WorldWideScience

Sample records for macroscopic stress state

  1. Assessments of macroscopicity for quantum optical states

    DEFF Research Database (Denmark)

    Laghaout, Amine; Neergaard-Nielsen, Jonas Schou; Andersen, Ulrik Lund

    2015-01-01

    With the slow but constant progress in the coherent control of quantum systems, it is now possible to create large quantum superpositions. There has therefore been an increased interest in quantifying any claims of macroscopicity. We attempt here to motivate three criteria which we believe should...... enter in the assessment of macroscopic quantumness: The number of quantum fluctuation photons, the purity of the states, and the ease with which the branches making up the state can be distinguished. © 2014....

  2. Observability of relative phases of macroscopic quantum states

    CERN Document Server

    Pati, A K

    1998-01-01

    After a measurement, to observe the relative phases of macroscopically distinguishable states we have to ``undo'' a quantum measurement. We generalise an earlier model of Peres from two state to N-state quantum system undergoing measurement process and discuss the issue of observing relative phases of different branches. We derive an inequality which is satisfied by the relative phases of macroscopically distinguishable states and consequently any desired relative phases can not be observed in interference setups. The principle of macroscopic complementarity is invoked that might be at ease with the macroscopic world. We illustrate the idea of limit on phase observability in Stern-Gerlach measurements and the implications are discussed.

  3. Experimental demonstration of macroscopic quantum coherence in Gaussian states

    DEFF Research Database (Denmark)

    Marquardt, C.; Andersen, Ulrik Lund; Leuchs, G.

    2007-01-01

    We witness experimentally the presence of macroscopic coherence in Gaussian quantum states using a recently proposed criterion [E. G. Cavalcanti and M. D. Reid, Phys. Rev. Lett. 97 170405 (2006)]. The macroscopic coherence stems from interference between macroscopically distinct states in phase...... space, and we prove experimentally that a coherent state contains these features with a distance in phase space of 0.51 +/- 0.02 shot noise units. This is surprising because coherent states are generally considered being at the border between classical and quantum states, not yet displaying any...

  4. Macroscopic modelling of solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.J.

    2007-01-01

    Solid-state fermentation is different from the more well known process of liquid fermentation because no free flowing water is present. The technique is primarily used in Asia. Well-known products are the foods tempe, soy sauce and saké. In industrial solid-state fermentation, the substrate usually

  5. Measurement-Induced Macroscopic Superposition States in Cavity Optomechanics

    Science.gov (United States)

    Hoff, Ulrich B.; Kollath-Bönig, Johann; Neergaard-Nielsen, Jonas S.; Andersen, Ulrik L.

    2016-09-01

    A novel protocol for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator is proposed, compatible with existing optomechanical devices operating in the bad-cavity limit. By combining a pulsed optomechanical quantum nondemolition (QND) interaction with nonclassical optical resources and measurement-induced feedback, the need for strong single-photon coupling is avoided. We outline a three-pulse sequence of QND interactions encompassing squeezing-enhanced cooling by measurement, state preparation, and tomography.

  6. Measurement-induced macroscopic superposition states in cavity optomechanics

    CERN Document Server

    Hoff, Ulrich B; Neergaard-Nielsen, Jonas S; Andersen, Ulrik L

    2016-01-01

    We present a novel proposal for generating quantum superpositions of macroscopically distinct states of a bulk mechanical oscillator, compatible with existing optomechanical devices operating in the readily achievable bad-cavity limit. The scheme is based on a pulsed cavity optomechanical quantum non-demolition (QND) interaction, driven by displaced non-Gaussian states, and measurement-induced feedback, avoiding the need for strong single-photon optomechanical coupling. Furthermore, we show that single-quadrature cooling of the mechanical oscillator is sufficient for efficient state preparation, and we outline a three-pulse protocol comprising a sequence of QND interactions for squeezing-enhanced cooling, state preparation, and tomography.

  7. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  8. Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States

    Science.gov (United States)

    Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.

    2016-06-01

    The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.

  9. Macroscopic heat transport equations and heat waves in nonequilibrium states

    Science.gov (United States)

    Guo, Yangyu; Jou, David; Wang, Moran

    2017-03-01

    Heat transport may behave as wave propagation when the time scale of processes decreases to be comparable to or smaller than the relaxation time of heat carriers. In this work, a generalized heat transport equation including nonlinear, nonlocal and relaxation terms is proposed, which sums up the Cattaneo-Vernotte, dual-phase-lag and phonon hydrodynamic models as special cases. In the frame of this equation, the heat wave propagations are investigated systematically in nonequilibrium steady states, which were usually studied around equilibrium states. The phase (or front) speed of heat waves is obtained through a perturbation solution to the heat differential equation, and found to be intimately related to the nonlinear and nonlocal terms. Thus, potential heat wave experiments in nonequilibrium states are devised to measure the coefficients in the generalized equation, which may throw light on understanding the physical mechanisms and macroscopic modeling of nanoscale heat transport.

  10. Macroscopic Greenberg-Horne-Zeilinger state and W state in charge qubits based on Coulomb blockade

    Science.gov (United States)

    Liang, L. M.; Wang, X. B.

    2010-03-01

    Based on Coulomb blockade, we propose a scheme to generate two types of three-qubit entanglement, known as Greenberg-Horne-Zeilinger (GHZ) state and W state, in a macroscopic quantum system. The qubit is encoded in the charge qubit in the superconducting system, and the scheme can be generalized to generate the GHZ state and W state in multi-partite charge qubits. The GHZ state and W state are the eigenstates of the respective idle Hamiltonian, so they have the long lifetime.

  11. Macroscopic realism, wave-particle duality and the superposition principle for entangled states

    CERN Document Server

    Chuprikov, N L

    2006-01-01

    On the basis of our model of a one-dimensional (1D) completed scattering (Russian Physics, 49, p.119 and p.314 (2006)) we argue that the linear formalism of quantum mechanics (QM) respects the principles of the macroscopic realism (J. Phys.: Condens. Matter, 14, R415-R451 (2002)). In QM one has to distinguish two kinds of pure ensembles: pure unentangled ensembles to be macroscopically inseparable, and pure entangled ones to be macroscopically separable. A pure entangled ensemble is an intermediate link between a pure unentangled ensemble and classical mixture. Like the former it strictly respects the linear formalism of QM. Like the latter it is decomposable into macroscopically distinct subensembles, in spite of interference between them; our new model exemplifies how to perform such a decomposition in the case of a 1D completed scattering. To respect macroscopic realism, the superposition principle must be reformulated: it must forbid introducing observables for entangled states.

  12. MACROSCOPIC RIVERS

    NARCIS (Netherlands)

    VANDENBERG, IP

    1991-01-01

    We present a mathematical model for the ''river-phenomenon'': striking concentrations of trajectories of ordinary differential equations. This model of ''macroscopic rivers'' is formulated within nonstandard analysis, and stated in terms of macroscopes and singular perturbations. For a subclass, the

  13. Metastable states and macroscopic quantum tunneling in a cold atom josephson ring

    Energy Technology Data Exchange (ETDEWEB)

    Solenov, Dmitry [Los Alamos National Laboratory; Mozyrsky, Dmitry [Los Alamos National Laboratory

    2009-01-01

    We study macroscopic properties of a system of weakly interacting neutral bosons confined in a ring-shaped potential with a Josephson junction. We derive an effective low energy action for this system and evaluate its properties. In particular we find that the system possesses a set of metastable current-carrying states and evaluate the rates of transitions between these states due to macroscopic quantum tunneling. Finally we discuss signatures of different metastable states in the time-of-flight images and argue that the effect is observable within currently available experimental technique.

  14. Reservoir engineering of a mechanical resonator: generating a macroscopic superposition state and monitoring its decoherence

    Science.gov (United States)

    Asjad, Muhammad; Vitali, David

    2014-02-01

    A deterministic scheme for generating a macroscopic superposition state of a nanomechanical resonator is proposed. The nonclassical state is generated through a suitably engineered dissipative dynamics exploiting the optomechanical quadratic interaction with a bichromatically driven optical cavity mode. The resulting driven dissipative dynamics can be employed for monitoring and testing the decoherence processes affecting the nanomechanical resonator under controlled conditions.

  15. Macroscopic Quantum Superposition States in a Model of Photon-Supersonic Phonon Interaction

    Institute of Scientific and Technical Information of China (English)

    CHAI Jin-Hua; WANG Yan-Bang; LU Yi-Qun

    2000-01-01

    A model of photon-hypersonic phonon interaction is proposed. The evolution of macroscopic quantum superpo sition states is analyzed, including the wave function and number distribution. It is shown that a superposition state of hypersonic phonon modes can be generated in the case of nondetuning and no losses.

  16. Tuned Transition from Quantum to Classical for Macroscopic Quantum States

    NARCIS (Netherlands)

    Fedorov, A.; Macha, P.; Feofanov, A.K.; Harmans, C.J.P.M.; Mooij, J.E.

    2011-01-01

    The boundary between the classical and quantum worlds has been intensely studied. It remains fascinating to explore how far the quantum concept can reach with use of specially fabricated elements. Here we employ a tunable flux qubit with basis states having persistent currents of 1  μA carried by a

  17. Microstructure and temperature dependence of intergranular strains on diffractometric macroscopic residual stress analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.N., E-mail: Julia.Wagner@kit.edu [KNMF, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Hofmann, M. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, Lichtenbergstr. 1, 85747 Garching (Germany); Wimpory, R. [Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin Wannsee (Germany); Krempaszky, C. [Christian-Doppler-Labor für Werkstoffmechanik von Hochleistungslegierungen, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, Boltzmannstr. 15, 85747 Garching (Germany); Stockinger, M. [Böhler Schmiedetechnik GmbH and Co KG, Mariazeller Straße 25, 8605 Kapfenberg (Austria)

    2014-11-17

    Knowledge of the macroscopic residual stresses in components of complex high performance alloys is crucial when it comes to considering the safety and manufacturing aspects of components. Diffraction experiments are one of the key methods for studying residual stresses. However a component of the residual strain determined by diffraction experiments, known as microstrain or intergranular residual strain, occurs over the length scale of the grains and thus plays only a minor role for the life time of such components. For the reliable determination of macroscopic strains (with the minimum influence of these intergranular residual strains), the ISO standard recommends the use of particular Bragg reflections. Here we compare the build-up of intergranular strain of two different precipitation hardened IN 718 (INCONEL 718) samples, with identical chemical composition. Since intergranular strains are also affected by temperature, results from room temperature measurement are compared to results at T=550 °C. It turned out that microstructural parameters, such as grain size or type of precipitates, have a larger effect on the intergranular strain evolution than the influence of temperature at the measurement temperature of T=550 °C. The results also show that the choice of Bragg reflections for the diffractometric residual stress analysis is dependent not only on its chemical composition, but also on the microstructure of the sample. In addition diffraction elastic constants (DECs) for all measured Bragg reflections are given.

  18. Thermal Equilibrium of a Macroscopic Quantum System in a Pure State

    Science.gov (United States)

    Goldstein, Sheldon; Huse, David A.; Lebowitz, Joel L.; Tumulka, Roderich

    2015-09-01

    We consider the notion of thermal equilibrium for an individual closed macroscopic quantum system in a pure state, i.e., described by a wave function. The macroscopic properties in thermal equilibrium of such a system, determined by its wave function, must be the same as those obtained from thermodynamics, e.g., spatial uniformity of temperature and chemical potential. When this is true we say that the system is in macroscopic thermal equilibrium (MATE). Such a system may, however, not be in microscopic thermal equilibrium (MITE). The latter requires that the reduced density matrices of small subsystems be close to those obtained from the microcanonical, equivalently the canonical, ensemble for the whole system. The distinction between MITE and MATE is particularly relevant for systems with many-body localization for which the energy eigenfuctions fail to be in MITE while necessarily most of them, but not all, are in MATE. We note, however, that for generic macroscopic systems, including those with MBL, most wave functions in an energy shell are in both MATE and MITE. For a classical macroscopic system, MATE holds for most phase points on the energy surface, but MITE fails to hold for any phase point.

  19. Macroscopic description of complex adaptive networks co-evolving with dynamic node states

    CERN Document Server

    Wiedermann, Marc; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-01-01

    In many real-world complex systems, the time-evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here, we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the co-evolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we show that in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability play a crucial role for the sustainability of the system's equilibrium state. We derive a macroscopic description of the system which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network and is applicable to many fields of study, such as epidemic spreading or social modeling.

  20. Improving macroscopic modeling of the effect of water and osmotic stresses on root water uptake.

    Science.gov (United States)

    Jorda Guerra, Helena; Vanderborght, Jan

    2015-04-01

    Accurate modeling of water and salt stresses on root water uptake is critical for predicting impacts of global change and climate variability on crop production and soil water balances. Soil-hydrological models use reduction functions to represent the effect of osmotic stress in transpiration. However, these functions, which were developed empirically, present limitations in relation to the time and spatial scale at which they need to be used, fail to include compensation processes and do not agree on how water and salt stresses interact. This research intends to develop a macroscopic reduction function for water and osmotic stresses based on biophysical knowledge. Simulation experiments are conducted for a range of atmospheric conditions, soil and plant properties, irrigation water quality and scheduling using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system (Schröder et al., 2013). The effect of salt concentrations on water flow in the soil-root system is accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. In a first step, simulation experiments are carried out in a soil volume around a single root segment. We discuss how the simulation setup can be defined so as to represent: (i) certain characteristics of the root system such as rooting depth and root length density, (ii) plant transpiration rate, (iii) leaching fraction of the irrigation, and (iii) salinity of the irrigation water. The output of these simulation experiments gives a first insight in the effect of salinity on transpiration and on the relation between the bulk salinity in the soil voxel, which is used in macroscopic salt stress functions of models that do not resolve processes at the root segment scale, and the salinity at the soil-root interface, which determines the actual

  1. Nanoscale patterning, macroscopic reconstruction, and enhanced surface stress by organic adsorption on vicinal surfaces

    Science.gov (United States)

    Pollinger, Florian; Schmitt, Stefan; Sander, Dirk; Tian, Zhen; Kirschner, Jürgen; Vrdoljak, Pavo; Stadler, Christoph; Maier, Florian; Marchetto, Helder; Schmidt, Thomas; Schöll, Achim; Umbach, Eberhard

    2017-01-01

    Self-organization is a promising method within the framework of bottom-up architectures to generate nanostructures in an efficient way. The present work demonstrates that self-organization on the length scale of a few to several tens of nanometers can be achieved by a proper combination of a large (organic) molecule and a vicinal metal surface if the local bonding of the molecule on steps is significantly stronger than that on low-index surfaces. In this case thermal annealing may lead to large mass transport of the subjacent substrate atoms such that nanometer-wide and micrometer-long molecular stripes or other patterns are being formed on high-index planes. The formation of these patterns can be controlled by the initial surface orientation and adsorbate coverage. The patterns arrange self-organized in regular arrays by repulsive mechanical interactions over long distances accompanied by a significant enhancement of surface stress. We demonstrate this effect using the planar organic molecule PTCDA as adsorbate and Ag(10 8 7) and Ag(775) surfaces as substrate. The patterns are directly observed by STM, the formation of vicinal surfaces is monitored by high-resolution electron diffraction, the microscopic surface morphology changes are followed by spectro-microscopy, and the macroscopic changes of surface stress are measured by a cantilever bending method. The in situ combination of these complementary techniques provides compelling evidence for elastic interaction and a significant stress contribution to long-range order and nanopattern formation.

  2. Solution of Macroscopic State Equations of Blume-Capel Model Using Nonlinear Dynamics Concepts

    Directory of Open Access Journals (Sweden)

    Asaf Tolga Ülgen

    2013-01-01

    Full Text Available The macroscopic state equations of Blume-Capel Model were solved by using the concepts of nonlinear dynamics. Negative and positive exchange constant values yield bifurcations of pitchfork and subcritical flip types, respectively. Hence, we obtained bifurcations corresponding to second order phase transitions. The critical values of parameters were calculated from the neutral stability condition and the 3-dimensional phase diagram was plotted.

  3. Creation of macroscopic superpositions of flow states with Bose-Einstein condensates

    OpenAIRE

    Dunningham, Jacob; Hallwood, David

    2006-01-01

    We present a straightforward scheme for creating macroscopic superpositions of different superfluid flow states of Bose-Einstein condensates trapped in optical lattices. This scheme has the great advantage that all the techniques required are achievable with current experiments. Furthermore, the relative difficulty of creating cats scales favorably with the size of the cat. This means that this scheme may be well-suited to creating superpositions involving large numbers of particles. Such sta...

  4. State-space based analysis and forecasting of macroscopic road safety trends in Greece.

    Science.gov (United States)

    Antoniou, Constantinos; Yannis, George

    2013-11-01

    In this paper, macroscopic road safety trends in Greece are analyzed using state-space models and data for 52 years (1960-2011). Seemingly unrelated time series equations (SUTSE) models are developed first, followed by richer latent risk time-series (LRT) models. As reliable estimates of vehicle-kilometers are not available for Greece, the number of vehicles in circulation is used as a proxy to the exposure. Alternative considered models are presented and discussed, including diagnostics for the assessment of their model quality and recommendations for further enrichment of this model. Important interventions were incorporated in the models developed (1986 financial crisis, 1991 old-car exchange scheme, 1996 new road fatality definition) and found statistically significant. Furthermore, the forecasting results using data up to 2008 were compared with final actual data (2009-2011) indicating that the models perform properly, even in unusual situations, like the current strong financial crisis in Greece. Forecasting results up to 2020 are also presented and compared with the forecasts of a model that explicitly considers the currently on-going recession. Modeling the recession, and assuming that it will end by 2013, results in more reasonable estimates of risk and vehicle-kilometers for the 2020 horizon. This research demonstrates the benefits of using advanced state-space modeling techniques for modeling macroscopic road safety trends, such as allowing the explicit modeling of interventions. The challenges associated with the application of such state-of-the-art models for macroscopic phenomena, such as traffic fatalities in a region or country, are also highlighted. Furthermore, it is demonstrated that it is possible to apply such complex models using the relatively short time-series that are available in macroscopic road safety analysis.

  5. Application of a single root-scale model to improve macroscopic modeling of root water uptake: focus on osmotic stress

    Science.gov (United States)

    Jorda, Helena; Perelman, Adi; Lazarovitch, Naftali; Vanderborght, Jan

    2017-04-01

    Root water uptake is a fundamental process in the hydrological cycle and it largely regulates the water balance in the soil vadose zone. Macroscopic stress functions are currently used to estimate the effect of salinity on root water uptake. These functions commonly assume stress to be a function of bulk salinity and of the plant sensitivity to osmotic stress expressed as the salinity at which transpiration is reduced by half or so called tolerance value. However, they fail to integrate additional relevant factors such as atmospheric conditions or root architectural traits. We conducted a comprehensive simulation study on a single root using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system. The effect of salt concentrations on root water uptake was accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. A large set of factors were studied, namely, potential transpiration rate and dynamics, root length density (RLD), irrigation water quality and irrigation frequency, and leaching fraction. Results were fitted to the macroscopic function developed by van Genuchten and Hoffman (1984) and the dependency of osmotic stress and the fitted macroscopic parameters on the studied factors was evaluated. Osmotic stress was found to be highly dependent on RLD. Low RLDs result in a larger stress to the plant due to high evaporative demand per root length unit. In addition, osmotic stress was positively correlated to potential transpiration rate, and sinusoidal potential transpiration lead to larger stress than when imposed as a constant boundary condition. Macroscopic parameters are usually computed as single values for each crop and used for the entire growing season. However, our study shows that both tolerance value and shape parameter p from the van Genuchten

  6. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    Science.gov (United States)

    Hou, P.-Y.; Huang, Y.-Y.; Yuan, X.-X.; Chang, X.-Y.; Zu, C.; He, L.; Duan, L.-M.

    2016-05-01

    With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Here, building on the recent remarkable progress in optical control of motional states of diamonds, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum process tomography, we demonstrate average teleportation fidelity (90.6+/-1.0)%, clearly exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for optomechanical quantum control and quantum information science.

  7. Ground State Properties of Superheavy Nuclei in Macroscopic-Microscopic Model

    Institute of Scientific and Technical Information of China (English)

    ZHI Qi-Jun; REN Zhong-Zhou; ZHANG Xiao-Ping; ZHENG Qiang

    2008-01-01

    The ground state properties of superheavy nuclei are systematically calculated by the macroscopic-microscopic (MM) model with the Nilsson potential The calculations well produced the ground state binding energies,a-decay energies,and half lives of superheavy nuclei.The calculated results are systematically compared with available experimental data.The calculated results are also compared with theoretical results from other MM models and from relativistic mean-field model.The calculations and comparisons show that the MM model is reliable in superheavy region and that the MM model results are not very sensitive to the choice of microscopic single-particle potential.

  8. Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.

    Science.gov (United States)

    Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D

    2015-11-01

    Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.

  9. Generation of a macroscopic entangled coherent state using quantum memories in circuit QED

    Science.gov (United States)

    Liu, Tong; Su, Qi-Ping; Xiong, Shao-Jie; Liu, Jin-Ming; Yang, Chui-Ping; Nori, Franco

    2016-01-01

    W-type entangled states can be used as quantum channels for, e.g., quantum teleportation, quantum dense coding, and quantum key distribution. In this work, we propose a way to generate a macroscopic W-type entangled coherent state using quantum memories in circuit QED. The memories considered here are nitrogen-vacancy center ensembles (NVEs), each located in a different cavity. This proposal does not require initially preparing each NVE in a coherent state instead of a ground state, which should significantly reduce its experimental difficulty. For most of the operation time, each cavity remains in a vacuum state, thus decoherence caused by the cavity decay and the unwanted inter-cavity crosstalk are greatly suppressed. Moreover, only one external-cavity coupler qubit is needed, which simplifies the circuit. PMID:27562055

  10. Macroscopic description of complex adaptive networks coevolving with dynamic node states

    Science.gov (United States)

    Wiedermann, Marc; Donges, Jonathan F.; Heitzig, Jobst; Lucht, Wolfgang; Kurths, Jürgen

    2015-05-01

    In many real-world complex systems, the time evolution of the network's structure and the dynamic state of its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the sustainability of the system's equilibrium state. We derive a macroscopic description of the system in terms of ordinary differential equations which provides a general framework to model and quantify the influence of single node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.

  11. Macroscopic states induced in superconducting media by a transport current under flux creep

    Science.gov (United States)

    Romanovskii, V. R.

    2016-08-01

    The physical features of the formation of macroscopic states of superconducting composites consisting of a superconductor and a coating under flux creep are discussed. It is demonstrated that there exist characteristic electric field strengths depending on the properties of the superconductor, cooling conditions, and characteristics of the stabilizing coating, which affect the intensity of the E-I characteristics of the superconducting composites. Analysis shows that the measurements of the critical properties of superconductors can be accompanied by a nonuniform electric field distribution over the composite cross section and high stable superheating of the superconductor, which do not lead to superconductivity breaking.

  12. Two-channel Kondo effect and renormalization flow with macroscopic quantum charge states.

    Science.gov (United States)

    Iftikhar, Z; Jezouin, S; Anthore, A; Gennser, U; Parmentier, F D; Cavanna, A; Pierre, F

    2015-10-08

    Many-body correlations and macroscopic quantum behaviours are fascinating condensed matter problems. A powerful test-bed for the many-body concepts and methods is the Kondo effect, which entails the coupling of a quantum impurity to a continuum of states. It is central in highly correlated systems and can be explored with tunable nanostructures. Although Kondo physics is usually associated with the hybridization of itinerant electrons with microscopic magnetic moments, theory predicts that it can arise whenever degenerate quantum states are coupled to a continuum. Here we demonstrate the previously elusive 'charge' Kondo effect in a hybrid metal-semiconductor implementation of a single-electron transistor, with a quantum pseudospin of 1/2 constituted by two degenerate macroscopic charge states of a metallic island. In contrast to other Kondo nanostructures, each conduction channel connecting the island to an electrode constitutes a distinct and fully tunable Kondo channel, thereby providing unprecedented access to the two-channel Kondo effect and a clear path to multi-channel Kondo physics. Using a weakly coupled probe, we find the renormalization flow, as temperature is reduced, of two Kondo channels competing to screen the charge pseudospin. This provides a direct view of how the predicted quantum phase transition develops across the symmetric quantum critical point. Detuning the pseudospin away from degeneracy, we demonstrate, on a fully characterized device, quantitative agreement with the predictions for the finite-temperature crossover from quantum criticality.

  13. Quantum teleportation from light beams to vibrational states of a macroscopic diamond

    Science.gov (United States)

    Hou, Panyu; Huang, Yuanyuan; Yuan, Xinxing; Chang, Xiuying; Zu, Chong; He, Li; Duan, Luming; CenterQuantum Information, IIIS, Tsinghua University, Beijing 100084, PR China Team; Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA Team

    2016-05-01

    Quantum teleportation is an unusual disembodied form of quantum information transfer through pre-shared entanglement and classical communication, which has found important applications for realization of various quantum technologies. It is of both fundamental interest and practical importance to push quantum teleportation towards macroscopic objects. With the recent development of optomechanics, the vibration in solids, involving collective motion of trillions of atoms, gradually enters into the realm of quantum control. Built on the recent remarkable progress in optical control of motional states in diamond, we report an experimental demonstration of quantum teleportation from light beams to vibrational states of a macroscopic diamond under ambient conditions. Through quantum state tomography, we demonstrate an average teleportation fidelity (90.6 +/- 1.0)%, exceeding the classical limit of 2/3. The experiment pushes the target of quantum teleportation to the biggest object so far, with interesting implications for quantum foundational studies, optomechanical quantum control and quantum information science. Center for Quantum Information, IIIS, Tsinghua University.

  14. Cholesterics of colloidal helices: Predicting the macroscopic pitch from the particle shape and thermodynamic state

    Energy Technology Data Exchange (ETDEWEB)

    Dussi, Simone, E-mail: s.dussi@uu.nl; Dijkstra, Marjolein, E-mail: m.dijkstra1@uu.nl [Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands); Belli, Simone; Roij, René van [Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2015-02-21

    Building a general theoretical framework to describe the microscopic origin of macroscopic chirality in (colloidal) liquid crystals is a long-standing challenge. Here, we combine classical density functional theory with Monte Carlo calculations of virial-type coefficients to obtain the equilibrium cholesteric pitch as a function of thermodynamic state and microscopic details. Applying the theory to hard helices, we observe both right- and left-handed cholesteric phases that depend on a subtle combination of particle geometry and system density. In particular, we find that entropy alone can even lead to a (double) inversion in the cholesteric sense of twist upon changing the packing fraction. We show how the competition between single-particle properties (shape) and thermodynamics (local alignment) dictates the macroscopic chiral behavior. Moreover, by expanding our free-energy functional, we are able to assess, quantitatively, Straley’s theory of weak chirality, which is used in several earlier studies. Furthermore, by extending our theory to different lyotropic and thermotropic liquid-crystal models, we analyze the effect of an additional soft interaction on the chiral behavior of the helices. Finally, we provide some guidelines for the description of more complex chiral phases, like twist-bend nematics. Our results provide new insights into the role of entropy in the microscopic origin of this state of matter.

  15. Macroscopic-microscopic calculations of ground state properties of superheavy nuclei

    Institute of Scientific and Technical Information of China (English)

    ZHI Qi-jun; Mao Ying-chen; REN Zhong-zhou

    2006-01-01

    We systematically calculate the ground state properties of superheavy even-even nuclei with proton number Z=94-118.The calculations are based on the liquid drop macroscopic model and the microscopic model with the modified single-particle oscillator potential. The calculated binding energies and α-decay energies agree well with the experimental data.The reliability of the macroscopic-microscopic(MM)model for superheavy nuclei is confirmed by the good agreement between calculated results and experimental ones. Detailed comparisons between our calculations and M(o)ller's are made.It is found that the calculated results also agree with M(o)ller's results and that the MM model is insensitive to the microscopic single-particle potential. Calculated results are also compared with results from relativistic mean-field (RMF)model and from Skyrme-Hatree-Fock(SHF) model.In addition,half-lives,deformations and shape coexistence are also investigated.The properties of some unknown nuclei are predicted and they will be useful for future experimental researches of superheavy nuclei.

  16. Macroscopic manipulation of high-order-harmonic generation through bound-state coherent control.

    Science.gov (United States)

    Hadas, Itai; Bahabad, Alon

    2014-12-19

    We propose a paradigm for macroscopic control of high-order harmonic generation by modulating the bound-state population of the medium atoms. A unique result of this scheme is that apart from regular spatial quasi-phase-matching (QPM), also purely temporal QPM of the emitted radiation can be established. Our simulations demonstrate temporal QPM by inducing homogenous Rabi oscillations in the medium and also spatial QPM by creating a grating of population inversion using the process of rapid adiabatic passage. In the simulations a scaled version of high-order harmonic generation is used: a far off-resonance 2.6  μm source generates UV-visible high-order harmonics from alkali-metal-atom vapor, while a resonant near IR source is used to coherently control the medium.

  17. Information processing reveals how microscopic components affect the macroscopic system-state in complex networks

    CERN Document Server

    Quax, Rick; Sloot, Peter M A

    2013-01-01

    Nature processes information. We observe this from physical systems, which register information in the system state, transfer information through interactions, and lose information due to thermal noise. Being able to quantify this information processing could lead to a unifying framework for a better understanding of complex systems. In this letter we present a formalism to describe to what extent a macroscopic system is affected by the microstates of its constituents. We study this numerically for a scale-free network of Ising-spins, a prototypical complex system, and present an answer to the unexplained phenomenon that real systems with a heterogeneous topology are mainly controlled by nodes with fewer connections. Counter to intuition we find that due to selective information dissipation, not the hubs but rather the intermediately connected nodes are remembered best by the system. Our study reveals that the framework of information processing improves our understanding of complex systems at large.

  18. Excavating abiotic stress-related gene resources of terrestrial macroscopic cyanobacteria for crop genetic engineering: dawn and challenge.

    Science.gov (United States)

    Ye, Shuifeng; Gao, Xiang

    2015-01-01

    Genetically engineered (GE) crops with resistance to environmental stresses are one of the most important solutions for future food security. Numerous genes associated to plant stress resistance have been identified and characterized. However, the current reality is that only a few transgenic crops expressing prokaryotic genes are successfully applied in field conditions. These few prokaryotic genes include Agrobacterium strain CP4 EPSPS gene, Bacillus thuringiensis Cry1Ab gene and a bacterial chaperonin gene. Thus, the excavation of potentially critical genes still remains an arduous task for crop engineering. Terrestrial macroscopic cyanobacteria, Nostoc commune and Nostoc flagelliforme, which exhibit extreme resistance to desiccation stress, may serve as new prokaryotic bioresources for excavating critical genes. Recently, their marker gene wspA was heterologously expressed in Arabidopsis plant and the transgenics exhibited more flourishing root systems than wild-type plants under osmotic stress condition. In addition, some new genes associated with drought response and adaptation in N. flagelliforme are being uncovered by our ongoing RNA-seq analysis. Although the relevant work about the terrestrial macroscopic cyanobacteria is still underway, we believe that the prospect of excavating their critical genes for application in GE crops is quite optimistic.

  19. Prediction of residual stress due to early age behaviour of massive concrete structures: on site experiments and macroscopic modelling

    CERN Document Server

    Zreiki, Jihad; Chaouche, Mohend; Moranville, Micheline

    2008-01-01

    Early age behaviour of concrete is based on complex multi-physical and multiscale phenomena. The predication of both cracking risk and residual stresses in hardened concrete structures is still a challenging task. We propose in this paper a practical method to characterize in the construction site the material parameters and to identify a macroscopic model from simple tests. We propose for instance to use a restrained shrinkage ring test to identify a basic early age creep model based on a simple ageing visco-elastic Kelvin model. The strain data obtained from this test can be treated through an early age finite element incremental procedure such that the fitting parameters of the creep law can be quickly identified. The others properties of concrete have been measured at different ages (elastic properties, hydration kinetics, and coefficient of thermal expansion). From the identified early age model, we computed the temperature rise and the stress development in a non reinforced concrete stress for nuclear w...

  20. Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies

    Science.gov (United States)

    de Vega, H. J.; Sanchez, N. G.

    2017-02-01

    The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f( E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r_h , mass M_h , velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M_h ≳ 2.3 × 10^6 M_⊙ and effective temperatures T_0 > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 × 10^6 M_⊙ ≳ M_h ≳ M_{h,min} ˜eq 3.10 × 10^4 (2 {keV}/m)^{16/5} M_⊙, T_0 < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T_0 = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r_h , the squared velocity v^2(r_h) and the temperature T_0 turn to exhibit square-root of M_h scaling laws. The normalized density profiles ρ (r)/ρ (0) and the normalized velocity profiles v^2(r)/ v^2(0) are universal functions of r/r_h reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For the small galaxies, 10^6 ≳ M_h ≥ M_{h,min} , the equation of state is galaxy mass dependent and the density and velocity profiles are not

  1. Equation of state, universal profiles, scaling and macroscopic quantum effects in warm dark matter galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Vega, H.J. de [Sorbonne Universites, Universite Pierre et Marie Curie UPMC Paris VI, LPTHE CNRS UMR 7589, Paris Cedex 05 (France); Sanchez, N.G. [Observatoire de Paris PSL Research University, Sorbonne Universites UPMC Paris VI, Observatoire de Paris, LERMA CNRS UMR 8112, Paris (France)

    2017-02-15

    The Thomas-Fermi approach to galaxy structure determines self-consistently and non-linearly the gravitational potential of the fermionic warm dark matter (WDM) particles given their quantum distribution function f(E). This semiclassical framework accounts for the quantum nature and high number of DM particles, properly describing gravitational bounded and quantum macroscopic systems as neutron stars, white dwarfs and WDM galaxies. We express the main galaxy magnitudes as the halo radius r{sub h}, mass M{sub h}, velocity dispersion and phase space density in terms of the surface density which is important to confront to observations. From these expressions we derive the general equation of state for galaxies, i.e., the relation between pressure and density, and provide its analytic expression. Two regimes clearly show up: (1) Large diluted galaxies for M{sub h} >or similar 2.3 x 10{sup 6} M {sub CircleDot} and effective temperatures T{sub 0} > 0.017 K described by the classical self-gravitating WDM Boltzman gas with a space-dependent perfect gas equation of state, and (2) Compact dwarf galaxies for 1.6 x 10{sup 6} M {sub CircleDot} >or similar M{sub h} >or similar M{sub h,min} ≅ 3.10 x 10{sup 4} (2 keV/m){sup (16)/(5)} M {sub CircleDot}, T{sub 0} < 0.011 K described by the quantum fermionic WDM regime with a steeper equation of state close to the degenerate state. In particular, the T{sub 0} = 0 degenerate or extreme quantum limit yields the most compact and smallest galaxy. In the diluted regime, the halo radius r{sub h}, the squared velocity v{sup 2}(r{sub h}) and the temperature T{sub 0} turn to exhibit square-root of M{sub h} scaling laws. The normalized density profiles ρ(r)/ρ(0) and the normalized velocity profiles v{sup 2}(r)/v{sup 2}(0) are universal functions of r/r{sub h} reflecting the WDM perfect gas behavior in this regime. These theoretical results contrasted to robust and independent sets of galaxy data remarkably reproduce the observations. For

  2. Achieving large macroscopic compressive plastic deformation and work-hardening-like behavior in a monolithic bulk metallic glass by tailoring stress distribution

    Science.gov (United States)

    Chen, L. Y.; Ge, Q.; Qu, S.; Jiang, Q. K.; Nie, X. P.; Jiang, J. Z.

    2008-05-01

    The limited plastic deformation and lack of work hardening seriously restrict the applications of bulk metallic glasses (BMGs). Here, large macroscopic compressive plastic deformation (over 15%) and work-hardening-like behavior were achieved in a monolithic BMG through tailoring loading stress distribution experimentally. Numerical analysis was also carried out to investigate the stress distribution under the same mechanical condition. It is shown that loading induced stress gradient is responsible for the achievement mentioned above.

  3. Improved microscopic-macroscopic approach incorporating the effects of continuum states

    CERN Document Server

    Tajima, Naoki; Takahara, Satoshi

    2010-01-01

    The Woods-Saxon-Strutinsky method (the microscopic-macroscopic method) combined with Kruppa's prescription for positive energy levels, which is necessary to treat neutron rich nuclei, is studied to clarify the reason for its success and to propose improvements for its shortcomings. The reason why the plateau condition is met for the Nilsson model but not for the Woods-Saxon model is understood in a new interpretation of the Strutinsky smoothing procedure as a low-pass filter. Essential features of Kruppa's level density is extracted in terms of the Thomas-Fermi approximation modified to describe spectra obtained from diagonalization in truncated oscillator bases. A method is proposed which weakens the dependence on the smoothing width by applying the Strutinsky smoothing only to the deviations from a reference level density. The BCS equations are modified for the Kruppa's spectrum, which is necessary to treat the pairing correlation properly in the presence of continuum. The potential depth is adjusted for th...

  4. Developing a Macroscopic Mechanistic Model for Low Molecular Weight Diffusion through Polymers in the Rubbery State

    DEFF Research Database (Denmark)

    Martinez-Lopez, Brais; Huguet, P.; Gontard, N.

    2016-01-01

    frequency of their bonds by reconstructing their theoretical spectra. Results showed that the use of molecular descriptors that take into account flexibility rather than the most stable conformation of the diffusing molecules may improve the description of the diffusion behavior caused by variations...... in shape and size of the free volumes of the polymeric matrix in the rubbery state....

  5. Using attenuated total reflection Fourier transform infrared spectroscopy (ATR FT-IR) to study the molecular conformation of parchment artifacts in different macroscopic states.

    Science.gov (United States)

    Gonzalez, Lee; Wade, Matthew; Bell, Nancy; Thomas, Kate; Wess, Tim

    2013-02-01

    Maintaining appropriate temperatures and relative humidity is considered essential to extending the useful life of parchment artifacts. Although the relationship between environmental factors and changes to the physical state of artifacts is reasonably understood, an improved understanding of the relationship between the molecular conformation and changes to the macroscopic condition of parchment is needed to optimize environmental conditions. Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR FT-IR) analysis, the conformation of the molecular structure in selected parchment samples with specific macroscopic conditions, typically discoloration and planar deformations (e.g., cockling and tearing), have been made. The results of this investigation showed that the Fourier transform infrared signal differs for parchment samples exhibiting different macroscopic conditions. In areas exhibiting planar deformation, a change in the Fourier Transform Infrared signal was observed that indicates unfolding of the molecular conformation. In comparison, the discolored samples showed a change in molecular conformation that indicates a chemical change within the collagen molecular structure. This paper discusses the possible causal associations and implications of these findings for the conservation and preservation of parchment artifacts.

  6. State of stress in the conterminous United States

    Science.gov (United States)

    Zoback, Mary Lou; Zoback, Mark

    1980-11-01

    Inferring principal stress directions from geologic data, focal mechanisms, and in situ stress measurements, we have prepared a map of principal horizontal stress orientations for the conterminous United States. Stress provinces with linear dimensions which range between 100 and 2000 km were defined on the basis of the directions and relative magnitude of principal stresses. Within a given province, stress orientations appear quite uniform (usually within the estimated range of accuracy of the different methods used to determine stress). Available data on the transition in stress direction between the different stress provinces indicate that these transitions can be abrupt, occurring over characterized by high levels of seismicity and generally high heat flow, the stress pattern is complex, but numerous stress provinces can be well delineated. Despite relative tectonic quiescence in the eastern and central United States, a major variation in principal stress orientation is apparent between the Atlantic Coast and midcontinent areas. Most of the eastern United States is marked by predominantly compressional tectonism (combined thrust and strike slip faulting), whereas much of the region west of the southern Great Plains is characterized by predominantly extensional tectonism (combined normal and strike slip faulting). Deformation along the San Andreas fault and in parts of the Sierra Nevada is nearly pure strike slip. Exceptions to this general pattern include areas of compressional tectonics in the western United States (the Pacific Northwest, the Colorado Plateau interior, and the Big Bend segment of the San Andreas fault) and the normal growth faulting along the Gulf Coastal Plain. Sources of stress are constrained not only by the orientation and relative magnitude of the stresses within a given province but also by the manner of transition of the stress field from one province to another. Much of the modern pattern of stress in the western United States can be

  7. The State of Stress Beyond the Borehole

    Science.gov (United States)

    Johnson, P. A.; Coblentz, D. D.; Maceira, M.; Delorey, A. A.; Guyer, R. A.

    2015-12-01

    The state of stress controls all in-situ reservoir activities and yet we lack the quantitative means to measure it. This problem is important in light of the fact that the subsurface provides more than 80 percent of the energy used in the United States and serves as a reservoir for geological carbon sequestration, used fuel disposition, and nuclear waste storage. Adaptive control of subsurface fractures and fluid flow is a crosscutting challenge being addressed by the new Department of Energy SubTER Initiative that has the potential to transform subsurface energy production and waste storage strategies. Our methodology to address the above mentioned matter is based on a novel Advance Multi-Physics Tomographic (AMT) approach for determining the state of stress, thereby facilitating our ability to monitor and control subsurface geomechanical processes. We developed the AMT algorithm for deriving state-of-stress from integrated density and seismic velocity models and demonstrate the feasibility by applying the AMT approach to synthetic data sets to assess accuracy and resolution of the method as a function of the quality and type of geophysical data. With this method we can produce regional- to basin-scale maps of the background state of stress and identify regions where stresses are changing. Our approach is based on our major advances in the joint inversion of gravity and seismic data to obtain the elastic properties for the subsurface; and coupling afterwards the output from this joint-inversion with theoretical model such that strain (and subsequently) stress can be computed. Ultimately we will obtain the differential state of stress over time to identify and monitor critically stressed faults and evolving regions within the reservoir, and relate them to anthropogenic activities such as fluid/gas injection.

  8. J-aggregation, its impact on excited state dynamics and unique solvent effects on macroscopic assembly of a core-substituted naphthalenediimide

    KAUST Repository

    Kar, Haridas

    2015-03-12

    Herein we reveal a straightforward supramolecular design for the H-bonding driven J-aggregation of an amine-substituted cNDI in aliphatic hydrocarbons. Transient absorption spectroscopy reveals sub-ps intramolecular electron transfer in isolated NDI molecules in a THF solution followed by a fast recombination process, while a remarkable extension of the excited state lifetime by more than one order of magnitude occurred in methylcyclohexane likely owing to an increased charge-separation as a result of better delocalization of the charge-separated states in J-aggregates. We also describe unique solvent-effects on the macroscopic structure and morphology. While J-aggregation with similar photophysical characteristics was noticed in all the tested aliphatic hydrocarbons, the morphology strongly depends on the “structure” of the solvents. In linear hydrocarbons (n-hexane, n-octane, n-decane or n-dodecane), formation of an entangled fibrillar network leads to macroscopic gelation while in cyclic hydrocarbons (methylcyclohexane or cyclohexane) although having a similar polarity, the cNDI exhibits nanoscale spherical particles. These unprecedented solvent effects were rationalized by establishing structure-dependent specific interactions of the solvent molecules with the cNDI which may serve as a general guideline for solvent-induced morphology-control of structurally related self-assembled materials.

  9. Stress Exposure, Food Intake, and Emotional State

    Science.gov (United States)

    Ulrich-Lai, Yvonne M.; Fulton, Stephanie; Wilson, Mark; Petrovich, Gorica; Rinaman, Linda

    2016-01-01

    This manuscript summarizes the proceedings of the symposium entitled, “Stress, Palatable Food and Reward”, that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr. Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr. Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr. Mark Wilson describes his group’s research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Lastly, Dr. Gorica Petrovich discusses her research program that is aimed at defining cortical–amygdalar–hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e., fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential, and environmental factors. PMID:26303312

  10. Stress exposure, food intake and emotional state.

    Science.gov (United States)

    Ulrich-Lai, Yvonne M; Fulton, Stephanie; Wilson, Mark; Petrovich, Gorica; Rinaman, Linda

    2015-01-01

    This manuscript summarizes the proceedings of the symposium entitled, "Stress, Palatable Food and Reward", that was chaired by Drs. Linda Rinaman and Yvonne Ulrich-Lai at the 2014 Neurobiology of Stress Workshop held in Cincinnati, OH. This symposium comprised research presentations by four neuroscientists whose work focuses on the biological bases for complex interactions among stress, food intake and emotion. First, Dr Ulrich-Lai describes her rodent research exploring mechanisms by which the rewarding properties of sweet palatable foods confer stress relief. Second, Dr Stephanie Fulton discusses her work in which excessive, long-term intake of dietary lipids, as well as their subsequent withdrawal, promotes stress-related outcomes in mice. Third, Dr Mark Wilson describes his group's research examining the effects of social hierarchy-related stress on food intake and diet choice in group-housed female rhesus macaques, and compared the data from monkeys to results obtained in analogous work using rodents. Finally, Dr Gorica Petrovich discusses her research program that is aimed at defining cortical-amygdalar-hypothalamic circuitry responsible for curbing food intake during emotional threat (i.e. fear anticipation) in rats. Their collective results reveal the complexity of physiological and behavioral interactions that link stress, food intake and emotional state, and suggest new avenues of research to probe the impact of genetic, metabolic, social, experiential and environmental factors on these interactions.

  11. Interference of macroscopic superpositions

    CERN Document Server

    Vecchi, I

    2000-01-01

    We propose a simple experimental procedure based on the Elitzur-Vaidman scheme to implement a quantum nondemolition measurement testing the persistence of macroscopic superpositions. We conjecture that its implementation will reveal the persistence of superpositions of macroscopic objects in the absence of a direct act of observation.

  12. Rank distributions: A panoramic macroscopic outlook

    Science.gov (United States)

    Eliazar, Iddo I.; Cohen, Morrel H.

    2014-01-01

    This paper presents a panoramic macroscopic outlook of rank distributions. We establish a general framework for the analysis of rank distributions, which classifies them into five macroscopic "socioeconomic" states: monarchy, oligarchy-feudalism, criticality, socialism-capitalism, and communism. Oligarchy-feudalism is shown to be characterized by discrete macroscopic rank distributions, and socialism-capitalism is shown to be characterized by continuous macroscopic size distributions. Criticality is a transition state between oligarchy-feudalism and socialism-capitalism, which can manifest allometric scaling with multifractal spectra. Monarchy and communism are extreme forms of oligarchy-feudalism and socialism-capitalism, respectively, in which the intrinsic randomness vanishes. The general framework is applied to three different models of rank distributions—top-down, bottom-up, and global—and unveils each model's macroscopic universality and versatility. The global model yields a macroscopic classification of the generalized Zipf law, an omnipresent form of rank distributions observed across the sciences. An amalgamation of the three models establishes a universal rank-distribution explanation for the macroscopic emergence of a prevalent class of continuous size distributions, ones governed by unimodal densities with both Pareto and inverse-Pareto power-law tails.

  13. Macroscopic quantum resonators (MAQRO)

    CERN Document Server

    Kaltenbaek, Rainer; Kiesel, Nikolai; Romero-Isart, Oriol; Johann, Ulrich; Aspelmeyer, Markus

    2012-01-01

    Quantum physics challenges our understanding of the nature of physical reality and of space-time and suggests the necessity of radical revisions of their underlying concepts. Experimental tests of quantum phenomena involving massive macroscopic objects would provide novel insights into these fundamental questions. Making use of the unique environment provided by space, MAQRO aims at investigating this largely unexplored realm of macroscopic quantum physics. MAQRO has originally been proposed as a medium-sized fundamental-science space mission for the 2010 call of Cosmic Vision. MAQRO unites two experiments: DECIDE (DECoherence In Double-Slit Experiments) and CASE (Comparative Acceleration Sensing Experiment). The main scientific objective of MAQRO, which is addressed by the experiment DECIDE, is to test the predictions of quantum theory for quantum superpositions of macroscopic objects containing more than 10e8 atoms. Under these conditions, deviations due to various suggested alternative models to quantum th...

  14. The effects of perceived stress, traits, mood states, and stressful daily events on salivary cortisol

    NARCIS (Netherlands)

    vanEck, M; Berkhof, H; Nicolson, N; Sulon, J

    1996-01-01

    This study examined the effects of perceived stress and related individual characteristics, mood states, and stressful daily events on salivary cortisol levels. Forty-one ''high stress'' and 46 ''low stress'' subjects were selected on the basis of Perceived Stress Scale scores from a sample of male,

  15. Stress state in turbopump bearing induced by shrink fitting

    Science.gov (United States)

    Sims, P.; Zee, R.

    1991-01-01

    The stress generated by shrink fitting in bearing-like geometries is studied. The feasibility of using strain gages to determine the strain induced by shrink fitting process is demonstrated. Results from a ring with a uniform cross section reveal the validity of simple stress mechanics calculations for determining the stress state induced in this geometry by shrink fitting.

  16. Covariant Macroscopic Quantum Geometry

    CERN Document Server

    Hogan, Craig J

    2012-01-01

    A covariant noncommutative algebra of position operators is presented, and interpreted as the macroscopic limit of a geometry that describes a collective quantum behavior of the positions of massive bodies in a flat emergent space-time. The commutator defines a quantum-geometrical relationship between world lines that depends on their separation and relative velocity, but on no other property of the bodies, and leads to a transverse uncertainty of the geometrical wave function that increases with separation. The number of geometrical degrees of freedom in a space-time volume scales holographically, as the surface area in Planck units. Ongoing branching of the wave function causes fluctuations in transverse position, shared coherently among bodies with similar trajectories. The theory can be tested using appropriately configured Michelson interferometers.

  17. The macroscopic pancake bounce

    Science.gov (United States)

    Andersen Bro, Jonas; Sternberg Brogaard Jensen, Kasper; Nygaard Larsen, Alex; Yeomans, Julia M.; Hecksher, Tina

    2017-01-01

    We demonstrate that the so-called pancake bounce of millimetric water droplets on surfaces patterned with hydrophobic posts (Liu et al 2014 Nat. Phys. 10 515) can be reproduced on larger scales. In our experiment, a bed of nails plays the role of the structured surface and a water balloon models the water droplet. The macroscopic version largely reproduces the features of the microscopic experiment, including the Weber number dependence and the reduced contact time for pancake bouncing. The scalability of the experiment confirms the mechanisms of pancake bouncing, and allows us to measure the force exerted on the surface during the bounce. The experiment is simple and inexpensive and is an example where front-line research is accessible to student projects.

  18. Canonical quantization of macroscopic electromagnetism

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.u [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2010-12-15

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetodielectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  19. Canonical quantization of macroscopic electromagnetism

    CERN Document Server

    Philbin, T G

    2010-01-01

    Application of the standard canonical quantization rules of quantum field theory to macroscopic electromagnetism has encountered obstacles due to material dispersion and absorption. This has led to a phenomenological approach to macroscopic quantum electrodynamics where no canonical formulation is attempted. In this paper macroscopic electromagnetism is canonically quantized. The results apply to any linear, inhomogeneous, magnetoelectric medium with dielectric functions that obey the Kramers-Kronig relations. The prescriptions of the phenomenological approach are derived from the canonical theory.

  20. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeterminism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  1. An Experimental Proposal for Demonstration of Macroscopic Quantum Effects

    Directory of Open Access Journals (Sweden)

    Jensen R.

    2010-10-01

    Full Text Available An experiment is proposed, whose purpose is to determine whether quantum indeter- minism can be observed on a truly macroscopic scale. The experiment involves using a double-slit plate or interferometer and a macroscopic mechanical switch. The objective is to determine whether or not the switch can take on an indeterminate state.

  2. Gmax for Sand by Bender Elements at Anisotropic Stress States

    DEFF Research Database (Denmark)

    Bødker, L.

    1996-01-01

    elements for two types of sand and with void ratios varying from minimum to maximum. The tests performed are carried out in the Danish Triaxial Cell, and Gmax are determined at different isotropic and anisotropic stress states. The main result of the test program is that Gmax is primarily influenced...... by changes in the mean effective stress, p', but also slightly influenced by applying shear stress. As expected the stiffness increases with decreasing void ratio....

  3. In situ stress state and strength in mudrocks

    Science.gov (United States)

    Casey, Brendan; Germaine, John T.; Flemings, Peter B.; Fahy, Brian P.

    2016-08-01

    The stress state of mudrocks buried under uniaxial strain conditions is defined through a large number of laboratory triaxial tests performed on water-saturated resedimented mudrocks from a diverse set of geologic backgrounds. Unique relationships are found between the horizontal stresses that develop during normal uniaxial compression (given by K0NC), critical state friction angle, and shear strength during undrained loading. Tests were performed over the effective stress range of 0.1 to 100 MPa. Smectite-rich mudrocks display a more rapid reduction in shear strength with increasing effective stress, which corresponds with a more rapid increase in horizontal stresses. The relationship between horizontal stresses and critical state friction angle found in this study compares favorably with the well-known correlation of Jâky (1948), which was developed for very low stresses, even for friction angle values as low as 11°. Results for one mudrock suggest that this relationship also applies to mudrocks sheared from an unloaded (overconsolidated) state. The correlation between friction angle and K0NC is independent of the stress path applied during the compression phase of a test. This is not the case for shearing under undrained conditions, however, and the application of a stress path that produces uniaxial compression is necessary to measure a reliable shear strength. Systematic variations in K0NC and strength properties reflect an overall change in the shape and orientation of a mudrock's yield surface with effective stress level. The results of this study can aid in estimating the in situ stress state and strength properties of mudrocks, and this will have significant impact on a range of geoscience and engineering problems.

  4. Effects of Consolidation Stress State on Normally Consolidated Clay

    DEFF Research Database (Denmark)

    Lade, Poul V.

    2000-01-01

    and on isotropically consolidated, cubical specimens, both tested in triaxial compression and extension, clearly showed the influence of the undisturbed fabric as well as the effect of the initial consolidation stress states. While the K0-consolidated specimens appeared to retain their original fabric and exhibit......The effect of consolidation stress state on the stress-strain and strength characteristics has been studied from experiments on undisturbed block samples of a natural, normally consolidated clay known as San Francisco Bay Mud. The results of experiments on K0-consolidated, hollow cylinder specimens...

  5. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    Both non-pathological psychological stress states and mental disorders are associated with molecular, cellular and epidemiological signs of accelerated aging. Oxidative stress on nucleic acids is a critical component of cellular and organismal aging, and a suggested pathogenic mechanism in several...... age-related somatic disorders. The overall aim of the PhD project was to investigate the relation between psychopathology, psychological stress, stress hormone secretion and oxidatively generated DNA and RNA damage, as measured by the urinary excretion of markers of whole-body DNA/RNA oxidation (8......-oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased...

  6. [Posttraumatic stress state: a therapeutic lever].

    Science.gov (United States)

    Waddington, A; Zeltner, L; Robin, M; Mauriac, F; Ampelas, J-F; Bronchard, M; Mallat, V

    2004-01-01

    Chronic post-traumatic stress disorder (PTSD) is a very complex syndrome which is hard to detect because of the multiplicity of its expressions. Further more, these clinical expressions are far from the "pure" syndrome described in the DSM IV. So, the clinician faces a dilemma: how can he account for the traumatic clues without using the PTSD as a ragbag of a diagnosis? We found the way to discard this dilemma when we decided to use what M. Struber said about her experience with cancer and PTSD. She suggests not to emphasize psychopathology and to use a post-traumatic stress framework. This way to reframe some psychiatric urgencies is very useful because it gives back ability to the patient. When using a post-traumatic stress framework we tell the patient and his family that we acknowledge he has defensible reasons for not managing with an event which, we acknowledge too, was traumatic for him. In that way we begin to explore what each person is experiencing, because the traumatic experiencing is generally shared by the patient and his family. The members of the family are often angry and fed up of the patient behaviour and think themselves as victims of him. On the other part, the patient feels himself as a misunderstood person, victim of the others. The primary trauma is forgotten for a long time or nobody make any link between it and what is happening in the present. The manifestations of the PTSD initiate subsequent aftermaths and suffering for everybody. When working with psychiatric emergencies, we have to manage with acute situations in which each people is both victim and aggressor and in which clinicians run the risk of being given the role of either victim or aggressor. The trial of strength played between the patient and his family is going to be played with the clinician. These situations are described by S. Lamarre when she speaks of "victimisation" and are overloaded with control stake. Each one tries to make the other guilty and disgraced, and the

  7. Stress State and Stress Rate Dependencies of Stiffness of Soft Clays

    Science.gov (United States)

    Teachavorasinskun, Supot

    The influence of the stress anisotropy imposed during consolidation on the stiffness of soft Bangkok clays was explored using the triaxial equipment. Several testing conditions were imposed on the samples to examine the effects of stress state as well as the rate of loading. It was found the stiffness at moderate strain levels was almost independent to the stress state; i.e., the deviator stress level. On the contrary, the rate of stress application played a very important role. The faster the rate of stress application, the higher the values of the stiffness at moderate strains. Nevertheless, a simple empirical equation can be given based on the test results to represent the influence of rate of application on the stiffness of soft clay.

  8. METHOD FOR CALCULATION OF STRESSED STATE SUBSTANTIATED BY DYNAMIC MICROTWIN

    Directory of Open Access Journals (Sweden)

    V. V. Vlashevich

    2014-01-01

    Full Text Available Method for calculation of the stressed state in a dynamic twin has been developed on the basis of a non-thin non-coherent micro-twin model with continuous distribution of twinning dislocations at twin boundaries. In this case there is no additional generation with the help of twinning dislocation source. The model takes into account that the twin has coherent and noncoherent boundary sections. The developed model has made it possible to take into consideration a form of non-coherent sections of twinning boundaries in calculations of stressed and deformed state at dynamic twins. It has been established that localized stresses are migrating together with non-coherent sections of the twin. Normal stresses σxx change their sign in relation to direction of the twin development. Shear stresses σxy are alternating in signs in relation to an axis which is perpendicular to the direction of the twin development and which is passing through a mid-point of non-coherent twin section. Distribution of stresses σyy и σyz has similar configuration. Stresses σzx in the second and fourth quarters of XOY plane are negative and the stresses in the first and third quarters are positive. Distribution of stresses σzz practically does not differ from distribution of stresses σyy according to configuration but numerical values of stress tensor component data are different.The results have been obtained without thin twin model that permits to consider only elastic stage of the twinning process. The executed stress calculations at dynamic twin are important for forecasting at the accumulation stage of damage origination which is caused by twinning destruction and permit to improve forecasting accuracy of technical system resources on the basis of twinning materials such as alloys based on iron, copper, zinc, aluminium, titanium.

  9. Quantum equilibria for macroscopic systems

    Energy Technology Data Exchange (ETDEWEB)

    Grib, A [Department of Theoretical Physics and Astronomy, Russian State Pedagogical University, St. Petersburg (Russian Federation); Khrennikov, A [Centre for Mathematical Modelling in Physics and Cognitive Sciences Vaexjoe University (Sweden); Parfionov, G [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation); Starkov, K [Department of Mathematics, St. Petersburg State University of Economics and Finances (Russian Federation)

    2006-06-30

    Nash equilibria are found for some quantum games with particles with spin-1/2 for which two spin projections on different directions in space are measured. Examples of macroscopic games with the same equilibria are given. Mixed strategies for participants of these games are calculated using probability amplitudes according to the rules of quantum mechanics in spite of the macroscopic nature of the game and absence of Planck's constant. A possible role of quantum logical lattices for the existence of macroscopic quantum equilibria is discussed. Some examples for spin-1 cases are also considered.

  10. Analytical approach for resolving stress states around elliptical cavities

    Directory of Open Access Journals (Sweden)

    Lukić Dragan

    2005-01-01

    Full Text Available The determination of stress states around cavities in the stressed elastic body, regardless of cavity shapes, that may be spherical, cylindrical elliptical etc. in its analytical approach has to be based on selection of a stress function that will satisfy biharmonic equation, under given boundary conditions. This paper is concerned with formulation and solution of the cited differential equation using elliptical coordinates in conformity with the cavity shape of oblong ellipsoid [1]. It is therefore considered that the formulation of the stress tensor will be done in conformity to the cited coordinates. The paper describes basic statements and definitions in connection to harmonic functions used for determination of stress states around cavities formed in the stressed homogeneous space. The particular attention has been paid to the use of Legendre`s functions, with definitions and derivation of recurrent formulas, that have been used for determination of stress states around an oblong ellipsoidal cavity, [1]. The paper also includes the description of procedures used in forming series based on Legendre`s functions of the first order.

  11. Oxidatively generated DNA/RNA damage in psychological stress states

    DEFF Research Database (Denmark)

    Jørgensen, Anders

    2013-01-01

    -oxodG and 8-oxoGuo, respectively). The main hypothesis was that psychological stress states are associated with increased DNA/RNA damage from oxidation. In a study of 40 schizophrenia patients and 40 healthy controls matched for age and gender, we found that 8-oxodG/8-oxoGuo excretion was increased...... correlations between 8-oxodG/8-ocoGuo excretion and 9AM plasma cortisol, but no associations to perceived stress. In an animal study of experimentally induced chronic stress performed in metabolism cages, we found no increase in urinary 8-oxodG/8-oxoGuo or cerebral (hippocampal and frontal cortex) levels...... between the 24 h urinary cortisol excretion and the excretion of 8-oxodG/8-oxoGuo, determined in the same samples. Collectively, the studies could not confirm an association between psychological stress and oxidative stress on nucleic acids. Systemic oxidatively generated DNA/RNA damage was increased...

  12. Wetting on a plate with three-dimensional random heterogeneity and roughness. Equilibrium state and contact angle observed macroscopically; Sanjigen random na seijo wo motsu kotaimenjo deno nure kyodo. Energy heiko joken to kyshitekina sesshokukaku no kankei ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kato, K.; Azuma, T. [Osaka City Univ., Osaka (Japan)

    1999-11-25

    A theoretical study was conducted to investigate the wetting behavior of liquid meniscus on a vertical plate with three-dimensional random characteristics of heterogeneity and roughness. The thermodynamic stable condition was derived by considering the minimum of system free energy. The local stable condition leads to a result similar to that obtained for a plate with two-dimensional characteristics, i.e., the system has many meta-stable states. For the stable condition of the whole system, a relation was derived between macroscopically observed contact angle and the surface characteristics. The product of cosine of the contact angle and liquid surface tension is equal to the energy difference for the liquid to wet the plate by apparent unit area. If the liquid wets the solid surface reversibly, there is only one contact angle observed macroscopically. This fact suggests that the contact angle hysteresis is caused by the irreversible motion when the liquid advances or recedes on the solid surface. The well-known Cassie and Wenzel's contact angles are explained as those corresponding to thermodynamically stable condition when the liquid wets the solid reversibly. (author)

  13. Active Polar Two-Fluid Macroscopic Dynamics

    Science.gov (United States)

    Pleiner, Harald; Svensek, Daniel; Brand, Helmut R.

    2014-03-01

    We study the dynamics of systems with a polar dynamic preferred direction. Examples include the pattern-forming growth of bacteria (in a solvent, shoals of fish (moving in water currents), flocks of birds and migrating insects (flying in windy air). Because the preferred direction only exists dynamically, but not statically, the macroscopic variable of choice is the macroscopic velocity associated with the motion of the active units. We derive the macroscopic equations for such a system and discuss novel static, reversible and irreversible cross-couplings connected to this second velocity. We find a normal mode structure quite different compared to the static descriptions, as well as linear couplings between (active) flow and e.g. densities and concentrations due to the genuine two-fluid transport derivatives. On the other hand, we get, quite similar to the static case, a direct linear relation between the stress tensor and the structure tensor. This prominent ``active'' term is responsible for many active effects, meaning that our approach can describe those effects as well. In addition, we also deal with explicitly chiral systems, which are important for many active systems. In particular, we find an active flow-induced heat current specific for the dynamic chiral polar order.

  14. Macroscopic Quantum Criticality in a Circuit QED

    CERN Document Server

    Wang, Y D; Nori, F; Quan, H T; Sun, C P; Liu, Yu-xi; Nori, Franco

    2006-01-01

    Cavity quantum electrodynamic (QED) is studied for two strongly-coupled charge qubits interacting with a single-mode quantized field, which is provided by a on-chip transmission line resonator. We analyze the dressed state structure of this superconducting circuit QED system and the selection rules of electromagnetic-induced transitions between any two of these dressed states. Its macroscopic quantum criticality, in the form of ground state level crossing, is also analyzed, resulting from competition between the Ising-type inter-qubit coupling and the controllable on-site potentials.

  15. Casimir effect from macroscopic quantum electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Philbin, T G, E-mail: tgp3@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2011-06-15

    The canonical quantization of macroscopic electromagnetism was recently presented in (Philbin 2010 New J. Phys. 12 123008). This theory is used here to derive the Casimir effect, by considering the special case of thermal and zero-point fields. The stress-energy-momentum tensor of the canonical theory follows from Noether's theorem, and its electromagnetic part in thermal equilibrium gives the Casimir energy density and stress tensor. The results hold for arbitrary inhomogeneous magnetodielectrics and are obtained from a rigorous quantization of electromagnetism in dispersive, dissipative media. Continuing doubts about the status of the standard Lifshitz theory as a proper quantum treatment of Casimir forces do not apply to the derivation given here. Moreover, the correct expressions for the Casimir energy density and stress tensor inside media follow automatically from the simple restriction to thermal equilibrium, without the need for complicated thermodynamical or mechanical arguments.

  16. Macroscopic quantum mechanics in a classical spacetime.

    Science.gov (United States)

    Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei

    2013-04-26

    We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.

  17. STRESS AND STRAIN STATE OF REPAIRING SECTION OF PIPELINE

    Directory of Open Access Journals (Sweden)

    V. V. Nikolaev

    2015-01-01

    Full Text Available Reliability of continuous operation of pipelines is an actual problem. For this reason should be developed an effective warning system of the main pipelines‘  failures and accidents not only in design and operation but also in selected repair. Changing of linear, unloaded by bending position leads to the change of stress and strain state of pipelines. And besides this, the stress and strain state should be determined and controlled in the process of carrying out the repair works. The article presents mathematical model of pipeline’s section straining in viscoelastic setting taking into account soils creep and high-speed stress state of pipeline with the purpose of stresses evaluation and load-supporting capacity of repairing section of pipeline, depending on time.  Stress and strain state analysis of pipeline includes longitudinal and circular stresses calculation  with  account of axis-asymmetrical straining and  was  fulfilled  on  the base of momentless theory of shells. To prove the consistency of data there were compared the calcu- lation results and the solution results by analytical methods for different cases (long pipeline’s section strain only under influence of cross-axis action; long pipeline’s section strain under in- fluence of longitudinal stress; long pipeline’s section strain; which is on the elastic foundation, under influence of cross-axis action. Comparison results shows that the calculation error is not more than 3 %.Analysis of stress-strain state change of pipeline’s section was carried out with development  of  this  model,  which  indicates  the  enlargement  of  span  deflection  in  comparison with problem’s solution in elastic approach. It is also proved, that for consistent assessment of pipeline maintenance conditions, it is necessary to consider the areolas of rheological processes of soils. On the base of complex analysis of pipelines there were determined stresses and time

  18. New Interpretation of Dependence of Wind Stress on Wave State

    Institute of Scientific and Technical Information of China (English)

    赵栋梁; 娄安刚

    2003-01-01

    Based on observations from buoys, it is found that the wave age is well correlated with the nondimensional wave height, and this correlation is best described by a 3/5-power law. This similarity law is valid in the cases of wind waves as well as swells under natural sea states. On the basis of the 3/5-power law combined with the well-known 3/2-power law, it is shown that the wave-induced wind stress increases rapidly with wave age, indicating that the traditional observations or analytic techniques have only given the turbulent Reynolds stress induced by short wind waves, but excluded the long-wave-induced wind stress. The latter constitutes a small fraction to the total wind stress when the wave age is smaller than 1.0. The increase of sea-surface roughness with wave age can be attributed to wave breaking.

  19. Physiologic Measures of Animal Stress during Transitional States of Consciousness

    Directory of Open Access Journals (Sweden)

    Robert E. Meyer

    2015-08-01

    Full Text Available Determination of the humaneness of methods used to produce unconsciousness in animals, whether for anesthesia, euthanasia, humane slaughter, or depopulation, relies on our ability to assess stress, pain, and consciousness within the contexts of method and application. Determining the subjective experience of animals during transitional states of consciousness, however, can be quite difficult; further, loss of consciousness with different agents or methods may occur at substantially different rates. Stress and distress may manifest behaviorally (e.g., overt escape behaviors, approach-avoidance preferences [aversion] or physiologically (e.g., movement, vocalization, changes in electroencephalographic activity, heart rate, sympathetic nervous system [SNS] activity, hypothalamic-pituitary axis [HPA] activity, such that a one-size-fits-all approach cannot be easily applied to evaluate methods or determine specific species applications. The purpose of this review is to discuss methods of evaluating stress in animals using physiologic methods, with emphasis on the transition between the conscious and unconscious states.

  20. Macroscopic-microscopic mass models

    CERN Document Server

    Nix, J R; Nix, J Rayford; Moller, Peter

    1995-01-01

    We discuss recent developments in macroscopic-microscopic mass models, including the 1992 finite-range droplet model, the 1992 extended-Thomas-Fermi Strutinsky-integral model, and the 1994 Thomas-Fermi model, with particular emphasis on how well they extrapolate to new regions of nuclei. We also address what recent developments in macroscopic-microscopic mass models are teaching us about such physically relevant issues as the nuclear curvature energy, a new congruence energy arising from a greater-than-average overlap of neutron and proton wave functions, the nuclear incompressibility coefficient, and the Coulomb redistribution energy arising from a central density depression. We conclude with a brief discussion of the recently discovered rock of metastable superheavy nuclei near 272:110 that had been correctly predicted by macroscopic-microscopic models, along with a possible new tack for reaching an island near 290:110 beyond our present horizon.

  1. Macroscopic and Microscopic Gradient Structures of Bamboo Culms

    Directory of Open Access Journals (Sweden)

    Suwat SUTNAUN

    2005-01-01

    Full Text Available This work studied the structure of bamboo culms which is naturally designed to retard the bending stress caused by a wind load. A macroscopic gradient structure (diameter, thickness and internodal length and a microscopic one (distribution of fiber of three sympodial bamboo species i.e. Tong bamboo (Dendrocalamus asper Backer., Pah bamboo (Gigantochloa bambos and Pak bamboo (Gigantochloa hasskarliana were examined. From the macroscopic point of view, the wind-load generated bending stress for the tapered hollow tube of bamboo was found to vary uniformly with height, especially at the middle of the culms. Furthermore, the macroscopic shape of bamboo culm is about 2-6 times stiffer in bending mode than one with a solid circular section for the same amount of wood material. Microscopically, the distribution of fiber in the radial direction linearly decreases from the outer surface to the inner surface in the same manner as that of the distribution of the bending stress in the radial direction. Distribution of fiber along the vertical length of bamboos at each height is proportional to the level of bending stress generated by the wind load. Both macroscopic and microscopic gradient structures of sympodial type bamboos were found to be less effective to retard the bending stress than those of monopodial type bamboo.

  2. Macroscopic Quantum Resonators (MAQRO): 2015 update

    Energy Technology Data Exchange (ETDEWEB)

    Kaltenbaek, Rainer [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Aspelmeyer, Markus; Kiesel, Nikolai [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Barker, Peter F.; Bose, Sougato [University College London, Department of Physics and Astronomy, London (United Kingdom); Bassi, Angelo [University of Trieste, Department of Physics, Trieste (Italy); INFN - Trieste Section, Trieste (Italy); Bateman, James [University of Swansea, Department of Physics, College of Science, Swansea (United Kingdom); Bongs, Kai; Cruise, Adrian Michael [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Braxmaier, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Brukner, Caslav [University of Vienna, Vienna Center for Quantum Science and Technology, Vienna (Austria); Austrian Academy of Sciences, Institute of Quantum Optics and Quantum Information (IQOQI), Vienna (Austria); Christophe, Bruno; Rodrigues, Manuel [The French Aerospace Lab, ONERA, Chatillon (France); Chwalla, Michael; Johann, Ulrich [Airbus Defence and Space GmbH, Immenstaad (Germany); Cohadon, Pierre-Francois; Heidmann, Antoine; Lambrecht, Astrid; Reynaud, Serge [ENS-PSL Research University, Laboratoire Kastler Brossel, UPMC-Sorbonne Universites, CNRS, College de France, Paris (France); Curceanu, Catalina [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Dholakia, Kishan; Mazilu, Michael [University of St. Andrews, School of Physics and Astronomy, St. Andrews (United Kingdom); Diosi, Lajos [Wigner Research Center for Physics, P.O. Box 49, Budapest (Hungary); Doeringshoff, Klaus; Peters, Achim [Humboldt-Universitaet zu Berlin, Institut fuer Physik, Berlin (Germany); Ertmer, Wolfgang; Rasel, Ernst M. [Leibniz Universitaet Hannover, Institut fuer Quantenoptik, Hannover (Germany); Gieseler, Jan; Novotny, Lukas; Rondin, Loic [ETH Zuerich, Photonics Laboratory, Zuerich (Switzerland); Guerlebeck, Norman; Herrmann, Sven; Laemmerzahl, Claus [University of Bremen, Center of Applied Space Technology and Micro Gravity (ZARM), Bremen (Germany); Hechenblaikner, Gerald [Airbus Defence and Space GmbH, Immenstaad (Germany); European Southern Observatory (ESO), Garching bei Muenchen (Germany); Hossenfelder, Sabine [KTH Royal Institute of Technology and Stockholm University, Nordita, Stockholm (Sweden); Kim, Myungshik [Imperial College London, QOLS, Blackett Laboratory, London (United Kingdom); Milburn, Gerard J. [University of Queensland, ARC Centre for Engineered Quantum Systems, Brisbane (Australia); Mueller, Holger [University of California, Department of Physics, Berkeley, CA (United States); Paternostro, Mauro [Queen' s University, Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Belfast (United Kingdom); Pikovski, Igor [Harvard-Smithsonian Center for Astrophysics, ITAMP, Cambridge, MA (United States); Pilan Zanoni, Andre [Airbus Defence and Space GmbH, Immenstaad (Germany); CERN - European Organization for Nuclear Research, EN-STI-TCD, Geneva (Switzerland); Riedel, Charles Jess [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Roura, Albert [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Schleich, Wolfgang P. [Universitaet Ulm, Institut fuer Quantenphysik, Ulm (Germany); Texas A and M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE), and Department of Physics and Astronomy, College Station, TX (United States); Schmiedmayer, Joerg [Vienna University of Technology, Vienna Center for Quantum Science and Technology, Institute of Atomic and Subatomic Physics, Vienna (Austria); Schuldt, Thilo [Institute of Space Systems, German Aerospace Center (DLR), Bremen (Germany); Schwab, Keith C. [California Institute of Technology, Applied Physics, Pasadena, CA (United States)

    2016-12-15

    Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schroedinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission Macroscopic Quantum Resonators (MAQRO) may overcome these limitations and allow addressing such fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal is to probe the vastly unexplored 'quantum-classical' transition for increasingly massive objects, testing the predictions of quantum theory for objects in a size and mass regime unachievable in ground-based experiments. The hardware will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the 4th Cosmic Vision call for a medium-sized mission (M4) in 2014 of the European Space Agency (ESA) with a possible launch in 2025, and we review the progress with respect to the original MAQRO proposal for the 3rd Cosmic Vision call for a medium-sized mission (M3) in 2010. In particular, the updated proposal overcomes several critical issues of the original proposal by relying on established experimental techniques from high-mass matter-wave interferometry and by introducing novel ideas for particle loading and manipulation. Moreover, the mission design was improved to better fulfill the stringent environmental requirements for macroscopic quantum experiments. (orig.)

  3. The effect of stress state on zirconium hydride reorientation

    Science.gov (United States)

    Cinbiz, Mahmut Nedim

    Prior to storage in a dry-cask facility, spent nuclear fuel must undergo a vacuum drying cycle during which the spent fuel rods are heated up to elevated temperatures of ≤ 400°C to remove moisture the canisters within the cask. As temperature increases during heating, some of the hydride particles within the cladding dissolve while the internal gas pressure in fuel rods increases generating multi-axial hoop and axial stresses in the closed-end thin-walled cladding tubes. As cool-down starts, the hydrogen in solid solution precipitates as hydride platelets, and if the multiaxial stresses are sufficiently large, the precipitating hydrides reorient from their initial circumferential orientation to radial orientation. Radial hydrides can severely embrittle the spent nuclear fuel cladding at low temperature in response to hoop stress loading. Because the cladding can experience a range of stress states during the thermo-mechanical treatment induced during vacuum drying, this study has investigated the effect of stress state on the process of hydride reorientation during controlled thermo-mechanical treatments utilizing the combination of in situ X-ray diffraction and novel mechanical testing analyzed by the combination of metallography and finite element analysis. The study used cold worked and stress relieved Zircaloy-4 sheet containing approx. 180 wt. ppm hydrogen as its material basis. The failure behavior of this material containing radial hydrides was also studied over a range of temperatures. Finally, samples from reactor-irradiated cladding tubes were examined by X-ray diffraction using synchrotron radiation. To reveal the stress state effect on hydride reorientation, the critical threshold stress to reorient hydrides was determined by designing novel mechanical test samples which produce a range of stress states from uniaxial to "near-equibiaxial" tension when a load is applied. The threshold stress was determined after thermo-mechanical treatments by

  4. Stress among Secondary School Teachers in Ebonyi State, Nigeria: Suggested Interventions in the Worksite Milieu

    Science.gov (United States)

    Nwimo, Ignatius O.; Onwunaka, Chinagorom

    2015-01-01

    The aim of the study was to determine the level of stress experienced by secondary school teachers in Ebonyi State. The dimensions of stress studied included physical stress, mental stress, emotional stress and social stress. The study adopted the cross-sectional survey design using a sample of 660 (male 259, female 401) teachers randomly drawn…

  5. Stress State Analysis in Aspect of Wellbore Drilling Direction

    Science.gov (United States)

    Knez, Dariusz

    2014-03-01

    Drilling directional wells challenges designers. Apart from known problems until now they face exact description of stress distribution in near wellbore region issue. Paper presents analysis of stress state taking into account drilling direction. The transposed in-situ stress state relative to the borehole coordinate system (Cartesian borehole coordinate system) and the total stress component at the borehole wall (cylindrical coordinate system) exhibits cyclic behaviour with respect to drilling direction of borehole. It allows to find optimal wellbore path Wiercenie otworów kierunkowych stanowi duże wyzwanie dla projektantów. Poza problemami typowymi obecnie staja oni w obliczu zagadnienia dokładnego opisu rozkładu naprężeń w strefie przyotworowej. Artykuł przedstawia analizę stanu naprężeń w aspekcie kierunku wiercenia. Rozkład naprężeń transponowany do układu odniesienia związanego z otworem wiertniczym (kartezjański układ współrzędnych zgodny z kierunkiem otworu wiertniczego) oraz składowe naprężenia na ścianie otworu wiertniczego (w cylindrycznym układzie odniesienia) wykazują cykliczną zmienność zależną od kierunku wiercenia. Pozwala to na określenie optymalnej trajektorii osi otworu wiertniczego

  6. The State of Lithospheric Stress in Greater Thailand

    Science.gov (United States)

    Meyers, B.; Furlong, K. P.; Pananont, P.; Pornsopin, P.

    2013-12-01

    Thailand and its surrounding regions occupy an important, but often overlooked, location in terms of plate tectonics and lithospheric deformation. The lateral extrusion of Tibet southeastward and eastward along deep strike slip faults to the north and the Sumatra-Andaman subduction zone to the south and west bound the region of greater Thailand. While it is adjacent to some of the most seismically active plate boundaries and intra-plate regions on Earth, this region has experienced only a low level of background seismicity. Thus, the long-term seismic potential of greater Thailand remains highly uncertain. Although historic seismicity is one indicator for future seismicity it is not the only tool we have for determining seismic hazard; we can assess the state of lithospheric stress. The stress conditions in this apparent aseismic region will be controlled by the forces acting on it boundaries. We can analyze those conditions through a study of fault structure, earthquake activity, and kinematics in the boundary area. Using Global Seismic Network (GSN) data augmented with Thai seismic network data to constrain the kinematics, and numerical finite element modeling of crustal and lithospheric deformation of the region, we are able to determine to overall stress conditions. This stress model can be compared to the known fault states in Thailand to assess the potential for earthquake activity.

  7. Rainbow correlation imaging with macroscopic twin beam

    Science.gov (United States)

    Allevi, Alessia; Bondani, Maria

    2017-06-01

    We present the implementation of a correlation-imaging protocol that exploits both the spatial and spectral correlations of macroscopic twin-beam states generated by parametric downconversion. In particular, the spectral resolution of an imaging spectrometer coupled to an EMCCD camera is used in a proof-of-principle experiment to encrypt and decrypt a simple code to be transmitted between two parties. In order to optimize the trade-off between visibility and resolution, we provide the characterization of the correlation images as a function of the spatio-spectral properties of twin beams generated at different pump power values.

  8. Personal determinants of positive states and stress in psychology students

    Directory of Open Access Journals (Sweden)

    G.S. Kozhukhar

    2013-07-01

    Full Text Available We report study results of personality characteristics as predictors of positive states (active, optimistic, emotional, subjective comfort and stress experience in adults with one higher education and ongoing training in Psychology. The respondents were 107 people aged 23 to 52 years. Diagnostic methods we used were: "SMIL" (L. Sobchik, Optimism and Activity Scale (adapted by E. Vodopyanova, C. Izard Differential Emotions Scale (adapted by A. Leonova, Subjective Comfort Scale (adapted by A. Leonova, PSM-25 Scale by Lemyr-Tessier-Fillion. The regression analysis revealed that in subjects ongoing training in Psychology, basic predictor of positive emotions and stress experience is anxiety. Cluster analysis revealed three types of subjects by their positive states experiences, which differ primarily by the level of baseline anxiety and related personality characteristics. The group of risk comprised Psychology students with a tendency to depression and negative emotions and specific personality profile.

  9. SESAME Equations of State for Stress Cushion and Related Materials

    Energy Technology Data Exchange (ETDEWEB)

    Coe, Joshua Damon [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-12

    I examine LANL equations of state (EOS) for stress cushion and related materials, namely S5370, SX358, and Sylgard 184. In the the rst two cases, the SESAME library contains entries for both the inert (unreacted) and decomposition products. I compare inert EOS results with ambient property measurements to the extent possible, then I check the compositions used to build the products tables. I plot the predicted Hugoniots alongside the available shock data, then draw some conclusions.

  10. Measured Resolved Shear Stresses and Bishop Hill Stress States in Individual Grains of Austenitic Stainless Steel (Postprint)

    Science.gov (United States)

    2017-09-13

    Activation of a slip system requires that it is critically stressed , i.e. that the shear stress resolved on the slip system exceeds a threshold...increment. A direct way of investigating which slip systemsmay be active in each grain is to investigate the stress state of the grain. From...correlation (DIC) system [29] and a load cell. The stress - strain curve in Fig. 1b) presents the maximum stress reading after each loading step. Relaxation

  11. Quantum correlations of lights in macroscopic environments

    Science.gov (United States)

    Sua, Yong Meng

    This dissertation presents a detailed study in exploring quantum correlations of lights in macroscopic environments. We have explored quantum correlations of single photons, weak coherent states, and polarization-correlated/polarization-entangled photons in macroscopic environments. These included macroscopic mirrors, macroscopic photon number, spatially separated observers, noisy photons source and propagation medium with loss or disturbances. We proposed a measurement scheme for observing quantum correlations and entanglement in the spatial properties of two macroscopic mirrors using single photons spatial compass state. We explored the phase space distribution features of spatial compass states, such as chessboard pattern by using the Wigner function. The displacement and tilt correlations of the two mirrors were manifested through the propensities of the compass states. This technique can be used to extract Einstein-Podolsky-Rosen correlations (EPR) of the two mirrors. We then formulated the discrete-like property of the propensity P b(m,n), which can be used to explore environmental perturbed quantum jumps of the EPR correlations in phase space. With single photons spatial compass state, the variances in position and momentum are much smaller than standard quantum limit when using a Gaussian TEM 00 beam. We observed intrinsic quantum correlations of weak coherent states between two parties through balanced homodyne detection. Our scheme can be used as a supplement to decoy-state BB84 protocol and differential phase-shift QKD protocol. We prepared four types of bipartite correlations +/- cos2(theta1 +/- theta 2) that shared between two parties. We also demonstrated bits correlations between two parties separated by 10 km optical fiber. The bits information will be protected by the large quantum phase fluctuation of weak coherent states, adding another physical layer of security to these protocols for quantum key distribution. Using 10 m of highly nonlinear

  12. MACROSCOPIC STRAIN POTENTIALS IN NONLINEAR POROUS MATERIALS

    Institute of Scientific and Technical Information of China (English)

    刘熠; 黄筑平

    2003-01-01

    By taking a hollow sphere as a representative volume element (RVE), the macroscopic strain potentials of porous materials with power-law incompressible matrix are studied in this paper.According to the principles of the minimum potential energy in nonlinear elasticity and the variational procedure, static admissible stress fields and kinematic admissible displacement fields are constructed,and hence the upper and the lower bounds of the macroscopic strain potential are obtained. The bounds given in the present paper differ so slightly that they both provide perfect approximations of the exact strain potential of the studied porous materials. It is also found that the upper bound proposed by previous authors is much higher than the present one, and the lower bounds given by Cocks is much lower. Moreover, the present calculation is also compared with the variational lower bound of Ponte Castafneda for statistically isotropic porous materials. Finally, the validity of the hollow spherical RVE for the studied nonlinear porous material is discussed by the difference between the present numerical results and the Cocks bound.

  13. Tremor frequency characteristics in Parkinson's disease under resting-state and stress-state conditions.

    Science.gov (United States)

    Lee, Hong Ji; Lee, Woong Woo; Kim, Sang Kyong; Park, Hyeyoung; Jeon, Hyo Seon; Kim, Han Byul; Jeon, Beom S; Park, Kwang Suk

    2016-03-15

    Tremor characteristics-amplitude and frequency components-are primary quantitative clinical factors for diagnosis and monitoring of tremors. Few studies have investigated how different patient's conditions affect tremor frequency characteristics in Parkinson's disease (PD). Here, we analyzed tremor characteristics under resting-state and stress-state conditions. Tremor was recorded using an accelerometer on the finger, under resting-state and stress-state (calculation task) conditions, during rest tremor and postural tremor. The changes of peak power, peak frequency, mean frequency, and distribution of power spectral density (PSD) of tremor were evaluated across conditions. Patients whose tremors were considered more than "mild" were selected, for both rest (n=67) and postural (n=25) tremor. Stress resulted in both greater peak powers and higher peak frequencies for rest tremor (pcharacteristics, namely a lower frequency as amplitude increases, are different in stressful condition. Patient's conditions directly affect neural oscillations related to tremor frequencies. Therefore, tremor characteristics in PD should be systematically standardized across patient's conditions such as attention and stress levels.

  14. Effect of particle friction and polydispersity on the macroscopic stress–strain relations of granular materials

    NARCIS (Netherlands)

    Göncü, F.; Luding, S.

    2013-01-01

    The macroscopic mechanical behavior of granular materials inherently depends on the properties of particles that compose them. Using the discrete element method, the effect of particle contact friction and polydispersity on the macroscopic stress response of 3D sphere packings is studied. The analyt

  15. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HU Hui; LO Rong; ZHU Jia-Lin; XIONG Jia-Jiong

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model. On the basis of instanton technique in the spin-coherent-state path-integral representation, both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained. We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys. Rev. Lett. 80 (1998) 169), but also have great influence on the intensity of the ground-state tunnel splitting. Those features clearly have no analogue in the ferromagnetic molecular magnets. We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets. The analytical results are complemented by exact diagonalization calculation.

  16. Robust macroscopic entanglement without complex encodings

    CERN Document Server

    Chaves, Rafael; Acín, Antonio

    2011-01-01

    One of the main challenges for the experimental manipulation and storage of macroscopic entanglement is its fragility under noise. We present a simple recipe for the systematic enhancement of the resistance of multipartite entanglement against any local noise with a privileged direction in the Bloch sphere. For the case of exact local dephasing along any given basis, and for all noise strengths, our prescription grants full robustness: even states whose entanglement decays exponentially with the number of parts are mapped to states whose entanglement is constant. In contrast to previous techniques resorting to complex logical-qubit encodings, such enhancement is attained simply by performing local unitary rotations before the noise acts. The scheme is therefore highly experimentally-friendly, as it brings no overhead of extra physical qubits to encode logical ones. In addition, we show that, apart from entanglement, the resilience of the states as resources for useful practical tasks such as metrology and non...

  17. Macroscopic Quantum Coherence in Antiferromagnetic Molecular Magnets

    Institute of Scientific and Technical Information of China (English)

    HUHui; LURong; 等

    2001-01-01

    The macroscopic quantum coherence in a biaxial antiferromagnetic molecular magnet in the presence of magnetic field acting parallel to its hard anisotropy axis is studied within the two-sublattice model.On the basis of instanton technique in the spin-coherent-state path-integral representation,both the rigorous Wentzel-Kramers-Brillouin exponent and pre-exponential factor for the ground-state tunnel splitting are obtained.We find that the quantum fluctuations around the classical paths can not only induce a new quantum phase previously reported by Chiolero and Loss (Phys.Rev.Lett.80(1998)169),but also have great influence on the intensity of the ground-state tunnel splitting.Those features clearly have no analogue in the ferromagnetic molecular magnets.We suggest that they may be the universal behaviors in all antiferromagnetic molecular magnets.The analytical results are complemented by exact diagonalization calculation.

  18. Extended Macroscopic Study of Dilute Gas Flow within a Microcavity

    Directory of Open Access Journals (Sweden)

    Mohamed Hssikou

    2016-01-01

    Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.

  19. Analytical Study of Stress State in HTS Solenoids

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, E.; Terzini, E.; /Fermilab

    2009-01-01

    A main challenge for high field solenoids made of in High Temperature Superconductor (HTS) is the large stress developed in the conductor. This is especially constraining for BSCCO, a brittle and strain sensitive ceramic material. To find parametric correlations useful in magnet design, analytical models can be used. A simple model is herein proposed to obtain the radial, azimuthal and axial stresses in a solenoid as a function of size, i.e. self-field, and of the engineering current density for a number of different constraint hypotheses. The analytical model was verified against finite element modeling (FEM) using the same hypotheses of infinite rigidity of the constraints and room temperature properties. FEM was used to separately evaluate the effect of thermal contractions at 4.2 K for BSCCO and YBCO coils. Even though the analytical model allows for a finite stiffness of the constraints, it was run using infinite stiffness. For this reason, FEM was again used to determine how much stresses change when considering an outer stainless steel skin with finite rigidity for both BSCCO and YBCO coils. For a better understanding of the actual loads that high field solenoids made of HTS will be subject to, we have started some analytical studies of stress state in solenoids for a number of constraint hypotheses. This will hopefully show what can be achieved with the present conductor in terms of self-field. The magnetic field (B) exerts a force F = B x J per unit volume. In superconducting magnets, where the field and current density (J) are both high, this force can be very large, and it is therefore important to calculate the stresses in the coil.

  20. Antiferromagnetic character of workplace stress

    Science.gov (United States)

    Watanabe, Jun-Ichiro; Akitomi, Tomoaki; Ara, Koji; Yano, Kazuo

    2011-07-01

    We study the nature of workplace stress from the aspect of human-human interactions. We investigated the distribution of Center for Epidemiological Studies Depression Scale scores, a measure of the degree of stress, in workplaces. We found that the degree of stress people experience when around other highly stressed people tends to be low, and vice versa. A simulation based on a model describing microlevel human-human interaction reproduced this observed phenomena and revealed that the energy state of a face-to-face communication network correlates with workplace stress macroscopically.

  1. Geometric aspects of Schnakenberg's network theory of macroscopic nonequilibrium observables

    Science.gov (United States)

    Polettini, M.

    2011-03-01

    Schnakenberg's network theory deals with macroscopic thermodynamical observables (forces, currents and entropy production) associated to the steady states of diffusions on generic graphs. Using results from graph theory and from the theory of discrete differential forms we recast Schnakenberg's treatment in the form of a simple discrete gauge theory, which allows to interpret macroscopic forces as the Wilson loops of a real connection. We discuss the geometric properties of transient states, showing that heat fluxes allow for a notion of duality of macroscopic observables which interchanges the role of the environment and that of the system. We discuss possible generalizations to less trivial gauge groups and the relevance for nonequilibrium fluctuation theorems. Based on work in collaboration with professor A. Maritan, University of Padua, to be published.

  2. A Model for Macroscopic Quantum Tunneling of Bose-Einstein Condensate with Attractive Interaction

    Institute of Scientific and Technical Information of China (English)

    YAN Ke-Zhu; TAN Wei-Han

    2000-01-01

    Based on the numerical wave function solutions of neutral atoms with attractive interaction in a harmonic trap, we propose an exactly solvable model for macroscopic quantum tunneling of a Bose condensate with attractive interaction. We calculate the rate of macroscopic quantum tunneling from a metastable condensate state to the collapse state and analyze the stability of the attractive Bose-Einstein condensation.

  3. Macroscopic Theory of Dark Sector

    Directory of Open Access Journals (Sweden)

    Boris E. Meierovich

    2014-01-01

    Full Text Available A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out to be an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields describe two different forms of dark matter. The space-like massive vector field is attractive. It is responsible for the observed plateau in galaxy rotation curves. The time-like massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four-parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating nonsingular scenarios of evolution of the Universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerated expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the lower boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows displaying the main properties of the dark sector analytically. Although the physical nature of dark sector is still unknown, the macroscopic theory can help analyze the role of dark matter in astrophysical phenomena without resorting to artificial model assumptions.

  4. Ductile fracture of metals under triaxial states of stress

    Science.gov (United States)

    Schrems, Karol Krumrey

    Silver interlayers between maraging steel base metal were examined to evaluate mechanisms leading to ductile failure in constrained thin metals. The constraint of the maraging steel base metal during uniaxial testing of constrained thin silver results in a large hydrostatic tension component, a small von Mises effective stress, and negligible far-field plasticity. The failure theory proposed by Rice and Tracey predicts uniform cavity wall expansion as a result of high triaxiality, in which an increase in plastic strain drives an increase in cavity size. The Rice and Tracey theory predicts significantly greater plastic strain than is experimentally observed. The theory developed by Huang, Hutchinson, and Tvergaard states that a cavitation limit exists at which a cavity continues to grow without an increase in elastic or plastic strain. This occurs when the energy stored in the elastic region is sufficient to drive continued cavity expansion. Inherent in both theories is the assumption of a single cavity in an infinite solid, which implies non-interacting cavities. Modifications have been developed to allow for multiple cavities, but assume pre-existing cavities. By examining silver interlayers previously loaded to various times at a fraction of the tensile strength where time-dependent failure is observed, it was found that some cavities were initially present in the as-bonded samples. Some of the initial cavities were spaced close enough to suggest localized interacting stress fields. This indicates that a failure model should be able to accommodate cavity spacing. The results suggest that cavities are continuously nucleating (from at least the 20 nanometers detectability limit) and grow, sometimes to over 500 nm in diameter. This thesis evaluates the number, size, shape and spacing of cavities in the silver interlayers and uses these results to evaluate ductile failure theories for metals subjected to high triaxial states of stress such as in constrained

  5. Measuring Stress Distributions of Orthotropic Composite Material in Plane Stress State by the Lock-in Infrared Thermography Technique

    Institute of Scientific and Technical Information of China (English)

    LI Xu-Dong; WANG Wei-Bo; LI Yong-Sheng; WU Dong-Liu

    2011-01-01

    Feasibility of measuring stress distributions of orthotropic composite materials and structures in plane stress state by the lock-in infrared thermography technique is analyzed and stress distributions of a lap joint structure made of a kind of glass reinforced plastic composite lamination plates under tensile loadings are obtained by the lock-in infrared thermography technique. Feasibility and credibility of using this technique to measure stress distributions of orthotropic composite materials and structures in plane stress state are proved by comparing the results with the data given by the digital speckle correlation method.%@@ Feasibility of measuring stress distributions of orthotropic composite materials and structures in plane stress state by the lock-in infrared thermography technique is analyzed and stress distributions of a lap joint structure made of a kind of glass reinforced plastic composite lamination plates under tensile loadings axe obtained by the lock-in infrared thermography technique.Feasibility and credibility of using this technique to measure stress distributions of orthotropic composite materials and structures in plane stress state axe proved by comparing the results with the data given by the digital speckle correlation method.

  6. Physiologic Stresses Reveal a Salmonella Persister State and TA Family Toxins Modulate Tolerance to These Stresses.

    Directory of Open Access Journals (Sweden)

    Eugenia Silva-Herzog

    Full Text Available Bacterial persister cells are considered a basis for chronic infections and relapse caused by bacterial pathogens. Persisters are phenotypic variants characterized by low metabolic activity and slow or no replication. This low metabolic state increases pathogen tolerance to antibiotics and host immune defenses that target actively growing cells. In this study we demonstrate that within a population of Salmonella enterica serotype Typhimurium, a small percentage of bacteria are reversibly tolerant to specific stressors that mimic the macrophage host environment. Numerous studies show that Toxin-Antitoxin (TA systems contribute to persister states, based on toxin inhibition of bacterial metabolism or growth. To identify toxins that may promote a persister state in response to host-associated stressors, we analyzed the six TA loci specific to S. enterica serotypes that cause systemic infection in mammals, including five RelBE family members and one VapBC member. Deletion of TA loci increased or decreased tolerance depending on the stress conditions. Similarly, exogenous expression of toxins had mixed effects on bacterial survival in response to stress. In macrophages, S. Typhimurium induced expression of three of the toxins examined. These observations indicate that distinct toxin family members have protective capabilities for specific stressors but also suggest that TA loci have both positive and negative effects on tolerance.

  7. Physiologic Stresses Reveal a Salmonella Persister State and TA Family Toxins Modulate Tolerance to These Stresses.

    Science.gov (United States)

    Silva-Herzog, Eugenia; McDonald, Erin M; Crooks, Amy L; Detweiler, Corrella S

    2015-01-01

    Bacterial persister cells are considered a basis for chronic infections and relapse caused by bacterial pathogens. Persisters are phenotypic variants characterized by low metabolic activity and slow or no replication. This low metabolic state increases pathogen tolerance to antibiotics and host immune defenses that target actively growing cells. In this study we demonstrate that within a population of Salmonella enterica serotype Typhimurium, a small percentage of bacteria are reversibly tolerant to specific stressors that mimic the macrophage host environment. Numerous studies show that Toxin-Antitoxin (TA) systems contribute to persister states, based on toxin inhibition of bacterial metabolism or growth. To identify toxins that may promote a persister state in response to host-associated stressors, we analyzed the six TA loci specific to S. enterica serotypes that cause systemic infection in mammals, including five RelBE family members and one VapBC member. Deletion of TA loci increased or decreased tolerance depending on the stress conditions. Similarly, exogenous expression of toxins had mixed effects on bacterial survival in response to stress. In macrophages, S. Typhimurium induced expression of three of the toxins examined. These observations indicate that distinct toxin family members have protective capabilities for specific stressors but also suggest that TA loci have both positive and negative effects on tolerance.

  8. The fundamental diagram : a macroscopic traffic flow model.

    NARCIS (Netherlands)

    Botma, H.

    1976-01-01

    In models of traffic flow, the interactions between vehicles are of prime interest, and are based on characteristics of the drivers, road and vehicles. The fundamental diagram is a representation of a relationship on a macroscopic level in the steady state between the quantity of traffic and a chara

  9. Statistical thermodynamics understanding the properties of macroscopic systems

    CERN Document Server

    Fai, Lukong Cornelius

    2012-01-01

    Basic Principles of Statistical PhysicsMicroscopic and Macroscopic Description of StatesBasic PostulatesGibbs Ergodic AssumptionGibbsian EnsemblesExperimental Basis of Statistical MechanicsDefinition of Expectation ValuesErgodic Principle and Expectation ValuesProperties of Distribution FunctionRelative Fluctuation of an Additive Macroscopic ParameterLiouville TheoremGibbs Microcanonical EnsembleMicrocanonical Distribution in Quantum MechanicsDensity MatrixDensity Matrix in Energy RepresentationEntropyThermodynamic FunctionsTemperatureAdiabatic ProcessesPressureThermodynamic IdentityLaws of Th

  10. Clarification on Mechanical Characteristic in State of Stress of Osteoarthritis of the Hip Joint Using Stress Freezing Method

    Science.gov (United States)

    Maezaki, Nobutaka; Ezumi, Tsutomu; Hachiya, Masashi

    In this research, the Osteoarthritis of Hip Joint was pick up, the 3-dimensional stress freezing method of photoelastic method was applied, and the state of the stress in the normality hip joint and the transformable hip joint was examined. The direction and the singular point of principal stress and stress distribution were experimentally examined. At result, The Osteoarthritis of Hip Joint touches by 2 points, Osteoarthritis of Hip Joint occurrence of the new singular point with flat of the femoral head, They change the direction of the principal stress line in an existing singular point is cause.

  11. Macroscopically-Discrete Quantum Cosmology

    CERN Document Server

    Chew, Geoffrey F

    2008-01-01

    To Milne's Lorentz-group-based spacetime and Gelfand-Naimark unitary representations of this group we associate a Fock space of 'cosmological preons'-quantum-theoretic universe constituents. Milne's 'cosmological principle' relies on Lorentz invariance of 'age'--global time. We divide Milne's spacetime into 'slices' of fixed macroscopic width in age, with 'cosmological rays' defined on (hyperbolic) slice boundaries-Fock space attaching only to these exceptional universe ages. Each (fixed-age) preon locates within a 6-dimensional manifold, one of whose 3 'extra' dimensions associates in Dirac sense to a self-adjoint operator that represents preon (continuous) local time, the operator canonically-conjugate thereto representing preon (total) energy. Self-adjoint-operator expectations at any spacetime-slice boundary prescribe throughout the following slice a non-fluctuating 'mundane reality'- electromagnetic and gravitational potentials 'tethered' to current densities of locally-conserved electric charge and ener...

  12. Seismic scanning tunneling macroscope - Theory

    KAUST Repository

    Schuster, Gerard T.

    2012-09-01

    We propose a seismic scanning tunneling macroscope (SSTM) that can detect the presence of sub-wavelength scatterers in the near-field of either the source or the receivers. Analytic formulas for the time reverse mirror (TRM) profile associated with a single scatterer model show that the spatial resolution limit to be, unlike the Abbe limit of λ/2, independent of wavelength and linearly proportional to the source-scatterer separation as long as the point scatterer is in the near-field region; if the sub-wavelength scatterer is a spherical impedance discontinuity then the resolution will also be limited by the radius of the sphere. Therefore, superresolution imaging can be achieved as the scatterer approaches the source. This is analogous to an optical scanning tunneling microscope that has sub-wavelength resolution. Scaled to seismic frequencies, it is theoretically possible to extract 100 Hz information from 20 Hz data by imaging of near-field seismic energy.

  13. Origins of asymmetric stress-strain response in phase transformations

    Energy Technology Data Exchange (ETDEWEB)

    Sehitoglu, H.; Gall, K. [Univ. of Illinois, Urbana, IL (United States)

    1997-12-31

    It has been determined that the transformation stress-strain behavior of CuZnAl and NiTi shape memory alloys is dependent on the applied stress state. The uniaxial compressive stress necessary to macroscopically trigger the transformation is approximately 34% (CuZnAl) and 26% (NiTi) larger than the required uniaxial tensile stress. For three dimensional stress states, the response of either alloy system is dependent on the directions of the dominant principal stresses along with the hydrostatic stress component of the stress state. The stress state effects are dominated by the favored growth and nucleation of more martensite plates in tension versus compression. The effect of different hydrostatic pressure levels between stress states on martensite plates volume change is considered small.

  14. Macroscopic theory of dark sector

    CERN Document Server

    Meierovich, Boris E

    2013-01-01

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating soluti...

  15. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Pei Xiaoyan; Hu Jiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system. The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  16. MACROSCOPIC DIVERSITY FOR CDMA MOBILE SYSTEM

    Institute of Scientific and Technical Information of China (English)

    PeiXiaoyan; HuJiandong

    2002-01-01

    A novel system of macroscopic diversity with voting rule in CDMA cellular system is suggested in order to raise the coverage and quality of service of CDMA mobile communication system.The estimation of the impact of macroscopic diversity on performance of CDMA cellular system is analyzed and investigated.

  17. INFLUENCE OF BLADES' STRESS STATE ON FRANCIS TURBINE RUNNER'S INVALIDATION

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Numerical simulation on Francis turbine runner's welding temperature field and welding stress field is carried out on the base of solving the problem of welding heat source's movement along any spatial routes and the problem of heat elimination between the complicated blade and air. The evolvement law of welding stress and the distribution of the stress field after welding are obtained.The results indicate that the peak value of the welding residual stress appears on the outlet edge of blade near the contact area between blade and band or blade and crown. Associated with the distribution of the runner's working stress, the invalidation reason of the Francis turbine runner is explained.

  18. Macroscopic quantum oscillator based on a flux qubit

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mandip, E-mail: mandip@iisermohali.ac.in

    2015-09-25

    In this paper a macroscopic quantum oscillator is proposed, which consists of a flux-qubit in the form of a cantilever. The net magnetic flux threading through the flux-qubit and the mechanical degrees of freedom of the cantilever are naturally coupled. The coupling between the cantilever and the magnetic flux is controlled through an external magnetic field. The ground state of the flux-qubit-cantilever turns out to be an entangled quantum state, where the cantilever deflection and the magnetic flux are the entangled degrees of freedom. A variant, which is a special case of the flux-qubit-cantilever without a Josephson junction, is also discussed. - Highlights: • In this paper a flux-qubit-cantilever is proposed. • Coupling can be varied by an external magnetic field. • Ground state is a macroscopic entangled quantum state. • Ground state of the superconducting-loop-oscillator is a macroscopic quantum superposition. • Proposed scheme is based on a generalized quantum approach.

  19. State of tectonic stress in Shillong Plateau of northeast India

    Science.gov (United States)

    Baruah, Santanu; Baruah, Saurabh; Saikia, Sowrav; Shrivastava, Mahesh N.; Sharma, Antara; Reddy, C. D.; Kayal, J. R.

    2016-10-01

    Tectonic stress regime in the Shillong plateau, northeast region of India, is examined by stress tensor inversion. Some 97 reliable fault plane solutions are used for stress inversion by the Michael and Gauss methods. Although an overall NNW-SSE compressional stress is observed in the area, the stress regime varies from western part to eastern part of the plateau. The eastern part of the plateau is dominated by NNE-SSW compression and the western part by NNW-SSE compression. The NNW-SSE compression in the western part may be due to the tectonic loading induced by the Himalayan orogeny in the north, and the NNE-SSW compression in the eastern part may be attributed to the influence of oblique convergence of the Indian plate beneath the Indo-Burma ranges. Further, Gravitational Potential Energy (GPE) derived stress also indicates a variation from west to east.

  20. Trait and state positive affect and cardiovascular recovery from experimental academic stress.

    Science.gov (United States)

    Papousek, Ilona; Nauschnegg, Karin; Paechter, Manuela; Lackner, Helmut K; Goswami, Nandu; Schulter, Günter

    2010-02-01

    As compared to negative affect, only a small number of studies have examined influences of positive affect on cardiovascular stress responses, of which only a few were concerned with cardiovascular recovery. In this study, heart rate, low- and high-frequency heart rate variability, blood pressure, and levels of subjectively experienced stress were obtained in 65 students before, during and after exposure to academic stress in an ecologically valid setting. Higher trait positive affect was associated with more complete cardiovascular and subjective post-stress recovery. This effect was independent of negative affect and of affective state during anticipation of the stressor. In contrast, a more positive affective state during anticipation of the challenge was related to poor post-stress recovery. The findings suggest that a temporally stable positive affect disposition may be related to adaptive responses, whereas positive emotional states in the context of stressful events can also contribute to prolonged post-stress recovery.

  1. Hydration and radiation effects on the residual stress state of cortical bone.

    Science.gov (United States)

    Tung, Patrick K M; Mudie, Stephen; Daniels, John E

    2013-12-01

    The change in the biaxial residual stress state of hydroxyapatite crystals and collagen fibrillar structure in sections of bovine cortical bone has been investigated as a function of dehydration and radiation dose using combined small- and wide-angle X-ray scattering. It is shown that dehydration of the bone has a pronounced effect on the residual stress state of the crystalline phase, while the impact of radiation damage alone is less dramatic. In the initial hydrated state, a biaxial compressive stress of approximately -150 MPa along the bone axis exists in the hydroxyapatite crystals. As water evaporates from the bone material, the stress state moves to a tensile state of approximately 100 MPa. The collagen fibrillar structure is initially in a tensile residual stress state when the bone is hydrated and the state increases in magnitude slightly with dehydration. Radiation dose in continually hydrated samples also reduces the initial biaxial compressive stress magnitude in the hydroxyapatite phase; however, the stress remains compressive. Radiation exposure alone does not appear to affect the stress state of the collagen fibrillar structure.

  2. Relationship between Organizational Climate, Job Stress and Job Performance Officer at State Education Department

    Science.gov (United States)

    Suandi, Turiman; Ismail, Ismi Arif; Othman, Zulfadli

    2014-01-01

    This research aims at finding out the relationship between Organizational Climate, job stress and job performance among State Education Department (JPN) officers . The focus of the research is to determine the job performance of state education department officers, level of job stress among the officers, level of connection between organizational…

  3. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.

    2017-07-20

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr-Universität Bochum. Dry samples were subjected to two anisotropic stress states: (a) cell pressure, σ′h, constant and vertical stress, σ′v, increased (stress state GB-I) and (b) σ′v/σ′h equal to 2 (stress state GB-II). The experimental results revealed that the effect of stress state GB-II on the modulus and damping ratio was more significant and obvious than stress state GB-I. The effect of the anisotropic stress state was explained through the impact of confining pressure and anisotropic stress components on the stiffness and damping ratio. The results showed that: (a) G(γ) increased, η(γ) decreased and their strain non-linearity decreased with an increase in the confining pressure component σ′vσ′h; (b) G(γ) decreased, η(γ) increased and their strain non-linearity increased with an increase in the anisotropic stress component, σ′v/σ′h. The analysis of results revealed that reference shear strain was also affected by anisotropic stress state. Therefore, an empirical relationship was developed to predict the reference shear strain, as a function of confining pressure and anisotropic stress components. Additionally, the damping ratio was written as a function of the minimum damping ratio and the reference shear strain.

  4. Macroscopic Neural Theories of Cognition

    Science.gov (United States)

    2014-03-01

    complexity of the brain stresses any possible explanation of its function to its limits for a relatively simple practical reason—there are too many...areas (18 and 19) of the cat . Journal of Neurophysiology, 28(2), 229- 289. Ihnen, S. K., Church, J. A., Petersen, S. E., & Schlaggar, B. L. (2009...potentials, and fMR1 in human auditory cortex. Science, 309, 951-954. Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional

  5. Changes of Swimmers’ Emotional States during the Preparation of National Championship: Do Recovery-Stress States Matter?

    National Research Council Canada - National Science Library

    Philippe Vacher; Michel Nicolas; Guillaume Martinent; Laurent Mourot

    2017-01-01

    This study examined the trajectories of emotional states and their within-person synergies with perceived stress and recovery during a 4-month training period preceding the French swimming championships...

  6. GASICA: Generic Automated Stress Induction and Control ApplicationDesign of an application for controlling the stress state

    Directory of Open Access Journals (Sweden)

    Benny Van Der Vijgh

    2014-12-01

    Full Text Available 1.In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope, Bogart, & Bartolome, 1995 and Fairclough, 2009 that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing measurement equipment, making it usable for various paradigms.

  7. GASICA: generic automated stress induction and control application design of an application for controlling the stress state.

    Science.gov (United States)

    van der Vijgh, Benny; Beun, Robbert J; van Rood, Maarten; Werkhoven, Peter

    2014-01-01

    In a multitude of research and therapy paradigms it is relevant to know, and desirably to control, the stress state of a patient or participant. Examples include research paradigms in which the stress state is the dependent or independent variable, or therapy paradigms where this state indicates the boundaries of the therapy. To our knowledge, no application currently exists that focuses specifically on the automated control of the stress state while at the same time being generic enough to be used in various therapy and research purposes. Therefore, we introduce GASICA, an application aimed at the automated control of the stress state in a multitude of therapy and research paradigms. The application consists of three components: a digital stressor game, a set of measurement devices, and a feedback model. These three components form a closed loop (called a biocybernetic loop by Pope et al. (1995) and Fairclough (2009) that continuously presents an acute psychological stressor, measures several physiological responses to this stressor, and adjusts the stressor intensity based on these measurements by means of the feedback model, hereby aiming to control the stress state. In this manner GASICA presents multidimensional and ecological valid stressors, whilst continuously in control of the form and intensity of the presented stressors, aiming at the automated control of the stress state. Furthermore, the application is designed as a modular open-source application to easily implement different therapy and research tasks using a high-level programming interface and configuration file, and allows for the addition of (existing) measurement equipment, making it usable for various paradigms.

  8. Optomechanical entanglement of a macroscopic oscillator by quantum feedback

    Science.gov (United States)

    Wu, E.; Li, Fengzhi; Zhang, Xuefeng; Ma, Yonghong

    2016-07-01

    We propose a scheme to generate the case of macroscopic entanglement in the optomechanical system, which consist of Fabry-Perot cavity and a mechanical oscillator by applying a homodyne-mediated quantum feedback. We explore the effect of feedback on the entanglement in vacuum and coherent state, respectively. The results show that the introduction of quantum feedback can increase the entanglement effectively between the cavity mode and the oscillator mode.

  9. Toward a superconducting quantum computer. Harnessing macroscopic quantum coherence.

    Science.gov (United States)

    Tsai, Jaw-Shen

    2010-01-01

    Intensive research on the construction of superconducting quantum computers has produced numerous important achievements. The quantum bit (qubit), based on the Josephson junction, is at the heart of this research. This macroscopic system has the ability to control quantum coherence. This article reviews the current state of quantum computing as well as its history, and discusses its future. Although progress has been rapid, the field remains beset with unsolved issues, and there are still many new research opportunities open to physicists and engineers.

  10. On plane stress state and stress free deformation of thick plate with FGM interface under thermal loading

    Science.gov (United States)

    Szubartowski, Damian; Ganczarski, Artur

    2016-10-01

    This paper demonstrates the plane stress state and the stress free thermo-elastic deformation of FGM thick plate under thermal loading. First, the Sneddon-Lockett theorem on the plane stress state in an isotropic infinite thick plate is generalized for a case of FGM problem in which all thermo-mechanical properties are optional functions of depth co-ordinate. The proof is based on application of the Iljushin thermo-elastic potential to displacement type system of equations that reduces it to the plane stress state problem. Then an existence of the purely thermal deformation is proved in two ways: first, it is shown that the unique solution fulfils conditions of simultaneous constant temperature and linear gradation of thermal expansion coefficient, second, proof is based directly on stress type system of equations which straightforwardly reduces to compatibility equations for purely thermal deformation if only stress field is homogeneous in domain and at boundary. Finally, couple examples of application to an engineering problem are presented.

  11. Macroscopic transport by synthetic molecular machines

    NARCIS (Netherlands)

    Berna, J; Leigh, DA; Lubomska, M; Mendoza, SM; Perez, EM; Rudolf, P; Teobaldi, G; Zerbetto, F

    2005-01-01

    Nature uses molecular motors and machines in virtually every significant biological process, but demonstrating that simpler artificial structures operating through the same gross mechanisms can be interfaced with - and perform physical tasks in - the macroscopic world represents a significant hurdle

  12. Macroscopic superpositions and gravimetry with quantum magnetomechanics

    Science.gov (United States)

    Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason

    2016-11-01

    Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10-10 Hz-1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.

  13. Accelerating multi-scale sheet forming simulations by exploiting local macroscopic quasi-homogeneities

    Science.gov (United States)

    Gawad, J.; Khairullah, Md; Roose, D.; Van Bael, A.

    2016-08-01

    Multi-scale simulations are computationally expensive if a two-way coupling is employed. In the context of sheet metal forming simulations, a fine-scale representative volume element (RVE) crystal plasticity (CP) model would supply the Finite Element analysis with plastic properties, taking into account the evolution of crystallographic texture and other microstructural features. The main bottleneck is that the fine-scale model must be evaluated at virtually every integration point in the macroscopic FE mesh. We propose to address this issue by exploiting a verifiable assumption that fine-scale state variables of similar RVEs, as well as the derived properties, subjected to similar macroscopic boundary conditions evolve along nearly identical trajectories. Furthermore, the macroscopic field variables primarily responsible for the evolution of fine-scale state variables often feature local quasi-homogeneities. Adjacent integration points in the FE mesh can be then clustered together in the regions where the field responsible for the evolution shows low variance. This way the fine-scale evolution is tracked only at a limited number of material points and the derived plastic properties are propagated to the surrounding integration points subjected to similar deformation. Optimal configurations of the clusters vary in time as the local deformation conditions may change during the forming process, so the clusters must be periodically adapted. We consider two operations on the clusters of integration points: splitting (refinement) and merging (unrefinement). The concept is tested in the Hierarchical Multi-Scale (HMS) framework [1] that computes macroscopic deformations by means of the FEM, whereas the micro-structural evolution at the individual FE integration points is predicted by a CP model. The HMS locally and adaptively approximates homogenized stress responses of the CP model by means of analytical plastic potential or yield criterion function. Our earlier work

  14. Quantum Bell Inequalities from Macroscopic Locality

    CERN Document Server

    Yang, Tzyh Haur; Sheridan, Lana; Scarani, Valerio

    2010-01-01

    We propose a method to generate analytical quantum Bell inequalities based on the principle of Macroscopic Locality. By imposing locality over binary processings of virtual macroscopic intensities, we establish a correspondence between Bell inequalities and quantum Bell inequalities in bipartite scenarios with dichotomic observables. We discuss how to improve the latter approximation and how to extend our ideas to scenarios with more than two outcomes per setting.

  15. The stress state of geological structure and mining dynamic disaster in Fuxin basin

    Institute of Scientific and Technical Information of China (English)

    HAN Jun; WANG Hai-bing; ZHU Guang-zong; LIU Ting-bo

    2008-01-01

    Further evidences show that most mining dynamic disasters are mainly occurred nearby NNE and near SN geological structures.In-situ stress measurement in Fuxin basin shows that the orientation of major compressed stress is near EW.At this stress field,geological structures with deferent strike have deferent stress state and displace mode.NNE and near SN geological structures are compressed to thrust and come into being high stress zone.NWW and NEE geological structures are tensile to separate and not prone to being low stress zone.NW structure is intervenient of them.So NEE and near SN structures are easy to occurre mining dynamic disasters and NWW and NEE structures is "safety" comparatively.The mining dynamic disaster is controlled by stress state of geologic structure,which is determined by its strike.

  16. State of the science: stress, inflammation, and cancer.

    Science.gov (United States)

    Payne, Judith K

    2014-09-01

    Diagnosis with a life-threatening illness such as cancer is almost universally experienced as stressful. The construct of stress has received substantial consideration as a correlate or predictor of psychological and health outcomes (Andersen et al., 2004) and has often been conceptualized within a stress and coping framework (Lazarus & Folkman, 1984). Biobehavioral factors have long been thought to affect many health processes. The relationship between inflammation of stress and cancer originated centuries ago and is now recognized as a facilitating characteristic of cancer (Mantovani, Allavena, Sica, & Balkwill, 2008). In addition, stress and the stress response are probable mediators of the effects of psychological factors on cancer, and specifically on progression of cancer (Powell, Tarr, & Sheridan, 2013). A substantial amount of new research activity has enlightened scientists and clinicians on the neuroendocrine regulatory function of physiologic pathways in cancer growth and progression (Lutgendorf & Sood, 2011). However, in spite of considerable research over the past several decades, inconsistent data remain a challenge in establishing evidence-based pathways between behavioral risk factors and cancer initiation.

  17. Non-destructive testing of biaxial stress state in ferromagnetic materials

    Science.gov (United States)

    Vengrinovich, V. L.; Vintov, D. A.; Dmitrovich, D. V.

    2014-02-01

    The technique for biaxial stress state quantitative non destructive testing using magnetic, namely Barkhausen Noise, measurements is developed and checked experimentally. The main elaboration concerns the application of uni-axial calibration data for bi-axial stress measurement in the material which treatment pre-history is not definitely known. The article is aimed to get over difficulties, accompanying factual nondestructive stress evaluation, implied from its tensor nature. The developed technique of stress calibration and measurement assumes the bi-axial stress components recovery from uni-axial magnetic and Barkhausen noise measurement results. The complete technology, based on new calibration procedure with grid diagrams is considered in the article.

  18. Rate-and-State Southern California Earthquake Forecasts: Resolving Stress Singularities

    Science.gov (United States)

    Strader, A. E.; Jackson, D. D.

    2014-12-01

    In previous studies, we pseudo-prospectively evaluated time-dependent Coulomb stress earthquake forecasts, based on rate-and-state friction (Toda and Enescu, 2011 and Dieterich, 1996), against an ETAS null hypothesis (Zhuang et al., 2002). At the 95% confidence interval, we found that the stress-based forecast failed to outperform the ETAS forecast during the first eight weeks following the 10/16/1999 Hector Mine earthquake, in both earthquake number and spatial distribution. The rate-and-state forecast was most effective in forecasting far-field events (earthquakes occurring at least 50km away from modeled active faults). Near active faults, where most aftershocks occurred, stress singularities arising from modeled fault section boundaries obscured the Coulomb stress field. In addition to yielding physically unrealistic stress quantities, the stress singularities arising from the slip model often failed to indicate potential fault asperity locations inferred from aftershock distributions. Here, we test the effects of these stress singularities on the rate-and-state forecast's effectiveness, as well as mitigate stress uncertainties near active faults. We decrease the area significantly impacted by stress singularities by increasing the number of fault patches and introducing tapered slip at fault section boundaries, representing displacement as a high-resolution step function. Using recent seismicity distributions to relocate fault asperities, we also invert seismicity for a fault displacement model with higher resolution than the original slip distribution, where areas of positive static Coulomb stress change coincide with earthquake locations.

  19. Numerical study on core damage and interpretation of in situ state of stress

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [Gridpoint Finland Oy (Finland)

    1999-06-01

    Core disking is a phenomenon where a diamond cored core sample will be sliced when released from a stressed host rock. Ring disking is a similar phenomenon which takes place during overcoring with a pilot hole. Because of the uniform shape and spacing of disk fracturing, it has the potential to be used for estimating the in situ state of stress. If this is feasible, it could be used in high stress states where the traditional stress measuring techniques are not valid or even possible. In this work the both the core disking and ring disking phenomena were studied based on the elastic bottom hole stress application developed and a series of fracture growth stability simulations. The results-showed that both phenomena are very complicated and site specific, but the spacing, shape, extent and initiation point are clearly stress state dependent. Throughout the work, guidelines for the in situ stress field interpretation method were developed and implemented for the borehole aligned orthogonal stress field and Poisson`s ratio of 0.25. Based on this study, the in situ state of stress can be estimated with acceptable accuracy if information on both core disking and ring disking is available. On the other hand, as an indirect method, there are no reasons to use it if direct measurements can be used. (orig.) 35 refs.

  20. Effect of Microstructure of Cementite on Interphase Stress State in Carbon Steel

    Institute of Scientific and Technical Information of China (English)

    CHE Lei; GOTOH Masahide; HORIMOTO Yoshiaki; HIROSE Yukio

    2007-01-01

    The experiments related to stress states of ferrite and cementite in carbon steels were carried out including in situ four-point bending and tensile test by X-ray diffraction technique. Stresses in the cementite phase can be measured by conventional X-ray diffraction instrument after a specific treatment on the specimen surface. In order to estimate the stress states in two phases, the X-ray elastic constants of two phases in single-phase state (PXEC) are determined by the experimental X-ray elastic constants of them in composite state (CXEC). The effects of volume fraction and particle size of spheroidal cementite on the interphase stress state are estimated. The experimental results are in good agreement with the theoretical relationships reported in the previous studies.

  1. Stress State Of Plate With Incisions Under The Action Of Oscillating Concentrated Forces

    Directory of Open Access Journals (Sweden)

    Shvabyuk Vasyl’

    2015-09-01

    Full Text Available This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action of oscillating forces. Calculation of dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the theory of complex variable functions. The numerical implementation of the developed algorithmis based on the method of mechanical quadratures and collocation technique. The algorithm is effective in the analysis of the stress state caused by steady-state vibrations of plates.

  2. Microscopic versus macroscopic approaches to non-equilibrium systems

    Science.gov (United States)

    Derrida, Bernard

    2011-01-01

    The one-dimensional symmetric simple exclusion process (SSEP) is one of the very few exactly soluble models of non-equilibrium statistical physics. It describes a system of particles which diffuse with hard core repulsion on a one-dimensional lattice in contact with two reservoirs of particles at unequal densities. The goal of this paper is to review the two main approaches which lead to the exact expression of the large deviation functional of the density of the SSEP in its steady state: a microscopic approach (based on the matrix product ansatz and an additivity property) and a macroscopic approach (based on the macroscopic fluctuation theory of Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim).

  3. Indirect measurement of interfacial melting from macroscopic ice observations.

    Science.gov (United States)

    Saruya, Tomotaka; Kurita, Kei; Rempel, Alan W

    2014-06-01

    Premelted water that is adsorbed to particle surfaces and confined to capillary regions remains in the liquid state well below the bulk melting temperature and can supply the segregated growth of ice lenses. Using macroscopic measurements of ice-lens initiation position in step-freezing experiments, we infer how the nanometer-scale thicknesses of premelted films depend on temperature depression below bulk melting. The interfacial interactions between ice, liquid, and soda-lime glass particles exhibit a power-law behavior that suggests premelting in our system is dominated by short-range electrostatic forces. Using our inferred film thicknesses as inputs to a simple force-balance model with no adjustable parameters, we obtain good quantitative agreement between numerical predictions and observed ice-lens thickness. Macroscopic observations of lensing behavior have the potential as probes of premelting behavior in other systems.

  4. Residual stress state in titanium alloy remelted using GTAW method

    Directory of Open Access Journals (Sweden)

    A. Dudek

    2009-04-01

    Full Text Available Test materials comprised two-phase titanium alloy Ti6Al4V (Grade5. The surface of the tested alloy was remelted by means of TIG welding method using variable current-voltage parameters. The investigations aimed to determine surface geometry and residual stresses in the remelted surface layer in the investigated alloy.

  5. Changes of Swimmers’ Emotional States during the Preparation of National Championship: Do Recovery-Stress States Matter?

    Directory of Open Access Journals (Sweden)

    Philippe Vacher

    2017-06-01

    Full Text Available This study examined the trajectories of emotional states and their within-person synergies with perceived stress and recovery during a 4-month training period preceding the French swimming championships. A Multilevel Growth Curve Analysis approach was used with 16 high level swimmers. Five waves of assessments of emotional states, perceived stress and recovery were completed. Results indicated that emotional states were characterized by distinct trajectories during the training period preceding a major competition. Specifically, significant positive linear effects of time (i.e., linear increase over time and negative quadratic effects of squared time (i.e., inverted U shape over time on anxiety, dejection and anger were observed, whereas the opposite pattern of results was found for happiness and excitement. Moreover, level 2 perceived stress and recovery (i.e., inter-individual predictors were significantly associated with athletes’ unpleasant and pleasant emotional states respectively. At level 1, perceived recovery (i.e., intra-individual predictor was positively associated with happiness and excitement and negatively related to anxiety, dejection and anger. Finally, within-person interactions of general stress and recovery with time and squared time reached significance for excitement, whereas within-person interactions of specific and total stress with time and squared time reached significance for anxiety. Overall, this study provided insights into the central role played by perceived stress and recovery on the emotional states experienced by high level swimmers. Operational strategies were suggested in order to optimize the stress-recovery balance and in turn the athletes’ emotional states during a complete training program.

  6. Changes of Swimmers’ Emotional States during the Preparation of National Championship: Do Recovery-Stress States Matter?

    Science.gov (United States)

    Vacher, Philippe; Nicolas, Michel; Martinent, Guillaume; Mourot, Laurent

    2017-01-01

    This study examined the trajectories of emotional states and their within-person synergies with perceived stress and recovery during a 4-month training period preceding the French swimming championships. A Multilevel Growth Curve Analysis approach was used with 16 high level swimmers. Five waves of assessments of emotional states, perceived stress and recovery were completed. Results indicated that emotional states were characterized by distinct trajectories during the training period preceding a major competition. Specifically, significant positive linear effects of time (i.e., linear increase over time) and negative quadratic effects of squared time (i.e., inverted U shape over time) on anxiety, dejection and anger were observed, whereas the opposite pattern of results was found for happiness and excitement. Moreover, level 2 perceived stress and recovery (i.e., inter-individual predictors) were significantly associated with athletes’ unpleasant and pleasant emotional states respectively. At level 1, perceived recovery (i.e., intra-individual predictor) was positively associated with happiness and excitement and negatively related to anxiety, dejection and anger. Finally, within-person interactions of general stress and recovery with time and squared time reached significance for excitement, whereas within-person interactions of specific and total stress with time and squared time reached significance for anxiety. Overall, this study provided insights into the central role played by perceived stress and recovery on the emotional states experienced by high level swimmers. Operational strategies were suggested in order to optimize the stress-recovery balance and in turn the athletes’ emotional states during a complete training program. PMID:28690573

  7. The unequal-power higher-power difference squeezing in the multimode Schr(o)dinger-cat state entangled light field with three macroscopically distinguishable quantum states superposition%叠加多模薛定谔猫态纠缠光场的不等幂次高次差压缩

    Institute of Scientific and Technical Information of China (English)

    孙中禹; 陈光德; 杨志勇; 王菊霞

    2004-01-01

    利用多模压缩态理论研究了由多模复共轭相干态、多模复共轭虚相干态和多模真空态的线性叠加所组成的三态叠加多模薛定谔猫态纠缠光场的广义非线性不等幂次高次差压缩特性.结果发现:①真空场对此猫态光场的不等幂次高次差压缩效应没有影响;②在一定条件下,此猫态光场的两个正交相位分量可分别呈现出不等幂次高次差压缩效应;③而在另外的条件下,此猫态光场的两个正交相位分量则可同时出现上述的不等幂次高次差压缩效应,这是一种与测不准关系相悖的现象,称此种现象为"双边差压缩"效应.%By utilizing the general theory of multimode squeezed states, the effects of generalized nonlinear unequal-power higher-power difference squeezing in the multimode Schrodinger-cat state entangled light field is studied, that is formed by the linear superposition of three macroscopical distinguishable quantum states named the multimode complex conjugate coherent state, multimode complex conjugate imaginary coherent state and multimode vacuum state. It is found that 1) the difference squeezing of the cat state entangled light field is independent of its vacuum state component; 2) in some cases, the two quadrature phase components of this cat state entangled light field present unequal-power higher-power difference squeezing properties respectively; 3)under some other conditions, the difference squeezing effects of two quadrature phase components of the state mentioned above cart exist at the same time. The two preceding results stated above are in conformity with the uncertainty principle, but the last is not. It is called "two-sided difference squeezing" phenomenon and could be very useful in the application of squeezed light on light quanta communication.

  8. Stress State of Longitudinally Corrugated Hollow Cylinders with Different Cross-Sectional Curvature

    Science.gov (United States)

    Grigorenko, Ya. M.; Rozhok, L. S.

    2016-11-01

    The effect of the change in the curvature due to changes in the epicycle radius on the stress state of longitudinally corrugated hollow cylinders is studied using a spatial problem statement, the variable separation method, discrete Fourier series, and the discrete-orthogonalization method. The results presented in the form of graphs of distribution of displacements and stresses are analyzed

  9. Stress state of thin – walled member of the structure with operation damages under nonuniform loading

    Directory of Open Access Journals (Sweden)

    В.В. Астанін

    2004-01-01

    Full Text Available  The publication is dedicated to determining of stress state in particular the stress concentration factors for thin – walled members of the structures subject to nonuniform tension. A structure member has obtained the operation damage generation by corrosion and other causes.

  10. On the role of the residual stress state in product manufacturing

    NARCIS (Netherlands)

    Zijlstra, G.; Groen, M.; Post, J.; Ocelik, V.; de Hosson, J.Th.M.

    2016-01-01

    This paper concentrates on the effect of the residual stress state during product manufacturing of AISI 420 steel on the final shape of the product. The work includes Finite Element (FE) calculations of the distribution of the residual stresses after metal forming and a heat treatment. The evolution

  11. Influence of the Geometry of Beveled Edges on the Stress-Strain State of Hydraulic Cylinders

    Science.gov (United States)

    Buyalich, G. B.; Anuchin, A. V.; Serikov, K. P.

    2016-04-01

    The studies were carried out to determine the influence of forms obtained when preparing edges for welding a cylinder for hydraulic legs; the maximum stresses were defined at the location of weld roots, depending on variable parameters. The stress-strain states were calculated using finite element method.

  12. Combined macroscopic and microscopic approach to the fracture of metals. Technical progress report, July 1976--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Gurland, J; Rice, J R; Asaro, R J; Needleman, A

    1977-07-01

    The work includes the completion of a comprehensive study of the contributions of dislocation substructures and local stresses at particle interfaces to the strain hardening of dispersion hardened steels, and the presentation of a model of segregant induced embrittlement of grain interfaces. Work was continued on crack initiation at inclusions and on the theory of plastic flow localization. These microscopic effects are discussed in relation to the mechanisms of brittle fracture and ductile rupture of metals and alloys. On a more macroscopic scale, the state of stress and strain associated with the large plastic deformation at a crack tip was further defined based on finite element and slip line calculations, and some preliminary results were obtained by finite element methods for stable crack growth under plane strain conditions. A new finite element method has been developed for fully plastic flow under plane strain conditions.

  13. Macroscopic optical response and photonic bands

    CERN Document Server

    Perez-Huerta, J S; Mendoza, Bernardo S; Mochan, W Luis

    2012-01-01

    We develop a formalism for the calculation of the macroscopic dielectric response of composite systems made of particles of one material embedded periodically within a matrix of another material, each of which is characterized by a well defined dielectric function. The nature of these dielectric functions is arbitrary, and could correspond to dielectric or conducting, transparent or opaque, absorptive and dispersive materials. The geometry of the particles and the Bravais lattice of the composite are also arbitrary. Our formalism goes beyond the longwavelenght approximation as it fully incorporates retardation effects. We test our formalism through the study the propagation of electromagnetic waves in 2D photonic crystals made of periodic arrays of cylindrical holes in a dispersionless dielectric host. Our macroscopic theory yields a spatially dispersive macroscopic response which allows the calculation of the full photonic band structure of the system, as well as the characterization of its normal modes, upo...

  14. A macroscopic challenge for quantum spacetime

    CERN Document Server

    Amelino-Camelia, Giovanni

    2013-01-01

    Over the last decade a growing number of quantum-gravity researchers has been looking for opportunities for the first ever experimental evidence of a Planck-length quantum property of spacetime. These studies are usually based on the analysis of some candidate indirect implications of spacetime quantization, such as a possible curvature of momentum space. Some recent proposals have raised hope that we might also gain direct experimental access to quantum properties of spacetime, by finding evidence of limitations to the measurability of the center-of-mass coordinates of some macroscopic bodies. However I here observe that the arguments that originally lead to speculating about spacetime quantization do not apply to the localization of the center of mass of a macroscopic body. And I also analyze some popular formalizations of the notion of quantum spacetime, finding that when the quantization of spacetime is Planckian for the constituent particles then for the composite macroscopic body the quantization of spa...

  15. On Macroscopic Complexity and Perceptual Coding

    CERN Document Server

    Scoville, John

    2010-01-01

    While Shannon information establishes limits to the universal data compression of binary data, no existing theory provides an equivalent characterization of the lossy data compression algorithms prevalent in audiovisual media. The current paper proposes a mathematical framework for perceptual coding and inference which quantifies the complexity of objects indistinguishable to a particular observer. A definition of the complexity is presented and related to a generalization of Boltzmann entropy for these equivalence classes. When the classes are partitions of phase space, corresponding to classical observations, this is the proper Boltzmann entropy and the macroscopic complexity agrees with the Algorithmic Entropy. For general classes, the macroscopic complexity measure determines the optimal lossy compression of the data. Conversely, perceptual coding algorithms may be used to construct upper bounds on certain macroscopic complexities. Knowledge of these complexities, in turn, allows perceptual inference whic...

  16. Nanoplasmon-enabled macroscopic thermal management

    CERN Document Server

    Jonsson, Gustav Edman; Dmitriev, Alexandre

    2013-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive materials featuring nanoplasmons. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. However, direct experimental evidence of plasmon-enabled macroscopic temperature increase that would result from these efficient absorptive properties is scarce. Here we derive a general quantitative method of characterizing light-capturing properties of a given heat-generating absorptive layer by macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with plasmon nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to thermophotovoltaics and othe...

  17. Numerical simulation of the stress – strain state of technological tools for fine drawing

    OpenAIRE

    Порубов, А. В.; Мельникова, Т. Е.

    2014-01-01

    An urgent task is to ensure the long life of the technological tool, namely the expensive diamond dies, which can significantly improve the efficiency of the production of wire. Strength Evaluation of technological tools, numerical simulation of the stress – strain state of the diamond drawing tool in the finite – element package ANSYS. Calculation of strain and stress state of the diamond drawing tool for drawing copper and nickel – plated wire with the operating pressure and the pressing fo...

  18. Shallow Lunar Seismic Activity and the Current Stress State of the Moon

    Science.gov (United States)

    Watters, Thomas R.; Weber, Renee C.; Collins, Geoffrey C.; Johnson, Catherine L.

    2017-01-01

    A vast, global network of more than 3200 lobate thrust fault scarps has been revealed in high resolution Lunar Reconnaissance Orbiter Camera (LROC) images. The fault scarps are very young, less than 50 Ma, based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben and may be actively forming today. The population of young thrust fault scarps provides a window into the recent stress state of the Moon and offers insight into the origin of global lunar stresses. The distribution of orientations of the fault scarps is non-random, inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. Modeling shows that tidal stresses contribute significantly to the current stress state of the lunar crust. Tidal stresses (orbital recession and diurnal tides) superimposed on stresses from global contraction result in non-isotropic compressional stress and may produce thrust faults consistent with lobate scarp orientations. At any particular point on the lunar surface, peak compressive stress will be reached at a certain time in the diurnal cycle. Coseismic slip events on currently active thrust faults are expected to be triggered when peak stresses are reached. Analysis of the timing of the 28 the shallow moonquakes recorded by the Apollo seismic network shows that 19 indeed occur when the Moon is closer to apogee, while only 9 shallow events occur when the Moon is closer to perigee. Here we report efforts to refine the model for the current stress state of the Moon by investigating the contribution of polar wander. Progress on relocating the epicentral locations of the shallow moonquakes using an algorithm designed for sparse networks is also reported.

  19. Macroscopic characterization of cell electroporation in biological tissue based on electrical measurements

    Science.gov (United States)

    Cima, Lionel F.; Mir, Lluis M.

    2004-11-01

    A method is described to experimentally determine the temporal evolution of state variables involved in the electroporation of biological tissue, i.e., the transmembrane voltage and the macroscopic current flowing in the electropores. Indeed, the electrical parameters of the extracellular, intracellular, and unaltered membrane contributions as well as the electropores electrical characteristics can be deduced from the measurement of the tissue bioimpedance and from the variations of both the macroscopic voltage applied to the tissue and the delivered current.

  20. Mesoscopic Kinetic Basis of Macroscopic Chemical Thermodynamics: A Mathematical Theory

    CERN Document Server

    Ge, Hao

    2016-01-01

    From a mathematical model that describes a complex chemical kinetic system of $N$ species and $M$ elementrary reactions in a rapidly stirred vessel of size $V$ as a Markov process, we show that a macroscopic chemical thermodynamics emerges as $V\\rightarrow\\infty$. The theory is applicable to linear and nonlinear reactions, closed systems reaching chemical equilibrium, or open, driven systems approaching to nonequilibrium steady states. A generalized mesoscopic free energy gives rise to a macroscopic chemical energy function $\\varphi^{ss}(\\vx)$ where $\\vx=(x_1,\\cdots,x_N)$ are the concentrations of the $N$ chemical species. The macroscopic chemical dynamics $\\vx(t)$ satisfies two emergent laws: (1) $(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]\\le 0$, and (2)$(\\rd/\\rd t)\\varphi^{ss}[\\vx(t)]=\\text{cmf}(\\vx)-\\sigma(\\vx)$ where entropy production rate $\\sigma\\ge 0$ represents the sink for the chemical energy, and chemical motive force $\\text{cmf}\\ge 0$ is non-zero if the system is driven under a sustained nonequilibrium chemos...

  1. Predictors of parenting stress among gay adoptive fathers in the United States.

    Science.gov (United States)

    Tornello, Samantha L; Farr, Rachel H; Patterson, Charlotte J

    2011-08-01

    The authors examined correlates of parenting stress among 230 gay adoptive fathers across the United States through an Internet survey. As with previous research on adoptive parents, results showed that fathers with less social support, older children, and children who were adopted at older ages reported more parenting stress. Moreover, gay fathers who had a less positive gay identity also reported more parenting stress. These 4 variables accounted for 33% of the variance in parenting stress; effect sizes were medium to large. Our results suggest the importance of social support and a positive gay identity in facilitating successful parenting outcomes among gay adoptive fathers.

  2. Modelling of the Residual Stress State in a new Type of Residual Stress Specimen

    DEFF Research Database (Denmark)

    Jakobsen, Johnny; Andreasen, Jens Henrik

    2014-01-01

    The paper presents a study on a new type residual stress specimen which is proposed as a simple way to conduct experimental validation for model predictions. A specimen comprising of a steel plate with circular hole embedded into a stack of CSM glass fibre and further infused with an epoxy resin...... forms the experimental case which is analysed. A FE model of the specimen is used for analysing the curing history and the residual stress build up. The model is validated against experimental strain data which are recorded by a Fibre Brag Grating sensor and good agreement has been achieved....

  3. Nonintrusive biological signal monitoring in a car to evaluate a driver's stress and health state.

    Science.gov (United States)

    Baek, Hyun Jae; Lee, Haet Bit; Kim, Jung Soo; Choi, Jong Min; Kim, Ko Keun; Park, Kwang Suk

    2009-03-01

    Nonintrusive monitoring of a driver's physiological signals was introduced and evaluated in a car as a test of extending the concept of ubiquitous healthcare to vehicles. Electrocardiogram, photoplethysmogram, galvanic skin response, and respiration were measured in the ubiquitous healthcare car (U-car) using nonintrusively installed sensors on the steering wheel, driver's seat, and seat belt. Measured signals were transmitted to the embedded computer via Bluetooth(R) communication and processed. We collected and analyzed physiological signals during driving in order to estimate a driver's stress state while using this system. In order to compare the effect of stress on physical and mental conditions, two categories of stresses were defined. Experimental results show that a driver's physiological signals were measured with acceptable quality for analysis without interrupting driving, and they were changed meaningfully due to elicited stress. This nonintrusive monitoring can be used to evaluate a driver's state of health and stress.

  4. The relationship of dominance, reproductive state and stress in female horses (Equus caballus).

    Science.gov (United States)

    York, Carly A; Schulte, Bruce A

    2014-09-01

    Maintaining a dominant position in a hierarchy requires energetically expensive aggressive displays and physical exertion. Lab based winner-loser studies, often conducted with individuals from non-social species, have shown that subordinates have higher stress hormone levels than dominant individuals. However, in wild studies on cooperative breeders, displays of aggression used to maintain dominance status are associated with elevated stress hormone levels. The effect of reproductive state on dominance and stress has not been addressed within either of these situations. The purpose of this study was to examine physiological stress levels in relation to dominance rank and reproductive state in a non-cooperative breeder and herbivore, the domestic horse. The social interactions and measured faecal glucocorticoids were recorded in pastured, female horses that were either lactating or non-lactating. While faecal glucocorticoid metabolite level did not differ between reproductive state and rank, activity behaviour demonstrated significant differences between reproductive states. Higher energetic requirements of lactation were reflected in significantly longer bouts of eating and significantly less time spent alert and socializing. As non-cooperative breeders, the social nature of horses does not limit their reproduction or resource acquisition based upon rank, and therefore does not fit with the dominance-stress hypothesis or subordinate-stress hypothesis and instead supports a rank-independent stress hypothesis.

  5. Acculturation stress among Maya in the United States.

    Science.gov (United States)

    Millender, Eugenia

    2012-01-01

    Abstract: As health care disparities become more evident in our multicultural nation, culture sensitive health research needs to be a priority in order for good health care to take place. This article will explore the literature related to acculturation stress and mental health disparities among the Mayan population. Literatures of similar but distinct groups are included due to the limited amount of research of the Mayan population. Using Leiniger's Transcultural nursing theory, these findings suggest that nurses have a large gap to fill to address the mental health disparities of specific cultural groups like the indigenous Maya, thereby satisfying their nursing obligations.

  6. Neuroimaging of resilience to stress: current state of affairs.

    Science.gov (United States)

    van der Werff, Steven J A; Pannekoek, J Nienke; Stein, Dan J; van der Wee, Nic J A

    2013-09-01

    Resilience is defined as a dynamic, multidimensional process encompassing positive adaptation within the context of significant adversity. The complex nature of this construct makes it a difficult topic to study in neuroimaging research; however, in this article, we propose ways to operationalize resilience. The limited amount of structural and functional neuroimaging studies specifically designed to examine resilience have mainly focused on investigating alterations in regions of the brain involved in emotion and stress regulation circuitry. In the future, neuroimaging of resilience is expected to benefit from functional and structural connectivity approaches and the use of novel imaging task paradigms.

  7. Ferromagnetic resonance in thin films submitted to multiaxial stress state: application of the uniaxial equivalent stress concept and experimental validation

    Science.gov (United States)

    Gueye, M.; Zighem, F.; Belmeguenai, M.; Gabor, M.; Tiusan, C.; Faurie, D.

    2016-07-01

    In this paper a unique expression of the anisotropy field induced by any multiaxial stress state in a magnetic thin film and probed by ferromagnetic resonance is derived. This analytical development has been made using the uniaxial equivalent stress concept, for which correspondances between definitions given by different authors in the literature is found. The proposed model for the anisotropy field has been applied to \\text{C}{{\\text{o}}2}\\text{FeAl} thin films (25 nm) stressed both by piezoelectric actuation (non-equi-biaxial) or by bending tests (uniaxial) and measured with a broadband ferromagnetic resonance technique. The overall exprimental data can be easily plotted on a unique graph from which the magnetostriction coefficient has been estimated.

  8. Effects of stressful daily events on mood states : Relationship to global perceived stress

    NARCIS (Netherlands)

    van Eck, M; Nicolson, NA; Berkhof, J

    1998-01-01

    This study used experience sampling methodology to examine the relationship between stressful daily events and mood. Eighty-five male white-collar workers completed self-reports 10 times a day for 5 days. Controlling for individual differences in mood levels, multilevel regression analyses showed th

  9. Effects of stressful daily events on mood states : Relationship to global perceived stress

    NARCIS (Netherlands)

    van Eck, M; Nicolson, NA; Berkhof, J

    1998-01-01

    This study used experience sampling methodology to examine the relationship between stressful daily events and mood. Eighty-five male white-collar workers completed self-reports 10 times a day for 5 days. Controlling for individual differences in mood levels, multilevel regression analyses showed th

  10. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable.

    Science.gov (United States)

    Huang, Yihe; Ellsworth, William L; Beroza, Gregory C

    2017-08-01

    Induced earthquakes currently pose a significant hazard in the central United States, but there is considerable uncertainty about the severity of their ground motions. We measure stress drops of 39 moderate-magnitude induced and tectonic earthquakes in the central United States and eastern North America. Induced earthquakes, more than half of which are shallower than 5 km, show a comparable median stress drop to tectonic earthquakes in the central United States that are dominantly strike-slip but a lower median stress drop than that of tectonic earthquakes in the eastern North America that are dominantly reverse-faulting. This suggests that ground motion prediction equations developed for tectonic earthquakes can be applied to induced earthquakes if the effects of depth and faulting style are properly considered. Our observation leads to the notion that, similar to tectonic earthquakes, induced earthquakes are driven by tectonic stresses.

  11. Separation of the Microscopic and Macroscopic Domains

    Science.gov (United States)

    Van Zandt, L. L.

    1977-01-01

    Examines the possibility of observing interference in quantum magnification experiments such as the celebrated "Schroedinger cat". Uses the possibility of observing interference for separating the realm of microscopic from macroscopic dynamics; estimates the dividing line to fall at system sizes of about 100 Daltons. (MLH)

  12. Entropy, Macroscopic Information, and Phase Transitions

    OpenAIRE

    Parrondo, Juan M. R.

    1999-01-01

    The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.

  13. Macroscopic Modeling of Polymer-Electrolyte Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weber, A.Z.; Newman, J.

    2007-04-01

    In this chapter, the various approaches for the macroscopic modeling of transport phenomena in polymer-electrolyte membranes are discussed. This includes general background and modeling methodologies, as well as exploration of the governing equations and some membrane-related topic of interest.

  14. Lozenge Tilings, Glauber Dynamics and Macroscopic Shape

    Science.gov (United States)

    Laslier, Benoît; Toninelli, Fabio Lucio

    2015-09-01

    We study the Glauber dynamics on the set of tilings of a finite domain of the plane with lozenges of side 1/ L. Under the invariant measure of the process (the uniform measure over all tilings), it is well known (Cohn et al. J Am Math Soc 14:297-346, 2001) that the random height function associated to the tiling converges in probability, in the scaling limit , to a non-trivial macroscopic shape minimizing a certain surface tension functional. According to the boundary conditions, the macroscopic shape can be either analytic or contain "frozen regions" (Arctic Circle phenomenon Cohn et al. N Y J Math 4:137-165, 1998; Jockusch et al. Random domino tilings and the arctic circle theorem, arXiv:math/9801068, 1998). It is widely conjectured, on the basis of theoretical considerations (Henley J Statist Phys 89:483-507, 1997; Spohn J Stat Phys 71:1081-1132, 1993), partial mathematical results (Caputo et al. Commun Math Phys 311:157-189, 2012; Wilson Ann Appl Probab 14:274-325, 2004) and numerical simulations for similar models (Destainville Phys Rev Lett 88:030601, 2002; cf. also the bibliography in Henley (J Statist Phys 89:483-507, 1997) and Wilson (Ann Appl Probab 14:274-325, 2004), that the Glauber dynamics approaches the equilibrium macroscopic shape in a time of order L 2+ o(1). In this work we prove this conjecture, under the assumption that the macroscopic equilibrium shape contains no "frozen region".

  15. Macroscopic invisibility cloaking of visible light

    DEFF Research Database (Denmark)

    Chen, Xianzhong; Luo, Y.; Zhang, Jingjing

    2011-01-01

    to a few wavelengths. Here, we report the first realization of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding, for a specific light polarization, three-dimensional objects of the scale...

  16. 3-D-geomechanical-numerical model of the contemporary crustal stress state in the Alberta Basin

    Directory of Open Access Journals (Sweden)

    K. Reiter

    2014-08-01

    Full Text Available In the context of examining the potential usage of safe and sustainable geothermal energy in the Alberta Basin whether in deep sediments or crystalline rock, the understanding of the in-situ stress state is crucial. It is a key challenge to estimate the 3-D stress state at an arbitrary chosen point in the crust, based on sparsely distributed in-situ stress data. To address this challenge, we present a large-scale 3-D geomechanical-numerical model (700 km × 1200 km × 80 km from a large portion of the Alberta Basin, to provide a 3-D continuous quantification of the contemporary stress orientations and stress magnitudes. To calibrate the model, we use a large database of in-situ stress orientation (321 SHmax as well as stress magnitude data (981 SV, 1720 SHmin and 2 (+11 SHmax from the Alberta Basin. To find the best-fit model we vary the material properties and primarily the kinematic boundary conditions of the model. This study focusses in detail on the statistical calibration procedure, because of the large amount of available data, the diversity of data types, and the importance of the order of data tests. The best-fit model provides the total 3-D stress tensor for nearly the whole Alberta Basin and allows estimation of stress orientation and stress magnitudes in advance of any well. First order implications for the well design and configuration of enhanced geothermal systems are revealed. Systematic deviations of the modelled stress from in-situ data are found for stress orientations in the Peace River- and the Bow Island Arch as well as for leak-off-test magnitudes.

  17. Occupational Stress and Management Strategies of Secondary School Principals in Cross River State, Nigeria

    Science.gov (United States)

    Anyanwu, Joy; Ezenwaji, Ifeyinwa; Okenjom, Godian; Enyi, Chinwe

    2015-01-01

    The study aimed at finding out sources and symptoms of occupational stress and management strategies of principals in secondary schools in Cross River State, Nigeria. Descriptive survey research design was adopted for the study with a population of 420 principals (304 males and 116 females) in secondary schools in Cross River State, Nigeria. Three…

  18. Simulation of root water uptake. I. Non-uniform transient salinity using different macroscopic reduction functions

    NARCIS (Netherlands)

    Homaee, M.; Dirksen, C.; Feddes, R.A.

    2002-01-01

    A macroscopic root extraction model was used with four different reduction functions for salinity stress in the numerical simulation model HYSWASOR. Most of the parameter values originally proposed for these functions did not provide good agreement with the experimental data. Therefore, the paramete

  19. Oxidative Stress and Heart Failure in Altered Thyroid States

    Directory of Open Access Journals (Sweden)

    Pallavi Mishra

    2012-01-01

    Full Text Available Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that hyperthyroidism induces a hyperdynamic cardiovascular state, which is associated with a faster heart rate, enhanced left ventricular systolic and diastolic function whereas hypothyroidism is characterized by the opposite changes. Hyperthyroidism and hypothyroidism represent opposite clinical conditions, albeit not mirror images. Recent experimental and clinical studies have suggested the involvement of ROS tissue damage under altered thyroid status. Altered-thyroid state-linked changes in heart modify their susceptibility to oxidants and the extent of the oxidative damage they suffer following oxidative challenge. Chronic increase in the cellular levels of ROS can lead to a catastrophic cycle of DNA damage, mitochondrial dysfunction, further ROS generation and cellular injury. Thus, these cellular events might play an important role in the development and progression of myocardial remodeling and heart failure in altered thyroid states (hypo- and hyper-thyroidism. The present review aims at elucidating the various signaling pathways mediated via ROS and their modulation under altered thyroid state and the possibility of antioxidant therapy.

  20. Hydrodynamic description of (visco)elastic composite materials and relative strains as a new macroscopic variable

    CERN Document Server

    Menzel, Andreas M

    2016-01-01

    One possibility to adjust material properties to a specific need is to embed units of one substance into a matrix of another substance. Even materials that are readily tunable during operation can be generated in this way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their surroundings approach the macroscopic response time, their deformation processes need to be included into a dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative translations and relative rotat...

  1. Generating giant and tunable nonlinearity in a macroscopic mechanical resonator from a single chemical bond

    Science.gov (United States)

    Huang, Pu; Zhou, Jingwei; Zhang, Liang; Hou, Dong; Lin, Shaochun; Deng, Wen; Meng, Chao; Duan, Changkui; Ju, Chenyong; Zheng, Xiao; Xue, Fei; Du, Jiangfeng

    2016-05-01

    Nonlinearity in macroscopic mechanical systems may lead to abundant phenomena for fundamental studies and potential applications. However, it is difficult to generate nonlinearity due to the fact that macroscopic mechanical systems follow Hooke's law and respond linearly to external force, unless strong drive is used. Here we propose and experimentally realize high cubic nonlinear response in a macroscopic mechanical system by exploring the anharmonicity in chemical bonding interactions. We demonstrate the high tunability of nonlinear response by precisely controlling the chemical bonding interaction, and realize, at the single-bond limit, a cubic elastic constant of 1 × 1020 N m-3. This enables us to observe the resonator's vibrational bi-states transitions driven by the weak Brownian thermal noise at 6 K. This method can be flexibly applied to a variety of mechanical systems to improve nonlinear responses, and can be used, with further improvements, to explore macroscopic quantum mechanics.

  2. Relationship Between Organizational Climate, Job Stress And Job Performance Officer At State Education Department

    Directory of Open Access Journals (Sweden)

    Turiman Suandi

    2014-01-01

    Full Text Available This research aims at finding out the relationship between Organizational Climate, job stress and job performance among State Education Department (JPN officers . The focus of the research is to determeane the job performance of state education department officers, level of job stress among the officers, level of connection between organizational climate with job stress of State Education Department officers, looking at the difference in level of performance according to demographic factors and looking at the influence of organizational climate and job stress towards job performance . Research findings pertaining level of job performance showed that 75.8% of the respondents are at a high level, 23.7% respondents are at a moderate level while 0.5% respondents are at a low level. For organizational climate, findings show that 79.0% respondents are in the moderate level, 1.6 % respondents are at a highlevel and 19.4% respondents are at a low level. Findings on overall level of job stress found that as many as 92.5% respondents are at a normal job stress. Only about 7.5% respondents are at a moderate level of job stress. There is not even one respondent who are facing a high level of job stress.  In terms of the relationship between independent variables (organizational climate, job stress and dependent variable (job performance, the research findings show that there is a moderate level of positive relationship which is quite significant between organizational climate and job performance of the State Education Department officers at α = 0.01 (p < 0.01; r = 0.396.

  3. Natural fiber composite design and characterization for limit stress prediction in multiaxial stress state

    Directory of Open Access Journals (Sweden)

    Christopher C. Ihueze

    2015-07-01

    Full Text Available This paper focuses on the design of natural fiber composites and analysis of multiaxial stresses in relation to yield limit stresses of composites loaded off the fibers axis. ASTM D638-10 standard for tensile test was used to design and compose composites of plantain fiber reinforced polyester (PFRP. While the rule of mixtures was used in the evaluation of properties of composites in the fiber direction the evaluation of properties perpendicular or transverse to the fiber direction was done based on the value of the orthogonal stresses evaluated using ANSYS finite element software, the application of the Brintrup equation and Halpin–Tai equation. The yield strength for the plantain empty fruit bunch fiber reinforced polyester resin (PEFBFRP was estimated as 33.69 MPa while the yield strength of plantain pseudo stem fiber reinforced polyester resin (PPSFRP was estimated as 29.24 MPa. Above all, the PEFBFRP with average light absorbance peak of 45.47 was found to have better mechanical properties than the PPSFRP with average light absorbance peak of 45.77.

  4. Effect of intermediate principal stress on strength of soft rock under complex stress states

    Institute of Scientific and Technical Information of China (English)

    马宗源; 廖红建; 党发宁

    2014-01-01

    A series of numerical simulations of conventional and true triaxial tests for soft rock materials using the three-dimensional finite difference code FLAC3D were presented. A hexahedral element and a strain hardening/softening constitutive model based on the unified strength theory (UST) were used to simulate both the consolidated-undrained (CU) triaxial and the consolidated-drained (CD) true triaxial tests. Based on the results of the true triaxial tests simulation, the effect of the intermediate principal stress on the strength of soft rock was investigated. Finally, an example of an axial compression test for a hard rock pillar with a soft rock interlayer was analyzed using the two-dimensional finite difference code FLAC. The CD true triaxial test simulations for diatomaceous soft rock suggest the peak and residual strengths increase by 30%when the effect of the intermediate principal stress is taken into account. The axial compression for a rock pillar indicated the peak and residual strengths increase six-fold when the soft rock interlayer approached the vertical and the effect of the intermediate principal stress is taken into account.

  5. Influence of discontinuities on the rock mass stress-strain state around excavation

    Directory of Open Access Journals (Sweden)

    V.N. Bukhartsev

    2013-06-01

    Full Text Available Adequate mathematical modeling of selvage zone and natural fracturing as well as assessment of its impact on stress-strain state – urgent problems in calculation of hydraulic tunnels. Modern Russian regulations in fact give dependences only to solve the problems in plane deformation conditions. The specificity of work of the tunnel that crosses the discontinuity, as a space frame are not taken into account. This article presents influence of discontinuities and fracture characteristics on the rock mass stress-strain state around excavation. Fractured rock mass model was analyzed. Formula of modulus of elasticity for fractured rock mass at distance from the fault was deduced. Influence of discontinuities on the stress distribution was estimated with using experiment design method. On the basis of the conducted research it was established, that assessing rock stress-strain state around the fracture is necessary to consider rock mass fracture characteristics; and using principal stresses distribution in combination with Lode parameter we can clearly estimate the type of stress-strain state in each point, therefore, we can use different strength theories for different sections of the tunnel.

  6. Single-atom quantum control of macroscopic mechanical oscillators

    Science.gov (United States)

    Bariani, F.; Otterbach, J.; Tan, Huatang; Meystre, P.

    2014-01-01

    We investigate a hybrid electromechanical system consisting of a pair of charged macroscopic mechanical oscillators coupled to a small ensemble of Rydberg atoms. The resonant dipole-dipole coupling between an internal atomic Rydberg transition and the mechanics allows cooling to its motional ground state with a single atom despite the considerable mass imbalance between the two subsystems. We show that the rich electronic spectrum of Rydberg atoms, combined with their high degree of optical control, paves the way towards implementing various quantum-control protocols for the mechanical oscillators.

  7. The Two-Time Interpretation and Macroscopic Time-Reversibility

    Directory of Open Access Journals (Sweden)

    Yakir Aharonov

    2017-03-01

    Full Text Available The two-state vector formalism motivates a time-symmetric interpretation of quantum mechanics that entails a resolution of the measurement problem. We revisit a post-selection-assisted collapse model previously suggested by us, claiming that unlike the thermodynamic arrow of time, it can lead to reversible dynamics at the macroscopic level. In addition, the proposed scheme enables us to characterize the classical-quantum boundary. We discuss the limitations of this approach and its broad implications for other areas of physics.

  8. An investigation into why macroscopic systems behave classically

    OpenAIRE

    Hallwood, David W.; Burnett, Keith; Dunningham, Jacob

    2006-01-01

    We study why it is quite so hard to make a superposition of superfluid flows in a Bose-Einstein condensate. To do this we initially investigate the quantum states of $N$ atoms trapped in a 1D ring with a barrier at one position and a phase applied around it. We show how macroscopic superpositions can in principle be produced and investigate factors which affect the superposition. We then use the Bose-Hubbard model to study an array of Bose-Einstein condensates trapped in optical potentials an...

  9. Macroscopic modeling for traffic flow on three-lane highways

    Science.gov (United States)

    Chen, Jianzhong; Fang, Yuan

    2015-04-01

    In this paper, a macroscopic traffic flow model for three-lane highways is proposed. The model is an extension of the speed gradient model by taking into account the lane changing. The new source and sink terms of lane change rate are added into the continuity equations and the speed dynamic equations to describe the lane-changing behavior. The result of the steady state analysis shows that our model can describe the lane usage inversion phenomenon. The numerical results demonstrate that the present model effectively reproduces several traffic phenomena observed in real traffic such as shock and rarefaction waves, stop-and-go waves and local clusters.

  10. Flavour Fields in Steady State: Stress Tensor and Free Energy

    CERN Document Server

    Banerjee, Avik; Kundu, Sandipan

    2015-01-01

    The dynamics of a probe brane in a given gravitational background is governed by the Dirac-Born-Infeld action. The corresponding open string metric arises naturally in studying the fluctuations on the probe. In Gauge-String duality, it is known that in the presence of a constant electric field on the worldvolume of the probe, the open string metric acquires an event horizon and therefore the fluctuation modes on the probe experience an effective temperature. In this article, we bring together various properties of such a system to a formal definition and a subsequent narration of the effective thermodynamics and the stress tensor of the corresponding flavour fields, also including a non-vanishing chemical potential. In doing so, we point out a potentially infinitely-degenerate scheme-dependence of regularizing the free energy, which nevertheless yields a universal contribution in certain cases. This universal piece appears as the coefficient of a log-divergence in free energy when a space-filling probe brane ...

  11. Characterization of the Residual Stress State in Commercially Fully Toughened Glass

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik; Olesen, John Forbes; Stang, Henrik

    2010-01-01

    Toughened glass is often used in load carrying elements due to the relatively high tensile strength compared with float glass. The apparent tensile strength of toughened glass is a combination of the pure material strength and the residual stresses imposed by the toughening process. This paper...... is concerned with an experimental characterization of the residual stress state for toughened glass. Results for the variation of residual stresses within 32 square specimens with a side length of 300 mm are investigated. The specimens varied in thickness and one group was glass with low iron content....... The photoelastic constant was estimated from a four-point bending test. The experimental results revealed large variations in the residual stress state within each specimen and between groups of different thicknesses. The results are compared with a nonstandard fragmentation test, showing that the fragment size...

  12. Principle and mathematical method for inverting stress state of a medium from the remote sensing data

    Institute of Scientific and Technical Information of China (English)

    尹京苑; 邓明德; 钱家栋; 房宗绯; 赵宝宗; 刘晓琳

    2003-01-01

    It has been proved through experiments that the electromagnetic radiation energy of a substance will vary when stress acts on the substance. This moment, the electromagnetic radiation energy (observation value) received by the remote sensor is triggered not only by the substance temperature and also by the stress. Separating quantitatively these two kinds of electromagnetic radiation energy and then inversing the actual temperature state and stress state of a medium is a matter with practical significance in earthquake prediction and stability monitoring for the large-scale geotechnical engineering. In this paper the principle and the mathematical method for inversing stress by using multiband remote sensing data are discussed in detail. A calculation example is listed.

  13. 2-D elastic FEM simulation on stress state in the deep part of a subducted slab

    Institute of Scientific and Technical Information of China (English)

    毛兴华; 刘亚静; 叶国扬; 宁杰远

    2002-01-01

    Based upon some simplified numerical models, a 2-D plain strain elastic FEM program is compiled to study the distributions of the stress fields produced by the volume change of the phase transformation from olivine to spinel, by the volume change from temperature variation, and by density difference and boundary action in a piece of subducted slab located in transition zone of the mantle. Thermal stress could explain the fault plane solutions of deep focus earthquakes, but could not explain the distribution of deep seismicity. When large extent metastable olivine is included, the stress field produced by the density difference contradicts with the results of fault plane solutions and with the distribution of deep seismicity. Although the stress produced by volume change of the phase transformation from olivine to spinel dominates the stress state, its main direction is different from the observed results. We conclude that the deep seismicity could not be simply explained by elastic simulation.

  14. Stress-Stain State of Pipe Made of Copper-Based Alloy Strengthened with Incoherent Nanoparticles

    Science.gov (United States)

    Matvienko, O. V.; Daneyko, O. I.; Kovalevskaya, T. A.

    2017-08-01

    The approach which combines methods of crystal plasticity and deformable solid mechanics is used to explore the stress-strain state of a heavy-wall pipe made of dispersion-hardened Cu-based alloy and subjected to the uniform internal pressure. The distribution of the deformation and stress along the pipe wall is determined for various pipe geometry. The approximating equations are obtained to determine the yielding area and elastic and plastic strength limits.

  15. Macroscopic Invisibility Cloaking of Visible Light

    CERN Document Server

    Chen, Xianzhong; Zhang, Jingjing; Jiang, Kyle; Pendry, John B; Zhang, Shuang

    2010-01-01

    Invisibility cloaks of light, which used to be confined to the imagination, have now been turned into a scientific reality, thanks to the enabling theoretical tools of transformation optics and conformal mapping. Inspired by those theoretical works, the experimental realisation of electromagnetic invisibility cloaks has been reported at various electromagnetic frequencies. All the invisibility cloaks demonstrated thus far, however, have relied on nano- or micro-fabricated artificial composite materials with spatially varying electromagnetic properties, which limit the size of the cloaked region to a few wavelengths. Here we report realisation of a macroscopic volumetric invisibility cloak constructed from natural birefringent crystals. The cloak operates at visible frequencies and is capable of hiding three-dimensional objects of the scale of centimetres and millimetres. Our work opens avenues for future applications with macroscopic cloaking devices.

  16. Macroscopic spin and charge transport theory

    Institute of Scientific and Technical Information of China (English)

    Li Da-Fang; Shi Jun-Ren

    2009-01-01

    According to the general principle of non-equilibrium thermodynamics, we propose a set of macroscopic transport equations for the spin transport and the charge transport. In particular, the spin torque is introduced as a generalized 'current density' to describe the phenomena associated with the spin non-conservation in a unified framework. The Einstein relations and the Onsager relations between different transport phenomena are established. Specifically, the spin transport properties of the isotropic non-magnetic and the isotropic magnetic two-dimensional electron gases are fully described by using this theory, in which only the macroscopic-spin-related transport phenomena allowed by the symmetry of the system are taken into account.

  17. Macroscopic entrainment of periodically forced oscillatory ensembles.

    Science.gov (United States)

    Popovych, Oleksandr V; Tass, Peter A

    2011-03-01

    Large-amplitude oscillations of macroscopic neuronal signals, such as local field potentials and electroencephalography or magnetoencephalography signals, are commonly considered as being generated by a population of mutually synchronized neurons. In a computational study in generic networks of phase oscillators and bursting neurons, however, we show that this common belief may be wrong if the neuronal population receives an external rhythmic input. The latter may stem from another neuronal population or an external, e.g., sensory or electrical, source. In that case the population field potential may be entrained by the rhythmic input, whereas the individual neurons are phase desynchronized both mutually and with their field potential. Intriguingly, the corresponding large-amplitude oscillations of the population mean field are generated by pairwise desynchronized neurons oscillating at frequencies shifted far away from the frequency of the macroscopic field potential.

  18. Adsorption modeling for macroscopic contaminant dispersal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Axley, J.W.

    1990-05-01

    Two families of macroscopic adsorption models are formulated, based on fundamental principles of adsorption science and technology, that may be used for macroscopic (such as whole-building) contaminant dispersal analysis. The first family of adsorption models - the Equilibrium Adsorption (EA) Models - are based upon the simple requirement of equilibrium between adsorbent and room air. The second family - the Boundary Layer Diffusion Controlled Adsorption (BLDC) Models - add to the equilibrium requirement a boundary layer model for diffusion of the adsorbate from the room air to the adsorbent surface. Two members of each of these families are explicitly discussed, one based on the linear adsorption isotherm model and the other on the Langmuir model. The linear variants of each family are applied to model the adsorption dynamics of formaldehyde in gypsum wall board and compared to measured data.

  19. Macroscopic Invisible Cloak for Visible Light

    CERN Document Server

    Zhang, Baile; Liu, Xiaogang; Barbastathis, George

    2011-01-01

    Invisibility cloaks, a subject that usually occurs in science fiction and myths, have attracted wide interest recently because of their possible realization. The biggest challenge to true invisibility is known to be the cloaking of a macroscopic object in the broad range of wavelengths visible to the human eye. Here we experimentally solve this problem by incorporating the principle of transformation optics into a conventional optical lens fabrication with low-cost materials and simple manufacturing techniques. A transparent cloak made of two pieces of calcite is created. This cloak is able to conceal a macroscopic object with a maximum height of 2 mm, larger than 3500 free-space-wavelength, inside a transparent liquid environment. Its working bandwidth encompassing red, green and blue light is also demonstrated.

  20. 11-cis retinal torsion: A QTAIM and stress tensor analysis of the S1 excited state

    Science.gov (United States)

    Maza, Julio R.; Jenkins, Samantha; Kirk, Steven R.

    2016-05-01

    We investigate torsion about the C11-C12 bond mid-point for the S1 state of 11-cis retinal, using a QTAIM and stress tensor analysis. The QTAIM and stress tensor responses to a torsion ±α increase at a faster rate for the preferred direction of torsion though the CI seam. A QTAIM and stress tensor vector-based analysis provides an alternative way of characterising the asymmetry of the S1 potential energy surface. In the vicinity of the CI seam the ellipticity ε attained minimum values. The application of this analysis to molecular rotary motors is briefly discussed.

  1. Effect of severe environmental thermal stress on redox state in salmon.

    Science.gov (United States)

    Nakano, Toshiki; Kameda, Masumi; Shoji, Yui; Hayashi, Satoshi; Yamaguchi, Toshiyasu; Sato, Minoru

    2014-01-01

    Fish are exposed to many kinds of environmental stressors and the chances of succumbing to infectious diseases may be increased a result. For example, an acute increase in temperature can induce numerous physiological changes in the body. In the present study, we examined the redox state in response to a severe acute stress resulting from heat shock in teleost coho salmon (Oncorhynchus kisutch). The plasma lipid peroxides levels in fish gradually increased after heat shock treatment. By 2.5 h post-heat stress, plasma glutathione (GSH) levels had decreased, but they had returned to basal levels by 17.5 h post-stress. Plasma superoxide dismutase activities in stressed fish were significantly increased compared with those in control fish at 17.5 h post-stress, but had returned to basal levels by 48 h post-stress. Expression levels of hepatic GSH and heat shock protein 70 gradually increased after heat shock treatment. These results concerning the changing patterns of multiple important redox-related biomarkers suggest that severe thermal stressors can affect the redox state and induce oxidative stress in ectothermal animals, such as fish, in vivo. Hence, manipulation of appropriate thermal treatment may possibly be useful to control fish fitness.

  2. Effect of severe environmental thermal stress on redox state in salmon

    Directory of Open Access Journals (Sweden)

    Toshiki Nakano

    2014-01-01

    Full Text Available Fish are exposed to many kinds of environmental stressors and the chances of succumbing to infectious diseases may be increased a result. For example, an acute increase in temperature can induce numerous physiological changes in the body. In the present study, we examined the redox state in response to a severe acute stress resulting from heat shock in teleost coho salmon (Oncorhynchus kisutch. The plasma lipid peroxides levels in fish gradually increased after heat shock treatment. By 2.5 h post-heat stress, plasma glutathione (GSH levels had decreased, but they had returned to basal levels by 17.5 h post-stress. Plasma superoxide dismutase activities in stressed fish were significantly increased compared with those in control fish at 17.5 h post-stress, but had returned to basal levels by 48 h post-stress. Expression levels of hepatic GSH and heat shock protein 70 gradually increased after heat shock treatment. These results concerning the changing patterns of multiple important redox-related biomarkers suggest that severe thermal stressors can affect the redox state and induce oxidative stress in ectothermal animals, such as fish, in vivo. Hence, manipulation of appropriate thermal treatment may possibly be useful to control fish fitness.

  3. Residual stress state in pipe cut ring specimens for fracture toughness testing

    Energy Technology Data Exchange (ETDEWEB)

    Damjanovic, Darko [J.J. Strossmayer Univ. of Osijek, Slavonski Brod (Croatia). Mechanical Engineering Faculty; Kozak, Drazan [Zagreb Univ. (Croatia). Dept. for Mechanical Design; Marsoner, Stefan [Materials Center, Leoben (Austria).; Gubeljak, Nenad [Maribor Univ. (Slovenia). Chair of Mechanics

    2017-07-01

    Thin-walled pipes are not suitable for measuring fracture toughness parameters of vital importance because longitudinal crack failure is the most common failure mode in pipes. This is due to the impossibility to manufacture standard specimens for measuring fracture toughness, such as SENB or CT specimens, from the thin wall of the pipe. Previous works noticed this problem, but until now, a good and convenient solution has not been found or developed. To overcome this problem, very good alternative solution was proposed, the so-called pipe ring notched bend specimen (PRNB) [1-5]. Until now, only the idealized geometry PRNB specimen is analyzed, i. e., a specimen which is not cut out from an actual pipe but produced from steel plate. Based on that, residual stresses are neglected along with the imperfections in geometry (elliptical and eccentricity). The aim of this research is to estimate the residual stress state(s) in real pipes used in the boiler industry produced by hot rolling technique. These types of pipes are delivered only in normalized condition, but not stress relieved. Therefore, there are residual stresses present due to the manufacturing technique, but also due to uneven cooling after the production process. Within this paper, residual stresses are estimated by three methods: the incremental hole drilling method (IHMD), X-ray diffraction (XRD) and the splitting method (SM). Knowing the residual stress state in the ring specimen, it is possible to assess their impact on fracture toughness measured on the corresponding PRNB specimen(s).

  4. Interpretation of the Haestholmen in situ state of stress based on core damage observations

    Energy Technology Data Exchange (ETDEWEB)

    Hakala, M. [Gridpoint Finland Oy, (Finland)

    2000-01-01

    At the Haestholmen investigation site, direct in situ stress measurements, overcoring and hydraulic fracturing have been unsuccessful because of ring disking and horizontal hydraulic fracturing. Prior to this study, a detailed study on both core disking and ring disking was made, and based on those results an in situ state of stress interpretation method was developed. In this work this method is applied to the Haestholmen site. The interpretation is based on disk fracture type, spacing and shape. Also, the Hoek-Brown strength envelope and Poisson's ratio of intact rock are needed. The interpretation result is most reliable if both core disking and ring disking information at the same depth levels is available. A detailed core logging showed that ring disking is systematic below the -365 m level in the vertical overcoring stress measurement hole, HH-KR6. On the other hand, no representative core disking exists except for two points in two differently oriented subvertical boreholes HH-KR2 and HHKR7. Because the interpretation has to be based on ring disking only, upper and lower estimates for the vertical stress were set. These were gravitational and 67% of gravitational. Furthermore, the in situ stress state was assumed to be in horizontal and vertical planes, because the disking in vertical borehole HH-KR6 was not inclined. The interpretation resulted in a good estimate for the major horizontal stress but none of the horizontal stress rations ( 0.25, 0.5, 0.75 and 1.0 ) or vertical stress assumptions studied are clearly more probable the others. At the 500 m level the resulting maximum horizontal stress is 41 MPa. If a linear fit through the zero depth and zero stress point is applied, the maximum horizontal stress gradient is 0.0818 z MPa/m with a standard deviation between 5 and 12 per cent. The orientation of the major horizontal stress is 108 with standard deviation of 21 degrees. The interpreted major horizontal stress state also indicated that

  5. A macroscopic approach to creating exotic matter

    OpenAIRE

    Ridgely, C. T.

    2000-01-01

    Herein the Casimir effect is used to present a simple macroscopic view on creating exotic matter. The energy arising between two nearly perfectly conducting parallel plates is shown to become increasingly negative as the plate separation is reduced. It is proposed that the Casimir energy appears increasingly negative simply because the vacuum electromagnetic zero-point field performs positive work in pushing the plates together, transforming field energy into kinetic energy of the plates. Nex...

  6. Shot noise in linear macroscopic resistors

    OpenAIRE

    Gomila Lluch, Gabriel; Pennetta, C.; Reggiani, L.; Ferrari, G; Sampietro, M.; G. Bertuccio(Politecnico di Milano, Italy)

    2004-01-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devi...

  7. Shot Noise in Linear Macroscopic Resistors

    Science.gov (United States)

    Gomila, G.; Pennetta, C.; Reggiani, L.; Sampietro, M.; Ferrari, G.; Bertuccio, G.

    2004-06-01

    We report on direct experimental evidence of shot noise in a linear macroscopic resistor. The origin of the shot noise comes from the fluctuation of the total number of charge carriers inside the resistor associated with their diffusive motion under the condition that the dielectric relaxation time becomes longer than the dynamic transit time. The present results show that neither potential barriers nor the absence of inelastic scattering are necessary to observe shot noise in electronic devices.

  8. Macroscopic Objects, Intrinsic Spin, and Lorentz Violation

    CERN Document Server

    Atkinson, David W; Tasson, Jay D

    2013-01-01

    The framework of the Standard-Model Extension (SME) provides a relativistic quantum field theory for the study of Lorentz violation. The classical, nonrelativistic equations of motion can be extracted as a limit that is useful in various scenarios. In this work, we consider the effects of certain SME coefficients for Lorentz violation on the motion of macroscopic objects having net intrinsic spin in the classical, nonrelativistic limit.

  9. Effect of state of stress on the cavitation behavior of Al 5083 superplastic material

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Namas; Kalu, Peter [Dept. of Mech. Eng., Florida State Univ., Tallahassee, FL (United States); Khraisheh, Marwan K. [Dept. of MEch. Eng., Univ. of Kentucky, Lexington, KY (United States)

    2005-07-01

    In this paper we address the controversial issue of nucleation of cavities in Al 5083 alloys and their subsequent growth to coalescence and failure. We focus on the origin and growth of cavities not only during the primary processing of Al 5083 in sheet forms, but also during the manufacture of these sheets into SPF (superplastic forming) components. Experimental observations of pre-existing cavities in this alloy are made using optical and electron microscopy. The role of sheet rolling direction, and the state of stress during superplastic deformation on the cavity formation and coalescence are also discussed. The effect of the state of stress (uniaxial, plane strain, balanced biaxial, and tri-axial) on the growth characteristics of cavitation is also examined. It is found that the uniaxial model based cavitation cannot directly be extended to predict the behavior of more complex stress states, unless great care is taken to identify the right strain measure for the mapping process. (orig.)

  10. The influence of normal fault on initial state of stress in rock mass

    Directory of Open Access Journals (Sweden)

    Tajduś Antoni

    2016-03-01

    Full Text Available Determination of original state of stress in rock mass is a very difficult task for rock mechanics. Yet, original state of stress in rock mass has fundamental influence on secondary state of stress, which occurs in the vicinity of mining headings. This, in turn, is the cause of the occurrence of a number of mining hazards, i.e., seismic events, rock bursts, gas and rock outbursts, falls of roof. From experience, it is known that original state of stress depends a lot on tectonic disturbances, i.e., faults and folds. In the area of faults, a great number of seismic events occur, often of high energies. These seismic events, in many cases, are the cause of rock bursts and damage to the constructions located inside the rock mass and on the surface of the ground. To estimate the influence of fault existence on the disturbance of original state of stress in rock mass, numerical calculations were done by means of Finite Element Method. In the calculations, it was tried to determine the influence of different factors on state of stress, which occurs in the vicinity of a normal fault, i.e., the influence of normal fault inclination, deformability of rock mass, values of friction coefficient on the fault contact. Critical value of friction coefficient was also determined, when mutual dislocation of rock mass part separated by a fault is impossible. The obtained results enabled formulation of a number of conclusions, which are important in the context of seismic events and rock bursts in the area of faults.

  11. Mindfulness meditation training alters stress-related amygdala resting state functional connectivity: a randomized controlled trial.

    Science.gov (United States)

    Taren, Adrienne A; Gianaros, Peter J; Greco, Carol M; Lindsay, Emily K; Fairgrieve, April; Brown, Kirk Warren; Rosen, Rhonda K; Ferris, Jennifer L; Julson, Erica; Marsland, Anna L; Bursley, James K; Ramsburg, Jared; Creswell, J David

    2015-12-01

    Recent studies indicate that mindfulness meditation training interventions reduce stress and improve stress-related health outcomes, but the neural pathways for these effects are unknown. The present research evaluates whether mindfulness meditation training alters resting state functional connectivity (rsFC) of the amygdala, a region known to coordinate stress processing and physiological stress responses. We show in an initial discovery study that higher perceived stress over the past month is associated with greater bilateral amygdala-subgenual anterior cingulate cortex (sgACC) rsFC in a sample of community adults (n = 130). A follow-up, single-blind randomized controlled trial shows that a 3-day intensive mindfulness meditation training intervention (relative to a well-matched 3-day relaxation training intervention without a mindfulness component) reduced right amygdala-sgACC rsFC in a sample of stressed unemployed community adults (n = 35). Although stress may increase amygdala-sgACC rsFC, brief training in mindfulness meditation could reverse these effects. This work provides an initial indication that mindfulness meditation training promotes functional neuroplastic changes, suggesting an amygdala-sgACC pathway for stress reduction effects. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  12. Causes and Effects of Stress Among Faculty Members in a State University

    Directory of Open Access Journals (Sweden)

    Haydee Colacion-Quiros

    2016-02-01

    Full Text Available This study aimed to ascertain the level of stress among the faculty members of West Visayas State University Janiuay Campus when they were taken as a whole and when they were grouped as to sex, age, civil status, academic rank, and workload. It likewise determined the causes and effects of stress among the respondents and if there were significant differences in their level of stress when classified as to sex, age, civil status, academic rank, and workload. This study utilized the descriptive method in determining the levels, causes and effects of stress among the fifty-five (55 randomly selected faculty respondents. Results revealed that there was a low level of stress among the respondents as a whole and when classified as to the defined variables except those faculty aged 58 and above, whose stress level was moderate. The leading cause of stress was paperwork, the leading physical effect was high blood pressure, emotional effect was irritability and spiritual effect was anxiety. There were no significant differences in the level of stress when the respondents were grouped as to age, sex, civil status and workload while a significant difference existed when the respondents were grouped as to academic rank.

  13. Stress-strain state and durability of mechanically inhomogeneous welds under low-cycle loading

    Science.gov (United States)

    Brazenas, A.; Daunis, M.

    2008-02-01

    Relations are proposed for the determination of the stress-strain state, strength, and life of butt welds with mild and hard interlayers under cyclic elastoplastic tension-compression. The accumulation of cyclic and quasistatic damages is determined with allowance for the redistribution of the cyclic elastoplastic strains and hardness of the stress state due to changes in the cyclic properties of separate regions of welds. The theoretical distribution of cyclic strains and the durability of welds under cyclic elastoplastic loading are supported by experimental data

  14. Software for determining the direction of movement, shear and normal stresses of a fault under a determined stress state

    Science.gov (United States)

    Álvarez del Castillo, Alejandra; Alaniz-Álvarez, Susana Alicia; Nieto-Samaniego, Angel Francisco; Xu, Shunshan; Ochoa-González, Gil Humberto; Velasquillo-Martínez, Luis Germán

    2017-07-01

    In the oil, gas and geothermal industry, the extraction or the input of fluids induces changes in the stress field of the reservoir, if the in-situ stress state of a fault plane is sufficiently disturbed, a fault may slip and can trigger fluid leakage or the reservoir might fracture and become damaged. The goal of the SSLIPO 1.0 software is to obtain data that can reduce the risk of affecting the stability of wellbores. The input data are the magnitudes of the three principal stresses and their orientation in geographic coordinates. The output data are the slip direction of a fracture in geographic coordinates, and its normal (σn) and shear (τ) stresses resolved on a single or multiple fracture planes. With this information, it is possible to calculate the slip tendency (τ/σn) and the propensity to open a fracture that is inversely proportional to σn. This software could analyze any compressional stress system, even non-Andersonian. An example is given from an oilfield in southern Mexico, in a region that contains fractures formed in three events of deformation. In the example SSLIPO 1.0 was used to determine in which deformation event the oil migrated. SSLIPO 1.0 is an open code application developed in MATLAB. The URL to obtain the source code and to download SSLIPO 1.0 are: http://www.geociencias.unam.mx/ alaniz/main_code.txt, http://www.geociencias.unam.mx/ alaniz/ SSLIPO_pkg.exe.

  15. Under Stress: Europeanisation and Trade Associations in the Members States

    Directory of Open Access Journals (Sweden)

    Dirk Lehmkuhl

    2000-11-01

    Full Text Available Until today, it is relatively disputed how European integration impacts on domestic associations and the patterns of public-private interactions at the national level. While some predict a withering away of national corporatisms, others predict they would be reinforced. By making organization theory available to institution-theoretical approaches, the paper offers a conceptual means that makes it possible to present an encompassing and theory-guided picture of the impact of European integration on societal structures in the member states. Associations - in the presented cases, business associations of the transport sector in Germany and the Netherlands -, as intermediate organisations operate at the interface between private and public actors and incorporate the dynamics of their political and economic environments in both structural and strategic terms. It is argued that the way in which the configuration of associations within a sector changes in the course of European integration relates to efforts at this intermediate level to maintain or increase its relative autonomy from both its constituencies and its interlocutors.

  16. Damage and fracture mechanism of 6063 aluminum alloy under three kinds of stress states

    Institute of Scientific and Technical Information of China (English)

    ZHU Hao; ZHU Liang; CHEN Jianhong

    2008-01-01

    To study the damage and fracture mechanism of 6063 aluminum alloy under different stress states,three kinds of representative triaxial stress states have been adopted,namely smooth tensile,notch tensile,and pure shear.The results of the study indicate the following.During the notch tensile test,a relatively higher stress triaxiality appears in the root of the notch.With the applied loading increasing,the volume fraction of microvoids in the root of the notch increases continuously.When it reaches the critical volume fraction of microvoids,the specimen fractures.During the pure shear test,the stress triaxiality almost equals to zero,and there is almost no microvoids but a shear band at the center of the butterfly specimen.The shear band results from nonuniform deformation constantly under the shear stress.With stress concentration,cracks are produced within the shear band and are later coalesced.When the equivalent plastic strain reaches the critical value (equivalent plastic fracture strain),the butterfly specimen fractures.During the smooth tensile test,the stress triaxiality in the gauge of the specimen remains constant at 0.33.Thus,the volume of microvoids of the smooth tensile test is less than that of the notch tensile test and the smooth specimen fractures due to shearing between microvoids.The G-T-N damage model and Johnson-Cook model are used to simulate the notch tensile and shear test,respectively.The simulated engineering stress-strain curves fit the measured engineering stress-strain curves very well.In addition,the empirical damage evolution equation for the notch specimen is obtained from the experimental data and FEM simulations.

  17. New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength

    Institute of Scientific and Technical Information of China (English)

    Rennie Kaunda

    2014-01-01

    Simulations are conducted using five new artificial neural networks developed herein to demonstrate and investigate the behavior of rock material under polyaxial loading. The effects of the intermediate principal stress on the intact rock strength are investigated and compared with laboratory results from the literature. To normalize differences in laboratory testing conditions, the stress state is used as the objective parameter in the artificial neural network model predictions. The variations of major principal stress of rock material with intermediate principal stress, minor principal stress and stress state are investigated. The artificial neural network simulations show that for the rock types examined, none were independent of intermediate principal stress effects. In addition, the results of the artificial neural network models, in general agreement with observations made by others, show (a) a general trend of strength increasing and reaching a peak at some intermediate stress state factor, followed by a decline in strength for most rock types;(b) a post-peak strength behavior dependent on the minor principal stress, with respect to rock type;(c) sensitivity to the stress state, and to the interaction between the stress state and uniaxial compressive strength of the test data by the artificial neural networks models (two-way analysis of variance; 95% confidence interval). Artificial neural network modeling, a self-learning approach to polyaxial stress simulation, can thus complement the commonly observed difficult task of conducting true triaxial laboratory tests, and/or other methods that attempt to improve two-dimensional (2D) failure criteria by incorporating intermediate principal stress effects.

  18. Physiologic Stresses Reveal a Salmonella Persister State and TA Family Toxins Modulate Tolerance to These Stresses

    OpenAIRE

    Eugenia Silva-Herzog; Erin M McDonald; Crooks, Amy L.; Detweiler, Corrella S.

    2015-01-01

    Bacterial persister cells are considered a basis for chronic infections and relapse caused by bacterial pathogens. Persisters are phenotypic variants characterized by low metabolic activity and slow or no replication. This low metabolic state increases pathogen tolerance to antibiotics and host immune defenses that target actively growing cells. In this study we demonstrate that within a population of Salmonella enterica serotype Typhimurium, a small percentage of bacteria are reversibly tole...

  19. Self-organization of stress patterns drives state transitions in actin cortices

    CERN Document Server

    Tan, Tzer Han; Abu-Shah, Enas; Li, Junang; Sharma, Abhinav; MacKintosh, Fred C; Keren, Kinneret; Schmidt, Christoph F; Fakhri, Nikta

    2016-01-01

    Biological functions rely on ordered structures and intricately controlled collective dynamics. In contrast to systems in thermodynamic equilibrium, order is typically established and sustained in stationary states by continuous dissipation of energy. Non-equilibrium dynamics is a necessary condition to make the systems highly susceptible to signals that cause transitions between different states. How cellular processes self-organize under this general principle is not fully understood. Here, we find that model actomyosin cortices, in the presence of rapid turnover, display distinct steady states, each distinguished by characteristic order and dynamics as a function of network connectivity. The different states arise from a subtle interaction between mechanical percolation of the actin network and myosin-generated stresses. Remarkably, myosin motors generate actin architectures, which in turn, force the emergence of ordered stress patterns. Reminiscent of second order phase transitions, the emergence of order...

  20. Bias stress instability involving subgap state transitions in a-IGZO Schottky barrier diodes

    Science.gov (United States)

    Qian, Huimin; Wu, Chenfei; Lu, Hai; Xu, Weizong; Zhou, Dong; Ren, Fangfang; Chen, Dunjun; Zhang, Rong; Zheng, Youdou

    2016-10-01

    Vertical Schottky barrier diodes (SBDs) based on amorphous indium-gallium-zinc-oxide (a-IGZO) with either a top or bottom Schottky contact are fabricated by controlling the oxygen partial pressure during a-IGZO deposition. Although Au electrodes are employed for both Schottky and Ohmic contacts, it is found that Schottky contacts are preferentially formed on a-IGZO film in lower oxygen vacancy concentrations. The effect of negative bias stress on device performance is studied. The Schottky barrier height and series resistance of the a-IGZO SBD are found to increase upon negative bias stress, which is correlated with a reduction of the trap state and background carrier concentration within the a-IGZO film. A physical model based on subgap state transitions from ionized V\\text{O}2+ states to neutralized V O states is proposed to explain the observed electrical instability behavior.

  1. Steady thermal stress and strain rates in a rotating circular cylinder under steady state temperature

    Directory of Open Access Journals (Sweden)

    Pankaj Thakur

    2014-01-01

    Full Text Available Thermal stress and strain rates in a thick walled rotating cylinder under steady state temperature has been derived by using Seth’s transition theory. For elastic-plastic stage, it is seen that with the increase of temperature, the cylinder having smaller radii ratios requires lesser angular velocity to become fully plastic as compared to cylinder having higher radii ratios The circumferential stress becomes larger and larger with the increase in temperature. With increase in thickness ratio stresses must be decrease. For the creep stage, it is seen that circumferential stresses for incompressible materials maximum at the internal surface as compared to compressible material, which increase with the increase in temperature and measure n.

  2. The impact of working conditions on stress: An example of a state hospital

    Directory of Open Access Journals (Sweden)

    Cemal Eroğlu

    2008-03-01

    Full Text Available This study aims to assess the stress factors which can have effects on employees in working life. In this respect, the study analyses the kind of stress which is based on the classification of the source of these kind of stress which are occured by family, personal, social and work place. The employees have been affected negatively because of political instability, economic crises, irregular urbanization, terrorizm, rapid changes on environmental factors etc and these factors cause professional burnout of employees. In this sense, in this study it is examined the work place factors which is the one of the important source of stress. Hence, a questinare survey has been conducted to the personel who work for Geyve State Hospital.

  3. Stress-state monitoring of coal pillars during room and pillar extraction

    Directory of Open Access Journals (Sweden)

    Petr Waclawik

    2016-01-01

    To determine pillar stability, vertical stress was measured in two adjacent coal pillars which are diamond in shape and located within a row of pillars forming the panel. Two pillars diamond in shape and slightly irregular sides were approximately 860 m2 and 1200 m2 in size and 3.5 m high To measure the increase in vertical stress due to mining, four stress cells were installed in each coal pillar. Four 5-level multipoint rib extensometers measured displacements of all sides within each monitored pillar. The results of stress-state and pillar displacement monitoring allowed pillar loading and yielding characteristics to be described. This data and other analyses are essential to establishing procedures for a safe room and pillar method of mining within the Upper Silesian Coal Basin.

  4. 2-D viscoelastic FEM simulation on stress state in the deep part of a subducted slab

    Institute of Scientific and Technical Information of China (English)

    刘亚静; 叶国扬; 毛兴华; 宁杰远

    2002-01-01

    The characteristics of the stress fields in deep subducting slabs are studied using viscoelastic plain strain finite element method. When introducing the new rheology structure given by Karato, et al into our computation, there emerge two regions with great shear stress just below the olivine-spinel phase transition zone, which encompass the low viscosity zone below the lower tip of the metastable wedge. Further, the directions of the main compressional stress of these two regions are all along the dip direction of the slab. These are in accordance with the seismic observations that there are two deep seismic zones in a slab and the directions of the main compressional stress in these two seismic zones are along the dip direction of the slab. Smaller effective viscosity probably caused by smaller grain size in the phase transformation zone does not have great influence on the stress state in the deep part of the slab. There is the maximum of shear stress at the transition region from olivine to spinel and the direction of the main compressional stress in this region is roughly perpendicular to the trend of the phase boundary no matter whether there exists metastable wedge, which nevertheless do not correspond to some well-known seismic observations.

  5. Water stress and social vulnerability in the southern United States, 2010-2040

    Science.gov (United States)

    cassandra Johnson-Gaither; John Schelhas; Wayne Zipperer; Ge Sun; Peter V. Caldwell; Neelam Poudyal

    2014-01-01

    Water scarcities are striking in semiarid, subregions of the Southern United States such as Oklahoma and western Texas (Glennon 2009, Sabo et al. 2010). In Texas, water stress has been a constant concern since the 1950s when the state experienced severe drought conditions (Moore 2005). The nearly 2000-mile Rio Grande River, which forms part of the Texas–Mexico border,...

  6. FINITE ELEMENT METHOD AS A BASIS FOR THE MODELING OF ROAD SURFACE STRESS-STRAIN STATE

    OpenAIRE

    2011-01-01

    Problem statement. Despite the fact that rigid roads with asphalt concrete pavement widespread,their design and calculation provide for approximate data with some number of hidden factors. Thepresent paper proposes to use finite element method to model stress-strain state of rigid roads withasphalt concrete pavement.Results. The use of the finite element method enables one to construct the precise model ofstress-strain state of road pavement. The calculations performed on the basis of the mod...

  7. Finite element modelling of creep process - steady state stresses and strains

    Directory of Open Access Journals (Sweden)

    Sedmak Aleksandar S.

    2014-01-01

    Full Text Available Finite element modelling of steady state creep process has been described. Using an analogy of visco-plastic problem with a described procedure, the finite element method has been used to calculate steady state stresses and strains in 2D problems. An example of application of such a procedure have been presented, using real life problem - cylindrical pipe with longitudinal crack at high temperature, under internal pressure, and estimating its residual life, based on the C*integral evaluation.

  8. Post-Palbozoic crustal responses to the contemporary stress field in the eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.; Hardee, H.K.

    1993-08-01

    This paper summarizes the current state of knowledge with respect to post-Paleozoic tectonic features and their relationship to the contemporary stress field outside coastal plain regions of the eastern United States. Until the early 1970s very little was known about such features. By the end of 1992 post-Paleozoic faults had been observed in at least five widely separated regions. Pleistocene-Holocene surface ruptures and liquefaction features had been observed over a steadily increasing area of the upper Mississippi embayment and adjacent regions. Ages of most recent ruptures on post-Paleozoic faults range from uncertain to Holocene and their senses of motion are compatible with the contemporary stress field. The cumulative amount of post-Paleozoic displacement on these faults is generally less than three meters. Fracture systems in Paleozoic rocks also are compatible with the contemporary stress field over a wide region of Indiana.

  9. A review of creep analysis and design under multi-axial stress states

    Energy Technology Data Exchange (ETDEWEB)

    Yao, H.-T. [School of Mechanical and Power Engineering, East China University of Science and Technology, 130, Meilong Street, PO Box 402, Shanghai 200237 (China); Xuan Fuzhen [School of Mechanical and Power Engineering, East China University of Science and Technology, 130, Meilong Street, PO Box 402, Shanghai 200237 (China)], E-mail: fzxuan@ecust.edu.cn; Wang Zhengdong; Tu Shantung [School of Mechanical and Power Engineering, East China University of Science and Technology, 130, Meilong Street, PO Box 402, Shanghai 200237 (China)

    2007-10-15

    The existence of multi-axial states of stress cannot be avoided in elevated temperature components. It is essential to understand the associated failure mechanisms and to predict the lifetime in practice. Although metal creep has been studied for about 100 years, many problems are still unsolved, in particular for those involving multi-axial stresses. In this work, a state-of-the-art review of creep analysis and engineering design is carried out, with particular emphasis on the effect of multi-axial stresses. The existing theories and creep design approaches are grouped into three categories, i.e., the classical plastic theory (CPT) based approach, the cavity growth mechanism (CGM) based approach and the continuum damage mechanics (CDM) based approach. Following above arrangements, the constitutive equations and design criteria are addressed. In the end, challenges on the precise description of the multi-axial creep behavior and then improving the strength criteria in engineering design are presented.

  10. Thermal Volume Change of Unsaturated Silt under Different Stress States and Suction Magnitudes

    Directory of Open Access Journals (Sweden)

    McCartney John S.

    2016-01-01

    Full Text Available This paper presents an evaluation of the thermal volume change of compacted specimens of the same type of silt under a wide range of stress states, initial void ratios, and suction magnitudes. Stress states include both isotropic and anisotropic conditions with varying principal stress ratios, as well as normally consolidated and overconsolidated conditions. Initial void ratios range from 0.60 to 0.86, spanning very dense to loose conditions. Suctions evaluated range from saturated conditions, to low suctions in the funicular range, to suctions corresponding to residual saturation conditions. For the same soil, wide variations in thermal volume change are observed. Thermal contraction is observed for normally consolidated conditions regardless of the initial degree of saturation. Different mechanisms of thermal volume change can be used to explain the results, ranging from thermally-induced pore water pressure dissipation, to thermal collapse, to thermally-accelerated creep.

  11. The State of Stress in the Afar Region From Inversion of Earthquake Focal Mechanisms

    Science.gov (United States)

    Hagos, L.; Lund, B.; Roberts, R.

    2006-12-01

    The state of stress in the Afar region, where the Arabian, Nubian, and Somalian plates meet, is investigated by inversion of earthquake focal mechanisms. Based on earlier studies in the region, we compiled a catalogue of 93 earthquakes, M > 4, with focal mechanisms, spanning the time period from 1969 to present. From this data set we select three clusters suitable for inversion: one along the EW trending Gulf of Aden and Tadjoura rift, one in central Afar, and one on the western margin of the Afar depression. Using the grid-search based inversion of Lund and Slunga (1999), we assess how the choice of fault plane from the nodal planes affect the results and include known fault data where possible. The resulting stress states show an overall normal faulting stress regime. This especially pronounced in the cluster on the western margin of the Afar depression, whereas the southern two clusters have more oblique stress states with significant strike-slip components. The estimated directions of the minimum principal stress vary from NE on the Danakil -Somalia plate boundary to an approximate EW direction at the western margin of the Afar depression. Although the data is scarce, we discuss the temporal consistency of the stress field through the studied time period. The broad zone of active extensional deformation at the Afar Depression, a triple junction where the Red Sea, the Gulf of Aden and the Main Ethiopian rift systems meet, constitutes a complicated tectonic region and we discuss our results in this context. We also compare the stress estimates to available deformation data in the region.

  12. Change of immune indexes and oxidative stress state of children with recurrent respiratory tract infection

    Institute of Scientific and Technical Information of China (English)

    Wei-Qing Wu; Shu-Ping Liao; Xiao-Lan Lin; Qiong-Fang Huang

    2015-01-01

    Objective:To observe and analyze the change situation of immune indexes and oxidative stress state of children with recurrent respiratory tract infection.Methods:75 children with recurrent respiratory tract infection in our hospital from January 2014 to June 2015 were selected as observation group, 75 healthy children with health examination at the same time were selected as control group, then the immune indexes and oxidative stress state related serum indexes of two groups were detected,and the detection results of observation group with boys and girls, mild, moderate and severe disease were compared.Results: The cellular immune and erythrocyte immune and oxidative stress state related serum indexes of observation group were all worse than those of control group,and the detection results of observation group with mild, moderate and severe disease had obvious differences too, allP0.05.Conclusion:The change of immune indexes and oxidative stress state of children with recurrent respiratory tract infection are obvious,and the differences of children with mild, moderate and severe disease are obvious too,while the differences of boys and girls are not obvious.

  13. Acculturative Stress, Perfectionism, Years in the United States, and Depression among Chinese International Students

    Science.gov (United States)

    Wei, Meifen; Heppner, P. Paul; Mallen, Michael J.; Ku, Tsun-Yao; Liao, Kelly Yu-Hsin; Wu, Tsui-Feng

    2007-01-01

    The present study examined whether maladaptive perfectionism (i.e., discrepancy between expectations and performance) and length of time in the United States moderated the association between acculturative stress and depression. Data were collected through online surveys from 189 Chinese international students from China and Taiwan attending a…

  14. Particularities for determination stress state components of large radius curvature ring expansion process

    Directory of Open Access Journals (Sweden)

    Petrosyan G.L.

    2012-09-01

    Full Text Available The peculiarities for determining the current interconnected geometrical parameters of large diameter ring expansion process are revealed. Based on ring stress state studies the universal system of equations is obtained. It is shown that in case of step-by-step increase of ring diameter the changes of geometrical parameters allow to obtain the equations of plane stripe rolling.

  15. Stress-strain state in "coating-substrate" system after coating stability loss induced by impact of thermal stresses

    Science.gov (United States)

    Lyukshin, P. A.; Bochkareva, S. A.; Grishaeva, N. Yu.; Lyukshin, B. A.; Matolygina, N. Yu.; Panin, S. V.

    2016-11-01

    Thermal barrier coatings (TBC) are aimed at protection of machine parts working under extremely high temperatures. One of the major problems at their exploitation is related to delamination of the coating from the substrate. In this concern, investigation of the patterns and evolution of the stress-strain state (SSS) at their interface is of particular interest. The main reasons of the delamination are associated with the distinction of thermo-physical properties (first of all, thermal expansion coefficient) of the interfaced material, as well as by the difference in heating conditions (heat supply and abstraction). The latter is of particular importance when the transient regimes take place under the heat impact, i.e. the TBC becomes rapidly heated, while the substrate has much lower temperature. In order to analyze and simulate the processes that give rise to the delamination, a number of problems is to be solved. At the first stage, the temperature variation induced by the thermal impact both in the coating and the substrate is to be determined. At the second stage, the distribution of the Stress Strain State (SSS) in the coating and the substrate are to be found. Based on the values of the calculated stresses, the stability loss patterns of the coating might be revealed. In doing so, the latter is regarded as a plate rested on Winkler elastic foundation. By defining the plate deflections in concern of its interaction with the substrate, the distribution of the SSS parameters at the contact surface can be found. Finally, the conditions to determine the TBC delamination from the substrate are estimated.

  16. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiong; He Gui-ming; Zhang Yun

    2003-01-01

    In the Automatic Fingerprint Identification System (AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characteristic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  17. Fingerprint Feature Extraction Based on Macroscopic Curvature

    Institute of Scientific and Technical Information of China (English)

    Zhang; Xiong; He; Gui-Ming; 等

    2003-01-01

    In the Automatic Fingerprint Identification System(AFIS), extracting the feature of fingerprint is very important. The local curvature of ridges of fingerprint is irregular, so people have the barrier to effectively extract the fingerprint curve features to describe fingerprint. This article proposes a novel algorithm; it embraces information of few nearby fingerprint ridges to extract a new characterstic which can describe the curvature feature of fingerprint. Experimental results show the algorithm is feasible, and the characteristics extracted by it can clearly show the inner macroscopic curve properties of fingerprint. The result also shows that this kind of characteristic is robust to noise and pollution.

  18. Macroscopic fluctuations theory of aerogel dynamics

    CERN Document Server

    Lefevere, Raphael; Zambotti, Lorenzo

    2010-01-01

    We consider extensive deterministic dynamics made of $N$ particles modeling aerogels under a macroscopic fluctuation theory description. By using a stochastic model describing those dynamics after a diffusive rescaling, we show that the functional giving the exponential decay in $N$ of the probability of observing a given energy and current profile is not strictly convex as a function of the current. This behaviour is caused by the fact that the energy current is carried by particles which may have arbitrary low speed with sufficiently large probability.

  19. Macroscopic Behavior of Nematics with D2d Symmetry

    Science.gov (United States)

    Pleiner, Harald; Brand, Helmut R.

    2010-03-01

    We discuss the symmetry properties and the macroscopic behavior of a nematic liquid crystal phase with D2d symmetry. Such a phase is a prime candidate for nematic phases made from banana-shaped molecules where the usual quadrupolar order coexists with octupolar (tetrahedratic) order. The resulting nematic phase is non-polar. While this phase could resemble the classic D∞h nematic in the polarizing microscope, it has many static as well as reversible and irreversible properties unknown to non-polar nematics without octupolar order. In particular, there is a linear gradient term in the free energy that selects parity leading to ambidextrously helical ground states when the molecules are achiral. In addition, there are static and irreversible coupling terms of a type only met otherwise in macroscopically chiral liquid crystals, e.g. the ambidextrous analogues of Lehmann-type effects known from cholesteric liquid crystals. Finally, we discuss certain nonlinear aspects of the dynamics related to the non-commutativity of three-dimensional finite rotations as well as other structural nonlinear hydrodynamic effects.

  20. An Examination of Individual Level Factors in Stress and Coping Processes: Perspectives of Chinese International Students in the United States

    Science.gov (United States)

    Yan, Kun; Berliner, David C.

    2011-01-01

    No empirical research has focused solely upon understanding the stress and coping processes of Chinese international students in the United States. This qualitative inquiry examines the individual-level variables that affect the stress-coping process of Chinese international students and how they conceptualize and adapt to their stress at an…

  1. An Examination of Individual Level Factors in Stress and Coping Processes: Perspectives of Chinese International Students in the United States

    Science.gov (United States)

    Yan, Kun; Berliner, David C.

    2011-01-01

    No empirical research has focused solely upon understanding the stress and coping processes of Chinese international students in the United States. This qualitative inquiry examines the individual-level variables that affect the stress-coping process of Chinese international students and how they conceptualize and adapt to their stress at an…

  2. Spin models as microfoundation of macroscopic market models

    Science.gov (United States)

    Krause, Sebastian M.; Bornholdt, Stefan

    2013-09-01

    Macroscopic price evolution models are commonly used for investment strategies. There are first promising achievements in defining microscopic agent based models for the same purpose. Microscopic models allow a deeper understanding of mechanisms in the market than the purely phenomenological macroscopic models, and thus bear the chance for better models for market regulation. However microscopic models and macroscopic models are commonly studied separately. Here, we exemplify a unified view of a microscopic and a macroscopic market model in a case study, deducing a macroscopic Langevin equation from a microscopic spin market model closely related to the Ising model. The interplay of the microscopic and the macroscopic view allows for a better understanding and adjustment of the microscopic model, as well, and may guide the construction of agent based market models as basis of macroscopic models.

  3. Evolution and distribution of macroscopic gas channels in an overburden strata

    Institute of Scientific and Technical Information of China (English)

    Liu; Hongtao; Ma; Nianjie; Ma; Wang; Ren; Guoqiang

    2012-01-01

    The evolution of gas bearing channels in the roof,and their spatial distribution,was studied.A complete consideration of gas flow changes through the stress-strain changes in the roof near a working face is made.The theoretical abutment pressure distribution using displacement monitors and borehole visual recording instruments allow a theoretical analysis.Field test research determined the conditions for formation of macroscopic gas channels.These appear along the working face roof,normally distributed to it.These results show that the coal rock stratification becomes a macroscopic gas channel boundary if its deformation is less than the lower layer,or greater than the layer above it.At the same time the stability is greater than the distance from the roof for hanging dew conditions.The working face advances and the roof gas channels experience a cycle of development.Microscopic channels dominate the initial stage then macroscopic gas channels form,develop,and close.The evolution of the macroscopic channels depends on the ratio between the distances from the new compaction area in the goaf to the initial stress area in front of the working face.The amount of daily advance of the face also affects channel development.The experimental observations in one mining area showed that the main gas channels are located about 2 and 6.2 m above the lower surface of the roof and that they have an evolution period 7 to 11 days long.

  4. Investigation of the Residual Stress State in an Epoxy Based Specimen

    DEFF Research Database (Denmark)

    Baran, Ismet; Jakobsen, Johnny; Andreasen, Jens Henrik

    2015-01-01

    Abstract. Process induced residual stresses may play an important role under service loading conditions for fiber reinforced composite. They may initiate premature cracks and alter the internal stress level. Therefore, the developed numerical models have to be validated with the experimental obse...... material models, i.e. cure kinetics, elastic modulus, CTE, chemical shrinkage, etc. together with the drilling process using the finite element method. The measured and predicted in-plane residual strain states are compared for the epoxy/metal biaxial stress specimen....... observations. In the present work, the formation of the residual stresses/strains are captured from experimental measurements and numerical models. An epoxy/steel based sample configuration is considered which creates an in-plane biaxial stress state during curing of the resin. A hole drilling process...... with a diameter of 5 mm is subsequently applied to the specimen and the released strains after drilling are measured using the Digital Image Correlation (DIC) technique. The material characterization of the utilized epoxy material is obtained from the experimental tests such as differential scanning calorimetry...

  5. Measurement of the state of stress in silicon with micro-Raman spectroscopy

    Science.gov (United States)

    Harris, Stephen J.; O'Neill, Ann E.; Yang, Wen; Gustafson, Peter; Boileau, James; Weber, W. H.; Majumdar, Bhaskar; Ghosh, Somnath

    2004-12-01

    Micro-Raman spectroscopy has been widely used to measure local stresses in silicon and other cubic materials. However, a single (scalar) line position measurement cannot determine the complete stress state unless it has a very simple form such as uniaxial. Previously published micro-Raman strategies designed to determine additional elements of the stress tensor take advantage of the polarization and intensity of the Raman-scattered light, but these strategies have not been validated experimentally. In this work, we test one such stategy [S. Narayanan, S. Kalidindi, and L. Schadler, J. Appl. Phys. 82, 2595 (1997)] for rectangular (110)- and (111)-orientated silicon wafers. The wafers are subjected to a bending stress using a custom-designed apparatus, and the state of (plane) stress is modeled with ABAQUS. The Raman shifts are calculated using previously published values for silicon phonon deformation potentials. The experimentally measured values for σxx, σyy, and τxy at the silicon surface are in good agreement with those calculated with the ABAQUS model.

  6. Measurement of the Full State of Stress of Silicon with Micro-Raman Spectroscopy

    Science.gov (United States)

    Harris, Stephen; Weber, W. H.; Majumdar, Bhaskar; Ghosh, Somnath

    2005-03-01

    Micro-Raman spectroscopy has been widely used to measure local stresses in silicon and other cubic materials. However, a single (scalar) line position measurement cannot determine the complete stress state unless it is has a very simple form, such as uniaxial. Previously published micro-Raman strategies designed to determine additional elements of the stress tensor take advantage of the polarization and intensity of the Raman scattered light, but these strategies have not been validated experimentally. In this work we test one such stategy [S. Narayanan, S. Kalidindi, and L. Schadler, JAP. 82, 2595 (1997)] for rectangular (110)- and (111)-orientated silicon wafers. The wafers are subjected to a bending stress, and the state of (plane) stress is modeled with ABAQUS. The Raman shifts, intensities, and polarizations are calculated using previously published values for silicon phonon deformation potentials. The experimentally measured values for σxx, σyy, and τxy at the silicon surface are in good agreement with those calculated with the ABAQUS model.

  7. Relationship between depressive state, job stress, and sense of coherence among female nurses

    Directory of Open Access Journals (Sweden)

    Yoko Kikuchi

    2014-01-01

    Full Text Available Background: People with a strong sense of coherence (SOC have a high ability to cope with stress and maintain good physical and mental health. Aims: The aim of this study was to investigate the relationship between depressive state, job stress, and SOC among nurses in a Japanese general hospital. Materials and Methods: A self-reporting survey was conducted among 348 female nurses in a general hospital. Job stress was measured using the Japanese version of the effort-reward imbalance (ERI scale. Depressive state was assessed by the K6 scale. SOC was assessed with the SOC scale, which includes 29 items. Stepwise multiple regression analysis was conducted to examine factors that significantly affect depressive state. Results: SOC, over-commitment, effort-esteem ratio, and age were significantly correlated with the depressive state (β = −0.46, P < 0.001; β = 0.27, P < 0.001; β = 0.16, P < 0.001; β = −0.10, P < 0.001, respectively. Conclusions: SOC may have a major influence on the depressive state among female nurses in a Japanese general hospital. From a practical perspective, health care professionals should try to enhance the SOC of nurses.

  8. Macroscopic theory for capillary-pressure hysteresis.

    Science.gov (United States)

    Athukorallage, Bhagya; Aulisa, Eugenio; Iyer, Ram; Zhang, Larry

    2015-03-03

    In this article, we present a theory of macroscopic contact angle hysteresis by considering the minimization of the Helmholtz free energy of a solid-liquid-gas system over a convex set, subject to a constant volume constraint. The liquid and solid surfaces in contact are assumed to adhere weakly to each other, causing the interfacial energy to be set-valued. A simple calculus of variations argument for the minimization of the Helmholtz energy leads to the Young-Laplace equation for the drop surface in contact with the gas and a variational inequality that yields contact angle hysteresis for advancing/receding flow. We also show that the Young-Laplace equation with a Dirichlet boundary condition together with the variational inequality yields a basic hysteresis operator that describes the relationship between capillary pressure and volume. We validate the theory using results from the experiment for a sessile macroscopic drop. Although the capillary effect is a complex phenomenon even for a droplet as various points along the contact line might be pinned, the capillary pressure and volume of the drop are scalar variables that encapsulate the global quasistatic energy information for the entire droplet. Studying the capillary pressure versus volume relationship greatly simplifies the understanding and modeling of the phenomenon just as scalar magnetic hysteresis graphs greatly aided the modeling of devices with magnetic materials.

  9. Stress-free states of continuum dislocation fields: Rotations, grain boundaries, and the Nye dislocation density tensor

    Science.gov (United States)

    Limkumnerd, Surachate; Sethna, James P.

    2007-06-01

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose stress fields vanish. We explain that a grain boundary (a dislocation wall satisfying Frank’s formula) has vanishing stress in the continuum limit. We show that the general stress-free state can be written explicitly as a (perhaps continuous) superposition of flat Frank walls. We show that the stress-free states are also naturally interpreted as configurations generated by a general spatially dependent rotational deformation. Finally, we propose a least-squares definition for the spatially dependent rotation field of a general (stressful) dislocation density field.

  10. Transactional stress and coping theory in accounting for psychological states measures

    Directory of Open Access Journals (Sweden)

    V. Buško

    2007-08-01

    Full Text Available The paper examines a relative predictive value of some stable individual attributes and the processes of cognitive appraisals and coping with stress in accounting for specific components of anxiety state measures. Self-report instruments for the measurement of selected psychological constructs, i.e. perceived incompetence, externality, stress intensity and duration, situation-specific coping strategies, and the two anxiety state components, were taken in a sample of 449 male military basics trainees, ranging in age from 18-27. Hierarchical multiple regression analyses showed that the set of predictors employed could account for statistically, as well as theoretically and practically a significant part of variance in cognitive anxiety component (45,5%, and in visceral-emotional component (32,2% of the anxiety state. The extent of anxiety reactions assessed by both scales could primarily be explained by general perception of personal incompetence, as a relatively stable dimension of general self-concept. Of the ways of coping examined, reinterpretation of stressful events was the only strategy contributing to low level, whereas passivization, wishful thinking, and seeking social support contributed to higher levels of anxiety measured by both scales. The results give partial support to the basic hypotheses on the mediating role of coping in the relationships among particular components of the stress and coping models.

  11. Assessment of stress state of rock mass with the help of seismic soundings

    Energy Technology Data Exchange (ETDEWEB)

    Blyakhman, A.S.; Proskuryakov, V.M.

    1984-01-01

    Method of measurement using seismic soundings without drilling boreholes is described. A physical basis is provided for the method used and the results are supplied for the assessment of the stress state of rock mass in the Norilsk coal basin. In the last few years, wide use has been made of linear profiling without drilling boreholes in order to determine the stress state of rock needed for predicting outbursts in coal seams. The method can be used to investigate rectilinear sections of mine workings which are over 20 m. However, in order to resolve a variety of mine problems, e.g. predicting and investigating dynamic phenomena, it is necessary to acquire information about the state of rock mass up to 10 to 15 m. With this in mind the VNIMI has developed a new variant of seismic sounding without the need to drill boreholes which, unlike other known methods, makes it possible to determine parameters of the abutment pressure along the whole perimeter of the rock mass in question. The investigations carried out indicate that the increases and decreases in stress as well as the rise and fall in the rate of stress wave propagation in the abutment zone can be approximated with sufficient accuracy by line segments. Results of the investigations obtained with the help of seismic soundings at the Oktyabrskii mine, Norilsk coal basin, are given.

  12. Structure/property relations of aluminum under varying rates and stress states

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Matthew T [Los Alamos National Laboratory; Horstemeyer, Mark F [MISSISSIPPI STATE UNIV; Whittington, Wilburn R [MISSISSIPPI STATE UNIV; Solanki, Kiran N [MISSISSIPPI STATE UNIV.

    2010-11-19

    In this work we analyze the plasticity, damage, and fracture characteristics of three different processed aluminum alloys (rolled 5083-H13, cast A356-T6, and extruded 6061-T6) under varying stress states (tension, compression, and torsion) and strain rates (0.001/, 1/s., and 1000/s). The stress state difference had more of a flow stress effect than the applied strain rates for those given in this study (0.001/sec up to 1000/sec). The stress state and strain rate also had a profound effect on the damage evolution of each aluminum alloy. Tension and torsional straining gave much greater damage nucleation rates than compression. Although the damage of all three alloys was found to be void nucleation dominated, the A356-T6 and 5083-H131 aluminum alloys incurred void damage via micron scale particles where the 6061-T6 aluminum alloy incurred void damage from two scales, micron-scale particles and nanoscale precipitates. Having two length scales of particles that participated in the damage evolution made the 6061-T6 incur a strain rate sensitive damage rate that was different than the other two aluminum alloys. Under tension, as the strain rate increased, the 6061-T6 aluminum alloy's void nucleation rate decreased, but the A356-T6 and 5083-H131 aluminum alloys void nucleation rate increased.

  13. Mozart versus new age music: relaxation states, stress, and ABC relaxation theory.

    Science.gov (United States)

    Smith, Jonathan C; Joyce, Carol A

    2004-01-01

    Smith's (2001) Attentional Behavioral Cognitive (ABC) relaxation theory proposes that all approaches to relaxation (including music) have the potential for evoking one or more of 15 factor-analytically derived relaxation states, or "R-States" (Sleepiness, Disengagement, Rested / Refreshed, Energized, Physical Relaxation, At Ease/Peace, Joy, Mental Quiet, Childlike Innocence, Thankfulness and Love, Mystery, Awe and Wonder, Prayerfulness, Timeless/Boundless/Infinite, and Aware). The present study investigated R-States and stress symptom-patterns associated with listening to Mozart versus New Age music. Students (N = 63) were divided into three relaxation groups based on previously determined preferences. Fourteen listened to a 28-minute tape recording of Mozart's Eine Kleine Nachtmusik and 14 listened to a 28-minute tape of Steven Halpern's New Age Serenity Suite. Others (n = 35) did not want music and instead chose a set of popular recreational magazines. Participants engaged in their relaxation activity at home for three consecutive days for 28 minutes a session. Before and after each session, each person completed the Smith Relaxation States Inventory (Smith, 2001), a comprehensive questionnaire tapping 15 R-States as well as the stress states of somatic stress, worry, and negative emotion. Results revealed no differences at Session 1. At Session 2, those who listened to Mozart reported higher levels of At Ease/Peace and lower levels of Negative Emotion. Pronounced differences emerged at Session 3. Mozart listeners uniquely reported substantially higher levels of Mental Quiet, Awe and Wonder, and Mystery. Mozart listeners reported higher levels, and New Age listeners slightly elevated levels, of At Ease/Peace and Rested/Refreshed. Both Mozart and New Age listeners reported higher levels of Thankfulness and Love. In summary, those who listened to Mozart's Eine Kleine Nachtmusik reported more psychological relaxation and less stress than either those who listened to

  14. Modelling of the in situ stress state at Olkiluoto Site, Western Finland

    Energy Technology Data Exchange (ETDEWEB)

    Valli, J.; Kuula, H. [WSP Finland Oy, Helsinki (Finland); Hakala, M. [KMS Hakala Oy, Nokia (Finland)

    2011-06-15

    In order to determine the interaction of in situ stress and geological features at Olkiluoto with the ONKALO area under more specific focus, stress modelling work was launched in 2009. This entailed updating a previously used model geometry to suit current needs whilst also updating interpreted brittle deformation zones according to the data provided by Posiva in the beginning of 2010. The previous model geometry was originally used for seismic and glacial load simulations. Brittle deformation zones were updated in the model according to a new selection criterion which added a number of brittle deformation zones. Changes in the geometry of certain brittle deformation zones were also necessary to better fit the early 2010 interpretations from Posiva. Modelling goals were to clarify the effect of joint parameters on stress magnitude and orientation and which of the major brittle deformation zones detected in the ONKALO region could have potential effects on local in situ stress states. Additional goals included modelling the effect of several optional thrust boundary conditions and an ice-age. Compression from the northwest-southeast was used as the default approach whilst north-south, east-west and northeast-southwest were optional conditions. A simplified glaciation cycle was also simulated. Results were clear in demonstrating the critical effect of joint cohesion and joint friction angle, i.e. shear strength, on stress-geology interaction, essentially in this order of importance. The case that utilised both drillhole core-logging and ONKALO tunnel mapping results did not exhibit much if any stress-geology interactions as BFZ strength parameters were too high in order to allow any interactions to occur. The geometry and orientation of brittle deformation zones was found to be of significant importance; deformation zones with a shallow dip roughly in the direction of applied compression were optimal for causing stress rotations and the increase of stress magnitude

  15. 3D geomechanical-numerical modelling of the absolute stress state for geothermal reservoir exploration

    Science.gov (United States)

    Reiter, Karsten; Heidbach, Oliver; Moeck, Inga

    2013-04-01

    For the assessment and exploration of a potential geothermal reservoir, the contemporary in-situ stress is of key importance in terms of well stability and orientation of possible fluid pathways. However, available data, e.g. Heidbach et al. (2009) or Zang et al. (2012), deliver only point wise information of parts of the six independent components of the stress tensor. Moreover most measurements of the stress orientation and magnitude are done for hydrocarbon industry obvious in shallow depth. Interpolation across long distances or extrapolation into depth is unfavourable, because this would ignore structural features, inhomogeneity's in the crust or other local effects like topography. For this reasons geomechanical numerical modelling is the favourable method to quantify orientations and magnitudes of the 3D stress field for a geothermal reservoir. A geomechanical-numerical modelling, estimating the 3D absolute stress state, requires the initial stress state as model constraints. But in-situ stress measurements within or close by a potential reservoir are rare. For that reason a larger regional geomechanical-numerical model is necessary, which derive boundary conditions for the wanted local reservoir model. Such a large scale model has to be tested against in-situ stress measurements, orientations and magnitudes. Other suitable and available data, like GPS measurements or fault slip rates are useful to constrain kinematic boundary conditions. This stepwise approach from regional to local scale takes all stress field factors into account, from first over second up to third order. As an example we present a large scale crustal and upper mantle 3D-geomechanical-numerical model of the Alberta Basin and the surroundings, which is constructed to describe continuously the full stress tensor. In-situ stress measurements are the most likely data, because they deliver the most direct information's of the stress field and they provide insights into different depths, a

  16. Experimental Research of Reliability of Plant Stress State Detection by Laser-Induced Fluorescence Method

    Directory of Open Access Journals (Sweden)

    Yury Fedotov

    2016-01-01

    Full Text Available Experimental laboratory investigations of the laser-induced fluorescence spectra of watercress and lawn grass were conducted. The fluorescence spectra were excited by YAG:Nd laser emitting at 532 nm. It was established that the influence of stress caused by mechanical damage, overwatering, and soil pollution is manifested in changes of the spectra shapes. The mean values and confidence intervals for the ratio of two fluorescence maxima near 685 and 740 nm were estimated. It is presented that the fluorescence ratio could be considered a reliable characteristic of plant stress state.

  17. Study of localization in a void-sheet under stress states near pure shear

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    to the principal tensile stress. A number of previous investigations have shown that such imperfections can lead to plastic flow localization in a shear band and subsequently lead to void-sheet fracture inside the band. The present analyses confirm that the imperfection results in localization failure, even......-cracks. For the largest imperfection considered, i.e. a relatively large ratio of the void radius to void spacing, there is still a range of stress states in the vicinity of pure shear, where no localization is predicted, and for smaller imperfections this range is larger....

  18. Mindfulness-Based Stress Reduction and Transcendental Meditation: Current State of Research

    Directory of Open Access Journals (Sweden)

    Adam Holt

    2015-04-01

    Full Text Available This article summarizes the current state of meditation research, specifically focusing on mindfulness-based stress reduction and transcendental meditation. Despite significant methodological problems with the studies reported to date on the subject, there is consistent evidence that meditation can produce changes in the nervous system and physiology of the meditator, and can help with various psychological markers of well-being. Regarding improvement in specific clinical diseases, research is generally mixed and preliminary. Strong recommendations cannot be made based on current evidence, and further studies are needed. In general, there is a stronger body of evidence supporting mindfulness-based stress reduction than for transcendental meditation.

  19. METHOD FOR CALCULATION OF STRESS-STRAIN STATE DUE TO SINGLE TWIN IN GRAIN OF VARIOUS FORMS

    Directory of Open Access Journals (Sweden)

    T. V. Drabysheuskaya

    2016-01-01

    Full Text Available The paper investigates a stress-strain state in a polycrystalline grain due to presence in its body of a single micro- twin in case of various grain boundary forms. A methodology for calculation of displacement and stress fields for the specified stress-strain state of a polygon-shaped grain has been developed in the paper. Nodal points in a polycrystalline grain that have a maximum stresses contributing to initiation of destruction have been revealed in the paper. The aim of this work has been to study the stress-strain state due to a single micro-twin in the polycrystalline grain and form of grain boundaries. The paper describes polycrystalline grains having a regular polygon shape and containing a single wedge twin in their body. Polycrystalline grain boundaries are presented as walls with complete dislocation. The investigated grains are located far from the surface of twinning material. The developed methodology for calculation of displacement and stresses created by wedge twin is based on the principle of superposition. Calculations on stress tensor components have been carried out for iron (Fe. The presented results of calculations for stress fields have indicated to validity of the used dislocation model. Twin and grain boundaries being stress concentrators are clearly visible on the obtained distributions of stress fields. Maximum normal stresses are observed on the twin boundaries; σxy maximum shear stresses are located at nodal points of the twin; σzy and σxz shear stresses are maximum on the grain boundaries. The conducted investigations have resulted in study of the stress-strain state due to a single wedge-shaped micro-twin in the polycrystalline grain and form of the grain boundaries. Zones of stress concentration in the polycrystalline grain have been identified in the presence of residual mechanical wedge twin. A method for evaluation of the given state has been developed in the paper.

  20. RESEARCH OF THE STRESS STATE OF A MODIFIED IN-SITU CONCRETE

    Directory of Open Access Journals (Sweden)

    D. V. Rudenko

    2016-12-01

    Full Text Available Purpose. The article focuses on investigation of the stress state of a modified in-situ concrete of natural hardening. Methodology. To achieve the aim, the research of the microstructure of the modified cement matrix of concrete, as well as the mechanism of structure formation of modified concrete with natural hardening was conducted; the methods for reliable evaluation of concrete strength were defined. Findings. The development of internal stresses affects the properties of concretedifferently. With an increase in temperature-shrinkage deformations in time and, thus, with increasing structural stresses in the cement sheath around the grains of the filler two opposite processes may develop: zone of plastic flow or cracking. Originality. It was established that the structural features complex of the modified concrete when the load transfer leads to the formation of extensive zones of prefracture which is able to absorb a significant amount of elastic strain energy that provides the design deformation properties of the concrete for special purposes. Ideas about the definition of the criteria of cracking modified concrete, hardening under natural conditions had further development. Practical value. The resulting equations allow to solve the problem about the minimum level of structural stress in monolithic concrete in a saturated large placeholder, as well as to assess the influence of structural stresses on the properties of concrete. In normal concrete with a relatively thin cement sheath at temperature-shrinkage deformations, high tangential and low radial tension occur. In vivo, this stress is higher as a result of higher values of Δε(τ, which is not observed in the modified concrete. In the modified concretes only tangential stresses are the greatest danger to structures. The change of shrinkage stress with time is straightforward. The total temperature-shrinkage deformations have a sawtooth graph. For modified concrete the amplitude is 48

  1. Stress

    Science.gov (United States)

    ... diabetes. Shopdiabetes.org: Your Stress-Free System for Family Dinners! - 2017-03-book-oclock-scramble.html Shopdiabetes.org Your Stress-Free System for Family Dinners! A year of delicious meals to help prevent ...

  2. Stress

    Science.gov (United States)

    ... sudden negative change, such as losing a job, divorce, or illness Traumatic stress, which happens when you ... stress, so you can avoid more serious health effects. NIH: National Institute of Mental Health

  3. Selective buckling via states of self-stress in topological metamaterials.

    Science.gov (United States)

    Paulose, Jayson; Meeussen, Anne S; Vitelli, Vincenzo

    2015-06-23

    States of self-stress--tensions and compressions of structural elements that result in zero net forces--play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices.

  4. Room Temperature Experiments with a Macroscopic Sapphire Mechanical Oscillator

    Science.gov (United States)

    Bourhill, Jeremy; Ivanov, Eugene; Tobar, Micahel

    2015-03-01

    We present initial results from a number of experiments conducted on a 0.53 kg sapphire ``dumbbell'' crystal. Mechanical motion of the crystal structure alters the dimensions of the crystal, and the induced strain changes the permittivity. These two effects frequency modulate resonant microwave whispering gallery modes, simultaneously excited within the crystal. A novel microwave readout system is described allowing extremely low noise measurements of this frequency modulation with a phase noise floor of -160 dBc/Hz at 100 kHz, near our modes of interest. Fine-tuning of the crystal's suspension have allowed for the optimisation of mechanical Q-factors in preparation for cryogenic experiments, with a value of 8 x 107 achieved so far. Finally, results are presented that demonstrate the excitation of mechanical modes via radiation pressure force. These are all important steps towards the overall goal of the experiment; to cool a macroscopic device to the quantum ground state.

  5. Macroscopic and direct light propulsion of bulk graphene material

    CERN Document Server

    Zhang, Tengfei; Wu, Yingpeng; Xiao, Peishuang; Yi, Ningbo; Lu, Yanhong; Ma, Yanfeng; Huang, Yi; Zhao, Kai; Yan, Xiao-Qing; Liu, Zhi-Bo; Tian, Jian-Guo; Chen, Yongsheng

    2015-01-01

    It has been a great challenge to achieve the direct light manipulation of matter on a bulk scale. In this work, the direct light propulsion of matter was observed on a macroscopic scale for the first time using a bulk graphene based material. The unique structure and properties of graphene and the morphology of the bulk graphene material make it capable of not only absorbing light at various wavelengths but also emitting energetic electrons efficiently enough to drive the bulk material following Newtonian mechanics. Thus, the unique photonic and electronic properties of individual graphene sheets are manifested in the response of the bulk state. These results offer an exciting opportunity to bring about bulk scale light manipulation with the potential to realize long-sought proposals in areas such as the solar sail and space transportation driven directly by sunlight.

  6. Micro- and macroscopic simulation of periodic metamaterials

    Directory of Open Access Journals (Sweden)

    R. Schuhmann

    2008-05-01

    Full Text Available In order to characterize three-dimensional, left-handed metamaterials (LHM we use electromagnetic field simulations of unit cells. For waves traveling in one of the main directions of the periodic LHM-arrays, the analysis is concentrated on the calculation of global quantities of the unit cells, such as scattering parameters or dispersion diagrams, and a careful interpretation of the results. We show that the concept of equivalent material values – which may be negative in a narrow frequency range – can be validated by large "global" simulations of a wedge structure. We also discuss the limitations of this concept, since in some cases the macroscopic behavior of an LHM cannot be accurately described by equivalent material values.

  7. Microscopic versus macroscopic calculation of dielectric nanospheres

    Science.gov (United States)

    Kühn, M.; Kliem, H.

    2008-12-01

    The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.

  8. Partitioning a macroscopic system into independent subsystems

    Science.gov (United States)

    Delle Site, Luigi; Ciccotti, Giovanni; Hartmann, Carsten

    2017-08-01

    We discuss the problem of partitioning a macroscopic system into a collection of independent subsystems. The partitioning of a system into replica-like subsystems is nowadays a subject of major interest in several fields of theoretical and applied physics. The thermodynamic approach currently favoured by practitioners is based on a phenomenological definition of an interface energy associated with the partition, due to a lack of easily computable expressions for a microscopic (i.e. particle-based) interface energy. In this article, we outline a general approach to derive sharp and computable bounds for the interface free energy in terms of microscopic statistical quantities. We discuss potential applications in nanothermodynamics and outline possible future directions.

  9. Taming macroscopic jamming in transportation networks

    CERN Document Server

    Ezaki, Takahiro; Nishinari, Katsuhiro

    2015-01-01

    In transportation networks, a spontaneous jamming transition is often observed, e.g in urban road networks and airport networks. Because of this instability, flow distribution is significantly imbalanced on a macroscopic level. To mitigate the congestion, we consider a simple control method, in which congested nodes are closed temporarily, and investigate how it influences the overall system. Depending on the timing of the node closure and opening, and congestion level of a network, the system displays three different phases: free-flow phase, controlled phase, and deadlock phase. We show that when the system is in the controlled phase, the average flow is significantly improved, whereas when in the deadlock phase, the flow drops to zero. We study how the control method increases the network flow and obtain their transition boundary analytically.

  10. Black Holes and Quantumness on Macroscopic Scales

    CERN Document Server

    Flassig, D; Wintergerst, N

    2012-01-01

    It has recently been suggested that black holes may be described as condensates of weakly interacting gravitons at a critical point, exhibiting strong quantum effects. In this paper, we study a model system of attractive bosons in one spatial dimension which is known to undergo a quantum phase transition. We demonstrate explicitly that indeed quantum effects are important at the critical point, even if the number of particles is macroscopic. Most prominently, we evaluate the entropy of entanglement between different momentum modes and observe it to become maximal at the critical point. Furthermore, we explicitly see that the leading entanglement is between long wavelength modes and is hence a feature independent of ultraviolet physics. If applicable to black holes, our findings substantiate the conjectured breakdown of semiclassical physics even for large black holes. This can resolve long standing mysteries, such as the information paradox and the no-hair theorem.

  11. Variability of macroscopic dimensions of Moso bamboo.

    Science.gov (United States)

    Cui, Le; Peng, Wanxi; Sun, Zhengjun; Sun, Zhengjun; Sun, Zhengjun; Lu, Huangfei; Chen, Guoning

    2015-03-01

    In order to the macroscopic geometry distributions of vascular bundles in Moso bamboo tubes. The circumference of bamboo tubes was measured, used a simple quadratic diameter formula to analyze the differences between the tubes in bamboo culm, and the arrangement of vascular bundles was investigated by cross sectional images of bamboo tubes. The results shown that the vascular bundles were differently distributed in a bamboo tube. In the outer layer, the vascular bundles had a variety of shapes, and were aligned parallel to each other. In the inner layers, the vascular bundles weren't aligned but uniform in shape. It was concluded that the vascular bundle sections arranged in parallel should be separated from the non-parallel sections for the maximum bamboo utilization.

  12. A strict experimental test of macroscopic realism in a superconducting flux qubit.

    Science.gov (United States)

    Knee, George C; Kakuyanagi, Kosuke; Yeh, Mao-Chuang; Matsuzaki, Yuichiro; Toida, Hiraku; Yamaguchi, Hiroshi; Saito, Shiro; Leggett, Anthony J; Munro, William J

    2016-11-04

    Macroscopic realism is the name for a class of modifications to quantum theory that allow macroscopic objects to be described in a measurement-independent manner, while largely preserving a fully quantum mechanical description of the microscopic world. Objective collapse theories are examples which aim to solve the quantum measurement problem through modified dynamical laws. Whether such theories describe nature, however, is not known. Here we describe and implement an experimental protocol capable of constraining theories of this class, that is more noise tolerant and conceptually transparent than the original Leggett-Garg test. We implement the protocol in a superconducting flux qubit, and rule out (by ∼84 s.d.) those theories which would deny coherent superpositions of 170 nA currents over a ∼10 ns timescale. Further, we address the 'clumsiness loophole' by determining classical disturbance with control experiments. Our results constitute strong evidence for the superposition of states of nontrivial macroscopic distinctness.

  13. Determining the Macroscopic Properties of Relativistic Jets

    Science.gov (United States)

    Hardee, P. E.

    2004-08-01

    The resolved relativistic jets contain structures whose observed proper motions are typically assumed to indicate the jet flow speed. In addition to structures moving with the flow, various normal mode structures such as pinching or helical and elliptical twisting can be produced by ejection events or twisting perturbations to the jet flow. The normal mode structures associated with relativistic jets, as revealed by numerical simulation, theoretical calculation, and suggested by observation, move more slowly than the jet speed. The pattern speed is related to the jet speed by the sound speed in the jet and in the surrounding medium. In the event that normal mode structures are observed, and where proper motions of pattern and flow speed are available or can be estimated, it is possible to determine the sound speed in the jet and surrounding medium. Where spatial development of normal mode structures is observed, it is possible to make inferences as to the heating rate/macroscopic viscosity of the jet fluid. Ultimately it may prove possible to separate the microscopic energization of the synchrotron radiating particles from the macroscopic heating of the jet fluid. Here I present the relevant properties of useful normal mode structures and illustrate the use of this technique. Various aspects of the work presented here have involved collaboration with I. Agudo (Max-Planck, Bonn), M.A. Aloy (Max-Planck, Garching), J. Eilek (NM Tech), J.L. Gómez (U. Valencia), P. Hughes (U. Michigan), A. Lobanov (Max-Planck, Bonn), J.M. Martí (U. Valencia), & C. Walker (NRAO).

  14. Heterogeneous stress state of island arc crust in northeastern Japan affected by hot mantle fingers

    Science.gov (United States)

    Shibazaki, Bunichiro; Okada, Tomomi; Muto, Jun; Matsumoto, Takumi; Yoshida, Takeyoshi; Yoshida, Keisuke

    2016-04-01

    By considering a thermal structure based on dense geothermal observations, we model the stress state of the crust beneath the northeastern Japan island arc under a compressional tectonic regime using a finite element method with viscoelasticity and elastoplasticity. We consider a three-layer structure (upper crust, lower crust, and uppermost mantle) to define flow properties. Numerical results show that the brittle-viscous transition becomes shallower beneath the Ou Backbone Range compared with areas near the margins of the Pacific Ocean and the Japan Sea. Moreover, several elongate regions with a shallow brittle-viscous transition are oriented transverse to the arc, and these regions correspond to hot fingers (i.e., high-temperature regions in the mantle wedge). The stress level is low in these regions due to viscous deformation. Areas of seismicity roughly correspond to zones of stress accumulation where many intraplate earthquakes occur. Our model produces regions with high uplift rates that largely coincide with regions of high elevation (e.g., the Ou Backbone Range). The stress state, fault development, and uplift around the Ou Backbone Range can all be explained by our model. The results also suggest the existence of low-viscosity regions corresponding to hot fingers in the island arc crust. These low-viscosity regions have possibly affected viscous relaxation processes following the 2011 Tohoku-oki earthquake.

  15. Effects of Pre-Stress State and Rupture Velocity on Dynamic Fault Branching

    Science.gov (United States)

    Kame, N.; Rice, J. R.; Dmowska, R.

    2002-12-01

    We consider a mode II rupture which propagates along a planar main fault and encounters an intersection with a branching fault that makes an angle with the main fault. Within a formulation that allows the failure path to be dynamically self-chosen, we study the following questions: Does the rupture start along the branch? Does it continue? Which side is most favored for branching, the extensional or compressional? Does rupture continue on the main fault too? What path is finally self-chosen? Failure in the modeling is described by a slip-weakening law for which the peak and residual strength, and strength at any particular amount of slip, is proportional to normal stress. We use the elastodynamic boundary integral equation method to allow simulations of rupture along the branched fault system. Our results show that dynamic stresses around the rupturing fault tip, which increase with rupture velocity at locations off the main fault plane, relative to those on it, could initiate rupture on a branching fault. As suggested by prior work [Poliakov, Dmowska and Rice, 2002, http://esag.harvard.edu/dmowska/PDR.pdf], whether a branching rupture, once begun, can be continued to a larger scale depends on principal stress directions in the pre-stress state and on rupture velocity. The most favored side for rupture transferring on a branching fault switches from the extensional side to the compressive side as we consider progressively shallower angles of the direction of maximum pre-compression with the main fault. Simultaneous rupturing on both faults is usually difficult for a narrow branching angle due to strong stress interaction between faults, which discourages rupture continuation on the other side. However, it can be activated by enhanced dynamic stressing when the rupture velocity is very near the limiting velocity (Rayleigh wave velocity for mode II). It can also be activated when the branching angle is wide because of decreasing stress interaction between faults

  16. Probing stress state and phase content in ultra-thin Ta films

    Energy Technology Data Exchange (ETDEWEB)

    Whitacre, J.F.; Yalisove, S.M.; Bilello, J.C. [Univ. of Michigan, Ann Arbor, MI (United States); Rek, Z.U. [Stanford Univ., CA (United States). Stanford Synchrotron Radiation Lab.

    1998-12-31

    Ta films 25 {angstrom} to 200 {angstrom} in thickness were sputter-deposited using different sputter gas (Ar) pressures and cathode power settings. The average in-plane stresses were determined using double crystal diffraction topography (DCDT). X-ray analysis (using the grazing incidence x-ray scattering (GIXS) geometry) was performed using a synchrotron light source. To study microstructure and phase content, transmission electron microscopy (TEM) and transmission electron diffraction (TED) were used. Well resolved x-ray patterns were collected for all of the films. The DCDT stress data was found to be consistent with stress effects evidence in the GIXS data. In general, residual stress state was not strongly dependent upon Ar pressure. The strongest evidence of amorphous content was found in both x-ray and TED data taken from 25 {angstrom} thick films deposited using 2mTorr Ar pressure and 460 W cathode power. These results show that it is possible to create and study ultra-thin Ta films which possess a range of residual stresses and phase compositions.

  17. Aftershock triggering by postseismic stresses: A study based on Coulomb rate-and-state models

    Science.gov (United States)

    Cattania, Camilla; Hainzl, Sebastian; Wang, Lifeng; Enescu, Bogdan; Roth, Frank

    2015-04-01

    The spatiotemporal clustering of earthquakes is a feature of medium- and short-term seismicity, indicating that earthquakes interact. However, controversy exists about the physical mechanism behind aftershock triggering: static stress transfer and reloading by postseismic processes have been proposed as explanations. In this work, we use a Coulomb rate-and-state model to study the role of coseismic and postseismic stress changes on aftershocks and focus on two processes: creep on the main shock fault plane (afterslip) and secondary aftershock triggering by previous aftershocks. We model the seismic response to Coulomb stress changes using the Dieterich constitutive law and focus on two events: the Parkfield, Mw = 6.0, and the Tohoku, Mw = 9.0, earthquakes. We find that modeling secondary triggering systematically improves the maximum log likelihood fit of the sequences. The effect of afterslip is more subtle and difficult to assess for near-fault events, where model errors are largest. More robust conclusions can be drawn for off-fault aftershocks: following the Tohoku earthquake, afterslip promotes shallow crustal seismicity in the Fukushima region. Simple geometrical considerations indicate that afterslip-induced stress changes may have been significant on trench parallel crustal fault systems following several of the largest recorded subduction earthquakes. Moreover, the time dependence of afterslip strongly enhances its triggering potential: seismicity triggered by an instantaneous stress change decays more quickly than seismicity triggered by gradual loading, and as a result we find afterslip to be particularly important between few weeks and few months after the main shock.

  18. Seismicity and state of stress in the central and southern Peruvian flat slab

    Science.gov (United States)

    Kumar, Abhash; Wagner, Lara S.; Beck, Susan L.; Long, Maureen D.; Zandt, George; Young, Bissett; Tavera, Hernando; Minaya, Estella

    2016-05-01

    We have determined the Wadati-Benioff Zone seismicity and state of stress of the subducting Nazca slab beneath central and southern Peru using data from three recently deployed local seismic networks. Our relocated hypocenters are consistent with a flat slab geometry that is shallowest near the Nazca Ridge, and changes from steep to normal without tearing to the south. These locations also indicate numerous abrupt along-strike changes in seismicity, most notably an absence of seismicity along the projected location of subducting Nazca Ridge. This stands in stark contrast to the very high seismicity observed along the Juan Fernandez ridge beneath central Chile where, a similar flat slab geometry is observed. We interpret this as indicative of an absence of water in the mantle beneath the overthickened crust of the Nazca Ridge. This may provide important new constraints on the conditions required to produce intermediate depth seismicity. Our focal mechanisms and stress tensor inversions indicate dominantly down-dip extension, consistent with slab pull, with minor variations that are likely due to the variable slab geometry and stress from adjacent regions. We observe significantly greater variability in the P-axis orientations and maximum compressive stress directions. The along strike change in the orientation of maximum compressive stress is likely related to slab bending and unbending south of the Nazca Ridge.

  19. Effect of temperature, microstructure, and stress state on the low cycle fatigue behavior of Waspaloy

    Science.gov (United States)

    Stahl, D. R.; Antolovich, S. D.; Mirdamadi, M.; Zamrik, S. Y.

    1988-01-01

    Specimens of Waspaloy of two different microstructures were tested in uniaxial and torsional low-cycle fatigue at 24 and 649 C. For all specimens, deformation and failure mechanisms are found to be independent of stress state at 24 C; in both microstructures, failure is associated with the formation of shear cracks. At 649 C, deformation and failure mechanisms for the fine-grain large gamma-prime specimens are independent of stress state, and the mechanisms are similar to those observed at 24 C. For the coarse-grain small gamma-prime specimens, however, failure occurs on principal planes in torsion and on shear plane in uniaxial tension. The results are interpreted in terms of deformation mode and microstructural instability.

  20. An approximate solution to the stress and deformation states of functionally graded rotating disks

    Science.gov (United States)

    Sondhi, Lakshman; Sanyal, Shubhashis; Saha, Kashi Nath; Bhowmick, Shubhankar

    2016-07-01

    The present work employs variational principle to investigate the stress and deformation states and estimate the limit angular speed of functionally graded high-speed rotating annular disks of constant thickness. Assuming a series approximation following Galerkin's principle, the solution of the governing equation is obtained. In the present study, elasticity modulus and density of the disk material are taken as power function of radius with the gradient parameter ranging between 0.0 and 1.0. Results obtained from numerical solutions are validated with benchmark results and are found to be in good agreement. The results are reported in dimensional form and presented graphically. The results provide a substantial insight in understanding the behavior of FGM rotating disks with constant thickness and different gradient parameter. Furthermore, the stress and deformation state of the disk at constant angular speed and limit angular speed is investigated to explain the existence of optimum gradient parameters.

  1. Study of the stress-strain state of compressed concrete elements with composite reinforcement

    Directory of Open Access Journals (Sweden)

    Bondarenko Yurii

    2017-01-01

    Full Text Available The efficiency analysis of the application of glass composite reinforcement in compressed concrete elements as a load-carrying component has been performed. The results of experimental studies of the deformation-strength characteristics of this reinforcement on compression and compressed concrete cylinders reinforced by this reinforcement are presented. The results of tests and mechanisms of sample destruction have been analyzed. The numerical analysis of the stress-strain state has been performed for axial compression of concrete elements with glasscomposite reinforcement. The influence of the reinforcement percentage on the stressed state of a concrete compressed element with the noted reinforcement is estimated. On the basis of the obtained results, it is established that the glass-composite reinforcement has positive effect on the strength of the compressed concrete elements. That is, when calculating the load-bearing capacity of such structures, the function of composite reinforcement on compression should not be neglected.

  2. Evaluation of the efficiency of nested q-PCR in the detection of Mycobacterium tuberculosis complex directly from tuberculosis-suspected lesions in post-mortem macroscopic inspections of bovine carcasses slaughtered in the state of Mato Grosso, Brazil.

    Science.gov (United States)

    Carvalho, Ricardo César Tavares; Furlanetto, Leone Vinícius; Maruyama, Fernanda Harumy; Araújo, Cristina Pires de; Barros, Sílvia Letícia Bomfim; Ramos, Carlos Alberto do Nascimento; Dutra, Valéria; Araújo, Flábio Ribeiro de; Paschoalin, Vânia Margaret Flosi; Nakazato, Luciano; Figueiredo, Eduardo Eustáquio de Souza

    2015-08-01

    Bovine tuberculosis (BTB) is a zoonotic disease caused by Mycobacterium bovis, a member of the Mycobacterium tuberculosis complex (MTC). The quick and specific detection of this species is of extreme importance, since BTB may cause economic impacts, in addition to presenting imminent risks to human health. In the present study a nested real-time PCR test (nested q-PCR) was used in post-mortem evaluations to assess cattle carcasses with BTB-suspected lesions. A total of 41,193 cattle slaughtered in slaughterhouses located in the state of Mato Grosso, were examined. Of the examined animals, 198 (0.48%) showed BTB-suspected lesions. M. bovis was isolated in 1.5% (3/198) of the samples. Multiplex-PCR detected MTC in 7% (14/198) of the samples. The nested q-PCR test detected MTC in 28% (56/198) of the BTB-suspected lesions, demonstrating higher efficiency when compared to the multiplex-PCR and conventional microbiology. Nested q-PCR can therefore be used as a complementary test in the national program for control and eradication of bovine tuberculosis.

  3. Spontaneous and Deliberate Dissociative States in Military Personnel: Relationships to Objective Performance Under Stress

    Science.gov (United States)

    2014-09-01

    Sylvester Road, San Diego, CA 92106. †Department of Exercise and Nutritional Sciences, San Diego State University, ENS Building, Room 351, 5500 Campanile...respect to the stressful mock-captivity event. Although the CADSS includes addi- tional items used for clinical observation, the set of 19 self- report...literature found in the sport sciences. As discussed in Morgan et al,4 sport scientists have examined differences between so-called dissociative and

  4. Computer modeling of the stress-strain state of a linear friction welded disk

    Directory of Open Access Journals (Sweden)

    V. Bychkov

    2015-09-01

    Full Text Available The paper is dedicated to design issues of tooling for linear friction welding (LFW machine. Computer model of a LFW machine was built. As a result of computer simulation, the stress-strain state of the machine and disk module for linear friction welding of aluminum alloy blisks also was obtained. On the basis of the results of computer simulation a module with a replaceable unit and a new variant fixing of disc in the module were designed.

  5. Profile of mood states and stress-related biochemical indices in long-term yoga practitioners

    Directory of Open Access Journals (Sweden)

    Sudo Nobuyuki

    2011-06-01

    Full Text Available Abstract Background Previous studies have shown the short-term or intermediate-term practice of yoga to be useful for ameliorating several mental disorders and psychosomatic disorders. However, little is known about the long-term influences of yoga on the mental state or stress-related biochemical indices. If yoga training has a stress-reduction effect and also improves an individual's mental states for a long time, long-term yoga practitioners may have a better mental state and lower stress-related biochemical indices in comparison to non-experienced participants. This study simultaneously examined the differences in mental states and urinary stress-related biochemical indices between long-term yoga practitioners and non-experienced participants. Methods The participants were 38 healthy females with more than 2 years of experience with yoga (long-term yoga group and 37 age-matched healthy females who had not participated in yoga (control group. Their mental states were assessed using the Profile of Mood States (POMS questionnaire. The level of cortisol, 8-hydroxydeoxyguanosine (8-OHdG and biopyrrin in urine were used as stress-related biochemical indices. Results The average self-rated mental disturbance, tension-anxiety, anger-hostility, and fatigue scores of the long-term yoga group were lower than those of the control group. There was a trend toward a higher vigor score in the long-term yoga group than that in the control group. There were no significant differences in the scores for depression and confusion in the POMS between the two groups. The urine 8-OHdG concentration showed a trend toward to being lower in the long-term yoga group in comparison to the control group. There were no significant differences in the levels of urine biopyrrin or cortisol. Conclusions The present findings suggest that long-term yoga training can reduce the scores related to mental health indicators such as self-rated anxiety, anger, and fatigue.

  6. Analysis of stress-strain state of the spherical shallow shell with inclusion

    Directory of Open Access Journals (Sweden)

    O.B. Kozin

    2016-05-01

    Full Text Available Development of effective methods of determining the stress-strain state thin-walled structures with inclusions, reinforcements and other stress concentrators is an important task, both from a theoretical and practical point of view, by reason of their great practical application. Aim: The aim of the research is to analyze the elastic-deformed state of a spherical shallow shell. Materials and Methods: In this work, based on the generalized scheme of integral transformations, a constructive method of direct numerical-analytical solutions of boundary value problem of calculating the stress-strain state of a spherical shallow shell with the inclusion in bending is proposed. Results: The results of numerical calculations are presented. Calculations allow predicting the value of deformation of the cylindrical shells structure with reinforcements and determining the optimum parameters for the design or manufacture. The obtained results can be used in determining the strength characteristics of structural elements that consist of composite materials. The article contains comparative analysis of the results and demonstrates the effectiveness of the method for solving this class of problems.

  7. Change in metallothionein phosphorylation state in Mya arenaria clams: implication in metal metabolism and oxidative stress

    Directory of Open Access Journals (Sweden)

    F Gagné

    2010-01-01

    Full Text Available The contamination of the benthic environment poses a threat to long-lived sessile organisms such as clams. The purpose of this study was to investigate metal contamination in tissues and changes in metallothioneins (MT in respect to its redox status in Mya arenaria clams collected at three polluted sites. The phosphorylation state of MT was also investigated to determine whether this state is changed in clams collected at heavy-metal contaminated site and its involvement in cytoprotective signaling during stress contamination. The results show that clams collected at least one of the three polluted sites presented significantly higher concentrations of silver (Ag, arsenic (As, cobalt (Co, copper (Cu, mercury (Hg, nickel (Ni, tin (Sn and lead (Pb in tissues. In the visceral tissue, total MT levels and the reduced, metal-binding form of the protein were significantly induced at the sites. The phosphorylation of MT and mitochondrial activity, as determined by electron transport and cytochrome c oxidase activities, were also significantly reduced at the contaminated sites. Reduced phosphate levels in MT were negatively correlated with total MT levels, suggesting that decreased phosphorylation was involved in kinase-mediated signaling during cellular stress and could possibly alter the protein’s affinity to confer cytoprotection against heavy metal contamination. These preliminary investigations revealed that the phosphorylation state could change in polluted environment and provide some clues on the modulation of binding affinities during heavy-metal and oxidative stress in clams.

  8. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yen, E-mail: yen.liu@nasa.gov; Vinokur, Marcel [NASA Ames Research Center, Moffett Field, California 94035 (United States); Panesi, Marco; Sahai, Amal [University of Illinois, Urbana-Champaign, Illinois 61801 (United States)

    2015-04-07

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model’s accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  9. General multi-group macroscopic modeling for thermo-chemical non-equilibrium gas mixtures

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Sahai, Amal; Vinokur, Marcel

    2015-04-01

    This paper opens a new door to macroscopic modeling for thermal and chemical non-equilibrium. In a game-changing approach, we discard conventional theories and practices stemming from the separation of internal energy modes and the Landau-Teller relaxation equation. Instead, we solve the fundamental microscopic equations in their moment forms but seek only optimum representations for the microscopic state distribution function that provides converged and time accurate solutions for certain macroscopic quantities at all times. The modeling makes no ad hoc assumptions or simplifications at the microscopic level and includes all possible collisional and radiative processes; it therefore retains all non-equilibrium fluid physics. We formulate the thermal and chemical non-equilibrium macroscopic equations and rate coefficients in a coupled and unified fashion for gases undergoing completely general transitions. All collisional partners can have internal structures and can change their internal energy states after transitions. The model is based on the reconstruction of the state distribution function. The internal energy space is subdivided into multiple groups in order to better describe non-equilibrium state distributions. The logarithm of the distribution function in each group is expressed as a power series in internal energy based on the maximum entropy principle. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients succinctly to any order. The model's accuracy depends only on the assumed expression of the state distribution function and the number of groups used and can be self-checked for accuracy and convergence. We show that the macroscopic internal energy transfer, similar to mass and momentum transfers, occurs through nonlinear collisional processes and is not a simple relaxation process described by, e.g., the Landau-Teller equation. Unlike the classical vibrational energy

  10. Short distance and initial state effects in inflation: stress tensor and decoherence

    CERN Document Server

    Anderson, P R; Mottola, E; Anderson, Paul R.; Molina-Paris, Carmen; Mottola, Emil

    2005-01-01

    We present a consistent low energy effective field theory framework for parameterizing the effects of novel short distance physics in inflation, and their possible observational signatures in the Cosmic Microwave Background. We consider the class of general homogeneous, isotropic initial states for quantum scalar fields in Robertson-Walker (RW) spacetimes, subject to the requirement that their ultraviolet behavior be consistent with renormalizability of the covariantly conserved stress-energy tensor which couples to gravity. In the functional Schrodinger picture such states are coherent, squeezed, mixed states characterized by a Gaussian density matrix. This Gaussian has parameters which approach those of the adiabatic vacuum at large wave number, and evolve in time according to an effective classical Hamiltonian. The one complex parameter family of $\\alpha$ squeezed states in de Sitter spacetime does not fall into this UV allowed class, except for the special value of the parameter corresponding to the Bunch...

  11. Effects of single moor baths on physiological stress response and psychological state: a pilot study

    Science.gov (United States)

    Stier-Jarmer, M.; Frisch, D.; Oberhauser, C.; Immich, G.; Kirschneck, M.; Schuh, A.

    2017-06-01

    Moor mud applications in the form of packs and baths are widely used therapeutically as part of balneotherapy. They are commonly given as therapy for musculoskeletal disorders, with their thermo-physical effects being furthest studied. Moor baths are one of the key therapeutic elements in our recently developed and evaluated 3-week prevention program for subjects with high stress level and increased risk of developing a burnout syndrome. An embedded pilot study add-on to this core project was carried out to assess the relaxing effect of a single moor bath. During the prevention program, 78 participants received a total of seven moor applications, each consisting of a moor bath (42 °C, 20 min, given between 02:30 and 05:20 p.m.) followed by resting period (20 min). Before and after the first moor application in week 1, and the penultimate moor application in week 3, salivary cortisol was collected, blood pressure and heart rate were measured, and mood state (Multidimensional Mood State Questionnaire) was assessed. A Friedman test of differences among repeated measures was conducted. Post hoc analyses were performed using the Wilcoxon signed-rank test. A significant decrease in salivary cortisol concentration was seen between pre- and post-moor bath in week 1 (Z = -3.355, p = 0.0008). A non-significant decrease was seen between pre- and post-moor bath in week 3. Mood state improved significantly after both moor baths. This pilot study has provided initial evidence on the stress-relieving effects of single moor baths, which can be a sensible and recommendable therapeutic element of multimodal stress-reducing prevention programs. The full potential of moor baths still needs to be validated. A randomized controlled trial should be conducted comparing this balneo-therapeutic approach against other types of stress reduction interventions.

  12. Oxidative stress markers in hypertensive states of pregnancy: preterm and term disease.

    Science.gov (United States)

    Kurlak, Lesia O; Green, Amanda; Loughna, Pamela; Broughton Pipkin, Fiona

    2014-01-01

    Discussion continues as to whether de novo hypertension in pregnancy with significant proteinuria (pre-eclampsia; PE) and non-proteinuric new hypertension (gestational hypertension; GH) are parts of the same disease spectrum or represent different conditions. Non-pregnant hypertension, pregnancy and PE are all associated with oxidative stress. We have established a 6 weeks postpartum clinic for women who experienced a hypertensive pregnancy. We hypothesized that PE and GH could be distinguished by markers of oxidative stress; thiobarbituric acid reactive substances (TBARS) and antioxidants (ferric ion reducing ability of plasma; FRAP). Since the severity of PE and GH is greater pre-term, we also compared pre-term and term disease. Fifty-eight women had term PE, 23 pre-term PE, 60 had term GH and 6 pre-term GH, 11 pre-existing (essential) hypertension (EH) without PE. Limited data were available from normotensive pregnancies (n = 7) and non-pregnant controls (n = 14). There were no differences in postpartum TBARS or FRAP between hypertensive states; TBARS (P = 0.001) and FRAP (P = 0.009) were lower in plasma of non-pregnant controls compared to recently-pregnant women. Interestingly FRAP was higher in preterm than term GH (P = 0.013). In PE and GH, TBARS correlated with low density lipoprotein (LDL)-cholesterol (P = 0.036); this association strengthened with inclusion of EH (P = 0.011). The 10 year Framingham index for cardiovascular risk was positively associated with TBARS (P = 0.003). Oxidative stress profiles do not differ between hypertensive states but appear to distinguish between recently-pregnant and non-pregnant states. This suggests that pregnancy may alter vascular integrity with changes remaining 6 weeks postpartum. LDL-cholesterol is a known determinant of oxidative stress in cardiovascular disease and we have shown this association to be present in hypertensive pregnancy further emphasizing that such a pregnancy may be revealing a pre

  13. Response of Triaxial State of Stress to Creep Rupture Life and Ductility of 316 LN Austenitic Stainless Steel

    Science.gov (United States)

    Goyal, Sunil; Laha, K.; Bhaduri, A. K.

    2016-12-01

    In the present investigation, the effect of triaxial state of stress on creep rupture life and ductility of 316 LN stainless steel has been assessed. The creep tests were carried out on both smooth and notched specimens of the steel at 873 K in the stress range of 270-340 MPa. The notched specimens had root radius ranging from 0.83 mm to 5 mm. The detailed finite element analysis has been carried out to assess the triaxial state of stress across the notch incorporating Norton's law as creep deformation governing mechanism. The creep rupture life of the steel increased in presence of triaxial stresses and extent of which was more at lower net applied stresses and higher triaxiality (sharper notch). The reduction in effective stress in presence of notch resulted in higher creep rupture life of the steel under triaxial stresses. The fracture surfaces revealed mixed mode failure consisting of dimple ductile and intergranular creep cavitation for all testing conditions, however, extent of cavitation was higher for relatively higher triaxialities and lower net applied stresses. The creep ductility of the steel was found to decrease drastically under triaxial state of stress. The triaxial rupture life and creep ductility of the steel have been assessed based on different models on incorporating different components of stresses at the skeletal point.

  14. Response of Triaxial State of Stress to Creep Rupture Life and Ductility of 316 LN Austenitic Stainless Steel

    Science.gov (United States)

    Goyal, Sunil; Laha, K.; Bhaduri, A. K.

    2017-02-01

    In the present investigation, the effect of triaxial state of stress on creep rupture life and ductility of 316 LN stainless steel has been assessed. The creep tests were carried out on both smooth and notched specimens of the steel at 873 K in the stress range of 270-340 MPa. The notched specimens had root radius ranging from 0.83 mm to 5 mm. The detailed finite element analysis has been carried out to assess the triaxial state of stress across the notch incorporating Norton's law as creep deformation governing mechanism. The creep rupture life of the steel increased in presence of triaxial stresses and extent of which was more at lower net applied stresses and higher triaxiality (sharper notch). The reduction in effective stress in presence of notch resulted in higher creep rupture life of the steel under triaxial stresses. The fracture surfaces revealed mixed mode failure consisting of dimple ductile and intergranular creep cavitation for all testing conditions, however, extent of cavitation was higher for relatively higher triaxialities and lower net applied stresses. The creep ductility of the steel was found to decrease drastically under triaxial state of stress. The triaxial rupture life and creep ductility of the steel have been assessed based on different models on incorporating different components of stresses at the skeletal point.

  15. Selective buckling via states of self-stress in topological metamaterials

    Science.gov (United States)

    Paulose, Jayson; Meeussen, Anne S.; Vitelli, Vincenzo

    2015-01-01

    States of self-stress—tensions and compressions of structural elements that result in zero net forces—play an important role in determining the load-bearing ability of structures ranging from bridges to metamaterials with tunable mechanical properties. We exploit a class of recently introduced states of self-stress analogous to topological quantum states to sculpt localized buckling regions in the interior of periodic cellular metamaterials. Although the topological states of self-stress arise in the linear response of an idealized mechanical frame of harmonic springs connected by freely hinged joints, they leave a distinct signature in the nonlinear buckling behavior of a cellular material built out of elastic beams with rigid joints. The salient feature of these localized buckling regions is that they are indistinguishable from their surroundings as far as material parameters or connectivity of their constituent elements are concerned. Furthermore, they are robust against a wide range of structural perturbations. We demonstrate the effectiveness of this topological design through analytical and numerical calculations as well as buckling experiments performed on two- and three-dimensional metamaterials built out of stacked kagome lattices. PMID:26056303

  16. Characterization of the hydrogeology and stress state in the vicinity of the homestake mine, Lead, SD

    Science.gov (United States)

    Ebenhack, Johnathan Foss

    Underground workings in fractured rock are common worldwide. They have applications in numerous areas and fields of study. These include mining operations, civil engineering projects like tunnels and underground facilities, and research projects that require underground laboratories such as the physics research being conducted by Sanford Laboratory at the former Homestake mine and Fermi Laboratory near Chicago (Bahcall et al. 2001, Elsworth 2009, Sadoulet et al. 2006, bge science DUSEL, fnal.gov). These excavations can reach several kilometers in depth including the 3.9 km deep TauTona mine in South Africa, the 3 km deep LaRonde mine in Quebec and the 2.4 km deep Homestake mine in South Dakota. Large quantities of rock are removed when constructing deep excavations, for example Rahn and Roggenthen (2002) estimated the total volume of rock removed from the Homestake mine to be 2.1x107 m3. Removing large volumes of rock alters the local stress state and ground water flow, potentially increasing risks to workers and the environment (Kaiser et al. 2008, Blodgett et al. 2002, Lucier et al. 2009, Goldbach 2010, Kang et al. 2010). The objective of this research is to develop a better understanding of how deep rock excavations can alter groundwater flow, stress state, and deformation in the rock that envelopes them. The approach is to evaluate how the hydraulic head, flow paths and stress state have been affected by excavation at the Homestake mine in Lead, South Dakota, one of the deepest mines in North America. The Homestake mine was selected as a focus of this research because it has recently been evaluated as the site of a deep underground research laboratory where an understanding of the groundwater flow and stress state was needed to plan underground experiments. The investigation includes poroelastic modeling of the Homestake mine using available geologic and geophysical data and mine records. Results from the analyses indicate that mining and dewatering have

  17. Evaluation of the stress-strain state of a one-dimensional heterogeneous porous structure

    Science.gov (United States)

    Gerasimov, O.; Shigapova, F.; Konoplev, Yu; Sachenkov, O.

    2016-11-01

    The paper deals with the problem of determining the stress-strain state of the distal part of the pelvic girdle bones. The area was modeled using a rod loaded by a compressive force and was described by physical relations linking the stress-strain tensor through the elastic constants, the fabric tensor, and the solid volume fraction of the material. Taking into account the law of porosity variation, we considered the problem of evaluating the stress-strain state depending on the nature of the porous structure, and the relationship of the structure with mechanical macroparameters. In this work, we present the results of calculations for a single load, construct the diagrams for the components of the strain tensor, and carry out an assessment of deformations for various system parameters. To evaluate the macroparameters, we built the dependence of the Poisson ratio of the material on the rotation angle a and the pore ellipticity parameter λ. The sensitivity of the deformations to the elastic constants was also estimated.

  18. Effect of different pneumoperitoneum pressure on stress state in patients underwent gynecological laparoscopy

    Institute of Scientific and Technical Information of China (English)

    Ai-Yun Shen

    2016-01-01

    Objective:To observe the effect of different CO2 pneumoperitoneum pressure on the stress state in patients underwent gynecological laparoscopy.Methods:A total of 90 patients who were admitted in our hospital from February, 2015 to October, 2015 for gynecological laparoscopy were included in the study and divided into groups A, B, and C according to different CO2 pneumoperitoneum pressure. The changes of HR, BP, and PetCO2 during the operation process in the three groups were recorded. The changes of stress indicators before operation (T0), 30 min during operation (T1), and 12 h after operation (T2) were compared. Results: The difference of HR, BP, and PetCO2 levels before operation among the three groups was not statistically significant (P>0.05). HR, BP, and PetCO2 levels 30 min after pneumoperitoneum were significantly elevated when compared with before operation (P0.05). PetCO2 level 30 min after pneumoperitoneum in group B was significantly higher than that in group A (P0.05).Conclusions:Low pneumoperitoneum pressure has a small effect on the stress state in patients underwent gynecological laparoscopy, will not affect the surgical operation, and can obtain a preferable muscular relaxation and vision field; therefore, it can be selected in preference.

  19. Reliability assessment of stress concentration performance state for a perforated composite plate under traction

    Directory of Open Access Journals (Sweden)

    Jabbouri A.

    2012-07-01

    Full Text Available Considering a perforated sandwich plate made from two elastic homogenous and isotropic layers, and having a square hole, reliability assessment of stress concentration limit state for which the stress should not exceed a given threshold is performed in this work. Assuming that the plate dimensions and the applied loading are deterministic, focus is done on the square hole centre position and edge length considered to be random variables. The means and the standard deviations of these variables are assumed to be known, but no information is so far available about their densities of probabilities. To assess reliability of the performance state, reliability analysis known methods are applied to a response surface representation of the stress concentration factor of the perforated plate which is obtained through quadratic polynomial regression of finite element results. A parametric study is performed regarding the influence of the distributions of probabilities chosen to model the hole dimensions uncertainties. It is shown that the probability of failure depends largely on the selected densities of probabilities.

  20. Application of nonlinear ultrasonic method for monitoring of stress state in concrete

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gyu Jin; Kwak, Hyo Gyoung [Dept. of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Sun Jong [Dept. of Structural System and Site Safety Evaluation, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    As the lifespan of concrete structures increases, their load carrying capacity decreases owing to cyclic loads and long-term effects such as creep and shrinkage. For these reasons, there is a necessity for stress state monitoring of concrete members. Particularly, it is necessary to evaluate the concrete structures for behavioral changes by using a technique that can overcome the measuring limitations of usual ultrasonic nondestructive evaluation methods. This paper proposes the use of a nonlinear ultrasonic method, namely, nonlinear resonant ultrasonic spectroscopy (NRUS) for the measurement of nonlinearity parameters for stress monitoring. An experiment compared the use of NRUS method and a linear ultrasonic method, namely, ultrasonic pulse velocity (UPV) to study the effects of continuously increasing loads and cyclic loads on the nonlinearity parameter. Both NRUS and UPV methods found a similar direct relationship between load level and that parameter. The NRUS method showed a higher sensitivity to micro-structural changes of concrete than UPV method. Thus, the experiment confirms the possibility of using the nonlinear ultrasonic method for stress state monitoring of concrete members.

  1. A review of macroscopic ductile failure criteria.

    Energy Technology Data Exchange (ETDEWEB)

    Corona, Edmundo; Reedlunn, Benjamin

    2013-09-01

    The objective of this work was to describe several of the ductile failure criteria com- monly used to solve practical problems. The following failure models were considered: equivalent plastic strain, equivalent plastic strain in tension, maximum shear, Mohr- Coulomb, Wellman's tearing parameter, Johnson-Cook and BCJ MEM. The document presents the main characteristics of each failure model as well as sample failure predic- tions for simple proportional loading stress histories in three dimensions and in plane stress. Plasticity calculations prior to failure were conducted with a simple, linear hardening, J2 plasticity model. The resulting failure envelopes were plotted in prin- cipal stress space and plastic strain space, where the dependence on stress triaxiality and Lode angle are clearly visible. This information may help analysts select a ductile fracture model for a practical problem and help interpret analysis results.

  2. Investigation of dissipative forces near macroscopic media

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R.S.

    1982-12-01

    The interaction of classical charged particles with the fields they induce in macroscopic dielectric media is investigated. For 10- to 1000-eV electrons, the angular perturbation of the trajectory by the image potential for surface impact parameters of 50 to 100 A is shown to be of the order of 0.001 rads over a distance of 100 A. The energy loss incurred by low-energy particles due to collective excitations such as surface plasmons is shown to be observable with a transition probability of 0.01 to 0.001 (Becker, et al., 1981b). The dispersion of real surface plasmon modes in planar and cylindrical geometries is discussed and is derived for pinhole geometry described in terms of a single-sheeted hyperboloid of revolution. An experimental apparatus for the measurement of collective losses for medium-energy electrons translating close to a dielectric surface is described and discussed. Data showing such losses at electron energies of 500 to 900 eV in silver foils containing many small apertures are presented and shown to be in good agreement with classical stopping power calculations and quantum mechanical calculations carried out in the low-velocity limit. The data and calculations are compared and contrasted with earlier transmission and reflection measurements, and the course of further investigation is discussed.

  3. Searching for the nanoscopic–macroscopic boundary

    Energy Technology Data Exchange (ETDEWEB)

    Velásquez, E.A. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Investigación en Modelamiento y Simulación Computacional, Universidad de San Buenaventura Sec. Medellín, A.A. 5222, Medellín (Colombia); Altbir, D. [Departamento de Física, Universidad de Santiago de Chile (USACH), CEDENNA, Santiago (Chile); Mazo-Zuluaga, J. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Duque, L.F. [GICM and GES Groups, Instituto de Física-FCEN, Universidad de Antioquia UdeA, Calle 70 No. 52-21 Medellín (Colombia); Grupo de Física Teórica, Aplicada y Didáctica, Facultad de Ciencias Exactas y Aplicadas Instituto Tecnológico Metropolitano, Medellín (Colombia); Mejía-López, J., E-mail: jmejia@puc.cl [Facultad de Física, Pontificia Universidad Católica de Chile, CEDENNA, Santiago (Chile)

    2013-12-15

    Several studies have focused on the size-dependent properties of elements, looking for a unique definition of the nanoscopic–macroscopic boundary. By using a novel approach consisting of an energy variational method combined with a quantum Heisenberg model, here we address the size at which the ordering temperature of a magnetic nanoparticle reaches its bulk value. We consider samples with sizes in the range 1–500 nm, as well as several geometries and crystalline lattices and observe that, contrarily to what is commonly argued, the nanoscopic-microscopic boundary depends on both factors: shape and crystalline structure. This suggests that the surface-to-volume ratio is not the unique parameter that defines the behavior of a nanometric sample whenever its size increases reaching the bulk dimension. Comparisons reveal very good agreement with experimental evidence with differences less than 2%. Our results have broad implications for practical issues in measurements on systems at the nanometric scale. - Highlights: • A novel quantum-Heisenberg variational energy method is implemented. • The asymptotic behavior toward the thermodynamic limit is explored. • An important dependence of the nano-bulk boundary on the geometry is found. • And also an important dependence on the crystalline lattice. • We obtain a very good agreement with experimental evidence with differences <2%.

  4. The Proell Effect: A Macroscopic Maxwell's Demon

    Science.gov (United States)

    Rauen, Kenneth M.

    2011-12-01

    Maxwell's Demon is a legitimate challenge to the Second Law of Thermodynamics when the "demon" is executed via the Proell effect. Thermal energy transfer according to the Kinetic Theory of Heat and Statistical Mechanics that takes place over distances greater than the mean free path of a gas circumvents the microscopic randomness that leads to macroscopic irreversibility. No information is required to sort the particles as no sorting occurs; the entire volume of gas undergoes the same transition. The Proell effect achieves quasi-spontaneous thermal separation without sorting by the perturbation of a heterogeneous constant volume system with displacement and regeneration. The classical analysis of the constant volume process, such as found in the Stirling Cycle, is incomplete and therefore incorrect. There are extra energy flows that classical thermo does not recognize. When a working fluid is displaced across a regenerator with a temperature gradient in a constant volume system, complimentary compression and expansion work takes place that transfers energy between the regenerator and the bulk gas volumes of the hot and cold sides of the constant volume system. Heat capacity at constant pressure applies instead of heat capacity at constant volume. The resultant increase in calculated, recyclable energy allows the Carnot Limit to be exceeded in certain cycles. Super-Carnot heat engines and heat pumps have been designed and a US patent has been awarded.

  5. Cloud Macroscopic Organization: Order Emerging from Randomness

    Science.gov (United States)

    Yuan, Tianle

    2011-01-01

    Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds, and that it follows a power-law distribution with exponent gamma close to 2. gamma is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also demonstrate symmetry between clear and cloudy skies in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random local interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. We also propose a concept of cloud statistic mechanics approach. This approach is fully complementary to deterministic models, and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  6. Distributivity breaking and macroscopic quantum games

    CERN Document Server

    Grib, A A; Parfionov, G N; Starkov, K A

    2005-01-01

    Examples of games between two partners with mixed strategies, calculated by the use of the probability amplitude as some vector in Hilbert space are given. The games are macroscopic, no microscopic quantum agent is supposed. The reason for the use of the quantum formalism is in breaking of the distributivity property for the lattice of yes-no questions arising due to the special rules of games. The rules of the games suppose two parts: the preparation and measurement. In the first part due to use of the quantum logical orthocomplemented non-distributive lattice the partners freely choose the wave functions as descriptions of their strategies. The second part consists of classical games described by Boolean sublattices of the initial non-Boolean lattice with same strategies which were chosen in the first part. Examples of games for spin one half are given. New Nash equilibria are found for some cases. Heisenberg uncertainty relations without the Planck constant are written for the "spin one half game".

  7. Cloud macroscopic organization: order emerging from randomness

    Directory of Open Access Journals (Sweden)

    T. Yuan

    2011-01-01

    Full Text Available Clouds play a central role in many aspects of the climate system and their forms and shapes are remarkably diverse. Appropriate representation of clouds in climate models is a major challenge because cloud processes span at least eight orders of magnitude in spatial scales. Here we show that there exists order in cloud size distribution of low-level clouds and it follows a power-law distribution with exponent γ close to 2. γ is insensitive to yearly variations in environmental conditions, but has regional variations and land-ocean contrasts. More importantly, we demonstrate this self-organizing behavior of clouds emerges naturally from a complex network model with simple, physical organizing principles: random clumping and merging. We also show clear-cloudy sky symmetry in terms of macroscopic organization because of similar fundamental underlying organizing principles. The order in the apparently complex cloud-clear field thus has its root in random simple interactions. Studying cloud organization with complex network models is an attractive new approach that has wide applications in climate science. This approach is fully complementary to deterministic models and the two approaches provide a powerful framework to meet the challenge of representing clouds in our climate models when working in tandem.

  8. Zero time tunneling: macroscopic experiments with virtual particles

    Directory of Open Access Journals (Sweden)

    Nimtz Günter

    2015-01-01

    Full Text Available Feynman introduced virtual particles in his diagrams as intermediate states of an interaction process. They represent necessary intermediate states between observable real states. Such virtual particles were introduced to describe the interaction process between an electron and a positron and for much more complicated interaction processes. Other candidates for virtual particles are evanescent modes in optics and in elastic fields. Evanescent modes have a purely imaginary wave number, they represent the mathematical analogy of the tunneling solutions of the Schrödinger equation. Evanescent modes exist in the forbidden frequency bands of a photonic lattice and in undersized wave guides, for instance. The most prominent example for the occurrence of evanescent modes is the frustrated total internal reflection (FTIR at double prisms. Evanescent modes and tunneling lie outside the bounds of the special theory of relativity. They can cause faster than light (FTL signal velocities. We present examples of the quantum mechanical behavior of evanescent photons and phonons at a macroscopic scale. The evanescent modes of photons are described by virtual particles as predicted by former QED calculations.

  9. Emotional affective states (depression, anxiety and stress of nursing in a mexican public health sector

    Directory of Open Access Journals (Sweden)

    Blanca García-Rivera

    2014-03-01

    Full Text Available This study is a descriptive correlational cross-sectional approach with a non-experimental design about emotional affective states related dissorders in Mexican public health workers. It´s goal was to identify the existence of significant differences between gender and emotional affective state (depression, anxiety and stress for workers in a hospital located in Ensenada, Baja California in north-western Mexico. The work covers a sample of 130 employees. To collection of data used a DASS-21 scale. The results identified an emotional affective state within a normal range. No statistically differences in gender were identified. Positive and significant correlations between subscales of the DASS-21 were found.

  10. Macroscopic and microscopic observations of needle insertion into gels

    NARCIS (Netherlands)

    Veen, van Youri R.J.; Jahya, Alex; Misra, Sarthak

    2012-01-01

    Needle insertion into soft tissue is one of the most common medical interventions. This study provides macroscopic and microscopic observations of needle–gel interactions. A gelatin mixture is used as a soft-tissue simulant. For the macroscopic studies, system parameters, such as insertion velocity,

  11. Strict Holism in a Quantum Superposition of Macroscopic States

    CERN Document Server

    De Barros, J A; Suppes, Patrick

    2000-01-01

    We show that some N-particle quantum systems are holistic, such that the system is deterministic, whereas its parts are random. The total correlation is not sufficient to determine the probability distribution, showing a need for extra measurements. We propose a formal definition of holism not based on separability.

  12. Stress and food deprivation: linking physiological state to migration success in a teleost fish

    DEFF Research Database (Denmark)

    Midwood, J.D.; Larsen, Martin Hage; Aarestrup, Kim;

    2016-01-01

    of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term FD and experimental cortisol elevation (i.e., intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status...... for the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol caused impaired growth and reduced survival of both resident and migratory......, survival, and growth of juvenile brown trout relative to a control were evaluated. Fewer fish migrated in both the FD and cortisol treatments; however, migration of cortisol and control treatments occurred at the same time while the FD treatment was delayed for approximately one week. A significantly...

  13. Modeling assumptions influence on stress and strain state in 450 t cranes hoisting winch construction

    Directory of Open Access Journals (Sweden)

    Damian GĄSKA

    2011-01-01

    Full Text Available This work investigates the FEM simulation of stress and strain state of the selected trolley’s load-carrying structure with 450 tones hoisting capacity [1]. Computational loads were adopted as in standard PN-EN 13001-2. Model of trolley was built from several cooperating with each other (in contact parts. The influence of model assumptions (simplification in selected construction nodes to the value of maximum stress and strain with its area of occurrence was being analyzed. The aim of this study was to determine whether the simplification, which reduces the time required to prepare the model and perform calculations (e.g., rigid connection instead of contact are substantially changing the characteristics of the model.

  14. Two Temperature Magneto-Thermoelasticity with Initial Stress: State Space Formulation

    Directory of Open Access Journals (Sweden)

    Sunita Deswal

    2013-01-01

    Full Text Available Magneto-thermoelastic interactions in an initially stressed isotropic homogeneous elastic half-space with two temperatures are studied using mathematical methods under the purview of the L-S model of linear theory of generalized thermoelasticity. The formalism deals with the state space approach with the purpose of counteracting the difficulties of handling the displacement potential functions. Of specific concern here is the propagation of waves owing to ramp type increase in temperature and load. The medium is considered to be permeated by a uniform magnetic field. The expressions for different field parameters such as displacement, temperature, strain, and stress in the physical domain are obtained by applying a numerical inversion technique. Results of some earlier workers have been deduced from the present formulation. Numerical work is also performed for a suitable material with the aim of illustrating the results.

  15. A Damaged Constitutive Model for Rock under Dynamic and High Stress State

    Directory of Open Access Journals (Sweden)

    Yan-Long Li

    2017-01-01

    Full Text Available The main research work of this paper focuses on the theoretical prediction of the constitutive relationship for rock, concrete, and other quasi-brittle materials under dynamic and complex stress state and the influence of dynamic mechanical behavior of rock on practical engineering problems was studied. A damaged elastoplastic model (DEPM is established for the investigation and prediction of static or dynamic mechanical behavior of rock material. The mechanical behavior (brittleness or plasticity and dynamic response (due to underground impact pressure and high-velocity impact of projectile of rock under high in situ stress were investigated via the DEPM combined with the explicit finite element method. This paper suggests the influence of the brittle or plastic mechanical behavior of rock material on deep underground rock engineering.

  16. EFFECTS OF VASCULAR ZERO-STRESS STATE ON PULSATILE BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, blood flow in artery was treated as the flow under equilibrium state (the steady flow under mean pressure) combined with the periodically small pulsatile flow. Based on vascular zero-stress state[1], the pulsatile strains according to the radial and axial displacements of blood vessel were obtained. With the use of Hooke’s law, the pulsatile strains and the corresponding Cauchy stresses were connected, so the corresponding wall motion equations could be established here. By solving the linearized Navier-Stokes equations, the analytic expressions of the blood flow velocities and the vascular displacements could be obtained, and the influence of the circumferential and axial stretch ratio on pulsatile blood flow and vascular motion was discussed in details.

  17. Efficacy of single-session abreactive ego state therapy for combat stress injury, PTSD, and ASD.

    Science.gov (United States)

    Barabasz, Arreed; Barabasz, Marianne; Christensen, Ciara; French, Brian; Watkins, John G

    2013-01-01

    Using abreactive Ego State Therapy (EST), 36 patients meeting DSM-IV-TR and PTSD checklist (PCL) criteria were exposed to either 5-6 hours of manualized treatment or placebo in a single session. EST emphasizes repeated hypnotically activated abreactive "reliving" of the trauma experience combined with therapists' ego strength. Both the placebo and EST treatment groups showed significant reductions in PTSD checklist scores immediately posttreatment (placebo: mean 17.34 points; EST: mean 53.11 points) but only the EST patients maintained significant treatment effect at 4-week and 16- to 18-week follow-ups. Abreactive EST appears to be an effective and durable treatment for PTSD inclusive of combat stress injury and acute stress disorder.

  18. Distribution of stress state in the Nankai subduction zone, southwest Japan and a comparison with Japan Trench

    Science.gov (United States)

    Lin, Weiren; Byrne, Timothy B.; Kinoshita, Masataka; McNeill, Lisa C.; Chang, Chandong; Lewis, Jonathan C.; Yamamoto, Yuzuru; Saffer, Demian M.; Casey Moore, J.; Wu, Hung-Yu; Tsuji, Takeshi; Yamada, Yasuhiro; Conin, Marianne; Saito, Saneatsu; Ito, Takatoshi; Tobin, Harold J.; Kimura, Gaku; Kanagawa, Kyuichi; Ashi, Juichiro; Underwood, Michael B.; Kanamatsu, Toshiya

    2016-12-01

    To better understand the distribution of three dimensional stress states in the Nankai subduction zone, southwest Japan, we review various stress-related investigations carried out in the first and second stage expeditions of the Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) by the Integrated Ocean Drilling Program (IODP) and compile the stress data. Overall, the maximum principal stress σ1 in the shallower levels ( 1 km below seafloor or in underlying accretionary prism) with σ1 becoming horizontal is also suggested at all deeper drilling sites. We also make a comparison of the stress state in the hanging wall of the frontal plate-interface between Site C0006 in the Nankai and Site C0019 in the Japan Trench subduction zone drilled after the 2011 Mw 9.0 Tohoku-Oki earthquake. In the Japan Trench, a comparison between stress state before and after the 2011 mega-earthquake shows that the stress changed from compression before the earthquake to extension after the earthquake. As a result of the comparison between the Nankai Trough and Japan Trench, a similar current stress state with trench parallel extension was recognized at both C0006 and C0019 sites. Hypothetically, this may indicate that in Nankai Trough it is still in an early stage of the interseismic cycle of a great earthquake which occurs on the décollement and propagates to the toe (around site C0006).

  19. Measuring soft measures within a stated preference survey: The effect of pollution and traffic stress on mode choice

    DEFF Research Database (Denmark)

    Sottile, Eleonora; Cherchi, Elisabetta; Meloni, Italo

    2015-01-01

    The objective of this research is to study the extent to which information on pollution and individual stress has on the choice to shift from private car to Park and Ride. A Stated Preference experiment was built where the reduction of CO2 and stress are attributes of the experimental design. Res...

  20. Relationships among Career and Life Stress, Negative Career thoughts, and Career Decision State: A Cognitive Information Processing Perspective

    Science.gov (United States)

    Bullock-Yowell, Emily; Peterson, Gary W.; Reardon, Robert C.; Leierer, Stephen J.; Reed, Corey A.

    2011-01-01

    According to cognitive information processing theory, career thoughts mediate the relationship between career and life stress and the ensuing career decision state. Using a sample of 232 college students and structural equation modeling, this study found that an increase in career and life stress was associated with an increase in negative career…

  1. Stress-free states of continuum dislocation fields : Rotations, grain boundaries, and the Nye dislocation density tensor

    NARCIS (Netherlands)

    Limkumnerd, Surachate; Sethna, James P.

    2007-01-01

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose stre

  2. Relationships among Career and Life Stress, Negative Career thoughts, and Career Decision State: A Cognitive Information Processing Perspective

    Science.gov (United States)

    Bullock-Yowell, Emily; Peterson, Gary W.; Reardon, Robert C.; Leierer, Stephen J.; Reed, Corey A.

    2011-01-01

    According to cognitive information processing theory, career thoughts mediate the relationship between career and life stress and the ensuing career decision state. Using a sample of 232 college students and structural equation modeling, this study found that an increase in career and life stress was associated with an increase in negative career…

  3. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  4. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  5. Mathematic modeling of stress-deformed states of low jaw teeth while using combined removable splint-denture

    National Research Council Canada - National Science Library

    Ye L Albert; O I Lysko

    2013-01-01

    The article presents the results of mathematical modeling and analysis of the stress-strain states of the lower incisors in the 1-st, 2-nd and 3-d degrees of inflammatory degenerative process in the periodontium...

  6. The oesophageal zero-stress state and mucosal folding from a GIOME perspective

    Institute of Scientific and Technical Information of China (English)

    Donghua Liao; Jingbo Zhao; Jian Yang; Hans Gregers

    2007-01-01

    The oesophagus is a cylindrical organ with a collapsed lumen and mucosal folds. The mucosal folding may serve to advance the function of the oesophagus, i.e.the folds have a major influence on the flow of air and bolus through the oesophagus. Experimental studies have demonstrated oesophageal mucosal folds in the noload state. This indicates that mucosal buckling must be considered in the analysis of the mechanical reference state since the material stiffness drops dramatically after tissue collapse. Most previous work on the oesophageal zero-stress state and mucosal folding has been experimental. However, numerical analysis offers a promising alternative approach, with the additional ability to predict the mucosal buckling behaviour and to calculate the regional stress and strain in complex structures. A numerical model used for describing the mechanical behaviour of the mucosal-folded, threelayered, two-dimensional oesophageal model is reviewed.GIOME models can be used in the future to predict the tissue function physiologically and pathologically.

  7. Creep properties of phosphorus alloyed oxygen free copper under multiaxial stress state

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2009-10-15

    Phosphorus alloyed oxygen free copper (Cu-OFP) canisters are planned to be used for spent nuclear fuel in Sweden. The copper canisters will be subjected to creep under multiaxial stress states in the repository. Creep tests have therefore been carried out at 75 deg C using double notch specimens with notch acuities of 0.5, 2, 5, and 18.8, respectively. The creep lifetime for notched specimens is considerably longer than that for the smooth one at a given net section stress, indicating that the investigated Cu-OFP is notch insensitive (notch strengthening). The notch strengthening factor in time is, for instance, greater than 70 at 180 MPa for the bluntest notch (notch acuity = 0.5). The creep lifetime is notch acuity dependent. The sharper the notch, the longer the creep lifetime is. The creep deformation is to a significant extent concentrated to the region around the notches. Different deformation on the two notches is observed. Both axial and radial strains on the failed notch are several times larger than those on the unbroken one. Linear relation between the axial and the radial strains on the notches is found. Transgranular failure is predominant, independent of stress, rupture time, and notch acuity. Adjacent to fracture, elongated grains along the stress direction, separate pores and cavities are often visible. On the unbroken notch, fewer separate cavities and cracks are only seen intergranularly for the sharper notches (notch acuity > 2). To interpret the tests for the notched creep specimens, finite element computations have been performed. A fundamental model for primary and secondary creep without fitting parameters has been used as constitutive equation. The FEM-modelling could represent the creep strain versus time curves for the notched specimens in a satisfactory way. In these curves the strain on loading is included. From the FEM-computations a stationary creep stress could be assessed, which is close to the reference stress. For a given

  8. Impact of rockfill deformation on stress-strain state on dam reinforced concrete face

    Directory of Open Access Journals (Sweden)

    Sainov Mikhail Petrovich

    2015-03-01

    Full Text Available The author considered the results of the numerical studies of stress-strain state of a 100 m high rockfill dam with a reinforced concrete face. In the analysis, the dam construction sequence and loads applied to it were considered; it was assumed that the reinforced concrete face was constructed after filling the dam. The calculations were carried out in the elastic formulation at various moduli of deformation and Poisson’s ratio. It was revealed that at rockfill settlement under the action of hydrostatic pressure the reinforced concrete face not only bends but also is subject to longitudinal force. The development of these forces is connected not only with rockfill shear deformation in horizontal direction. Depending on the value of rockfill Poisson’s ratio these longitudinal forces may be both compressive and tensile. At the Poisson’s ratio exceeding 0.25 the longitudinal forces are tensile, and when it is equal to 0.2 - they are compressive. Evidently these particular longitudinal forces are the course of crack formation in reinforced concrete faces of a number of constructed dams. The indirect confirmation of the development of tensile forces on the face is the fact that actually in all the dams with reinforced concrete face opening of perimeter joint was observed. Thus, in order to provide the strength of reinforced concrete it is important to increase rockfill shear modulus. Only the decrease of stone compressibility (i.e. increase of linear deformation modulus E will slightly improve the stress state of the face, as the value of E has less effect on settlements and shear of the dam than Poisson’s ratio. High rockfill dams with reinforced concrete face may have a favorable stress state only at narrow site when the face horizontal displacements are inconsiderable and due to the settlements of rockfill in the face the forces are compressive but not tensile longitudinal forces.

  9. Late Cenozoic stress state distributions at the intersection of the Hellenic and Cyprus Arcs, SW Turkey

    Science.gov (United States)

    Över, Semir; Özden, Süha; Pınar, Ali; Yılmaz, Hüseyin; Kamacı, Züheyr; Ünlügenç, Ulvi Can

    2016-12-01

    The history of the Late Cenozoic stress regime was determined for an area between the gulfs of Fethiye and Antalya. Fault kinematic analysis and inversion of focal mechanisms of shallow earthquakes reveal significant evolution of the regional stress regime in SW Anatolia, i.e., the area of interaction between the Hellenic and Cyprus arcs, from the Mio-Pliocene to the present time. Fault kinematic analysis yields two different normal faulting stress regimes along the southwestern part of Fethiye-Burdur Fault zone, e.g., in and around Çameli Basin (Zone A1) and two different strike-slip to normal faulting stress regimes characterized by a roughly orthogonal set of extensional axes between Fethiye and Demre (Zone B) with an older NW-SE σ3 axis for Mio-Pliocene and a younger NE-SW σ3 axis for Plio-Quaternary time. Inversion of focal mechanisms of the earthquakes occurring in Zone A1 provides an extensional stress state with approximately N-S σ3 axis. Inversion of those occurring in Zone B, south of Zone A1, yields a dominantly strike-slip stress state with a NE-SW σ3 axis and a NW-SE σ1 axis respectively. The inversion slip vectors from fault planes yield a consistent normal faulting stress regime in Burdur Basin and its surroundings (i.e., along the northeastern part of Fethiye-Burdur Fault Zone, (Zone A2)) during Plio-Quaternary, continuing into recent time as indicated by earthquake focal mechanism inversions. Both states have a consistent NW-SE σ3 axis. Fault kinematic analysis indicates NW-SE extension acting in Zone C (subarea between Demre and Antalya), south of Zone A2, during Mio-Pliocene time. The inversion of focal mechanisms yields normal faulting also characterized by a consistent NW-SE σ3 axis. The nearly orthogonal extensional stress regimes (NW-SE and NE-SW) obtained by inversion of both measured and seismic faults seem to have been acting contemporaneously with each other at different intensities from the Mio-Pliocene onwards in SW Turkey. This

  10. Measuring stress responses in female Geoffroy's spider monkeys: Validation and the influence of reproductive state.

    Science.gov (United States)

    Rodrigues, Michelle A; Wittwer, Dan; Kitchen, Dawn M

    2015-04-17

    Fecal glucocorticoid metabolites are increasingly used to investigate physiological stress. However, it is crucial for researchers to simultaneously investigate the effects of reproductive state because estradiol and placental hormones can affect circulating glucocorticoid concentrations. Reports on the relationships between glucocorticoids and reproductive state are inconsistent among females. Unlike several primate species that have heightened glucocorticoid activity during lactation, humans experience reduced glucocorticoid activity during lactation. Rather than a taxonomic difference, we hypothesize that this is a result of different environmental stressors, particularly the threat of infanticide. Here, we expand the number of wild primate species tested by validating a glucocorticoid assay for female Geoffroy's spider monkeys. We investigate the effects of reproductive state on their glucocorticoid concentrations. Utilizing a routine veterinary exam on a captive population, we determined that fecal glucocorticoid metabolites increase in response to a stressor (anesthesia), and this rise is detected approximately 24 hr later. Additionally, we found that extracted hormone patterns in a wild population reflected basic reproductive biology-estradiol concentrations were higher in cycling than lactating females, and in lactating females with older offspring who were presumably resuming their cycle. However, we found that estradiol and glucocorticoid concentrations were significantly correlated in lactating but not cycling females. Similarly, we found that reproductive state and estradiol concentration, but not stage of lactation, predicted glucocorticoid concentrations. Unlike patterns in several other primate species that face a relatively strong threat of infanticide, lactating spider monkeys experience reduced glucocorticoid activity, possibly due to attenuating effects of oxytocin and lower male-initiated aggression than directed at cycling females. More

  11. Effects of Surface State and Applied Stress on Stress Corrosion Cracking of Alloy 690TT in Lead-containing Caustic Solution

    Institute of Scientific and Technical Information of China (English)

    Zhiming Zhang; Jianqiu Wang; En-Hou Han; Wei Ke

    2012-01-01

    The effects of surface state and applied stress on the stress corrosion cracking (SCC) behaviors of thermally treated (TT) Alloy 690 in 10 wt% NaOH solution with 100 mg/L litharge at 330 ℃ were investigated using C-ring samples with four kinds of surface states and two different stress levels. Sample outer surfaces of the first three kinds were ground to 400 grit (ground), shot-peened (SP) and electro-polished (EP) and the last one was used as the as-received state. Two samples of every kind were stressed to 100% and 200% yield stress of Alloy 690TT, respectively. The results showed that the oxide film consisted of three layers whereas continuous layer rich in Cr was not found. The poor adhesive ability indicated that the oxide film could not protect the matrix from further corrosion. Lead was found in the oxide film and the oxides at the crack paths and accelerated the dissolution of thermodynamically unstable Cr in these locations and also in the matrix. The crack initiation and propagation on Alloy 690TT were effectively retarded by SP and EP treatments but were enhanced by grinding treatment, compared with the cracks on the as-received surface. The cracking severity was also enhanced by increasing the externally applied stress. The accelerated dissolution of Cr and the local tensile stress concentration in the near-surface layer caused by cold-working and higher applied stress reduced the SCC-resistance of Alloy 690TT in the studied solution.

  12. Stress analysis in a functionally graded disc under mechanical loads and a steady state temperature distribution

    Indian Academy of Sciences (India)

    Hasan Çallioğlu

    2011-02-01

    An analytical thermoelasticity solution for a disc made of functionally graded materials (FGMs) is presented. Infinitesimal deformation theory of elasticity and power law distribution for functional gradation are used in the solution procedure. Some relative results for the stress and displacement components along the radius are presented due to internal pressure, external pressure, centrifugal force and steady state temperature. From the results, it is found that the grading indexes play an important role in determining the thermomechanical responses of FG disc and in optimal design of these structures.

  13. Dry fracture method for simultaneous measurement of in-situ stress state and material properties

    Energy Technology Data Exchange (ETDEWEB)

    Serata, S. [Serata Geomechanics, Inc., Richmond, CA (United States); Oka, S.; Kikuchi, S. [JDC Corp., Tokyo (Japan)

    1996-04-01

    Based on the dry fracture principle, a computerized borehole probe has been developed to measure stress state and material properties, simultaneously. The probe is designed to obtain a series of measurements in a continuing sequence along a borehole length, without any interruptive measures, such as resetting packers, taking indentation of borehole wall, overcoming, etc. The new dry fracture probe for the single fracture method is designed to overcome the difficulties posed by its ancestor which was based on the double fracture method. The accuracy of the single fracture method is confirmed by a close agreement with the theory, FE modeling and laboratory testing.

  14. Determination of stress-strain state of the wooden church log walls with software package

    Directory of Open Access Journals (Sweden)

    Chulkova Anastasia

    2016-01-01

    Full Text Available The restoration of architectural monuments is going on all over the world today. The main aim of restoration is the renewal of stable functioning of building constructions in normal state. In this article, we have tried to figure out with special software the bearing capacity of log cabins of the Church of Transfiguration on Kizhi island. As shown in research results, determination of stress-strain stage with software package is necessary for the bearing capacity computation as well as field tests.

  15. STABILITY AND NATURAL VIBRATIONS OF INHOMOGENEOUS SHELLS TAKING INTO ACCOUNT THE STRESS STATE

    Directory of Open Access Journals (Sweden)

    Bazhenov V.A.

    2015-12-01

    Full Text Available The work is devoted to the problem of developing a unified methodology based on the efficient numerical analysis of problems of stability and natural vibrations of a wide class of inhomogeneous shells, thin and medium thickness. In problems of its natural vibrations takes into account the presence of a pre-stressed state of the structure from the action of static loads, which significantly affect the spectrum of natural vibrations and allows determining the bifurcation point and the value of the critical force of buckling by dynamic criteria.

  16. Plastic flow rule for sands with friction, dilation, density and stress state coupling

    Directory of Open Access Journals (Sweden)

    Wojciechowski Marek

    2015-06-01

    Full Text Available In this paper we propose a flow rule and failure criterion for sands in plane strain conditions based on Drucker-Prager formulation and enhanced with empirical Houlsby formula, which couples friction, dilation, density and stress state in the material. The resulting elasto-plastic, non-associated, shear hardening material model is implemented as a numerical procedure in the frame of finite element method and a simple compression example is presented. Because of the empirical nature of Houlsby formula, it is believed that results of numerical simulations will be more realistic both in deformation and shear strength estimation of sands.

  17. Evaluation of the state of stress at the Forsmark site. Preliminary site investigation Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Sjoeberg, Jonny; Lindfors, Ulf; Perman, Fredrik; Ask, Daniel [SwedPower AB, Stockholm (Sweden)

    2005-09-15

    This report presents an evaluation of the state of stress at the Forsmark site, based on all conducted stress measurements to date at the site, indirect stress estimates, geological and tectonic description of the site, and regional stress data from nearby locations. The work included (i) compilation of measurement results from Forsmark, as well as from nearby (regional) sites/locations, (ii) analysis of confidence intervals for each group of measurement, (iii) assessment of the stress state for the Forsmark site accounting for geological/tectonic evolution at the site, (iv) assessment of stress state for selected nearby (regional) sites/locations, and (v) comparison and combined interpretation of similarities and/or differences in stress state from a regional perspective. The combined assessment of the local (site-scale) and regional stress data for Forsmark showed that the major stress is orientated sub-horizontally and trending NW-SE; however, with significant local variation. A thrust faulting ({sigma}H > {sigma}h > {sigma}v) or possibly strike-slip faulting ({sigma}H > {sigma}v > {sigma}h) stress regime is evident at the Forsmark site. The maximum horizontal stress tends to be higher at the site compared to nearby sites and regional conditions. The site and regional data indicate that the vertical stress seems to be solely due to the overburden pressure. The lack of solid core discing for large portions of the boreholes at Forsmark was used to estimate an upper limit of the maximum horizontal stress magnitude. However, such an estimation is highly uncertain due to e.g. partly unknown mechanism for core discing failure, and unknown effects of the simplifying assumptions made in the analysis. The possible effects of shallow-dipping deformation zones on the stress state, could not be verified from the currently available data. However, the possibility of different stress regimes above and below deformation zones must be considered in future work. Slightly lower

  18. Microscopic Simulation and Macroscopic Modeling for Thermal and Chemical Non-Equilibrium

    Science.gov (United States)

    Liu, Yen; Panesi, Marco; Vinokur, Marcel; Clarke, Peter

    2013-01-01

    This paper deals with the accurate microscopic simulation and macroscopic modeling of extreme non-equilibrium phenomena, such as encountered during hypersonic entry into a planetary atmosphere. The state-to-state microscopic equations involving internal excitation, de-excitation, dissociation, and recombination of nitrogen molecules due to collisions with nitrogen atoms are solved time-accurately. Strategies to increase the numerical efficiency are discussed. The problem is then modeled using a few macroscopic variables. The model is based on reconstructions of the state distribution function using the maximum entropy principle. The internal energy space is subdivided into multiple groups in order to better describe the non-equilibrium gases. The method of weighted residuals is applied to the microscopic equations to obtain macroscopic moment equations and rate coefficients. The modeling is completely physics-based, and its accuracy depends only on the assumed expression of the state distribution function and the number of groups used. The model makes no assumption at the microscopic level, and all possible collisional and radiative processes are allowed. The model is applicable to both atoms and molecules and their ions. Several limiting cases are presented to show that the model recovers the classical twotemperature models if all states are in one group and the model reduces to the microscopic equations if each group contains only one state. Numerical examples and model validations are carried out for both the uniform and linear distributions. Results show that the original over nine thousand microscopic equations can be reduced to 2 macroscopic equations using 1 to 5 groups with excellent agreement. The computer time is decreased from 18 hours to less than 1 second.

  19. On cavitation and macroscopic behaviour of amorphous polymer-rubber blends

    Directory of Open Access Journals (Sweden)

    Naima Belayachi et al

    2008-01-01

    Full Text Available The macroscopic behaviour of rubber-modified polymethyl methacrylate (PMMA was investigated by taking into account the microdeformation mechanisms of rubber cavitation. The dependence of the macroscopic stress–strain behaviour of matrix deformation on the cavitation of rubber particles was discussed. A phenomenological elastic-viscoplastic model was used to model the behaviour of the matrix material, while the rubber particles were modelled with the hyperelasticity theory. A two-phase composite material with a periodic arrangement of reinforcing particles of a circular unit cell section was considered. Finite-element analysis was used to determine the local stresses and strains in the two-phase composite. In order to describe the cavitation of the rubber particles, a criterion of void nucleation is implemented in the finite-element (FE code. A comparison of the numerically predicted response with experimental result indicates that the numerical homogenisation analysis gives satisfactory prediction results.

  20. The Stress-Strain State and Potential Crack Trajectories in 2D Elastic Brittle Materials from Steady-State Flow Experiments

    NARCIS (Netherlands)

    Küntz, M.; Dyskin, A.; Lavallée, P.

    1998-01-01

    A steady-state flow method is used to examine micromechanisms of brittle failure in 2D elastic cracked media submitted to uniaxial compressive stress. The steady-state flow experiments were conducted with an incompressible Newtonian fluid in a Hele Shaw cell. Thin linear rubber inclusions were

  1. Crack growth time dependence analysis of granite under compressive-shear stresses state

    Institute of Scientific and Technical Information of China (English)

    LI Jiang-teng; CAO Ping; Gu De-sheng; Wu Chao

    2008-01-01

    The curves of crack relative length //b and crack growth time t of granite were gained under compressive stresses state according to subcritical crack growth parameters and crack stability growth equation by double-torsion constant displacement load relaxa-tion method. The relations between crack relative length and the crack growth time were discussed under different stresses and different crack lengths. The results show that there is a turning point on curve of crack relative length //b and crack growth time of granite. The slope of curve is small when crack relative length is less than the vertical coordinate of the point, and crack grows stably in this case. Cracks grow, encounter and integrate catastro-phically when crack relative length is more than the vertical coordinate of the point, and there is not a gradual stage from crack stability growth to crack instability growth, i.e. rock mass instability is sudden. The curves of crack relative length //b and crack growth time t of granite move to right with decrease of stress σ1 or crack length a, which implies that limit time increases consequently. The results correspond to practicality.

  2. Chronic wound state exacerbated by oxidative stress in Pax6+/- aniridia-related keratopathy.

    Science.gov (United States)

    Ou, J; Walczysko, P; Kucerova, R; Rajnicek, A M; McCaig, C D; Zhao, M; Collinson, J M

    2008-08-01

    Heterozygosity for the transcription factor PAX6 causes eye disease in humans, characterized by corneal opacity. The molecular aetiology of such disease was investigated using a Pax6+/- mouse model. We found that the barrier function of uninjured Pax6+/- corneas was compromised and that Ca2+-PKC/PLC-ERK/p38 signalling pathways were abnormally activated, mimicking a 'wounded' epithelial state. Using proteomic analysis and direct assay for oxidized proteins, Pax6+/- corneas were found to be susceptible to oxidative stress and they exhibited a wound-healing delay which could be rescued by providing reducing agents such as glutathione. Pax6 protein was oxidized and excluded from the nucleus of stressed corneal epithelial cells, with concomitant loss of corneal epithelial markers and expression of fibroblast/myofibroblast markers. We suggest a chronic wound model for Pax6-related corneal diseases, in which oxidative stress underlies a positive feedback mechanism by depleting nuclear Pax6, delaying wound healing, and activating cell signalling pathways that lead to metaplasia of the corneal epithelium. The study mechanistically links a relatively minor dosage deficiency of a transcription factor with potentially catastrophic degenerative corneal disease.

  3. Measurement of the stressed state of welded joints in the NPP process components and circulation pipelines based on acoustoelasticity theory

    Directory of Open Access Journals (Sweden)

    A.I. Trofimov

    2016-09-01

    Full Text Available The paper presents the results of a theoretical justification and an experimental research for a method to measure the stressed state of welded joints in the nuclear power plant (NPP process components and circulation pipelines based on acoustoelasticity theory, as well as for ways to implement them technically. Devices for measuring the stressed state of welded joints in the NPP process components and circulation pipelines based on acoustoelasticity theory allow online measurement of residual stresses along the weld height and detection of crack formation points. The use of such devices will enable early crack detection in welded joints for an increased safety of the NPP operation.

  4. From particle simulations to macroscopic constitutive relations

    NARCIS (Netherlands)

    Göncü, F.; Luding, S.

    2010-01-01

    The goal is to determine the constitutive behavior of granular packings under various deformations (isotropic and anisotropic) from particle simulations. For this we consider deformations, stress, structure and the contact forces as the basis. In a previous study [6,7] we investigated using DEM, the

  5. Stress, burnout, and renewal activities of dental hygiene education administrators in six U.S. Midwestern States.

    Science.gov (United States)

    Hinshaw, Kathleen J; Richter, Louiseann T; Kramer, Gene A

    2010-03-01

    The purpose of this study was to explore the patterns that emerge among stress, burnout, and renewal activities of dental hygiene education administrators in six midwestern states in the United States. The study investigated the effects of stress on these administrators by identifying when stress and burnout occur, what precautions they take to prevent it, and what actions might combat stress and/or burnout once it has occurred. The administrators were asked to complete a demographic questionnaire, the Maslach Burnout Inventory (MBI)-Educators Survey, and an in-depth interview. The response rate to the demographic questionnaire and MBI-Educators Survey was 54.5 percent (30/55). Respondents were primarily Caucasian females (93 percent), at least fifty-one years of age (67 percent), employed in dental hygiene education at least twenty-one years (56 percent), and dental hygiene education administrators for less than ten years (55 percent). Almost half (43 percent) reported a moderate to high Emotional Exhaustion burnout score, one of three characteristics measured by the MBI-Educators Survey. All participants (100 percent) responded that stress had affected their personal and/or professional lives. The findings indicate that dental hygiene education administrators a) experience stress, b) experience patterns of stress, and c) use preventive strategies. Study participants felt that the stress and burnout they experienced may be altered through personal and/or professional lifestyle modifications and that additional training in stress management is needed.

  6. Stress

    OpenAIRE

    Jensen, Line Skov; Lova, Lotte; Hansen, Zandra Kulikovsky; Schønemann, Emilie; Larsen, Line Lyngby; Colberg Olsen, Maria Sophia; Juhl, Nadja; Magnussen, Bogi Roin

    2012-01-01

    Stress er en tilstand som er meget omdiskuteret i samfundet, og dette besværliggør i en vis grad konkretiseringen af mulige løsningsforslag i bestræbelsen på at forebygge den såkaldte folkesygdom. Hovedkonklusionen er, at selv om der bliver gjort meget for at forebygge, er der ikke meget der aktivt kan sættes i værk for at reducere antallet af stressramte, før en fælles forståelse af stressårsager og effektiv stresshåndtering er fremlagt. Problemformuleringen er besvaret gennem en undersø...

  7. Analysis of the stress-strain state of New Exchequer combined damat static loads

    Directory of Open Access Journals (Sweden)

    Sainov Mikhail Petrovich

    Full Text Available In the article the authors analyze numerical modeling results of the stress-strain state of a combined dam created by construction of a higher rockfill dam with a reinforced concrete face behind the downstream face of the concrete dam. The analysis was conducted on the example of the design of 150 meter high New Exchequer dam (USA. Numerical modeling was conducted with consideration of non-linearity of soils deformation as well as non-linear behavior of the interaction “concrete - soil”, “concrete - concrete”. The analysis showed that though in a combined dam the concrete part gets additional displacements and settlements, its stress state remains favorable without appearance of tensile stresses and opening of the contact “concrete - rock”. This is explained by the fact that on the top the concrete dam is weightened by the reservoir hydrostatic pressure. The role of rockfill lateral pressure on the concrete dam stress state is small. There may be expected sliding of soil in relation to the concrete dam downstream face due to the loss of its shear strength. Besides, decompaction of the contact "soil - concrete" may occur, as earthfill will have considerable displacements in the direction from the concrete dam. Due to this fact the loads from the earthfill weight do not actually transfer to the concrete dam. The most critical zone in the combined dam is the interface of the reinforced concrete face with the concrete dam. Under the action of the hydrostatic pressure the earth-fill under the face will have considerable settlements and displacements, because soil slides in relation to the concrete dam downstream face. This results in considerable openings (10 cm and shear displacements (50 сm in the perimeter joint. The results of the numerical modeling are confirmed by the presence of seepage in New Exchequer dam, which led to the necessity of its repair. Large displacements do not allow using traditional sealing like copper water stops

  8. Oxidative stress markers in hypertensive states of pregnancy: preterm and term disease.

    Directory of Open Access Journals (Sweden)

    Lesia Olha Kurlak

    2014-08-01

    Full Text Available Discussion continues as to whether de novo hypertension in pregnancy with significant proteinuria (pre-eclampsia; PE and non-proteinuric new hypertension (gestational hypertension; GH are parts of the same disease spectrum or represent different conditions. Non-pregnant hypertension, pregnancy and PE are all associated with oxidative stress. We have established a 6 weeks post-partum clinic for women who experienced a hypertensive pregnancy. We hypothesized that PE and GH could be distinguished by markers of oxidative stress; thiobarbituric acid reactive substances (TBARS and antioxidants (ferric ion reducing ability of plasma; FRAP. Since the severity of PE and GH is greater pre-term, we also compared pre-term and term disease. Fifty-eight women had term PE, 23 pre-term PE, 60 had term GH and 6 pre-term GH, 11 pre-existing (essential hypertension (EH without PE. Limited data were available from normotensive pregnancies (n=7 and non-pregnant controls (n=14. There were no differences in postpartum TBARS or FRAP between hypertensive states; TBARS (P=0.001 and FRAP (P=0.009 were lower in plasma of non-pregnant controls compared to recently-pregnant women. Interestingly FRAP was higher in preterm than term GH (P=0.013. In PE and GH, TBARS correlated with low density lipoprotein (LDL-cholesterol (P=0.036; this association strengthened with inclusion of EH ((P=0.011. The 10 year Framingham index for cardiovascular risk was positively associated with TBARS (P=0.003.Oxidative stress profiles do not differ between hypertensive states but appear to distinguish between recently-pregnant and non-pregnant states. This suggests that pregnancy may alter vascular integrity with changes remaining 6 weeks postpartum. LDL-cholesterol is a known determinant of oxidative stress in cardiovascular disease and we have shown this association to be present in hypertensive pregnancy further emphasizing that such a pregnancy may be revealing a pre-existing cardiovascular

  9. Obesity-associated oxidative stress: strategies finalized to improve redox state.

    Science.gov (United States)

    Savini, Isabella; Catani, Maria Valeria; Evangelista, Daniela; Gasperi, Valeria; Avigliano, Luciana

    2013-05-21

    Obesity represents a major risk factor for a plethora of severe diseases, including diabetes, cardiovascular disease, non-alcoholic fatty liver disease, and cancer. It is often accompanied by an increased risk of mortality and, in the case of non-fatal health problems, the quality of life is impaired because of associated conditions, including sleep apnea, respiratory problems, osteoarthritis, and infertility. Recent evidence suggests that oxidative stress may be the mechanistic link between obesity and related complications. In obese patients, antioxidant defenses are lower than normal weight counterparts and their levels inversely correlate with central adiposity; obesity is also characterized by enhanced levels of reactive oxygen or nitrogen species. Inadequacy of antioxidant defenses probably relies on different factors: obese individuals may have a lower intake of antioxidant- and phytochemical-rich foods, such as fruits, vegetables, and legumes; otherwise, consumption of antioxidant nutrients is normal, but obese individuals may have an increased utilization of these molecules, likewise to that reported in diabetic patients and smokers. Also inadequate physical activity may account for a decreased antioxidant state. In this review, we describe current concepts in the meaning of obesity as a state of chronic oxidative stress and the potential interventions to improve redox balance.

  10. Investigation on the Residual Stress State of Drawn Tubes by Numerical Simulation and Neutron Diffraction Analysis

    Directory of Open Access Journals (Sweden)

    Adele Carradò

    2013-11-01

    Full Text Available Cold drawing is widely applied in the industrial production of seamless tubes, employed for various mechanical applications. During pre-processing, deviations in tools and their adjustment lead to inhomogeneities in the geometry of the tubes and cause a gradient in residuals. In this paper a three dimensional finite element (3D-FE-model is presented which was developed to calculate the change in wall thickness, eccentricity, ovality and residual macro-stress state of the tubes, produced by cold drawing. The model simulates the drawing process of tubes, drawn with and without a plug. For finite element modelling, the commercial software package Abaqus was used. To validate the model, neutron strain imaging measurements were performed on the strain imaging instrument SALSA at the Institute Laue Langevin (ILL, Grenoble, France on a series of SF-copper tubes, drawn under controlled laboratory conditions, varying the drawing angle and the plug geometry. It can be stated that there is sufficient agreement between the finite element method (FEM-calculation and the neutron stress determination.

  11. Deep heterogeneity of the stress state in the horizontal shear zones

    Science.gov (United States)

    Rebetsky, Yu. L.; Mikhailova, A. V.

    2014-11-01

    The formation structures of brittle destruction in a rock layer above an active strike-slip fault in the crystalline basement is studied. The problem is analyzed from the standpoint of loading history, when after the stage of pure gravitational loading, an additional strain state of uniform horizontal shear of both the layer and underlying basement develops, which is further followed by a vertically nonuniform shear caused by the activation of the deep fault. For the studied object, irreversible fracture deformations on macro- and microlevels arise as early as the initial stage of loading under the action of gravitational stresses. These deformations continue evolving on the megascopic level in the course of horizontal shearing that is quasi-uniform both along the depth and laterally. The final formation of the structural ensemble occurs after a long stage of horizontal displacement of the blocks of the crystalline basement—the stage of localized shear. The theoretical analysis of the evolution of the stress state and morphology of the failure structures established the presence of numerous fractures with the normal dip-slip components in the intermediate-depth part of the rock mass, which are formed at the stages of uniform and localized horizontal shearing. The fractures with a strike-slip component mainly arise in the upper and near-axial deep parts of the section.

  12. The Autonomous Stress Indicator for Remotely Monitoring Power System State and Watching for Potential Instability

    Directory of Open Access Journals (Sweden)

    Geza Joos

    2009-02-01

    Full Text Available The proposed Autonomous Stress Indicator (ASI is a device that monitors the contents of the protection relays on a suspect weak power system bus and generates a performance level related to the degree of system performance degradation or instability. This gives the system operators some time (minutes to take corrective action. In a given operating area there would not likely be a need for an ASI on every bus. Note that the ASI does not trip any breakers; it is an INFORMATION ONLY device. An important feature is that the system operator can subsequently interrogate the ASI to determine the factor(s that led to the performance level that has been initially annunciated, thereby leading to a course of action. This paper traces the development of the ASI which is an ongoing project. The ASI could be also described as a stress-alert device whose function is to alert the System Operator of a stressful condition at its location. The characteristics (or essential qualities of this device are autonomy, selectivity, accuracy and intelligence. These will fulfill the requirements of the recommendation of the Canada –US Task Force in the August 2003 system collapse. Preliminary tests on the IEEE 39-bus model indicate that the concept has merit and development work is in progress. While the ASI can be applied to all power system operating conditions, its principal application is to the degraded state of the system where the System Operator must act to restore the system to the secure state before it migrates to a stage of collapse. The work of ASI actually begins with the Areas of Vulnerability and ends with the Predictive Module as described in detail in this paper. An application example of a degraded system using the IEEE 39-bus system is included.

  13. Theory of transport processes in wood below the fiber saturation point. Physical background on the microscale and its macroscopic description

    DEFF Research Database (Denmark)

    Eitelberger, Johannes; Svensson, Staffan; Hofstetter, Karin

    2011-01-01

    The macroscopic formulation of moisture transport in wood below the fiber saturation point has motivated many research efforts in the past two decades. Many experiments demonstrated the difference in steady state and transient moisture transport and the inadequacy of models derived for steady state...

  14. The effect of fracture density and stress state on the static and dynamic bulk moduli of Westerly granite

    Science.gov (United States)

    Blake, O. O.; Faulkner, D. R.

    2016-04-01

    Elastic properties are key parameters during the deformation of rocks. They can be measured statically or dynamically, but the two measurements are often different. In this study, the static and dynamic bulk moduli (Kstatic and Kdynamic) were measured at varying effective stress for dry and fluid-saturated Westerly granite with controlled fracture densities under isotropic and differential stress states. Isotropic fracturing of different densities was induced in samples by thermal treatment to 250, 450, 650, and 850°C. Results show that fluid saturation does not greatly affect static moduli but increases dynamic moduli. Under isotropic loading, high fracture density and/or low effective pressure results in a low Kstatic/Kdynamic ratio. For dry conditions Kstatic/Kdynamic approaches 1 at low fracture densities when the effective pressure is high, consistent with previous studies. Stress-induced anisotropy exists under differential stress state that greatly affects Kstatic compared to Kdynamic. As a result, the Kstatic/Kdynamic ratio is higher than that for the isotropic stress state and approaches 1 with increasing axial loading. The effect of stress-induced anisotropy increases with increasing fracture density. A key omission in previous studies comparing static and dynamic properties is that anisotropy has not been considered. The standard methods for measuring static elastic properties, such as Poisson's ratio, Young's and shear modulus, involve subjecting the sample to a differential stress state that promotes anisotropy. Our results show that stress-induced anisotropy resulting from differential stress state is a major contributor to the difference between static and dynamic elasticity and is dominant with high fracture density.

  15. Investigating the mechanics of earthquakes using macroscopic seismic parameters

    Science.gov (United States)

    Venkataraman, Anupama

    2002-09-01

    To understand the physics of earthquake rupture mechanics, we have to relate seismologically observable parameters to the dynamics of faulting. One of the key seismological parameters that will help us achieve this objective is the energy radiated by seismic waves. In this work, we develop a new method of estimating radiated energy from regional data using an empirical Green's function method; we also modify existing methods of estimating radiated energy from teleseismic data by improving the corrections applied to the observed seismic data for attenuation and directivity effects. We compute teleseismic estimates of radiated energy for 23 large subduction zone earthquakes recorded between 1992 and 2001; most of these earthquakes have a magnitude Mw > 7.5, but we also include some smaller (Mw ˜ 6.7) well-studied subduction zone earthquakes and 6 crustal earthquakes. We compile the static stress drop estimates for these 29 earthquakes from published literature. We then determine radiation efficiency of these earthquakes using a stress relaxation model that relates measurable and macroscopic seismological parameters to the physical processes on the fault zone via fracture energy. We also determine the rupture velocity of these earthquakes from published literature. A comparison of radiation efficiencies and rupture velocities of these earthquakes with the expected theoretical values for different modes crack propagation validates the use of the stress relaxation model to understand earthquake rupture mechanics. From our calculations, we observe that most earthquakes have radiation efficiencies between 0.25 and 1 and are hence efficient in generating seismic waves, but tsunami earthquakes and two deep earthquakes, the 1994 deep earthquake that occurred in Bolivia and the 1999 Russia-China border earthquake, have very small radiation efficiencies (<0.25) and hence dissipate a large amount of energy on the fault plane. We suggest that the difference in the radiation

  16. Numerical calculation of the stress-strain state of non-rigid pavements, renovated by cold recycling technology

    Directory of Open Access Journals (Sweden)

    Світлана Михайлівна Талах

    2017-01-01

    Full Text Available The problem of improving the scientific basis to determine the stress-strain state of non-rigid pavements, renovated by cold recycling technology, is considered. The results of numerical calculation of stress-strain state of non-rigid pavements in the section of road Kyv-Kovel (297 + 700 km - 302 + 400 km are given using automated calculation software complex of thin-walled spatial structures (KARTPK. The real state of the road section through 8.5 years after the renovation is analyzed

  17. WORK STRESS AND SUBJECTIVE/PSYCHOLOGICAL WELL-BEING OF EMPLOYEES OF STATE HOLDING COMPANY IN TIMES OF CHANGE

    Directory of Open Access Journals (Sweden)

    Solveiga Blumberga

    2016-09-01

    Full Text Available State Holding Company makes a number of improvements, followed by a process of changes each year. This study was conducted to understand how the changes in the company affect the employees working in it and how the employees deal with the stress caused by such changes. The purpose of the study was to investigate the links between personnel work stress, subjective and psychological well-being of employees during changes in State Holding Company. The research undertakes issues such as: the levels of employee stress and subjective well-being, the levels of employee psychological well-being, links, if any, between subjective and psychological well-being and work stress, and the methods used in the research study. The survey was created with reference to works of other authors such as “Professional Life Stress Scale”, “Life Satisfaction Scale” and “Psychological Well-being Survey”. It was concluded that the employees had medium levels of stress, medium levels of life satisfaction, and medium levels of overall psychological well-being. There are statistically significant links between subjective well-being, psychological well-being and work stress. Recommendations were prepared for the Human Resources Department to reduce stress levels of personnel working and successful management of changes.

  18. Detecting Current Noise with a Josephson Junction in the Macroscopic Quantum Tunneling Regime

    OpenAIRE

    Peltonen, J. T.; Timofeev, A. V.; Meschke, M.; Pekola, J.P.

    2006-01-01

    We discuss the use of a hysteretic Josephson junction to detect current fluctuations with frequencies below the plasma frequency of the junction. These adiabatic fluctuations are probed by switching measurements observing the noise-affected average rate of macroscopic quantum tunneling of the detector junction out of its zero-voltage state. In a proposed experimental scheme, frequencies of the noise are limited by an on-chip filtering circuit. The third cumulant of current fluctuations at the...

  19. Towards understanding of heat effects in metallic glasses on the basis of macroscopic shear elasticity

    Science.gov (United States)

    Mitrofanov, Y. P.; Wang, D. P.; Makarov, A. S.; Wang, W. H.; Khonik, V. A.

    2016-03-01

    It is shown that all heat effects taking place upon annealing of a metallic glass within the glassy and supercooled liquid states, i.e. heat release below the glass transition temperature and heat absorption above it, as well as crystallization-induced heat release, are related to the macroscopic shear elasticity. The underlying physical reason can be understood as relaxation in the system of interstitialcy-type ”defects” (elastic dipoles) frozen-in from the melt upon glass production.

  20. Terahertz Science and Technology of Macroscopically Aligned Carbon Nanotube Films

    Science.gov (United States)

    Kono, Junichiro

    One of the outstanding challenges in nanotechnology is how to assemble individual nano-objects into macroscopic architectures while preserving their extraordinary properties. For example, the one-dimensional character of electrons in individual carbon nanotubes leads to extremely anisotropic transport, optical, and magnetic phenomena, but their macroscopic manifestations have been limited. Here, we describe methods for preparing macroscopic films, sheets, and fibers of highly aligned carbon nanotubes and their applications to basic and applied terahertz studies. Sufficiently thick films act as ideal terahertz polarizers, and appropriately doped films operate as polarization-sensitive, flexible, powerless, and ultra-broadband detectors. Together with recently developed chirality enrichment methods, these developments will ultimately allow us to study dynamic conductivities of interacting one-dimensional electrons in macroscopic single crystals of single-chirality single-wall carbon nanotubes.

  1. Accumulation of small protein molecules in a macroscopic complex coacervate

    NARCIS (Netherlands)

    Lindhoud, S.; Claessens, M.M.A.E.

    2016-01-01

    To obtain insight into the accumulation of proteins into macroscopic complex coacervate phases, the lysozyme concentration in complex coacervates containing the cationic polyelectrolyte poly-(N,N dimethylaminoethyl methacrylate) and the anionic polyelectrolyte polyacrylic acid was investigated as a

  2. Macroscopic cumulative fatigue damage of material under nonsymmetrical cycle

    Institute of Scientific and Technical Information of China (English)

    盖秉政

    2002-01-01

    Hashin's macroscopic theory of fatigue damage is further discussed and a new method has been proposed for prediction of cumulative fatigue damage of material and its lifetime under nonsymmetrical cyclic loading.

  3. Large Deviations for the Macroscopic Motion of an Interface

    Science.gov (United States)

    Birmpa, P.; Dirr, N.; Tsagkarogiannis, D.

    2017-03-01

    We study the most probable way an interface moves on a macroscopic scale from an initial to a final position within a fixed time in the context of large deviations for a stochastic microscopic lattice system of Ising spins with Kac interaction evolving in time according to Glauber (non-conservative) dynamics. Such interfaces separate two stable phases of a ferromagnetic system and in the macroscopic scale are represented by sharp transitions. We derive quantitative estimates for the upper and the lower bound of the cost functional that penalizes all possible deviations and obtain explicit error terms which are valid also in the macroscopic scale. Furthermore, using the result of a companion paper about the minimizers of this cost functional for the macroscopic motion of the interface in a fixed time, we prove that the probability of such events can concentrate on nucleations should the transition happen fast enough.

  4. Quantum fluctuations, gauge freedom and mesoscopic/macroscopic stability

    Energy Technology Data Exchange (ETDEWEB)

    Del Giudice, E [Istituto Nazionale di Fisica Nucleare, Via Celoria 16, I-20133 Milan (Italy); Vitiello, G [Dipartimento di Matematica e Informatica, Universita di Salerno and Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Salerno, 84100 Salerno (Italy)

    2007-11-15

    We study how the mesoscopic/macroscopic stability of coherent extended domains is generated out of the phase locking between gauge field and matter field. The role of the radiative gauge field in sustaining the coherent regime is discussed.

  5. New Tests of Macroscopic Local Realism using Continuous Variable Measurements

    CERN Document Server

    Reid, M D

    2001-01-01

    We show that quantum mechanics predicts an Einstein-Podolsky-Rosen paradox (EPR), and also a contradiction with local hidden variable theories, for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new, very strong premise, called macroscopic local realism. We link this premise to the Schrodinger-cat paradox. Our proposed experiments ensure all fields incident on each measurement apparatus are macroscopic. We show that an alternative measurement scheme corresponds to balanced homodyne detection of quadrature phase amplitudes. The implication is that where either EPR correlations or failure of local realism is predicted for continuous variable (quadrature phase amplitude) measurements, one can perform a modified experiment which would lead to conclusions about the much stronger premise of macroscopic local realism.

  6. Scattering of acoustic waves by macroscopically inhomogeneous poroelastic tubes.

    Science.gov (United States)

    Groby, J-P; Dazel, O; Depollier, C; Ogam, E; Kelders, L

    2012-07-01

    Wave propagation in macroscopically inhomogeneous porous materials has received much attention in recent years. For planar configurations, the wave equation, derived from the alternative formulation of Biot's theory of 1962, was reduced and solved recently: first in the case of rigid frame inhomogeneous porous materials and then in the case of inhomogeneous poroelastic materials in the framework of Biot's theory. This paper focuses on the solution of the full wave equation in cylindrical coordinates for poroelastic tubes in which the acoustic and elastic properties of the poroelastic tube vary in the radial direction. The reflection coefficient is obtained numerically using the state vector (or the so-called Stroh) formalism and Peano series. This coefficient can then be used to straightforwardly calculate the scattered field. To validate the method of resolution, results obtained by the present method are compared to those calculated by the classical transfer matrix method in the case of a two-layer poroelastic tube. As an example, a long bone excited in the sagittal plane is considered. Finally, a discussion is given of ultrasonic time domain scattered field for various inhomogeneity profiles, which could lead to the prospect of long bone characterization.

  7. Towards a macroscopic modeling of the complexity in traffic flow.

    Science.gov (United States)

    Rosswog, Stephan; Wagner, Peter

    2002-03-01

    Based on the assumption of a safe velocity U(e)(rho) depending on the vehicle density rho, a macroscopic model for traffic flow is presented that extends the model of the Kühne-Kerner-Konhäuser by an interaction term containing the second derivative of U(e)(rho). We explore two qualitatively different forms of U(e): a conventional Fermi-type function and, motivated by recent experimental findings, a function that exhibits a plateau at intermediate densities, i.e., in this density regime the exact distance to the car ahead is only of minor importance. To solve the fluid-like equations a Lagrangian particle scheme is developed. The suggested model shows a much richer dynamical behavior than the usual fluid-like models. A large variety of encountered effects is known from traffic observations, many of which are usually assigned to the elusive state of "synchronized flow." Furthermore, the model displays alternating regimes of stability and instability at intermediate densities. It can explain data scatter in the fundamental diagram and complicated jam patterns. Within this model, a consistent interpretation of the emergence of very different traffic phenomena is offered: they are determined by the velocity relaxation time, i.e., the time needed to relax towards U(e)(rho). This relaxation time is a measure of the average acceleration capability and can be attributed to the composition (e.g., the percentage of trucks) of the traffic flow.

  8. Grasping the second law of thermodynamics at university: The consistency of macroscopic and microscopic explanations

    Science.gov (United States)

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] This study concentrates on evaluating the consistency of upper-division students' use of the second law of thermodynamics at macroscopic and microscopic levels. Data were collected by means of a paper and pencil test (N =4 8 ) focusing on the macroscopic and microscopic features of the second law concerned with heat transfer processes. The data analysis was based on a qualitative content analysis where students' responses to the macroscopic- and microscopic-level items were categorized to provide insight into the consistency of the students' ideas; if students relied on the same idea at both levels, they ended up in the same category at both levels, and their use of the second law was consistent. The most essential finding is that a majority of students, 52%-69% depending on the physical system under evaluation, used the second law of thermodynamics consistently at macroscopic and microscopic levels; approximately 40% of the students used it correctly in terms of physics while others relied on erroneous ideas, such as the idea of conserving entropy. The most common inconsistency harbored by 10%-15% of the students (depending on the physical system under evaluation) was students' tendency to consider the number of accessible microstates to remain constant even if the entropy was stated to increase in a similar process; other inconsistencies were only seen in the answers of a few students. In order to address the observed inconsistencies, we would suggest that lecturers should utilize tasks that challenge students to evaluate phenomena at macroscopic and microscopic levels concurrently and tasks that would guide students in their search for contradictions in their thinking.

  9. Mild Social Stress in Mice Produces Opioid-Mediated Analgesia in Visceral but Not Somatic Pain States.

    Science.gov (United States)

    Pitcher, Mark H; Gonzalez-Cano, Rafael; Vincent, Kathleen; Lehmann, Michael; Cobos, Enrique J; Coderre, Terence J; Baeyens, José M; Cervero, Fernando

    2017-06-01

    Visceral pain has a greater emotional component than somatic pain. To determine if the stress-induced analgesic response is differentially expressed in visceral versus somatic pain states, we studied the effects of a mild social stressor in either acute visceral or somatic pain states in mice. We show that the presence of an unfamiliar conspecific mouse (stranger) in an adjacent cubicle of a standard transparent observation box produced elevated plasma corticosterone levels compared with mice tested alone, suggesting that the mere presence of a stranger is stressful. We then observed noxious visceral or somatic stimulation-induced nociceptive behavior in mice tested alone or in mildly stressful conditions (ie, beside an unfamiliar stranger). Compared with mice tested alone, the presence of a stranger produced a dramatic opioid-dependent reduction in pain behavior associated with visceral but not somatic pain. This social stress-induced reduction of visceral pain behavior relied on visual but not auditory/olfactory cues. These findings suggest that visceral pain states may provoke heightened responsiveness to mild stressors, an effect that could interfere with testing outcomes during simultaneous behavioral testing of multiple rodents. In mice, mild social stress due to the presence of an unfamiliar conspecific mouse reduces pain behavior associated with noxious visceral but not somatic stimulation, suggesting that stress responsiveness may be enhanced in visceral pain versus somatic pain states. Published by Elsevier Inc.

  10. Proton irradiation effects on beryllium - A macroscopic assessment

    Science.gov (United States)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  11. Determination of the flow stress of a magnetorheological fluid under three-dimensional stress states by using a combination of extrusion test and FEM simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Peng-yi; Wang, Zhong-jin, E-mail: wangzj@hit.edu.cn

    2016-12-01

    Magnetorheological fluid (MR fluid), a kind of smart material, has been used as a new pressure-carrying medium in magnetorheological pressure forming (MRPF). The mechanical property of MR fluid under the pressure significantly affects the sheet formability. However, there is little knowledge on the deformation behavior of MR fluid under three-dimensional stress states. In this paper, a new procedure via a combination of extrusion test and FEM simulation has been proposed to determine the flow stress of MR fluids. The experimental device for extrusion test of MR fluids was designed. The flow stresses of a MR fluid (MRF-J01T) under four different magnetic fields were determined through the proposed procedure. In addition, the obtained flow stresses were used in the following FEM simulations to verify the accuracy by comparing with the experimental results. The simulation results were in good agreement with the experimental data, which supports the correctness and practicability of the proposed method. - Highlights: • An effective procedure is proposed to determine the flow stress of MR fluids. • The rheological behaviour of a MR fluid during extrusion tests is studied. • Flow stress curves of a MR fluid under different magnetic fields are obtained.

  12. Effects of Pre-Stress State and Propagation Velocity on Dynamic Fault Branching

    Science.gov (United States)

    Kame, N.; Rice, J. R.; Dmowska, R.

    2001-12-01

    Major earthquakes seldom rupture along single planar faults. Instead there exist geometric complexities, including fault bends, branches and stepovers, which affect the rupture process, including nucleation and arrest. Here we consider a mode II rupture which propagates along a planar fault and encounters an intersection with a branching fault that makes an angle with the main fault. Analyses based on elastic stress fields near propagating ruptures suggest that whether a branch path will be followed or not, and whether branching to the extensional or compressional side is favored, depend on both the rupture propagation velocity as the branch is approached and on the pre-stress state before rupture arrives. See Kame and Yamashita (GJI, 139, 345-358, 1999) and Poliakov, Dmowska and Rice (JGR subm. 2001, http://esag.harvard.edu/dmowska/PDR.pdf). The latter predicted that branching to the extensional side would be favored in all pre-stress states except for those in which the direction of maximum pre-compression Smax makes a shallow angle ψ with the fault plane. Angles ψ 45 ° result when the ratio is less than unity. Thus it is anticipated that the most favored side for rupture branching should switch from the extensional to the compressive side as we consider progressively larger σ oxx/σ oyy (which means progressively smaller ψ ). In order to test that and other predictions, we have adapted the elastodynamic boundary integral equation methodology of Kame and Yamashita to 2-dimensional Mode II ruptures along branched fault systems, to allow simulations of rupture in which the failure path is dynamically self-chosen. Failure in the modeling is described by a slip-weakening law for which the peak and residual strength, and strength at any particular amount of slip, is proportional to normal stress (-σ nn). Our current results are preliminary. Nevertheless, by comparing results for σ oxx/σ oyy = 0.8 with those for 1.4, we have established, e.g., that a 15

  13. Effect of Mechanical Stress on Magnetic States and Hysteresis Characteristics of a Two-Phase Nanoparticles System

    Directory of Open Access Journals (Sweden)

    Leonid Lazarevich Afremov

    2013-01-01

    Full Text Available In terms of the two-phase nanoparticles model, the effect of mechanical stress on the magnetic state of both uniaxial and multiaxial heterophase magnetic is investigated. The spectrum of critical fields of reversal of phases' magnetic moments was calculated and phase diagrams were drawn to assess the effect of mechanical stress on the degree of metastability of two-phase nanoparticles' magnetic states. By the example of epitaxial cobalt-coated -Fe2O3 particles, a theoretical analysis of the effect of uniaxial mechanical stress on the magnetization of a system of noninteracting heterophase nanoparticles is investigated. It was shown that tension reduced and compression increased coercive force , while the residual saturation magnetization was not changed under the influence of mechanical stress.

  14. Analysis of stress-strain state on top of a rectangular wedge

    Directory of Open Access Journals (Sweden)

    Frishter Lyudmila Yur'evna

    2014-05-01

    Full Text Available Modeling singular solutions of the elasticity theory problems, which are determined by geometric factor - bird's mouth of the edge, make it necessary to analyze the solutions with some peculiarity, which are obtained experimentally with the help of photoelasticity method. In this article the peculiar stress-strain state is analyzed on the example of the known experimental solutions for a wedge under a concentrated force obtained by M. Frocht. Solution analysis for a wedge with a power-type peculiarity obtained experimentally by photoelasticity method, helps to detach a singular solution field, where fringe contour is not visible. Due to idealization of the boundary shape and loading technique, infinitely large stresses arise, which are obtained as a singular solution of the boundary problem in a planar domain. Comparison of theoretical and experimental solutions obtained for a wedge shows areas of overlap and areas of significant and insignificant differences as a result of the inability to experimentally apply the force to a single point.

  15. The stem cell state in plant development and in response to stress

    Directory of Open Access Journals (Sweden)

    Gideon eGrafi

    2011-10-01

    Full Text Available Stem cells are commonly defined by their developmental capabilities, namely, self-renewal and multitype differentiation, yet the biology of stem cells and their inherent features both in plants and animals are only beginning to be elucidated. In this review article we highlight the stem cell state in plants (with reference to animals and the plastic nature of plant somatic cells (often referred to as totipotency as well as the essence of cellular dedifferentiation. Based on recent published data, we illustrate the picture of stem cells with emphasis on their open chromatin conformation. We discuss the process of dedifferentiation and highlight its transient nature, its distinction from reentry into the cell cycle and its activation following exposure to stress. We also discuss the potential hazard that can be brought about by stress-induced dedifferentiation and its major impact on the genome, which can undergo stochastic, abnormal reorganization leading to genetic variation by means of DNA transposition and/or DNA recombination.

  16. Problematics of stress-strain state research in units of metal structures

    Directory of Open Access Journals (Sweden)

    Morozova Dina Vol'demarovna

    2014-05-01

    Full Text Available The article describes the experimental methods of determining stress-strain state of elements and structures with a brief description of the essence of each method. The authors focus mostly on polarization-optical method for determining stresses in the translucent optical sensing models made of epoxy resins. Physical component of the method is described in the article and a simple diagram of a circular polariscope is presented, as well as an example of the resulting interference pattern in illuminated monochromatic light. A polariscope, in its most general definition, consists of two polarizers. The polarizers sandwich a material or object of interest, and allows one to view the changes of the polarity of light passing through the material or object. Since we are unable to perceive the polarity of light with the naked eye, we are forced to use polariscopes to view the changes in polarity caused by the temporary birefringence of our photoelastic materials. A polariscope is constructed of two polarizers, each set perpendicular to the path of light transmitted through the setup. The first polarizer is called the "polarizer", and the second polarizer is called the "analyzer". The method how the polarizer works is quite simple: unpolarized light enters the polariscope through the polarizer, which allows through only the light of its orientation. This light then passes through the material under observation, and experiences some change in polarity. Finally, this light reaches the analyzer, which, like the polarizer, only lets the light of its orientation through.

  17. Finite Element Method Study on Stress State in Soil Induced by Agricultural Traffic

    Directory of Open Access Journals (Sweden)

    Adrian Molnar-Irimie

    2016-11-01

    Full Text Available In general, when a tyre is running on a deformable soil, the soil compaction will occur not only on surface layers, but also on soil profile, in deeper layers. This leads to a series of negative effects not only on physical and mechanical properties of soil, but also influences the crops growth and the crop yield. For these reasons, currently are needed solutions to reduce soil compaction, caused mainly by agricultural implements passing on the soil surface in order to aply the specific crop production technologies. From our simulation we can draw the following conclusions: the soil stresses decreased with depth; the soil displacements magnitude increased with soil water content due to lower friction forces between soil particles (water acts like a lubricant between soil particles; decreasing rate for soil displacement is influenced by load magnitude and tyre inflation pressure; the soil particles moved in vertical plain from the top to the bottom, but also in horizontal direction, from the center to the edge in cross section and in longitudinal direction; the dimensions of the geometric shape of the mentioned soil volume is influenced by load and tyre inflation pressure. In this paper the agricultural traffic and its influence on stress state in soil, it was used a software application based on Finite Element Method, that has been proved to be a useful tool for soil compaction assessment in order to find the right decisions for a proper field traffic management.

  18. X-ray elastic constant determination and residual stress of two phase TiAl-based intermetallic alloy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To evaluate the residual stress in TiAl-based alloys by X-ray diffraction, X-ray elastic constants (REC) of a γ-TiAl alloy were determined. From these results, the stress state of a given phase in a duplex TiAl-based alloy under a uniaxial tensile loading has been characterized by X-ray diffraction. The results show that the X-ray elastic constants and the microscopic stresses of the given phase are different from the apparent elastic constants and the macroscopic stresses of the alloy. The reason of the different distribution of the alloy was also discussed.

  19. TRIP钢单双向应力状态下的材料行为%Investigation on the material behaviors of TRIP steels under uniaxial and biaxial stress state

    Institute of Scientific and Technical Information of China (English)

    林海; 李先超; 马金龙; 李洪洋

    2013-01-01

    TRIP钢中残余奥氏体的马氏体相变是TRIP钢相变增塑的重要基础,与材料的宏观应力应变状态密切相关.为探索这一微观材料行为与宏观变形条件间的对应关系,该文对低碳Si-MnTRIP600钢杯突变形顶部与过渡区的材料行为进行研究.研究结果表明,杯突过程中变形区顶部为等双拉平面应力状态,过渡区为单拉平面应力状态;TRIP钢的马氏体相变对应变条件非常敏感,随变形量的增加,无论变形区顶部还是过渡区的残余奥氏体体积分数,均呈近线性降低趋势,但随应变的增加则呈逐渐饱和趋势;与底部相比,顶部等双拉平面应力状态更利于残余奥氏体的马氏体相变,在近相同应变条件下,等双拉平面应力状态下的残余奥氏体含量明显低于单拉平面应力状态.Si-Mn TRIP600钢在6%应变条件下,等双拉平面应力状态与单拉平面应力状态的残余奥氏体含量相差约7%.%The martensitic transformation of retained austenite in TRIP steels is the fundamental of TRIP steels phase transformation plasticity,which depend on the macroscopic stress and strain condition greatly.To investigate the relationship between microscopic material behaviors and macroscopic deformation conditions,low-carbon Si-Mn TRIP600 steel material behaviors of top and transitional section in cupping test was studied.It is shown that during cupping test,the stress state of the top section of the deformation area is equal biaxial stretching plane stress,meanwhile,the transitional section is uniaxial stretching plane stress.The martensitic transformation in TRIP steels was sensitive to strain condition,the retained austenite volume fraction in both top and transitional section shows a nearly linear decrease trend with the increasing of strain.But the trend of gradual saturation can also be found with the increasing of strain.Compared with the bottom,the equal biaxial stretching plane stress condition in the top

  20. Seismicity, state of stress and induced seismicity in the molasse basin and Jura (N-Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Deichmann, N. [Schweizerischer Erdbebendienst, ETH Zuerich, Zuerich (Switzerland); Burlini, L. [Institut of Geology, ETH Zuerich, Zuerich (Switzerland)

    2010-07-01

    This illustrated report for the Swiss Federal Office of Energy (SFOE) is one of a series of appendices dealing with the potential for geological sequestration of CO{sub 2} in Switzerland. This report takes a look at the seismicity, state of stress and induced seismicity in the molasse basin and Jura Mountains in northern Switzerland. Data collected since 1983 by the Swiss Earthquake Service and the National Cooperative for the Disposal of Radioactive Wastes NAGRA on the tectonics and seismic properties of North-western Switzerland is noted. The results are illustrated with a number of maps and graphical representations and are discussed in detail. Cases of induced seismicity as resulting from both natural and man-made causes are examined.

  1. The effect of multiaxial stress state on creep behavior and fracture mechanism of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yuan; Xu, Hong, E-mail: xuhong@ncepu.edu.cn; Ni, Yongzhong; Lan, Xiang; Li, Hongyuan

    2015-06-11

    The creep experiments on plain and double U-typed notched specimens were conducted on P92 steel at 650 °C. The notch strengthening effect was found in the notched specimens. Fracture appearance observed by scanning electron microscopy revealed that dimpled fracture for relatively blunt notched specimen, and dimpled fracture doubled with intergranular brittle fracture for relatively sharp notched specimen, which meant that fracture mechanism of P92 steel altered due to the presence of the notch. Meanwhile, based on Norton–Bailey and Kachanov–Robotnov constitutive models, a modified model was proposed. Finite element simulations were carried out to investigate the effect of multiaxial stress state on the creep behavior, fracture mechanism and damage evolvement of P92 steel. The simulation results agreed well with the fracture behaviors observed experimentally.

  2. Remaining stress-state and strain-energy in tempered glass fragments

    DEFF Research Database (Denmark)

    Nielsen, Jens Henrik

    2016-01-01

    , nanoscale materials, composites, glass and fundamentals, Springer, Houston, 2005) have proposed models for the fragments size based on an energy approach. Often an estimate of the remaining strain energy in the fragment is used; which leaves the questions: (a) what parameters are important for the remaining......When tempered glass breaks, it shatters into relatively small pieces depending on the residual stress state in the glass. This has been known for centuries and is currently used in standards for classifying whether a piece of glass is tempered or not. However, the process of fragmentation...... is complex and only a few, relatively simple, models have been suggested for predicting the fragment size. The full theoretical explanation is still to be found and this work aims at providing another brick to the puzzle. The strain-energy present in tempered glass is obviously contributing...

  3. STRESS-STRAIN STATE IN EMBEDMENT OF REINFORCEMENT IN CASE OF REPEATED LOADINGS

    Directory of Open Access Journals (Sweden)

    Mirsayapov Ilshat Talgatovich

    2016-05-01

    Full Text Available The author offer transforming the diagram of ideal elastic-plastic deformations for the description of the stress-strain state of embedment of reinforcement behind a critical inclined crack at repeatedly repeating loadings. The endurance limit of the adhesion between concrete and reinforcement and its corresponding displacements in case of repeated loadings are accepted as the main indicators. This adhesion law is the most appropriate for the description of physical and mechanical phenomena in the contact zone in case of cyclic loading, because it simply and reliably describes the adhesion mechanism and the nature of the deformation, and greatly simplifies the endurance calculations compared to the standard adhesion law. On the basis of this diagram the author obtained the equations for the description of the distribution of pressures and displacements after cyclic loading with account for the development of deformations of cyclic creep of the concrete under the studs of reinforcement.

  4. A STUDY ON WORK STRESS AMONG BANK EMPLOYEES IN STATE BANK OF INDIA WITH REFERENCE TO COIMBATORE

    OpenAIRE

    Suresh, K.; Dr. M. Hema Nalini

    2016-01-01

    Stress refers to the strain appear the conflict between our external environment and us, leading to emotional and physical pressure. Everyone in their working atmosphere is exposed to tension and anxiety as they get through the duties assigned to them. This paper seeks to determine the impact of various occupational work stress of the State Bank of India employees of Coimbatore district with a sample size of 100 employees by using the convenient sampling method. Result of the studies are anal...

  5. Stress and food deprivation: linking physiological state to migration success in a teleost fish.

    Science.gov (United States)

    Midwood, Jonathan D; Larsen, Martin H; Aarestrup, Kim; Cooke, Steven J

    2016-12-01

    Food deprivation is a naturally occurring stressor that is thought to influence the ultimate life-history strategy of individuals. Little is known about how food deprivation interacts with other stressors to influence migration success. European populations of brown trout (Salmo trutta) exhibit partial migration, whereby a portion of the population smoltifies and migrates to the ocean, and the rest remain in their natal stream. This distinct, natural dichotomy of life-history strategies provides an excellent opportunity to explore the roles of energetic state (as affected by food deprivation) and activation of the glucocorticoid stress response in determining life-history strategy and survival of a migratory species. Using an experimental approach, the relative influences of short-term food deprivation and experimental cortisol elevation (i.e. intra-coelomic injection of cortisol suspended in cocoa butter) on migratory status, survival and growth of juvenile brown trout relative to a control were evaluated. Fewer fish migrated in both the food deprivation and cortisol treatments; however, migration of fish in cortisol and control treatments occurred at the same time while that of fish in the food deprivation treatment was delayed for approximately 1 week. A significantly greater proportion of trout in the food deprivation treatment remained in their natal stream, but unlike the cortisol treatment, there were no long-term negative effects of food deprivation on growth, relative to the control. Overall survival rates were comparable between the food deprivation and control treatments, but significantly lower for fish in the cortisol treatment. Food availability and individual energetic state appear to dictate the future life-history strategy (migrate or remain resident) of juvenile salmonids while experimental elevation of the stress hormone cortisol causes impaired growth and reduced survival of both resident and migratory individuals. © 2016. Published by The

  6. Mechanical responses and stress fluctuations of a supercooled liquid in a sheared non-equilibrium state.

    Science.gov (United States)

    Mizuno, H; Yamamoto, R

    2012-04-01

    A steady shear flow can drive supercooled liquids into a non-equilibrium state. Using molecular dynamics simulations under steady shear flow superimposed with oscillatory shear strain for a probe, non-equilibrium mechanical responses are studied for a model supercooled liquid composed of binary soft spheres. We found that even in the strongly sheared situation, the supercooled liquid exhibits surprisingly isotropic responses to oscillating shear strains applied in three different components of the strain tensor. Based on this isotropic feature, we successfully constructed a simple two-mode Maxwell model that can capture the key features of the storage and loss moduli, even for highly non-equilibrium state. Furthermore, we examined the correlation functions of the shear stress fluctuations, which also exhibit isotropic relaxation behaviors in the sheared non-equilibrium situation. In contrast to the isotropic features, the supercooled liquid additionally demonstrates anisotropies in both its responses and its correlations to the shear stress fluctuations. Using the constitutive equation (a two-mode Maxwell model), we demonstrated that the anisotropic responses are caused by the coupling between the oscillating strain and the driving shear flow. Due to these anisotropic responses and fluctuations, the violation of the fluctuation-dissipation theorem (FDT) is distinct for different components. We measured the magnitude of this violation in terms of the effective temperature. It was demonstrated that the effective temperature is notably different between different components, which indicates that a simple scalar mapping, such as the concept of an effective temperature, oversimplifies the true nature of supercooled liquids under shear flow. An understanding of the mechanism of isotropies and anisotropies in the responses and fluctuations will lead to a better appreciation of these violations of the FDT, as well as certain consequent modifications to the concept of an

  7. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions

    DEFF Research Database (Denmark)

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit

    2010-01-01

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form...... degradation products were observed under various stress conditions. The structures of all of them were elucidated using LC-MS/TOF and LC-MS(n) studies. While one matched the known hydrolytic decomposition product of the drug in solution, seven others were new. The postulated degradation pathway and mechanism...

  8. Response of the electron work function to deformation and yielding behavior of copper under different stress states

    Energy Technology Data Exchange (ETDEWEB)

    Li Wen [Dept. of Mechanical Engineering, Changchun University (China); Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada); Wang, Y.; Li, D.Y. [Dept. of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta (Canada)

    2004-07-01

    The high sensitivity of the electron work function (EWF) to surface condition has attracted increasing interests from materials scientists and engineers. In this study, using a scanning Kelvin probe changes in the EWF of copper under various loading condition and stress states were investigated. Experimental results showed that the tensile strain decreased the EWF in the elastic deformation range, while compressive strain increased the EWF. However, the EWF in the plastic deformation range always decreased with plastic strain no matter it was tensile or compressive. As shown by the simultaneous measurements of the EWF under conditions of plane stress states, yielding point can be related to the critical stress for the transition of the EWF from smooth variation to steep variation, which strongly depended on stress states. It was therefore demonstrated that Kelvin probing technique could be used for determining the onset of yielding since the EWF was a parameter sensitive to yielding process. The Kelvin probing has appeared to be a very promising method for characterizing the yielding behaviors under complex stress states for both homogeneous and inhomogeneous materials. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Stress biomarkers as predictors of transition to psychosis in at-risk mental states: roles for cortisol, prolactin and albumin.

    Science.gov (United States)

    Labad, Javier; Stojanovic-Pérez, Alexander; Montalvo, Itziar; Solé, Montse; Cabezas, Ángel; Ortega, Laura; Moreno, Irene; Vilella, Elisabet; Martorell, Lourdes; Reynolds, Rebecca M; Gutiérrez-Zotes, Alfonso

    2015-01-01

    Stress and inflammation are thought to play a role in the risk of developing a psychotic disorder. We aimed to identify stress-related biomarkers for psychosis transition in help-seeking individuals with an at-risk mental state (ARMS). We studied 39 ARMS subjects who were attending an Early Intervention Service. We included a control group of 44 healthy subjects (HS) matched by sex and age. Stressful life events and perceived stress were assessed. Stress-related biomarkers were determined in serum (cortisol, prolactin, C-reactive protein and albumin), plasma (fibrinogen) or saliva (morning cortisol, cortisol awakening response). All ARMS were followed-up at our Unit for at least one year. We divided the ARMS group into two subgroups based on the development of a psychotic disorder (ARMS-P, N = 10) or not (ARMS-NP, N = 29). ARMS-P reported more stressful life events and perceived stress than HS and ARMS-NP groups. In relation to baseline stress biomarkers, ARMS-P subjects had increased prolactin and lower albumin levels in serum, when compared to ARMS-NP and HS groups. These results did not change when repeated in a subsample of antipsychotic-naïve ARMS subjects. We also found significant differences between groups in the cortisol secretion after awakening. In a multinomial logistic regression adjusting for age, sex and life stress, prolactin was a predictor of psychosis transition whereas albumin levels had a protective effect. Our study underscores the role of stress and stress-related biomarkers (cortisol awakening response, prolactin and albumin) in the pathogenesis of psychosis.

  10. Macroscopic model for biological fixation and its uncover-ing idea in Chinese Mongolian traditional osteopathy

    Institute of Scientific and Technical Information of China (English)

    ZHAO Namula; LI Xue-en; WANG Mei; HU Da-lai

    2009-01-01

    Splintage external fixation in Chinese Mongolian oste-opathy is a biological macroscopic model. In this model, the ideas of self-life "unity of mind and body" and vital natural "correspondence of nature and human" combine the physi-ological and psychological self-fixation with supplementary external fixation of fracture using small splints. This model implies macroscopic ideas of uncovering fixation and healing: structural stability integrating geometrical "dy-namic" stability with mechanical "dynamic" equilibrium and the stability of state integrating statics with dynamics, and osteoblasts with osteoclasts, and psychological stability in-tegrating closed and open systems of human and nature. These ideas indicate a trend of development in modem osteopathy.

  11. Thermal extraction: enhancing thermal emission of finite size macroscopic blackbody to far-field vacuum

    CERN Document Server

    Yu, Zongfu; Zhang, Torbjorn Skauli Gang; Wang, Hailiang; Fan, Shanhui

    2012-01-01

    The understanding of far-field thermal radiation had directly led to the discovery of quantum mechanics a century ago, and is of great current practical importance for applications in energy conversions, radiative cooling, and thermal control. It is commonly assumed that for any macroscopic thermal emitter, its maximal emitted power within any given frequency range cannot exceed that of a blackbody with the same surface area. In contrast to such conventional wisdom, here we propose, and experimentally demonstrate, that the emitted power from a finite size macroscopic blackbody to far field vacuum can be significantly enhanced, within the constraint of the second law of thermodynamics. To achieve such an enhancement, the thermal body needs to have internal electromagnetic density of states (DOS) greater than that of vacuum, and one needs to provide a thermal extraction mechanism to enable the contributions of all internal modes to far field radiation.

  12. Investigating macroscopic quantum superpositions and the quantum-to-classical transition by optical parametric amplification

    CERN Document Server

    De Martini, Francesco

    2012-01-01

    The present work reports on an extended research endeavor focused on the theoretical and experimental realization of a macroscopic quantum superposition (MQS) made up with photons. As it is well known, this intriguing, fundamental quantum condition is at the core of a famous argument conceived by Erwin Schroedinger, back in 1935. The main experimental challenge to the actual realization of this object resides generally on the unavoidable and uncontrolled interactions with the environment, i.e. the decoherence leading to the cancellation of any evidence of the quantum features associated with the macroscopic system. The present scheme is based on a nonlinear process, the "quantum injected optical parametric amplification", that maps by a linearized cloning process the quantum coherence of a single - particle state, i.e. a Micro - qubit, into a Macro - qubit, consisting in a large number M of photons in quantum superposition. Since the adopted scheme was found resilient to decoherence, the MQS\\ demonstration wa...

  13. Modeling the Effects of a Normal-Stress-Dependent State Variable, Within the Rate- and State-Dependent Friction Framework, at Stepovers and Dip-Slip Faults

    Science.gov (United States)

    Ryan, Kenny J.; Oglesby, David D.

    2017-03-01

    The development of the rate- and state-dependent friction framework (Dieterich Appl Geophys 116:790-806, 1978; J Geophys Res 84, 2161-2168, 1979; Ruina Friction laws and instabilities: a quasistatic analysis of some dry friction behavior, Ph.D. Thesis, Brown Univ., Providence, R.I., 1980; J Geophys Res 88:10359-10370, 1983) includes the dependence of friction coefficient on normal stress (Linker and Dieterich J Geophys Res 97:4923-4940, 1992); however, a direct dependence of the friction law on time-varying normal stress in dynamic stepover and dip-slip fault models has not yet been extensively explored. Using rate- and state-dependent friction laws and a 2-D dynamic finite element code (Barall J Int 178, 845-859, 2009), we investigate the effect of the Linker-Dieterich dependence of state variable on normal stress at stepovers and dip-slip faults, where normal stress should not be constant with time (e.g., Harris and Day J Geophys Res 98:4461-4472, 1993; Nielsen Geophys Res Lett 25:125-128, 1998). Specifically, we use the relation d ψ/d t = -( α/ σ)(d σ/d t) from Linker and Dieterich (J Geophys Res 97:4923-4940, 1992), in which a change in normal stress leads to a change in state variable of the opposite sign. We investigate a range of values for alpha, which scales the impact of the normal stress change on state, from 0 to 0.5 (laboratory values range from 0.2 to 0.56). For stepovers, we find that adding normal-stress dependence to the state variable delays or stops re-nucleation on the secondary fault segment when compared to normal-stress-independent state evolution. This inhibition of jumping rupture is due to the fact that re-nucleation along the secondary segment occurs in areas of decreased normal stress in both compressional and dilational stepovers. However, the magnitude of such an effect differs between dilational and compressional systems. Additionally, it is well known that the asymmetric geometry of reverse and normal faults can lead to greater

  14. Altered resting-state amygdala functional connectivity in men with posttraumatic stress disorder

    Science.gov (United States)

    Sripada, Rebecca K.; King, Anthony P.; Garfinkel, Sarah N.; Wang, Xin; Sripada, Chandra S.; Welsh, Robert C.; Liberzon, Israel

    2012-01-01

    Background Converging neuroimaging research suggests altered emotion neurocircuitry in individuals with posttraumatic stress disorder (PTSD). Emotion activation studies in these individuals have shown hyperactivation in emotion-related regions, including the amygdala and insula, and hypoactivation in emotion-regulation regions, including the medial prefrontal cortex (mPFC) and anterior cingulate cortex (ACC). However, few studies have examined patterns of connectivity at rest in individuals with PTSD, a potentially powerful method for illuminating brain network structure. Methods Using the amygdala as a seed region, we measured resting-state brain connectivity using 3 T functional magnetic resonance imaging in returning male veterans with PTSD and combat controls without PTSD. Results Fifteen veterans with PTSD and 14 combat controls enrolled in our study. Compared with controls, veterans with PTSD showed greater positive connectivity between the amygdala and insula, reduced positive connectivity between the amygdala and hippocampus, and reduced anticorrelation between the amygdala and dorsal ACC and rostral ACC. Limitations Only male veterans with combat exposure were tested, thus our findings cannot be generalized to women or to individuals with non–combat related PTSD. Conclusion These results demonstrate that studies of functional connectivity during resting state can discern aberrant patterns of coupling within emotion circuits and suggest a possible brain basis for emotion-processing and emotion-regulation deficits in individuals with PTSD. PMID:22313617

  15. Geodynamics and Stress State of the Earth's Crust in the Greater and Lesser Caucasus (Azerbaijan) collision region

    Science.gov (United States)

    Babayev, Gulam; Akhmedova, Elnare; Babayev, Elvin

    2017-04-01

    The current study researches the present-day stress state of the Earth's crust within the territory of Azerbaijan by using the database of the international research project "World Stress Map" (WSM). The present stress state was also assessed by exploring the effects of the contemporary topographic properties of Caucasus in three-dimensional frame. Aiming to explore the relative roles of regional tectonic conditions in the definition of stress state of Greater and Lesser Caucasus, stress distribution model was developed by the earthquake data (1998-2016) and by the standard techniques of stress field calculation. The results show that the stress orientations are influenced also by the combination of topography and crust thickness distribution even at very large depth. Stress data and earthquake focal mechanisms indicate that the stress state of the Earth's crust of the Greater and Lesser Caucasus is characterized by the compression predominantly oriented across the regional strike. The model results suggest that the Lesser Caucasus and Kur depression are rotating coherently, with little or no internal deformation in a counter-clockwise rotation located near the north-eastern corner of the Black Sea. Orientation of stress axes well consistent with earthquake focal mechanisms revealed that within Upper and Lower Crusts, earthquakes are predominantly thrust-faulting with a number of normal-faulting and some strike-slip faulting. The map of the focal mechanisms and stress distribution suggests that the research area is characterized by the thrust of horizontal compression trending north-north-east in the western part of the southern Caucasus. In the western part of Azerbaijan, the compression takes place between the Main Caucasus Fault and the Kur depression, which strikes south along the northern margin of the mountain range. In addition, a clear transition from the left-lateral strike slip to the predominantly right-lateral strike slip is observed in the southern of

  16. Investigation of the stress state on the fault planes and the magnitude of the seismic events occurred from geothermal reservoirs

    Science.gov (United States)

    Mukuhira, Y.; Asanuma, H.; Häring, M. O.; Saeki, K.

    2013-12-01

    stress. Fig. 1: (a) Mohr stress circle at the depth of the main feed point at Basel. Circles show stress state on the fault planes of which orientation was estimated by SED. (b) A relation between the shear stress working on the fault planes and the moment magnitude. Orange squares: events of which FPSs were estimated by SED. Blue dots: smaller events of which FPSs were inferred by clustering analysis. (c) Rose diagram of the azimuth of identified fault planes for theh larger events. Stress state at the three fields

  17. Heat Stress Illness Emergency Department Visits in National Environmental Public Health Tracking States, 2005-2010.

    Science.gov (United States)

    Fechter-Leggett, Ethan D; Vaidyanathan, Ambarish; Choudhary, Ekta

    2016-02-01

    Variability of heat stress illness (HSI) by urbanicity and climate region has rarely been considered in previous HSI studies. We investigated temporal and geographic trends in HSI emergency department (ED) visits in CDC Environmental Public Health Tracking Network (Tracking) states for 2005-2010. We obtained county-level HSI ED visit data for 14 Tracking states. We used the National Center for Health Statistics Urban-Rural Classification Scheme to categorize counties by urbanicity as (1) large central metropolitan (LCM), (2) large fringe metropolitan, (3) small-medium metropolitan, or (4) nonmetropolitan (NM). We also assigned counties to one of six US climate regions. Negative binomial regression was used to examine trends in HSI ED visits over time across all counties and by urbanicity for each climate region, adjusting for pertinent variables. During 2005-2010, there were 98,462 HSI ED visits in the 14 states. ED visits for HSI decreased 3.0% (p < 0.01) per year. Age-adjusted incidence rates of HSI ED visits increased from most urban to most rural. Overall, ED visits were significantly higher for NM areas (IRR = 1.41, p < 0.01) than for LCM areas. The same pattern was observed in all six climate regions; compared with LCM, NM areas had from 14 to 90% more ED visits for HSI. These findings of significantly increased HSI ED visit rates in more rural settings suggest a need to consider HSI ED visit variability by county urbanicity and climate region when designing and implementing local HSI preventive measures and interventions.

  18. Heat Stress Illness Emergency Department Visits in National Environmental Public Health Tracking States, 2005–2010

    Science.gov (United States)

    Fechter-Leggett, Ethan D.; Vaidyanathan, Ambarish; Choudhary, Ekta

    2015-01-01

    Variability of heat stress illness (HSI) by urbanicity and climate region has rarely been considered in previous HSI studies. We investigated temporal and geographic trends in HSI emergency department (ED) visits in CDC Environmental Public Health Tracking Network (Tracking) states for 2005–2010. We obtained county-level HSI ED visit data for 14 Tracking states. We used the National Center for Health Statistics Urban-Rural Classification Scheme to categorize counties by urbanicity as 1) large central metropolitan (LCM), 2) large fringe metropolitan (LFM), 3) small–medium metropolitan (SMM), or 4) nonmetropolitan (NM). We also assigned counties to one of six US climate regions. Negative binomial regression was used to examine trends in HSI ED visits over time across all counties and by urbanicity for each climate region, adjusting for pertinent variables. During 2005–2010, there were 98,462 HSI ED visits in the 14 states. ED visits for HSI decreased 3.0 % (p < 0.01) per year. Age-adjusted incidence rates of HSI ED visits increased from most urban to most rural. Overall, ED visits were significantly higher for NM areas (IRR = 1.41, p < 0.01) than for LCM areas. The same pattern was observed in all six climate regions; compared with LCM, NM areas had from 14 % to 90 % more ED visits for HSI. These findings of significantly increased HSI ED visit rates in more rural settings suggest a need to consider HSI ED visit variability by county urbanicity and climate region when designing and implementing local HSI preventive measures and interventions. PMID:26205070

  19. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    Science.gov (United States)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  20. Stressful life events are associated with insulin resistance among Chinese immigrant women in the United States

    Directory of Open Access Journals (Sweden)

    Carolyn Y. Fang

    2015-01-01

    Conclusions: This is one of the first studies to examine the associations between psychosocial stress and insulin resistance in Chinese immigrant women. These findings contribute to a growing body of literature on stress and diabetes risk in an immigrant population.

  1. Functional State of Rat’s Erythrocytes Under Different Stress Conditions

    Directory of Open Access Journals (Sweden)

    A.A. Martusevich

    2016-08-01

    Full Text Available Background: In our early publications was shown that electrophorhetic motility of erythrocytes (EPME is a high effective criteria of adaptation response. This correlation is based on parallel development of adaptation syndrome and activation of the main organism regulatory systems, such as sympatoadrenalic and hypotalamo-hypophosial-adrenal ones. Objective: study of the influence of physical exercises and adrenaline injections on electrophorhetic motility, membrahes phospholipids spectrum and oxidative metabolism of the rats’ erythrocytes. Methods: Rats were divided into three equal groups. First group of animals was control (n=10; without any manipulations. Rats of second group were subjected to physical load in the form of a sailing duration of 15 minutes with a cargo amounting to 10% of animal body weight (water temperature – 26-280C. Rats of third group were intraperitoneally injected with adrenaline hydrochloride (0.1 mg/kg. Blood sampling was made from the sublingual vein in 15, 30, 60, 120 minutes and 24 hours after exposure. We estimated the dynamics of the electrophorhetic motility of erythrocytes (EPME, the phospholipid spectrum of erythrocytes membranes, the concentration of malonic dialdehyde (MDA and the state of the glutathione system. Results and conclusions: The study suggests that red blood cell as a biological system is capable for realization of stress response may develop a special “alarm reaction” after action of the stress agent. This response initiates activation of free radical processes and phospholipids profile in erythrocyte membranes with reducing of its electronegativity. This stage enhances the activity of the antioxidant system, is limiting the development of lipid peroxidation processes, and leads to the development of "adaptation stage" of the cellular system, coupled with the restoration of the electronegativity of the membrane and the mobilization of reserves of low molecular antioxidants, particularly

  2. Stress Coping Levels and Mental States of Police Vocational School of Higher Education Students

    Directory of Open Access Journals (Sweden)

    Arzu Yildirim

    2011-06-01

    Full Text Available SUMMARY AIM: This study was planned and carried out with the objective of determining stress coping levels and mental state of students attending Police Vocational Schools of Higher Education, in addition to factors effecting these. MATERIAL and METHOD: This desciptive and cross-sectional study consisted of 300 male students enrolled in the 2005-2006 academic year, at Police Vocational School of Higher Education, located in central Erzincan, Turkey. In this study, instead of random sampling, 281 (93.7% students who were present at the school at the time of the study and accepted to partipate in it were included. Data for this study was collected using a desciptive form created by the researchers, Rosenbaum’s Learned Resourcefulness Scale (RLRS and The Symptom Check List-90-R (SCL-90-R. During the data analysis, frequency distributions, Mann-Whitney U, Kruskal-Wallis and analysis of variance (one-way ANOVA were used; and for analysis of independent groups, t-test was used. RESULTS: Among the students, it was determined that 54.8% were 1. grade, 90.7% had their parents living together, 43.5% had a father and 60.5% had a mother who graduated from elementary school, fathers of 23.5% of students were retired, 93.6% of them had mothers who were home makers. In addition, it was found out that 78.6% of students chose their profession willingly, the average family income of 71.5% of students were at medium levels, 82.9% always believed in themselves and 63.3% of students did not smoke. Based on the results obtained, it was observed that second grade students, those with mothers who are highly educated and those who trusted themselved all the time had significantly high stress coping levels; students who chose their own profession, believed in themselves and did not smoke had significantly low levels of mental symptom indications. CONCLUSION: In this study, the students were determined to posess averge levels of stress coping skills and they were found

  3. Nuclear magnetic resonance studies of macroscopic morphology and dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barrall, Geoffrey Alden [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-09-01

    Nuclear magnetic resonance techniques are traditionally used to study molecular level structure and dynamics with a noted exception in medically applied NMR imaging (MRI). In this work, new experimental methods and theory are presented relevant to the study of macroscopic morphology and dynamics using NMR field gradient techniques and solid state two-dimensional exchange NMR. The goal in this work is not to take some particular system and study it in great detail, rather it is to show the utility of a number of new and novel techniques using ideal systems primarily as a proof of principle. By taking advantage of the analogy between NMR imaging and diffraction, one may simplify the experiments necessary for characterizing the statistical properties of the sample morphology. For a sample composed of many small features, e.g. a porous medium, the NMR diffraction techniques take advantage of both the narrow spatial range and spatial isotropy of the sample`s density autocorrelation function to obtain high resolution structural information in considerably less time than that required by conventional NMR imaging approaches. The time savings of the technique indicates that NMR diffraction is capable of finer spatial resolution than conventional NMR imaging techniques. Radio frequency NMR imaging with a coaxial resonator represents the first use of cylindrically symmetric field gradients in imaging. The apparatus as built has achieved resolution at the micron level for water samples, and has the potential to be very useful in the imaging of circularly symmetric systems. The study of displacement probability densities in flow through a random porous medium has revealed the presence of features related to the interconnectedness of the void volumes. The pulsed gradient techniques used have proven successful at measuring flow properties for time and length scales considerably shorter than those studied by more conventional techniques.

  4. Interrogating surface state of isolated and agglomerated PbS quantum dots with solvent-induced stress

    Science.gov (United States)

    Sher, Pin-Hao; Wang, Juen-Kai

    2017-04-01

    Applications of quantum dots (QDs) are often obstructed by the associated surface electronic states that quench photoluminescence (PL) and hinder charge transport. Preventing this is still largely being stymied owing to the lack of means to regulate their presence. Dispersing PbS QDs in toluene, we show that varying the solvent temperature offers a way of modulating their surface electronic state. A comprehensive energy-transfer model explains all the anomalous temperature-dependent behavior of the absorption and PL, explicitly revealing the PL quenching dynamics of isolated QDs due to the induced surface state by imposing solvent stress on their surface ligands. This study demonstrates that the local stress induced by a solvent can serve as a ‘switch’ for the surface electronic states of QDs, which is enabled by the well-studied thermo-physical properties of a liquid solvent.

  5. Wearable physiological sensors reflect mental stress state in office-like situations

    NARCIS (Netherlands)

    Wijsman, Jacqueline; Grundlehner, Bernard; Liu, Hao; Penders, Julien; Hermens, Hermie

    2013-01-01

    Timely mental stress detection can help to prevent stress-related health problems. The aim of this study was to identify those physiological signals and features suitable for detecting mental stress in office-like situations. Electrocardiogram (ECG), respiration, skin conductance and surface electro

  6. Perceived Support as a Predictor of Acculturative Stress among International Students in the United States

    Science.gov (United States)

    Bai, Jieru

    2016-01-01

    A quantitative study was conducted to measure the acculturative stress of international students and investigate the predictors of acculturative stress. A total of 186 students participated in the survey. Results showed that 22.4% of the students in this study exceeded the normal stress level and might need counseling or psychological…

  7. Wearable physiological sensors reflect mental stress state in office-like situations

    NARCIS (Netherlands)

    Wijsman, J.L.P; Grundlehner, Bernard; Liu, Hao; Penders, Julien; Hermens, Hermanus J.

    Timely mental stress detection can help to prevent stress-related health problems. The aim of this study was to identify those physiological signals and features suitable for detecting mental stress in office-like situations. Electrocardiogram (ECG), respiration, skin conductance and surface

  8. Methods and results of investigation of the stressed state of rock masses and the development of effective means of controlling mine pressure during underground excavation of ore

    Energy Technology Data Exchange (ETDEWEB)

    Aitmatov, I.T.; Akhmatov, V.I.; Borshch-Komponiets, V.I.; Vlokh, N.P.; Egorov, P.V.; Kuznetsov, S.V.; Kurlenya, M.V.; Leont' ev, A.V.; Markov, G.A.; Murashev, V.I.

    1988-05-01

    Experimental and theoretical work conducted in the Soviet Union in determining the stressed state of rock masses and developing underground strata control measures are reviewed. Methods of determining stresses in a rock mass were classified into two groups: mechanical and geophysical. A geodynamic model of the stressed state of the upper layers of the earth's crust was developed based on direct measurements in shafts using methods and apparatus developed in the USSR. Fundamental laws governing the initial stressed state of the earth's crust show that within the limits of a geologically homogeneous block, gravitational and tectonic components of the overall stress field are present with gradients of the stress field and its random components. A study was made of the stress-strain state of chamber roofs; the results made it possible to substantiate the limiting spans of fissured roofs in cleaned chambers.

  9. The quantum interaction of macroscopic objects and gravitons

    Science.gov (United States)

    Piran, Tsvi

    2016-09-01

    Copious production of gravitational radiation requires a compact source that moves relativistically. Such sources are rare and are found only in extreme cases such as the formation of a black hole in either via a gravitational collapse or via a merger. Noncompact, nonrelativistic objects emit gravitational radiation, however, this emission is extremely weak due to very large value of the Planck energy. The quantum nature of gravitons, namely the fact that a single graviton carries energy of order ℏω implies that macroscopic objects whose kinetic energy is less than the Planck energy emit gravitons quantum mechanically, emitting a single graviton at a time. This is a unique situation in which a macroscopic object behaves quantum mechanically. While it is impossible to check experimentally this quantum gravitational effect, it might be possible to carry out analogous electromagnetic experiments that will shed light on this macroscopic quantum mechanical behavior.

  10. Broadband Macroscopic Cortical Oscillations Emerge from Intrinsic Neuronal Response Failures

    Directory of Open Access Journals (Sweden)

    Amir eGoldental

    2015-10-01

    Full Text Available Broadband spontaneous macroscopic neural oscillations are rhythmic cortical firing which was extensively examined during the last century, however, their possible origination is still controversial. In this work we show how macroscopic oscillations emerge in solely excitatory random networks and without topological constraints. We experimentally and theoretically show that these oscillations stem from the counterintuitive underlying mechanism - the intrinsic stochastic neuronal response failures. These neuronal response failures, which are characterized by short-term memory, lead to cooperation among neurons, resulting in sub- or several- Hertz macroscopic oscillations which coexist with high frequency gamma oscillations. A quantitative interplay between the statistical network properties and the emerging oscillations is supported by simulations of large networks based on single-neuron in-vitro experiments and a Langevin equation describing the network dynamics. Results call for the examination of these oscillations in the presence of inhibition and external drives.

  11. Reconciling power laws in microscopic and macroscopic neural recordings

    CERN Document Server

    Pettersen, Klas H; Tetzlaff, Tom; Einevoll, Gaute T

    2013-01-01

    Power laws, characterized by quantities following 1/x^\\alpha{} distributions, are commonly reported when observing nature or society, and the question of their origin has for a long time intrigued physicists. Power laws have also been observed in neural recordings, both at the macroscopic and microscopic levels: at the macroscopic level, the power spectral density (PSD) of the electroencephalogram (EEG) has been seen to follow 1/f^\\alpha{} distributions; at the microscopic level similar power laws have been observed in single-neuron recordings of the neuronal soma potential and soma current, yet with different values of the power-law exponent \\alpha. In this theoretical study we find that these observed macroscopic and microscopic power laws may, despite the widely different spatial scales and different exponents, have the same source. By a combination of simulation on a biophysical detailed, pyramidal neuron model and analytical investigations of a simplified ball and stick neuron, we find that the transfer ...

  12. Nutritional mitigation of winter thermal stress in gilthead seabream associated metabolic pathways and potential indicators of nutritional state

    DEFF Research Database (Denmark)

    Richard, Nadege; Silva, Tomé S.; Wulff, Tune

    2016-01-01

    in coping with winter thermal stress, compared to a low-cost commercial diet (diet CTRL). In order to identify the metabolic pathways affected by WF diet, a comparative two dimensional differential in-gel electrophoresis (2D-DIGE) analysis of fish liver proteome (pH 4–7) was undertaken at the end of winter....... A total of 404 protein spots, out of 1637 detected, were differentially expressed between the two groups of fish. Mass spectrometry analysis of selected spots suggested that WF diet improved oxidative stress defense, reduced endoplasmic reticulum stress, enhanced metabolic flux through methionine cycle...... and phenylalanine/tyrosine catabolism, and induced higher aerobic metabolism and gluconeogenesis. Results support the notion that WF diet had a positive effect on fish nutritional state by partially counteracting the effect of thermal stress and underlined the sensitivity of proteome data for nutritional...

  13. The association between high levels of cumulative life stress and aberrant resting state EEG dynamics in old age.

    Science.gov (United States)

    Marshall, Amanda C; Cooper, Nicholas R

    2017-05-10

    Cumulative experienced stress produces shortcomings in old adults' cognitive performance. These are reflected in electrophysiological changes tied to task execution. This study explored whether stress-related aberrations in older adults' electroencephalographic (EEG) activity were also apparent in the system at rest. To this effect, the amount of stressful life events experienced by 60 young and 60 elderly participants were assessed in conjunction with resting state power changes in the delta, theta, alpha, and beta frequencies during a resting EEG recording. Findings revealed elevated levels of delta power among elderly individuals reporting high levels of cumulative life stress. These differed significantly from young high and low stress individuals and old adults with low levels of stress. Increases of delta activity have been linked to the emergence of conditions such as Alzheimer's Disease and Mild Cognitive Impairment. Thus, a potential interpretation of our findings associates large amounts of cumulative stress with an increased risk of developing age-related cognitive pathologies in later life. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Changes in Depression and Stress after Release from a Tobacco-Free Prison in the United States

    Directory of Open Access Journals (Sweden)

    Jacob J. van den Berg

    2016-01-01

    Full Text Available Prior research has found high levels of depression and stress among persons who are incarcerated in the United States (U.S.. However, little is known about changes in depression and stress levels among inmates post-incarceration. The aim of this study was to examine changes in levels of depression and stress during and after incarceration in a tobacco-free facility. Questionnaires that included valid and reliable measures of depression and stress were completed by 208 male and female inmates approximately eight weeks before and three weeks after release from a northeastern U.S. prison. Although most inmates improved after prison, 30.8% had a worsening in levels of depression between baseline and the three-week follow-up. In addition, 29.8% had a worsening in levels of stress after release than during incarceration. While it is not surprising that the majority of inmates reported lower levels of depression and stress post-incarceration, a sizable minority had an increase in symptoms, suggesting that environmental stressors may be worse in the community than in prison for some inmates. Further research is needed to address depression and stress levels during and after incarceration in order for inmates to have a healthier transition back into the community and to prevent repeat incarcerations.

  15. Changes in Depression and Stress after Release from a Tobacco-Free Prison in the United States

    Science.gov (United States)

    van den Berg, Jacob J.; Roberts, Mary B.; Bock, Beth C.; Martin, Rosemarie A.; Stein, L.A.R.; Parker, Donna R.; McGovern, Arthur R.; Shuford, Sarah Hart; Clarke, Jennifer G.

    2016-01-01

    Prior research has found high levels of depression and stress among persons who are incarcerated in the United States (U.S.). However, little is known about changes in depression and stress levels among inmates post-incarceration. The aim of this study was to examine changes in levels of depression and stress during and after incarceration in a tobacco-free facility. Questionnaires that included valid and reliable measures of depression and stress were completed by 208 male and female inmates approximately eight weeks before and three weeks after release from a northeastern U.S. prison. Although most inmates improved after prison, 30.8% had a worsening in levels of depression between baseline and the three-week follow-up. In addition, 29.8% had a worsening in levels of stress after release than during incarceration. While it is not surprising that the majority of inmates reported lower levels of depression and stress post-incarceration, a sizable minority had an increase in symptoms, suggesting that environmental stressors may be worse in the community than in prison for some inmates. Further research is needed to address depression and stress levels during and after incarceration in order for inmates to have a healthier transition back into the community and to prevent repeat incarcerations. PMID:26771622

  16. Changes in Depression and Stress after Release from a Tobacco-Free Prison in the United States.

    Science.gov (United States)

    van den Berg, Jacob J; Roberts, Mary B; Bock, Beth C; Martin, Rosemarie A; Stein, L A R; Parker, Donna R; McGovern, Arthur R; Shuford, Sarah Hart; Clarke, Jennifer G

    2016-01-12

    Prior research has found high levels of depression and stress among persons who are incarcerated in the United States (U.S.). However, little is known about changes in depression and stress levels among inmates post-incarceration. The aim of this study was to examine changes in levels of depression and stress during and after incarceration in a tobacco-free facility. Questionnaires that included valid and reliable measures of depression and stress were completed by 208 male and female inmates approximately eight weeks before and three weeks after release from a northeastern U.S. prison. Although most inmates improved after prison, 30.8% had a worsening in levels of depression between baseline and the three-week follow-up. In addition, 29.8% had a worsening in levels of stress after release than during incarceration. While it is not surprising that the majority of inmates reported lower levels of depression and stress post-incarceration, a sizable minority had an increase in symptoms, suggesting that environmental stressors may be worse in the community than in prison for some inmates. Further research is needed to address depression and stress levels during and after incarceration in order for inmates to have a healthier transition back into the community and to prevent repeat incarcerations.

  17. Microscopic and macroscopic infarct complicating pediatric epilepsy surgery.

    Science.gov (United States)

    Rubinger, Luc; Hazrati, Lili-Naz; Ahmed, Raheel; Rutka, James; Snead, Carter; Widjaja, Elysa

    2017-03-01

    There is some suggestion that microscopic infarct could be associated with invasive monitoring, but it is unclear if the microscopic infarct is also visible on imaging and associated with neurologic deficits. The aims of this study were to assess the rates of microscopic and macroscopic infarct and other major complications of pediatric epilepsy surgery, and to determine if these complications were higher following invasive monitoring. We reviewed the epilepsy surgery data from a tertiary pediatric center, and collected data on microscopic infarct on histology and macroscopic infarct on postoperative computed tomography (CT) or magnetic resonance imaging (MRI) done one day after surgery and major complications. Three hundred fifty-two patients underwent surgical resection and there was one death. Forty-two percent had invasive monitoring. Thirty patients (9%) had microscopic infarct. Univariable analyses showed that microscopic infarct was higher among patients with invasive monitoring relative to no invasive monitoring (20% vs. 0.5%, respectively, p microscopic infarct had transient right hemiparesis, and two with both macroscopic and microscopic infarct had unexpected persistent neurologic deficits. Thirty-two major complications (9.1%) were reported, with no difference in major complications between invasive monitoring and no invasive monitoring (10% vs. 7%, p = 0.446). In the multivariable analysis, invasive monitoring increased the odds of microscopic infarct (odds ratio [OR] 15.87, p = 0.009), but not macroscopic infarct (OR 2.6, p = 0.173) or major complications (OR 1.4, p = 0.500), after adjusting for age at surgery, sex, age at seizure onset, operative type, and operative location. Microscopic infarct was associated with invasive monitoring, and none of the patients had permanent neurologic deficits. Macroscopic infarct was not associated with invasive monitoring, and two patients with macroscopic infarct had persistent neurologic deficits. Wiley

  18. Development and validation of the Acculturative Stress Scale for Chinese College Students in the United States (ASSCS).

    Science.gov (United States)

    Bai, Jieru

    2016-04-01

    Chinese students are the biggest ethnic group of international students in the United States. This study aims to develop a reliable and valid scale to accurately measure their acculturative stress. A 72-item pool was sent online to Chinese students and a five-factor scale of 32 items was generated by exploratory factor analysis. The five factors included language insufficiency, social isolation, perceived discrimination, academic pressure, and guilt toward family. The Acculturative Stress Scale for Chinese Students demonstrated high reliability and initial validity by predicting depression and life satisfaction. It was the first Chinese scale of acculturative stress developed and validated among a Chinese student sample in the United States. In the future, the scale can be used as a diagnostic tool by mental health professionals and a self-assessment tool by Chinese students. (c) 2016 APA, all rights reserved.

  19. On the impact of multi-axial stress states on trailing edge bondlines in wind turbine rotor blades

    Science.gov (United States)

    Noever Castelos, Pablo; Balzani, Claudio

    2016-09-01

    For a reliable design of wind turbine systems all of their components have to be designed to withstand the loads appearing in the turbine's lifetime. When performed in an integral manner this is called systems engineering, and is exceptionally important for components that have an impact on the entire wind turbine system, such as the rotor blade. Bondlines are crucial subcomponents of rotor blades, but they are not much recognized in the wind energy research community. However, a bondline failure can lead to the loss of a rotor blade, and potentially of the entire turbine, and is extraordinarily relevant to be treated with strong emphasis when designing a wind turbine. Modern wind turbine rotor blades with lengths of 80 m and more offer a degree of flexibility that has never been seen in wind energy technology before. Large deflections result in high strains in the adhesive connections, especially at the trailing edge. The latest edition of the DNV GL guideline from end of 2015 demands a three-dimensional stress analysis of bondlines, whereas before an isolated shear stress proof was sufficient. In order to quantify the lack of safety from older certification guidelines this paper studies the influence of multi-axial stress states on the ultimate and fatigue load resistance of trailing edge adhesive bonds. For this purpose, detailed finite element simulations of the IWES IWT-7.5-164 reference wind turbine blades are performed. Different yield criteria are evaluated for the prediction of failure and lifetime. The results show that the multi-axial stress state is governed by span-wise normal stresses. Those are evidently not captured in isolated shear stress proofs, yielding non-conservative estimates of lifetime and ultimate load resistance. This finding highlights the importance to include a three-dimensional stress state in the failure analysis of adhesive bonds in modern wind turbine rotor blades, and the necessity to perform a three-dimensional characterization

  20. Approximating macroscopic observables in quantum spin systems with commuting matrices

    CERN Document Server

    Ogata, Yoshiko

    2011-01-01

    Macroscopic observables in a quantum spin system are given by sequences of spatial means of local elements $\\frac{1}{2n+1}\\sum_{j=-n}^n\\gamma_j(A_{i}), \\; n\\in{\\mathbb N},\\; i=1,...,m$ in a UHF algebra. One of their properties is that they commute asymptotically, as $n$ goes to infinity. It is not true that any given set of asymptotically commuting matrices can be approximated by commuting ones in the norm topology. In this paper, we show that for macroscopic observables, this is true.

  1. On the notion of a macroscopic quantum system

    CERN Document Server

    Khrenikov, A Yu

    2004-01-01

    We analyse the notion of macroscopic quantum system from the point of view of the statistical structure of quantum theory. We come to conclusion that the presence of interference of probabilities should be used the main characteristic of quantumness (in the opposition to N. Bohr who permanently emphasized the crucial role of quantum action). In the light of recent experiments with statistical ensembles of people who produced interference of probabilities for special pairs of questions (which can be considered as measurements on people) human being should be considered as a macroscopic quantum system. There is also discussed relation with experiments of A. Zeilinger on interference of probabilities for macromoleculas.

  2. Stimuli-deformable graphene materials: from nanosheet to macroscopic assembly

    Directory of Open Access Journals (Sweden)

    Fei Zhao

    2016-04-01

    Full Text Available Stimulus-induced deformation (SID of graphene-based materials has triggered rapidly increasing research interest due to the spontaneous response to external stimulations, which enables precise configurational regulation of single graphene nanosheets (GNSs through control over the environmental conditions. While the micro-strain of GNS is barely visible, the deformation of graphene-based macroscopic assemblies (GMAs is remarkable, thereby presenting significant potential for future application in smart devices. This review presents the current progress of SID of graphene in the manner of nanosheets and macroscopic assemblies in both the experimental and theoretical fronts, and summarizes recent advancements of SID of graphene for applications in smart systems.

  3. Resting state functional connectivity of the anterior cingulate cortex in veterans with and without post-traumatic stress disorder

    NARCIS (Netherlands)

    Kennis, Mitzy; Rademaker, Arthur R.; van Rooij, Sanne J H; Kahn, René S.; Geuze, Elbert

    2015-01-01

    Post-traumatic stress disorder (PTSD) is an anxiety disorder that is associated with structural and functional alterations in several brain areas, including the anterior cingulate cortex (ACC). Here, we examine resting state functional connectivity of ACC subdivisions in PTSD, using a seed-based

  4. Stress-strain state near mine workings in anisotropic rock masses under the action of discontinuous waves

    Science.gov (United States)

    Baranowski, Z.; Lugovoi, P. Z.

    2008-04-01

    The ray-path method is used to analyze the stress-strain state near mine workings acted upon by discontinuous waves. A dynamic failure criterion is proposed for analyzing the stability of mine workings. The efficiency of the approach is demonstrated with a specific example

  5. Evaluation of phase stresses of Al sub 2 O sub 3 /YAG binary MGC by synchrotron radiation. Residual stress states and stress behavior of YAG phase

    CERN Document Server

    Suzuki, H; Akita, K; Yoshioka, Y; Waku, Y

    2003-01-01

    Melt Growth Composite material (MGC) consists of multiple single crystal with fine entangled in three dimensional network structures. The MGCs are thermally stable and have higher creep resistance. Furthermore, the flexural strength at room temperature can be maintained almost up to the melting point. In this study, in order to discuss the generation mechanism of residual stress in an Al sub 2 O sub 3 /Y sub 3 Al sub 5 O sub 1 sub 2 (YAG) binary MGC, the residual stresses of YAG phase were measured by X-rays from synchrotron radiation source. We used a method for stress determination of single crystal by using a position sensitive proportional counter (PSPC) system and a specimen-oscillating device. Lattice strains of left brace 4 6 10 right brace in the YAG phase were measured. The residual stresses were from 40 to 120 MPa in tension in the longitudinal direction which corresponds to the solidification direction, 80MPa in compression in the thickness direction, and 70MPa in tension in the width direction. Si...

  6. Monitoring road traffic congestion using a macroscopic traffic model and a statistical monitoring scheme

    KAUST Repository

    Zeroual, Abdelhafid

    2017-08-19

    Monitoring vehicle traffic flow plays a central role in enhancing traffic management, transportation safety and cost savings. In this paper, we propose an innovative approach for detection of traffic congestion. Specifically, we combine the flexibility and simplicity of a piecewise switched linear (PWSL) macroscopic traffic model and the greater capacity of the exponentially-weighted moving average (EWMA) monitoring chart. Macroscopic models, which have few, easily calibrated parameters, are employed to describe a free traffic flow at the macroscopic level. Then, we apply the EWMA monitoring chart to the uncorrelated residuals obtained from the constructed PWSL model to detect congested situations. In this strategy, wavelet-based multiscale filtering of data has been used before the application of the EWMA scheme to improve further the robustness of this method to measurement noise and reduce the false alarms due to modeling errors. The performance of the PWSL-EWMA approach is successfully tested on traffic data from the three lane highway portion of the Interstate 210 (I-210) highway of the west of California and the four lane highway portion of the State Route 60 (SR60) highway from the east of California, provided by the Caltrans Performance Measurement System (PeMS). Results show the ability of the PWSL-EWMA approach to monitor vehicle traffic, confirming the promising application of this statistical tool to the supervision of traffic flow congestion.

  7. Localization of deformation and loss of macroscopic ellipticity in microstructured solids

    Science.gov (United States)

    Santisi d'Avila, M. P.; Triantafyllidis, N.; Wen, G.

    2016-12-01

    Localization of deformation, a precursor to failure in solids, is a crucial and hence widely studied problem in solid mechanics. The continuum modeling approach of this phenomenon studies conditions on the constitutive laws leading to the loss of ellipticity in the governing equations, a property that allows for discontinuous equilibrium solutions. Micro-mechanics models and nonlinear homogenization theories help us understand the origins of this behavior and it is thought that a loss of macroscopic (homogenized) ellipticity results in localized deformation patterns. Although this is the case in many engineering applications, it raises an interesting question: is there always a localized deformation pattern appearing in solids losing macroscopic ellipticity when loaded past their critical state? In the interest of relative simplicity and analytical tractability, the present work answers this question in the restrictive framework of a layered, nonlinear (hyperelastic) solid in plane strain and more specifically under axial compression along the lamination direction. The key to the answer is found in the homogenized post-bifurcated solution of the problem, which for certain materials is supercritical (increasing force and displacement), leading to post-bifurcated equilibrium paths in these composites that show no localization of deformation for macroscopic strain well above the one corresponding to loss of ellipticity.

  8. Altered amygdala resting-state functional connectivity in post-traumatic stress disorder

    Directory of Open Access Journals (Sweden)

    Christine Anne Rabinak

    2011-11-01

    Full Text Available Post-traumatic stress disorder (PTSD is often characterized by aberrant amygdala activation and functional abnormalities in corticolimbic circuitry, as elucidated by functional neuroimaging. These ‘activation’ studies have primarily relied on tasks designed to induce region-specific, and task-dependent brain responses in limbic (e.g., amygdala and paralimbic brain areas through the use of evocative probes such as personalized traumatic script-driven imagery and other negatively valenced emotional stimuli (e.g., threatening faces, aversive scenes, traumatic cues. It remains unknown if these corticolimbic circuit abnormalities exist at baseline or ‘at rest’, in the absence of fear/anxiety-related provocation and outside the context of task demands. Recently, a new approach to studying functional interconnectivity of brain regions derived from ‘resting state’ scans has elucidated systems-level neural network function that may be obscured by activation tasks and may help inform functional interpretations of brain activation patterns. Little is known about whether altered amygdala connectivity patterns exist at rest in PTSD. Therefore the primary aim of the present experiment was to investigate aberrant amygdala functional connectivity patterns in combat-related PTSD patients during resting state. Seventeen Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF veterans with combat-related PTSD (PTSD group and seventeen combat-exposed OEF/OIF veterans without PTSD (Combat-Exposed Control [CEC] group underwent an 8-minute resting-state functional magnetic resonance imaging scan. Using conventional methods to generate connectivity maps, we extracted the time series from an anatomically-derived amygdala ‘seed’ region and conducted voxel-wise correlation analyses across the entire brain to search for group differences (between PTSD and CEC groups in amygdala functional connectivity, which we hypothesized would localize to the medial

  9. State of stress in exhumed basins and implications for fluid flow: insights from the Illizi Basin, Algeria

    KAUST Repository

    English, Joseph M.

    2017-05-31

    The petroleum prospectivity of an exhumed basin is largely dependent on the ability of pre-existing traps to retain oil and gas volumes during and after the exhumation event. Although faults may act as lateral seals in petroleum traps, they may start to become hydraulically conductive again and enable fluid flow and hydrocarbon leakage during fault reactivation. We constrain the present day in situ stresses of the exhumed Illizi Basin in Algeria and demonstrate that the primary north–south and NW–SE (vertical strike-slip) fault systems in the study area are close to critical stress (i.e. an incipient state of shear failure). By contrast, the overpressured and unexhumed Berkine Basin and Hassi Messaoud areas to the north do not appear to be characterized by critical stress conditions. We present conceptual models of stress evolution and demonstrate that a sedimentary basin with benign in situ stresses at maximum burial may change to being characterized by critical stress conditions on existing fault systems during exhumation. These models are supportive of the idea that the breaching of a closed, overpressured system during exhumation of the Illizi Basin may have been a driving mechanism for the regional updip flow of high-salinity formation water within the Ordovician reservoirs during Eocene–Miocene time. This work also has implications for petroleum exploration in exhumed basins. Fault-bounded traps with faults oriented at a high angle to the maximum principal horizontal stress direction in strike-slip or normal faulting stress regimes are more likely to have retained hydrocarbons in exhumed basins than fault-bounded traps with faults that are more optimally oriented for shear failure and therefore have a greater propensity to become critically stressed during exhumation.

  10. Nonlinear effect of elastic vortexlike motion on the dynamic stress state of solids

    Science.gov (United States)

    Shilko, Evgeny V.; Grinyaev, Yurii V.; Popov, Mikhail V.; Popov, Valentin L.; Psakhie, Sergey G.

    2016-05-01

    We present a theoretical analysis of the dynamic stress-strain state of regions in a solid body that are involved in a collective elastic vortexlike motion. It is shown that the initiation of elastic vortexlike motion in the material is accompanied by the appearance of dilatancy and equivalent strain, the magnitudes of which are proportional to the square of the ratio of linear velocity on the periphery of the elastic vortex to the velocity of longitudinal elastic waves (P wave). Under conditions of dynamic loading the described dynamic effects are able to initiate inelastic deformation or destruction of the material at loading speeds of a few percent of the P -wave speed. The obtained analytical estimates suggest that dynamic nonlinear strains can make a significant contribution in a number of widely studied nonlinear dynamic phenomena in solids. Among them are the effect of acoustic (dynamic) dilatancy in solids and granular media, which leads to the generation of longitudinal elastic waves by transverse waves [V. Tournat et al., Phys. Rev. Lett. 92, 085502 (2004), 10.1103/PhysRevLett.92.085502] and the formation of an array of intense "hot spots" (reminiscent of shear-induced hydrodynamic instabilities in fluids) in adiabatic shear bands [P. R. Guduru et al., Phys. Rev. E 64, 036128 (2001), 10.1103/PhysRevE.64.036128].

  11. Resting-State Neurophysiological Abnormalities in Posttraumatic Stress Disorder: A Magnetoencephalography Study

    Directory of Open Access Journals (Sweden)

    Amy S. Badura-Brack

    2017-04-01

    Full Text Available Posttraumatic stress disorder (PTSD is a debilitating psychiatric condition that is common in veterans returning from combat operations. While the symptoms of PTSD have been extensively characterized, the neural mechanisms that underlie PTSD are only vaguely understood. In this study, we examined the neurophysiology of PTSD using magnetoencephalography (MEG in a sample of veterans with and without PTSD. Our primary hypothesis was that veterans with PTSD would exhibit aberrant activity across multiple brain networks, especially those involving medial temporal and frontal regions. To this end, we examined a total of 51 USA combat veterans with a battery of clinical interviews and tests. Thirty-one of the combat veterans met diagnostic criteria for PTSD and the remaining 20 did not have PTSD. All participants then underwent high-density MEG during an eyes-closed resting-state task, and the resulting data were analyzed using a Bayesian image reconstruction method. Our results indicated that veterans with PTSD had significantly stronger neural activity in prefrontal, sensorimotor and temporal areas compared to those without PTSD. Veterans with PTSD also exhibited significantly stronger activity in the bilateral amygdalae, parahippocampal and hippocampal regions. Conversely, healthy veterans had stronger neural activity in the bilateral occipital cortices relative to veterans with PTSD. In conclusion, these data suggest that veterans with PTSD exhibit aberrant neural activation in multiple cortical areas, as well as medial temporal structures implicated in affective processing.

  12. On the fracture of high temperature alloys by creep cavitation under uniaxial or biaxial stress states

    Science.gov (United States)

    Sanders, John W.; Dadfarnia, Mohsen; Stubbins, James F.; Sofronis, Petros

    2017-01-01

    It is well known that creep rupture in high temperature alloys is caused by grain boundary cavitation: the nucleation, growth, and coalescence of voids along grain boundaries. However, it has been observed recently that the multiaxial rupture behavior of a promising class of high temperature alloys (Tung et al., 2014) cannot be captured by a well-known empirical creep rupture model due to Hayhurst. In an effort to gain a better understanding of rupture in these materials, we depart from empirical models and simulate the underlying rupture mechanisms directly, employing two related models of void growth from the literature: one due to Sham and Needleman (1983), and an extension of Sham and Needleman's model due to Van der Giessen et al. (1995). Our results suggest that the experimental observations might be explained in terms of the interplay between bulk creep and gain boundary diffusion processes. Furthermore, we find that Sham and Needleman's original void growth model, combined with our rupture model, is well suited to capture the experimental data considered here. Such a mechanism-based understanding of the influence of multiaxial stress states on the creep rupture behavior of high temperature alloys promises to be of value and to provide a basis for the qualification of these alloys for extended service in a variety of elevated temperature applications.

  13. A state of the art on primary side stress corrosion cracking in nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. P.; Kim, J. S.; Han, J. H.; Lee, D. H.; Lim, Y. S.; Suh, J. H.; Hwang, S. S.; Hur, D. H

    1999-09-01

    A state of art on primary water stress corrosion cracking (PWSCC) of alloy 600 used as steam generator tubing of nuclear power plant and remedial action on the PWSCC were reviewed and analyzed. One of the major metallurgical factors which have effect on PWSCC is Cr carbide distribution. A semicontinuous intergranular Cr carbide distribution enhance PWSCC of alloy 600. PWSCC rate is reported to be reported to be proportional to exp(-50 cal/RT) {sigma}{sup 4}. PWSCC rate also increase with increase in hydrogen partial pressure from 0 to 150 ppm and then decreased with further increase in hydrogen partial pressure to 757 ppm. Development of PWSCC prediction technology which takes into account tubing material, fabrication process and operating history of steam generator is needed to manage PWSCC of domestic nuclear power plant. PWSCC has mainly occurred at expansion irregularities within tubesheet, expansion transitions, dented tube support plate intersections and transition and apex of U bend. Remedial actions to PWSCC are sleeving, plugging, temperature reduction, Ni plating, Ni sleeving, shot peening and steam generator replacement in worst case. Option to remedial actions depend on plant specific such as plant age, leak rate from primary to secondary, density and progression of PWSCC. Ni sleeving developed in Framatome seems to be a powerful method because it never subject to PWSCC. Remedial action should be developed and evaluated for possible PWSCC of domestic nuclear power plant. (author)

  14. Stress state reassessment of Romanian offshore structures taking into account corrosion influence

    Science.gov (United States)

    Joavină, R.; Zăgan, S.; Zăgan, R.; Popa, M.

    2017-08-01

    Progressive degradation analysis for extraction or exploration offshore structure, with appraisal of failure potential and the causes that can be correlated with the service age, depends on the various sources of uncertainty that require particular attention in design, construction and exploitation phases. Romanian self erecting platforms are spatial lattice structures consist of tubular steel joints, forming a continuous system with an infinite number of dynamic degrees of freedom. Reassessment of a structure at fixed intervals of time, recorrelation of initial design elements with the actual situation encountered in location and with structural behaviour represents a major asset in lowering vulnerabilities of offshore structure. This paper proposes a comparative reassessment of the stress state for an offshore structure Gloria type, when leaving the shipyard and at the end of that interval corresponding to capital revision, taking into account sectional changes due to marine environment corrosion. The calculation was done using Newmark integration method on a 3D model, asses of the dynamic loads was made through probabilistic spectral method.

  15. Biological correlates of complex posttraumatic stress disorder—state of research and future directions

    Directory of Open Access Journals (Sweden)

    Zoya Marinova

    2015-04-01

    Full Text Available Complex posttraumatic stress disorder (PTSD presents with clinical features of full or partial PTSD (re-experiencing a traumatic event, avoiding reminders of the event, and a state of hyperarousal together with symptoms from three additional clusters (problems in emotional regulation, negative self-concept, and problems in interpersonal relations. Complex PTSD is proposed as a new diagnostic entity in ICD-11 and typically occurs after prolonged and complex trauma. Here we shortly review current knowledge regarding the biological correlates of complex PTSD and compare it to the relevant findings in PTSD. Recent studies provide support to the validity of complex PTSD as a separate diagnostic entity; however, data regarding the biological basis of the disorder are still very limited at this time. Further studies focused on complex PTSD biological correlates and replication of the initial findings are needed, including neuroimaging, neurobiochemical, genetic, and epigenetic investigations. Identification of altered biological pathways in complex PTSD may be critical to further understand the pathophysiology and optimize treatment strategies.

  16. Disrupted resting-state insular subregions functional connectivity in post-traumatic stress disorder.

    Science.gov (United States)

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Guo, Xiaonan; Chen, Huafu

    2016-07-01

    Post-traumatic stress disorder (PTSD) is suggested to be a structural and functional abnormality in the insula. The insula, which consists of distinct subregions with various patterns of connectivity, displays complex and diverse functions. However, whether these insular subregions have different patterns of connectivity in PTSD remains unclear. Investigating the abnormal functional connectivity of the insular subregions is crucial to reveal its potential effect on diseases specifically PTSD. This study uses a seed-based method to investigate the altered resting-state functional connectivity of insular subregions in PTSD. We found that patients with PTSD showed reduced functional connectivity compared with healthy controls (HCs) between the left ventral anterior insula and the anterior cingulate cortex. The patients with PTSD also exhibited decreased functional connectivity between the right posterior insula and left inferior parietal lobe, and the postcentral gyrus relative to HCs. These results suggest the involvement of altered functional connectivity of insular subregions in the abnormal regulation of emotion and processing of somatosensory information in patients with PTSD. Such impairments in functional connectivity patterns of the insular subregions may advance our understanding of the pathophysiological basis underlying PTSD.

  17. Stress state of the box shell under the indentation of two inclusions

    Directory of Open Access Journals (Sweden)

    Vladimir А. Grishin

    2015-03-01

    Full Text Available Thin-walled structures are widely used in various fields in modern technologies of mechanical engineering, construction, aviation industry, shipbuilding, rocket engineering, oil, gas and other industries. Variety of forms of such structures, various loading conditions and pinning, presence of defects and inhomogeneities lead to wide range of different formulations of the problems of research on strength characteristics of such structures and methods used for this purpose. The characteristic feature of this type of problems is the difficulty of their analytical or numerical solving. Assessment of convergence of numerical method solution requires the ability to compare the numerical results with analytical solution results of the corresponding problem.The research is devoted to solving the problem of stress state of box-shell with rectangular profile and infinite length under the indentation of two symmetrically arranged thin rigid inclusions. The problem is reduced to a system of integral equations. The solution is sought in the space of functions that have nonintegrable singularities using the apparatus of the regularization of divergent integrals. Obtained infinite system of linear algebraic equations is solved by the method of reduction. There are obtained the numerical values of the upsettings of inclusions depending on inclusions length and ratios of geometric dimensions of the cross-section of the shell.

  18. The stress state near Spanish Peaks, colorado determined from a dike pattern

    Science.gov (United States)

    Muller, O.H.; Pollard, D.D.

    1977-01-01

    The radial pattern of syenite and syenodiorite dikes of the Spanish Peaks region is analysed using theories of elasticity and dike emplacement. The three basic components of Ode??'s model for the dike pattern (a pressurized, circular hole; a rigid, planar boundary; and uniform regional stresses) are adopted, but modified to free the regional stresses from the constraint of being orthogonal to the rigid boundary. Dike areal density, the White Peaks intrusion, the strike of the upturned Mesozoic strata, and the contact between these strata and the intensely folded and faulted Paleozoic rocks are used to brient the rigid boundary along a north-south line. The line of dike terminations locates the rigid boundary about 8 km west of West Peak. The location of a circular plug, Goemmer Butte, is chosen as a point of isotropic stress. A map correlating the location of isotropic stress points with regional stress parameters is derived from the theory and used to determine a regional stress orientation (N82E) and a normalized stress magnitude. The stress trajectory map constructed using these parameters mimics the dike pattern exceptionally well. The model indicates that the regional principal stress difference was less than 0.05 times the driving pressure in the West Peak intrusion. The regional stress difference probably did not exced 5 MN/m2. ?? 1977 Birkha??user Verlag.

  19. Multiaxial ratcheting of 20 carbon steel: Macroscopic experiments and microscopic observations

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yawei [State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Kang, Guozheng, E-mail: guozhengkang@yahoo.com.cn [State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); Liu, Yujie; Jiang, Han [School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2013-09-15

    The multiaxial ratcheting behaviors of polycrystalline 20 ordinary carbon steel were investigated at room temperature. The macroscopic experimental results showed that the studied multiaxial ratcheting depends greatly on the mean stress, stress amplitude and loading path. The axial ratcheting strain increased with the increase of applied mean stress and stress amplitude. Apparent additional hardening was observed in the non-proportionally multiaxial cyclic loading. The multiaxial ratcheting of 20 carbon steel was lower than the corresponding uniaxial one and varies with different loading paths. Dislocation patterns and their evolutions of the multiaxial ratcheting of different loading paths were then investigated using transmission electron microscopy. The obtained images showed that, with the increasing number of loading cycles, the dislocation patterns evolved from dislocation lines and networks to dislocation tangles, walls and cells. After certain cycles, sub-grains were formed because of the re-arrangement of dislocations in the walls of cells and inside the cells since the cross slip of dislocations can be easily activated for the 20 carbon steel, a kind of body-centered cubic metal. The dislocation evolution of the multiaxial ratcheting is much quicker than that of the uniaxial one. With the reference to the uniaxial one of 20 carbon steel, the macroscopic multiaxial ratcheting behaviors can be qualitatively correlated with the microscopic observation of the dislocation patterns and their evolution. - Highlights: • Multiaxial loading hardly changes the cyclic stable feature of 20 carbon steel. • Multiaxial ratcheting of 20 carbon steel depends greatly on the load path. • Dislocation patterns evolve quicker in the multiaxial case. • The stabilized dislocation pattern is sub-grain, rather than the dislocation cell. • Sub-grains formed after certain cycles make the stable ratcheting strain rate large.

  20. Ellipsometry-like analysis of polarization state for micro cracks using stress-induced light scattering method

    Science.gov (United States)

    Sakata, Yoshitaro; Terasaki, Nao; Sakai, Kazufumi; Nonaka, Kazuhiro

    2016-03-01

    Fine polishing techniques, such as chemical mechanical polishing (CMP), are important to glass substrate manufacturing. When these techniques involve mechanical interaction in the form of friction between the abrasive and the substrate surface during polishing, latent flaws may form on the product. Fine polishing induced latent flaws in glass substrates may become obvious during a subsequent cleaning process if the glass surface is eroded away by chemical interaction with a cleaning liquid. Thus, latent flaws reduce product yield. A novel technique (the stress-induced light scattering method; SILSM) which was combined with light scattering method and stress effects was proposed for inspecting surface to detect polishing induced latent flaws. This method is able to distinguish between latent flaws and tiny particles on the surface. In this method, an actuator deforms a sample inducing stress effects around the tip of a latent flaw caused by the deformation, which in turn changes the refractive index of the material around the tip of the latent flaw because of the photoelastic effect. A CCD camera detects this changed refractive index as variations in light-scattering intensity. In this study, the changes in reflection coefficients and polarization states after application of stress to a glass substrate were calculated and evaluated qualitatively using Jones matrix-like ellipsometry. As the results, it was shown that change in the polarization states around the tip of latent flaw were evaluated between before and after applied stress, qualitatively.

  1. The psychoemotional status and cardiovascular system functional state of the first-year students under the influence of examination stress

    Directory of Open Access Journals (Sweden)

    Liliana K. Tokaeva

    2012-12-01

    Full Text Available The aim of this research is to study of the influence of examination stress on psycho-emotional status and functional state of the cardiovascular system of the 1-st year students of pedagogical high school. Methods – The study involved 105 young men aged 17-18 enrolled in the specialty "Physical Education". The studies were conducted during the period in-between the exams and during the examination session. The psycho-emotional status was determined by the SAN test questionnaire and test and the CH.D. Spielberg test, adapted for Russia by Ju.L. Khanin. The state of CVS autonomic regulation was evaluated by heart rate, blood pressure, endurance ratio, Kerdo index and the adaptive capacities by P.M. Bayevsky. Results – In the absence of exposure to stress in the majority of young men the studied parameters are within normal limits, indicating sufficient adaptive capabilities. A clear correlation between the level of personal anxiety in students and the nature of their reactivity to examination stress was found: the higher the anxiety level in a student is, the more stress resistance decreases and more pronounced changes in the cardiovascular system autonomic regulation appear. The strain of adaptation mechanism was found in a stressful situation in the first-year students with a high level of personal anxiety and satisfactory adaptation – in young men with average and low personal anxiety.

  2. Uniaxial-stress effect on the antiferromagnetic state in CePd{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, M. [Faculty of Science, Ibaraki University, Mito 310-8512 (Japan)]. E-mail: makotti@mx.ibaraki.ac.jp; Gawase, A. [Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Amitsuka, H. [Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Tenya, K. [Graduate School of Science, Hokkaido University, Sapporo 060-0810 (Japan); Yoshizawa, H. [Neutron Science Laboratory, Institute for Solid State Physics, University of Tokyo, Tokai 319-1106 (Japan)

    2006-05-01

    We have performed the elastic neutron scattering measurements under the uniaxial stress {sigma} for the antiferromagnetic (AF) state in CePd{sub 2}Si{sub 2}, and found an anisotropy in the {sigma} dependence of the AF state. The magnitude of the staggered moment is reduced with increasing {sigma} applied along the tetragonal [110] direction, while it shows nearly independent of {sigma} for {sigma}-bar [001]. Similar behavior is also observed in the {sigma} dependence of the Neel temperature. From these results, we suggest that both the volume compression and the increase of the c/a ratio lead to the suppression of the AF state.

  3. Quantum statistical derivation of the macroscopic Maxwell equations

    NARCIS (Netherlands)

    Schram, K.

    1960-01-01

    The macroscopic Maxwell equations in matter are derived on a quantum statistical basis from the microscopic equations for the field operators. Both the density operator formalism and the Wigner distribution function method are discussed. By both methods it can be proved that the quantum statistical

  4. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, Vitaliy Anatolyevich

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  5. Photoinduced macroscopic chiral structures in a series of azobenzene copolyesters

    DEFF Research Database (Denmark)

    Nedelchev, L.; Nikolova, L.; Matharu, A.

    2002-01-01

    A study of the propagation of elliptically polarized light and the resulting formation of macroscopic chiral structures in a series of azobenzene side-chain copolyesters, in which the morphology is varied from liquid crystalline to amorphous, is reported. Real-time measurements are presented...

  6. [Macroscopic observations on corneal epithelial wound healing in the rabbit].

    Science.gov (United States)

    Hayashi, K

    1991-02-01

    A newly-developed macroscope was applied to observe the healing process of corneal epithelial wound in vivo. After removing epithelium of the central cornea, the changes of the corneal surface were observed with the macroscope and the findings were compared with histological examinations. At 12 hours after abrasion, areas unstained with Richardson's staining (R staining) appeared. In the histological section, a single layer of regenerating epithelial cells covered the same area. At 24 and 36 hours after abrasion, the epithelial defects became smaller but surrounding epithelium was rough and showed dot-like staining with R solution. By 2 days, the epithelial defects disappeared. On macroscopic observation, the central corneal surface showed a pavement-like appearance. Histology revealed that the regenerating epithelium still consisted of one or two layers. At 3 days, dot-like stainings were present only in the center and the corneal surface appeared considerably smooth. Histology also showed that regenerating epithelium became columnar and multilayered, thereby suggesting stratification. By 7 days, the abraded corneal surface had recovered its smooth appearance. Histologic sections also demonstrated that the epithelium had regained its normal structure. Thus, using this macroscope, findings suggesting the process of epithelial migration and proliferation could be observed.

  7. The black hole information paradox and macroscopic superpositions

    CERN Document Server

    Hsu, Stephen D H

    2010-01-01

    We investigate the experimental capabilities required to test whether black holes destroy information. We show that an experiment capable of illuminating the information puzzle must necessarily be able to detect or manipulate macroscopic superpositions (i.e., Everett branches). Hence, it could also address the fundamental question of decoherence versus wavefunction collapse.

  8. Macroscopic domain formation in the platelet plasma membrane

    DEFF Research Database (Denmark)

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.;

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...

  9. A Macroscopic Analogue of the Nuclear Pairing Potential

    Science.gov (United States)

    Dunlap, Richard A.

    2013-01-01

    A macroscopic system involving permanent magnets is used as an analogue to nucleons in a nucleus to illustrate the significance of the pairing interaction. This illustrates that the view of the total nuclear energy based only on the nucleon occupancy of the energy levels can yield erroneous results and it is only when the pairing interaction is…

  10. Data requirements for traffic control on a macroscopic level

    NARCIS (Netherlands)

    Knoop, V.L.; Van Lint, J.W.C.; Hoogendoorn, S.P.

    2011-01-01

    With current techniques, traffic monitoring and control is a data intensive process. Network control on a higher level, using high level variables, can make this process less data demanding. The macroscopic fundamental diagram relates accumulation, i.e. the number of vehicles in an area, to the netw

  11. Stereodynamics: From elementary processes to macroscopic chemical reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kasai, Toshio [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Che, Dock-Chil [Graduate School of Science, Department of Chemistry, Osaka University, Toyonaka, 560-0043 Osaka (Japan); Tsai, Po-Yu [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Lin, King-Chuen [Department of Chemistry, National Taiwan University, Taipei 106, Taiwan (China); Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 106, Taiwan (China); Palazzetti, Federico [Scuola Normale Superiore, Pisa (Italy); Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, Vincenzo [Dipartimento di Chimica Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche, Roma (Italy); Instituto de Fisica, Universidade Federal da Bahia, Salvador (Brazil)

    2015-12-31

    This paper aims at discussing new facets on stereodynamical behaviors in chemical reactions, i.e. the effects of molecular orientation and alignment on reactive processes. Further topics on macroscopic processes involving deviations from Arrhenius behavior in the temperature dependence of chemical reactions and chirality effects in collisions are also discussed.

  12. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory.

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2016-11-01

    Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation dF^{(meso)}/dt=E_{in}-e_{p} in which the free energy input rate E_{in} and dissipation rate e_{p} are both non-negative, and E_{in}≤e_{p}. We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F^{(meso)} converges to φ^{ss}, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φ^{ss} now satisfies a balance equation dφ^{ss}(x)/dt=cmf(x)-σ(x), in which x represents chemical concentration. The chemical motive force cmf(x) and entropy production rate σ(x) are both non-negative, and cmf(x)≤σ(x). The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.

  13. Diagnosis of bladder tumours in patients with macroscopic haematuria

    DEFF Research Database (Denmark)

    Gandrup, Karen L; Løgager, Vibeke B; Bretlau, Thomas

    2015-01-01

    OBJECTIVE: The aim of this study was to compare split-bolus computed tomography urography (CTU), magnetic resonance urography (MRU) and flexible cystoscopy in patients with macroscopic haematuria regarding the diagnosis of bladder tumours. MATERIALS AND METHODS: In this prospective study, 150...

  14. Microstructure and macroscopic properties of polydisperse systems of hard spheres

    NARCIS (Netherlands)

    Ogarko, V.

    2014-01-01

    This dissertation describes an investigation of systems of polydisperse smooth hard spheres. This includes the development of a fast contact detection algorithm for computer modelling, the development of macroscopic constitutive laws that are based on microscopic features such as the moments of the

  15. Integrating a macro emission model with a macroscopic traffic model

    NARCIS (Netherlands)

    Klunder, G.A.; Stelwagen, U.; Taale, H.

    2013-01-01

    This paper presents a macro emission module for macroscopic traffic models to be used for assessment of ITS and traffic management. It especially focuses on emission estimates for different intersection types. It provides emission values for CO, CO2, HC, NOx, and PM10. It is applied and validated fo

  16. From 1D to 3D - macroscopic nanowire aerogel monoliths.

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-08-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.

  17. Numerical solutions of a generalized theory for macroscopic capillarity

    NARCIS (Netherlands)

    Doster, F.; Zegeling, P.A.; Hilfer, R.

    2010-01-01

    A recent macroscopic theory of biphasic flow in porous media [R. Hilfer, Phys. Rev. E 73, 016307 (2006)] has proposed to treat microscopically percolating fluid regions differently from microscopically nonpercolating regions. Even in one dimension the theory reduces to an analytically intractable se

  18. Charge accumulation in DC cables: a macroscopic approach

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson; Crichton, George C; Pedersen, Aage

    1994-01-01

    The accumulation of space charge in solid dielectrics is examined from the macroscopic point of view using electromagnetic field theory. For practical dielectrics, it is shown that the occurrence of such charges is an inherent consequence of a non-uniform conductivity. The influence of both tempe...

  19. Mesoscopic kinetic basis of macroscopic chemical thermodynamics: A mathematical theory

    Science.gov (United States)

    Ge, Hao; Qian, Hong

    2016-11-01

    Gibbs' macroscopic chemical thermodynamics is one of the most important theories in chemistry. Generalizing it to mesoscaled nonequilibrium systems is essential to biophysics. The nonequilibrium stochastic thermodynamics of chemical reaction kinetics suggested a free energy balance equation d F(meso)/d t =Ein-ep in which the free energy input rate Ein and dissipation rate ep are both non-negative, and Ein≤ep . We prove that in the macroscopic limit by merely allowing the molecular numbers to be infinite, the generalized mesoscopic free energy F(meso) converges to φss, the large deviation rate function for the stationary distributions. This generalized macroscopic free energy φss now satisfies a balance equation d φss(x ) /d t =cmf(x ) -σ (x ) , in which x represents chemical concentration. The chemical motive force cmf(x ) and entropy production rate σ (x ) are both non-negative, and cmf(x )≤σ (x ) . The balance equation is valid generally in isothermal driven systems and is different from mechanical energy conservation and the first law; it is actually an unknown form of the second law. Consequences of the emergent thermodynamic quantities and equalities are further discussed. The emergent "law" is independent of underlying kinetic details. Our theory provides an example showing how a macroscopic law emerges from a level below.

  20. Role of Self-Organization of Dislocations in the Onset and Kinetics of Macroscopic Plastic Instability

    Science.gov (United States)

    Kobelev, Nikolay P.; Lebyodkin, Mikhail A.; Lebedkina, Tatiana A.

    2017-03-01

    The present paper examines two aspects of the problem of critical conditions of jerky flow in alloys, or the Portevin-Le Chatelier (PLC) effect. Recent development of dynamic strain aging (DSA) models proved their capacity to qualitatively reproduce complex non-monotonic behavior of the critical strain, providing that the parameters of theory are allowed to depend on strain. Experimental measurements of such strain dependences have been realized for the first time and used to revise the predictions of the critical strain and stress relaxation kinetics upon abrupt strain-rate changes. On the other hand, it is usually omitted from consideration that the PLC stress serrations can last very short time in comparison with the characteristic time of stress transients. The development of stress drops was studied with the aid of the acoustic emission (AE) technique. It is shown that such macroscopic instabilities are caused by clustering of AE events which otherwise occur all the time, including the periods of smooth plastic flow. The role of synchronization of dislocation avalanches in the development of abrupt stress serrations and its relationship with the predictions of the local DSA models is discussed.

  1. Macroscopic quantum phenomena from the large N perspective

    Science.gov (United States)

    Chou, C. H.; Hu, B. L.; Subaşi, Y.

    2011-07-01

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that there is no a priori

  2. The origins of macroscopic quantum coherence in high temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Philip, E-mail: ph.turner@napier.ac.uk [Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nottale, Laurent, E-mail: laurent.nottale@obspm.fr [CNRS, LUTH, Observatoire de Paris-Meudon, 5 Place Janssen, 92190 Meudon (France)

    2015-08-15

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  3. Macroscopic quantum phenomena from the large N perspective

    Energy Technology Data Exchange (ETDEWEB)

    Chou, C H [department of Physics, National Cheng Kung University, Tainan, Taiwan 701 (China) and National Center for Theoretical Sciences (South), Tainan, Taiwan 701 (China); Hu, B L; Subasi, Y, E-mail: hubeilok@gmail.com [Joint Quantum Institute and Maryland Center for Fundamental Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2011-07-08

    Macroscopic quantum phenomena (MQP) is a relatively new research venue, with exciting ongoing experiments and bright prospects, yet with surprisingly little theoretical activity. What makes MQP intellectually stimulating is because it is counterpoised against the traditional view that macroscopic means classical. This simplistic and hitherto rarely challenged view need be scrutinized anew, perhaps with much of the conventional wisdoms repealed. In this series of papers we report on a systematic investigation into some key foundational issues of MQP, with the hope of constructing a viable theoretical framework for this new endeavour. The three major themes discussed in these three essays are the large N expansion, the correlation hierarchy and quantum entanglement for systems of 'large' sizes, with many components or degrees of freedom. In this paper we use different theories in a variety of contexts to examine the conditions or criteria whereby a macroscopic quantum system may take on classical attributes, and, more interestingly, that it keeps some of its quantum features. The theories we consider here are, the O(N) quantum mechanical model, semiclassical stochastic gravity and gauge / string theories; the contexts include that of a 'quantum roll' in inflationary cosmology, entropy generation in quantum Vlasov equation for plasmas, the leading order and next-to-leading order large N behaviour, and hydrodynamic / thermodynamic limits. The criteria for classicality in our consideration include the use of uncertainty relations, the correlation between classical canonical variables, randomization of quantum phase, environment-induced decoherence, decoherent history of hydrodynamic variables, etc. All this exercise is to ask only one simple question: Is it really so surprising that quantum features can appear in macroscopic objects? By examining different representative systems where detailed theoretical analysis has been carried out, we find that

  4. Investigation of the Residual Stress State in an Epoxy Based Specimen

    NARCIS (Netherlands)

    Baran, I.; Jakobsen, Johnny; Andreasen, Jens H.; Akkerman, R.

    2015-01-01

    Process induced residual stresses may play an important role under service loading conditions for fiber reinforced composite. They may initiate premature cracks and alter the internal stress level. Therefore, the developed numerical models have to be validated with the experimental observations. In

  5. Effect of 3-D stress state on adsorption of CO2 by coal

    NARCIS (Netherlands)

    Hol, S.; Peach, C.J.; Spiers, C.J.

    2012-01-01

    Though several models have been developed to describe unconfined swelling of coal exposed to adsorbing fluids such as CH4 or CO2 at elevated pressure, the role of stress supported by the solid framework (i.e. an effective stress in excess of the fluid pressure) has not hitherto been considered in th

  6. Investigation of the Residual Stress State in an Epoxy Based Specimen

    NARCIS (Netherlands)

    Baran, Ismet; Jakobsen, Johnny; Andreasen, Jens H.; Akkerman, Remko

    2015-01-01

    Process induced residual stresses may play an important role under service loading conditions for fiber reinforced composite. They may initiate premature cracks and alter the internal stress level. Therefore, the developed numerical models have to be validated with the experimental observations. In

  7. State of residual stress in laser-deposited ceramic composite coatings on aluminum alloys

    NARCIS (Netherlands)

    Kadolkar, P. B.; Watkins, T. R.; De Hosson, J. Th. M.; Kooi, B. J.; Dahotre, N. B.

    2007-01-01

    The nature and magnitude of the residual stresses within laser-deposited titanium carbide (TiC) coatings on 2024 and 6061 aluminum (Al) alloys were investigated. Macro- and micro-stresses within the coatings were determined using an X-ray diffraction method. Owing to increased debonding between the

  8. Investigation of Macroscopic Brittle Creep Failure Caused by Microcrack Growth Under Step Loading and Unloading in Rocks

    Science.gov (United States)

    Li, Xiaozhao; Shao, Zhushan

    2016-07-01

    The growth of subcritical cracks plays an important role in the creep of brittle rock. The stress path has a great influence on creep properties. A micromechanics-based model is presented to study the effect of the stress path on creep properties. The microcrack model of Ashby and Sammis, Charles' Law, and a new micro-macro relation are employed in our model. This new micro-macro relation is proposed by using the correlation between the micromechanical and macroscopic definition of damage. A stress path function is also introduced by the relationship between stress and time. Theoretical expressions of the stress-strain relationship and creep behavior are derived. The effects of confining pressure on the stress-strain relationship are studied. Crack initiation stress and peak stress are achieved under different confining pressures. The applied constant stress that could cause creep behavior is predicted. Creep properties are studied under the step loading of axial stress or the unloading of confining pressure. Rationality of the micromechanics-based model is verified by the experimental results of Jinping marble. Furthermore, the effects of model parameters and the unloading rate of confining pressure on creep behavior are analyzed. The coupling effect of step axial stress and confining pressure on creep failure is also discussed. The results provide implications on the deformation behavior and time-delayed rockburst mechanism caused by microcrack growth on surrounding rocks during deep underground excavations.

  9. Sources and effects of work-related stress among employees in foreign-owned manufacturing companies in Ogun state, Nigeria

    Directory of Open Access Journals (Sweden)

    Ajibade David

    2016-12-01

    Full Text Available This study investigates the sources and effects of work-related stress among employees in foreign owned manufacturing companies in Ogun State, Nigeria. The study used cross sectional descriptive design and a total of three hundred and two (302 respondents were selected using stratified random sampling technique from five randomly selected foreign-owned manufacturing companies. Data were collected using questionnaire and statistically analysed using frequencies, percentages and weighted means. The study reveals factors such as unfavourable physical working conditions, job insecurity, poor career development, and long working hours fostering stress on employees in the sampled companies. The study further reveals that respondents suffered consequences such as restlessness, anxiety and nervous indigestion, headache, neck ache, and inability to concentrate. This study however has implication for management of foreign-owned manufacturing organization. Based on this, appropriate recommendations were made application of which will help to ensure enabling workplace environment and thus reduce the effects of stress on employees.

  10. Electromagnetically induced transparency and quadripartite macroscopic entanglement generated in a ring cavity

    Institute of Scientific and Technical Information of China (English)

    Ma Yong-Hong; Zhou Ling

    2013-01-01

    We propose a feasible scheme to generate electromagnetically induced transparency (EIT) and quadripartite macroscopic entanglement in an optomechanical system with one fixed mirror and three movable perfectly reflecting mirrors.We explore the EIT phenomena in this optomechanical system.Results show the appearance of EIT dips in the output field.Moreover,we demonstrate how steady-state quadripartite entanglement can be generated via radiation pressure.We also quantify the bipartite entanglement in each field-mirror subsystem and in the mirror-mirror subsystem.Findings show that a high intensity of entanglement between two subsystems can be achieved.

  11. EXAMINATION OF THE STRESS-STRAIN STATE OF HETEROGENEOUS BODIES THROUGH THE EMPLOYMENT OF THE METHOD OF BOUNDARY EQUATIONS

    Directory of Open Access Journals (Sweden)

    Khodzhiboev Abduaziz Abdusattorovich

    2012-10-01

    Full Text Available The subject matter of the article represents a solution to the problem of the stress-strain state of a heterogeneous structure resting on the elastic half-plane. The condition of continuity of deformations and stresses alongside the line of contact between the sections of the structure and between the structure and the half-plane is observed; the system of boundary equations is derived on the basis of the above. Coefficients associated with unknown values of the structure are identified with the help of Kelvin's fundamental solutions, while the coefficients associated with the half-plane are identified on the basis of the Mindlin's solutions. The mathematical model and the analytical algorithm developed by the author are implemented within the framework of the examination of the stress-strained state of an earth dam. Analysis of application of the algorithm has proven that concentrated shearing stresses emerge in the area of the upper wall alongside the line of contact between the structure and the half-plane, while mechanical properties of sections of the structure and the half-plane influence the distribution of vertical relocations of the half-plane contour line.

  12. Stress state and caving danger of the roof in bolt supporting roadway

    Institute of Scientific and Technical Information of China (English)

    LIU Shao-wei; XU Li-li

    2006-01-01

    The start point of this text is the bottleneck problem of bolt supporting coal entry that is security problem of bolt supporting roof,we divide one entry into some sections with different stress, simulate stress field of wall rock and rockbolt solidified at different sections used umbrella disperse soft UDEC(universal distinct element code), we educe that the stress level of wallrock and bolt solidified is higher in roof fall risk section, and roof rockbolt load can reflect this rule clearly, that offer an important guideline in monitoring entry roof fall risk.

  13. Study of Traverse Speed Effects on Residual Stress State and Cavitation Erosion Behavior of Arc-Sprayed Aluminum Bronze Coatings

    Science.gov (United States)

    Hauer, Michél; Henkel, Knuth Michael; Krebs, Sebastian; Kroemmer, Werner

    2016-12-01

    Within a research project regarding cavitation erosion-resistant coatings, arc spraying was used with different traverse speeds to influence heat transfer and the resulting residual stress state. The major reason for this study is the lack of knowledge concerning the influence of residual stress distribution on mechanical properties and coating adhesion, especially with respect to heterogeneous aluminum bronze alloys. The materials used for spray experiments were the highly cavitation erosion-resistant propeller alloys CuAl9Ni5Fe4Mn (Ni-Al-Bronze) and CuMn13Al8Fe3Ni2 (Mn-Al-Bronze). Analyses of cavitation erosion behavior were carried out to evaluate the suitability for use in marine environments. Further microstructural, chemical and mechanical analyses were realized to examine adhesive and cohesive coating properties. Residual stress distribution was measured by modified hole drilling method using electronic speckle pattern interferometry (ESPI). It was found that the highest traverse speed led to higher tensile residual stresses near the surface and less cavitation erosion resistance of the coatings. Moreover, high oxygen affinity of main alloying element aluminum was identified to severely influence the microstructures by the formation of large oxides and hence the coating properties. Overall, Mn-Al-Bronze coatings showed lower residual stresses, a more homogeneous pore and oxide distribution and less material loss by cavitation than Ni-Al-Bronze coatings.

  14. Method of superposition of dislocations for finding stress-strain state around fan-shaped structure in a brittle rock

    Science.gov (United States)

    Sadovskii, V. M.; Sadovskaya, O. V.

    2016-10-01

    The Tarasov fan-shaped mechanism, simulating the formation of shear ruptures in a brittle rock at stress conditions corresponding to seismogenic depths, is analyzed. For computation of the stress-strain state of a rock near the equilibrium fan-structure the original method is constructed. The fault is modeled as a narrow elongated layer, filled with the domino-blocks, between two elastic half-spaces. Displacements and stresses around the fan are represented in the integral form as a superposition of edge dislocations with an unknown function of distribution of the Burgers vector. To take into account the stresses of lateral thrust, the solution of plane problem of the elasticity is used for a tensile crack, on the surfaces of which the previously unknown normal stresses are distributed. The exact formulation of the problem leads to a system of two nonlinear singular integral equations, which is solved numerically by the method of successive approximations. The obtained solution is used, when setting the initial data in computations of the dynamics of the Tarasov fan-shaped mechanism. With the help of this solution the discontinuous nature of shear ruptures, observed in natural and laboratory experiments, is explained.

  15. Study of Traverse Speed Effects on Residual Stress State and Cavitation Erosion Behavior of Arc-Sprayed Aluminum Bronze Coatings

    Science.gov (United States)

    Hauer, Michél; Henkel, Knuth Michael; Krebs, Sebastian; Kroemmer, Werner

    2017-01-01

    Within a research project regarding cavitation erosion-resistant coatings, arc spraying was used with different traverse speeds to influence heat transfer and the resulting residual stress state. The major reason for this study is the lack of knowledge concerning the influence of residual stress distribution on mechanical properties and coating adhesion, especially with respect to heterogeneous aluminum bronze alloys. The materials used for spray experiments were the highly cavitation erosion-resistant propeller alloys CuAl9Ni5Fe4Mn (Ni-Al-Bronze) and CuMn13Al8Fe3Ni2 (Mn-Al-Bronze). Analyses of cavitation erosion behavior were carried out to evaluate the suitability for use in marine environments. Further microstructural, chemical and mechanical analyses were realized to examine adhesive and cohesive coating properties. Residual stress distribution was measured by modified hole drilling method using electronic speckle pattern interferometry (ESPI). It was found that the highest traverse speed led to higher tensile residual stresses near the surface and less cavitation erosion resistance of the coatings. Moreover, high oxygen affinity of main alloying element aluminum was identified to severely influence the microstructures by the formation of large oxides and hence the coating properties. Overall, Mn-Al-Bronze coatings showed lower residual stresses, a more homogeneous pore and oxide distribution and less material loss by cavitation than Ni-Al-Bronze coatings.

  16. Forming the stress state of a vibroisolated building in the process of mounting rubber steel vibration isolator

    Directory of Open Access Journals (Sweden)

    Dashevskiy Mikhail Aronovich

    2015-12-01

    Full Text Available The necessity to specificate the formation process of stress-strain state of buildings in the construction process is a new problem which requires including real production characteristics going beyond calculation models into calculation methods. Today the construction process lacks this specification. When mounting vibroisolators the stress-strein of a structure state is changing. The mounting method of vibroisolators is patented and consists in multistage successive compression loading of each vibroisolator with the constant speed and following fixation of this displacement. The specified engineering method of rubber-steel pads calculation in view of change of their form during deformation, nonlinearity, rheological processes is offered. Resilient pads look like rubber plates rectangular in plane reinforced on the basic surfaces with metal sheets. The influence of a time-variable static load and free vibrations of loaded pads are considered.

  17. Ductile failure of steel HY80 under high strain rates and triaxial stress states, experimental results and damage description

    Science.gov (United States)

    Abdel-Malek, S.; Halle, Th.; Meyer, L. W.

    2003-09-01

    Ductile fracture investigations are an important part in current research. The simulation of fracture by means of numerical codes needs precise material data that may be reached from accurate mechanical testing. In order to predict failure processes, the stress state history as a function of strain development has to be known. In this work tensile tests on HY80 steel were performed under quasistatic and high strain rate loading conditions at room temperature using smooth and notched specimens. The force-time and displacement-time behaviour was measured during testing. Additionally, scanning electron microscopy was used to investigate the fractured surfaces. Furthermore, different models were applied to describe the failure process. FE-calculations were used to receive the stress state in the material in the region of the notch as a function of strain development.

  18. The issue of stress state during mechanical tests to assess cladding performance during a reactivity-initiated accident (RIA)

    Science.gov (United States)

    Desquines, J.; Koss, D. A.; Motta, A. T.; Cazalis, B.; Petit, M.

    2011-05-01

    The mechanical test procedures that address fuel cladding failure during a RIA are reviewed with an emphasis on the development of test procedures that determine the deformation and fracture behavior of cladding under conditions similar to those reached in a RIA. An analysis of cladding strain data from experimental research reactor test programs that have simulated the RIA is presented. These data show that the cladding undergoes deformation characterized by hoop extension subject to a range of multiaxial stress states and strain paths comprised between plane-strain (no axial extension of the cladding tube) and equal-biaxial tension (equal strain in both the hoop and the axial orientations). Current mechanical test procedures of cladding material are then reviewed with a focus on their ability to generate the appropriate deformation response and to induce the prototypical multiaxial stress states and failure modes activated during a RIA. Two main groups of tests currently exist. In the first group, the deformation behavior of the cladding is examined by several variations of hoop tensile tests in which an axial contraction of the specimen gage section occurs such that a near-uniaxial tension stress state results; finite element analyses are then usually employed to deduce the deformation response, often under conditions of an assumed coefficient of friction between the specimen and test fixtures. The second group includes test procedures which attempt to reproduce the deformation and failure conditions close to those seen during a RIA such that any stress-state corrections of the failure conditions are comparatively small. The advantages and disadvantages of all of these deformation/fracture tests are discussed with special reference to testing high burnup fuel cladding.

  19. 3-D TECATE/BREW: Thermal, stress, and birefringent ray-tracing codes for solid-state laser design

    Science.gov (United States)

    Gelinas, R. J.; Doss, S. K.; Nelson, R. G.

    1994-07-01

    This report describes the physics, code formulations, and numerics that are used in the TECATE (totally Eulerian code for anisotropic thermo-elasticity) and BREW (birefringent ray-tracing of electromagnetic waves) codes for laser design. These codes resolve thermal, stress, and birefringent optical effects in 3-D stationary solid-state systems. This suite of three constituent codes is a package referred to as LASRPAK.

  20. SIMULATION OF THE stress-strain state of excavation BOUNDARIES in fractured massifs

    Directory of Open Access Journals (Sweden)

    Nizomov Dzhahongir Nizomovich

    2012-07-01

    Any limiting process, namely, if or and any results are in line with the isotropic medium. The proposed algorithm and calculation pattern may be used to research the concentrated stresses alongside the boundaries of hydrotechnical engineering facilities.

  1. Interfacial stress state present in a 'thin-slice' fibre push-out test

    Science.gov (United States)

    Kallas, M. N.; Koss, D. A.; Hahn, H. T.; Hellmann, J. R.

    1992-01-01

    An analysis of the stress distributions along the fiber-matrix interface in a 'thin-slice' fiber push-out test is presented for selected test geometries. For the small specimen thicknesses often required to displace large-diameter fibers with high interfacial shear strengths, finite element analysis indicates that large bending stresses may be present. The magnitude of these stresses and their spatial distribution can be very sensitive to the test configuration. For certain test geometries, the specimen configuration itself may alter the interfacial failure process from one which initiates due to a maximum in shear stress near the top surface adjacent to the indentor, to one which involves mixed mode crack growth up from the bottom surface and/or yielding within the matrix near the interface.

  2. Functional state of rat cardiomyocytes and blood antioxidant system under psycho-emotional stress

    Institute of Scientific and Technical Information of China (English)

    Zurab Kuchukashvili; Ketevan Menabde; Matrona Chachua; George Burjanadze; Manana Chipashvili; Nana Koshoridze

    2011-01-01

    We studied the functionality of the antioxidant system in laboratory rat cardiomyocytes and blood under psychoemotional stress.It was found that 40-day isolation and violation of diurnal cycle among the animals were accompanied by the intensification of lipid peroxidation process and marked with a reduced activity of antioxidant system enzymes, such as catalase and superoxide dismutase activity.The results suggested that psycho-emotional stress was accompanied by oxidative stress, causing a reduction in the intensity of energy metabolism in cardiomyocytes, which was further strengthened by the fact that the activity of the enzymes involved in ATP synthesis in mitochondria was reduced.Based on the results, we proposed that psychological stress is one of the factors contributing to the development of various cardiac diseases.

  3. Discrete fracture in quasi-brittle materials under compressive and tensile stress states

    CSIR Research Space (South Africa)

    Klerck, PA

    2004-01-01

    Full Text Available A method for modelling discrete fracture in geomaterials under tensile and compressive stress fields has been developed based on a Mohr-Coulomb failure surface in compression and three independent anisotropic rotating crack models in tension...

  4. The Impact of a Novel Biobehavioral Intervention on Physiologic State, Perceived Stress and Affect

    Science.gov (United States)

    2016-04-15

    As a result of over 15 years of war, members of the military services have experienced unprecedented consequences related to the stresses of serving...during this time. Early detection, characterization, and treatment of stress -related disorders is one of the highest priorities for the armed forces...and military medical research, as a means of force health protection. One complementary intervention, laughter yoga (LY), has yet to be investigated in

  5. Effect of stressful conditions on the functional state of blood eritroid cells

    Directory of Open Access Journals (Sweden)

    O. A. Nykyforova

    2011-10-01

    Full Text Available The influence of alimentary stress-factors – NaCl and cholesterol – on the osmotic resistance of rats’ erythrocytes has been studied. The results demonstrate more significant deviations in erythrocytes’ osmotic resistance of animals under the stress load of NaCl in comparison with the alimentary cholesterol load. NaCl significantly worsened the erythrocytes’ stability. Under such conditions the metabolic consequences arised for both the organism and cardiovascular system.

  6. THE ALGORITHM OF ZERO-STRESS STATE OF PNEUMATIC STRESSED MEMBRANE STRUCTURE%充气膜结构零应力态求解

    Institute of Scientific and Technical Information of China (English)

    赵俊钊; 陈务军; 付功义; 朱红飞

    2012-01-01

    充气膜结构分析全过程包括9个状态和7个分析过程,零应力态是结构分析与设计的基础,将结构数值分析态和实际物理态有机联系起来。该文首次提出了一种从弹性平衡态到零应力态的逆解析数值分析方法,非线性协调矩阵广义逆法。首先,用膜线单元模拟膜面,将膜结构转化成为网格结构,由弹性平衡态预张力和材料参数,计算膜线无应力长度和伸长量;然后,基于杆系结构平衡矩阵理论和小变形假定,建立体系的协调方程,由协调矩阵M-P广义逆求解节点位移,逆向叠加求出新状态位形。根据新位形计算膜线张力向量和节点不平衡力向量,迭代求解零应力态。根据该算法,用MATLAB编制了计算程序。算例分析验证了该方法的正确性和高效性。该文对充气膜结构设计具有重要理论意义和实际指导价值。%The whole analysis process of pneumatic membrane structure contains nine states and seven analysis processes. Zero-stress state is the corner-stone of the analysis and design of pneumatic structures, and it combines the numerical analysis state and actual physical state closely. According to the logical model of the whole analysis process of pneumatic structures, a numerical analysis method to solve zero-stress state from the elasticized equilibrium state was firstly proposed, which was called nonlinear compatibility matrix M-P inverse method. Firstly, the pneumatic membrane structure was transferred into grid structure by using membrane link to simulate membrane surface, and the unstressed length and elongation were calculated from tension and material parameters of the elasticized equilibrium state. Secondly, on the basis of equilibrium matrix theory of pin joint structures and small deformation assumption, the compatibility equation of system was established. Using compatibility matrix M-P inverse, the nodal displacement was calculated by

  7. Vitamin C combined with atorvastatin calcium state of micro oxidative stress and inflammation in patients with hemodialysis

    Institute of Scientific and Technical Information of China (English)

    En-Hao Bao; Ai-Guo Zhu; Zhi-Hong Wang

    2016-01-01

    Objective:To discuss Vitamin C combined with statins atorvastatin calcium affect oxidative stress in hemodialysis patients with micro-inflammatory state.Methods:92 hemodialysis patients admitted to hospital were randomly divided into atorvastatin calcium group (A) and vitamin C combined with atorvastatin calcium group (group B), select the same period and 30 healthy volunteers as group C, compare three groups before and after treatment with the micro-inflammatory state of oxidative stress indexes, including malondialdehyde (MDA), superoxide dismutase (SOD), C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor (TNF-α) levels in the case.Results:Group A Group B and MDA levels before treatment were significantly higher than group C, after treatment indicators were significantly lower than before treatment, and group B index level change is more significant, the difference was statistically significant (P<0.05); two SOD levels before treatment were significantly higher than group C, the target level after treatment was significantly lower than before treatment, and the B group index change is more obvious, the difference was statistically significant (P<0.05);A group and group B before treatment were significantly higher than the index of water group C, were significantly decreased after treatment than before treatment groups level, and group B decreased more significantly, the difference was statistically significant (P<0.05).Conclusions:Vitamin C combined with atorvastatin calcium can improve hemodialysis patients oxidative stress and micro-inflammatory state, fewer adverse reactions, is worthy of clinical application.

  8. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... that exhibits anisotropic yield properties with a pressure dependence. At the microscale free energy includes both elastic strains and plastic strain gradients, and the theory demands higher order boundary conditions in terms of plastic strain or work conjugate higher order tractions. The mechanical response...... of the composite is inclined compared to a standard pressure independent yield surfaces. The evolution of the macroscopic yield surface is investigated by quantifying both anisotropic hardening (expansion) and kinematic hardening (translation), where the coefficients of anisotropy and the Bauschinger stress...

  9. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  10. From 1D to 3D - macroscopic nanowire aerogel monoliths

    Science.gov (United States)

    Cheng, Wei; Rechberger, Felix; Niederberger, Markus

    2016-07-01

    Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying.Here we present a strategy to assemble one-dimensional nanostructures into a three-dimensional architecture with macroscopic size. With the assistance of centrifugation, we successfully gel ultrathin W18O49 nanowires with diameters of 1 to 2 nm and aspect ratios larger than 100 into 3D networks, which are transformed into monolithic aerogels by supercritical drying. Electronic supplementary information (ESI) available: Experimental details, SEM and TEM images, and digital photographs. See DOI: 10.1039/c6nr04429h

  11. Wave speeds in the macroscopic extended model for ultrarelativistic gases

    Energy Technology Data Exchange (ETDEWEB)

    Borghero, F., E-mail: borghero@unica.it [Dip. Matematica e Informatica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy); Demontis, F., E-mail: fdemontis@unica.it [Dip. Matematica, Università di Cagliari, Viale Merello 92, 09123 Cagliari (Italy); Pennisi, S., E-mail: spennisi@unica.it [Dip. Matematica, Università di Cagliari, Via Ospedale 72, 09124 Cagliari (Italy)

    2013-11-15

    Equations determining wave speeds for a model of ultrarelativistic gases are investigated. This model is already present in literature; it deals with an arbitrary number of moments and it was proposed in the context of exact macroscopic approaches in Extended Thermodynamics. We find these results: the whole system for the determination of the wave speeds can be divided into independent subsystems which are expressed by linear combinations, through scalar coefficients, of tensors all of the same order; some wave speeds, but not all of them, are expressed by square roots of rational numbers; finally, we prove that these wave speeds for the macroscopic model are the same of those furnished by the kinetic model.

  12. Applying quantum mechanics to macroscopic and mesoscopic systems

    CERN Document Server

    T., N Poveda

    2012-01-01

    There exists a paradigm in which Quantum Mechanics is an exclusively developed theory to explain phenomena on a microscopic scale. As the Planck's constant is extremely small, $h\\sim10^{-34}{J.s}$, and as in the relation of de Broglie the wavelength is inversely proportional to the momentum; for a mesoscopic or macroscopic object the Broglie wavelength is very small, and consequently the undulatory behavior of this object is undetectable. In this paper we show that with a particle oscillating around its classical trajectory, the action is an integer multiple of a quantum of action, $S = nh_{o}$. The quantum of action, $h_{o}$, which plays a role equivalent to Planck's constant, is a free parameter that must be determined and depends on the physical system considered. For a mesoscopic and macroscopic system: $h_{o}\\gg h$, this allows us to describe these systems with the formalism of quantum mechanics.

  13. Analysis and Enhancements of a Prolific Macroscopic Model of Epilepsy

    Directory of Open Access Journals (Sweden)

    Christopher Fietkiewicz

    2016-01-01

    Full Text Available Macroscopic models of epilepsy can deliver surprisingly realistic EEG simulations. In the present study, a prolific series of models is evaluated with regard to theoretical and computational concerns, and enhancements are developed. Specifically, we analyze three aspects of the models: (1 Using dynamical systems analysis, we demonstrate and explain the presence of direct current potentials in the simulated EEG that were previously undocumented. (2 We explain how the system was not ideally formulated for numerical integration of stochastic differential equations. A reformulated system is developed to support proper methodology. (3 We explain an unreported contradiction in the published model specification regarding the use of a mathematical reduction method. We then use the method to reduce the number of equations and further improve the computational efficiency. The intent of our critique is to enhance the evolution of macroscopic modeling of epilepsy and assist others who wish to explore this exciting class of models further.

  14. Stress-deformed state of cylindrical specimens during indirect tensile strength testing

    Institute of Scientific and Technical Information of China (English)

    Levan Japaridze

    2015-01-01

    In this study, the interaction between cylindrical specimen made of homogeneous, isotropic, and linearly elastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed that the specimen is diametrically compressed by elliptic normal contact stresses. The frictional contact stresses between the specimen and platens are neglected. The analytical solution starts from the contact problem of the loading jaws of any curvature and cylindrical specimen. The contact width, corresponding loading angle (2q0), and elliptical stresses obtained through solution of the contact problems are used as boundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder is solved using Muskhelishvili’s method. In this method, the displacements and stresses are represented in terms of two analytical functions of a complex variable. In the main approaches, the nonlinear inter-action between the loading bearing blocks and the specimen as well as the curvature of their surfaces and the elastic parameters of their materials are taken into account. Numerical examples are solved using MATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on the distribution of the normal contact stresses as well as on the tensile and compressive stresses acting across the loaded diameter. Derived equations also allow calculating the modulus of elasticity, total deformation modulus and creep parameters of the specimen material based on the experimental data of radial contraction of the specimen.

  15. Stress-deformed state of cylindrical specimens during indirect tensile strength testing

    Directory of Open Access Journals (Sweden)

    Levan Japaridze

    2015-10-01

    Full Text Available In this study, the interaction between cylindrical specimen made of homogeneous, isotropic, and linearly elastic material and loading jaws of any curvature is considered in the Brazilian test. It is assumed that the specimen is diametrically compressed by elliptic normal contact stresses. The frictional contact stresses between the specimen and platens are neglected. The analytical solution starts from the contact problem of the loading jaws of any curvature and cylindrical specimen. The contact width, corresponding loading angle (2θ0, and elliptical stresses obtained through solution of the contact problems are used as boundary conditions for a cylindrical specimen. The problem of the theory of elasticity for a cylinder is solved using Muskhelishvili's method. In this method, the displacements and stresses are represented in terms of two analytical functions of a complex variable. In the main approaches, the nonlinear interaction between the loading bearing blocks and the specimen as well as the curvature of their surfaces and the elastic parameters of their materials are taken into account. Numerical examples are solved using MATLAB to demonstrate the influence of deformability, curvature of the specimen and platens on the distribution of the normal contact stresses as well as on the tensile and compressive stresses acting across the loaded diameter. Derived equations also allow calculating the modulus of elasticity, total deformation modulus and creep parameters of the specimen material based on the experimental data of radial contraction of the specimen.

  16. Downstream Procedures and Outcomes After Stress Testing For Suspected Coronary Artery Disease in the United States

    Science.gov (United States)

    Mudrick, Daniel W; Cowper, Patricia A; Shah, Bimal R; Patel, Manesh R; Jensen, Neil C; Drawz, Matthew J; Peterson, Eric D; Douglas, Pamela S

    2013-01-01

    Background Millions of Americans with suspected coronary artery disease undergo non-invasive cardiac stress testing annually. Downstream procedures and subsequent outcomes among symptomatic patients without known coronary disease referred for stress testing are not well characterized in contemporary community practice. Methods We examined administrative insurance billing data from a national insurance provider from November 2004 through June 2007. After excluding patients with prior cardiac disease or chest pain evaluation, we identified 80,676 people age 40–64 years with outpatient cardiac stress testing within 30 days after an office visit for chest pain. We evaluated rates of invasive coronary angiography, coronary revascularization, and cardiovascular events after stress testing. Results Within 60 days, only 8.8% of stress test patients underwent cardiac catheterization and only 2.7% underwent revascularization; within one year only 0.5% suffered death, myocardial infarction, or stroke. There were marked geographic variations in one-year rates of catheterization (3.8–14.8%) and revascularization (1.2–3.0%) across 20 hospital referral regions. Conclusions In this large national cohort of middle-aged patients without previously coded cardiac diagnosis who were referred for stress testing after outpatient chest pain evaluation, few proceeded to invasive angiography or revascularization, and subsequent cardiovascular events were infrequent. PMID:22424017

  17. Identification of Bodies Exposed to High Temperatures Based on Macroscopic...

    OpenAIRE

    Barraza Salcedo, María del Socorro; Universidad Metropolitana de Barranquilla. Barranquilla; Rebolledo Cobos, Martha Leonor; Universidad Metropolitana de Barranquilla

    2016-01-01

    ABSTRACT. Background: Forensic dentistry in cases of incineration provides scientific elements that allow the identification of bodies, by analyzing dental organs, through the isolation of DNA obtained from the pulp as an alternative to confirm the identity of the victim. When the degree of temperature is highly elevated, dental tissues are vulnerable and therefore the DNA pulp is not salvageable, wasting resources and time by lack of standards to identify macroscopic characteristics that ind...

  18. CONTRIBUTION OF MACROSCOPIC DIMENSION EFFECT TO PIEZOELFCTRICITY IN POLYVINYLIDENE FLUORIDE

    Institute of Scientific and Technical Information of China (English)

    WEN Jianxun; TAKEO FURUKAWA

    1987-01-01

    In this paper, we have studied the piezoelectricity in the poled uniaxially drawn polyvinylidene fluoride. The piezoelectric constants d31, d32, da33 and Young's moduli 1/s11 and 1/s22 have been determined as a function of the remanent polarization Pr. The piezoelectric constants of the samples show a strong in-plane anisotropy. Such an anisotropy is mostly attributable to different Poisson's ratio. It is found that the piezoelectric activity mainly arises from macroscopic dimensional change.

  19. Aorta modeling with the element-based zero-stress state and isogeometric discretization

    Science.gov (United States)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi

    2016-11-01

    Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight

  20. Aorta modeling with the element-based zero-stress state and isogeometric discretization

    Science.gov (United States)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Sasaki, Takafumi

    2017-02-01

    Patient-specific arterial fluid-structure interaction computations, including aorta computations, require an estimation of the zero-stress state (ZSS), because the image-based arterial geometries do not come from a ZSS. We have earlier introduced a method for estimation of the element-based ZSS (EBZSS) in the context of finite element discretization of the arterial wall. The method has three main components. 1. An iterative method, which starts with a calculated initial guess, is used for computing the EBZSS such that when a given pressure load is applied, the image-based target shape is matched. 2. A method for straight-tube segments is used for computing the EBZSS so that we match the given diameter and longitudinal stretch in the target configuration and the "opening angle." 3. An element-based mapping between the artery and straight-tube is extracted from the mapping between the artery and straight-tube segments. This provides the mapping from the arterial configuration to the straight-tube configuration, and from the estimated EBZSS of the straight-tube configuration back to the arterial configuration, to be used as the initial guess for the iterative method that matches the image-based target shape. Here we present the version of the EBZSS estimation method with isogeometric wall discretization. With isogeometric discretization, we can obtain the element-based mapping directly, instead of extracting it from the mapping between the artery and straight-tube segments. That is because all we need for the element-based mapping, including the curvatures, can be obtained within an element. With NURBS basis functions, we may be able to achieve a similar level of accuracy as with the linear basis functions, but using larger-size and much fewer elements. Higher-order NURBS basis functions allow representation of more complex shapes within an element. To show how the new EBZSS estimation method performs, we first present 2D test computations with straight