZnO nanowires (NWs) array/poly(3-hexylthiophene) (P3HT) hybrid prototype device was fabricated. An ultraviolet (UV) light of λ = 350 nm is used to investigate the photo-electric properties of the ZnO NWs array and hybrid structure. In this way, we can avoid the excitation of P3HT, which can give us a real electron transport ability of ZnO NWs itself. Our results demonstrated a higher and faster photo-electric response of 3 s for the hybrid structure while 9 s for the ZnO NWs array. The surface states related slow photo-electric response was also observed for them. The charge transfer mechanism and the influence of surface states were discussed. The current work provides us profound understandings on the electron transport ability of ZnO NWs array in a working hybrid polymer solar cell, which is crucial for optimizing the device performance.
International Nuclear Information System (INIS)
Gray, I.L.S.; Sievwright, R.W.T.; Egid, B.; Ajayi, F.; Donelan, P.
1994-01-01
UK Nirex Ltd is developing Type B re-usable shielded transport containers (RSTCs) in a range of shielding thicknesses to transport intermediate level radioactive waste (ILW) to a deep repository. The designs are of an essentially monolithic construction and rely principally on the plastic flow of their material to absorb the energies involved in impact events. Nirex has investigated the feasibility of manufacturing the RSTCs from ductile cast iron (DCI) or cast steel instead of from forgings, since this would bring advantages of reduced manufacturing time and costs. However, cast materials are perceived to lack toughness and ductility and it is necessary to show that sufficient fracture toughness can be obtained to preclude brittle failure modes, particularly at low temperatures. The mechanical testing carried out as part of that programme is described. It shows how the measured properties have been used to demonstrate avoidance of brittle fracture and provide input to computer modelling of the drop tests. (author)
Montes Muñoz, Enrique
2017-01-24
We investigate the electronic transport properties of silicon nanotubes attached to metallic electrodes from first principles, using density functional theory and the non-equilibrium Green\\'s function method. The influence of the surface termination is studied as well as the dependence of the transport characteristics on the chirality, diameter, and length. Strong electronic coupling between nanotubes and electrodes is found to be a general feature that results in low contact resistance. The conductance in the tunneling regime is discussed in terms of the complex band structure. Silicon nanotube field effect transistors are simulated by applying a uniform potential gate. Our results demonstrate very high values of transconductance, outperforming the best commercial silicon field effect transistors, combined with low values of sub-threshold swing.
Optical and transport properties of single crystal rubrene: A theoretical study
Energy Technology Data Exchange (ETDEWEB)
Chen, Lipeng [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Lu, Jing [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Faculty of Chemistry, Northeast Normal University, Changchun (China); Long, Guankui; Zheng, Fulu [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore); Zhang, Jingping [Faculty of Chemistry, Northeast Normal University, Changchun (China); Zhao, Yang, E-mail: YZhao@ntu.edu.sg [Division of Materials Science, Nanyang Technological University, Singapore 639798 (Singapore)
2016-12-20
Optical and charge transport properties of single crystal rubrene are investigated using the multi-mode Brownian oscillator (MBO) model, the charge hopping model with quantum nuclear tunneling, and the Munn–Silbey approach. The MBO model is adopted to calculate absorption and photoluminescence spectra, yielding results in excellent agreement with measurements. In addition, temperature dependence of zero phonon lines (ZPL) and phonon sidebands (PSBs) of absorption spectra is also examined using the MBO model, revealing a nearly linear dependence of line widths of the ZPL and the PSBs on temperature. Model parameters obtained from MBO fitting and TD-DFT computation are then utilized for hole mobility calculations. It is found that temperature dependence of the calculated mobility is in general agreement with measurements, exhibiting “band-like” transport behavior.
Transport mechanism and regulatory properties of the human amino acid transporter ASCT2 (SLC1A5).
Scalise, Mariafrancesca; Pochini, Lorena; Panni, Simona; Pingitore, Piero; Hedfalk, Kristina; Indiveri, Cesare
2014-11-01
The kinetic mechanism of the transport catalyzed by the human glutamine/neutral amino acid transporter hASCT2 over-expressed in P. pastoris was determined in proteoliposomes by pseudo-bi-substrate kinetic analysis of the Na(+)-glutamineex/glutaminein transport reaction. A random simultaneous mechanism resulted from the experimental analysis. Purified functional hASCT2 was chemically cross-linked to a stable dimeric form. The oligomeric structure correlated well with the kinetic mechanism of transport. Half-saturation constants (Km) of the transporter for the other substrates Ala, Ser, Asn and Thr were measured both on the external and internal side. External Km were much lower than the internal ones confirming the asymmetry of the transporter. The electric nature of the transport reaction was determined imposing a negative inside membrane potential generated by K(+) gradients in the presence of valinomycin. The transport reaction resulted to be electrogenic and the electrogenicity originated from external Na(+). Internal Na(+) exerted a stimulatory effect on the transport activity which could be explained by a regulatory, not a counter-transport, effect. Native and deglycosylated hASCT2 extracted from HeLa showed the same transport features demonstrating that the glycosyl moiety has no role in transport function. Both in vitro and in vivo interactions of hASCT2 with the scaffold protein PDZK1 were revealed.
Directory of Open Access Journals (Sweden)
C. Denjean
2016-02-01
Full Text Available This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June–July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco, time of transport (1–5 days and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l. than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling
Fundamental investigation of the transport properties of superacids in aqueous and non-aqueous media
Suarez, Sophia
In the quest to develop more efficient energy providers one of the main focus of research has been on the improvement of ion transport. In lithium battery research this has led to the incorporation of various lithium salts, ceramics and plasticizers into the poly(ethylene)oxide (PEO) matrix, the polymer most used In Proton Conduction Membrane (PCM) fuel cell research this has led to the development of new membranes, which are designed with to replicate Nafion's ((c)DuPont) proton transport but also improve upon its deficiency of transporting intact fuel molecules and its dependence upon the presence of solvating water molecules. To better understand the process of ion transport, NMR was used to investigate dynamic properties such as D (self-diffusion coefficient) and T1 (spin-lattice relaxation time) of various proton and lithium ion-conducting systems. Ionic conductivity and viscosity measurements were also performed. The systems studied includes aqueous superacid solutions (trifluoromethanesulfonic (TFSA), para-toluenesulfonic (PTSA) and bis(trifluoromethanesulfonyl)imide (TFSI)); nano-porous (NP-) PCM's incorporating various ceramics and 3M fuel/2M H2SO4 solutions; and P(EO)20LiBETI (LiN(SO 2CF2CF3)2 composite incorporating SiO 2 ceramic nano particles. The objective of the study of the superacid solutions was to determine the effect of concentration on the transport. It was found that beyond the ionic conductivity maximum, fluctuations in both D and T1 supports the existence of local ordering in the ionic network, caused by the reduced solvent dielectric coefficient and increasing viscosity. Of the three superacids TFSA was the most conductive and most affected by reduced solvent concentration. For the P(EO)20LiBETI composite the aim was to determine the effect of the ceramic on the ion transport of the composite in a solvent free environment. Results show that the ceramic causes only modest increase in the lithium transport below 90°C. The objective in the
Montanini, Barbara; Viscomi, Arturo R.; Bolchi, Angelo; Martin, Yusé; Siverio, José M.; Balestrini, Raffaella; Bonfante, Paola; Ottonello, Simone
2005-01-01
Nitrogen assimilation by plant symbiotic fungi plays a central role in the mutualistic interaction established by these organisms, as well as in nitrogen flux in a variety of soils. In the present study, we report on the functional properties, structural organization and distinctive mode of regulation of TbNrt2 (Tuber borchii NRT2 family transporter), the nitrate transporter of the mycorrhizal ascomycete T. borchii. As revealed by experiments conducted in a nitrate-uptake-defective mutant of the yeast Hansenula polymorpha, TbNrt2 is a high-affinity transporter (Km=4.7 μM nitrate) that is bispecific for nitrate and nitrite. It is expressed in free-living mycelia and in mycorrhizae, where it preferentially accumulates in the plasma membrane of root-contacting hyphae. The TbNrt2 mRNA, which is transcribed from a single-copy gene clustered with the nitrate reductase gene in the T. borchii genome, was specifically up-regulated following transfer of mycelia to nitrate- (or nitrite)-containing medium. However, at variance with the strict nitrate-dependent induction commonly observed in other organisms, TbNrt2 was also up-regulated (at both the mRNA and the protein level) following transfer to a nitrogen-free medium. This unusual mode of regulation differs from that of the adjacent nitrate reductase gene, which was expressed at basal levels under nitrogen deprivation conditions and required nitrate for induction. The functional and expression properties, described in the present study, delineate TbNrt2 as a versatile transporter that may be especially suited to cope with the fluctuating (and often low) mineral nitrogen concentrations found in most natural, especially forest, soils. PMID:16201972
Proton transport properties in zwitterion blends with Brønsted acids.
Yoshizawa-Fujita, Masahiro; Byrne, Nolene; Forsyth, Maria; MacFarlane, Douglas R; Ohno, Hiroyuki
2010-12-16
We describe zwitterion, 3-(1-butyl-1H-imidazol-3-ium-3-yl)propane-1-sulfonate (Bimps), mixtures with 1,1,1-trifluoro-N-(trifluoromethylsulfonyl)methanesulfoneamide (HN(Tf)(2)) as new proton transport electrolytes. We report proton transport mechanisms in the mixtures based on results from several methods including thermal analyses, the complex-impedance method, and the pulsed field gradient spin echo NMR (pfg-NMR) method. The glass transition temperature (Tg) of the mixtures decreased with increasing HN(Tf)(2) concentration up to 50 mol %. The Tg remained constant at -55 °C with further acid doping. The ionic conductivity of HN(Tf)(2) mixtures increased with the HN(Tf)(2) content up to 50 mol %. Beyond that ratio, the mixtures showed no increase in ionic conductivity (10(-4) S cm(-1) at room temperature). This tendency agrees well with that of Tg. However, the self-diffusion coefficients obtained from the pfg-NMR method increased with HN(Tf)(2) content even above 50 mol % for all component ions. At HN(Tf)(2) 50 mol %, the proton diffusion of HN(Tf)(2) was the fastest in the mixture. These results suggest that Bimps cannot dissociate excess HN(Tf)(2), that is, the excess HN(Tf)(2) exists as molecular HN(Tf)(2) in the mixtures. The zwitterion, Bimps, forms a 1:1 complex with HN(Tf)(2) and the proton transport property in this mixture is superior to those of other mixing ratios. Furthermore, CH(3)SO(3)H and CF(3)SO(3)H were mixed with Bimps for comparison. Both systems showed a similar tendency, which differed from that of the HN(Tf)(2) system. The Tg decreased linearly with increasing acid content for every mixing ratio, while the ionic conductivity increased linearly. Proton transport properties in zwitterion/acid mixtures were strongly affected by the acid species added.
Transport Properties of the Organic Conductor (TMTSF)2BrO4: Evidence of Variable Range Hopping
DEFF Research Database (Denmark)
Mortensen, Kell; Jacobsen, Claus Schelde; Bechgaard, Klaus
1984-01-01
A study of d.c. and microwave conductivity and thermoelectric power of the organic conductor (TMTSF)2BrO4 is presented. The transport properties are in qualitative agreement with charge transport via variable-range hopping among localized states. The localization is attributed to the anions, which...
International Nuclear Information System (INIS)
Widestrand, Henrik; Byegaard, Johan; Ohlsson, Yvonne; Tullborg, Eva-Lena
2003-06-01
This report comprises a strategy for the handling of laboratory investigations of diffusivity and sorption characteristics within the discipline-specific programme 'Transport Properties of the Rock' in the SKB site investigations. The aim of the transport programme is to investigate the solute transport properties at a site in order to acquire data that are required for an assessment of the long-term performance and radiological safety of the deep repository. The result of the transport programme is the Transport Properties Site Descriptive Model, i.e. a description of the site-specific properties for the transport of solutes in the groundwater at a site. A strategy for the methodology, control of sampling and characterisation programme and interpretation of the results, is proposed. The basis for the laboratory investigations is a conceptual geological model based on the geological model produced in the geology programme. Major and minor types of rock and fractures are defined and characterised according to the quality of the general database and site-specific needs. The selection of samples and analyses is determined in close co-operation with the geology, hydrogeology, hydrogeochemistry and rock mechanics programmes. The result of the laboratory investigations is a retardation model, which is used as an input in the Transport Properties Site Descriptive Model. The interpretation and production of a retardation model is described and exemplified. Lastly, method-specific strategies and recommendations are given, including strategies for the selection of tracers in the experiments and for the treatment of the sampled geologic materials
The phase diagram and transport properties of MgO from theory and experiment
Shulenburger, Luke
2013-06-01
Planetary structure and the formation of terrestrial planets have received tremendous interest due to the discovery of so called super-earth exoplanets. MgO is a major constituent of Earth's mantle, the rocky cores of gas giants and is a likely component of the interiors of many of these exoplanets. The high pressure - high temperature behavior of MgO directly affects equation of state models for planetary structure and formation. In this work, we examine MgO under extreme conditions using experimental and theoretical methods to determine its phase diagram and transport properties. Using plate impact experiments on Sandia's Z facility the solid-solid phase transition from B1 to B2 is clearly determined. The melting transition, on the other hand, is subtle, involving little to no signal in us-up space. Theoretical work utilizing density functional theory (DFT) provides a complementary picture of the phase diagram. The solid-solid phase transition is identified through a series of quasi-harmonic phonon calculations and thermodynamic integration, while the melt boundary is found using phase coexistence calculations. One issue of particular import is the calculation of reflectivity along the Hugoniot and the influence of the ionic structure on the transport properties. Particular care is necessary because of the underestimation of the band gap and attendant overestimation of transport properties due to the use of semi-local density functional theory. We will explore the impact of this theoretical challenge and its potential solutions in this talk. The integrated use of DFT simulations and high-accuracy shock experiments together provide a comprehensive understanding of MgO under extreme conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Controlling In–Ga–Zn–O thin films transport properties through density changes
Energy Technology Data Exchange (ETDEWEB)
Kaczmarski, Jakub, E-mail: kaczmarski@ite.waw.pl [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Boll, Torben [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden); Borysiewicz, Michał A. [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Taube, Andrzej [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Institute of Microelectronics & Optoelectronics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw (Poland); Thuvander, Mattias; Law, Jia Yan [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden); Kamińska, Eliana [Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw (Poland); Stiller, Krystyna [Department of Applied Physics, Chalmers University of Technology, Fysikgränd 3, SE-412 96 Gothenburg (Sweden)
2016-06-01
In the following study we investigate the effect of the magnetron cathode current (I{sub c}) during reactive sputtering of In–Ga–Zn–O (a-IGZO) on thin-films nanostructure and transport properties. All fabricated films are amorphous, according to X-ray diffraction measurements. However, High Resolution Transmission Electron Microscopy revealed the a-IGZO fabricated at I{sub C} = 70 mA to contain randomly-oriented nanocrystals dispersed in amorphous matrix, which disappear in films deposited at higher cathode current. These nanocrystals have the same composition as the amorphous matrix. One can observe that, while I{sub C} is increased from 70 to 150 mA, the carrier mobility improves from μ{sub Hall} = 6.9 cm{sup 2}/Vs to μ{sub Hall} = 9.1 cm{sup 2}/Vs. Additionally, the increase of I{sub C} caused a reduction of the depletion region trap states density of the Ru–Si–O/In–Ga–Zn–O Schottky barrier. This enhancement in transport properties is attributed to the greater overlapping of s-orbitals of the film-forming cations caused by increased density, evidenced by X-ray reflectivity, at a fixed chemical composition, regardless nanostructure of thin films. - Highlights: • Magnetron cathode current (I{sub C}) controls the transport properties of In–Ga–Zn–O (IGZO). • Low I{sub C} results in IGZO films with nanocrystalline inclusions in amorphous matrix. • High I{sub C} reduces the number of trap states in depletion region of Schottky contacts.
Hanna, Amir
2012-06-01
Organic ferroelectrics polymers have recently received much interest for use in nonvolatile memory devices. The ferroelectric copolymer poly(vinylidene fluoride- trifluoroethylene) , P(VDF-TrFE), is a promising candidate due to its relatively high remnant polarization, low coercive field, fast switching times, easy processability, and low Curie transition. However, no detailed study of charge injection and current transport properties in P(VDF-TrFE) have been reported in the literature yet. Charge injection and transport are believed to affect various properties of ferroelectric films such as remnant polarization values and polarization fatigue behavior.. Thus, this thesis aims to study charge injection in P(VDF-TrFE) and its transport properties as a function of electrode material. Injection was studied for Al, Ag, Au and Pt electrodes. Higher work function metals such as Pt have shown less leakage current compared to lower work function metals such as Al for more than an order of magnitude. That implied n-type conduction behavior for P(VDF-TrFE), as well as electrons being the dominant injected carrier type. Charge transport was also studied as a function of temperature, and two major transport regimes were identified: 1) Thermionic emission over a Schottky barrier for low fields (E < 25 MV/m). 2) Space-Charge-Limited regime at higher fields (25 < E <120 MV/m). We have also studied the optical imprint phenomenon, the polarization fatigue resulting from a combination of broad band optical illumination and DC bias near the switching field. A setup was designed for the experiment, and validated by reproducing the reported effect in polycrystalline Pb(Zr,Ti)O3 , PZT, film. On the other hand, P(VDF-TrFE) film showed no polarization fatigue as a result of optical imprint test, which could be attributed to the large band gap of the material, and the low intensity of the UV portion of the arc lamp white light used for the experiment. Results suggest using high work
Wu, Yi; Wang, Chunlin; Sun, Hao; Murphy, Anthony B.; Rong, Mingzhe; Yang, Fei; Chen, Zhexin; Niu, Chunpin; Wang, Xiaohua
2018-04-01
The thermophysical properties, including composition, thermodynamic properties, transport coefficients and net emission coefficients, of thermal plasmas formed from pure iso-C4 perfluoronitrile C4F7N and C4F7N–CO2 mixtures are calculated for temperatures from 300 to 30 000 K and pressures from 0.1 to 20 atm. These gases have received much attention as alternatives to SF6 for use in circuit breakers, due to the low global warming potential and good dielectric properties of C4F7N. Since the parameters of the large molecules formed in the dissociation of C4F7N are unavailable, the partition function and enthalpy of formation were calculated using computational chemistry methods. From the equilibrium composition calculations, it was found that when C4F7N is mixed with CO2, CO2 can capture C atoms from C4F7N, producing CO, since the system consisting of small molecules such as CF4 and CO has lower energy at room temperature. This is in agreement with previous experimental results, which show that CO dominates the decomposition products of C4F7N–CO2 mixtures; it could limit the repeated breaking performance of C4F7N. From the point of view of chemical stability, the mixing ratio of CO2 should therefore be chosen carefully. Through comparison with common arc quenching gases (including SF6, CF3I and C5F10O), it is found that for the temperature range for which electrical conductivity remains low, pure C4F7N has similar ρC p (product of mass density and specific heat) properties to SF6, and higher radiative emission coefficient, properties that are correlated with good arc extinguishing capability. For C4F7N–CO2 mixtures, the electrical conductivity is very close to that of SF6 while the ρC p peak at 7000 K caused by decomposition of CO implies inferior interruption capability to that of SF6. The calculated properties will be useful in arc simulations.
Models for universal reduction of macroscopic quantum fluctuations
International Nuclear Information System (INIS)
Diosi, L.
1988-10-01
If quantum mechanics is universal, then macroscopic bodies would, in principle, possess macroscopic quantum fluctuations (MQF) in their positions, orientations, densities etc. Such MQF, however, are not observed in nature. The hypothesis is adopted that the absence of MQF is due to a certain universal mechanism. Gravitational measures were applied for reducing MQF of the mass density. This model leads to classical trajectories in the macroscopic limit of translational motion. For massive objects, unwanted macroscopic superpositions of quantum states will be destroyed within short times. (R.P.) 34 refs
Proton irradiation effects on beryllium – A macroscopic assessment
Energy Technology Data Exchange (ETDEWEB)
Simos, Nikolaos, E-mail: simos@bnl.gov [Nuclear Sciences & Technology Department, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Elbakhshwan, Mohamed [Nuclear Sciences & Technology Department, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Zhong, Zhong [Photon Sciences, NSLS II, Brookhaven National Laboratory, Upton, NY, 11973 (United States); Camino, Fernando [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973 (United States)
2016-10-15
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.
International Nuclear Information System (INIS)
Anon.
1998-01-01
Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)
Interface and transport properties of GaN/graphene junction in GaN-based LEDs
International Nuclear Information System (INIS)
Wang Liancheng; Zhang Yiyun; Liu Zhiqiang; Guo Enqing; Yi Xiaoyan; Wang Junxi; Wang Guohong; Li Xiao; Zhu Hongwei
2012-01-01
A normalized circular transmission line method pattern with uniform interface area was developed to obtain contact resistances of p-, u-, n-GaN/graphene contacts (p, u and n represent p-type doped, unintentionally doped and n-type doped, respectively) and N-polar u-, n-GaN/graphene contacts in GaN-based LEDs. The resistances of the graphene/GaN contacts were mainly determined by the work function gap and the carrier concentration in GaN. Annealing caused diffusion of metal atoms and significantly influenced the interface transport properties.
Structural, magnetic, and electronic transport properties of pyrochlore iridate Pr2Ir2O7
Kumar, Harish; Chaurasia, Rachna; Kumari, Pratibha; Paramanik, A. K.
2018-04-01
We have studied the structural, magnetic, and electronic transport properties of pyrochlore iridate Pr2Ir2O7. Structural investigation has been done using x-ray powder diffraction and Rietveld analysis. Pr2Ir2O7 crystallize in cubic crystallographic phase with Fd-3m space group. Temperature dependent magnetization data does not show magnetic bifurcation down to 2 K. Electrical resistivity data of Pr2Ir2O7 exhibits metallic behavior throughout temperature range. Below 50 K, a small rise in resistivity data of Pr2Ir2O7 is observed down to 12 K.
Analysis on the moment method for determining the moisture transport properties in porous media
International Nuclear Information System (INIS)
Wang, B.X.; Fang, Z.H.
1987-01-01
The authors discuss a new unsteady-state method proposed for determining the moisture transport properties in wet porous media. It is based on measurement of the change in moment of gravity caused by the moisture migration. In addition to its high-speed performance, this method may get rid of the difficulty in determination of a changing moisture content or moisture distribution. On this basis, two particular procedures are contrived: a constant heat source method for determining the thermal mass diffusivity and an instantaneous moisture source method for determining the moisture diffusivity
International Nuclear Information System (INIS)
Kim, In Chan; Cule, Dinko; Torquato, Salvatore
2000-01-01
In a recent paper [C. DeW. Van Siclen, Phys. Rev. E 59, 2804 (1999)], a random-walk algorithm was proposed as the best method to calculate transport properties of composite materials. It was claimed that the method is applicable both to discrete and continuum systems. The limitations of the proposed algorithm are analyzed. We show that the algorithm does not capture the peculiarities of continuum systems (e.g., ''necks'' or ''choke points'') and we argue that it is the stochastic analog of the finite-difference method. (c) 2000 The American Physical Society
Energy Technology Data Exchange (ETDEWEB)
Zhao, P., E-mail: ss_zhaop@ujn.edu.c [School of Science, University of Jinan, Jinan 250022 (China); Liu, D.S. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China); Department of Physics, Jining University, Qufu 273155 (China); Wang, P.J.; Zhang, Z. [School of Science, University of Jinan, Jinan 250022 (China); Fang, C.F.; Ji, G.M. [School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)
2011-02-15
By applying non-equilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.
International Nuclear Information System (INIS)
Zhao, P.; Liu, D.S.; Wang, P.J.; Zhang, Z.; Fang, C.F.; Ji, G.M.
2011-01-01
By applying non-equilibrium Green's function (NEGF) formalism combined with first-principles density functional theory (DFT), we have investigated the electronic transport properties of the anthraquinone-based molecular switch. The molecule that comprises the switch can be converted between the hydroquinone (HQ) and anthraquinone (AQ) forms via redox reactions. The transmission spectra of these two forms are remarkably distinctive. Our results show that the current through the HQ form is significantly larger than that through the AQ form, which suggests that this system has attractive potential application in future molecular switch technology.
Correlation of nanostructure and charge transport properties of oxidized a -SiC:H films
Energy Technology Data Exchange (ETDEWEB)
Gordienko, S.O.; Nazarov, A.N.; Vasin, A.V.; Rusavsky, A.V.; Lysenko, V.S. [Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Prospekt Nauki 41, 03028 Kyiv (Ukraine)
2012-06-15
This paper considers the influence of low temperature oxidation on structural and electrical properties of amorphous carbon-rich a -Si{sub 1-x}C{sub x}:H thin films fabricated by reactive RF magnetron sputtering. It is shown that oxidation leads to formation of SiO{sub x} matrix with graphite-like carbon inclusions. Such conductive precipitates has a strong effect on charge transport in oxidized a -Si{sub 1-x}C{sub x}:H films (copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Efficient method for computing the electronic transport properties of a multiterminal system
Lima, Leandro R. F.; Dusko, Amintor; Lewenkopf, Caio
2018-04-01
We present a multiprobe recursive Green's function method to compute the transport properties of mesoscopic systems using the Landauer-Büttiker approach. By introducing an adaptive partition scheme, we map the multiprobe problem into the standard two-probe recursive Green's function method. We apply the method to compute the longitudinal and Hall resistances of a disordered graphene sample, a system of current interest. We show that the performance and accuracy of our method compares very well with other state-of-the-art schemes.
Monte Carlo study of the mechanisms of transport of fast neutrons in various media
International Nuclear Information System (INIS)
Ku, L.
1976-01-01
The technique of analyzing Monte Carlo histories was used to study the details of neutron transport and slowing down mechanisms. The statistical properties of life histories of ''exceptional'' neutrons, i.e., those staying closer to the source or penetrating to larger distances from the source, were compared to those of the general population. The macroscopic behavior of ''exceptional'' neutrons was also related to the interaction mechanics and to the microscopic properties of the medium
Structural, magnetic and electrical transport properties in cold-drawn thin Fe-rich wires
International Nuclear Information System (INIS)
Garcia, C.; Chizhik, A.; Val, J.J. del; Zhukov, A.; Blanco, J.M.; Gonzalez, J.
2005-01-01
Microstructural (X-ray diffraction), magnetic properties (hysteresis loop), electrical resistivity, magneto-impedance and stress impedance effects have been investigated in cold-drawn Fe 77.5 B 15 Si 7.5 amorphous wire. Initial amorphous wire (obtained by the in-rotating-water technique) with diameter of 125 μm was submitted to cold-drawn process decreasing the diameter to 50 μm. Such cold-drawn wire was treated by current annealing (currents of 190, 210, 220 and 230 mA during times between 1 and 45 min) for tailoring the magnetic and electrical transport properties. A qualitative analysis of the magnetoimpedance and stress impedance effects is given by considering the influence of the magnetoelastic anisotropy and frequency of the AC driving electrical current on the circular permeability
Thermodynamic and transport properties of nitrogen fluid: Molecular theory and computer simulations
Eskandari Nasrabad, A.; Laghaei, R.
2018-04-01
Computer simulations and various theories are applied to compute the thermodynamic and transport properties of nitrogen fluid. To model the nitrogen interaction, an existing potential in the literature is modified to obtain a close agreement between the simulation results and experimental data for the orthobaric densities. We use the Generic van der Waals theory to calculate the mean free volume and apply the results within the modified Cohen-Turnbull relation to obtain the self-diffusion coefficient. Compared to experimental data, excellent results are obtained via computer simulations for the orthobaric densities, the vapor pressure, the equation of state, and the shear viscosity. We analyze the results of the theory and computer simulations for the various thermophysical properties.
International Nuclear Information System (INIS)
Volkov, N.V.; Eremin, E.V.; Tarasov, A.S.; Rautskii, M.V.; Varnakov, S.N.; Ovchinnikov, S.G.; Patrin, G.S.
2012-01-01
Different phenomena that give rise to a spin-polarized current in some systems with magnetic tunnel junctions are considered. In a manganite-based magnetic tunnel structure in CIP geometry, the effect of current-channel switching was observed, which causes bias-driven magnetoresistance, rf rectification, and the photoelectric effect. The second system under study, ferromagnetic/insulator/semiconductor, exhibits the features of the transport properties in CIP geometry that are also related to the current-channel switching effect. The described properties can be controlled by a bias, a magnetic field, and optical radiation. At last, the third system under consideration is a cooperative assembly of magnetic tunnel junctions. This system exhibits tunnel magnetoresistance and the magnetic-field-driven microwave detection effect.
Directory of Open Access Journals (Sweden)
A A Shokri
2013-10-01
Full Text Available In this paper, we have investigated the spin-dependent transport properties and electron entanglement in a mesoscopic system, which consists of two semi-infinite leads (as source and drain separated by a typical quantum wire with a given potential. The properties studied include current-voltage characteristic, electrical conductivity, Fano factor and shot noise, and concurrence. The calculations are based on the transfer matrix method within the effective mass approximation. Using the Landauer formalism and transmission coefficient, the dependence of the considered quantities on type of potential well, length and width of potential well, energy of transmitted electron, temperature and the voltage have been theoretically studied. Also, the effect of the above-mentioned factors has been investigated in the nanostructure. The application of the present results may be useful in designing spintronice devices.
Calculation of the coherent transport properties of a symmetric spin nanocontact
International Nuclear Information System (INIS)
Bourahla, B.; Khater, A.; Tigrine, R.
2009-01-01
A theoretical study is presented for the coherent transport properties of a magnetic nanocontact. In particular, we study a symmetric nanocontact between two identical waveguides composed of semi-infinite spin ordered ferromagnetic chains. The coherent transmission and reflection scattering cross sections via the nanocontact, for spin waves incident from the bulk waveguide, are calculated with the use of the matching method. The inter-atomic magnetic exchange on the nanocontact is allowed to vary to investigate the consequences of magnetic softening and hardening for the calculated spectra. Transmission spectra underline the filtering properties of the nanocontact. The localized spin density of states in the nanocontact domain is also calculated, and analyzed. The results yield an understanding of the relationship between coherent conductance and the structural configuration of the nanocontact.
Energy Technology Data Exchange (ETDEWEB)
Chinthavali, Supriya [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2016-04-01
Surface transportation road networks share structural properties similar to other complex networks (e.g., social networks, information networks, biological networks, and so on). This research investigates the structural properties of road networks for any possible correlation with the traffic characteristics such as link flows those determined independently. Additionally, we define a criticality index for the links of the road network that identifies the relative importance in the network. We tested our hypotheses with two sample road networks. Results show that, correlation exists between the link flows and centrality measures of a link of the road (dual graph approach is followed) and the criticality index is found to be effective for one test network to identify the vulnerable nodes.
International Nuclear Information System (INIS)
Orozco, Gustavo A.; Nieto-Draghi, Carlos; Lachet, Veronique; Mackie, Allan D.
2014-01-01
Using molecular simulation techniques such as Monte Carlo (MC) and molecular dynamics (MD), we present several simulation results of thermodynamic and transport properties for primary, secondary and tertiary amines. These calculations are based on a recently proposed force field for amines that follows the Anisotropic United Atom approach (AUA). Different amine molecules have been studied, including n-Butylamine, di-n-Butylamine, tri-n-Butylamine and 1,4-Butanediamine for primary, secondary, tertiary and multi-functional amines respectively. For the transport properties, we have calculated the viscosity coefficients as a function of temperature using the isothermal-isobaric (NPT) ensemble. In the case of the pure components, we have investigated different thermodynamic properties using NVT Gibbs ensemble simulations such as liquid-vapor phase equilibrium diagrams, vaporization enthalpies, vapor pressures, normal boiling points, critical temperatures and critical densities. We have also calculated the excess enthalpies for water-n-Butylamine and n-heptane-n-Butylamine mixtures using Monte Carlo simulations in the NPT ensemble. In addition, we present the calculation of liquid-vapor surface tensions of n-Butylamine using a two-phase NVT simulation as well as the radial distribution functions. Finally, we have investigated the physical Henry constants of nitrous oxide (N 2 O) and nitrogen (N 2 ) in an aqueous solutions of n-Butylamine. In general, we found a good agreement between the available experimental information and our simulation results for all the studied properties, ratifying the predictive capability of the AUA force field for amines. (authors)
Local and Macroscopic Properties of Stripe Ordered Conductors
International Nuclear Information System (INIS)
Kivelson, Steven A.
2011-01-01
The tendency of many strongly correlated electron systems to form locally inhomogeneous structures is now well established. This introduces new emergent length scales into the electronic structure. In the research supported by this grant, we examined some of the consequences of this new length scale. In particular, we showed that in the limit where the inhomogeneous structures are strong and of certain forms (we considered a checkerboard lattice as a concrete example), it is possible to examine how strong repulsive interactions give rise to a substantial superconducting pairing scale. Interestingly, even though the interactions are purely repulsive, there is a crossover as a function of U, much like the one that occurs in the attractive Hubbard model, from a region with relatively strong pairing, but with a small Tc due to the small superfluid stiffness, to a region with in which Tc tends to zero as the pairing scale vanishes. However, in contrast to the attractive model, in the repulsive checkerboard model, the pairing scale vanishes at a finite critical value of U=Uc, where the superfluid stiffness is largest, and drops with decreasing U. The other point of contrast is that the superconducting state has d-wave symmetry for the repulsive model.
Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas
2016-04-01
Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine the sensitivity to uncertainty in ash particle characteristics.
International Nuclear Information System (INIS)
Hsu, W.
1984-01-01
A unified theory of effective interaction, elementary excitations, transport properties, and possible superfluidity of 3 He- 4 He mixtures was developed. The basic approach is patterned after that of Aldrich and Pines (AP) for pure 4 He and 3 He, in which the consequence of the strong interactions in 3 He and 4 He is described in terms of self-consistent fields. The strength of these fields are determined by physical arguments, static measurement, and sum rule considerations. A set of pseudopotentials was developed to describe the 3 He- 3 He and 3 He- 4 He interactions. In the long wavelength and zero concentration limit, these potentials are obtained by the thermodynamic argument of Bardeen, Baym, and Pines. At finite concentration and finite momentum transfer, these potentials are obtained with the aids of a scaling law and the AP pseudopotential theory. From these pseudopotentials, the scattering amplitudes, transport coefficients, and normal-superfluid transition temperature are calculated as functions of 3 He concentration. Good agreement is obtained between theory and experiment for low temperature transport coefficients, and the 3 He superfluid transition temperature is predicted to be approx. -80 K. The change in the density fluctuation excitation spectrum of 4 He atoms in 3 He- 4 He mixtures is calculated
Lee, Jung Gil; Lee, Eui-Jong; Jeong, Sanghyun; Guo, Jiaxin; An, Alicia Kyoungjin; Guo, Hong; Kim, Joonha; Leiknes, TorOve; Ghaffour, NorEddine
2016-01-01
Developing a high flux and selective membrane is required to make membrane distillation (MD) a more attractive desalination process. Amongst other characteristics membrane hydrophobicity is significantly important to get high vapor transport and low wettability. In this study, a laboratory fabricated carbon nanotubes (CNTs) composite electrospun (E-CNT) membrane was tested and has showed a higher permeate flux compared to poly(vinylidene fluoride-co-hexafluoropropylene) (PH) electrospun membrane (E-PH membrane) in a direct contact MD (DCMD) configuration. Only 1% and 2% of CNTs incorporation resulted in an enhanced permeate flux with lower sensitivity to feed salinity while treating a 35 and 70 g/L NaCl solutions. Experimental results and the mechanisms of E-CNT membrane were validated by a proposed new step-modeling approach. The increased vapor transport in E-CNT membranes could not be elucidated by an enhancement of mass transfer only at a given physico-chemical properties. However, the theoretical modeling approach considering the heat and mass transfers simultaneously enabled to explain successfully the enhanced flux in the DCMD process using E-CNT membranes. This indicates that both mass and heat transfers improved by CNTs are attributed to the enhanced vapor transport in the E-CNT membrane.